

Building Oracle XML Applications

Steve Muench
Publisher: O'Reilly
First Edition September 2000
ISBN: 1-56592-691-9, 810 pages

Building Oracle XML Applications gives Java and PL/SQL developers a

rich and detailed look at the many tools Oracle provides to support XML

development. It shows how to combine the power of XML and XSLT with

the speed, functionality, and reliability of the Oracle database. The

author delivers nearly 800 pages of entertaining text, helpful and

time-saving hints, and extensive examples that developers can put to

use immediately to build custom XML applications. The accompanying

CD-ROM contains JDeveloper 3.1, an integrated development

environment for Java developers.

Building Oracle XML Applications

Copyright © 2000 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA
95472.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of
the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and
O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps.

Oracle®, JDeveloper™, and all Oracle-based trademarks and logos are
trademarks or registered trademarks of Oracle Corporation, Inc. in the United
States and other countries. Java™ and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. O'Reilly & Associates, Inc. is independent of Oracle
Corporation and Sun Microsystems.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Table of Contents

Preface

 Audience for This Book

 Which Platform and Version?

 Structure of This Book

 About the Examples

 About the CD-ROM

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

I: XML Basics

1. Introduction to XML

 1.1 What Is XML?

 1.2 What Can I Do with XML?

 1.3 Why Should I Use XML?

 1.4 What XML Technologies Does Oracle Provide?

2. Working with XML

 2.1 Creating and Validating XML

 2.2 Modularizing XML

 2.3 Searching XML with XPath

II: Oracle XML Fundamentals

3. Combining XML and Oracle

 3.1 Hosting the XML FAQ System on Oracle

 3.2 Serving XML in Any Format

 3.3 Acquiring Web-based XML Content

4. Using JDeveloper for XML Development

 4.1 Working with XML, XSQL, and JSP Files

 4.2 Working with Database Objects

 4.3 Using JDeveloper with Oracle XDK Components

5. Processing XML with PL/SQL

 5.1 Loading External XML Files

 5.2 Parsing XML

 5.3 Searching XML Documents with XPath

 5.4 Working with XML Messages

 5.5 Producing and Transforming XML Query Results

6. Processing XML with Java

 6.1 Introduction to Oracle8 i JServer

 6.2 Parsing and Programmatically Constructing XML

 6.3 Searching XML Documents with XPath

 6.4 Working with XML Messages

 6.5 Producing and Transforming XML Query Results

7. Transforming XML with XSLT

 7.1 XSLT Processing Mechanics

 7.2 Single-Template Stylesheets

 7.3 Understanding Input and Output Options

 7.4 Improving Flexibility with Multiple Templates

8. Publishing Data with XSQL Pages

 8.1 Introduction to XSQL Pages

 8.2 Transforming XSQL Page Results with XSLT

 8.3 Troubleshooting Your XSQL Pages

9. XSLT Beyond the Basics

 9.1 Using XSLT Variables

 9.2 The Talented Identity Transformation

 9.3 Grouping Repeating Data Using SQL

 9.4 Sorting and Grouping Repeating Data with XSLT

10. Generating Datagrams with PL/SQL

 10.1 Programmatically Generating XML Using PL/SQL

 10.2 Automatic XML Generation with DBXML

11. Generating Datagrams with Java

 11.1 Generating XML Using Java

 11.2 Serving XML Datagrams over the Web

 11.3 Automatic XML from SQL Queries

12. Storing XML Datagrams

 12.1 Overview of XML Storage Approaches

 12.2 Loading Datagrams with the XML SQL Utility

 12.3 Storing Posted XML Using XSQL Servlet

 12.4 Inserting Datagrams Using Java

13. Searching XML with interMedia

 13.1 Why Use interMedia?

 13.2 What Is interMedia?

 13.3 The interMedia Query Language

 13.4 Handling Heterogeneous Doctypes

 13.5 Handling Doctype Evolution

 13.6 Advanced interMedia

14. Advanced XML Loading Techniques

 14.1 Storing Datagrams in Multiple Tables

 14.2 Building an XMLLoader Utility

 14.3 Creating Insert Transformations Automatically

III: Oracle XML Applications

15. Using XSQL Pages as a Publishing Framework

 15.1 Overview of XSQL Pages Facilities

 15.2 Additional XML Delivery Options

16. Extending XSQL and XSLT with Java

 16.1 Developing Custom XSQL Actions

 16.2 Integrating Custom XML Sources

 16.3 Working with XSLT Extension Functions

17. XSLT-Powered Portals and Applications

 17.1 XSLT-Powered Web Store

 17.2 Building a Personalized News Portal

 17.3 Online Discussion Forum

IV: Appendixes

A. XML Helper Packages

 A.1 Installing the XML Helper Packages

 A.2 Source Code for the XML Helper Packages

B. Installing the Oracle XSQL Servlet

 B.1 Supported Configurations

 B.2 Prerequisites

 B.3 Downloading and Installing the XSQL Servlet

C. Conceptual Map to the XML Family

D. Quick References

Colophon

Preface

This book is a hands-on, practical guide that teaches you the nuts and bolts of XML and the family

of Internet standards related to it and shows how to exploit XML with your Oracle database using

Java™, PL/SQL, and declarative techniques. It’s a book for Oracle developers by an Oracle

developer who has lived the technology at Oracle Corporation for over ten years and has directly

catalyzed the company’s XML technology direction and implementation. As you read this book, I

hope you will come to appreciate the wide variety of tools Oracle provides to enable you to

combine the best of XML with the best of Oracle to build flexible, database-powered applications

for the Web.

This book abounds with tested, commented, and fully explained examples because—in the

unforgettable words of a high school mentor of mine—“you only get good at something by

working through an ungodly number of problems." The examples include a number of helper

libraries and utilities that will serve to jump-start your own Oracle XML development projects (see

“About the Examples" later in this Preface for details).

If this book has one main goal, it is to educate, excite, and thoroughly convince you that by

combining:

• The speed, functionality, and reliability of the Oracle database

• The power of XML as a universal standard for data exchange

• The flexibility to easily transform XML data into any format required

we can accomplish some pretty amazing things, not to mention saving ourselves a lot of work in

the process.

Audience for This Book

This book is aimed mainly at Java and PL/SQL developers who want to use the XML family of

Internet standards in conjunction with their Oracle databases. I also expect that this book may

catch the eye of existing Oracle database administrators who want to update their skills to learn

how to apply Java, PL/SQL, and XML to their daily work. In addition, the in-depth coverage of

Oracle’s template-driven XSQL Pages technology should prove useful to non-programmers as

well.

This book assumes no prior knowledge of XML on your part, but it does assume a basic working

knowledge of SQL and familiarity with either Java or PL/SQL as a programming language.

Which Platform and Version?

Much of this book applies to Oracle8 and Oracle8i (and even Oracle7 in some cases). In general,

if you want to use XML outside the database, you can use any Oracle version. However, if you

want to use XML features inside the database (and take full advantage of the features I describe

here), you must use Oracle8i. Wherever relevant, I note whether a particular XML feature is

specific to Oracle8i or can be used with earlier Oracle versions as well.

The examples for this book were developed and tested on a Windows NT 4.0 platform using

JDeveloper 3.1 as a development environment and Oracle8i Release 2 Enterprise Edition for NT

(version 8.1.6) as the database. However, none of the examples, tools, or technologies covered

in the book are Windows-specific. The JDeveloper 3.1 product—included on the CD-ROM that

accompanies this book—is certified to run on Windows NT and Windows 2000.

Structure of This Book

This book is not divided strictly by individual tool and function. Instead, it begins in Part I with an

overview of fundamental XML standards and concepts. Part II covers all core Oracle XML

technologies, presenting increasingly detailed discussions of various Oracle XML capabilities. Part

III describes combining the technologies we’ve learned to build applications and portals. Finally,

Part IV includes four useful appendixes with installation and reference information.

The book uses extensive examples—in both PL/SQL and Java—to present material of increasing

sophistication.

The following list summarizes the contents in detail.

Part I, introduces the basics of XML and provides a high-level overview of Oracle’s XML

technology. It consists of the following chapters:

• Chapter 1, provides a gentle introduction to XML by describing what it is, what you can do

with it, why you should use it, and what software Oracle supplies to work with it.

• Chapter 2, describes how to build your own “vocabularies" of tags to represent the

information you need to work with, as well as how to use XML namespaces and entities to

modularize your documents and XPath expressions to search them.

Part II, describes the core development activities that Oracle XML developers need to understand

when using XML with an Oracle database. It consists of the following chapters:

• Chapter 3, provides a typical “day-in-the-life" scenario illustrating the power of combining

XML with an Oracle database.

• Chapter 4, describes how you can use Oracle’s JDeveloper product to help with XML

development.

• Chapter 5, explains how you can use PL/SQL to load XML files, parse XML, search XML

documents, post XML messages, and both enqueue and dequeue XML messages from

queues.

• Chapter 6, explains how you can combine Java and XML both inside and outside Oracle8i

to load XML files, parse XML, search XML documents, and post XML messages, as well as

enqueue and dequeue XML messages from queues.

• Chapter 7, explains the fundamentals of creating XSLT stylesheets to carry out

transformations of a source XML document into a resulting XML, HTML or plain text output.

• Chapter 8, explains how to build dynamic XML datagrams from SQL using declarative

templates to perform many common tasks.

• Chapter 9, builds on the fundamentals from Chapter 7 and explores additional XSLT

functionality like variables, sorting and grouping techniques, and the many kinds of useful

transformations that can be done using a variation on the identity transformation.

• Chapter 10, gives Java developers a whirlwind introduction to PL/SQL and describes how

to use PL/SQL to dynamically produce custom XML datagrams containing database

information.

• Chapter 11, describes numerous techniques for programmatically producing XML

datagrams using Java by using JDBC™, SQLJ, JavaServer Pages™, and the Oracle XML

SQL Utility.

• Chapter 12, explains how to store XML datagrams in the database using the XML SQL

Utility and other techniques, as well as how to retrieve them using XSQL pages and XSLT

transformations.

• Chapter 13, describes how you can use Oracle8i ’s integrated interMedia Text functionality

to search XML documents, leveraging their inherent structure to improve text searching

accuracy.

• Chapter 14, describes the techniques required to insert arbitrarily large and complicated

XML into multiple tables. It also covers using stylesheets to generate stylesheets to help

automate the task.

Part III, describes how to build applications using Oracle and XML technologies. It consists of the

following chapters:

• Chapter 15, builds on Chapter 8, explaining the additional features that make XSQL Pages

an extensible framework for assembling, transforming, and delivering XML information of

any kind.

• Chapter 16, describes how to extend the functionality of the XSQL Pages framework using

custom action handlers, and how to extend the functionality of XSLT stylesheets by calling

Java extension functions.

• Chapter 17, builds further on Chapter 11 and on earlier chapters, describing best-practice

techniques to combine XSQL pages and XSLT stylesheets to build personalized

information portal and sophisticated online discussion forum applications.

Part IV, contains the following summaries:

• Appendix A, provides the source code for the PL/SQL helper packages we built in Chapter

3: xml, xmldoc, xpath, xslt, and http.

• Appendix B, describes how to install the XSQL Servlet that you can use with any servlet

engine (Apache JServ, JRun, etc.).

• Appendix C, graphically summarizes the relationships between key XML concepts and the

family of XML-related standards that supports them.

• Appendix D, provides “cheat sheets" on XML, XSLT, and XPath syntax.

About the Examples

This book contains a large number of fully working examples. Many are designed to help you build

your own Oracle XML applications. To that end, I’ve included all examples on the O’Reilly web site

(http://www.oreilly.com/catalog/orxmlapp). The site includes full source code of all examples

and detailed instructions on how to create the sample data required for each chapter. I’ll try to

keep the code up to date, incorporating corrections to any errors that are discovered, as well as

improvements suggested by readers.

In order to run the complete set of examples yourself, you will need the following software:

• Oracle 8i Release 2 (version 8.1.6) or greater

• Oracle JDeveloper 3.1 or greater

From the Oracle XML Developer’s Kit for Java:

• Oracle XML Parser/XSLT Processor for Java, Release 2.0.2.9 or greater

• Oracle XSQL Pages and the XSQL Servlet Release 1.0.0.0

• Oracle XML SQL Utility

From the Oracle XML Developer’s Kit for PL/SQL:

• Oracle XML Parser/XSLT Processor for PL/SQL Release 1.0.2 or greater

All of this software is downloadable from the Oracle Technology Network (OTN) web site for

Oracle developers at http://technet.oracle.com and is available free of charge for

single-developer use. For information on runtime distribution of the Oracle XML Developer’s kit

components, read the license agreement on the download page of any of the components. For

your convenience, all of the software listed—with the exception of the Oracle8i database itself—is

available on the CD-ROM accompanying this book and is automatically installed as part of the

JDeveloper 3.1 installation.

About the CD-ROM

We are grateful to Oracle Corporation for allowing us to include the JDeveloper 3.1 for Windows

NT software (developer version) on the CD-ROM accompanying this book. This product provides

a complete development environment for Java developers working with Oracle and XML. Chapter

4 covers the details of significant JDeveloper 3.1 features that are of interest to XML application

developers. You’ll find full product documentation and online help on the CD-ROM as well.

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for file and directory names and URLs, menu items, and for the first mention of new

terms under discussion

Constant width

Used in code examples and for package names, XML elements and attributes, and Java

classes and methods

Constant width italic

In some code examples, indicates an element (e.g., a filename) that you supply

Constant width bold

Indicates user input in code examples

UPPERCASE

Generally used for Oracle SQL and PL/SQL keywords

lowercase

Generally used for table names in text and for table, column, and variable names in code

examples

The following icons are used in this book:

This icon indicates a tip, suggestion, or general note related to
surrounding text.

This icon indicates a warning related to surrounding text.

Comments and Questions

I have tested and verified the information in this book to the best of my ability, but you may find

that features have changed (or even that I have made mistakes!). Please let me know about any

errors you find, as well as your suggestions for future editions, by writing to:

O’Reilly & Associates 101 Morris Street Sebastopol, CA 95472 800-998-9938 (in the U.S. or

Canada) 707-829-0515 (international or local) 707-829-0104 (FAX)

You can also send O’Reilly messages electronically. To be put on the mailing list or request a

catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for this book, where we’ll include examples (see Section P.4 earlier in the

Preface), errata, and any plans for future editions. You can access this page at:

http://www.oreilly.com/catalog/orxmlapp/

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Acknowledgments

I owe an unrepayable debt of gratitude to my wife Sita. For over a year, she juggled our two

active youngsters on nights and weekends while Daddy “disappeared" to work on his book—a

true labor of love. She did not understand what demon drove me to write this book, but she felt

I might regret not writing it for the rest of my life. I’m happy to say to her, Emma, and Amina,

“Daddy’s home."

Thanks to my mother-in-law, Dr. Nila Negrin, who assisted me in finding the perfect XML insect

to grace the cover of this book, Xenochaetina Muscaria Loew. Regrettably, O’Reilly couldn’t find a

print of this Tennessee-native fly, so we had to go for plan B.

Many thanks to the technical reviewers for this book: Adam Bosworth, Terris Linenbach, Don

Herkimer, Keith M. Swartz, Leigh Dodds, Murali Murugan, Bill Pribyl, and Andrew Odewahn. I owe

Keith a special thank you for his amazingly detailed review.

Garrett Kaminaga, a key developer on Oracle’s interMedia Text product development team, wrote

the lion’s share of Chapter 13, for which I am very grateful. In addition, thanks go to MK, Visar,

and Karun in Oracle’s Server Technology XML development team for answering questions when I

bumped into problems, and for always having an open mind to new ideas.

Norm Walsh, coauthor of DocBook: The Definitive Guide (O’Reilly & Associates), offered early

encouragement for my then-crazy idea of authoring this entire book in XML, and he answered

many questions at the outset about using the DocBook DTD for technical manuals.

Many thanks to Tony Graham at Mulberry Technologies for giving us permission to include the

helpful XML, XSLT, and XPath quick references in Appendix D and to Oracle Corporation for

allowing us to include JDeveloper 3.1 on the accompanying CD-ROM.

Thanks to the entire O’Reilly production team, especially to Madeleine Newell, the project

manager and copyeditor, whose keen questions about wording and XML enhanced the book.

Finally, thanks to Debby Russell, my editor at O’Reilly, for believing in my initial idea and more

importantly for not rushing me to finish. The book you’re now reading is everything I envisioned

at the outset for a one-stop-shop book for developers using Oracle and XML. No compromises

were made and thankfully, none was ever asked of me.

Part I: XML Basics

This part of the book introduces the basics of XML and provides a high-level overview of Oracle's

XML technology. It consists of the following chapters:

• Chapter 1, provides a gentle introduction to XML by describing what it is, what you

can do with it, why you should use it, and what software Oracle supplies to work

with it.

• Chapter 2, describes how to build your own vocabularies of tags to represent the

information you need to work with, as well as how to use XML namespaces and

entities to modularize your documents and XPath expressions to search them.

Chapter 1. Introduction to XML

The Internet is driving an unprecedented demand for access to information. Seduced by the

convenience of paying bills, booking flights, tracking stocks, checking prices, and getting

everything from gifts to groceries online, consumers are hungry for more. Compelled by the lower

costs of online outsourcing and the ability to inquire, day or night, "What's the status?,"

businesses are ramping up to reap the rewards. Excited by improved efficiency and universal

public access, governments are considering how all kinds of raw data, from financial reports to

federally funded research, can be published online in an easily reusable format.

More than ever before, database-savvy web application developers working to capitalize on these

exciting Internet-inspired opportunities need to rapidly acquire, integrate, and repurpose

information, as well as exchange it with other applications both inside and outside their

companies. XML dramatically simplifies these tasks.

As with any new technology, you first need to understand what XML is, what you can do with it,

and why you should use it. With all the new terms and acronyms to understand, XML can seem

like a strange new planet to the uninitiated, so let's walk before we run. This chapter introduces

"Planet XML" and the "moons" that orbit it, and provides a high-level overview of the tools and

technology Oracle offers to exploit the combined strengths of XML and the Oracle database in

your web applications.

1.1 What Is XML?

First, let's look at some basic XML definitions and examples.

1.1.1 Extensible Markup Language

XML, which stands for the "Extensible Markup Language," defines a universal
standard for electronic data exchange. It provides a rigorous set of rules enabling
the structure inherent in data to be easily encoded and unambiguously
interpreted using human-readable text documents. Example 1.1 shows what a
stock market transaction might look like represented in XML.

Example 1.1. Stock Market Transaction Represented in XML

<?xml version="1.0"?>
<transaction>
 <account>89-344</account>
 <buy shares="100">
 <ticker exch="NASDAQ">WEBM</ticker>

 </buy>
 <sell shares="30">
 <ticker exch="NYSE">GE</ticker>
 </sell>
</transaction>

After an initial line that identifies the document as an XML document, the

example begins with a <transaction> tag. Nested inside this opening tag and its

matching </transaction> closing tag, other tags and text encode nested

structure and data values respectively. Any tag can carry a list of one or more

named attribute="value" entries as well, like shares="nn" on <buy> and

<sell> and exch="xxx" on <ticker>.

XML's straightforward "text with tags" syntax should look immediately familiar if
you have ever worked with HTML, which also uses tags, text, and attributes. A
key difference between HTML and XML, however, lies in the kind of data each
allows you to represent. What you can represent in an HTML document is

constrained by the fixed set of HTML tags at your disposal—like <table>, ,

and <a> for tables, images, and anchors. In contrast, with XML you can invent

any set of meaningful tags to suit your current data encoding needs, or reuse an
existing set that someone else has already defined. Using XML and an
appropriate set of tags, you can encode data of any kind, from highly structured
database query results like the following:

<?xml version="1.0"?>
<ROWSET>
 <ROW num="1">
 <ENAME>KING</ENAME>
 <SAL>5000</SAL>
 </ROW>
 <ROW num="2">
 <ENAME>SCOTT</ENAME>
 <SAL>3000</SAL>
 </ROW>
</ROWSET>

to unstructured documents like this one:

<?xml version="1.0"?>

<DamageReport>
 The insured's <Vehicle Make="Volks">Beetle</Vehicle> broke through
 the guard rail and plummeted into a ravine. The cause was determined
 to be <Cause>faulty brakes</Cause>. Amazingly there were no
casualties.
</DamageReport>

and anything in between.

A set of XML tags designed to encode data of a particular kind is known as an XML
vocabulary. If the data to be encoded is very simple, it can be represented with
an XML vocabulary consisting of as little as a single tag:

<?xml version="1.0"?>
<OrderConfirmed/>

For more complicated cases, an XML vocabulary can comprise as many tags as
necessary, and they can be nested to reflect the structure of data being
represented:

<?xml version="1.0"?>
<Planet Name="Earth">
 <Continent Name="North America">
 <Country Name="USA">
 <State Name="California">
 <City Name="San Francisco"/>
 </State>
 </Country>
 </Continent>
</Planet>

As we've seen in the few examples above, an XML document is just a sequence of
text characters that encodes data using tags and text. Often, this sequence of
characters will be the contents of a text file, but keep in mind that XML
documents can live anywhere a sequence of characters can roost. An XML
document might be the contents of a string-valued variable in a running
computer program, a stream of data arriving in packets over a network, or a
column value in a row of a database table. While XML documents encoding
different data may use different tag vocabularies, they all adhere to the same set
of general syntactic principles described in the XML specification, which is
discussed in the next section.

1.1.2 XML Specification

The XML 1.0 specification became a World Wide Web Consortium (W3C)
Recommendation in February 1998. Before a W3C specification reaches this final
status, it must survive several rounds of public scrutiny and be tempered by
feedback from the early implementation experience of multiple vendors. Only
then will the W3C Director declare it a "Recommendation" and encourage its
widespread, public adoption as a new web standard. In the short time since
February 1998, hundreds of vendors and organizations around the world have
delivered support for XML in their products. The list includes all of the big-name
software vendors like Oracle, IBM, Microsoft, Sun, SAP, and others, as well as
numerous influential open source organizations like the Apache Software
Foundation. XML's apparent youth belies its years; the W3C XML Working Group
consciously designed it as a simplified subset of the well-respected SGML
(Standard Generalized Markup Language) standard.

In order to be as generally applicable as possible, the XML 1.0 specification does
not define any particular tag names; instead, it defines general syntactic rules
enabling developers to create their own domain-specific vocabularies of tags.
Since XML allows you to create virtually any set of tags you can imagine, two
common questions are:

• How do I understand someone else's XML?
• How do I ensure that other people can understand my XML?

The answer lies in the document type definition you can associate with your XML
documents.

1.1.3 Document Type Definition

A document type definition (DTD) is a text document that formally defines the
lexicon of legal names for the tags in a particular XML vocabulary, as well as the
meaningful ways that tags are allowed to be nested. The DTD defines this lexicon
of tags using a syntax described in the DTD specification, which is an integral part
of the XML 1.0 specification described earlier. An XML document can be
associated with a particular DTD to enable supporting programs to validate the
document's contents against that document type definition; that is, to check that
the document's syntax conforms to the syntax allowed by the associated DTD.
Without an associated DTD, an XML document can at best be subjected to a
"syntax check."

Recall our transaction example from Example 1.1. For this transaction vocabulary,
we might want to reject a transaction that looks like this:

<?xml version="1.0"?>
<transaction>
 <buy>
 <ticker exch="NASDAQ">WEBM</ticker>
 <sell shares="30">
 <ticker exch="NYSE">GE</ticker>
 </sell>
 </buy>
</transaction>

because it's missing an account number, doesn't indicate how many shares to

buy, and incorrectly lists the <sell> tag inside the <buy> tag.

We can enable the rejection of this erroneous transaction document by defining
a DTD for the transaction vocabulary. The DTD can define the set of valid tag

names (also known as element names) to include <transaction>, <account>,

<buy>, <sell>, and <ticker>. Furthermore, it can assert additional constraints

on a <transaction> document. For example, it can require that:

• A <transaction> should be comprised of exactly one <account> element

and one or more occurrences of <buy> or <sell> elements

• A <buy> or <sell> element should carry an attribute named shares, and

contain exactly one <ticker> element

• A <ticker> element should carry an attribute named exch

With a <transaction> DTD such as this in place, we can use tools we'll learn

about in the next section to be much more picky about the transaction
documents we accept. Figure 1.1 summarizes the relationships between the XML
specification, the DTD specification, the XML document, and the DTD.

Figure 1.1. Relationship between the XML spec, XML

document, DTD spec, and DTD

If an XML document passes the strict XML syntax check, it is known as a
well-formed document. If in addition, its contents conform to all the constraints
in a particular DTD, the document is known as "well-formed and valid " with
respect to that DTD.

1.2 What Can I Do with XML?

Beyond encoding data in a textual format, an XML document doesn't do much of
anything on its own. The true power of XML lies in the tools that process it. In this
section, we take a quick tour of the interesting ways to work with XML documents
using tools and technologies widely available today from a number of different
vendors.

1.2.1 Work with XML Using Text-Based Tools

Since an XML document is just text, you can:

• View and edit it with vi, Emacs, Notepad, or your favorite text editor
• Search it with grep, sed, findstr, or any other text-based utility
• Source-control it using systems like CVS, ClearCase, or RCS

These and other tools can treat an XML file the same as any other text file for
common development tasks.

1.2.2 Edit XML Using DTD-Aware Editors

More sophisticated XML editing tools read an XML DTD to understand the lexicon
of legal tag names for a particular XML vocabulary, as well as the various
constraints on valid element combinations expressed in the DTD. Using this
information, the tools assist you in creating and editing XML documents that
comply with that particular DTD. Many support multiple views of your XML
document including a raw XML view, a WYSIWYG view, and a view that augments
the WYSIWYG display by displaying each markup tag.

As an example, this book was created and edited entirely in XML using SoftQuad's
XMetal 1.0 product in conjunction with the DocBook DTD, a standard XML
vocabulary for authoring technical manuals. Figure 1.2 shows what XMetal looks
like in its WYSIWYG view with tags turned on, displaying an earlier version of the
XML source document for this very chapter.

Figure 1.2. Editing a chapter in this book with XMetal

If the XML documents you edit look more like a data structure than a technical
manuscript, then a WYSIWYG view is likely not what you want. Other DTD-aware
editors like Icon Software's XML Spy and Extensibility's XML Instance present
hierarchical views of your document more geared toward editing XML-based data
structures like our transaction example in Example 1.1, or an XML-based
purchase order.

1.2.3 Send and Receive XML over the Web

An XML document can be sent as easily as any other text document over the Web
using any of the Internet's widely adopted protocols, such as:

FTP

The File Transfer Protocol, used for sending and receiving files

SMTP

The Simple Mail Transfer Protocol, used for exchanging documents in email

HTTP

The HyperText Transfer Protocol, used for exchanging documents with web
servers

Figure 1.3. The Web already supports XML document

exchange

By convention, when documents or other resources are exchanged using such
protocols, each is earmarked with a standard content type identifier that
indicates the kind of resource being exchanged. For example, when a web server

returns an HTML page to a browser, it identifies the HTML document with a

content type of text/html. Similarly, every time your browser encounters an

 tag in a page, it makes an HTTP request to retrieve the image using a URL

and gets a binary document in response, with a content type like image/gif. As

illustrated in Figure 1.3, you can easily exchange XML documents over the Web
by leveraging this same mechanism. The standard content type for XML

documents is text/xml.

The act of exchanging XML documents over the Web seems straightforward when
XML is viewed as just another content type, but it represents something very
powerful. Since any two computers on the Web can exchange documents using
the HTTP protocol, and since any structured data can be encoded in a standard
way using XML, the combination of HTTP and XML provides a vendor-neutral,
platform-neutral, standards-based backbone of technology to send any
structured data between any two computers on the network. When XML
documents are used to exchange data in this way, they are often called XML
datagrams . Given the rapid increase in the number of portable electronic devices
sporting wireless Internet connectivity, these XML datagrams can be easily
shuttled between servers and cell phones or personal data assistants (PDAs) as
well.

1.2.4 Generate XML with Server-Side Programs

The XML datagrams exchanged between clients and servers on the Internet
become even more interesting when the content of the XML datagram is
generated dynamically in response to each request. This allows a server to
provide an interesting web service, returning datagrams that can answer
questions like these:

What are the French restaurants within one city block of the Geary Theatre?
<?xml version="1.0"?>
<RestaurantList>
 <Restaurant Name="Brasserie Savoy" Phone="415-123-4567"/>
</RestaurantList>

When is Lufthansa Flight 458 expected to arrive at SFO today?
<?xml version="1.0"?>
<FlightArrival Date="06-05-2000">
 <Flight>
 <Carrier>LH</Carrier>
 <Arrives>SFO</Arrives>

 <Expected>14:40</Expected>
 </Flight>
</FlightArrival>

What is the status of the package with tracking number 56789?
<?xml version="1.0"?>
<TrackingStatus PackageId="56789">
 <History>
 <Scanned At="17:45" On="06-05-2000" Comment="Williams
Sonoma Shipping"/>
 <Scanned At="21:13" On="06-05-2000" Comment="SFO"/>
 <Scanned At="04:13" On="06-06-2000" Comment="JFK"/>
 <Scanned At="06:05" On="06-06-2000" Comment="Put on
truck"/>
 <Delivered At="09:58" On="06-06-2000" Comment="Received by
Jane Hubert"/>
 </History>
</TrackingStatus>

Since XML is just text, it is straightforward to generate XML dynamically using
server-side programs in virtually any language: Java, PL/SQL, Perl, JavaScript,
and others. The first program you learn in any of these languages is how to print
out the text:

Hello, World!

If you modify this example to print out instead:

<?xml version="1.0"?>
<Message>Hello, World!</Message>

then, believe it or not, you have just mastered the basic skills needed to generate
dynamic XML documents! If these dynamic XML documents are generated by a
server-side program that accesses information in a legacy database or file format,
then information that was formerly locked up in a proprietary format can be
liberated for Internet-based access by simply printing out the desired information
with appropriate XML tags around it.

1.2.5 Work with Specific XML Vocabularies

As we saw above, an XML document can use either an ad hoc vocabulary of tags
or a formal vocabulary defined by a DTD. Common questions developers new to
XML ask are:

What are some existing web sites that make XML available?

The nicely organized http://www.xmltree.com site provides a directory of
XML content on the Web and is an interesting place to look for examples.
The http://www.moreover.com site serves news feeds in XML on hundreds
of different news topics.

How do I find out whether there is an existing standard XML DTD for what I want to publish?

There is at present no single, global registry of all XML DTDs, but the
following sites are good places to start a search: http://www.xml.org,
http://www.schema.net, and http://www.ebxml.org.

If I cannot find an existing DTD to do the job, how do I go about creating one?

There are a number of visual tools available for creating XML DTDs. The
XML Authority tool from Extensibility (see http://www.extensibility.com)
has proven itself invaluable time and time again during the creation of this
book, both for viewing the structure of existing DTDs and for creating new
DTDs. An especially cool feature is its ability to import an existing XML
document and "reverse engineer" a DTD for it. It's not always an exact
science—since the example document may not contain occurrences of
every desired combination of tags—but the tool does its best, giving you a
solid starting point from which you can easily begin fine-tuning.

1.2.6 Parse XML to Access Its Information Set

We've seen that XML documents can represent tree-structured data by using
tags that contain other nested tags as necessary. Because of this nesting, just
looking at an XML document's contents can be enough for a human to understand
the structured information it represents:

<?xml version="1.0"?>
<transaction><account>89-344</account><buy shares="100"><ticker
exch="NASDAQ">WEBM</ticker></buy><sell shares="30"><ticker
exch="NYSE">GE</ticker></sell></transaction>

This is especially true if the document contains extra whitespace (line breaks,
spaces, or tabs) between the tags to make them indent appropriately, as in
Example 1.1. For a computer program to access the structured information in the
document in a meaningful way, an additional step, called parsing , is required. By
reading the stream of characters and recognizing the syntactic details of where
elements, attributes, and text occur in the document, an XML parser exposes the
hierarchical set of information in the document as a tree of related elements,
attributes, and text items. This logical tree of information items is called the XML

document's information set, or infoset for short. Figure 1.4 shows the
information set produced by parsing our <transaction> document.

Figure 1.4. Parsing to access the transaction datagram's

information set

When you work with items in the logical, tree-structured infoset of an XML
document, you work at a higher level of abstraction than the physical "text and
tags" level. Instead, you work with a tree of related nodes: a root node, element
nodes, attribute nodes, and text nodes. This is conceptually similar to the "tables,
rows, and columns" abstraction you use when working with a relational database.
Both abstractions save you from having to worry about the physical "bits and
bytes" storage representation of the data and provide a more productive model
for thinking about and working with the information they represent.

1.2.7 Manipulate XML Using the DOM

Once an XML document has been parsed to produce its infoset of element,
attribute, and text nodes, you naturally want to manipulate the items in the tree.
The W3C provides a standard API called the Document Object Model (DOM) to
access the node tree of an XML document's infoset. The DOM API provides a
complete set of operations to programmatically manipulate the node tree,
including navigating the nodes in the hierarchy, creating and appending new
nodes, removing nodes, etc. Once you're done making modifications to the node
tree, you can easily save, or serialize the modified infoset back into its physical

text representation as text and tags again. Figure 1.5 illustrates the relationship
between an XML document, the infoset it represents, and the DOM API.

Figure 1.5. Relationship between XML document and

Document Object Model

1.2.8 Query XML Using XPath

Often you will want to interrogate an XML document to select interesting subsets
of information. The W3C standard XML Path Language (XPath) provides a simple,
declarative language to accomplish the job. Let's look at some simple examples

of this declarative syntax using our <transaction> document from Example 1.1.

Leveraging your familiarity with the hierarchical path notation for URLs and files

in directories, an XPath expression allows you to select the <ticker> symbol of

the <buy> request in the <transaction> by using the expression:

/transaction/buy/ticker

To select the number of shares in the <sell> request in the <transaction>, you

can use the expression /transaction/sell/@shares, prefixing the name of the

attribute you want with an at-sign. Filter predicates can be added at any level to
refine the information you will get back from the selection. For example, to select

the ticker symbol for <buy> requests over 50 shares, you can use the expression

/transaction/buy[@shares>50]/ticker.

As illustrated in Figure 1.6, XPath queries select information from the logical
tree-structured data model presented by an XML document's infoset, not from its
raw text representation.

Figure 1.6. Relationship between XML infoset and XPath

language

1.2.9 Transform XML Using XSLT

One of the most useful things you can do with XML is transform it from one
tree-based structure to another. This comes in handy when you want to:

• Convert between XML vocabularies used by different applications
• Present an XML document's data by transforming it into HTML or another

format that's appropriate to the user or device requesting the data

Fortunately, the W3C has again provided a companion standard called XSLT (the
XML Stylesheet Language for Transformations) to make this task declarative.
XSLT was originally conceived as a language to transform any XML document into
a tree of formatting objects from which high-quality printed output could be
easily rendered. The W3C XSL Working Group recognized early that this XML
transformation facility would be an important subset of functionality in its own
right, so they formally separated the XSLT language from the XSL formatting
objects specification. This allowed the XSLT language to perform any useful
XML-to-XML transformation. These origins help explain why the definition of an
XML transformation is known as a stylesheet .

An XSLT stylesheet is an XML document that uses the XSLT language's
vocabulary to describe the transformation you want to perform. The stylesheet
consists of transformation instructions, which use XPath expressions to select
interesting information items from the infoset of a source document and specify

how to process the results of these selections to construct an infoset for a
+++result document with a different structure. Figure 1.7 highlights this
relationship between XSLT and XPath and illustrates how the transformation is
carried out on the logical source tree and result tree.

Figure 1.7. Relationship between XSLT, XPath, and the infoset

Let's assume that on receiving our transaction datagram, our application needs
to turn around and send an appropriate datagram to the NASDAQ trading system
to complete the trade. Of course, the datagram we send to NASDAQ must use the
XML vocabulary that the NASDAQ trading system understands. The relevant

datagram using the <nasdaq-order> vocabulary might look like this:

<?xml version="1.0"?>
<nasdaq-order clientid="123">
 <trans type="buy">
 <security>WEBM</security>
 <shares>100</shares>
 </trans>
</nasdaq-order>

We can create an XSLT stylesheet that selects any <buy> requests in the

<transaction> for stocks on the NASDAQ exchange and constructs the

appropriate <trans>, <security>, and <shares> elements as nested "children"

of a <nasdaq-order> in the result. Example 1.2 shows what this stylesheet looks

like.

Example 1.2. XSLT Stylesheet to Transform Between XML

Vocabularies

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output indent="yes"/>
 <xsl:template match="/">
 <nasdaq-order clientid="123">
 <!-- Use XPath to select buy transactions for stocks on the NASDAQ
-->
 <xsl:for-each
select="/transaction/buy[ticker/@exch='NASDAQ']">
 <trans type="buy">
 <security><xsl:value-of select="ticker"/></security>
 <shares><xsl:value-of select="@shares"/></shares>
 </trans>
 </xsl:for-each>
 </nasdaq-order>
 </xsl:template>
</xsl:stylesheet>

Notice that we use the XPath expression

/transaction/buy[ticker/@exch='NASDAQ'] to select the <buy> elements that

satisfy our criteria as part of the transformation. Given a source tree structure
like the one for our incoming transaction document and an XSLT stylesheet like
Example 1.2 describing the transformation, an XSLT processor carries out the
transformation to produce the result tree as illustrated in Figure 1.8.

Figure 1.8. XSLT processor transforms source tree to result

tree

Appendix C, illustrates how all the basic standards in the XML
family relate to one another. It's a summary of what we've seen
in this chapter, all in a single diagram for easy reference.

1.3 Why Should I Use XML?

Why have vendors like Oracle, IBM, Microsoft, Sun, SAP, and many others moved so fast to

support XML? After all, these companies have worked for many years to fine-tune the efficiency

of their proprietary data formats and tools. The reason is simple: as a vendor-neutral,

platform-neutral, language-neutral technology for web-based data exchange, the XML family of

standards solves a key problem for these companies' customers. In a nutshell, XML simplifies the

task of connecting applications and services over the Web.

1.3.1 XML Enables a Data Web of Information Services

Proprietary data formats undoubtedly represent data in a more efficient way, but what XML

sacrifices in compactness, it gains many times over in flexibility. If you can publish an XML

datagram on the "wire," anyone connected to the Internet can receive the datagram, parse it,

manipulate it, search it, and transform it using a wide selection of freely available tools that

implement the XML family of standards. Skeptics who dwell on XML's apparent inefficiencies ("It's

more tags than data, for heaven's sake!," they say), haven't yet understood how its usefulness

grows when it is combined with the Internet's universal reach. The HTML standard and the

essentially free cost of HTML-savvy browsers sparked the creation of the Web as we know it today:

a sea of information available 24 hours a day for a pair of human eyeballs focused on a browser

to exploit. The XML family of standards and the low cost of many XML-savvy tools have already

begun to spark an analogous "data web" of Internet-based machine-to-machine information

exchanges. XML is on track to have an even greater impact on the computing landscape than

HTML has had.

Critics are correct to point out that XML is no magic bullet, noting that companies still need to

agree on common XML vocabularies for application data exchange. However, market forces are

already quickly resolving these concerns. Due to the tremendous opportunities presented by

business-to-business e-commerce, a burgeoning sector whose key players are already leveraging

this new XML-based data web, the number of XML-based standards for domain-specific business

messages is growing exponentially. By tapping into the XML data web, you can save money by

leveraging outsourced business content and services, and generate new revenue by publishing

slices of your own valuable data as web services to be "consumed" by other partners.

1.3.2 XML Simplifies Application Integration

It is not uncommon for a company to have:

• Machines running operating systems from Sun, HP, IBM, Microsoft, and others

• Databases from Oracle, IBM, Microsoft, and others

• Packaged applications from Oracle, SAP, and others

An XML-based representation of data and the HTTP protocol might be the only things these

various systems can ever hope to have in common! More and more, these systems must be

integrated over the Internet and across firewalls, so XML over HTTP or secure HTTPS is the data

exchange mechanism of choice to connect these heterogeneous applications.

Figure 1.9 illustrates a sample architecture for XML-based application integration. It shows how

an SAP system using a Microsoft SQL Server database sends an XML datagram over the Web to

a server that acts as a message hub. The hub server routes the datagram to a particular target

application, say an Oracle Applications installation using an Oracle8i database. In doing this, it

may need to transform the incoming XML datagram into an appropriate XML vocabulary for the

target application before sending the datagram to its destination.

Figure 1.9. XML and HTTP can connect different applications

Adopting an architecture like this does not require invasive, dramatic changes to existing systems.

Data in the SAP and Oracle Applications systems is still stored in its original relational tables,

exactly as it was before the integration. The XML datagram is materialized from information in the

source system by dynamically generating an XML document. Upon arrival at the target system,

the datagram is parsed, searched, and programmatically manipulated to enable appropriate

information from the datagram to be inserted into the target application's database. While SAP

and Oracle Applications use completely different database schemas to support their respective

application suites, these physical storage details are not a roadblock to integration when the two

systems communicate using XML datagrams.

1.3.3 XML Simplifies Information Publishing and Reuse

The same strengths that make XML good for application integration also deliver benefits to other

areas of application development. Leveraging the dynamic duo of XML (to represent rich data

structures independent of presentation details) and XSLT (to transform the data into any other

XML, HTML, or text-based output format), you can easily:

• Separate data from presentation, allowing you to change the look of the information

without affecting application code

• Publish the same data using output styles specific to each kind of requesting device:

browser, cell phone, PDA, another computer, etc.

With the exploding number of web-enabled devices and the increasing number of XML-based

standards emerging, the ability to assemble information from multiple sources and transform it

for delivery into any format required by the target device is extremely valuable.

As any database-savvy developer knows, SQL is a highly effective tool for finding, filtering,

shaping, and summarizing the data required by any application task. Using XML to publish

SQL-based query results packs an even stronger punch, making the information in the query

results easy to transform, transport, and transcribe. Figure 1.10 shows the high-level

architecture for the combination of SQL, XML, and XSLT. By representing SQL query results as

XML, we can assemble a "data page" from multiple queries and external XML information sources.

Then we can use XSLT to transform this assembled XML data page into any desired output format

(like HTML) for presentation in a browser or any of a number of XML-based formats, such as:

WML

The Wireless Markup Language, for cell phones and PDAs

SVG

The Scalable Vector Graphics language, for rendering rich, data-driven images

XSL Formatting Objects

For high-quality printed output

Figure 1.10. Assembling and transforming XML "data pages"

Publishing XML datagrams from relational databases and storing the information from XML

datagrams you receive in the database as tables and columns offer you the best of both worlds.

You retain the proven scalability, reliability, manageability, and performance of today's mature

relational databases and the tools and applications that work with them. You also gain the

newfound ability to exchange information with anyone, anywhere over the Web. As we will see

throughout this book, the combination of SQL, XML, and XSLT is powerful stuff.

1.4 What XML Technologies Does Oracle Provide?

Now that we understand what the XML family of standards is, what we can do with it, and why it

is interesting to apply to database-driven web applications, let's get an overview of the tools and

technologies that Oracle provides to implement Oracle XML applications. Figure 1.11 shows an

example of the key Oracle XML components and how they relate to the XML standards we've

discussed earlier.

Figure 1.11. Overview of key Oracle technologies for XML

Using the Oracle XML Parser, you can parse XML documents into their infoset, manipulate their

contents, and return the modified infoset back into XML format. Using the Oracle XSLT processor,

you can transform XML into XML, HTML, or text of another structure. Both the Oracle XML Parser

and the Oracle XSLT processor share the common Oracle XPath Engine that enables querying an

XML document's infoset to select interesting subsets of its information. The Oracle XML SQL Utility

automates the tasks of producing XML from SQL query results and storing XML documents into

tables in the database. Oracle interMedia Text enables indexing and querying of XML documents

or document fragments, with rich support for leveraging the structure of the XML in the query

criteria. These core components are used by more than 40 of Oracle's own internal development

teams, so their quality, performance, and conformance to W3C standards are very high.

Building on these core Oracle XML technologies, the Oracle XSQL Pages system is an extensible

XML publishing framework that makes combining the strengths of SQL, XML, and XSLT a

declarative walk in the park. It simplifies the job of assembling XML data pages from multiple

sources and transforming their information content for delivery using XSLT. Table 1.1 provides a

summary of key Oracle XML technologies and the chapters that cover each one.

Table 1.1. Key Oracle XML Technologies and Chapters That Cover Them

Oracle Technology Description Chapter(s)

XML Parser Parses, constructs, and validates XML documents 5, 6

XPath Engine Searches in-memory XML documents declaratively 2

XSLT Processor Transforms XML documents
3, 5, 6, 7, 8, 9, 12, 14,

16, 17

XML SQL Utility Produces XML from SQL and inserts XML into tables 5, 6, 11, 12

XSQL Pages
Assembles XML data declaratively and publishes with

XSLT
3, 8, 12, 15, 17

interMedia Text
Indexes and searches XML documents using their

structure
13

Object views Serve rich XML-enabled views of flat relational data 12

JServer Java

VM[1]

Reduces network traffic by running Java in the

database
6

JDeveloper
Creates, syntax-checks, and debugs Java, XML,

XSLT, and XSQL
4, 6

Advanced

Queuing
Queues and dequeues XML messages 5, 6

PLSXML utilities Produce XML datagrams in Oracle7 10

[1] In Oracle8i Release 3, JServer has been renamed Oracle8i JVM.

In the sections that follow, I will summarize the Oracle XML tools and technologies described in

this book, noting which chapters describe them and which Oracle releases support them. Many of

these Oracle technologies are installed as part of the JDeveloper 3.1 development environment,

which comes on the CD-ROM that accompanies this book; I'll note which technologies are

included in JDeveloper 3.1 and give their version numbers.

By the time you read this book, updated releases of some of
these components may be available. It's best to check for the
latest versions on the Oracle Technology Network (OTN) at
http://technet.oracle.com/software, where all of the
technologies described here, including the Oracle8i database,
are available for download.

You will need to sign up for a free OTN membership before
getting to the download page. See the OTN web page for
details.

1.4.1 Oracle XML Parser

The Oracle XML Parser fully supports the W3C XML 1.0 Recommendation as well as the Document

Object Model (DOM) for processing and constructing XML. Using its companion support for the

Simple API for XML (SAX), you can process XML datagrams of arbitrary size with low memory

usage. Using the supplied oraxml tool, you can parse and validate XML files from the command

line or in scripts. The parser supports integrated XPath searching on in-memory XML documents

using the integrated Oracle XPath Engine, an embedded component shared by the Oracle XML

Parser and the Oracle XSLT processor. The Oracle XPath Engine fully supports the W3C XPath 1.0

Recommendation.

I cover all of the key XML Parser capabilities, both inside and outside the database, in Chapter 5,

and Chapter 6. We'll learn about using XPath expressions in Chapter 2, and we'll use them

throughout the book in our XSLT transformations.

The Oracle XML Parser is available for Java, PL/SQL, and C/C++ on all popular platforms. The

Java, C, and C++ versions can run outside the database, but exploiting the PL/SQL and Java

versions inside the database requires Oracle8i. Version 2.0.2.7 of the Oracle XML Parser for Java

is included with JDeveloper 3.1 on the CD-ROM.

1.4.2 Oracle XSLT Processor

The Oracle XSLT processor fully supports the W3C XSLT 1.0 Recommendation. Using the supplied

oraxsl tool, you can perform XSLT transformations on XML files from the command line or in

scripts. Of course, you can also use the XSLT processor in your own programs.

I cover extensive examples of XSLT in Chapter 3, Chapter 5, Chapter 6, Chapter 7, Chapter 8,

Chapter 9, Chapter 12, Chapter 14, Chapter 16 and Chapter 17

You can use the Oracle XSLT processor both inside the database using PL/SQL or Java, and

outside the database using Java, C, or C++. Using the processor inside the database requires

Oracle8i. Version 2.0.2.7 of the Oracle XSLT processor for Java is included with JDeveloper 3.1 on

the CD-ROM.

1.4.3 Oracle XML SQL Utility

The Oracle XML SQL Utility provides a rich layer of services to work with the results of SQL

statements as XML documents and to process incoming XML documents for inserting their

information into database tables, views, and object views.

I explore using the Oracle XML SQL Utility in PL/SQL in Chapter 5, and using it in Java in Chapter

6, Chapter 11, and Chapter 12.

The Oracle XML SQL Utility can be used outside the database in any Java program, or inside the

database in Oracle8i. Version 1.1 of the XML SQL Utility is included with JDeveloper 3.1 on the

CD-ROM.

1.4.4 Oracle XSQL Pages XML Publishing Framework

Using declarative templates called XSQL pages, you can assemble any kind of dynamic XML

information and transform it for delivery using XSLT stylesheets, as illustrated in Figure 1.12. The

Oracle XSQL Pages framework includes an XML template processing engine called the XSQL page

processor. This processor manages the assembly of XML fragments based on SQL queries and

external XML resources and coordinates transformation of the assembled data page using the

Oracle XSLT processor. Also included as part of the framework are the XSQL Servlet, for

web-based publishing of XSQL pages, and the XSQL command-line utility for offline batch

publishing.

Figure 1.12. Oracle XSQL Pages framework simplifies XML

publishing

You'll see a preview of using XSQL Pages in 3, and learn how to use it in Chapter 8, Chapter 12,

Chapter 15 and Chapter 17.

Oracle XSQL Pages works against any version of Oracle and can run outside the database on your

favorite servlet engine (Apache JServ, JRun, ServletExec, Tomcat, and so on) as well as inside the

database on the Oracle Servlet Engine in Oracle8i Release 3 (version 8.1.7). Version 1.0.0.0 of

Oracle XSQL Pages comes preinstalled with Oracle Internet Application Server 1.0, Oracle8i

Release 3, and is installed with JDeveloper 3.1 on the CD-ROM that accompanies this book.

1.4.5 Oracle8 XML-Enabled Object Views

Leveraging Oracle's investment in object-relational technology, object views defined over

relational data provide a powerful technique to superimpose one or more richly structured, logical

views on top of your existing database data. Data queried from object views can be automatically

rendered as XML documents, and XML documents can be inserted automatically into the database

using object views of an appropriate structure.

You'll learn how to define and use object views for XML in Chapter 12. You can exploit this feature

outside the database using any version of Oracle8, but using it inside the database requires

Oracle8i.

1.4.6 Oracle8i JServer Java Virtual Machine

Java and PL/SQL are now peer languages for the Oracle8i database. Any standard Java and

JDBC™ code can execute in the same process as the database server, reducing network traffic of

data-centric Java code. PL/SQL and Java can interoperate using Java stored procedures.

You'll learn the ins and out of developing, deploying, and debugging Java-based XML application

code with JServer in Chapter 6. JServer is an integrated feature of Oracle8i.

1.4.7 Oracle interMedia

Using interMedia's Text component's XML document indexing, you can perform queries over

millions of XML documents, leveraging the structure of the XML document for razor-sharp search

precision. XML document searching is fully integrated with Oracle SQL, so you can easily exploit

it in combination with other SQL query predicates to find your "needle" in a "haystack" of XML

documents.

You'll learn how to create XML indexes and use XML searching in Chapter 13.

XML searching with interMedia Text is available only in Oracle8i, and Oracle8i Release 2 or later

is recommended because of the many functional improvements over Release 1 in this area.

1.4.8 Oracle JDeveloper IDE

With its built-in support for color-coded XML editing, indenting, and syntax checking, the

JDeveloper Integrated Development Environment (IDE) makes common XML development tasks

easier. Its native support for running servlets, XSQL Pages, and JavaServer™ Pages, combined

with robust remote debugging support for Apache JServ, Tomcat, and JServer, makes a big

difference in development productivity.

You'll learn how to use JDeveloper for XML development in Chapter 4 and Chapter 6.

JDeveloper 3.1 can be used to work with Java, XML, and Oracle with any database version, but

Java stored procedures and JServer debugging are only relevant when using it with Oracle8i.

JDeveloper 3.1 can be installed from the CD-ROM accompanying this book on any Windows NT or

Windows 2000 machine.

1.4.9 Oracle Advanced Queuing

Oracle's persistent queuing mechanism is perfect for asynchronously processing XML messages.

I cover both PL/SQL and Java techniques for enqueuing and dequeuing XML messages in Chapter

5 and Chapter 6.

Advanced queues are available in any version of Oracle8 and can be used with Java APIs outside

the database; however, dequeuing, parsing, and searching XML messages inside the database

require Oracle8i.

1.4.10 Oracle PLSXML Utilities

Implemented in PL/SQL, the PLSXML utilities (including the DBXML package) are available to

customers using Oracle7 or Oracle8 to automatically produce XML from SQL statements. While

the Oracle XML Parser and the XML SQL Utility have superseded the functionality provided by

these utilities, using these new components inside the database requires Oracle8i.

We explore using the PLSXML utilities in Chapter 10. Because they consist of pure PL/SQL, the

PLSXML utilities work with any current production version of Oracle.

Chapter 2. Working with XML

In this chapter, I cover the essential technical details you will need to work with XML documents.

I also devote a section to learning the powerful XPath language, which you can use to flexibly

search XML documents.

2.1 Creating and Validating XML

Building on the high-level overview in Chapter 1, here we drill down in more detail to some of the

specifics of working with XML documents.

2.1.1 Creating Your Own XML Vocabularies

As we saw in the examples in Chapter 1, XML can represent virtually any kind of structured

information. A coherent set of elements and attributes that addresses a particular application

need is called an XML vocabulary. The elements and attributes are the "words" in the vocabulary

that enable communication of information on a certain subject. An XML vocabulary can be as

simple as a single element—for example a <Task>, or can contain as many elements and

attributes as you need. An example document that uses the <Task> vocabulary looks like this:

<Task Name="JDeveloper 3.1">

 <Task Name="Improved XML Support">

 <Task Name="Syntax-Check XML/XSL" Dev="Steve"/>

 <Task Name="Color-Coded Editing" Dev="Yoshi"/>

 <Task Name="Run XSQL Pages" Dev="Bret"/>

 </Task>

 <Task Name="Improved Debugging Support">

 <Task Name="Remote Debugging">

 <Task Name="JServer Debugging" Dev="Jimmy"/>

 <Task Name="Apache JServ Debugging" Dev="Liz"/>

 </Task>

 </Task>

</Task>

One of the big attractions about working with XML is its low cost of admission. The specification

is free to be used by anyone, and you only need a text editor to get started. One way to begin

creating your own XML vocabulary is to simply start typing tags in a text file as they come to your

mind. For example, if you've been assigned the task of managing a "Frequently Asked Questions"

(FAQ) list, you might open up vi or Emacs and start typing the example shown in Figure 2.1.

Figure 2.1. Creating a new XML document using Emacs

It's very useful to just prototype your vocabulary of tags by working directly on an example

document. It makes the process easy to think about. As ideas pop into your head—for example,

"I'm going to need to keep track of who submitted each question"—just type the necessary

element or attribute in your file. You don't have to get it right the first time; just get it down and

get it in there. You can make corrections later. If you decide you like the look of a <FAQ> element

more than <Frequent-Question>, go right ahead and change it! You're the boss. Just do a global

search and replace in your editor, and you're done.

In honor of the eminently pragmatic William Strunk, Jr., and E. B. White (authors of the classic

writing handbook, The Elements of Style), we present the XML elements of style, outlining the

rules you must follow as you create your own documents:

1. Begin each document with an XML declaration.

The first characters in any XML document should be an XML declaration. The declaration is

case-sensitive and looks like this in its simplest form:

<?xml version="1.0"?>

The special tag delimiters of <? and ?> distinguish this declaration from other tags in the

document. The <?xml characters in the XML declaration must be the very first characters

in the document. No spaces or carriage returns or anything can come before them.

2. Use only one top-level document element.

The first, outermost element in an XML document is called the document element because

its name announces what kind of document it encloses: <FAQ-List>, <Book>,

<transaction>, <TrackingStatus>, and so on. You must only have one document

element per document. So the following is legal:

<?xml version="1.0"?>

<Question>Is this legal?</Question>

But the following is not:

<?xml version="1.0"?>

<Question>Is this legal?</Question>

<Answer>No</Answer>

because both <Question> and <Answer> are top-level elements. You can't even have the

same element name repeated at the top level: there must be exactly one. So the following

is also illegal:

<?xml version="1.0"?>

<Question>Is this legal?</Question>

<Question>Is that your final answer?</Question>

You need to pick a single name and use that element to enclose the others, like this:

<?xml version="1.0"?>

<FAQ-List>

 <Question>Is this legal?</Question>

 <Question>Is that your final answer?</Question>

</FAQ-List>

3. Match opening and closing tags properly.

XML is case-sensitive, so the following are not considered matching tag names:

<Question>Is this legal?</question>

<QUESTION>Is this legal?</Question>

You'll find that XML syntax is rigid and unforgiving. You cannot get away with being sloppy

about the order of closing tags. The following is illegal:

<Question><Link href="http://qa.com/">Is this legal?</Question></Link>

You need to close </Link> before closing </Question>, like this:

<Question><Link href="http://qa.com/">Is this legal?</Link></Question>

Simply keeping your tags neatly indented helps you avoid this mistake:

<Question>

 <Link href="http://qa.com/">Is this legal?</Link>

</Question>

Note that adding extra spaces, carriage returns, or tabs between nested tags to make an

XML document look indented to the human eye does not affect its structural meaning

when working with datagrams, although clearly whitespace increases the document's size

slightly.

4. Add comments between <!- - and --> characters.

You can include comments anywhere after the XML declaration as long as they are not

inside attribute values and don't occur in the middle of the < and > boundaries of a tag. So

the comments in the following document are legal:

<?xml version="1.0"?>

<!-- Comment Here ok -->

<FAQ-List>

 <!--

 | And here, multiple lines are fine

 +-->

 <Question>Is this legal?<!-- Here is fine --></Question>

 <!-- Here too -->

 <Answer>Yes</Answer>

</FAQ-List>

<!-- Even Here -->

but all four comments in this example are not:

<!-- NOT before XML declaration -->

<?xml version="1.0"?>

<FAQ-List>

 <FAQ Submitter="<!-- NOT in an attribute value -->" >

 <Question <!-- NOT between < and > of a tag --> >Is this legal?</Question>

 <Answer>Yes</Answer>

 <!-- Illegal for comment to contain two hypens -- like this -->

 </FAQ>

</FAQ-List>

5. Start element and attribute names with a letter.

An element or attribute name must be a contiguous sequence of letters and cannot start

with a digit or include spaces. The following are not allowed:

<2-Part-Question> <!-- Error: element name starts with a digit -->

<Two Part Question> <!-- Error: has spaces in the name -->

<Question 4You="Yes"> <!-- Error: attribute name starts with a digit -->

Some punctuation symbols (like underscore and hyphen) are allowed in names, but most

others are illegal:

<_StrangeButLegal>Legal</_StrangeButLegal>

<More-Normal-Looking>Legal</More-Normal-Looking>

<OK_As_Well>Legal</OK_As_Well>

6. Put attributes in the opening tag.

Attributes are listed inside the opening tag of the element to which they apply. The

following is correct:

<FAQ Submitter="smuench@oracle.com">

 <!-- etc. -->

</FAQ>

while the following is illegal:

<FAQ>

 <!-- etc. -->

</FAQ Submitter="smuench@oracle.com">

7. Enclose attribute values in matching quotes.

Either of the following is fine:

<FAQ Submitter="smuench@oracle.com">

<FAQ Submitter='smuench@oracle.com'>

but the following two are not:

<FAQ Submitter=smuench@oracle.com>

<FAQ Submitter='smuench@oracle.com">

You can't forget the quotes or be sloppy about using the same closing quote character as

your opening one.

8. Use only simple text as attribute values.

Elements are the only things that can be nested. Attributes contain only simple text values.

So the following is illegal:

<Task Subtasks="<Task Name='Learn XML Syntax'>"/>

9. Use < and & instead of < and & for literal less-than and ampersand characters.

The less-than and ampersand characters have a special meaning in XML files, so when you

need to use either of these characters literally, you should use < and & instead:

<Company>AT & T</Company> <!-- AT & T -->

<Where-Clause>SAL < 5000</Where-Clause> <!-- SAL < 500 -->

On occasion, " and ' also come in handy to represent literal " and ' in

attribute values:

<Button On-Click="alert('Print a " and ''); " ></Button>

10. Write empty elements as <ElementName/>.

Elements that do not contain other nested elements or text can be written with the more

compact "empty element" syntax of:

<Task Name="Learn XML Syntax">

 <Task Name="Use Empty Elements"/> <!-- Empty Element -->

</Task>

As shown here with the Name attribute on the empty <Task> element, attributes on empty

elements are still legal.

If your XML document follows these ten basic rules, it is called a well-formed XML document.

Unicode Character Encoding

One level below the characters you see in an XML document lies their
numerical representation. The XML specification defines XML documents
as sequences of characters, as defined by the Unicode standard.

Quoting the http://unicode.org web site, "Unicode provides a unique
number for every character, no matter what the platform, no matter
what the program, no matter what the language." Given the unique
16-bit number Unicode assigns to a character, there are different
approaches for representing that number physically as bytes on the disk.
These different approaches are called character encoding schemes.

One encoding scheme, named UTF-16, is the most straightforward. It
uses two bytes (16 bits) to represent each character. This can be
inefficient, however, if the document consists largely or entirely of ASCII
characters that need only values in the range of -127 to be represented.

Another, more clever scheme, named UTF-8, takes a different approach,
using a single byte to represent ASCII characters and a sequence of from
two to five bytes to represent other characters. UTF-8 is the default
encoding scheme for an XML document if one is not specified. If the

default UTF-8 character encoding is not appropriate, include an

encoding attribute that says what encoding your document is using. For

example, an XML document containing Japanese data might use:

<?xml version="1.0" encoding="Shift_JIS"?>

If the default UTF-8 encoding is what you want to use, you can even
legally leave off the XML declaration entirely, although it is good practice
to always include one. To save trees where we can, many of the XML
documents in the examples will leave off the XML declaration to shorten
this book a little.

2.1.2 Checking Your XML Document's Syntax

It's easiest to learn the rules if you have a program that will quickly point out your errors while

you are learning. There are three tools that will identify problems.

First, as illustrated in Figure 2.2, you can use JDeveloper 3.1's built-in XML syntax checking by

selecting Check XML Syntax... on any XML file in your project. In the blink of an eye, JDeveloper

finds any problems, prints out the offending error messages in the XML Errors tab, and positions

your cursor in the file at the location of the first error.

Figure 2.2. Checking the syntax of your XML files with

JDeveloper 3.1

Second, if you are a fan of command-line tools, you can use the oraxml command-line utility that

comes with the Oracle XML Parser to check your XML syntax, as shown in Figure 2.3. Just type:

oraxml filename

and either you'll be told that your file is well-formed, or the offending errors will print out to the

console.

Figure 2.3. Checking XML syntax with the oraxml

command-line utility

If the oraxml command does not work, try the following

instead:

java oracle.xml.parser.v2.oraxml filename.xml

to explicitly run the oraxml command-line utility as a Java

class. If this also fails, make sure you have done the following:

1. You must have a Java runtime environment properly set
up.

2. You must list the fully qualified Java archive containing

the Oracle XML Parser for Java in your CLASSPATH

environment variable.

If you have installed JDeveloper 3.1 from the CD-ROM, for
example, into the C:\JDev directory, you can do the following to

properly set up your Java environment to run oraxml. Run the

following command to set up your Java runtime environment:

C: \> c:\jdev\bin\setvars c:\jdev

then run:

C: \> set CLASSPATH=
c:\jdev \lib\xmlparserv2_2027.jar;%CLASSPATH%

to add the Oracle XML Parser for Java to your CLASSPATH.

Third, you can simply attempt to browse your file with Microsoft's Internet Explorer version 5.0 or

later. IE5 features built-in support for visualizing the structure of any XML document. Simply type

its URL or filename in the Address bar. Figure 2.4 shows the effect of starting up IE5 and browsing

our FAQ.xml. If there are any syntax errors, they show up immediately in your browser window.

Figure 2.4. Checking XML syntax by browsing a file with IE5

While initially presenting us with a few new rules to get used to, XML's unforgiving syntax is

actually one of its core strengths. It means that an XML file is either well-formed or ill-formed.

There is no gray area. Programs needing to process XML documents are easy to write because

they don't have to account for lots of loopholes, endless exceptions to the rules, or oodles of

optional features. They check the ten elements of style I presented earlier, and don't waste their

time processing the document if any of the rules is broken.

In practice, the ten elements of style are the main things you
need to know. For an exhaustive list of all XML syntax arcana,
you can refer to the XML 1.0 specification at:

http://www.w3.org/TR/1998/REC-xml-19980210

or to Tim Bray's helpful annotated version at:

http://www.xml.com

However, sometimes you'll be interested in knowing more about an XML document than the fact

that all of its tags match up properly. Consider the following document:

<Animal>

 <Couch Currency="Rumblefish">

 <Draft Raindrops="15">

 <Stunning/>

 </Draft>

 </Couch>

 <__________Thank__You__________/>

</Animal>

The document is well-formed, but what does it mean? In the next section we'll learn how to

impose some additional rules to constrain what elements can appear in an XML document by

using a document type definition, and we'll learn how to perform additional validation on an XML

document to check whether it abides by these constraints.

2.1.3 Validating Your XML Against a DTD

If we want to be sure that an XML document's usage of elements and attributes is consistent with

their intended use—with respect to a particular XML vocabulary—we need some additional

information. A document type definition (DTD) specifies all of the valid element names that are

part of a particular XML vocabulary. In addition, it stipulates the valid combinations of elements

that are allowed—what can appear nested within what, and how many times—as well as what

attributes each element is allowed to have. While it's beyond the scope of this book to delve into

the finer points of DTD design, we will study a simple example. It will suffice for us to understand:

• How to associate an XML document with a DTD

• How to validate the document by that DTD

Since JDeveloper does not include built-in support for visually creating or inspecting DTDs, we

can use a tool like XML Authority from Extensibility. Figure 2.5 illustrates the document type

definition for the frequently asked questions document we saw earlier. We get a graphical view of

the element structure that it defines.

Figure 2.5. Viewing DTD element structure with XML

Authority

The diagram in the figure illustrates that:

• The <FAQ-List> element is comprised of one or more <FAQ> elements.

• A <FAQ> element is comprised of one or more pairs of <Question> followed by <Answer>.

• A <FAQ> element has attributes named Submitter and Level.

• The <Question> and <Answer> elements contain text.

Using another view, the tool shows us some additional information about the attributes, as shown

in Figure 2.6.

Figure 2.6. Viewing DTD attribute definitions with XML

Authority

Here we can see that the Level attribute has a default value of Intermediate, and must be one

of the values Beginner, Intermediate, or Advanced. If you open the DTD file in vi, Emacs, or

JDeveloper, you'll see this text document:

<!ELEMENT FAQ-List (FAQ+)>

<!ELEMENT FAQ (Question , Answer)+>

<!ATTLIST FAQ Submitter CDATA #IMPLIED

 Level (Beginner | Intermediate | Advanced) 'Intermediate' >

<!ELEMENT Question (#PCDATA)>

<!ELEMENT Answer (#PCDATA)>

Even a cursory read of this very simple DTD makes you happy that there are tools out there to

help with the process! To associate an XML document with a particular DTD we add one extra line

to the top of the XML document, called the Document Type Declaration, which looks like this:

<!DOCTYPE DocumentElementName SYSTEM "DTDFilename">

This line goes between the XML declaration and the document element, as follows:

<?xml version="1.0"?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">

<FAQ-List>

 <FAQ Submitter="smuench@oracle.com">

 <Question>Is it easy to get started with XML?</Question>

 <Answer>Yes!</Answer>

 </FAQ>

</FAQ-List>

We can immediately see one of the effects of the DTD by browsing the file again with Internet

Explorer 5.0, as shown in Figure 2.7. Notice that even though our document does not specify a

Level attribute on the FAQ element, IE5 shows Level="Intermediate". This happens because

the DTD defined a default value for Level. An XML processor that conforms to the XML 1.0

standard treats the document as if it had specified the attribute with its default value. So default

attribute values are one effect a DTD can have on an XML document that refers to it in its

<!DOCTYPE> declaration.

Figure 2.7. DTD-declared default attributes appear

automatically

Let's look at an example of the other kind of effect: validation errors. Suppose we extend our file

to have a couple of questions like this:

<?xml version="1.0"?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">

<FAQ-List>

 <FAQ Submitter="smuench@oracle.com">

 <Question>Is it easy to get started with XML?</Question>

 <Answer>Yes!</Answer>

 </FAQ>

 <FAQ Submitter="derek@spinaltap.com" Level="Silly">

 <Question>Are we going to play Stonehenge?</Question>

 </FAQ>

</FAQ-List>

If we try the oraxml command on this file we get the message:

The input file parsed without errors

So the file is well-formed, but is it valid with respect to the DTD? Let's find out. We can use the

oraxml command-line tool again—this time with the -v flag—to validate the document against its

DTD:

oraxml -v FAQWithTwoQuestions.xml

We immediately get two errors:

FAQWithTwoQuestions.xml <Line 8, Column 53>

XML-0141: (Error) Attribute value 'Silly' should be one of

 the declared enumerated values.

FAQWithTwoQuestions.xml <Line 10, Column 9>

XML-0150: (Error) Element FAQ not complete, expected elements '[Answer]'.

Error occurred while parsing

The oraxml tool consulted the rules in the associated FAQ-List.dtd file and validated the contents

of FAQWithTwoQuestions.xml to find two inconsistencies. We can correct them by:

1. Changing the attribute value Silly to a valid value like Advanced

2. Adding the expected <Answer> element to go with the <Question> inside the second

<FAQ> element

This produces the modified document:

<?xml version="1.0"?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">

<FAQ-List>

 <FAQ Submitter="smuench@oracle.com">

 <Question>Is it easy to get started with XML?</Question>

 <Answer>Yes!</Answer>

 </FAQ>

 <FAQ Submitter="derek@spinaltap.com" Level="Advanced">

 <Question>Are we going to play Stonehenge?</Question>

 <Answer>But of course</Answer>

 </FAQ>

</FAQ-List>

which now passes validation if we repeat the oraxml-v command on it.

As we've seen, DTDs can be invaluable tools for ensuring an additional level of consistency in the

XML information you'll be working with or exchanging with others. As more and more web-based

repositories of DTDs (also known as schemas) emerge, the likelihood of finding existing

domain-specific vocabularies increases. This bodes well for a future of reuse with less need for

custom DTD development.

2.2 Modularizing XML

XML entities and namespaces provide two techniques to modularize the contents of XML

documents. In this section we study simple examples of both.

2.2.1 Including Text and External Resources

Entities are a mechanism for defining named string substitution variables in your XML file. They

can save typing repetitive text in your documents. For example, if the Frequently Asked

Questions document that we're working on is for the Oracle JDeveloper 3.1 product, the text

Oracle JDeveloper and the current version number of the product might appear in many of the

questions and answers. We can define two entities to represent this repetitive text using the

syntax:

<!ENTITY jdev "Oracle JDeveloper">

<!ENTITY ver "3.1">

With these in place we can refer to the entities by name in the contents of our FAQ.xml document

with the syntax:

<Question>What is the current version of &jdev;?</Question>

<Answer>The current version is &jdev; &ver;</Answer>

The syntax for user-defined entities is identical to that of the built-in entities we saw earlier (<,

>, ', and "). References to user-defined entities like &jdev; start with an

ampersand character and end with a semicolon, with the entity name in between. Like the default

attribute values we saw earlier, these entities can be defined in an external DTD file, or right in

the current document by including them in the local DTD section known as the internal subset.

The syntax for including these entity definitions in the document you're working on (when you do

not control the DTD or when the entities are not interesting enough to be placed there for global

use) looks like this:

<?xml version="1.0"?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[

 <!-- Internal subset adds local definitions -->

 <!ENTITY jdev "Oracle JDeveloper">

 <!ENTITY ver "3.1">

]>

<FAQ-List>

 <FAQ Submitter="smuench@oracle.com">

 <Question>Is it easy to get started with XML?</Question>

 <Answer>Yes!</Answer>

 </FAQ>

 <FAQ Submitter="smuench@oracle.com" Level="Beginner">

 <Question>What is the current version of &jdev;?</Question>

 <Answer>The current version is &jdev; &ver;</Answer>

 </FAQ>

</FAQ-List>

Notice that when we browse the file with Internet Explorer 5.0 again, as shown in Figure 2.8, the

values of the entities are expanded by the XML processor inside IE5. The same process will occur

when any XML processor reads the document.

Figure 2.8. XML processor expands the text of entities

When we upgrade the FAQ.xml document for the 4.0 release of JDeveloper, or, heaven forbid, if

the product gets renamed, with our entities in place, we can just edit the text in one place.

References to entities can go anywhere in an XML document where text content is legal, including

inside attribute values. Note that entities are expanded before well-formedness checking and

validation occur on the document, so their text can contain XML tags as well.

In addition to representing useful chunks of substitution text, entities can also refer to external

resources by URL. For example, there might be a file full of questions from 1999 named

1999-Questions.xml:

<FAQ Submitter="ppuddle@za.oracle.com" Level="Advanced">

 <Question>Can I remotely debug servlets and stored procedures?</Question>

 <Answer>Yes.</Answer>

</FAQ>

and a file full of questions from our web site named webquestions.xml:

<FAQ Submitter="rcardena@pr.oracle.com">

 <Question>Does JDeveloper support XML?</Question>

 <Answer>Yes.</Answer>

</FAQ>

By including the additional keyword SYSTEM in our entity definition, followed by a relative or

absolute URL to the text resource we'd like to include, we can pull in these external document

fragments and make them appear as part of our single XML document,

FAQWithMultipleEntities.xml, as shown in Example 2.1.

Example 2.1. Using Entities to Include Text and External

Resources

<?xml version="1.0"?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[

 <!ENTITY jdev "Oracle JDeveloper">

 <!ENTITY ver "3.1">

 <!ENTITY lastyears SYSTEM "1999-Questions.xml">

 <!ENTITY webq_and_a SYSTEM "http://xml.us.oracle.com/webquestions.xml">

]>

<FAQ-List>

 <FAQ Submitter="smuench@oracle.com">

 <Question>Is it easy to get started with XML?</Question>

 <Answer>Yes!</Answer>

 </FAQ>

 <FAQ Submitter="smuench@oracle.com" Level="Beginner">

 <Question>What is the current version of &jdev;?</Question>

 <Answer>The current version is &jdev; &ver;</Answer>

 </FAQ>

 &webq_and_a;

 &lastyears;

</FAQ-List>

When we browse the FAQWithMultipleEntities.xml file again with IE5, its XML processor

substitutes the entities, and the browser (as would any program processing the file) "sees" the

contents with all of the entities expanded.

2.2.2 Using Namespaces to Mix XML Vocabularies

If thoughtfully designed XML vocabularies already exist for a particular problem domain, it's a

natural instinct of a good developer to want to reuse the existing vocabulary instead of inventing

a new one. However, when attempting to combine the elements from two or more different XML

vocabularies in a single document, name clashes can occur for common element names. XML

namespaces provide a solution to this problem by specifying a mechanism to uniquely qualify

elements from different vocabularies.

Consider a fictitious tax advice company called Tax Time. A customer named Tina Wells calls to

set up an appointment to discuss her income tax return with one of Tax Time's consultants,

named Jim. Suppose that Tax Time uses an XML document like the following to represent Tina's

<Appointment> with Jim:

<Appointment>

 <Name>Tina Wells</Name>

 <Schedule For="04/20/2000">

 <Consult With="Jim" Time="10:00am">

 <Regarding>

 <UnknownSubject/>

 </Regarding>

 </Consult>

 <ArrangePayment With="Ella" Time="11:00am"/>

 </Schedule>

</Appointment>

As part of a routine pre-visit screening, Jim's administrative assistant Ella calls Tina to get more

details about the subject of her visit. She learns that Tina needs some advice on her Federal

income tax Form 1040. Ella asks Tina to post her 1040 Form over secure HTTP to Tax Time's web

site so Jim can review it before their meeting. Since Tina's tax preparation software supports the

new XML-based IRS tax <Form> format:

<Form id="1040">

 <Filer EFileECN="12345">

 <Name>Tina Wells</Name>

 <TaxpayerId>987-65-4321</TaxpayerId>

 <Occupation>Vice President</Occupation>

 </Filer>

 <Schedule id="B">

 <Dividend Amount="12358.74">

 <Payer>Bank of America</Payer>

 </Dividend>

 </Schedule>

</Form>

Tina exports her tax <Form> and posts it to Tax Time. After combining Tina's income tax <Form>

into the <Appointment> datagram, Ella ends up with the XML document shown in Example 2.2.

Example 2.2. Combining Appointment and Form Vocabularies

in One Document

<Appointment>

 <Name>Tina Wells</Name>

 <Schedule For="04/20/2000">

 <Consult With="Jim" Time="10:00am">

 <Regarding>

 <Form id="1040">

 <Filer EFileECN="12345">

 <Name>Tina Wells Johnson</Name>

 <TaxpayerId>987-65-4321</TaxpayerId>

 <Occupation>Vice President</Occupation>

 </Filer>

 <Schedule id="B">

 <Dividend Amount="12358.74">

 <Payer>Bank of America</Payer>

 </Dividend>

 </Schedule>

 </Form>

 </Regarding>

 </Consult>

 <ArrangePayment With="Ella" Time="11:00am"/>

 </Schedule>

</Appointment>

The document is now ambiguous, since the element <Schedule> appears twice, meaning two

different things, as does the <Name> element. This is precisely the ambiguity that XML

namespaces are designed to remedy.

We need some way to distinguish the elements in the <Appointment> vocabulary from those in

the tax <Form> vocabulary. Suppose we could just qualify the element names in the

<Appointment> vocabulary with some kind of prefix that would uniquely identify its elements, like

this:

• <[TaxTimeAppointmentVocabulary]:Appointment>

• <[TaxTimeAppointmentVocabulary]:Schedule>

• <[TaxTimeAppointmentVocabulary]:Name>

And, similarly, some unique identifier for the IRS tax <Form> vocabulary:

• <[IRSTaxFormVocabulary]:Form>

• <[IRSTaxFormVocabulary]:Schedule>

• <[IRSTaxFormVocabulary]:Name>

Then the elements would be easy to combine since they are impossible to confuse. But that sure

means a lot of extra characters in our document. Who comes up with the unique names? Couldn't

two clever people who think alike potentially come up with the same unique name?

The designers of XML namespaces have standardized the answers to these concerns. They

decided that Internet domain names were a great way to come up with unique names for things.

As long as companies or organizations use their Internet domain names as part of the unique

names for the XML vocabularies they design, they need only to pick a unique name within their

own organization and the name will be globally unique. So we use standard Internet URLs as the

unique names for XML vocabularies.

The XML Namespaces specification talks about using URIs, not
URLs. URI, or Uniform Resource Identifier, is a generic term for
all types of names and addresses that refer to resources on the
World Wide Web. A URL is by far the most widely used kind of
URI in practice. The other kind of URI used on occasion is a
URN, a Uniform Resource Name. URNs look like this:

urn:oracle-xsql

instead of http://somesite/somename. For the curious, more
details are available at http://www.w3.org/Addressing/.

Since these unique URL-based namespace names can be long, the XML Namespaces specification

allows document authors to coin a short nickname, called a prefix. This namespace prefix

represents its associated globally unique vocabulary name, which saves a lot of typing.

To define a namespace, you include a special attribute named xmlns on any element with the

following syntax:

<SomeElement xmlns:prefixname="uniqueURLForTheNamespace">

So we can define an appt prefix for the http://www.taxtime.com/Appointment vocabulary with

the syntax:

<appt:Appointment xmlns:appt="http://www.taxtime.com/Appointment">

and an irs namespace prefix for the http://www.irs.gov/Form vocabulary:

<irs:Form xmlns:irs="http://www.irs.gov/Form">

The presence of a URL like http://www.irs.gov/Form in a
namespace definition does not mean that the program
processing your XML document attempts to contact that URL
over the Web using that URL. It's just a convenient unique
string that's a little easier for humans to remember than the
other common scheme for globally unique names (called
GUIDs), which look like this:

BDC6E3F0-6DA3-11D1-A2A3-00AA00C14882

With the appt and irs namespace prefixes defined, we can unambiguously represent Ella's XML

document about Tina's appointment as shown in Example 2.3.

Example 2.3. XML Namespaces Allow Mixing Different XML

Vocabularies

<appt:Appointment xmlns:appt="http://www.taxtime.com/Appointment">

 <appt:Name>Tina Wells</appt:Name>

 <appt:Schedule For="04/20/2000">

 <appt:Consult With="Jim" Time="10:00am">

 <appt:Regarding>

 <irs:Form id="1040" xmlns:irs="http://www.irs.gov/Form">

 <irs:Filer EFileECN="12345">

 <irs:Name>Tina Wells Johnson</irs:Name>

 <irs:TaxpayerId>987-65-4321</irs:TaxpayerId>

 <irs:Occupation>Vice President</irs:Occupation>

 </irs:Filer>

 <irs:Schedule id="B">

 <irs:Dividend Amount="12358.74">

 <irs:Payer>Bank of America</irs:Payer>

 </irs:Dividend>

 </irs:Schedule>

 </irs:Form>

 </appt:Regarding>

 </appt:Consult>

 <appt:ArrangePayment With="Ella" Time="11:00am"/>

 </appt:Schedule>

</appt:Appointment>

Keep in mind that the prefix is a shortcut name chosen at the discretion of each author of any

document that uses a given vocabulary, so all of the following are equivalent:

• <irs:Form xmlns:irs="http://www.irs.gov/Form">

• <i:Form xmlns:i="http://www.irs.gov/Form">

• <Form xmlns="http://www.irs.gov/Form">

The so-called qualified name of each example shown is logically the fully qualified name

<[http://www.irs.gov/Form]:Form>, regardless of the prefix used. The third example in this

list uses a further convenient feature of the XML Namespaces recommendation to define a

namespace URL as the default namespace. When a default namespace has been defined, the

absence of a namespace prefix on an element associates it with the default namespace. This is

especially handy when large sections of a document use the same namespace. Using default

namespaces, you can further simplify the document syntax without sacrificing clarity.

Example 2.4 shows Ella's document using http://www.taxtime.com/Appointment as the default

namespace, while using the irs prefix for the http://www.irs.gov/Form namespace.

Example 2.4. Using the Default Namespace for the

Appointment Vocabulary

<Appointment xmlns="http://www.taxtime.com/Appointment">

 <Name>Tina Wells</Name>

 <Schedule For="04/20/2000">

 <Consult With="Jim" Time="10:00am">

 <Regarding>

 <irs:Form id="1040" xmlns:irs="http://www.irs.gov/Form">

 <irs:Filer EFileECN="12345">

 <irs:Name>Tina Wells Johnson</irs:Name>

 <irs:TaxpayerId>987-65-4321</irs:TaxpayerId>

 <irs:Occupation>Vice President</irs:Occupation>

 </irs:Filer>

 <irs:Schedule id="B">

 <irs:Dividend Amount="12358.74">

 <irs:Payer>Bank of America</irs:Payer>

 </irs:Dividend>

 </irs:Schedule>

 </irs:Form>

 </Regarding>

 </Consult>

 <ArrangePayment With="Ella" Time="11:00am"/>

 </Schedule>

</Appointment>

Each namespace definition has a scope in which it is effective. By defining a namespace on a given

element, that namespace is in scope and available for use for that element and all of the elements

it contains. One of the contained elements can redefine a namespace prefix to be bound to a

different namespace—including redefining the default namespace—and as before, the new

namespace is in effect for that new element and any elements it contains. It is also legal to qualify

individual attributes by a namespace prefix, although this usage is less common.

We end with Example 2.5, which shows how Ella's document would look if she uses

http://www.taxtime.com/Appointment as the default namespace and redefines the default

namespace to be http://www.irs.gov/Form for the <Form> element and its children.

Example 2.5. Redefining the Default Namespace for a Subtree

<Appointment xmlns="http://www.taxtime.com/Appointment">

 <Name>Tina Wells</Name>

 <Schedule For="04/20/2000">

 <Consult With="Jim" Time="10:00am">

 <Regarding>

 <Form id="1040" xmlns="http://www.irs.gov/Form">

 <Filer EFileECN="12345">

 <Name>Tina Wells Johnson</Name>

 <TaxpayerId>987-65-4321</TaxpayerId>

 <Occupation>Vice President</Occupation>

 </Filer>

 <Schedule id="B">

 <Dividend Amount="12358.74">

 <Payer>Bank of America</Payer>

 </Dividend>

 </Schedule>

 </Form>

 </Regarding>

 </Consult>

 <ArrangePayment With="Ella" Time="11:00am"/>

 </Schedule>

</Appointment>

In this book, one of the most frequent examples of namespaces that we will see is the namespace

for XSLT. We will work with many examples of XSLT stylesheets that use this vocabulary, whose

unique namespace name is http://www.w3.org/1999/XSL/Transform. Now that you've seen

the examples with namespaces above, the simple XSLT stylesheet in Example 2.6 should look

familiar from a syntactical point of view with its namespace-qualified element names like <xsl:

stylesheet>, <xsl:template>, <xsl:for-each>, and <xsl:value-of>.

Example 2.6. To Write XSLT Stylesheets, XML Namespaces Are

Required

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes"/>

 <xsl:template match="/">

 <OscarFavorites Year="2000">

 <xsl:for-each select="/MovieList/Movie[Award/@From='Oscar']">

 <Winner Category="{Award/@Category}">

 <xsl:value-of select="@Title"/>

 </Winner>

 </xsl:for-each>

 </OscarFavorites>

 </xsl:template>

</xsl:stylesheet>

This stylesheet transforms an XML <MovieList> that we'll see in the next section into the output:

<?xml version = '1.0' encoding = 'UTF-8'?>

<OscarFavorites Year="2000">

 <Winner Category="Best Film">American Beauty</Winner>

</OscarFavorites>

To reiterate our point that a prefix is just a shortcut name, observe that the following stylesheet,

which picks x as the convenient prefix instead of xsl, is functionally identical to the previous one:

<x:stylesheet version="1.0" xmlns:x="http://www.w3.org/1999/XSL/Transform">

 <x:output indent="yes"/>

 <x:template match="/">

 <OscarFavorites Year="2000">

 <x:for-each select="/MovieList/Movie[Award/@From='Oscar']">

 <Winner Category="{Award/@Category}">

 <x:value-of select="@Title"/>

 </Winner>

 </x:for-each>

 </OscarFavorites>

 </x:template>

</x:stylesheet>

It's clear that without the ability to unambiguously combine elements from the

http://www.w3.org/1999/XSL/Transform namespace with the unqualified elements in the

stylesheet like <OscarFavorites> and <Winner>, we would have a tough time writing a

stylesheet.

2.3 Searching XML with XPath

When you organize files into directories on a disk, you use the directories to give some

meaningful structure to your files. Familiar commands like dir or ls allow you to search for

matching files that have been organized into those nested directories. Consider the directory

hierarchy of drive M: as shown in Figure 2.9 using the Windows Explorer.

Figure 2.9. Browsing hierarchical directory structure

In order to search this hierarchy, you use a path notation to indicate what files you are trying to

find. The path notation for searching a Unix filesystem, for example, allows you to use the

notation /MovieList/Movie/Cast to refer to the Cast subdirectory under the Movie subdirectory of

MovieList, or /MovieList/Movie/Cast/* to refer to any file in that directory.

To list all the files in the Actor subdirectory, you can issue the command:

ls /MovieList/Movie/Cast/Actor/*

which produces this list of matching files:

/MovieList/Movie/Cast/Actor/First

/MovieList/Movie/Cast/Actor/Last

/MovieList/Movie/Cast/Actor/Award

As we saw in Chapter 1, XML documents also have an industry-standard path notation for

searching their content, called XPath. You'll find its syntax easy to understand because of its basic

similarity to what we saw earlier for files in directories. We'll see with several examples (and

throughout this book) that the searches you can do with the XPath notation over an XML

document are much more powerful than the simple file listings illustrated above.

Table 2.1 summarizes the syntax for the most common XPath expressions.

Table 2.1. Syntax Summary for the Most Common XPath Expressions

XPath Expression Syntax Matches

Name Element named Name

/Name Element named Name at the root of the document

a/b Element b occurring as a direct child of element a

a//b Element b occurring any number of levels below a

//Name
Element Name occurring any numbers of levels below the root of the

document.

@Name Attribute named Name

* Any element

@* Any attribute

text() Text node

Name [BoolExpr] Element Name if boolean expression BoolExpr predicate is true

Name [position() = n] n th Name element

Name [n] nth Name element

(ListExpr)[n] n th node in list of nodes matching ListExpr

Name1 | Name2 Elements Name1 or Name2

(ListExpr)[BoolExpr] Nodes in ListExpr where predicate BoolExpr is true.

. The current node

.//Name
Element Name that occurs any number of levels below the current

node

.. The parent node

Let's put some of these to work. Consider the <MovieList> document in Example 2.7. It contains

a hierarchy of elements conceptually similar to a hierarchy of directories and files. Elements that

contain other elements are analogous to directories, and elements that don't contain other

elements are like files.

Example 2.7. MovieList Document to Search XPath

Expressions

<MovieList>

 <Movie Title="American Beauty" RunningTime="121" Rating="R">

 <Director>

 <First>Sam</First>

 <Last>Mendes</Last>

 <Award From="Oscar" Category="Best Director"/>

 </Director>

 <Cast>

 <Actor Role="Lester Burnham">

 <First>Kevin</First>

 <Last>Spacey</Last>

 <Award From="Oscar" Category="Best Actor"/>

 <Award From="BAFTA" Category="Best Actor"/>

 </Actor>

 <Actress Role="Carolyn Burnham">

 <First>Annette</First>

 <Last>Bening</Last>

 <Award From="BAFTA" Category="Best Actress"/>

 </Actress>

 </Cast>

 <Award From="Oscar" Category="Best Film"/>

 <Award From="BAFTA" Category="Best Film"/>

 </Movie>

 <Movie Title="The Talented Mr.Ripley" RunningTime="139" Rating="R">

 <Director>

 <First>Anthony</First>

 <Last>Minghella</Last>

 </Director>

 <Cast>

 <Actor Role="Tom Ripley">

 <First>Matt</First>

 <Last>Damon</Last>

 </Actor>

 <Actress Role="Marge Sherwood">

 <First>Gwyneth</First>

 <Last>Paltrow</Last>

 </Actress>

 <Actor Role="Dickie Greenleaf">

 <First>Jude</First>

 <Last>Law</Last>

 <Award From="BAFTA" Category="Best Supporting Actor"/>

 </Actor>

 </Cast>

 </Movie>

</MovieList>

/MovieList/Movie/Cast/Actor/* is the XPath notation used to find any of the elements in the

document located under Actor on a Cast of a Movie in the MovieList. We can use the handy

testxpath command-line tool that is supplied with the example files for this chapter (available on

the O'Reilly web site) to experiment with XPath searches over the MovieList.xml file shown in

Example 2.7. We can try this first example with the command:

S:\xml-basics>testxpath MovieList.xml

Type an XPath expression to test and press [Enter]

To quit, press [Enter] without entering a path.

MovieList.xml> /MovieList/Movie/Cast/Actor/*

which returns these results:

<First>Kevin</First>

<Last>Spacey</Last>

<Award From="Oscar" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actor"/>

<First>Matt</First>

<Last>Damon</Last>

<First>Jude</First>

<Last>Law</Last>

<Award From="BAFTA" Category="Best Supporting Actor"/>

This XPath expression matched all of the elements that were direct children of Actors on Casts of

Movies in the MovieList and returned them in "document order"—that is, the order in which they

occur in the document. Note that the testxpath utility then prints out another command line, like

this:

MovieList.xml>

and waits for you to try another XPath expression against the MovieList.xml file. We'll use the

testxpath command line to test all the examples we'll see in this section. To exit, just hit Enter

on a blank line.

The command-line tool testxpath.exe is a compiled executable
that makes it convenient to run the TestXPath.java utility on
Windows. Running this tool requires the Microsoft Java Virtual
Machine to be installed on your Windows computer. To run the
utility on other platforms or to run it with a different Java VM,
see the testxpath.bat script provided with the tool that
illustrates how to set up the CLASSPATH in order to run the

TestXPath class using the command-line Java interpreter. You

may need to adjust the value of the JDEVELOPER_HOME variable

in the script.

To find attributes instead of elements, we use a similar notation except that an at-sign character

(@) precedes the attribute name you're looking for. So to find the Titles of all the Movies in the

MovieList, we can use the expression /MovieList/Movie/@Title, which returns:

MovieList.xml> /MovieList/Movie/@Title

Title="American Beauty"

Title="The Talented Mr.Ripley"

The slash character (/) between MovieList and Movie in the path expression means "the Movie

directly below MovieList" or "Movie as an immediate child of MovieList." If you need to find an

element like <Award> that occurs as a child element at multiple levels below another

element—for example, <Award> appears as a child of Movie, Director, Actor, and

Actress—you can use the double-slash (//) in your path to mean "any numbers of levels below"

or "as a descendant of." So to find the Award elements any number of levels below a Movie in a

MovieList, use the expression /MovieList/Movie//Award :

MovieList.xml> /MovieList/Movie//Award

<Award From="Oscar" Category="Best Director"/>

<Award From="Oscar" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actress"/>

<Award From="Oscar" Category="Best Film"/>

<Award From="BAFTA" Category="Best Film"/>

<Award From="BAFTA" Category="Best Supporting Actor"/>

Of course, a // at the beginning of the path means "find an element any number of levels below

the root of the document." This is the same as saying "anywhere in the document." So an XPath

expression of //Actress/@Role selects the Role attributes of any Actresses anywhere in the

document:

Role="Carolyn Burnham"

Role="Marge Sherwood"

Keep in mind that although it's convenient, the // operator can
cause some XPath search engines to search many nodes in the

document to obtain results. For example, //Something has to

effectively visit every element in the document to make sure it
finds <Something> elements at any level. So don't use just use

//Something because you get lazy and want to type less. If you

know any part of the absolute path, it's best to provide it for
optimal performance. Also, it's important to understand the

difference in performance between .//Something and

//Something. The former searches for a <Something>

element at any level below the current node; the latter
searches for a <Something> element anywhere in the entire
document—that is, anywhere below the document root node

"/". Inadvertently using //Something when you

mean .//Something can cause the XPath engine to search

many more nodes than necessary. On medium to large files,
this can have a dramatic negative effect on performance.

Here's where things start to get even more interesting! In addition to specifying the element and

attribute names—or their * and @* wildcard counterparts—as part of the search path, you can

also provide predicates that filter your search results at any step in the path. You filter a search

using an XPath expression that returns a boolean result, enclosed in square brackets [Expr]. The

expression in a predicate is evaluated relative to the node to which it is applied, so you can use

relative paths in a predicate like the following to find the RunningTime of any Movie whose

Director's Last name is 'Minghella':

/MovieList/Movie[Director/Last='Minghella']/@RunningTime

Using our testxpath tool to test this we get:

RunningTime="139"

The expression can include multiple conditions with and and or operators. For example, to select

the Cast of any movies directed by Minghella with a running time greater than 130 minutes you

can use:

/MovieList/Movie[Director/Last='Minghella' and @RunningTime > 130]/Cast

A predicate can appear on any number of the steps in a path. The following example uses two

predicates, one qualifying Movie and the other qualifying Actor, and illustrates that you can use

whitespace like carriage returns between steps in a pattern to make it more readable when it gets

long:

//Movie[Award/@Category='Best Film']

 //Actor[Award/@Category='Best Actor']

 /Last

This finds the Last name of any Actor who won a Best Actor award in a Movie that won an award

for Best Film. Trying this expression at the testxpath command line, we get:

<Last>Spacey</Last>

To return just the text that's included in an element, we can use the text() expression. If we

tack on an additional text() at the end of the previous example, like this:

//Movie[Award/@Category='Best Film']

 //Actor[Award/@Category='Best Actor']

 /Last/text()

we get just the text:

Spacey

and not the <Last> element containing the text 'Spacey'.

Frequently, you'll want to select the first matching element or the first three matching elements

or the n th matching element. You can use the position() function in a predicate to achieve this.

It returns the position of a matching element among all elements that match the expression in the

current step. Note that the position numbering starts with one. So to find only the first Award

listed at any level in the MovieList, excluding second and subsequent Awards that a Movie,

Director, Actor, or Actress might have received, you can use:

//Award[position()=1]

which returns:

<Award From="Oscar" Category="Best Director"/>

<Award From="Oscar" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actress"/>

<Award From="Oscar" Category="Best Film"/>

<Award From="BAFTA" Category="Best Supporting Actor"/>

If, instead, you want the first Award that occurs anywhere in the document, you can use

parentheses to cause //Award to be evaluated first and then filter this list of all matching Award

elements to return only the first one. The syntax for this is:

(//Award)[position()=1]

As expected, this returns only the first Award element in document order:

<Award From="Oscar" Category="Best Director"/>

To retrieve the first three Awards anywhere in the document, we can use a predicate that tests for

elements with position() < 4 as in:

(//Award)[position() < 4]

which returns:

<Award From="Oscar" Category="Best Director"/>

<Award From="Oscar" Category="Best Actor"/>

<Award From="BAFTA" Category="Best Actor"/>

As a convenience, instead of using [position()= n], we can just use the array-like subscript

notation of [n]. So to find the Role played by the second Actor in the second Movie in the

MovieList you can use Actor[2] and Movie[2] in the expression

/MovieList/Movie[2]/Cast/Actor[2]/@Role. This gives the result:

Role="Dickie Greenleaf"

In addition to the position() function, XPath defines numerous other useful string, number, and

set functions to use in path expressions. The following are some examples:

Find the directors of movies that won more than four awards of any kind

XPath expression using the count() function:

/MovieList/Movie[count(.//Award)>4]/Director

Result:

<Director>

 <First>Sam</First>

 <Last>Mendes</Last>

 <Award From="Oscar" Category="Best Director"/>

</Director>

Find the last actor in a movie whose name contains the word " Talented"

XPath expression using the last() and contains() functions:

//Movie[contains(@Title,'Talented')]/Cast/Actor[last()]

Result:

<Actor Role="Dickie Greenleaf">

 <First>Jude</First>

 <Last>Law</Last>

 <Award From="BAFTA" Category="Best Supporting Actor"/>

</Actor>

Find the actors or actresses who won a BAFTA award

XPath expression (which uses the union operator | to combine the results of two

expressions):

//Actress[Award/@From='BAFTA'] | //Actor[Award/@From='BAFTA']

Note that the combined results appear in document order, regardless of the order in which

the expressions were unioned.

Result:

<Actor Role="Lester Burnham">

 <First>Kevin</First>

 <Last>Spacey</Last>

 <Award From="Oscar" Category="Best Actor"/>

 <Award From="BAFTA" Category="Best Actor"/>

</Actor>

<Actress Role="Carolyn Burnham">

 <First>Annette</First>

 <Last>Bening</Last>

 <Award From="BAFTA" Category="Best Actress"/>

</Actress>

<Actor Role="Dickie Greenleaf">

 <First>Jude</First>

 <Last>Law</Last>

 <Award From="BAFTA" Category="Best Supporting Actor"/>

</Actor>

Find the role played by any actor with more than one award

XPath expression:

/MovieList/Movie/Cast/Actor[count(Award) > 1]/@Role

Result:

Role="Lester Burnham"

Find any actor who did not win an award

XPath expression:

/MovieList/Movie/Cast/Actor[not(Award)]

Result:

<Actor Role="Tom Ripley">

 <First>Matt</First>

 <Last>Damon</Last>

</Actor>

Find the title of any movie with a cast member or director whose last name starts with "D"

XPath expression:

/MovieList/Movie[.//Last[starts-with(.,'D')]]/@Title

Result:

Title="The Talented Mr.Ripley"

The XPath expression language is much more extensive and powerful than what we've seen in

this section, but these are the fundamental concepts you'll use every day. In several later

chapters, we'll learn about additional XPath syntax and features as we need them (rather than

providing an exhaustive list here to remember). You can refer to the XPath quick-reference in

Appendix D, for a complete list that you're sure to find handy.

Since the testxpath tool we used in this chapter is useful for

testing XPath expressions against XML documents from any file
or URL, you may find it handy in later chapters; you may also
find it useful to experiment with XPath in your daily work.

Part II: Oracle XML Fundamentals

This part of the book describes the core development activities that Oracle XML developers need

to understand when using XML with an Oracle database. It consists of the following chapters:

• Chapter 3, provides a typical "day-in-the-life" scenario illustrating the power of

combining XML with an Oracle database.

• Chapter 4, describes how you can use Oracle's JDeveloper product to help with XML

development.

• Chapter 5, explains how you can use PL/SQL to load XML files, parse XML, search

XML documents, post XML messages, and both enqueue and dequeue XML

messages from queues.

• Chapter 6 explains how you can combine Java, JDBC, and XML both inside and

outside Oracle8i to load XML files, parse XML, search XML documents, and post

XML messages, as well as enqueue and dequeue XML messages from queues.

• Chapter 7, explains the fundamentals of creating XSLT stylesheets to carry out

transformations of a source XML document into a resulting XML, HTML, or plain

text output.

• Chapter 8, explains how to build dynamic XML datagrams from SQL using declarative

templates to perform many common tasks.

• Chapter 9, builds on the fundamentals from Chapter 7 and explores additional XSLT

functionality like variables, sorting and grouping techniques, and the many kinds of

useful transformations that can be done using a variation on the identity

transformation.

• Chapter 10, gives Java developers a whirlwind introduction to PL/SQL and describes

how to use PL/SQL to dynamically produce custom XML datagrams containing

database information.

• Chapter 11, describes numerous techniques for programmatically producing XML

datagrams using Java by using JDBC, SQLJ, JavaServer Pages, and the Oracle XML

SQL Utility.

• Chapter 12, explains how to store XML datagrams in the database using the XML SQL

utility and other techniques, as well as how to retrieve them using XSQL pages and

XSLT transformations.

• Chapter 13, describes how you can use Oracle8i 's integrated interMedia Text

functionality to search XML documents, leveraging their inherent structure to

improve text searching accuracy.

• Chapter 14, describes the techniques required to insert arbitrarily large and

arbitrarily complicated XML into multiple tables. It also covers using stylesheets to

generate stylesheets to help automate the task.

Chapter 3. Combining XML and Oracle

In this chapter, we'll get a taste for what the rest of the book is about: making XML a lot more

interesting by combining it with the power of your Oracle database. We explore a scenario of a

growing company that needs to integrate and share information for a frequently asked questions

"knowledge bank" and put the information to use in a variety of formats.

Don't worry if we move quickly through a lot of the details here. You'll learn how to do everything

we cover in this rapid-fire walkthrough—and much, much more—in the numerous examples

throughout the rest of the book. This chapter is meant as a preview. So buckle yourself in—the

ride is about to start.

3.1 Hosting the XML FAQ System on Oracle

Recall the frequently asked questions document from Chapter 2:

<?xml version="1.0"?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">

<FAQ-List>

 <FAQ Submitter="smuench@oracle.com">

 <Question>Is it easy to get started with XML?</Question>

 <Answer>Yes!</Answer>

 </FAQ>

 <FAQ Submitter="derek@spinaltap.com" Level="Advanced">

 <Question>Are we going to play Stonehenge?</Question>

 <Answer>But of course</Answer>

 </FAQ>

</FAQ-List>

Let's assume that we're working at a small Internet startup company. We start out with a single,

small XML file using the FAQ-List.dtd vocabulary similar to the one described earlier. In the

beginning, only a single person is in charge of editing the FAQ file; the number of questions is

small, and the number of products we sell is tiny, too. Then, as we develop and ship newer

products, we naturally hire more people to help in the process, and now each product team wants

to manage its own XML FAQ file. So we split up the frequently asked questions into one XML FAQ

file per product team—all still sharing the FAQ-List.dtd format. But inevitably:

• Our products get more and more popular.

• Our list of frequently asked questions begins to grow.

• Our customers begin demanding to search FAQs across all products.

• Our customers insist on flexible, fast searching on multiple criteria.

• Our competition launches a personalized FAQ portal page for web developers.

Help! We need a powerful database to go with our XML. So we create a faq_table to hold all of our

frequently asked questions:

create table faq_table(

 category VARCHAR2(30),

 question VARCHAR2(4000),

 answer VARCHAR2(4000),

 qlevel NUMBER,

 submitted_by VARCHAR2(80)

);

and we decide to store the difficulty level of the question as a NUMBER so we can sort the

questions numerically by how difficult they are. It's kind of unfortunate that "Advanced" sorts

before "Beginner," but it's not a problem if we treat each level as a number. In order to store all

the questions for all the products, we add a CATEGORY column to the table as well. By querying

the faq_table, we should be able to search for questions across all products or, simply by adding

an appropriate WHERE clause, for just questions in a particular category.

On the Oracle Technology Network (OTN) web site we read about Oracle XSQL Pages. The release

notes claim that people who know SQL can get started quickly combining SQL, XML, and XSLT to

easily publish database information in a variety of formats, so we decide to give it a try. We create

our first XSQL page by pasting a SELECT statement over the faq_table into an XML file between

a <xsql:query> and a closing </xsql:query> tag. We specify the name of a database connection

to use at the top of the page, and provide a default value of "%" for the cat parameter in the query,

representing the name of the frequently asked question category to retrieve. The FAQ.xsql file we

came up with is shown in Example 3.1.

Example 3.1. XSQL Page to Query FAQ Data from faq_table

<?xml version="1.0"?>

<!-- FAQ.xsql: Return the results of faq_table query as XML Information -->

<xsql:query connection="xmlbook" cat="%" xmlns:xsql="urn:oracle-xsql">

 SELECT category, question, answer, submitted_by,qlevel,

 DECODE(qlevel,1,'Beginner',

 2,'Intermediate',

 3,'Advanced') as "LEVEL"

 FROM faq_table

 WHERE category LIKE UPPER('{@cat}')

 ORDER BY category, qlevel

</xsql:query>

We save the FAQ.xsql file to disk and try to request the page through our browser. To our surprise,

we immediately see the results of our SQL query as XML in the browser. That was pretty easy: we

just had to specify the name of the database connection we wanted to use, paste in our SQL

statement, and save the file. We reference a parameter in the query called cat using the {@cat}

syntax right where we want the value of the category to be substituted. So if we try to request the

page by passing a particular category value in the URL as follows:

http://localhost/xml-basics/FAQ.xsql?cat=jdev

We instantly see XML for only the frequently asked questions in the jdev category, as shown in

Figure 3.1, from our IE5 browser.

Figure 3.1. XML from SQL query displayed in IE5

The results don't look that pretty, but we'll see shortly how we can transform this canonical

<ROWSET>/<ROW> structure into something more useful—in fact, into many different useful

target formats.

We learn that in addition to the XSQL Servlet that comes with the XSQL Pages distribution from

Oracle, there's also a command-line xsql tool that lets us do offline processing of any XSQL pages

in command scripts. On a whim a few weeks back, we began featuring frequently asked questions

for trivia categories like "famous people" and "geography." So let's try out one of those

categories.

We use the same FAQ.xsql page we created above, but this time use the xsql command-line tool

and pass geography as the category:

xsql FAQ.xsql cat=geography

And right out on the console appears the dynamic XML shown in Example 3.2 for the frequently

asked questions in the geography category.

Example 3.2. Results of Processing FAQ.xsql for the

Geography Category

<?xml version = '1.0'?>

<!-- FAQ.xsql: Return the results of faq_table query as XML Information -->

<ROWSET>

 <ROW num="1">

 <CATEGORY>GEOGRAPHY</CATEGORY>

 <QUESTION>What is the capital of Italy?</QUESTION>

 <ANSWER>Rome</ANSWER>

 <SUBMITTED_BY>sita@gallo.org</SUBMITTED_BY>

 <QLEVEL>1</QLEVEL>

 <LEVEL>Beginner</LEVEL>

 </ROW>

 <ROW num="2">

 <CATEGORY>GEOGRAPHY</CATEGORY>

 <QUESTION>What perilous obstacle stops many Everest climbers?</QUESTION>

 <ANSWER>Khumbu Icefall</ANSWER>

 <SUBMITTED_BY>desio@crn.it</SUBMITTED_BY>

 <QLEVEL>3</QLEVEL>

 <LEVEL>Advanced</LEVEL>

 </ROW>

</ROWSET>

So it seems that it will be easy to host all of our FAQ questions in the database and leverage SQL

to let users quickly find the answers they are looking for over the Web. We clearly have a little

more work to do before the results will be in a format suitable for users to see directly, but we'll

see that we can make quick work of the task.

We previously built some scripts that worked with our earlier XML FAQ files. Those scripts expect

the frequently asked questions to be in the original FAQ-List.dtd format, but it appears the default

way that Oracle returns XML query results is in a generic <ROWSET> and <ROW> format.

Since XSLT stylesheets let us to transform XML information from one format to another, we

should be able to transform the <ROWSET>/<ROW>-based information into the FAQ-List.dtd

vocabulary fairly easily. We come up with the XSLT stylesheet in Example 3.3 to handle the job.

Example 3.3. Stylesheet to Transform ROWSET/ROW into

FAQ-List

<?xml version="1.0"?>

<!-- FAQ-In-XML.xsl: Transform ROWSET/ROW format to FAQ-List.dtd vocabulary -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output doctype-system="FAQ-List.dtd" indent="yes"/>

 <xsl:template match="/">

 <FAQ-List>

 <xsl:for-each select="ROWSET/ROW">

 <FAQ Submitter="{SUBMITTED_BY}" Level="{LEVEL}">

 <Question><xsl:value-of select="QUESTION"/></Question>

 <Answer><xsl:value-of select="ANSWER"/></Answer>

 </FAQ>

 </xsl:for-each>

 </FAQ-List>

 </xsl:template>

</xsl:stylesheet>

We found the stylesheet pretty straightforward to create because XSLT stylesheets use XPath

expressions like the ROWSET/ROW expression you see in Example 3.3 to find, iterate over, and plug

information from the source XML document into a template that describes what we want the

target XML to look like. We used JDeveloper 3.1 to create and syntax-check the stylesheet as we

were building it, so that caught our mistakes and made things go faster.

After saving the output of processing the XSQL page in Example 3.1 in a file named

GeographyROWSETFromXSQL.xml, we transform the <ROWSET>/<ROW> structure using the

FAQ-In-XML.xsl stylesheet by using the command-line oraxsl tool:

oraxsl GeographyROWSETFromXSQL.xml FAQ-In-XML.xsl

to produce:

<?xml version = '1.0' encoding = 'UTF-8'?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd">

<FAQ-List>

 <FAQ Submitter="sita@gallo.org" Level="Beginner">

 <Question>What is the capital of Italy?</Question>

 <Answer>Rome</Answer>

 </FAQ>

 <FAQ Submitter="desio@crn.it" Level="Advanced">

 <Question>What perilous obstacle stops many Everest climbers?</Question>

 <Answer>Khumbu Icefall</Answer>

 </FAQ>

</FAQ-List>

This brings a big smile to our face since this result is now dynamically produced from database

data and is in an XML format that is identical to the static pages we were editing before. While the

process was partially automated, we still had to run the XSLT transformation at the command line

to finish the job. In the next section we'll see how to automate that step, too.

3.2 Serving XML in Any Format

We see something interesting in the Oracle XSQL Pages material explaining that we can create a

new XSQL page that reuses the dynamic XML content produced by another page with a tag called

<xsql:include-xsql>. We also notice that by including one extra line at the top of our page, like

this:

<?xml-stylesheet type="text/xsl" href="FAQ-In-XML.xsl"?>

we can get the XSQL page processor to handle the XSLT transformation automatically before it

returns the results to the requester. So we combine these two little pearls of information to create

a new XSQL page called FAQXML.xsql:

<?xml version="1.0"?>

<!-- FAQXML.xsql: Show FAQ.xsql in Standard FAQ-List.dtd Vocabulary -->

<?xml-stylesheet type="text/xsl" href="FAQ-In-XML.xsl"?>

<xsql:include-xsql href="FAQ.xsql" xmlns:xsql="urn:oracle-xsql"/>

This uses <xsql:include-xsql> to include the XML results from our previous work, and

associates the FAQ-In-XML.xsl stylesheet we created above to this page. Now, when we try from

our browser to request the new XSQL page for the jdev category of frequently asked questions,

as shown in Figure 3.2, we see our dynamic information in our <FAQ-List> format with no manual

steps involved. Pretty neat.

Figure 3.2. Viewing the dynamic FAQ in the FAQ-List XML

format

Just then, we learn that our CEO is expanding into Europe by acquiring another promising startup

in London. In a parallel universe, the London company had also been working with XML to keep

track of customer questions and answers. However, they were following an established British

standard XML vocabulary that they found on the Web, described by the

Frequently-Posed-Queries.dtd.

We quickly conclude that this is not a problem and offer to host all of their customers' frequently

posed queries in our faq_table. We cobble together a FAQ-In-UKFAQ.xsl XSLT stylesheet to

transform our <ROWSET>/<ROW> XML query results into their <Frequently-Posed-Queries>

format:

<?xml version="1.0"?>

<!-- FAQ-In-UKFAQ.xsl: Transform ROWSET/ROW format into UK FAQ vocabulary -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output doctype-system="Frequently-Posed-Queries.dtd" indent="yes"/>

 <xsl:template match="/">

 <Frequently-Posed-Queries>

 <xsl:for-each select="ROWSET/ROW">

 <Query-Frequently-Posed By="{SUBMITTED_BY}" Difficulty="{LEVEL}">

 <Query><xsl:value-of select="QUESTION"/></Query>

 <Reply><xsl:value-of select="ANSWER"/></Reply>

 </Query-Frequently-Posed>

 </xsl:for-each>

 </Frequently-Posed-Queries>

 </xsl:template>

</xsl:stylesheet>

We build another XSQL page that reuses the original FAQ.xsql page and combines it with the

FAQ-In-UKFAQ.xsl stylesheet:

<?xml version="1.0"?>

<!-- FAQUK.xsql: Show FAQ.xsql in British Standard FAQ-UK.dtd Vocabulary -->

<?xml-stylesheet type="text/xsl" href="FAQ-In-UKFAQ.xsl"?>

<xsql:include-xsql href="FAQ.xsql" xmlns:xsql="urn:oracle-xsql"/>

Now, either over the Web or using the xsql command-line tool from the British side of the "Pond,"

the people in London can run:

xsql FAQUK.xsql cat=jdev

and instantly be working with dynamic XML produced off our database in their XML format.

Everyone is impressed all around:

<?xml version = '1.0' encoding = 'UTF-8'?>

<!DOCTYPE Frequently-Posed-Queries SYSTEM "Frequently-Posed-Queries.dtd">

<Frequently-Posed-Queries>

 <Query-Frequently-Posed By="aday@rutgers.edu" Difficulty="Beginner">

 <Query>Can JDeveloper Run XSQL Pages?</Query>

 <Reply>Sure. Right from the IDE.</Reply>

 </Query-Frequently-Posed>

 <Query-Frequently-Posed By="paul@javaguys.com" Difficulty="Intermediate">

 <Query>Does JDeveloper 3.1 support remote debugging?</Query>

 <Reply>Yes. Both for Apache/Tomcat and JServer</Reply>

 </Query-Frequently-Posed>

 <Query-Frequently-Posed By="liz@lizsdebugger.com" Difficulty="Advanced">

 <Query>What is the Ferrari VM flag for on-demand debugging?</Query>

 <Reply>-XXdebugondemand</Reply>

 </Query-Frequently-Posed>

</Frequently-Posed-Queries>

Next we tackle our web site. Our users want to see the results of their frequently asked questions

searches in a nice HTML format in their browser. We ask our web design department to provide us

with the HTML source of the "look and feel" they want the FAQ web site to have. They give us

something that looks like Figure 3.3.

Figure 3.3. Mockup of HTML page to display FAQs

The web designers at our place work with Dreamweaver, so in order to turn their mockup into

well-formed XML that we can quickly use as the basis for an XSLT stylesheet, we run Dave

Raggett's free Tidy utility[1] over the HTMLMockup.html file they gave us:

[1] This very helpful utility corrects many of the most common mistakes made by HTML designers, producing a well-formed XML

document from a messy HTML page. You can obtain it from http://www.w3.org/People/Raggett/tidy. See the documentation

available there for a full explanation of the utility, including its flags.

tidy -asxml -indent HTMLMockup.html > HTMLMockup.xml

and produce the indented, well-formed XML you see in Example 3.4.

Example 3.4. Output of Using the Tidy Utility on an HTML File

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta name="generator" content="HTML Tidy, see www.w3.org" />

 <title>

 Frequently Asked Questions

 </title>

 <style type="text/css">

 td {font-family:verdana,arial; font-size:18;

 background-color:#f7f7e7; color:#000000 }

 th,table {font-family:verdana,arial; font-size:18;

 background-color:#cccc99; color:#336699 }

 </style>

 </head>

 <body>

 <center>

 <table border="0">

 <tr>

 <th>

 Question

 </th>

 <th>

 Difficulty

 </th>

 </tr>

 <tr>

 <td>

 <table border="0" cellspacing="0">

 <tr>

 <td>

 </td>

 <td valign="middle">

 To be or not to be, this is the question.

 </td>

 </tr>

 <tr>

 <td>

 </td>

 <td valign="middle">

 Not sure of the answer but it goes here.

 </td>

 </tr>

 </table>

 </td>

 <td>

 </td>

 </tr>

 </table>

 </center>

 </body>

</html>

The careful reader will recognize the

xmlns="http://www.w3.org/1999/xhtml" default namespace

declaration on the <html> document element in the tidied-up
XML output. This refers to the XML vocabulary called XHTML,
the next generation version of HTML that uses XML syntax with
all of the familiar HTML tags. An HTML page that has been tidied

up to be compliant with the strict XML syntax rules discussed
earlier in this chapter is known as well-formed HTML.

Notice that Tidy has tidied up the HTML tags to be XML empty elements so the

HTML page will be well-formed HTML. We can rename HTMLMockup.xml to FAQ-In-HTML.xsl and

begin turning this tidied-up HTML mockup into the XSLT stylesheet that plugs in our dynamic

query information.

We can easily evolve this well-formed HTML into an XSLT stylesheet by adding the

xsl:version="1.0" attribute to the <html> element, adding the appropriate namespace

declaration for the XSLT vocabulary, and adding a <xsl:for-each> element to loop over the

results of the ROWSET/ROW XPath expression. Doing so loops over each <ROW> element in the XML

output of the original FAQ.xsql page. We replace the static text the web designers gave us with

<xsl:value-of> elements to plug in the dynamic data from our FAQ.xsql, using the XPath

expressions QUESTION and ANSWER that are interpreted relative to the current <ROW> elements our

<xsl:for-each> loop is processing.

Finally, we use the XSLT attribute value template syntax of putting XPath expressions between

curly braces to plug dynamic information into the href attribute of the tag to appropriately

refer to Beginner.gif, Intermediate.gif, or Advanced.gif images that the graphic art department

created for us to show the difficulty level. We end up with the XSLT stylesheet in Example 3.5.

Example 3.5. HTML Mockup Converted to an XSLT Stylesheet

<!-- FAQ-In-HTML.xsl: Transform ROWSET/ROW format into HTML Format -->

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <head>

 <title>Frequently Asked Questions</title>

 <style>

 td {font-family:verdana,arial; font-size:18;

 background-color:#f7f7e7; color:#000000 }

 th,table {font-family:verdana,arial; font-size:18;

 background-color:#cccc99; color:#336699 }

 </style>

 </head>

 <body>

 <center>

 <table border="0">

 <tr>

 <th>Question</th>

 <th>Difficulty</th>

 </tr>

 <xsl:for-each select="ROWSET/ROW">

 <tr>

 <td>

 <table border="0" cellspacing="0">

 <tr>

 <td>

 </td>

 <td valign="middle">

 <xsl:value-of select="QUESTION"/>

 </td>

 </tr>

 <tr>

 <td>

 </td>

 <td valign="middle">

 <xsl:value-of select="ANSWER"/>

 </td>

 </tr>

 </table>

 </td>

 <td>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </center>

 </body>

</html>

Let's again create a little XSQL page to reuse our original FAQ.xsql and associate it with our new

FAQ-In-HTML.xsl stylesheet:

<?xml version="1.0"?>

<!-- FAQHTML.xsql: Show FAQ.xsql in HTML Format for browsers -->

<?xml-stylesheet type="text/xsl" href="FAQ-In-HTML.xsl"?>

<xsql:include-xsql href="FAQ.xsql" xmlns:xsql="urn:oracle-xsql"/>

We then can request the FAQHTML.xsql page through any browser (Netscape 6 is shown in Figure

3.4) to see the results. We've taken our web designer's HTML mockup, turned it into an XSLT

stylesheet, associated it with an XSQL page, and are now delivering our frequently asked

question information dynamically from faq_table in an eye-catching HTML format.

Figure 3.4. Dynamic XML transformed with XSLT into HTML

Our DBA comes up to us and asks, "Any chance I could get a SQL script to insert the geography

questions in your faq_table into an Oracle8i Lite database I'm setting up?" We think for a second

and tell him, "Sure. Come back in five minutes." The surprised look on his face says to us, "Five

minutes? Wow." He leaves to get a cup of coffee and we're already in JDeveloper creating another

XSLT stylesheet to transform the output of FAQ.xsql.xsl into a SQL script that inserts the data.

We create a stylesheet like FAQ-As-Insert.xsl:

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/>

<xsl:template match="/">

<xsl:for-each select="ROWSET/ROW">

INSERT into faq_table values(

 /* category */ '<xsl:value-of select="CATEGORY"/>',

 /* question */ '<xsl:value-of select="QUESTION"/>',

 /* answer */ '<xsl:value-of select="ANSWER"/>',

 /* qlevel */ '<xsl:value-of select="QLEVEL"/>',

 /* submitter */ '<xsl:value-of select="SUBMITTED_BY"/>'

);

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

using the familiar tags from the XSLT vocabulary to loop over and plug data into the text template

of an INSERT statement. We create another XSQL page—FAQExport.xsql —to reuse our FAQ.xsql

XML output from faq_table and associate it with the FAQ-As-Insert.xsl stylesheet:

<?xml version="1.0"?>

<!-- FAQExport.xsql: Export FAQ.xsql results as INSERT statements -->

<?xml-stylesheet type="text/xsl" href="FAQ-As-Insert.xsl"?>

<xsql:include-xsql href="FAQ.xsql" xmlns:xsql="urn:oracle-xsql"/>

Then we go out to a command prompt and use the xsql command-line tool to process our new

page:

xsql FAQExport.xsql cat=geography

to get the results the DBA needs:

insert into faq_table values(

 /* category */ 'GEOGRAPHY',

 /* question */ 'What is the capital of Italy?',

 /* answer */ 'Rome',

 /* qlevel */ 1,

 /* submitter */ 'sita@gallo.org'

);

insert into faq_table values(

 /* category */ 'GEOGRAPHY',

 /* question */ 'What perilous obstacle stops many Everest climbers?',

 /* answer */ 'Khumbu Icefall',

 /* qlevel */ 3,

 /* submitter */ 'desio@crn.it'

);

We copy the SQL script to a floppy and move on to our next challenge. Next, our boss asks us to

set up a system to email frequently asked questions to developers who have purchased our

products. By now, we know the drill. He budgeted two weeks to have us set up the system, but

we're done with the bulk of the work in a few minutes because we are working with XML to

separate our data from the format we need to deliver it in. We simply create yet another XSLT

stylesheet to produce the results of the XML information from FAQ.xsql as the body of an email:

<?xml version="1.0"?>

<!-- FAQ-In-Email.xsl: Transform ROWSET/ROW format into email body text -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:text>Hello,

</xsl:text>

 <xsl:text>Here is your daily email dose of FAQ...</xsl:text>

 <xsl:for-each select="ROWSET/ROW">

 <xsl:text>

Question </xsl:text>

 <xsl:value-of select="position()"/>

 <xsl:text>: </xsl:text>

 <xsl:value-of select="QUESTION"/>

 <xsl:text>
 Answer: </xsl:text>

 <xsl:value-of select="ANSWER"/>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

Next we create another familiar XSQL page to reuse FAQ.xsql and associate it to our

FAQ-In-Email.xsl stylesheet:

<?xml version="1.0"?>

<!-- FAQEMail.xsql: Format FAQ.xsql results as an Email -->

<?xml-stylesheet type="text/xsl" href="FAQ-In-Email.xsl"?>

<xsql:include-xsql href="FAQ.xsql" xmlns:xsql="urn:oracle-xsql"/>

Now our new notification system can use the XSQL page processor programmatically through its

XSQLRequest Java API to incorporate this dynamic, data-driven email based on our FAQ table.

Write a couple of lines of code in the middle of our mailer program to process the FAQEmail.xsql

page—passing in a cat parameter value of jdev to the routine programmatically—and out pops

our customized email for FAQ questions in the jdev category:

Hello,

Here is your daily email dose of FAQ...

Question 1: Can JDeveloper Run XSQL Pages?

 Answer: Sure. Right from the IDE.

Question 2: Does JDeveloper 3.1 support remote debugging?

 Answer: Yes. Both for Apache/Tomcat and JServer

Question 3: What is the Ferrari VM flag for on-demand debugging?

 Answer: -XXdebugondemand

At this point, we're smiling a pretty wide smile. Suddenly, we're told we have to come up with a

solution for pulling in dynamic FAQ content from Sun's web site, where tons of Java-related FAQ

content lives. Sun's just made it available in XML format and published it to the world, and our

boss got the clever idea that it just might be useful to our customers as well. Once we heard that

the information on Sun's site was available in XML, we started smiling again.

3.3 Acquiring Web-based XML Content

We check out the ServletsFAQ.xml file on Sun's site, which they update periodically, and notice

that it has a format like this:

<?xml version = '1.0' encoding = 'UTF-8'?>

<Servlets-FAQ>

 <FAQ>

 <Q>What's the next major release of the Servlet API?</Q>

 <A>Servlet API 2.2

 </FAQ>

 <FAQ>

 <Q>How do I set the age of a cookie?</Q>

 <A>yourCookie.setAge(120);

 </FAQ>

 <FAQ>

 <Q>How do I save a variable in a per-user session?</Q>

 <A>request.getSession(true).putValue('varname','value');

 </FAQ>

</Servlets-FAQ>

We want this Servlet FAQ content and others like it from Sun's site to reside in our database so we

can search over it together with all of our own content. We learn that the Oracle XML SQL Utility

can insert XML documents automatically into our faq_table if they have the canonical

<ROWSET>/<ROW> structure, so we create another XSLT stylesheet to transform a document in

Sun's <Servlets-FAQ> vocabulary into a <ROWSET>/<ROW> document:

<ROWSET xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:for-each select="/Servlets-FAQ/FAQ">

 <ROW>

 <CATEGORY>SERVLETS</CATEGORY>

 <QLEVEL>1</QLEVEL>

 <QUESTION><xsl:value-of select="Q"/></QUESTION>

 <ANSWER><xsl:value-of select="A"/></ANSWER>

 <SUBMITTED_BY>Sun</SUBMITTED_BY>

 </ROW>

 </xsl:for-each>

</ROWSET>

This time, the tables are turned and our XPath expressions in <xsl:for-each> are looping over

Sun's XML format and constructing the <ROWSET>, <ROW>, and column-name elements required

for the automatic insert. As in all of our other stylesheets, we use <xsl:value-of> to plug in the Q

and A children element values from the current /Servlets-FAQ/FAQ element as the values of our

<QUESTION> and <ANSWER> elements. Note that because Sun doesn't keep track of the difficulty

level in the FAQ format, we're using a constant value of 1 in our stylesheet to default to a value

that makes sense to our system. Also, we use a constant value of SERVLETS for the category to

make sure that the information from FAQs for Servlets is placed in an appropriate category for

searching through our faq_table.

We suspect that the XSQL Pages system offers some quick way to take advantage of this facility

declaratively, so we look at the online help and notice an <xsql:insert-request> element that

allows us to transform and insert any XML document that's posted as input to the page. We create

another little XSQL page, InsertSunJavaFAQ.xsql:

<?xml version="1.0"?>

<!-- InsertSunJavaFAQ.xsql : Transform and insert XML in Sun FAQ Format -->

<xsql:insert-request connection="xmlbook" xmlns:xsql="urn:oracle-xsql"

 transform="SunJavaFAQ-to-FAQTABLE.xsl"

 table="faq_table" />

This provides the name of our SunJavaFAQ-to-FAQTABLE.xsl stylesheet as the value of the

transform attribute and faq_table as the value of the table attribute. We run the page using the

xsql command-line utility—providing the URL to Sun's ServletsFAQ.xml file as the posted-xml to

handle:

xsql InsertSunJavaFAQ.xsql posted-xml=http://java.sun.com/faqs/ServletsFAQ.xml

In processing this page, the XSQL page processor retrieves the XML from Sun's web site,

transforms it using our indicated stylesheet into <ROWSET>/<ROW> format, and inserts it into

the faq_table with the help of the Oracle XML SQL Utility under the covers. We see the status

message on the console:

<?xml version = '1.0'?>

<!-- InsertSunJavaFAQ.xsql : Transform and insert XML in Sun FAQ Format -->

<xsql-status action="xsql:insert-request" rows="3"/>

indicating that all of Sun's servlet content is now in our database. Just to confirm, we point our

browser at the FAQHTML.xsql page we built earlier and pass servlets for the value of the cat

parameter. Lo and behold, we're now serving up dynamic FAQ content to our users that we

acquired by permission from Sun's site using XML as an exchange format.

At the end of the day, we retrace our steps. By combining SQL, XML, and XSLT transformations

using Oracle XML technology we were able to:

• Transition our static XML-based solution to dynamic, database-driven XML

• Reuse the dynamically produced XML as an interim data abstraction

• Leverage the flexibility of XSLT transformations to make our database-driven FAQ content

available in numerous XML, HTML, and text formats:

o The FAQ-List.dtd format for our U.S. office

o The Frequently-Posed-Queries.dtd format for our U.K. office

o Eye-catching HTML for our web developer's portal page

o SQL scripts for our DBA

o Email for our developer outreach program

• Acquire XML-based information over the Web and store it in our database

The overview in this chapter is just the appetizer course of the bountiful feast of solutions you can

build by exploiting Oracle's many XML facilities. In fact, Oracle's XSQL Pages technology itself is

a shining example of what can be built using Oracle's other XML-enabling technologies, like the

Oracle XML Parser, the Oracle XSLT processor, and the XML SQL Utility. As we've seen here, the

XSQL Pages technology provides a declarative approach to solve common problems easily, but it

does so by tapping into the power these other layers provide. We cover all of Oracle's XML

technologies from the ground up starting in the next chapter. So what are you waiting for? Turn

the page!

Chapter 4. Using JDeveloper for XML

Development

Whether you want to just work with XML and XSL files or you are a hardcore Java or PL/SQL

developer, you'll find that JDeveloper 3.1 has lots of features to make your life easier. A few of the

features that I personally use every single day of my life are:

• Color-coded syntax highlighting for XML/XSLT editing

• Auto-indenting and block indent/unindent to keep XML looking nice

• Built-in XML syntax checking

• Native support for running XSQL pages

• Ability to browse all Oracle8i schema objects, including Java classes

• Context-sensitive help as you type for methods and arguments

• Fast jumping to source and JavaDoc for any class that pops into your head

• Robust remote debugging support for Apache JServ, Tomcat, and others

• Robust remote "in-the-database" debugging support for JServer

We'll cover what you need to know to exploit these JDeveloper 3.1 features in this chapter.

JDeveloper 3.1 ships with a number of helpful XML samples.
These include sample XSQL pages, Java programs, and servlets
to help you make sure your environment is properly set up to
run all the examples in this book. Open the
JDeveloperXMLExamples.jws workspace in
the .\samples\xmlsamples subdirectory of your JDeveloper
installation home directory to take a look.

4.1 Working with XML, XSQL, and JSP Files

This section describes the many ways JDeveloper helps you work with XML, XSQL and JavaServer

Pages.

4.1.1 Performing Basic Project and File Manipulation

JDeveloper allows you to create workspaces to facilitate working on many different projects at

once. The contents of all the projects in your current workspace are always visible and organized

in alphabetical order in the project navigator, as shown in Figure 4.1. At any time, you can click

your mouse in the project navigator and begin typing the initial letters of a file you are looking

for—for example, the letters myi—and a Search for pop-up appears. JDeveloper incrementally

jumps you to the first file matching the letters you've typed in so far, as illustrated in the figure,

so typically only a few letters are required to jump to the file you want.

Figure 4.1. Incrementally search for a file in a project

By selecting a project in the navigator and choosing Add Folder... from the right mouse button

menu, you can create additional folders to further organize your files within a project.

To add new or existing files to a project, select the target project to make it active (displayed in

bold in the navigator). Then click the Add File icon—the folder with a plus sign—at the top of the

navigator pane. The File Open/Create dialog appears. Select an existing file or type the name of

a new file you want to create, and click the Open button to dismiss the file dialog and add the file

to your project.

If you select an existing file in your project before clicking the
Add File icon, the file dialog will use the existing file's directory
as the current directory for the File Open/Create dialog. This is
handy if you'll be adding a file from the same directory as
another file in your project.

To delete a file from your project, select the file in the project navigator. Then click the Delete File

icon—the folder with a minus sign—at the top of the navigator pane. Confirm the Save changes to

file? alert box, if appropriate.

Files that have been edited show up with italic names in the navigator. You can save the current

file with Ctrl-S, or use the menu or toolbar to Save All files.

4.1.2 Doing Color-Coded XML, XSL, XSQL, and JSP Editing

JDeveloper 3.1 supports the editing of any XML-based file with color-coded syntax highlighting

and automatic indenting assistance to make it easier to work with XML and HTML source code.

Table 4.1 shows the list of file types and extensions that JDeveloper 3.1 recognizes by default as

XML/HTML file formats.

Table 4.1. Default File Extensions for Syntax Highlighting

File Extension Description

.xml XML files

.xsl XSLT stylesheets

.xsql XSQL pages

.dtd Document type definitions

.xsd XML schema definitions

.htm, .html HTML files

.jsp JavaServer pages

Figure 4.2 illustrates the different XML editing syntax constructs that the JDeveloper 3.1 code

editor recognizes.

Figure 4.2. Syntactic elements that can be highlighted

You can change the syntax highlighting colors for any of these constructs by following these

steps:

1. Select Tools IDE Options... from the JDeveloper 3.1 menu.
2. Select the Fonts tab in the IDE Options dialog that appears.

From the Fonts tab, you can set the color, font, foreground color, and background color of any

syntactic element by selecting its name in the Element list and:

• Clicking the left mouse button in a colored square to set the foreground (FG) color

• Clicking the right mouse button in a colored square to set the background (BG) color

• Checking the Foreground or Background checkbox in the Use defaults for group to reset

the respective color to the default setting

In addition, as shown in Figure 4.3, you can set the font name, size, and style for any syntax

element.

Figure 4.3. Customize color syntax highlighting on the Fonts

panel

Table 4.2 describes the correspondence between the name of the syntactic element in the

Element list and the context it affects for XML editing.

Table 4.2. Syntax Elements and the Contexts They Affect

Syntax Element Name Controls Color For

Whitespace Space between elements and attributes

Comment XML comments

Reserved word Names of recognized names of HTML elements and attributes

Identifier XML element and attribute names

Symbol < , >, and /> characters

String Attribute values

Plain text Text content of elements

Changes you make to colors for the code editor take effect immediately and can be changed at

any time.

If you work with other XML-based file types and would like JDeveloper to syntax-highlight these

files as well, you can teach the product about your new files. For example, if you want files with

an *.xyz extension to be syntax-highlighted, then do the following:

1. Add *.xyz as a file extension that JDeveloper should treat as a text file, as follows:

o Select the Tools Treat as text... menu option.
o Type in *.xyz in the File pattern to be treated as text field, and click the Add

button.

o Dismiss the Treat as text... dialog by pressing the OK button.

2. Add xyz to the list of file extensions that should be syntax-highlighted like HTML/XML files,

as follows:

o Select the Tools IDE Options... menu option.
o Click on the Editor tab of the IDE Options dialog.

o Choose "Cursor/Search/Display options" from the Settings for: pop-up list.

o In the Display Options frame, add xyz to the end of the current list of file

extensions displayed in the HTML File Extensions field, separated by a semicolon.

o Click the OK button to dismiss the IDE Options dialog.

Make sure to see the instructions in the next section for enabling XML syntax checking on your

*.xyz file extension, if this is desirable. The next time you open your workspace or restart the

JDeveloper product, these new settings will be in effect.

You'll find that JDeveloper's automatic indenting helps a lot in keeping your XML elements nicely

aligned. If you add elements or remove elements, however, often you'd like to quickly fix the

indenting for whole blocks of elements at a time to make the file look nice again. In these cases,

you will find that JDeveloper's block indent and block unindent support come in handy over and

over again. To indent a block of text by two spaces, select the desired lines and type Ctrl-Shift-I.

To unindent a block of text by two spaces, select the desired lines and type Ctrl-Shift-U.

To change the number of spaces used for each block indent, choose the Tools IDE Options...
menu, select the Editor tab in the IDE Options dialog, and set the value of Block Indent to the

value you prefer.

4.1.3 Interactively Syntax Checking XML-based Files

In addition to XML syntax highlighting, JDeveloper 3.1 supports XML syntax checking of any file

in your project that is not read-only and that has one of the file extensions listed in Table 4.3.

Table 4.3. Default File Extensions Recognized for XML Syntax Checking

File Extension Description

.xml XML files

.xsl XSLT stylesheets

.xsql XSQL pages

.xsd XML schema definitions

At any time, you can select the Check XML Syntax... option from the right mouse button menu

after selecting the desired file to check in the project navigator. JDeveloper checks the syntax of

the file based on the current state of its editor buffer, even if you have pending changes that have

not been saved to disk. If any XML well-formedness errors are detected, appropriate error

messages appear in the XML Errors tab of the Message View and your cursor is brought to the

position of the first error in your file, as Figure 4.4 illustrates.

Figure 4.4. Checking the XML syntax of a file

To quickly jump to a line by number in the current buffer, type
Ctrl-O+Ctrl-G and type in the line number you want to jump to
in the Go to Line Number dialog that appears.

Note that the Check XML Syntax... menu option does just that: it checks syntax. It does not

perform validation of the XML file against its associated DTD. As we saw in Chapter 2, you can use

the oraxml command-line tool with the -v flag to perform DTD validation of an XML file.

Note, however, that JDeveloper 3.1's Check XML Syntax... feature still must read the DTD if your

XML file has an associated <!DOCTYPE>, even though it does not perform full DTD validation. Be

aware that if you work on a computer that is behind a firewall, and if the XML file you are

attempting to syntax-check uses an external DTD with an HTTP-based URL, as in the following

example:

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE moreovernews SYSTEM "http://w.moreover.com/xml/moreovernews.dtd">

<moreovernews>

 <article id="_6721342">

 <url>http://c.moreover.com/click/here.pl?x6721341</url>

 <headline_text>U.S. Officers Seize Cuban Boy, Reunite Him With Father

 </headline_text>

 <source>New York Times</source>

 <media_type>text</media_type>

 <cluster>Top stories</cluster>

 <tagline> </tagline>

 <document_url>http://www.nytimes.com/yr/mo/day/front/</document_url>

 <harvest_time>Apr 23 2000 2:19AM</harvest_time>

 <access_registration>http://www.nytimes.com/auth/login?Tag=/&Url=

 </access_registration>

 <access_status>reg</access_status>

 </article>

</moreovernews>

then you may experience a hanging problem as JDeveloper tries to access the DTD over the Web.

The solution is to teach JDeveloper the name of your proxy server machine so that it may properly

retrieve the DTD from outside the firewall. To set the name of the proxy server for the XML

syntax-checking feature, do the following:

1. Exit JDeveloper. You should not edit the configuration file we're about to edit while the

product is running, since changes you make may be overridden when the product saves

out its configuration information on shutdown.

2. After making a backup copy, use a convenient text editor to edit the jdeveloper.properties

configuration file. This file resides in the ./lib subdirectory under your JDeveloper

installation home directory.

3. Search for the string HttpProxyHost, which you'll find in the lines:
4. #

5. # Check XML Syntax... Addin

6. #

7. jdeveloper.xml.XmlFileParserAddin.XmlFileExtensions=xml,xsl,xsql,xsd

8. jdeveloper.xml.XmlFileParserAddin.HttpProxyHost=

jdeveloper.xml.XmlFileParserAddin.HttpProxyPort=

9. Type the name and port number of your proxy server after the equals sign on the

appropriate line as shown here:
10. #

11. # Check XML Syntax... Addin

12. #

13. jdeveloper.xml.XmlFileParserAddin.XmlFileExtensions=xml,xsl,xsql,xsd

14. jdeveloper.xml.XmlFileParserAddin.HttpProxyHost=yourproxyserver.you.com

jdeveloper.xml.XmlFileParserAddin.HttpProxyPort=80

15. Save the file and restart JDeveloper.

Now you should be able to syntax-check any XML file without incident.

If you work with other XML-based file types and would like JDeveloper to syntax-check these

additional file types as XML, you can teach the product about your new XML-based files. For

example, if you want files with an *.xyz extension to allow XML syntax checking, do the following:

1. First, make sure you've followed the instructions in the previous section, Section 4.1.2, to

register files with extension *.xyz to be treated as text files and optionally registered as

files to syntax-color as XML.

2. Exit JDeveloper. You should not edit the configuration file we're about to edit while the

product is running, since changes you make may be overridden when the product saves

out its configuration information on shutdown.

3. After making a backup copy, edit the jdeveloper.properties file found in the ./lib

subdirectory of your JDeveloper installation home directory.

4. Search for the line:

jdeveloper.xml.XmlFileParserAddin.XmlFileExtensions=xml,xsl,xsql,xsd

5. Add xyz to the end of the list of file extensions, separated by a comma.

The next time you start JDeveloper the Check XML Syntax... menu item should appear for the

*.xyz files in the project.

4.1.4 Developing XSQL Pages and JSPs Using JDeveloper

JDeveloper has built-in support for working with both JavaServer Pages and Oracle XSQL Pages.

While editing JSP and XSQL pages, you get color-coded syntax highlighting as we've described in

the previous section. In addition, since XSQL pages are XML-based templates, they also benefit

from the Check XML Syntax... feature. At any time during development, you can test a JSP or

XSQL page in your browser by running it directly from your project. To run either a JSP or XSQL

page, do the following:

1. Select YourFile.xsql or YourFile.jsp in the project navigator.

2. Select Run from the right mouse button menu.

If the Run item in the right mouse button menu is disabled,
make sure that your project is set up to debug files as a "Normal
Java Class" and not as "Remote Debugging". To verify this,
select the Project Project Properties... menu, click on the
Run/Debug tab, and look at the value of the Debug Files as
pop-up list. This value needs to be set to "Normal Java
Class"—the default—to run JSP or XSQL pages.

In order to run JSP or XSQL pages from your project, you must include the appropriate JSP and/or

XSQL Runtime libraries in your project's library list. To check the contents of your project's library

list, select Project Project Properties... from the main menu and click on the Libraries tab of
the Project Properties dialog. You'll see something like the display shown in Figure 4.5.

Figure 4.5. List of libraries for a project

To properly run XSQL pages from the JDeveloper environment, you need the XSQL Runtime

library in your library list. For JSP pages, you need the JSP Runtime library. If the appropriate

library is not in the list for your current project, click the Add... button and select it from the list

of defined libraries. Note that each project in a workspace has its own project property settings,

so you might have to perform this operation for each project.

When you run a JSP or XSQL page from your project, JDeveloper does the following for you:

1. Starts—or automatically restarts—the Oracle JSP Runner or the Oracle XSQL Servlet as

appropriate using the Oracle Web-to-go web server on port 7070

2. Sets the web server's virtual filesystem to map onto your project's HTML path

3. Launches your default browser if one is not currently running

4. Requests the page you're running in your browser using the URL

http://yourmachine:7070/YourCurrentProject/YourFile.xsql

While you are running your XSQL or JSP page from your project, you can make edits to:

• XSQL pages, to change any aspect of their functionality

• XSLT stylesheets being used by your XSQL pages

• JSP page source

You can see the effects of your changes instantaneously by refreshing your browser. Before

refreshing your browser, you should use the Check XML Syntax... feature on your edited files and

make sure your XSQL pages and XSLT stylesheets are well-formed to avoid getting an error from

the XSQL Servlet complaining about their syntax. Note that the JSP pages you've edited while

running require on-the-fly recompilation. This is handled automatically by the Oracle JSP Runner

but may cause a noticeable delay on the first request of the changed JSP page. Since XSQL pages

and associated XSLT stylesheets are templates and not compiled Java classes, no recompilation

delay for edited XSLT stylesheets or XSQL pages is necessary.

If after editing your XSQL, XSLT, or JSP files you refresh your
browser and do not see the changes you are expecting,
typically it is because you have forgotten to save the edited files
to disk in JDeveloper. If you notice that their names are
italicized in the project navigator, just select File Save All...
from the menu and try refreshing your browser again.

Note that for JSP pages, it is also possible to select the Debug menu from a page's right mouse

button menu in the project navigator to debug the JSP page locally. This means that as you

request pages through your web server, you can hit breakpoints and step through the Java code

in your JSP pages.

When running XSQL pages from within the JDeveloper 3.1 environment, the XSQL Servlet picks

up its configuration information from the XSQLConfig.xml file in the .\lib subdirectory of your

JDeveloper installation home. To add or change the properties related to the named database

connection definitions used by the XSQL page processor, edit this file and modify the

<connectiondefs> section as indicated by the comments in the file.

4.1.5 Understanding Project Path Settings

If you receive an error message like:

J:\myprojects\MyPage.xsql must reside in the

HTML root directory or a subdirectory beneath it.

when you attempt to run an XSQL or JSP page, this means your page's source file is not located

under the HTML root directory defined for the project. All of your project's path settings are visible

on the Paths tab of the Project Properties dialog as shown in Figure 4.6.

Figure 4.6. HTML root directory in the Project Properties Paths

tab

To allow for multiple projects in a workspace to share the same virtual root directory when

running JSP or XSQL files, each JDeveloper project has the following two HTML-related path

settings:

HTML root directory

This is the physical directory to use as the Web-to-go server's "virtual root" while running

JSP or XSQL pages in your project. While running pages inside the JDeveloper

environment, this directory corresponds to the URL:

http://yourmachine:7070/

HTML source directory

This is a physical subdirectory of the directory. It contains the current project's

web-related files: .jsp, .xsql, .html, .gif, etc. While running pages inside the JDeveloper

environment, this directory corresponds to the URL:

http://yourmachine:7070/HTMLSourceDirectoryName/

By setting the HTML root directory to the same physical directory for multiple projects in the

workspace, you can refer to web-related files across projects while running a page from any one

of them. So if you have a workspace with projects named ServletProject and XMLProject, and

you have their respective HTML paths set like this:

• HTML Paths for ServletProject:

• HTML Root Directory = C:\XMLAppWorkspace\Webfiles

HTML Source Directory = ServletProject

• HTML Paths for XMLProject:

• HTML Root Directory = C:\XMLAppWorkspace\Webfiles

HTML Source Directory = XMLProject

then while running any XSQL or JSP page from ServletProject using the URL:

http://yourmachine:7070/ServletProject/SomePage.xsql

you can refer to files from the XMLProject using a URL like:

http://yourmachine:7070/XMLProject/AnotherPage.xsql

without restarting the web server.

In addition to the HTML path settings, each project also has Java-related path settings for:

Source root directories

A semicolon-separated list of one or more root directory names containing Java source

code files for the project

Output root directory

The root directory where Java .class files are written during compilation

Run/Debug working directory

The directory that a Java program being run or debugged will "see" as the current

operating system directory during execution

Figure 4.7 shows the filesystem structure of a typical JDeveloper workspace with multiple

projects related to XML application development.

Figure 4.7. Sample directory structure of a typical Java/XML

project

Source code root directories for the ServletProject and XMLProject can be organized under a

single physical directory or not, as you wish. However, it is important that both ServletProject

and XMLProject have the same directory path settings for the following directories:

HTML root directory

So their web-related files can be cross-referenced while running pages in the JDeveloper

environment

Output root directory

So any classes that they share at runtime will be found in the CLASSPATH

Following these suggestions should further simplify your Java/XML-related development using

JDeveloper 3.1.

4.2 Working with Database Objects

All of the examples in this book use a database account named XMLBOOK that you'll need to

create to follow along and try out any code we discuss. In this section, we create an XMLBOOK

user and explore JDeveloper 3.1's features for working with database objects in the development

environment.

4.2.1 Creating the XMLBOOK User to Run the Examples

To create the XMLBOOK user, connect to your Oracle database as a DBA account like SYS or

SYSTEM using the SQL*Plus tool and issue the following commands:

SQL> CREATE USER xmlbook IDENTIFIED BY xmlbook;

User created.

SQL> GRANT connect, resource, query rewrite TO xmlbook;

Grant succeeded.

Then try to connect as the new XMLBOOK user and try a simple SELECT statement by doing the

following:

SQL> CONNECT xmlbook/xmlbook

Connected

SQL> SELECT sysdate FROM dual;

SYSDATE

23-APR-00

If this works, then you're ready to go create a named connection for XMLBOOK inside the

JDeveloper 3.1 environment.

4.2.2 Defining and Browsing Database Connections

JDeveloper 3.1 has a number of built-in features for working more easily with Oracle database

objects. You can define any number of commonly used database connections that are then

available for all workspaces and projects. After starting JDeveloper 3.1, you'll notice a

Connections folder at the top of the project navigator. Double-clicking on this folder or selecting

Connections... from the right mouse button menu option on the folder brings up the JDeveloper

Connection Manager dialog. From here you can create, edit, delete, import, and export

connection definitions for databases you frequently work with during development. Click the

New... button to define a new connection to work with our XMLBOOK user. The Connection dialog

shown in Figure 4.8 appears.

Figure 4.8. Defining a new named connection

Enter the username of XMLBOOK and password of XMLBOOK and click on the Test Connection

button to see if the JDBC connection information is correct for your database. The default values

typically work for a local Oracle database running on the same machine as JDeveloper, but if you

are working with a database on another machine, set the host, SID, and port values appropriately

until clicking on Test Connection gives you a Success! message. Click OK on the Connection

dialog and Done on the Connection Manager and we're ready to go.

You can use JDeveloper's built-in database browsing facilities by selecting your named xmlbook

connection in the Connections folder of the project navigator and selecting the Open Viewer As

Database Browser option off the right mouse button menu as shown in Figure 4.9.

Figure 4.9. Browsing schema objects for a database

connection

You can browse all schema objects to which you have access using the database browser's tree

control. For each kind of schema object you select, where appropriate, additional details appear

in the right-hand pane of the browser. For example, selecting a:

Table or View

Displays information on its columns

PL/SQL Package, Package Body, Procedure, Function, or Trigger

Displays its PL/SQL source code

Sequence

Displays its last value, and minimum, maximum, and increment values

Object Type

Displays the source code of its type specification

By expanding the Deployed Java Classes folder in the browser, you can inspect the Java package

hierarchy of all Java classes (to which you have access) that have been loaded into JServer. In

Figure 4.10, we can see that the Oracle XML Parser for Java has been loaded into JServer by the

presence of the oracle.xml.parser.v2 packages.

Figure 4.10. Browsing schema objects for a connection

Expanding a package node in the browser displays all classes in that package as well as

subpackages. Clicking on a specific class shows its decompiled method signatures in the details

panel.

In addition to browsing the contents of a named connection that you've defined, connections are

also used by JDeveloper 3.1 for automatically:

Launching SQL*Plus on a connection

Just select the connection in the navigator and choose Invoke SQL*Plus... from the right

mouse button menu.

Running any SQL script on a connection

Just select the SQL script in your project and select Invoke SQL*Plus... from the right

mouse button menu. A submenu allows you to pick which connection you'd like to run the

script under.

Deploying Java stored procedures to a connection

As we'll see in detail in Chapter 6, JDeveloper's deployment profiles feature automates the

deployment and redeployment of Java code to the Oracle8i server using named

connections.

Starting the JServer remote debug agent on a connection

Again, as we'll see in Chapter 6, JDeveloper uses the named connections when you

remotely debug Java code running inside Oracle8i 's JServer VM.

4.3 Using JDeveloper with Oracle XDK Components

Oracle's XML Developer's Kit (XDK) includes many of the enabling XML technologies that we'll be

using in the rest of this book. Among other components, it contains Java and PL/SQL versions of

the following:

• Oracle XML Parser

• Oracle XSLT Processor

• Oracle XML SQL Utility

In addition, it includes an Oracle XSQL Servlet that comes with a Java API for adding your own

so-called action handlers and programmatically processing XSQL Pages templates. In the

following sections, we'll discuss the basics of setting up JDeveloper to work with these Oracle XDK

components in Java. While JDeveloper 3.1 does offer color-coded syntax editing of PL/SQL and

the ability to browse stored procedures and run the SQL scripts against a named database

connection, most of the true developer productivity features in the product target Java

development (as you'd assume from the "J" in JDeveloper).

4.3.1 Adding Oracle XDK Libraries to Your Project

To dramatically simplify working with libraries of Java code in your projects, JDeveloper 3.1 has

a facility called named libraries . Each library consists of:

• A user-friendly library name like "Oracle XML Parser 2.0."

• A Class path comprising one or more .jar files, .zip files, or directories separated by

semicolons, containing the executable classes to support the library; for example,

J:\lib\xmlparserv2.jar.

• An optional Source path comprising one or more .jar files, .zip files, or directories

containing the Java source code for the library.

• An optional Doc path comprising one or more .jar files, .zip files, or directories containing

the JavaDoc HTML files for the library.

To use the functionality provided by a library in your project, do the following:

1. Select Project Project Properties... from the main menu.
2. Click on the Libraries tab in the Project Properties dialog.

3. Click on the Add... button on the Libraries tab to select a library to add to your project's

library list.

4. Select a library to add from the list that appears.

5. Click OK.

In the Libraries tab of the Project Properties dialog, notice the Java libraries list. This is an ordered

list of the libraries your project depends on. The order of the library names in this list is very

significant because their order directly controls the order of the .jar files, .zip files, and directories

in the Java CLASSPATH of the compilation and runtime environment for the current project. You

can use drag-and-drop to rearrange the order of the libraries in the library list.

So, rather than fighting with CLASSPATH settings—one of the biggest frustrations of Java

developers the world over—you simply pick the libraries you need and they, in turn, are used by

JDeveloper to control the CLASSPATH.

JDeveloper 3.1 comes preconfigured with Java libraries to work with the principal Oracle XML

Developer's Kit components: Java SDKs and JDBC libraries. This means that building custom XML

applications in Java using the Oracle XDK is a matter of simply picking the library you want to

work with and adding it to your project's library list. Table 4.4 shows the most common tasks you

might want to perform and which built-in named libraries you add to your project to accomplish

them.

Table 4.4. Built-in Libraries for XML Application Development

If you want to do this Add this library to your project

Connect to an Oracle database Oracle 8.1.6 JDBC

Produce XML from SQL queries Oracle XML SQL Utility

Save XML documents into tables/views Oracle XML SQL Utility

Parse XML documents using DOM or SAX Oracle XML Parser 2.0

Transform XML documents using XSLT Oracle XML Parser 2.0

Searching XML documents using XPath Oracle XML Parser 2.0

Construct XML documents using DOM Oracle XML Parser 2.0

Build servlets to process or return XML Servlet SDK

Run XSQL Pages XSQL Runtime

Build custom XSQL action handlers XSQL Runtime

Process XSQL pages programmatically XSQL Runtime

Compile/run JSP from your project JSP Runtime

You can use JDeveloper's library facility to create your own libraries as well to complement the

built-in library names. To create your own library to manage code you frequently need to use in

other projects, do the following:

1. Select Project Project Properties... from the main menu.
2. Click on the Libraries tab in the Project Properties dialog.

3. Click on the Libraries... button on the right edge of the Libraries tab to call up the Available

Java Libraries dialog.

4. Click on the New button.

An Untitled library entry appears, as shown in Figure 4.11, and you can enter the new library

Name, Class path, and optional Source and Doc paths, then click OK.

Figure 4.11. Creating a new library definition

If you find yourself using a library in almost every project you create, you can add the library to

the Default Project Properties library list so that every new project will contain that library upon

creation. For example, to add your new "My Really Useful XML Code" library to the Default Project

Properties library list, follow these steps:

1. Select Tools Default Project Properties... from the main menu.
2. Select the Libraries tab.

3. Click on the Add... button to add your library to the list, as shown in Figure 4.12.

Figure 4.12. Defining default libraries for all new projects

Now any subsequently created projects will have your library by default. You can add built-in

libraries as well as any libraries you create yourself to this list.

Updated versions of the Oracle XDK Components for Java are released frequently on the Oracle

Technology Network (OTN) web site. As a result of this rapid release pace, it is very possible that

the version of the XDK libraries that ships with the JDeveloper 3.1 release on the accompanying

CD-ROM is no longer the most current version available. You should check the XML home page at

OTN at the following URL:

http://technet.oracle.com/tech/xml

to see if more recent versions are available for any of the Oracle XDK Java components. If you find

that a new version is available, simply do the following:

1. Download the latest release of the XDK component from OTN. Let's say, for example, that

you discover that a new version 2.0.2.9 of the Oracle XML Parser for Java is now available.

2. Extract the .tar.gz or .zip file for the distribution into a convenient directory; for example,

into C:\xmlparserv2_2.0.2.9.

3. Create a new library in JDeveloper to work with it; for example, we'd set up the new library

settings as shown in Figure 4.13.

Figure 4.13. Defining path information for a new library

Then we can add the new "Oracle XML Parser 2.0.2.9" library to any project where we want to use

it.

4.3.2 Using JDeveloper Coding Productivity Features

JDeveloper 3.1 offers a number of coding productivity features to make building your XML

application code in Java easier. Here we cover the key features to which you will quickly become

addicted.

While you are typing code, JDeveloper's Code Insight feature watches what you are doing and is

ready to help simplify the task of remembering method names and method arguments for any

class you work with. Any time you type a dot between an object and a method name, JDeveloper

pops up a context-sensitive list of the methods that are relevant to call on the object, as shown

in Figure 4.14.

Figure 4.14. Code Insight assists with methods as you type

After typing just enough of the leading letters of the method name you want—or alternatively,

using the up/down arrow keys—you can hit Return and JDeveloper fills in the rest of the method

name for you. As soon as you type the opening parenthesis to pass the arguments to the method,

the Code Insight feature pops up another context-sensitive list of all overloadings, arguments,

and their datatypes that are relevant as shown in Figure 4.15.

Figure 4.15. Code Insight assists with method arguments

If there are multiple arguments, Code Insight will step through the arguments in the pop-up help,

keeping the current argument required and its datatype in bold.

If you find that the Code Insight feature is not working for you, it's probably for one of the

following reasons:

• JDeveloper cannot deduce what type your object is because of a typo or because your

code has not yet declared the object. To resolve this, check for typos and/or define the

variable properly in your code.

• You're using a class that you have not imported. To resolve this, add an appropriate

import statement to the top of your class.

• You've forgotten to add the appropriate library to your project's library list that contains

the current class. To resolve this, add the appropriate library to your project's library list.

• Your code contains some horrible syntax error and JDeveloper's Code Insight parser gets

confused by it. To resolve this, try compiling your class to find the culprit.

To browse the source code of any class you have two choices:

• If it's the class for an object your code is currently working with, click the right mouse

button over the class or variable in your code and select Browse Symbol at Cursor.

• If it's a class that just pops into your head, press Ctrl-/ and a Goto: box appears in the

status line at the very bottom of the JDeveloper window. Then:

o If you remember the fully qualified name of the class, type it in and press Enter.

o Otherwise, type in the name of the package that class is in and press Enter.

Figure 4.16 shows an example of typing Ctrl-/ followed by the package name

javax.servlet.http, followed by Enter. The package appears for browsing in the Opened tab of

the project navigator, showing all of the classes in the package. Single-clicking on any of the

classes in the package shows a structural breakdown of all of its members in the "Structure Pane"

located below the project navigator. Double-clicking on any class summons up one of the

following:

• The class's source code in a code editor, if it is a class in the current project or if it is a class

in a library on your project's library path and that library defines a "Source path" so

JDeveloper can find the source.

• A decompiled version of the source which is good enough to see the methods and

arguments.

Figure 4.16. Quickly jump to the source code and JavaDoc of

any class

Clicking on the Doc tab of any code editor causes one of two things to occur:

• The class's JavaDoc appears if it is a class in a library on your project's library path and

that library defines a "Doc path" so JDeveloper can find the JavaDoc.

• Otherwise, JDeveloper shows a blank page with "No JavaDoc found".

So you can very quickly refer to the structure, source, and JavaDoc for any class in any library you

use. Each of these features is small in and of itself, but put together they "nickel and dime" their

way to saving you lots and lots of time.

4.3.3 Final Observations

I'll close this chapter with a few final observations:

• Don't underestimate the power of the Oracle Technology Network web site. If you do

nothing else, try searching its online "Documentation" archive. This archive has every

manual of every product Oracle has shipped in the last ten years indexed using Oracle and

interMedia for fast searching and fewer dead trees. Reference information right at your

fingertips!

• The OTN site offers an XML Discussion Forum where Oracle experts hang out and answer

questions. It's a great resource.

• Don't fret if you were waiting for details in this chapter about remote debugging using

JDeveloper for Apache and JServer. We'll cover those topics as we need them in Chapter

6.

Chapter 5. Processing XML with PL/SQL

PL/SQL is Oracle's procedural language extension to SQL, and is the database programming

language familiar to nearly all Oracle DBAs and application developers. In this chapter, we'll study

lots of examples that illustrate how to perform basic XML processing using PL/SQL. In particular,

we'll learn how to:

• Load external XML files into the database

• Parse XML using the Oracle XML Parser for PL/SQL

• Search XML documents in memory using XPath expressions

• Post an XML message to another server and get an XML response back

• Enqueue and dequeue XML messages from Oracle Advanced Queuing (AQ) queues

In addition, in this chapter we'll cover the basic mechanics of producing XML automatically from

SQL queries and transforming the results into any desired XML format using XSLT stylesheets.

Both of these topics are covered in full in their own chapters later in the book. For an abbreviated

overview of PL/SQL itself, see Chapter 10.

Along the way, we'll build up several useful PL/SQL packages that you can use to simplify basic

XML processing from within your own PL/SQL stored procedures, functions, packages, and

database triggers. The full source code for these XML helper packages appears in Appendix A, and

is available on the O'Reilly web site. Let's dive right in.

5.1 Loading External XML Files

When a developer is setting out to store the contents of an XML document in the database to

perform queries over its content and structure, one of the first questions that arises is, "How do

I get XML files in there?" While in Chapter 12, we explore numerous techniques available for

storing XML in the database, here we'll start simple and work through the steps of loading an

existing XML file into a CLOB column.

CLOB (pronounced "klob" or "see-lob") stands for C haracter L
arge OB ject. You can think of a column of type CLOB as a very,
very large VARCHAR2. It can hold character-based data like
XML documents as large as four gigabytes (4GB).

Assume that we have an XML document like claim77804.xml below in a directory named

C:\XMLFILES on the filesystem of the machine where our database is installed:

<!-- claim77804.xml -->

<Claim>

 <ClaimId>77804</ClaimId>

 <Policy>12345</Policy>

 <Settlements>

 <Payment Approver="JCOX">1000</Payment>

 <Payment Approver="PSMITH">1850</Payment>

 </Settlements>

 <DamageReport>

 The insured's <Vehicle Make="Volks">Beetle</Vehicle>

 broke through the guard rail and plummeted into a ravine.

 The cause was determined to be <Cause>faulty brakes</Cause>.

 Amazingly there were no casualties.

 </DamageReport>

</Claim>

Since operating systems differ in their file and directory naming conventions, Oracle abstracts

these details with a logical directory object. You create a logical directory with the command:

CREATE DIRECTORY directoryname AS 'OS-Specific-Dirname';

You then use the logical directory name directoryname when working with files inside PL/SQL. In

order to create a logical directory, use SQL*Plus to connect to the database as a user with the

CREATE ANY DIRECTORY privilege. The SYS and SYSTEM users have this privilege by default, so

the easiest way to proceed is to connect as SYS or SYSTEM and create the directory with:

CREATE DIRECTORY xmlfiles AS 'C:\xmlfiles';

Once the logical directory name exists, you can grant READ permission on the directory to

another user like XMLBOOK with the command:

GRANT READ ON DIRECTORY xmlfiles TO xmlbook;

This enables the XMLBOOK user to read files from the XMLFILES directory. To verify this, you can

connect to the database as XMLBOOK and issue the SELECT statement:

SELECT directory_name,directory_path

 FROM all_directories;

which gives a list of all the directories to which XMLBOOK has access:

DIRECTORY_NAME DIRECTORY_PATH

------------------------------ --------------------

XMLFILES C:\xmlfiles

Any time you want to refer to an operating system file in PL/SQL, you use the built-in datatype for

external files called a BFILE. To refer to our existing claim77804.xml file in the XMLFILES

directory, we use the special BFileName() function, whose syntax is:

BFileName('logical-directory-name','filename').

Let's immediately put this file to use. For example, we can determine the length of the

claim77804.xml file with the SELECT statement:

SELECT DBMS_LOB.getLength(BFileName('XMLFILES','claim77804.xml'))

 AS length

 FROM dual;

which uses one of the functions in the built-in DBMS_LOB package to determine the length of a

BFILE object, returning the result:

LENGTH

 488

Now we're ready to load the document into the database. We have two choices:

• Save a handle to the external file in a column of type BFILE

• Save a copy of the contents of the external file in a column of type CLOB

The BFILE column offers an option that occupies virtually no space inside the database (just a file

pointer) but restricts the contents of the external document to be read-only. The CLOB column

option takes up space in the database but is fully readable and writable. As we'll see in Chapter 13,

XML documents in both BFILEs and CLOBs can be indexed for fast XML document searching

across millions of rows. The need for the document content to be writable and/or the desire to

have the content completely inside the database (where it cannot be accessed by file-based tools)

are the factors in deciding whether to use CLOBs over BFILEs.

Let's study the CLOB example. We can create a simple table named xml_documents having a

"document name" as a primary key and the body of the XML document in a CLOB column:

CREATE TABLE xml_documents (

 docname VARCHAR2(200) PRIMARY KEY,

 xmldoc CLOB,

 timestamp DATE

);

By adding a database trigger, we can have the table automatically maintain the last modified

timestamp column on any XML documents stored in this table:

CREATE TRIGGER xml_documents_timestamp

BEFORE INSERT OR UPDATE ON xml_documents

FOR EACH ROW

BEGIN

 :new.timestamp := SYSDATE;

END;

With the xml_documents table in place, we're ready to start inserting XML documents into it. To

store an external XML file into our xml_documents table, follow these steps:

1. Insert a new row into xml_documents with an empty CLOB for the xmldoc column.

2. Retrieve the empty CLOB into a variable.

3. Get a BFILE handle to the external file.

4. Open the file for reading.

5. Copy the contents of the file into the CLOB variable.

6. Close the file and COMMIT.

Example 5.1 shows a sample insertXMLFile stored procedure that accepts as arguments the

directory name, the filename, and the name you'd like to associate with the document as its

primary key. Then it performs the six steps above to store the external file into the

xml_documents table.

Example 5.1. Inserting an External XML File into a CLOB

CREATE OR REPLACE PROCEDURE insertXmlFile(dir VARCHAR2,

 file VARCHAR2,

 name VARCHAR2 := NULL) IS

 theBFile BFILE;

 theCLob CLOB;

 theDocName VARCHAR2(200) := NVL(name,file);

BEGIN

 -- (1) Insert a new row into xml_documents with an empty CLOB, and

 -- (2) Retrieve the empty CLOB into a variable with RETURNING..INTO

 INSERT INTO xml_documents(docname,xmldoc) VALUES(theDocName,empty_clob())

 RETURNING xmldoc INTO theCLob;

 -- (3) Get a BFile handle to the external file

 theBFile := BFileName(dir,file);

 -- (4) Open the file

 dbms_lob.fileOpen(theBFile);

 -- (5) Copy the contents of the BFile into the empty CLOB

 dbms_lob.loadFromFile(dest_lob => theCLob,

 src_lob => theBFile,

 amount => dbms_lob.getLength(theBFile));

 -- (6) Close the file and commit

 dbms_lob.fileClose(theBFile);

 COMMIT;

END;

With the insertXmlFile procedure now in place, from the SQL*Plus command-line we can

execute the stored procedure to load claim77804.xml from the XMLFILES directory using the

syntax:

EXEC insertXmlFile('XMLFILES','claim77804.xml')

Directory names are case-sensitive and are created in
uppercase by default, like other database object names. So this
syntax:

CREATE DIRECTORY mydir AS 'F:\files\mydir';

creates a directory object named MYDIR, while:

CREATE DIRECTORY "AnotherDir" AS 'W:\another\mydir';

creates a directory object named AnotherDir. When using the

BFileName() constructor to refer to a file in a directory, the

directory name is always case-sensitive, and the filename is
case-sensitive if filenames on the operating system of your
database server are case-sensitive. So if the directory object is
named MYDIR, the function

BFileName('mydir','myfile.xml') will fail because you

referred to the directory object's name in lowercase.

Note this line in the example:

theDocName VARCHAR2(200) := NVL(name,file);

This ensures that if you do not pass in the optional third argument to assign a meaningful name

to the file being stored, the value of theDocName will default to the name of the file being loaded

and will be used during the insert as the value of the docname column in the xml_documents

table.

5.2 Parsing XML

The Oracle XML Parser for PL/SQL provides PL/SQL developers with a set of APIs for parsing,

manipulating, and transforming XML documents inside the database. As we'll see in Chapter 6,

these same APIs are available to Java programmers as well using the Oracle XML Parser for Java.

As illustrated in Figure 5.1, in Oracle8i Releases 1, 2, and 3—server versions 8.1.5, 8.1.6, and

8.1.7, respectively—the Oracle XML Parser for PL/SQL is a set of PL/SQL packages that expose

the underlying functionality of the XML Parser for Java. In the 8.1.7 release, the XML Parser for

Java is natively compiled inside the server for better performance.

Figure 5.1. XML Parser for PL/SQL wraps the XML Parser for

Java

The packages included in the Oracle XML Parser for PL/SQL are listed in Table 5.1.

Table 5.1. Key PL/SQL Packages for Working with XML

PL/SQL Package

Name
Description

xmlparser Contains datatypes, functions, and procedures for parsing XML

xmldom
Contains datatypes, functions, and procedures for creating and manipulating

the members of an XML document's object model like elements, attributes, text,

comments, etc.

xslprocessor
Contains datatypes, functions, and procedures for transforming XML documents

using XSLT stylesheets and searching an in-memory XML document using XPath

expressions

In this chapter, we build up various PL/SQL helper packages

that centralize the key functionality from the xmlparser,

xmldom, and xslprocessor packages. However, for your

reference, full API documentation for these packages is

available in the ./doc subdirectory of the XML Parser for PL/SQL
distribution that you can download from the Oracle Technology
Network at http://technet.oracle.com/tech/xml.

By the end of this chapter we'll have made extensive use of all of these facilities. But before we

can use the Oracle XML Parser for PL/SQL inside Oracle8i, we should check that it's installed

properly.

We require the Oracle XML Parser for PL/SQL Release 1.0.2 or
greater for the examples in this section. This is the default
version that ships with Oracle8i Release 3 (8.1.7), but if you are
using an earlier release of Oracle8i, you can download the
appropriate release from the Oracle Technology Network web
site.

5.2.1 Installing Oracle XML Parser for PL/SQL

We first need to make sure that the XML Parser for Java is properly installed, since the XML Parser

for PL/SQL depends on it. You can verify proper installation by doing the following:

1. Connect to your Oracle8i database with SQL*Plus:

sqlplus xmlbook/xmlbook

2. Check the status of the oracle.xml.parser.v2.DOMParser class by running the following

SQL statement:
3. SELECT SUBSTR(dbms_java.longname(object_name),1,30) AS class, status

4. FROM all_objects

5. WHERE object_type = 'JAVA CLASS'

 AND object_name = dbms_java.shortname('oracle/xml/parser/v2/DOMParser');

If you see the result:

CLASS STATUS

------------------------------ -------

oracle/xml/parser/v2/DOMParser VALID

then the Oracle XML Parser for Java is already installed and ready to be used.

If you see this result, but the status is INVALID, try the command:

ALTER JAVA CLASS "oracle/xml/parser/v2/DOMParser" RESOLVE

If the parser is installed, you do not need to complete any further installation steps.

If the verification procedure produces the SQL*Plus message no rows selected, complete the

following steps to install the Oracle XML Parser for Java in your Oracle8i database:

1. Locate the xmlparserv2.jar file that contains the executable code for the XML Parser for

Java. It is bundled with the XML Parser for PL/SQL download from OTN.

2. Go to the ./lib/java subdirectory where the xmlparserv2.jar file that you'll be installing is

located.

3. Load the xmlparserv2.jar file into your schema using the loadjava command:

loadjava -verbose -resolve -user xmlbook/xmlbook xmlparserv2.jar

If the loadjava command does not appear to work, make sure

that the ./bin subdirectory of your Oracle installation home is in
your system path.

Repeat the test above to confirm that the status of the class is now VALID, meaning the XML

Parser for Java is ready to be used in the server.

Next, check to see if the Oracle XML Parser for PL/SQL is already installed in your Oracle8i

database by doing the following:

1. Connect to your Oracle8i database with SQL*Plus:

sqlplus xmlbook/xmlbook

2. Try to describe the xmlparser package from the SQL*Plus command line:

DESCRIBE xmlparser

If you see a description of the procedures and functions in the xmlparser package, the Oracle

XML Parser for PL/SQL is already installed and ready to be used. You do not need to complete any

further installation steps.

If instead you get an error like ORA-04043: object xmlparser does not exist, complete the

following steps to install the Oracle XML Parser for PL/SQL in your Oracle8i database:

1. Download the latest release of the Oracle XML Parser for PL/SQL from

http://technet.oracle.com/tech/xml.

2. Extract the .zip or the .tar.gz file into a convenient directory.

3. Change directory to the ./lib/java subdirectory of the distribution.

4. Load the xmlplsql.jar file into your schema:

loadjava -verbose -resolve -user xmlbook/xmlbook xmlplsql.jar

5. Change directory to the ./lib/sql subdirectory of the distribution.

6. Run the load.sql SQL script to create the XML Parser for PL/SQL packages:

sqlplus xmlbook/xmlbook @load.sql

Repeat the earlier test to confirm that you can now describe the xmlparser package, so the XML

Parser for PL/SQL is ready to be used in the server. As with any PL/SQL packages, you can GRANT

EXECUTE on the xmlparser, xmldom, and xslprocessor packages to other database users to

give them privileges to access these components.

5.2.2 Parsing XML from a CLOB

The xmlparser package provides a very straightforward API for parsing XML documents from

within PL/SQL stored procedures, functions, and packages. Given an XML document in text form,

the XML Parser reads the document and constructs an in-memory tree of the elements, attributes,

and text content of the document. In the process of accomplishing this task, the parser will

identify any syntactic errors in the document that prevent it from correctly completing the job.

One useful way to use the parser is to simply verify that the XML documents you've stored in your

database are well-formed.

We can check that an XML document is well-formed in just three steps:

1. Call xmlparser.newParser to create a new XML Parser for the job.

2. Call one of the following to parse the document: xmlparser.parse,

xmlparser.parseBuffer, or xmlparser.parseCLOB.

3. Call xmlparser.freeParser to free the instance of the XML Parser.

If any syntactic problems are encountered while parsing the XML document, the PL/SQL

exception number -20100 will be raised. If we declare a user-defined exception (for example,

XMLParseError) and use the PL/SQL PRAGMA EXCEPTION_INIT to associate the named

exception with the error code -20100:

-- Associate the XMLParseError exception with the -20100 error code

PRAGMA EXCEPTION_INIT(XMLParseError, -20100);

we can then handle the exception in a PL/SQL EXCEPTION block:

EXCEPTION

 WHEN XMLParseError THEN

 -- Some Error Handling Code Here

Example 5.2 shows a checkXMLInCLOB stored procedure that returns a boolean status indicating

whether the XML document in the CLOB you pass in is well-formed. If the document is not

well-formed, the parsing error message is also returned in the error argument.

Example 5.2. Checking the Well-Formedness of XML in a CLOB

CREATE OR REPLACE PROCEDURE checkXMLInCLOB(c CLOB,

 wellFormed OUT BOOLEAN,

 error OUT VARCHAR2) IS

 parser xmlparser.Parser;

 xmldoc xmldom.DOMDocument;

 XMLParseError EXCEPTION;

 -- Associate the XMLParseError exception with the -20100 error code

 PRAGMA EXCEPTION_INIT(XMLParseError, -20100);

BEGIN

 -- (1) Create a new parser

 parser := xmlparser.newParser;

 -- (2) Attempt to parse the XML document in the CLOB

 xmlparser.ParseCLOB(parser,c);

 -- (3) Free the parser.

 xmlparser.freeParser(parser);

 -- If the parse succeeds, we'll get here

 wellFormed := TRUE;

EXCEPTION

 -- If the parse fails, we'll jump here.

 WHEN XMLParseError THEN

 xmlparser.freeParser(parser);

 wellFormed := FALSE;

 error := SQLERRM;

END;

Now suppose we use our insertXMLFile procedure from the SQL*Plus command line to insert

the syntaxError.xml file in the XMLFILES directory:

<!-- syntaxError.xml (Missing quote on Vehicle Element's Make attribute) -->

<Claim>

 <ClaimId>77804</ClaimId>

 <Payment>1000</Payment>

 <DamageReport>

 The insured's <Vehicle Make=Volks">Beetle</Vehicle>

 broke through the guard rail and plummeted into a ravine.

 The cause was determined to be <Cause>faulty brakes</Cause>.

 Amazingly there were no casualties.

 </DamageReport>

</Claim>

by using the syntax:

EXEC insertXMLFile('XMLFILES','syntaxError.xml')

The result is that the contents of the syntaxError.xml file will be inserted into the xml_documents

table, with the document name that defaults to the name of the file, syntaxError.xml.

We can then try out our checkXMLInCLOB procedure on the newly loaded XML document in the

xml_documents table with the following anonymous block of PL/SQL:

SET SERVEROUTPUT ON

DECLARE

 xmlClob CLOB;

 wellFormed BOOLEAN;

 parseError VARCHAR2(200);

BEGIN

 -- Select the CLOB for the document named 'syntaxError.xml' into a variable

 SELECT xmldoc

 INTO xmlClob

 FROM xml_documents

 WHERE docname = 'syntaxError.xml';

 -- Check it for XML Well-formedness

 checkXMLInCLOB(xmlClob,wellFormed,parseError);

 -- Print out an error if it was not well-formed.

 IF NOT wellFormed THEN

 dbms_output.put_line(parseError);

 END IF;

END;

Blocks of PL/SQL code can be part of a named procedure,
function, or package, or can be executed directly in a block of
code with no name. These so-called anonymous blocks of
PL/SQL are frequently used in SQL scripts to run a sequence of
PL/SQL commands without predefining them as part of a named
stored procedure, function, or package.

This retrieves the XML document from the xmldoc CLOB column in the xml_documents table, calls

checkXMLInCLOB to verify whether the document is well-formed, and prints out the returned error

message if it is not. In this case, executing the anonymous block of code above generates the

message:

ORA-20100: Error occurred while parsing:

 Attribute value should start with quote.

This is expected since the syntaxError.xml file is missing an opening quote for the value of the

Make attribute on the <Vehicle> element.

Taking this simple idea a step further, let's say we want to create a stored procedure to

periodically comb through the xml_documents table and move any documents that are not

well-formed to another table called bad_xml_documents. We can start by creating a

bad_xml_documents table in the image of the existing xml_documents table, and adjusting the

new table's columns to fit our needs. We can accomplish this by:

1. Creating an empty table named bad_xml_documents with the same structure as

xml_documents:
2. CREATE TABLE bad_xml_documents AS

3. SELECT *

4. FROM xml_documents

 WHERE ROWNUM < 1 /* Don't Select Any Data, Just Get the Structure */;

5. Dropping the timestamp column using the new ALTER TABLE . . . DROP COLUMN feature

in Oracle8i Release 2:

ALTER TABLE bad_xml_documents DROP COLUMN timestamp;

6. Adding a column to store the error message that's causing the document not to parse

correctly:

ALTER TABLE bad_xml_documents ADD (error VARCHAR2(4000));

Then we can use a stored procedure like moveBadXmlDocuments in Example 5.3 to complete the

task. Note that it makes use of our checkXMLInCLOB procedure from Example 5.2 to automatically

move "syntactically-challenged" XML documents into the bad_xml_documents table where they

can be studied and corrected later.

Example 5.3. Moving Ill-Formed XML Documents to Another

Table in Batch

CREATE OR REPLACE PROCEDURE moveBadXmlDocuments IS

 wellFormed BOOLEAN;

 errMessage VARCHAR2(200);

BEGIN

 -- Loop over all documents in the xml_documents table

 FOR curDoc IN (SELECT docname,xmldoc FROM xml_documents) LOOP

 -- Check the syntax of the current 'xmldoc' CLOB in the loop

 checkXMLInCLOB(curDoc.xmldoc, wellFormed, errMessage);

 IF NOT wellFormed THEN

 -- Move ill-formed xml document to a bad_xml_documents table

 INSERT INTO bad_xml_documents(docname,xmldoc,error)

 VALUES (curDoc.docname, curDoc.xmldoc, errMessage);

 DELETE FROM xml_documents WHERE docname = curDoc.docname;

 COMMIT;

 END IF;

 END LOOP;

END;

Of course, since moveBadXmlDocuments is a PL/SQL procedure like any other, it can be run in a

database job every night at 2 A.M. by using the standard Oracle facilities in the DBMS_JOB package

like this:

SET SERVEROUTPUT ON

DECLARE

 jobId BINARY_INTEGER;

 firstRun DATE;

BEGIN

 -- Start the job tomorrow at 2am

 firstRun := TO_DATE(TO_CHAR(SYSDATE+1,'DD-MON-YYYY')||' 02:00',

 'DD-MON-YYYY HH24:MI');

 -- Submit the job, indicating it should repeat once a day

 dbms_job.submit(job => jobId,

 what => 'moveBadXmlDocuments;',

 next_date => firstRun,

 interval => 'SYSDATE + 1' /* Reschedule for 1 Day Later */

);

 dbms_output.put_line('Successfully submitted job. Job Id is '||jobId);

END;

So even after just a few simple examples, you can see that by making XML processing accessible

to PL/SQL, the Oracle features you know and love are all you need to use XML in your database.

There's no need to learn any new management, backup, and recovery techniques for applications

to work with XML. Any place where PL/SQL is valid, now XML can play, too.

5.2.3 Parsing XML from a String

In addition to parsing XML stored in CLOBs, it's also possible to parse XML documents that reside

in VARCHAR2 string variables. This is especially convenient if you want to write stored procedures

or functions that take small XML datagrams as arguments and do some processing on them.

The xmlparser package has a parseBuffer function that parses a string buffer and returns an

instance of xmldom.DOMDocument if it is successful. The xmldom package provides datatypes,

functions, and procedures for working with the parsed XML document's complete "object model,"

allowing programmatic manipulation of all elements, attributes, text content, comments, etc.,

that appear in the file. Table 5.2 provides a short list of the of the most common Document Object

Model (DOM) API methods you will use in practice.

The xmldom package provides a PL/SQL language binding to all

of the functionality specified in the W3C's DOM Level-1 Core.
We'll use a few of the most commonly used methods in the DOM
API in the examples in this chapter, giving us a feeling for how
they are used in PL/SQL. Complete details on these methods
can be found at
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html.

Table 5.2. Highlighting Some Common DOM API Methods

DOM API Method Name Description

getDocumentElement
Returns the document element, the top-level element in the XML

document

getAttribute Returns the value of a named attribute for an element

getChildren Returns the list of child nodes of an element

getNodeType Returns the numerical constant indicating the type of a node

getNodeName Returns the name of a node

getNodeValue Returns the string value of a node

setNodeValue Sets the string value of a node

createElement Creates a new element

setAttribute Sets an attribute value on an element

createText Creates a new text node

appendChild Appends a node as a child of another

removeChild Removes a child node of an element

getElementsByTagName Returns a list of descendent elements with a given tag name

getFirstChild Returns the first child node of any node

The idAttributeOfDocElement function in Example 5.4 illustrates a simple example of using the

xmlparser.parseBuffer function and a few functions in the xmldom package to get the document

element of the parsed XML document and return the value of its id attribute.

Example 5.4. Parsing XML from a String and Using DOM

CREATE OR REPLACE FUNCTION idAttributeOfDocElement(xmldoc VARCHAR2)

RETURN VARCHAR2 IS

 theXmlDoc xmldom.DOMDocument;

 theDocElt xmldom.DOMElement;

 retval VARCHAR2(400);

 XMLParseError EXCEPTION;

 PRAGMA EXCEPTION_INIT(XMLParseError, -20100);

 -- Local parse function keeps code cleaner. Return NULL if parse fails

 FUNCTION parse(xml VARCHAR2) RETURN xmldom.DOMDocument IS

 retDoc xmldom.DOMDocument;

 parser xmlparser.Parser;

 BEGIN

 parser := xmlparser.newParser;

 xmlparser.parseBuffer(parser,xml);

 retDoc := xmlparser.getDocument(parser);

 xmlparser.freeParser(parser);

 RETURN retdoc;

 EXCEPTION

 -- If the parse fails, we'll jump here.

 WHEN XMLParseError THEN

 xmlparser.freeParser(parser);

 RETURN retdoc;

 END;

BEGIN

 -- Parse the xml document passed in the VARCHAR2 argument

 theXmlDoc := parse(xmldoc);

 -- If the XML document returned is not NULL...

 IF NOT xmldom.IsNull(theXmlDoc) THEN

 -- Get the outermost enclosing element (aka "Document Element")

 theDocElt := xmldom.getDocumentElement(theXmlDoc);

 -- Get the value of the document element's "id" attribute

 retval := xmldom.getAttribute(theDocElt,'id');

 -- Free the memory used by the parsed XML document

 xmldom.freeDocument(theXmlDoc);

 RETURN retval;

 ELSE

 RETURN NULL;

 END IF;

END;

The idAttributeOfDocumentElement function uses a lesser-known PL/SQL feature of declaring a

nested, local function inside the outer function's DECLARE section. This makes the code cleaner

and makes it easier to extract that function later as a standalone function if you begin to discover

a wider need for its facilities.

To check whether a variable of type xmldom.DOMDocument is

NULL, use the syntax:

-- Check if yourXmlDocVar
is NULL
IF xmldom.IsNull(yourXmlDocVar) THEN

You need to do this because the normal:

IF yourXmlDocVar IS NULL THEN

syntax does not work for RECORD-type variables. If you look in

the source code for the xmldom package specification—located

in the xmldom.sql file supplied with the Oracle XML Parser for

PL/SQL—you'll see that the DOMDocument and other DOMXxxx

datatypes are declared as RECORD types.

Let's give our new function a try. Suppose we have a table of small XML-based messages, whose

XML message bodies are less than 4000 characters defined with the command:

CREATE TABLE message(

 received DATE,

 recipient VARCHAR2(80),

 xml_message VARCHAR2(4000)

);

Since our idAttributeOfDocumentElement function has no side-effects that modify the database,

we are free to use it in the middle of a SELECT statement like the following:

SELECT idAttributeOfDocElement(XML_MESSAGE) AS ID, RECIPIENT, XML_MESSAGE

 FROM message

 WHERE received > SYSDATE - 1

that produces the expected SQL result:

ID RECIPIENT XML_MESSAGE

---- ---------- ------------------------------------

101 wsmithers <Message id="101">

 <From>Montgomery Burns</From>

 <Text>Release the Hounds!</Text>

 </Message>

Of course, we can also use the function within the body of any other PL/SQL program. Note that

while using the getAttribute() function on an element makes it easy to retrieve any attribute

value, retrieving the value of an element is less than obvious. For example, in the output just

shown, to retrieve the text "Montgomery Burns" as the value of the <From> element, you need to

realize that the string "Montgomery Burns" is actually a text node that is a child of the <From>

element. An element doesn't technically have a value of its own. Retrieving an element's value

requires a combination of using the getFirstChild() or getChildNodes() functions, followed by

using the getNodeValue() function on the child text nodes.

Understanding Maximum Sizes for

VARCHAR2 Data

While SQL and PL/SQL share the ability to work with data of type
VARCHAR2, they differ in the maximum allowed length. Within a PL/SQL
program, local variables of type VARCHAR2 can be declared to contain up
to 32,767 characters. However, when declaring a database column of
type VARCHAR2, the maximum length is 4000 characters. This SQL
VARCHAR2 limit of 4000 characters holds as well when VARCHAR2
values appear inside DML (Data Manipulation Language) statements like
SELECT, INSERT, UPDATE, and DELETE. Keep this in mind when
referencing PL/SQL functions inside DML statements, since their return
values cannot exceed 4000 characters. To illustrate the problem,
imagine a simple function like this:

CREATE OR REPLACE FUNCTION stars(how_many NUMBER)
RETURN VARCHAR2 IS
BEGIN
 -- Return a string with 'how_many' stars
 RETURN RPAD('*',how_many,'*');
END;

The statement SELECT stars(4000) FROM dual selects a string of 4000

stars, while the statement SELECT stars(4001) FROM dual produces the

error:

ORA-06502: PL/SQL: numeric or value error:
 character string buffer too small

Use CLOB datatypes and the DBMS_LOB package to work with character

data that is over 4K.

Before moving on to the next section, make sure you understand the following points about using

the XML Parser for PL/SQL packages:

• Since PL/SQL is not an object-oriented language like Java, the PL/SQL API for DOM is not

object-oriented. In Java, you would call a getDocumentElement method on an instance of

an XML document object; in PL/SQL, you pass the XML document object to the

xmldom.getDocumentElement function as an argument, as shown here:

• // Java syntax

• theDocElt = theXMLDoc.getDocumentElement();

•

• -- PL/SQL syntax

theDocElt := xmldom.getDocumentElement(theXmlDoc);

• Since the XML Parser for PL/SQL is a wrapper of the Java implementation, you have to

explicitly call routines to free the XML documents you parse when you no longer need

them. This means that whether you use XML documents for a brief moment inside a

function or a procedure, or keep XML documents in PL/SQL package-level variables to

cache them, you need to be diligent about freeing them when you're done using them.

This ensures that the memory used by the underlying Java objects is properly reused. In

Example 5.4, we see calls at appropriate points to:

xmlparser.freeParser(parser);

and to:

xmldom.freeDocument(theXmlDoc);

which free the XML Parser object and XML Document object, respectively.

Next we'll see how to reach out over the network to pull XML into the database by retrieving and

parsing XML over a URL.

5.2.4 Parsing XML from a URL

The xmlparser.parse function allows you to parse XML documents from any URL. This is the

easy part. The tricky parts of working with XML over the network from inside Oracle8i involve

dealing with:

• Firewall machines that protect your intranet from the Internet

• Database permissions to enable a user to successfully open a connection to another server

from inside the Oracle8i database

We'll learn how to deal with these issues by working through an example.

Moreover.com is an Internet startup that publishes news stories on the Web. Other sites can

leverage the news that Moreover.com is constantly adding to gigantic databases in order to offer

headline news features on their own sites. At the time of this writing, Moreover.com offers 253

different categories of news. Of particular interest to us is the category of news about XML-related

technologies. The fact that the company deliver its news feeds in XML is particularly serendipitous.

We'll use the live web-based news feed on XML in XML as the example for this section.

Browsing the following URL:

http://p.moreover.com/cgi-local/page?index_xml+xml

will retrieve an XML datagram of news stories that looks like Example 5.5.

Example 5.5. Example Moreover.com News Feed Datagram

<?xml version="1.0" encoding="iso-8859-1"?>

 <!DOCTYPE moreovernews

 SYSTEM "http://w.moreover.com/xml/moreovernews.dtd">

 <moreovernews>

 <article id="_6331562">

 <url>http://c.moreover.com/click/here.pl?x6331558</url>

 <headline_text>IBM, Oracle Expand XML's Role</headline_text>

 <source>Internet Week</source>

 <media_type>text</media_type>

 <cluster>XML and metadata news</cluster>

 <tagline> </tagline>

 <document_url>http://www.internetwk.com/</document_url>

 <harvest_time>Mar 30 2000 3:50PM</harvest_time>

 <access_registration> </access_registration>

 <access_status> </access_status>

 </article>

 <!-- More <article>s here -->

 <article id="_6328106">

 <url>http://c.moreover.com/click/here.pl?x6328104</url>

 <headline_text>XML May Mark Spot for B2B Profits</headline_text>

 <source>ON24 Audio/Video</source>

 <media_type>audio</media_type>

 <cluster>XML and metadata news</cluster>

 <tagline> </tagline>

 <document_url>http://www.on24.com/newsline/top</document_url>

 <harvest_time>Mar 30 2000 12:00PM</harvest_time>

 <access_registration> </access_registration>

 <access_status> </access_status>

 </article>

 </moreovernews>

What we want to do is programmatically retrieve this XML by parsing the URL cited previously,

and process the news story information that arrives. If you have to set a proxy server name in

order to use your web browser, that's a good sign that your database machine will need to have

the proxy server set correctly, too.

Even if you are parsing an XML document from a VARCHAR2 or
CLOB value, that document might contain a <!DOCTYPE> that
references its associated external DTD via an http:// -based
URL like this:

<!DOCTYPE moreovernews
 SYSTEM
"http://w.moreover.com/xml/moreovernews.dtd">

Since the XML Parser will attempt to retrieve the external DTD,
this is another situation when you need the HTTP proxy server
name to be properly set to avoid network timeouts when the
XML Parser tries to retrieve the DTD.

Since the XML Parser for PL/SQL is implemented in Java under the covers, we need to set the

proxy server in the way that Java programs require, by setting the values of the three System

properties in Table 5.3.

Table 5.3. Java System Properties to Control Proxy Server Settings

System Property

Name
Description

proxySet
Has the value true or false to indicate whether the proxy server should be used.

If unset, the default is false.

proxyHost
The name or IP address of the machine to be used as the HTTP proxy server for

URL requests. No leading http:// is required, just the machine name.

proxyPort The port number to use for communication with the proxy server.

Since there is no built-in PL/SQL API to set Java System properties, we'll need to build one by:

1. Creating a Java class to call System.setProperty(name,value)

2. Compiling the class and loading it into Oracle8i

3. Creating a Java stored procedure specification for it

So let's do it. The tiny PropertyHelper class below will do the job for us:

public class PropertyHelper {

 public static void setSystemProperty(String name, String value) {

 System.setProperty(name,value);

 }

}

This class defines a single method named setSystemProperty that sets the value of a named

System property to the value passed in. To compile this class, use JDeveloper or any

command-line javac compiler:

javac PropertyHelper.java

This produces the compiled Java class file named PropertyHelper.class. To load this class into

the database, do the following:

loadjava -verbose -resolve -user sys/password PropertyHelper.class

We're loading it into the SYS schema since SYS has privileges to set System properties (SYSTEM

does not, by default). We'll control access to this capability by granting EXECUTE permission on

the Java stored procedure wrapper we're just about to create.

Connect to the database using SQL*Plus as SYS and run the script:

CREATE OR REPLACE PROCEDURE setJavaSystemProperty(name VARCHAR2,value VARCHAR2)

AS LANGUAGE JAVA NAME

'PropertyHelper.setSystemProperty(java.lang.String, java.lang.String)';

The CREATE PROCEDURE command uses the following syntax that is new with Oracle8i :

AS LANGUAGE JAVA NAME 'classname.methodname(args)'

This allows you to create a PL/SQL procedure or function specification whose body is implemented

by static methods of a Java class. Once a Java stored procedure specification like

setJavaSystemProperty is created, both SQL and PL/SQL can call it exactly as if it were

implemented in PL/SQL.

We can create an http_util package that exposes the ability to set the proxy server and port

through a setProxy procedure with the code:

CREATE OR REPLACE PACKAGE http_util AS

 -- Set proxy server for any Java code running in the current session.

 PROCEDURE setProxy(host VARCHAR2, port NUMBER := 80);

END;

CREATE OR REPLACE PACKAGE BODY http_util AS

 PROCEDURE setProxy(host VARCHAR2, port NUMBER := 80) IS

 BEGIN

 setJavaSystemProperty('proxySet','true');

 setJavaSystemProperty('proxyHost',host);

 setJavaSystemProperty('proxyPort',TO_CHAR(port));

 END;

END;

So now, any user with permissions to invoke:

http_util.setProxy('somemachine');

can set the proxy server. As with any globally useful package, we'll create a public synonym for

it:

CREATE PUBLIC SYNONYM http_util FOR http_util;

and then have SYS grant permission to the XMLBOOK user to use the new http_util package:

GRANT EXECUTE ON http_util TO XMLBOOK;

Finally then, we can connect again as XMLBOOK and set the HTTP proxy by issuing the command:

exec http_util.setProxy('proxyserver.you.com');

Whew! With all this machinery in place, let's get to the good stuff. Example 5.6 shows the code

necessary to retrieve the top news stories about XML from Moreover.com. The code:

1. Sets the proxy server using our new http_util.setProxy()

2. Parses the XML "news feed" document retrieved from the URL

3. Searches for all <headline_text> elements using getElementsByTagName

4. Loops over all the found <headline_text> nodes, and for each node, gets the first text

node child of <headline_text> and prints out the headline

Example 5.6. Retrieving an XML-based News Feed from

Moreover.com

SET SERVEROUTPUT ON

DECLARE

 newsURL VARCHAR2(80);

 parser xmlparser.Parser;

 newsXML xmldom.DOMDocument;

 titles xmldom.DOMNodeList;

 titles_found NUMBER;

 curNode xmldom.DOMNode;

 textChild xmldom.DOMNode;

BEGIN

 dbms_output.put_line('Top Stories on XML from Moreover.com on '||

 TO_CHAR(SYSDATE,'FMMonth ddth, YYYY'));

 -- This is the URL to browse for an XML-based news feed of stories on XML

 newsURL := 'http://p.moreover.com/cgi-local/page?index_xml+xml';

 -- Set the machine to use as the HTTP proxy server for URL requests

 http_util.setProxy('yourproxyserver.you.com');

 -- Parse the live XML news feed from Moreover.com by URL

 parser := xmlparser.newParser;

 newsXML := xmlparser.parse(newsURL);

 xmlparser.freeParser(parser);

 -- Search for all <headline_text> elements in the document we receive

 titles := xmldom.getElementsByTagName(newsXML,'headline_text');

 -- Loop over the "hits" and print out the text of the title

 FOR j IN 1..xmldom.getLength(titles) LOOP

 -- Get the current <headline_text> node (Note the list is zero-based!)

 curNode := xmldom.item(titles,j-1);

 -- The text of the title is the first child (text) node of

 -- the <headline_text> element in the list of "hits"

 textChild := xmldom.getFirstChild(curNode);

 dbms_output.put_line('('||LPAD(j,2)||') '||xmldom.getNodeValue(textChild));

 END LOOP;

 -- Free the XML document full of news stories since we're done with it.

 xmldom.freeDocument(newsXML);

END;

If you have no firewall or proxy server machine between you
and the wild, woolly Internet, you can comment out the line:

http_util.setProxy('yourproxyserver.you.com');

If you do have a firewall, edit the example on the CD to reflect
the name of your proxy server before running examples.

Executing the anonymous block of PL/SQL in Example 5.6 should produce output like this:

Top Stories on XML from Moreover.com on April 2nd, 2000

(1) Oracle increases XML support

(2) An object programming lesson on how you can be successful

(3) Here's a vignette about how e-commerce platforms are shaking out

(4) Vendors don't want you to sell used software as you would used books or CDs

(5) SpaceWorks, WebMethods Ink OEM Alliance

(6) XML Comes Of Age

(7) IBM, Oracle Expand XML's Role

 :

(29) Pinacor Establishes XML-Based E-Business Inventory Pipeline

(30) Moving Home: Portable Site Information

If, instead, it produces an error like this:

Top Stories on XML from Moreover.com on April 2nd, 2000

DECLARE

*

ERROR at line 1:

ORA-29532: Java call terminated by uncaught Java exception:

java.security.AccessControlException: the Permission

(java.net.SocketPermission p.moreover.com resolve) has not been granted by

dbms_java.grant_permission to

SchemaProtectionDomain(XMLBOOK|PolicyTableProxy(XMLBOOK))

then we've found a good reason to talk about the other tricky part of parsing web-based XML by

URL over HTTP: the permission to open a socket from inside the database.

Of course, you don't want all your database users to be able to write programs that run on your

production server that can open up HTTP connections with other machines and send or receive

information. To address this, Oracle8i provides fine control over the ability to open a

communication socket with another machine.

We get this error because you don't have permission to open a socket of any kind, not to mention

a socket to connect for an HTTP-based TCP/IP exchange with p.moreover.com to get your XML

news feed. You can grant this "open-a-socket" permission on:

• Any machine name or IP address ("*")

• Any machine in a given domain ("*.moreover.com")

• A particular machine or IP address ("101.123.208.104" or "stocks.xmlville.com")

We can resolve the problem by creating a useful PL/SQL procedure to allow_url_access to a

particular server (or wildcard pattern for a server name). The code in Example 5.7 will do the

trick.

Example 5.7. Controlling Security on URL Access Inside

Oracle8i JServer

CREATE OR REPLACE PROCEDURE allow_url_access(to_user VARCHAR2,

 on_server VARCHAR2) IS

BEGIN

 -- Note "on_server" can include a leading asterisk (e.g. '*.oracle.com')

 -- See JavaDoc for the java.net.SocketPermission class for other legal values

 dbms_java.grant_permission(grantee => to_user,

 permission_type => 'java.net.SocketPermission',

 permission_name => on_server,

 permission_action => 'connect,resolve');

END;

This code should be created in the SYS or SYSTEM account and then access to open connections

with particular servers can be granted to individual users by executing the allow_url_access

procedure, like this:

EXEC allow_url_access('XMLBOOK','*.moreover.com');

This grants XMLBOOK the ability to open a connection and retrieve a resource from any URL with

a domain name that ends in .moreover.com. By connecting again as XMLBOOK and executing the

SQL statement:

SELECT name AS allowed_server_name

 FROM user_java_policy

 WHERE type_name = 'java.net.SocketPermission'

You should now see this heart-warming result:

ALLOWED_SERVER_NAME

*.moreover.com

This granted permission will enable us to successfully retrieve:

• The "news feed" URL:

http://p.moreover.com/cgi-local/page?index_xml+xml

• The DTD referenced in the XML news feed document:

http://w.moreover.com/xml/moreovernews.dtd

Rerunning the code in Example 5.6 as the XMLBOOK user should now work fine.

5.2.5 PL/SQL Helper Packages for XML Parsing

Since we'll be parsing XML documents a lot, it makes sense to build a convenience package called

xml that handles all of our common parsing needs with the simplest possible API. Example 5.8

shows the PL/SQL package specification of precisely the little helper package we need.

Example 5.8. The xml Helper Package Specification

CREATE OR REPLACE PACKAGE xml AS

 -- Set HTTP proxy server in case you reference documents

 -- or DTDs outside a corporate firewall

 PROCEDURE setHttpProxy(machinename VARCHAR2,

 port VARCHAR2 := '80');

 -- Parse and return an XML document

 FUNCTION parse(xml VARCHAR2) RETURN xmldom.DOMDocument;

 FUNCTION parse(xml CLOB) RETURN xmldom.DOMDocument;

 FUNCTION parse(xml BFILE) RETURN xmldom.DOMDocument;

 -- Parse and return an XML Document by URL

 FUNCTION parseURL(url VARCHAR2) RETURN xmldom.DOMDocument;

 -- Free the memory used by an XML document

 PROCEDURE freeDocument(doc xmldom.DOMDocument);

END;

The xml package centralizes the key XML parsing functionality for:

• Setting the HTTP proxy server

• Parsing XML from a VARCHAR2

• Parsing XML from a CLOB

• Parsing XML from a BFILE

• Parsing XML from a URL

• Freeing an XML document when we're done using it

Internally, the helper package worries about creating and freeing the XML parser object needed

to do the parsing, so already that's one less thing to think about. We'll see that creating helper

packages like this will make future PL/SQL-based XML work a lot easier and will save us a lot of

typing.

While we're at it, we can create a helper package called xmldoc for simplifying our life when

working with useful chunks of XML we'd like to store in tables, such as our xml_documents table

from earlier in the chapter.

The xmldoc package in Example 5.9 centralizes the basic, useful functionality of:

• Saving an XML document in the xml_documents table as a VARCHAR2, CLOB, BFILE, or

xmldom.DOMDocument, with a given document name as its "key"

• Getting an XML document by document name as a CLOB, VARCHAR2, or

xmldom.DOMDocument from the xml_documents table

• Removing an XML document by name from the table

• Testing whether a given document name exists in the table

Example 5.9. The xmldoc Helper Package Specification

CREATE OR REPLACE PACKAGE xmldoc AS

 -- Save an XML document (parsing it first if necessary) into the

 -- xml_documents table with a given document name.

 PROCEDURE save(name VARCHAR2,

 xmldoc VARCHAR2,

 docommit BOOLEAN := TRUE);

 PROCEDURE save(name VARCHAR2,

 xmldoc CLOB,

 docommit BOOLEAN := TRUE);

 PROCEDURE save(name VARCHAR2,

 xmldoc BFILE,

 docommit BOOLEAN := TRUE);

 PROCEDURE save(name VARCHAR2,

 xmldoc xmldom.DOMDocument,

 docommit BOOLEAN:=TRUE);

 -- Get an XML document by name from the xml_documents table

 FUNCTION get(name VARCHAR2) RETURN xmldom.DOMDocument;

 -- Get an XML document as a CLOB by name from the xml_documents table

 FUNCTION getAsCLOB(name VARCHAR2) RETURN CLOB;

 -- Get an XML document as a VARCHAR2 by name from the xml_documents table

 FUNCTION getAsText(name VARCHAR2) RETURN VARCHAR2;

 -- Remove an XML document by name from the xml_documents table

 PROCEDURE remove(name VARCHAR2, docommit BOOLEAN := TRUE);

 -- Test if a named document exists in the xml_documents table

 FUNCTION docExists(name VARCHAR2) RETURN BOOLEAN;

END;

You'll find the full source code of the xml and xmldoc packages in Appendix A as well as

instructions for installing them. We'll exploit these helper packages (as well as introduce a few

more) later in this chapter.

In Example 5.6 we used some DOM techniques for:

• Finding all <headline_text> elements using xmldom.getElementsByTagName

• Getting the value of the <headline_text> element by using xmldom.getFirstChild() to

get the text node child of the <headline_text> element

In the next section, we'll see how these raw DOM techniques will seem brute force, at best, in

comparison with XPath.

5.3 Searching XML Documents with XPath

While processing XML documents and datagrams inside the database, you'll frequently find it

necessary and convenient to search the content of the document you're processing. We've noted

that the xmldom package provides a completely programmatic way of hunting through the entire

tree of nodes of an XML document to find what you're looking for. We'll see in this section how

XPath's searching of in-memory XML makes it all declarative and so much easier.

5.3.1 Basic Use of XPath in PL/SQL

We saw in Chapter 2, that XPath expressions provide a compact, declarative syntax to describe

any parts of an XML document you would like to address. Let's explore what opportunities exist

for the PL/SQL developer to exploit XPath expressions to search in-memory documents.

Let's look again at our simple insurance claim XML document:

<!-- claim77804.xml -->

<Claim>

 <ClaimId>77804</ClaimId>

 <Policy>12345</Policy>

 <Settlements>

 <Payment Approver="JCOX">1000</Payment>

 <Payment Approver="PSMITH">1850</Payment>

 </Settlements>

 <DamageReport>

 The insured's <Vehicle Make="Volks">Beetle</Vehicle>

 broke through the guard rail and plummeted into a ravine.

 The cause was determined to be <Cause>faulty brakes</Cause>.

 Amazingly there were no casualties.

 </DamageReport>

</Claim>

We might want to answer the following questions about this document:

What is the value of the policy number for this claim?

We may want to store the policy number for this XML-based insurance claim in its own

database column so we can more easily search, sort, and group by that key piece of

information. To do this, we need the ability to retrieve the value of the XPath expression:

/Claim/Policy

Does this claim have any settlement payments over $500 approved by JCOX?

If this XML document were arriving as a CLOB attribute of an object type in an Oracle8i AQ

message queue, we might want to evaluate boolean tests based on XPath expressions

like:

//Settlements/Payment[. > 500 and @Approver="JCOX"]

so we can properly route the message to the right department.

What is the XML document fragment contained by the <DamageReport> element?

We might be creating a data warehouse of millions of insurance claims to study trends in

the kinds of claims we receive. We might want to extract the content of the

<DamageReport> element as an XML fragment using the XPath expression:

/Claim/DamageReport

We can then store the fragment in a column that has been indexed for lightning-fast XML

document searching using Oracle's interMedia Text product (described in Chapter 13).

Who approved settlement payments for this claim?

We might want to iterate over the <Payment> elements in the claim matching the XPath

expression:

/Claim/Settlements/Payment

and then do some processing with the value of each <Payment> element's Approver

attribute.

The Oracle XML Parser for PL/SQL provides the enabling APIs to answer all of these questions on

in-memory XML documents in its xslprocessor package. Its powerful valueOf and selectNodes

functions allow us to retrieve the value of an XPath expression and return a list of nodes matching

an XPath expression, respectively. Using a combination of these functions, we can create an

xpath helper package that puts all the most common XPath-related activities right at our

fingertips, allowing us to:

• Easily retrieve the valueOf an XPath expression

• Quickly test whether an XPath expression is true or false

• Conveniently extract matching subtrees of a document matching an XPath expression

• Use selectNodes matching an XPath expression to process a list of matches

All four of these functions are provided in versions that work on an xmldom.DOMDocument that has

already been parsed in memory, or directly on a VARCHAR2 or CLOB value. If you use the

VARCHAR2 or CLOB versions, the implementations of these functions do the parsing for you

internally by using the xml.parse routine from our xml helper package.

Example 5.10 shows the specification of our xpath helper package. As with the other helper

packages, you can find the full source code for the xpath package in Appendix A.

Example 5.10. The xpath Helper Package Specification

CREATE OR REPLACE PACKAGE xpath AS

 -- Return the value of an XPath expression, optionally normalizing whitespace

 FUNCTION valueOf(doc xmldom.DOMDocument,

 xpath VARCHAR2,

 normalize BOOLEAN:=FALSE) RETURN VARCHAR2;

 FUNCTION valueOf(node xmldom.DOMNode,

 xpath VARCHAR2,

 normalize BOOLEAN:=FALSE) RETURN VARCHAR2;

 FUNCTION valueOf(doc VARCHAR2,

 xpath VARCHAR2,

 normalize BOOLEAN := FALSE) RETURN VARCHAR2;

 FUNCTION valueOf(doc CLOB,

 xpath VARCHAR2,

 normalize BOOLEAN := FALSE) RETURN VARCHAR2;

 -- Test whether an XPath predicate is true

 FUNCTION test(doc xmldom.DOMDocument,xpath VARCHAR2) RETURN BOOLEAN;

 FUNCTION test(node xmldom.DOMNode, xpath VARCHAR2) RETURN BOOLEAN;

 FUNCTION test(doc VARCHAR2, xpath VARCHAR2) RETURN BOOLEAN;

 FUNCTION test(doc CLOB, xpath VARCHAR2) RETURN BOOLEAN;

 -- Extract an XML fragment for set of nodes matching an XPath pattern

 -- optionally normalizing whitespace (default is to normalize it)

 FUNCTION extract(doc xmldom.DOMDocument,

 xpath VARCHAR2:='/',

 normalize BOOLEAN:=TRUE) RETURN VARCHAR2;

 FUNCTION extract(doc VARCHAR2,

 xpath VARCHAR2 := '/',

 normalize BOOLEAN := TRUE) RETURN VARCHAR2;

 FUNCTION extract(doc CLOB,

 xpath VARCHAR2 := '/',

 normalize BOOLEAN := TRUE) RETURN VARCHAR2;

 -- Select a list of nodes matching an XPath pattern

 -- Note: DOMNodeList returned has a zero-based index

 FUNCTION selectNodes(doc xmldom.DOMDocument,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

 FUNCTION selectNodes(node xmldom.DOMNode,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

 FUNCTION selectNodes(doc VARCHAR2,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

 FUNCTION selectNodes(doc CLOB,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

END;

Using this new xpath helper package, let's see how we can easily answer all four of our previous

questions. The PL/SQL script in Example 5.11 illustrates using the following functions:

xml.parse

From our xml helper package; reads the contents of the claim77804.xml file in the

XMLFILES directory into memory

xpath.valueOf

Answers the first question

xpath.test

Answers the second question

xmldoc.save

Saves the document with the name of claim77804 to our xml_documents table

xmldoc.get

Retrieves the document with the name of claim77804 from our xml_documents table

xpath.extract

Answers the third question

xpath.selectNodes

Answers the fourth question

xml.freeDocument

Frees the XML document's parsed representation

Of course, saving the claim XML document to our xml_documents table and getting it back again

are not at all required to answer the questions, but seeing a working example of how this helper

package works doesn't do any harm. The sample appears in Example 5.11.

Example 5.11. Test, Extract, and Retrieve an XPath

Expression Value

SET SERVEROUTPUT ON

DECLARE

 doc xmldom.DOMDocument;

 approvers xmldom.DOMNodeList;

 PROCEDURE p(msg VARCHAR2, nl BOOLEAN := TRUE) IS BEGIN

 dbms_output.put_line(msg);IF nl THEN dbms_output.put(CHR(10)); END IF;

 END;

 FUNCTION yn(b BOOLEAN) RETURN VARCHAR2 IS

 BEGIN IF b THEN RETURN 'Yes'; ELSE RETURN 'No'; END IF; END;

BEGIN

 doc := xml.parse(BFileName('XMLFILES','claim77804.xml'));

 p('What is the value of the Policy number for this claim?');

 p(xpath.valueOf(doc,'/Claim/Policy'));

 p('Does this claim have any settlement payments over $500 approved by JCOX?');

 p(yn(xpath.test(doc,'//Settlements/Payment[. > 500 and @Approver="JCOX"]')));

 -- Demonstrate Saving and Re-getting the XML document

 xmldoc.save('claim77804',doc);

 doc := xmldoc.get('claim77804');

 p('What is XML document fragment contained by the <DamageReport> element?');

 p(xpath.extract(doc,'/Claim/DamageReport'));

 p('Who approved settlement payments for this claim?');

 approvers := xpath.selectNodes(doc,'/Claim/Settlements/Payment');

 FOR j IN 1..xmldom.getLength(approvers) LOOP

 p(xpath.valueOf(xmldom.item(approvers,j-1),'@Approver'),nl=>FALSE);

 END LOOP;

 xml.freeDocument(doc);

END;

Running the script in the example produces the following output in the SQL*Plus command

console window:

What is the value of the Policy number for this claim?

12345

Does this claim have any settlement payments over $500 approved by JCOX?

Yes

What is XML document fragment contained by the <DamageReport> element?

<DamageReport> The insured's <Vehicle Make="Volks">Beetle</Vehicle> broke

through the guard rail and plummeted into a ravine. The cause was determined to

be <Cause>faulty brakes</Cause>. Amazingly there were no casualties.

</DamageReport>

Who approved settlement payments for this claim?

JCOX

PSMITH

We're just scraping the surface of XPath here. Since Oracle's implementation of XPath is fully

compliant with the W3C XPath 1.0 Recommendation (see

http://www.w3.org/TR/1999/REC-xpath-19991116), you can use any legal XPath expression

with the xpath helper package or the underlying xslprocessor package on which it depends.

Even these simple examples demonstrate the power of XPath compared to tedious DOM

node-navigation code; with XPath, you just say what you want and get it instantly.

5.3.2 Using XPath for Custom XML-to-Table Mapping

XPath expressions and the functions in the xpath helper package come in handy when trying to

write custom routines to store XML documents into one or more database tables. Theoretically,

you could use the xmldoc.save routine to store all XML documents as CLOBs into a single

xml_documents table. Most likely, however, this is not what you want if your incoming XML

documents are business documents and your business applications need to query, sort, search,

and perform calculations using the full power of SQL on the information contained in the

documents.

Rather than dump the incoming XML-based insurance claim datagrams into a single, generic

xml_documents table, you might choose to store them in the combination of the two relational

tables ins_claim and ins_claim_payment:

CREATE TABLE ins_claim (

 claimid NUMBER PRIMARY KEY,

 policy NUMBER,

 damagereport CLOB

);

CREATE TABLE ins_claim_payment (

 claimid NUMBER,

 amount NUMBER,

 approver VARCHAR2(8),

 CONSTRAINT payment_for_claim

 FOREIGN KEY (claimid) REFERENCES ins_claim

 ON DELETE CASCADE

);

We can create a package like xml_claim in Example 5.12 to take in the XML insurance claim

document as a CLOB or an in-memory DOM Document object and perform the required INSERTs

into the ins_claim and ins_claim_payment tables. We store raw scalar data like the claimid, the

policy number, the payment amount, and the payment approver into appropriate NUMBER and

VARCHAR2 columns, and we store the contents of the <DamageReport> XML document fragment

(all XML markup intact) into the damagereport CLOB column. In Chapter 13, we'll learn how to

create an XML search index on the damagereport column to enable precise XML-based searches

over millions of claims.

Example 5.12. Storing XML Insurance Claim in Multiple Tables

with XPath

CREATE OR REPLACE PACKAGE xml_claim AS

 PROCEDURE store(doc xmldom.DOMDocument);

 PROCEDURE store(claimdoc CLOB);

END;

CREATE OR REPLACE PACKAGE BODY xml_claim AS

 PROCEDURE store(doc xmldom.DOMDocument) IS

 claim ins_claim%ROWTYPE;

 payment ins_claim_payment%ROWTYPE;

 damrep CLOB;

 damrepText VARCHAR2(32767);

 payments xmldom.DOMNodeList;

 curNode xmldom.DOMNode;

 BEGIN

 -- Use xpath.valueOf to retrieve values for INSERT

 claim.claimid := xpath.valueOf(doc,'/Claim/ClaimId');

 claim.policy := xpath.valueOf(doc,'/Claim/Policy');

 -- Use xpath.extract to extract matching XML fragment

 damrepText := xpath.extract(doc,'/Claim/DamageReport');

 INSERT INTO ins_claim(claimid,policy,damagereport)

 VALUES (claim.claimid, claim.policy, empty_clob())

 RETURNING damagereport INTO damrep;

 -- Write the damagereport xml document fragment into the CLOB column

 dbms_lob.writeappend(damrep,LENGTH(damrepText),damrepText);

 -- Process all the <Payment> elements in the <Settlements> section

 payments := xpath.selectNodes(doc,'/Claim/Settlements/Payment');

 FOR j IN 1..xmldom.getLength(payments) LOOP

 -- Recall that the Node List is zero-based!

 curNode := xmldom.item(payments, j-1);

 -- Use xpath.valueOf to retrieve the values for INSERT

 -- Note that Amount is the value of the current "Payment" element

 payment.amount := xpath.valueOf(curNode,'.');

 payment.approver := xpath.valueOf(curNode,'@Approver');

 INSERT INTO ins_claim_payment(claimid, amount, approver)

 VALUES(claim.claimid,payment.amount,payment.approver);

 END LOOP;

 END;

 PROCEDURE store(claimdoc CLOB) IS

 xmldoc xmldom.DOMDocument;

 BEGIN

 -- If we're called with a CLOB, parse it and pass it to the other store()

 xmldoc := xml.parse(claimdoc);

 store(xmldoc);

 xml.freeDocument(xmldoc);

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

END;

The variable declarations:

claim ins_claim%ROWTYPE;
payment ins_claim_payment%ROWTYPE;

in Example 5.12 use the TABLENAME%ROWTYPE as the datatype of

a variable, which automatically declares a record variable with

the same structure as a row in TABLENAME.

To prove that it works, we can try out the little test program in Example 5.13.

Example 5.13. Testing the xml_claim Package

DECLARE

 claimdoc xmldom.DOMDocument;

BEGIN

 -- Store an XML insurance claim into ins_claim and ins_claim_payment

 -- tables directly from an external XML BFILE

 claimdoc := xml.parse(BFileName('XMLFILES','claim77805.xml'));

 xml_claim.store(claimdoc);

 xml.freeDocument(claimdoc);

 -- To show another technique, first store the external XML file in

 -- the xml_documents "staging" table...

 claimdoc := xml.parse(BFileName('XMLFILES','claim77804.xml'));

 xmldoc.save('claim77804',claimdoc);

 xml.freeDocument(claimdoc);

 -- ...Then store the XML insurance claim into ins_claim and

 -- ins_claim_payments by reading the XML from the staging table.

 claimdoc := xmldoc.get('claim77804');

 xml_claim.store(claimdoc);

 xml.freeDocument(claimdoc);

END;

After executing this code to exercise our xml_claim.store procedure, we can immediately query

our underlying tables to see its effect:

SELECT claimid,policy,damagereport

 FROM ins_claim

 WHERE claimid IN (77804,77805)

Using the SQL*Plus command COLUMN damagereport FORMAT A60 to widen the display, we see the

results:

CLAIMID POLICY DAMAGEREPORT

------- ------ ---

 77804 12345 <DamageReport> The insured's <Vehicle Make="Volks">Beetle

 </Vehicle> broke through the guard rail and plummeted into a

 ravine. The cause was determined to be <Cause>faulty brakes

 </Cause>. Amazingly there were no casualties. </DamageReport>

 77805 12345 <DamageReport> The insured's <Vehicle Make="Audi">TT</Vehicle>

 hit a tree. The cause was determined to be a <Cause>missing bolt

 </Cause> in the wheel assembly. </DamageReport>

A query over the detail table ins_claim_payment:

SELECT claimid, amount, approver

 FROM ins_claim_payment

 WHERE claimid IN (77804,77805)

ORDER BY claimid,amount

shows that our routine correctly inserted both master claim information and detail payment

information based on the insurance claim XML document given as input:

CLAIMID AMOUNT APPROVER

------- ---------- --------

 77804 1000 JCOX

 77804 1850 PSMITH

 77805 498 JCOX

 77805 2000 DALLEN

Since we have versions of the xpath helper package functions that work directly on VARCHAR2

and CLOB datatypes, and since these functions return VARCHAR2, they are legal to use inside a

SELECT statement. For example, we can combine the following:

• Regular columns like claimid

• SQL aggregate calculations for the SUM of settlement payments

• PL/SQL functions like xpath.valueOf to "dig in" to the damagereport XML fragment and

pick out just the <Make> and <Cause> information

in the same SQL statement, as in this example:

SELECT c.claimid,

 s.total AS settlement_total,

 xpath.valueOf(c.damagereport,'//Vehicle/@Make') AS Make,

 xpath.valueOf(c.damagereport,'//Cause') AS Cause

 FROM ins_claim c, (SELECT claimid,

 SUM(amount) AS TOTAL

 FROM ins_claim_payment p

 WHERE p.claimid in (77804,77805)

 GROUP BY claimid) s

WHERE c.claimid = s.claimid

 AND c.claimid in (77804,77805)

This returns the result:

CLAIMID SETTLEMENT_TOTAL MAKE CAUSE

------- ---------------- -------- ---------------

 77805 2498 Audi missing bolt

 77804 2850 Volks faulty brakes

These are all quite simple examples of using XPath, but the xpath helper package we've put in

place works for any XML document and any valid XPath expression, so you can achieve quite

sophisticated in-memory XML queries. However, keep in mind that all of the functions in the

xpath helper package rely on having the parsed XML representation of the document in memory.

This works great for doing XPath processing on a small number of small to medium-sized XML

documents at a time. However, the xpath package is absolutely not the right tool for the job if you

want to search through your huge claims table of one million insurance claims for a document

matching a given XPath expression.

For example, the following is never a good idea if you have more than a handful of insurance

claims in your ins_claim table:

/*

** Performance would be horrible with xpath helper

** functions in the WHERE clause

*/

SELECT claimid, xpath.valueOf(damagereport,'//Cause') AS Cause

 FROM ins_claim

 WHERE xpath.valueOf(damagereport,

 '//Cause[contains(.,"brakes")]') IS NOT NULL

Given enough time and memory, this approach would end up parsing each XML document in your

ins_claim table, perhaps to find that none of them matches! Yikes.

We'll see in Chapter 13 how searching through millions of XML documents is made both fast and

easy using Oracle8i 's interMedia Text XML searching facilities. As a sneak preview of this

functionality, instead of using xpath helper functions in the WHERE clause, let's leverage the

interMedia Text CONTAINS() operator in our SQL statement's WHERE clause like this:

/*

** Performance is excellent with intermediaText

** CONTAINS() to narrow down the millions of

** documents to the few matching ones. Then,

** xpath.valueOf can be used in the SELECT

** statement to operate on the few matching documents.

*/

SELECT claimid, xpath.valueOf(damagereport,'//Cause') AS Cause

 FROM ins_claim

 WHERE CONTAINS(damagereport,'brakes WITHIN Cause') > 0

By using interMedia Text to locate the few matching documents out of a million, and our xpath

helper package to extract XML subtrees from the few matching document fragments, we can have

our cake and eat it, too.

5.3.3 Using XPath Expressions as Validation Rules

Next, let's take a closer look at how we can apply the xpath.test function to create a data-driven

system of XPath-based validation rules. Imagine that we're building a system to manage the

logistics of a large conference, like XML99 or JavaOne. Part of the Herculean task of organizing

shows like these is the "Request for Submissions" process. Authors submit proposals for technical

presentations they would like to deliver and, out of thousands of choices, the conference

organizers have to pick a select few that make the cut.

Years ago, submitting a proposal involved filling out a paper form and mailing or faxing it in.

These days, authors typically submit proposals online by sending in an email or filling out a web

page. Some conferences have begun using an XML format for these proposals, imposing some

structure on the incoming submissions so they can be machine-processed and automatically put

into a database. Here's a simple example of such a proposal:

<Submission>

 <Title>Using XPath Expressions as Validation Rules</Title>

 <Author>

 <Name>

 <First>Steve</First>

 <Last>Muench</Last>

 </Name>

 <Email>smuench@yahoo.com</Email>

 <Company>Oracle</Company>

 <PreviousExperience>Yes</PreviousExperience>

 </Author>

 <Abstract>

 By storing XPath expressions in a database table, grouped

 into "rule sets", data-driven validation rules can be

 applied to any XML document by iterating over the list of

 rules in a rule set and testing whether each XPath expression

 is true or false.

 </Abstract>

</Submission>

While this sample seems complete, it turns out that many of the submissions sent in are

frequently missing key information. This obviously complicates the lives of the conference

organizers! We're going to build a system to automate the process of checking a set of validation

rules for each XML-based submission to make sure each proposal contains the key information

the conference organizers need.

Let's say that for a proposal to be valid, it must satisfy the following rules:

1. The submission must have an abstract.

The organizers need to know a little more about the submission than just the title.

2. The author must supply first name, last name, and email address.

The organizers need to know who's making the proposal and how to get back in touch with

that person.

3. The title must be longer than 12 characters.

The organizers have been burned in the past by presentations like "Webbing It!" and "XML:

Cool!," so this year they want the title to have a little more substance.

4. The presenter must have previous presentation experience.

The organizers are tired of dealing with stage fright. This year, only folks who have

presented before will be considered.

Since our technical paper submissions are coming in as XML documents, it's natural to think of

XPath as a language to express these rules. To ascertain whether the submission is valid, we just

need to parse the submission's XML document and test whether the following four XPath

expressions are true:

1. The submission must have an abstract.

/Submission/Abstract

2. The author must supply first name, last name, and email address.

/Submission/Author[Name/First and Name/Last and Email]

3. The title must be longer than 12 characters.

string-length(/Submission/Title) > 12

4. The presenter must have previous presentation experience.

//Author/PreviousExperience = "Yes"

If all of these expressions test true on our document, we'll consider it valid. If any of them tests

false, we should notify the submitter of the proposal about the offending error so they can

resubmit their proposal after making the necessary corrections. At the moment, the conference

organizers have told us about four rules they need to check on each submission document;

however, it is inevitable that they will:

• Change their minds or discover some additional rules later on

• Want to apply the system of validations against other XML documents besides the

<Submission> documents for which they will initially use the system

Given this foregone conclusion, it is best if we design our solution to be generic and reusable so

the same XPath-based rules-validation system can have its rules changed or extended easily and

can be applied to any kind of XML document.

Since the conference organizers are familiar with editing XML but are not familiar with databases,

it might be nice to provide them with an XML-based format to communicate the set of rules they

need enforced to the system. This way, they just edit a simple XML file to make changes or add

new rules, and the system can do the rest. Example 5.14 shows about the simplest possible XML

document that will serve our purpose.

Example 5.14. Ruleset Document Describing a Set of XPath

Validation Rules

<ruleset name="AbstractSubmission">

 <rule name="Submission must have an abstract">

 /Submission/Abstract

 </rule>

 <rule name="Author must supply First name, Last name, and Email">

 /Submission/Author[Name/First and Name/Last and Email]

 </rule>

 <rule name="Title must be longer than 12 characters">

 string-length(/Submission/Title) > 12

 </rule>

 <rule name="You must have previous presentation experience.">

 //Author/PreviousExperience = "Yes"

 </rule>

</ruleset>

Notice that:

• The <ruleset> element has a name attribute and contains one or more <rule> elements.

• Each <rule> element has a name attribute as well, giving a user-readable description of

the rule, and each <rule> element contains its corresponding XPath expression as text

content.

The organizers can use their favorite text editor or XML editor to modify the <ruleset> document,

adding new rules or changing the content of the existing ones. To assist them in testing their

ruleset outside the production submission system, we could even provide a standalone

command-line utility that applies the rules in their <ruleset> document to an example

submission to make sure the rules are working correctly. In fact, in Chapter 6 we'll show how to

build this utility.

But here, let's focus on the system that validates the submission documents inside the database

using PL/SQL. Since we're going to be validating a lot of submissions, we want to avoid having to

constantly reparse the <ruleset> document that contains the validation rules we need to verify.

So inside the production system, let's keep the ruleset information in a couple of database tables

to make querying and accessing the rules very fast, with no parsing needed. No rocket science

needed—just the two simple tables:

CREATE TABLE ruleset(

 id NUMBER PRIMARY KEY,

 name VARCHAR2(30) UNIQUE

);

and:

CREATE TABLE rule(

 ruleset NUMBER,

 name VARCHAR2(200),

 xpath_test VARCHAR2(4000),

 CONSTRAINT rule_pk PRIMARY KEY (ruleset,name),

 CONSTRAINT rule_in_set FOREIGN KEY (ruleset)

 REFERENCES ruleset ON DELETE CASCADE

);

and a quick database sequence to generate a unique primary key for each ruleset:

CREATE SEQUENCE ruleset_seq;

We can create a PL/SQL package called xpath_rules_admin that allows us to easily:

• Add a ruleset by passing in the XML <ruleset> document as an argument

• Drop a ruleset from the system, given the name

The package specification for xpath_rules_admin looks like this:

CREATE OR REPLACE PACKAGE xpath_rules_admin AS

 -- Add (or replace) a ruleset based on an XML <ruleset> document

 PROCEDURE addRuleSet(doc xmldom.DOMDocument);

 -- Drop a ruleset by name

 PROCEDURE dropRuleSet(ruleset_name VARCHAR2);

END;

The package body appears in Example 5.15. The code for addRuleSet does the following:

1. Declares handy record variables using ruleset%ROWTYPE and rule%ROWTYPE to work with

variables that have the same structure as the ruleset and rule tables, respectively

2. Uses xpath.valueOf(doc,'/ruleset/@name') to get the name of the ruleset being

added from the name attribute on the <ruleset> element

3. Inserts the new ruleset into the ruleset table, after getting a new primary key from the

ruleset_seq sequence and dropping any existing ruleset by the same name

4. Uses xpath.selectNodes(doc,'/ruleset/rule') to get a list of all <rule> elements

declared in the document

5. Loops over the list of rules by using xmldom.getLength(theRules) to determine how

many <rule> elements we found in step 4

6. Uses xmldom.item(theRules, j-1) to get the jth item in the (zero-based) list of

matching <rule> elements

7. Uses xpath.valueOf(curRuleNode,'@name') to get the name of the current rule

8. Uses xpath.valueOf(curRuleNode,'.',normalize=>TRUE) to get the value of the

current rule node—the XPath expression—with any extra whitespace normalized out of the

value

9. Finally, inserts the data into the ruleset table

Example 5.15. Routines to Administer XPath Validation Rules

CREATE OR REPLACE PACKAGE BODY xpath_rules_admin AS

 PROCEDURE addRuleSet(doc xmldom.DOMDocument) IS

 -- (1) Declare handy record variables to work with

 theRuleSet ruleset%ROWTYPE;

 theRule rule%ROWTYPE;

 theRules xmldom.DOMNodeList;

 curRuleNode xmldom.DOMNode;

 BEGIN

 -- (2) Get the name of the ruleset being added

 theRuleSet.name := xpath.valueOf(doc,'/ruleset/@name');

 DropRuleSet(theRuleSet.name);

 -- (3) Get a new ruleset id and insert the new ruleset

 SELECT ruleset_seq.nextval INTO theRuleSet.id FROM DUAL;

 INSERT INTO ruleset(id,name) VALUES (theRuleSet.id, theRuleSet.name);

 -- (4) Get a list of all <rule> elements under <ruleset>

 theRules := xpath.selectNodes(doc,'/ruleset/rule');

 -- (5) Loop over the list of <rule> elements we found

 FOR j IN 1..xmldom.getLength(theRules) LOOP

 -- (6) Get the j-th rule in the list (zero-based!)

 curRuleNode := xmldom.item(theRules,j-1);

 theRule.ruleset := theRuleSet.id;

 -- (7) Get the name of the current rule

 theRule.name := xpath.valueOf(curRuleNode,'@name');

 -- (8) Get the normalized value of the current rule element ('.')

 theRule.xpath_test := xpath.valueOf(curRuleNode,'.',normalize=>TRUE);

 -- (9) Insert the current rule into the rule table

 INSERT INTO rule(ruleset,name,xpath_test)

 VALUES (theRule.ruleset, theRule.name, theRule.xpath_test);

 END LOOP;

 COMMIT;

 END;

 PROCEDURE dropRuleSet(ruleset_name VARCHAR2) IS

 BEGIN

 DELETE FROM ruleset WHERE name = ruleset_name;

 COMMIT;

 END;

END;

To load the current version of the XPath ruleset for conference paper proposal submissions into

our system, assume that the conference organizers have emailed us the ruleset document from

Example 5.14 in a file named AbstractSubmissionRules.xml. We save the attachment into our

C:\XMLFILES directory on our database server machine. Since we will be loading rulesets from

XML <ruleset> files frequently, we can think ahead and create a stored procedure to automate

the steps:

CREATE OR REPLACE PROCEDURE loadRulesetFromFile(dir VARCHAR2,

 filename VARCHAR2) IS

 rulesXMLFile BFILE;

 xmldoc xmldom.DOMDocument;

BEGIN

 -- Get a handle to the ruleset file

 rulesXMLFile := BFileName(dir,filename);

 -- Parse the file to get an XML Document

 xmldoc := xml.parse(rulesXMLFile);

 -- Add a new ruleset based on the document

 xpath_rules_admin.addRuleset(xmldoc);

 -- Free the memory used by the parsed XML Document

 xml.freeDocument(xmldoc);

EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

END;

Then, to load our ruleset from the AbstractSumbmissionRules.xml files, we can just execute a

one-liner at the SQL*Plus command prompt:

EXEC loadRulesetFromFile('XMLFILES','AbstractSubmissionRules.xml');

To verify that our rules were loaded correctly, we can try the SELECT statement:

SELECT r.name, xpath_test

 FROM rule r, ruleset rs

 WHERE rs.name = 'AbstractSubmission'

 AND r.ruleset = rs.id

and indeed we see that our rules have been loaded out of the AbstractSubmissionRules.xml file

and stored for safekeeping in the rule table:

NAME XPATH_TEST

------------------ ---

Author must supply /Submission/Author[Name/First and Name/Last and Email]

First name, Last

name, and Email

Submission must /Submission/Abstract

have an abstract

Title must be string-length(/Submission/Title) > 12

longer than 12

characters

You must have //Presenter/PreviousExperience = "Yes"

previous

presentation

experience.

The last step in implementing our solution is to write a routine to validate an XML document

against a ruleset that we've loaded into the database. The xpath_rules.validate method below

should do just fine:

CREATE OR REPLACE PACKAGE xpath_rules AS

 -- Validate an XML document based on a named ruleset

 -- Return any offending errors in the errors argument

 PROCEDURE validate(doc IN xmldom.DOMDocument,

 ruleset_name IN VARCHAR2,

 valid OUT BOOLEAN,

 errors OUT VARCHAR2

);

END;

Since the hard part of enforcing the rules is done by simply using xpath.test to evaluate whether

a given XPath rule is true or false, the code for the validate routine only needs to do the

following:

1. Loop over all the rules in the rule table for the ruleset name passed in.

2. Call xpath.test() on the current rule's XPath expression.

3. Keep track of any rules that fail and report the failing rules in the errors variable that is

returned to the caller.

The straightforward implementation for the xpath_rules package is in Example 5.16.

Example 5.16. Validating XML Document Against an XPath

Ruleset

CREATE OR REPLACE PACKAGE BODY xpath_rules AS

 FUNCTION idForRuleset(ruleset_name VARCHAR2) RETURN NUMBER IS

 theId NUMBER;

 BEGIN

 SELECT id

 INTO theId

 FROM ruleset

 WHERE name = ruleset_name;

 RETURN theId;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN RETURN NULL;

 END;

 PROCEDURE validate(doc IN xmldom.DOMDocument,

 ruleset_name IN VARCHAR2,

 valid OUT BOOLEAN,

 errors OUT VARCHAR2

) IS

 errcount NUMBER := 0;

 rulesetId NUMBER := idForRuleSet(ruleset_name);

 BEGIN

 IF xmldom.isNull(doc) THEN

 valid := FALSE;

 errors := 'Cannot validate. Document is null';

 ELSIF rulesetId IS NULL THEN

 valid := FALSE;

 errors := 'Cannot validate. Ruleset '||ruleset_name||' does not exist.';

 ELSE

 -- Assume the doc is valid until proven otherwise

 valid := TRUE;

 -- (1) Loop over all the rules for the ruleset whose name is passed in

 FOR curRule IN (SELECT name, xpath_test

 FROM rule

 WHERE ruleset = rulesetId) LOOP

 -- (2) Call xpath.test on the current rule's expression

 IF NOT xpath.test(doc,curRule.xpath_test) THEN

 -- (3) Keep track of rules that fail by bumping error count

 errcount := errcount + 1;

 -- Mark the doc invalid

 valid := FALSE;

 -- Put 2nd through Nth error on a new line.

 IF errcount > 1 THEN

 errors := errors ||CHR(10);

 END IF;

 errors := errors || '('||errcount||') '||curRule.name;

 END IF;

 END LOOP;

 END IF;

 END;

END;

Next, we need to write a handleNewSubmission routine to handle new abstract submissions. It

needs to apply the general xpath_rules package—which can validate any XML document against

any ruleset—to validate <Submission> documents against the particular AbstractSubmission

ruleset. We need the routine to:

1. Call xpath_rules.validate using the AbstractSubmission ruleset to verify that all of

the rules for abstract submissions are in order.

2. Insert the key information for the abstract into the database and assign the submission an

ID number for tracking if the abstract being considered passes all the validation rules.

3. Send an email notification to the submitter indicating that we received the abstract. If

there are any validation errors, the email should indicate what was wrong with the

submission.

The new utl_smtp built-in package that ships with Oracle8i makes sending email over SMTP from

within PL/SQL possible. The sendEmail procedure in Example 5.17 uses the routines in utl_smtp

to send an email using the SMTP protocol directly from inside the database. Since the package is

implemented in a generic way, you might find plenty of other uses for it in your work as well.

Example 5.17. Sending an Email from Inside Oracle8i Using

PL/SQL

CREATE OR REPLACE PROCEDURE sendEmail(smtp_server VARCHAR2,

 from_userid VARCHAR2,

 to_userid VARCHAR2,

 subject VARCHAR2,

 body VARCHAR2,

 from_name VARCHAR2 := NULL,

 to_name VARCHAR2 := NULL,

 content_type VARCHAR2 := NULL)

IS

 c utl_smtp.connection;

 from_domain VARCHAR2(200) := SUBSTR(from_userid,INSTR(from_userid,'@')+1);

 PROCEDURE header(name VARCHAR2, value VARCHAR2) IS

 BEGIN

 utl_smtp.write_data(c, name || ': ' || value || utl_tcp.CRLF);

 END;

BEGIN

 c := utl_smtp.open_connection(smtp_server);

 utl_smtp.helo(c, from_domain);

 utl_smtp.mail(c, from_userid);

 utl_smtp.rcpt(c, to_userid);

 utl_smtp.open_data(c);

 header('From','"'||NVL(from_name,from_userid)||'" <'||from_userid||'>');

 header('To','"'||NVL(to_name,to_userid)||'" <'||to_userid||'>');

 header('Subject', subject);

 header('Content-Type', NVL(content_type,'text/plain'));

 utl_smtp.write_data(c, utl_tcp.CRLF || body);

 utl_smtp.close_data(c);

 utl_smtp.quit(c);

EXCEPTION

 WHEN utl_smtp.transient_error OR utl_smtp.permanent_error THEN

 utl_smtp.quit(c);

 raise_application_error(-20199,'Error sending mail: ' || sqlerrm);

END;

We'll implement the handleNewSubmission procedure to accomplish the three required steps

noted previously: calling xpath.validate to check the submission against the ruleset, inserting

the information into the database if it's valid, and then sending an email notification with

sendEmail. The table we'll need to store the submission information is:

CREATE TABLE accepted_submission (

 id NUMBER PRIMARY KEY,

 title VARCHAR2(80),

 presenter VARCHAR2(80),

 email VARCHAR2(80),

 abstract VARCHAR(4000)

);

and the sequence we'll need for generating submission IDs is:

CREATE SEQUENCE accepted_submission_seq START WITH 600;

Example 5.18 shows the code for handleNewSubmission.

Example 5.18. Procedure to Coordinate New Paper

Submission Handling

CREATE OR REPLACE PROCEDURE handleNewSubmission(theSubmission CLOB) IS

 isValid BOOLEAN;

 EmailSubject VARCHAR2(80);

 EmailBody VARCHAR2(32767);

 doc xmldom.DOMDocument;

 submission accepted_submission%ROWTYPE;

BEGIN

 doc := xml.parse(theSubmission);

 xpath_rules.validate(doc,

 ruleset_name => 'AbstractSubmission',

 valid => isValid,

 errors => EmailBody);

 submission.email := xpath.valueOf(doc,'/Submission/Author/Email');

 IF isValid THEN

 -- Assign a new submission id

 SELECT accepted_submission_seq.nextval INTO submission.id FROM DUAL;

 -- Collect the info we need from the XML Paper Submission

 submission.title := xpath.valueOf(doc,'/Submission/Title',TRUE);

 submission.presenter := xpath.valueOf(doc,'/Submission/Author/Name/First')||

 ' '||xpath.valueOf(doc,'/Submission/Author/Name/Last');

 submission.abstract := xpath.valueOf(doc,'/Submission/Abstract',TRUE);

 -- Insert it into our accepted submissions table

 INSERT INTO accepted_submission

 VALUES(submission.id,submission.title,submission.presenter,

 submission.email,submission.abstract);

 EmailSubject := 'Your abstract was accepted. Reference# '||submission.id;

 EmailBody := 'Thank you.';

 ELSE

 EmailSubject := 'Your abstract was rejected because...';

 -- EmailBody already contains errors flagged by XPath Validation

 END IF;

 IF submission.email IS NOT NULL THEN

 sendEmail(smtp_server => 'mailserver@you.com',

 from_userid => 'smuench@yahoo.com',

 to_userid => submission.email,

 subject => EmailSubject,

 body => EmailBody);

 END IF;

 xml.freeDocument(doc);

 COMMIT;

EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(doc); ROLLBACK; RAISE;

END;

So we can call handleNewSubmission to handle a single new abstract submission, but what if we

want to handle all of the abstracts that have been submitted today in batch? Since we're using

PL/SQL, it's a simple matter of looping over the abstracts submitted today and calling

handleNewSubmission for each one. The aptly named handleTodaysSubmissions procedure

looks like this:

CREATE OR REPLACE PROCEDURE handleTodaysSubmissions IS

BEGIN

 -- Loop over any Submission in the xml_documents table submitted today.

 FOR currentSubmission IN (SELECT xmldoc

 FROM xml_documents

 WHERE timestamp > TRUNC(SYSDATE)

 AND docname like 'Abstract%') LOOP

 -- Handle the current abstract

 handleNewSubmission(currentSubmission.xmldoc);

 END LOOP;

END;

We're done! To review, we've implemented the following code:

xpath_rules_admin

A package to add XPath rulesets based on <ruleset> documents

xpath_rules

A package to validate an XML document against any ruleset

sendEmail

A procedure to send email from inside the database

handleNewSubmission

A procedure to validate a <Submisson> document against the AbstractSubmisson ruleset

and notify the submitter by email of their status

handleTodaysSubmissions

A procedure to process all new submissions that arrived today in batch

Let's test out the system on a few sample paper submissions. We'll be working with the two

submissions Abstract_With_Error.xml and Abstract_Good.xml, shown in Example 5.19.

Example 5.19. Two Sample Abstract Submissions to Process

<!-- Abstract_With_Error.xml -->

<Submission>

 <Title>Using XPath</Title>

 <Author>

 <Name>

 <First>Steve</First>

 </Name>

 <Email>smuench@yahoo.com</Email>

 <Company>Oracle</Company>

 <PreviousExperience>No</PreviousExperience>

 </Author>

</Submission>

<!-- Abstract_Good.xml -->

<Submission>

 <Title>Using XPath Expressions as Validation Rules</Title>

 <Author>

 <Name>

 <First>Steve</First>

 <Last>Muench</Last>

 </Name>

 <Email>smuench@yahoo.com</Email>

 <Company>Oracle</Company>

 <PreviousExperience>Yes</PreviousExperience>

 </Author>

 <Abstract>

 By storing XPath expressions in a database table, grouped

 into rulesets, data-driven validation rules can be

 applied to an XML document by iterating over the list of

 rules in a ruleset and testing whether each XPath expression

 is true or false.

 </Abstract>

</Submission>

First, we load the two sample submissions into our xml_documents table from the XMLFILES

directory by using xmldoc.save. In the real system, the submissions will be inserted by a web

server into the xml_documents table by a routine that calls xmldoc.save in response to the

posting of the HTML form that authors will use to post their submissions from their browser:

BEGIN

 -- Load the two XML files from the file system into our xml_documents table

 xmldoc.save('AbstractOne',BFileName('XMLFILES','Abstract_With_Error.xml'));

 xmldoc.save('AbstractTwo',BFileName('XMLFILES','Abstract_Good.xml'));

END;

Then we run our batch process by executing the handleTodaysSubmissions routine from the

SQL*Plus command line:

EXEC handleTodaysSubmissions;

If you are on a Unix platform running Oracle8i version 8.1.6,
you might receive an error when trying to run this example,
with the symptoms:

ORA-29540: class oracle/plsql/net/TCPConnection
 does not exist
ORA-06512: at "XMLBOOK.HANDLENEWSUBMISSION", line 45

To remedy the situation, connect as SYS and run:

?/rdbms/admin/initplsj.sql.

In a few minutes, the first email notification arrives, bringing the bad news about the first

submission:

Return-Path: <smuench@yahoo.com>

Date: Mon, 3 Apr 2000 17:16:53 -0700 (PDT)

From: "smuench@yahoo.com" <smuench@yahoo.com>

To: "smuench@yahoo.com" <smuench@yahoo.com>

Subject: Your abstract was rejected because...

Content-Type: text/plain

(1) Author must supply First name, Last name, and Email

(2) Submission must have an abstract

(3) Title must be longer than 12 characters

(4) You must have previous presentation experience.

If you go back and review the contents of Abstract_With_Error.xml above, you'll see indeed that

it fails all of the XPath validation rules, so the abstract was correctly handled and no data

regarding the abstract was entered into the accepted_submission table.

Shortly thereafter, another email arrives with the joyous announcement that the second abstract

was received and assigned the tracking number of 600:

Return-Path: <smuench@yahoo.com>

Date: Mon, 3 Apr 2000 17:47:28 -0700 (PDT)

From: "smuench@yahoo.com" <smuench@yahoo.com>

To: "smuench@yahoo.com" <smuench@yahoo.com>

Subject: Your abstract was accepted. Reference# 600

Content-Type: text/plain

Thank you.

So everything is working as designed. Next, we'll look at the basic processing required to post

XML to another server and receive XML back in return. This would, for example, allow us to post

our accepted paper submissions in XML format to a server at another company that is

coordinating the paper selection process, or eventually send information on accepted presenters

to a company that might be coordinating their hotel reservations and flight arrangements.

5.4 Working with XML Messages

In this section, we'll investigate examples of using XML as a structured data exchange mechanism

between applications. First we'll look at synchronous approaches like posting and getting XML

messages over HTTP; then we'll learn the basics of Oracle's Advanced Queuing (AQ) mechanism

to support asynchronous XML message passing between applications using reliable queues.

5.4.1 Sending and Receiving XML Between Servers

Since XML can represent structured data in an open, standard way, it is quickly becoming the

preferred method of data exchange over the Web. In a year or two, it will be the dominant method.

Sites that serve up information in HTML—useful primarily to human eyeballs—will add the ability

to retrieve the information in an XML-based format that will allow other servers to use that data

more easily. Businesses whose current web-based applications only allow human interaction

through web-based HTML forms are scrambling to add the ability to accept posted requests in

XML formats to enable Business-to-Business automation.

In this way, the Web will rapidly evolve to offer a business application developer a sea of

XML-based information services, where your application can check on the status of an order,

cancel a reservation, or book a flight simply by sending and receiving appropriate XML datagrams.

It goes without saying that the ability to write programs that post and receive XML is a core

competence for any developer building the next generation of web applications. Here we'll

explore how these key activities can be done with PL/SQL inside Oracle8i.

To be very precise, when we talk about "posting XML to another server over the Web," what we

mean is sending an HTTP POST request to that server, containing an XML document in the request

body with a MIME Content-Type of text/xml.

Therefore, a fundamental ingredient in posting XML over the Web is the ability to send an HTTP

POST request. Since the HTTP protocol is a set of conventions layered on top of TCP/IP, we can

make use of the Oracle8i built-in package called utl_tcp to build our HTTP POSTing solution.

The utl_tcp package exposes the low-level routines necessary to open a TCP/IP connection,

write data into the connection, and read data back from the connection. By writing the

appropriate HTTP commands and data to the connection, we can easily implement our

PL/SQL-based XML posting functionality. For example, to post this XML document:

<moreovernews>

 <article>

 <url> http://www.xmlhack.com/read.php?item=400 </url>

 <headline_text> XSL Working Group to address extension concerns

 </headline_text>

 <source> XMLHack.com </source>

 </article>

</moreovernews>

to a web service located at the URL:

http://services.example.com:2775/add-news-story.xsql

we need to do the following:

1. Open a TCP/IP connection to the services.example.com machine on port 2775.

2. Write the header information to the connection:
3. HTTP POST /add-news-story.xsql HTTP/1.0

4. Content-Type: text/xml

Content-Length: 240

5. Write a carriage return to the connection to separate the header from the body.

6. Write the XML document to the connection.

Then we read the response from the connection. In Appendix A you can check out the full source

code of the package that implements this HTTP behavior on top of the lower-level facilities

provided by the utl_tcp package. Here, we just need to see the API for our http package, which

looks like this:

CREATE OR REPLACE PACKAGE http AS

 -- HTTP POST a document to url and return response

 PROCEDURE post(doc VARCHAR2,

 content_type VARCHAR2,

 url VARCHAR2,

 resp OUT VARCHAR2,

 resp_content_type OUT VARCHAR2,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80);

 -- HTTP GET resource at url and return response document

 PROCEDURE get(url VARCHAR2,

 resp OUT VARCHAR2,

 resp_content_type OUT VARCHAR2,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80);

END;

This package lets us easily HTTP POST or HTTP GET any information over the Web.

Built on top of the post and get procedures in the http package, we can build another helper

package called xml_http which makes posting and getting XML-based information a little easier.

Example 5.20 shows the package specification for xml_http.

Example 5.20. The xml_http Helper Package Specification

CREATE OR REPLACE PACKAGE xml_http AS

 -- POST XML document in string buffer to URL, return response as XML Document

 PROCEDURE post(doc VARCHAR2,

 url VARCHAR2,

 resp OUT xmldom.DOMDocument,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80);

 -- HTTP POST XML document to URL and return response as an XML document

 PROCEDURE post(doc xmldom.DOMDocument,

 url VARCHAR2,

 resp OUT xmldom.DOMDocument,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80);

 -- HTTP GET resource at url and return response as an XML document

 PROCEDURE get(url VARCHAR2,

 resp OUT xmldom.DOMDocument,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80);

END;

You'll see in the implementation of xml_http in Example 5.21 that the procedures here simply

add the convenience of being able to directly post an xmldom.DOMDocument object as well return

the response of a POST or a GET directly as an xmldom.DOMDocument for further processing.

Example 5.21. Implementation of xml_http Helper Package

CREATE OR REPLACE PACKAGE BODY xml_http AS

 PROCEDURE xmlDocForResponse(response VARCHAR2,

 content_type VARCHAR2,

 xmldoc OUT xmldom.DOMDocument) IS

 BEGIN

 IF response IS NOT NULL THEN

 IF content_type LIKE 'text/xml%' OR

 content_type LIKE 'application/xml%' THEN

 xmldoc := xml.parse(response);

 END IF;

 END IF;

 END;

 PROCEDURE post(doc VARCHAR2,

 url VARCHAR2,

 resp OUT xmldom.DOMDocument,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80)

 IS

 response VARCHAR2(32767);

 content_type VARCHAR2(400);

 BEGIN

 http.post(doc,'text/xml',

 url,response,content_type,proxyServer,proxyPort);

 xmlDocForResponse(response,content_type,resp);

 END;

 PROCEDURE post(doc xmldom.DOMDocument,

 url VARCHAR2,

 resp OUT xmldom.DOMDocument,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80)

 IS

 response VARCHAR2(32767);

 content_type VARCHAR2(400);

 BEGIN

 http.post(xpath.extract(doc),'text/xml',

 url,response,content_type,proxyServer,proxyPort);

 xmlDocForResponse(response,content_type,resp);

 END;

 PROCEDURE get(url VARCHAR2,

 resp OUT xmldom.DOMDocument,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80) IS

 response VARCHAR2(32767);

 content_type VARCHAR2(400);

 BEGIN

 http.get(url,response,content_type,proxyServer,proxyPort);

 xmlDocForResponse(response,content_type,resp);

 END;

END;

With all these routines in place, it's time to put them to work. First, we'll try posting a news story

to a server that supports a "Post a New Newstory Service." Figure 5.2 illustrates the

XML-over-HTTP exchange that takes place between our database server and the news story

service.

Figure 5.2. Posting an XML-based news story datagram to a

web service

The requester posts an XML-based news story in an expected XML format like the Moreover.com

news format, and the service returns an XML-based message to indicate the status of the request.

Here, the returning XML message only contains a status message, but the datagram sent back by

the server could contain lots of additional useful information besides a status.

Example 5.22 shows a postNewsStory procedure that:

1. Concatenates the argument values passed to the function at the appropriate places in the

<moreovernews> XML datagram

2. Posts the news story datagram to the web service URL using xml_http.post

3. Tests the content of the returned XML document using xpath.test to see if the POST

request succeeded.

Example 5.22. Posting XML-based News Stories to Another

Web Server

CREATE OR REPLACE FUNCTION postNewsStory(story_headline VARCHAR2,

 story_source VARCHAR2,

 story_url VARCHAR2

) RETURN VARCHAR2 IS

 msg VARCHAR2(32767);

 service_url VARCHAR2(80);

 xml_response xmldom.DOMDocument;

 retval VARCHAR2(10);

BEGIN

 -- This is the URL for the Post-a-New-Newstory Web Service

 service_url := 'http://xml/xsql/demo/insertxml/insertnewsstory.xsql';

 -- Prepare the XML document to post by "gluing" the values of

 -- the headline, news source, and URL of the article into the

 -- XML message at the appropriate places.

 msg := '<moreovernews>

 <article>

 <url>'|| story_url ||'</url>

 <headline_text>'|| story_headline ||'</headline_text>

 <source>'||story_source||'</source>

 </article>

 </moreovernews>';

 -- Post the XML document to the web service URL and get the Response

 xml_http.post(msg,service_url,xml_response);

 -- Check the response to see if it was a success.

 -- This service returns <xsql-status rows="1"/> if it was a success.

 IF xpath.test(xml_response,'/xsql-status/@rows="1"') THEN

 retval := 'Success';

 ELSE

 retval := 'Failed';

 END IF;

 -- Free the XML document

 xml.freeDocument(xml_response);

 -- Return the status

 RETURN retval;

EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xml_response); RAISE;

END;

We can quickly test the function from SQL*Plus by creating a SQL*Plus variable named status,

and executing the function like this:

SQL> variable status varchar2(10);

SQL> exec :status := postNewsStory('It

Worked!','Steve','http://someserver/somepage.html');

PL/SQL procedure successfully completed.

SQL> print status

STATUS

Success

Printing the value of the status variable shows that the request was a Success.

Next, we'll try an HTTP GET example. Sometimes, web services simply take the information they

need to carry out their task as parameters on a URL. In these cases, it is not required to post any

XML document. Instead we just do an HTTP GET on the service's URL with appropriate parameter

values tacked on to the end of the URL.

Figure 5.3 shows the exchange between our database and a web service that allows us to look up

the name of an airport, given its three-letter description. The database running at the site offering

this "Airport Lookup" service contains the three-letter codes and descriptions of more than

10,000 worldwide airports. We can look up the code for any airport code XYZ by doing an HTTP

GET on the URL:

http://ws5.olab.com/xsql/demo/airport/airport.xsql?airport=XYZ

Figure 5.3. Getting XML from a web service

To do this, we create a quick airportDescription function that:

1. Concatenates the argument value passed to the function at the end of the web service's

URL

2. Gets the datagram from the web service using xml_http.get

3. Tests the content of the return XML document using xpath.test to see if the POST

request succeeded.

Here is the code:

CREATE OR REPLACE FUNCTION airportDescription(code VARCHAR2) RETURN VARCHAR2 IS

 description VARCHAR2(80);

 proxyServer VARCHAR2(80) := 'www-proxy.us.oracle.com';

 service_url VARCHAR2(80);

 xml_response xmldom.DOMDocument;

BEGIN

 -- This is the url of the XML web service to look up airports by code

 service_url := 'http://ws5.olab.com/xsql/demo/airport/airport.xsql';

 -- Do an HTTP GET of the service_url, tacking on the "airport" parameter

 xml_http.get(service_url||'?airport='||code,

 xml_response,

 proxyServer);

 -- If the Document Element is <Ok>, then return the description

 IF xpath.test(xml_response,'Ok') THEN

 RETURN xpath.valueOf(xml_response,'/Ok/Airport/Description');

 ELSE

 RETURN NULL;

 END IF;

END;

Again, we can quickly test our new airportDescription function from SQL*Plus like this to see

what airport corresponds to the three-letter abbreviation XML:

SQL> VARIABLE descrip VARCHAR2(80);

SQL> EXEC :descrip := airportDescription('XML');

PL/SQL procedure successfully completed.

SQL> PRINT descrip

DESCRIP

Minlaton, Sa, Australia

So using this web service, we discover that to really travel to the heart of XML country, you'll need

to fly Qantas.

5.4.2 Handling Asynchronous XML Messages in Queues

Whether you're processing bank customers at a teller window or customer orders on a web site,

both theory and practice concur that queues are an optimal approach to handle the job. Queues

allow work to pile up in an orderly fashion, and enable a flexible number of workers to be assigned

to process the work as soon as is feasible. During rush hour, more workers can be assigned to the

task. During off hours, a skeleton crew can hold down the fort. In our scenario, the queue of work

is handled by an Oracle Advanced Queueing queue whose contents are managed in a queue table,

and the "workers" are programs that dequeue messages and process them.

Since Oracle's AQ facility leverages the Oracle8i database extensively, the messages you place in

the queues have the same reliability guarantees as all database data. In layman's terms, this

means that messages are reliably delivered and never get lost. Oracle AQ even handles the

automatic propagation of messages between queues on different machines and between different

queuing systems. So it should be clear that it's worth our time to investigate how to tap into this

powerful feature for exchanging XML messages asynchronously.

Figure 5.4 illustrates the basic idea of a queue in the database. One or more processes add work

to be done into the queue by enqueuing a message, and other worker processes dequeue the

messages for handling. The default is intuitively the "fairest" mechanism, first-in, first-out, but

AQ supports many other dequeuing methods as well. A simple example might be to dequeue

high-priority orders first, or orders from platinum customers.

Figure 5.4. Enqueuing and dequeuing XML messages with

Oracle AQ

Setting up a queue to use is easy to do. If you have been granted the AQ_ADMINISTRATOR_ROLE,

you can do all the maintenance operations to create, alter, and drop queues and queue tables. If

a DBA like SYS grants you the following permissions, you'll be in business:

connect sys/password

GRANT AQ_ADMINISTRATOR_ROLE TO xmlbook;

GRANT EXECUTE ON SYS.DBMS_AQADM TO xmlbook;

GRANT EXECUTE ON SYS.DBMS_AQ TO xmlbook;

GRANT EXECUTE ON SYS.DBMS_AQIN TO xmlbook;

We'll create an xml_msg_queue to store our XML messages while they await further processing. A

queue is associated with a companion table used to store and enable querying of queued

messages, so we first create a queue table, then a queue that lives in that table, by running an

anonymous block of PL/SQL like this:

DECLARE

 queueTableName VARCHAR2(30) := 'xml_msg_queuetable';

 queueName VARCHAR2(30) := 'xml_msg_queue';

BEGIN

 -- Drop the queue table, ignoring an error if it does not

 BEGIN

 dbms_aqadm.drop_queue_table(queueTableName);

 EXCEPTION WHEN OTHERS THEN NULL;

 END;

 -- Create the queue table

 dbms_aqadm.create_queue_table(queue_table => queueTableName,

 queue_payload_type => 'RAW');

 -- Create the queue based on the queue table

 dbms_aqadm.create_queue(queueName,queueTableName);

 -- Start the queue (enabling enqueues and dequeues to occur)

 dbms_aqadm.start_queue(queueName);

END;

Note that we're using the simplest kind of queue, which supports a raw binary payload of up to

32K bytes, for learning about the mechanics. Once you have the basics under your belt for how

to work with XML messages in these raw-payload queues, you'll find that experimenting with AQ's

other facilities will become much easier. As we've done with other XML-related technologies that

we plan to use over and over, let's build a helper package to work with XML messages and

advanced queues. Example 5.23 shows the package specification of the xmlq package. It's very

simple: it contains just two routines, an enqueue and a dequeue. The enqueue procedure takes an

xmldom.DOMDocument and the name of the queue into which the XML message should be

enqueued. The dequeue function takes a queue name and wait flag, and returns the dequeued

message as an xmldom.DOMDocument.

Example 5.23. The xmlq Helper Package Specification

CREATE OR REPLACE PACKAGE xmlq AS

 -- Exception raised when queue is empty and dequeue with no wait is attempted

 queue_empty EXCEPTION;

 PRAGMA EXCEPTION_INIT(queue_empty,-25228);

 -- Enqueue an XML document to the (raw-payload) 'queueName' queue.

 PROCEDURE enqueue(xmldoc xmldom.DOMDocument, queueName VARCHAR2);

 -- Dequeue an XML document from the (raw-payload) 'queueName' queue.

 FUNCTION dequeue(queueName VARCHAR2, wait BOOLEAN := TRUE)

 RETURN xmldom.DOMDocument;

END;

The implementation of the xmlq package is nearly as simple as its specification. The only points

worth noting are the use of the utl_raw.cast_to_raw function to cast the XML message passed

in as a block of raw bytes, and the utl_raw.cast_to_varchar2 to perform the reverse operation

on the dequeue. If the caller passed in a wait flag value of TRUE, we set the corresponding option

in the dequeue options record structure. This tells Oracle AQ that if no message is presently

waiting for us in the queue, we intend on sleeping until a message arrives:

CREATE OR REPLACE PACKAGE BODY xmlq AS

 msgProp dbms_aq.message_properties_t;

 --

 -- Enqueue an XML document to the (raw-payload) 'queueName' queue.

 -- Raw-payload queues have a message-size limit of 32767 bytes.

 --

 PROCEDURE enqueue(xmldoc xmldom.DOMDocument, queueName VARCHAR2) IS

 enqOpt dbms_aq.enqueue_options_t;

 msgHdl RAW(16);

 BEGIN

 dbms_aq.enqueue(queue_name => queueName,

 enqueue_options => enqOpt,

 message_properties => msgProp,

 payload => utl_raw.cast_to_raw(xpath.extract(xmldoc)),

 msgid => msgHdl);

 COMMIT;

 END;

 --

 -- Dequeue an XML document from the (raw-payload) 'queueName' queue.

 --

 -- If the 'wait' parameter is TRUE (the default) the function blocks

 -- until a message is available on the queue. If 'wait' is false,

 -- either an XML document is returned, or the 'empty_queue' exception

 -- is thrown.

 --

 FUNCTION dequeue(queueName VARCHAR2, wait BOOLEAN := TRUE)

 RETURN xmldom.DOMDocument IS

 deqOpt dbms_aq.dequeue_options_t;

 retval xmldom.DOMDocument;

 msgHdl RAW(16);

 message RAW(32767);

 BEGIN

 IF NOT wait THEN

 deqOpt.wait := dbms_aq.NO_WAIT;

 END IF;

 dbms_aq.dequeue(queue_name => queueName,

 dequeue_options => deqOpt,

 message_properties => msgProp,

 payload => message,

 msgid => msgHdl);

 COMMIT;

 RETURN xml.parse(utl_raw.cast_to_varchar2(message));

 END;

END;

Notice that in the xmlq package specification we use an EXCEPTION_INIT pragma to associate a

meaningful exception name like xmlq.queue_empty with the error condition that occurs when we

attempt to dequeue a message without waiting and there is no message there.

To illustrate a simple example of enqueuing a few XML orders, the following anonymous block of

PL/SQL should suffice. It creates and enqueues five new XML-based order messages by calling

xmlq.enqueue. Each order looks like <order id="101"/>:

set serveroutput on

DECLARE

 xmldoc xmldom.DOMDocument;

 xmlOrder VARCHAR2(200);

BEGIN

 dbms_output.put_line('XML Enqueue Test in Session '|| userenv('SESSIONID'));

 FOR ordId IN 101..105 LOOP

 -- Build a little XML order document like <order id="xxx"/>

 xmlOrder := '<order id="'||ordId||'"/>';

 -- Parse the current order document

 xmldoc := xml.parse(xmlOrder);

 -- Enqueue the current order to the 'xml_msg_queue' queue

 xmlq.enqueue(xmldoc,'xml_msg_queue');

 -- Free the current XML document

 xml.freeDocument(xmldoc);

 -- Print out a log message

 dbms_output.put_line('Placed order '||ordId||' in the queue.');

 END LOOP;

END;

Running this code shows that our first five orders are now on their way into the order processing

"pipeline" of workflow steps, managed by the queue:

XML Enqueue Test in Session 1682

Placed order 101 in the queue.

Placed order 102 in the queue.

Placed order 103 in the queue.

Placed order 104 in the queue.

Placed order 105 in the queue.

Logging in from a different SQL*Plus session, we can illustrate dequeuing the orders. As shown in

Example 5.24, we execute a loop that calls xmlq.dequeue with the wait flag set to false. By

including an EXCEPTION block that includes a WHEN xmlq.queue_empty clause, we can trap and

handle this condition sensibly.

Example 5.24. Dequeuing Messages Until a Queue Is Empty

set serveroutput on

DECLARE

 xmldoc xmldom.DOMDocument;

 ordId NUMBER;

 c NUMBER := 0;

BEGIN

 dbms_output.put_line('XML Dequeue Test in Session '|| userenv('SESSIONID'));

 WHILE (TRUE) LOOP

 -- Dequeue XML message from the 'xml_msg_queue' queue (Don't Wait)

 xmldoc := xmlq.dequeue('xml_msg_queue', wait=>false);

 -- Use xpath.valueOf to look in XML message content to find ordId

 ordId := xpath.valueOf(xmldoc,'/order/@id');

 -- Processing the current message (Here just print a message!)

 dbms_output.put_line('Processing Order #'||ordId);

 -- Free the current XML document

 xml.freeDocument(xmldoc);

 END LOOP;

EXCEPTION

 WHEN xmlq.queue_empty THEN

 dbms_output.put_line('No more orders to process.');

END;

Running this code shows the first-in, first-out nature of a queue that's been created with all

default settings, like our xml_msg_queue was. One by one, the messages are dequeued until we

empty the queue:

XML Dequeue Test in Session 1684

Processing Order #101

Processing Order #102

Processing Order #103

Processing Order #104

Processing Order #105

No more orders to process.

In Chapter 6 we will learn how to have Java programs enqueue and dequeue messages so Java

and PL/SQL programs can cooperate asynchronously through queues by passing XML messages.

5.5 Producing and Transforming XML Query Results

In this section, we'll briefly cover the following mechanisms available to PL/SQL in Oracle8i for

producing XML from SQL queries and for transforming XML using XSLT transformations:

• The XML SQL Utility provides capabilities to automatically deliver the results of any valid

SELECT statement as an XML document.

• The Oracle XSLT processor implements a transformation engine for XML documents that is

compliant with the W3C XSLT 1.0 Recommendation (see

http://www.w3.org/TR/1999/REC-xslt-19991116), and that allows you to transform XML

in one format into XML, HTML, or plain text of another format.

These topics are covered in detail in Chapter 7, and Chapter 9, so here we will focus mostly on the

basic PL/SQL syntax of working with the XML SQL Utility and the Oracle XSLT processor. First,

we'll cover the steps required to verify that these facilities are properly installed in your database,

then we'll cover simple examples of their use.

5.5.1 Installing the XML SQL Utility and XSLT Processor

First, check to see if the Oracle XML SQL Utility is already installed in your Oracle8i database by

doing the following:

1. Connect to your Oracle8i database with SQL*Plus:

sqlplus xmlbook/xmlbook

2. Check the status of the oracle.xml.sql.query.OracleXMLQuery class by running the

following SQL statement:
3. SELECT SUBSTR(dbms_java.longname(object_name),1,35) AS class, status

4. FROM all_objects

5. WHERE object_type = 'JAVA CLASS'

 AND object_name =

dbms_java.shortname('oracle/xml/sql/query/OracleXMLQuery')

You should see the result:

CLASS STATUS

----------------------------------- -------

oracle/xml/sql/query/OracleXMLQuery VALID

If instead you see the SQL*Plus message no rows selected, skip the following verification

step and proceed to the steps in the next list to install the Oracle XML SQL Utility in your

Oracle8i database.

6. Try to describe the xmlgen package from the SQL*Plus command line:

DESCRIBE xmlgen

If you see a description of the procedures and functions in the xmlgen package, then the Oracle

XML SQL Utility is already installed and is ready to be used. You do not need to complete any

further installation steps.

If instead you get an error like ORA-04043: object xmlgen does not exist, complete the

following steps to install the Oracle XML SQL Utility in your Oracle8i database:

1. Make sure you've already loaded the Oracle XML Parser for Java into Oracle8i.

The XML SQL Utility depends on it, but we did this earlier in this chapter, so you should be

set.

2. Download the latest release of the Oracle XML SQL Utility from

http://technet.oracle.com/tech/xml:

o If your database is Oracle8i Release 2 (8.1.6) or later, download the XSU12.tar.gz

or XSU12.zip

o If your database is Oracle8i Release 1 (8.1.5), download the XSU111.tar.gz or

XSU111.zip

3. Extract the .zip or the .tar.gz file into a convenient directory.

4. Change directory to the ./lib subdirectory of the distribution.

5. Load the xsu12.jar file (or xsu111.jar for 8.1.5) into your schema:

loadjava -verbose -resolve -user xmlbook/xmlbook xsu12.jar

6. Run the SQL script to create the XML SQL Utility PL/SQL package:

sqlplus xmlbook/xmlbook @xmlgenpkg.sql

Repeat the previous test to confirm that you can now describe the xmlgen package, so the XML

SQL Utility is ready to be used in the server.

Installation for the Oracle XSLT processor is very simple, since its implementation is an integrated

part of the Oracle XML Parser for Java and its PL/SQL API is an integrated part of the Oracle XML

Parser for PL/SQL packages.

We do not need to install the Oracle XSLT processor separately. It's already properly installed if

the Oracle XML Parser for PL/SQL is working on your system.

5.5.2 Producing XML from SQL Queries

Let's assume that the conference abstract submission system we built earlier in this chapter

needs to coordinate over the Web with another system that is managing the abstract selection

process. We need to post the accepted submissions as we receive them to the other system's

server using our xml_http.post routine.

Because of the processing and reporting that we want to do on the accepted submissions, we

have chosen to save the information from the accepted submissions into an accepted_submission

table in our database. In this way, we enable our existing tools and applications to easily make

use of the data, instead of retrofitting them or rewriting them to understand how to work with the

XML-based <Submission> documents that authors submit through our web site.

So, for an accepted submission that we've received and processed, we need to take the relevant

data in our accepted_submission table and send it in XML format to the other server. Luckily, the

XML SQL Utility's xmlgen package makes this SQL-to-XML job straightforward with its getXML

function. In fact, the submissionXML function in Example 5.25 is all the code we need to select the

appropriate data from accepted_submission for a particular submission ID and produce it as an

XML document.

Example 5.25. Serving SQL Query Results for an Accepted

Submission in XML

CREATE OR REPLACE FUNCTION submissionXML(id NUMBER) RETURN CLOB IS

 query VARCHAR2(100);

BEGIN

 query := 'SELECT *

 FROM accepted_submission

 WHERE id = '||id;

 RETURN xmlgen.getXML(query);

END;

Here we've done a SELECT * query, but the XML SQL Utility can handle any query that is valid to

execute against the Oracle database and produce the XML for its results. As with the PL/SQL

functions earlier, we can use these queries inside other PL/SQL programs as well as directly inside

SQL statements like this one:

SELECT submissionXML(600) FROM DUAL

which produces the following dynamic XML document:

SUBMISSIONXML(600)

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <ID>600</ID>

 <TITLE>Using XPath Expressions as Validation Rules</TITLE>

 <PRESENTER>Steve Muench</PRESENTER>

 <EMAIL>smuench@yahoo.com</EMAIL>

 <ABSTRACT>By storing XPath expressions in a database table,

grouped into "rule sets", data-driven validation rules

can be applied to an XML document by iterating over the list of

rules in a rule set and testing whether each XPath expression is

true or false.</ABSTRACT>

 </ROW>

</ROWSET>

In Chapter 11, we cover all of the various options available with the XML SQL Utility that control

how it converts SQL to XML—for example, whether the tags are generated in upper- or lowercase,

what tag should be used for each row of the result, etc.—but for now, we'll just use the default

settings.

The xmlgen package supports SQL statements with named bind variables, too, so we can rewrite

Example 5.25 as follows to use a bind variable :id instead of concatenating the value of the id

parameter as literal text into the SELECT statement:

CREATE OR REPLACE FUNCTION submissionXML(id NUMBER) RETURN CLOB IS

 query VARCHAR2(100);

BEGIN

 query := 'SELECT *

 FROM accepted_submission

 WHERE id = :id';

 xmlgen.clearBindValues;

 xmlgen.setBindValue('id',id);

 RETURN xmlgen.getXML(query);

END;

Next we'll see how to use an XSLT transformation in combination with the XML SQL Utility to

produce dynamic XML documents from SQL queries that comply with any needed XML format.

5.5.3 Transforming XML Using XSLT

Chapter 7 and Chapter 9 go into detail about using XSLT transformations to morph the original

XML structure of a document into any other XML, HTML, or text format you need to deliver the

information. Here we'll cover a simple example for the purpose of seeing how to tap into this XSLT

transformation functionality from within PL/SQL.

The company with whom we are coordinating over the Web to handle the abstract selection

process expects to receive information on the abstract submissions in their standard

<TechnicalPaper> submission format, which looks like this:

<TechnicalPaper Id="101" Conference="XML Europe">

 <Subject>XSLT For Fun and Profit</Subject>

 <Presenter Email="smuench@yahoo.com">

 <Name>Steve Muench</Name>

 </Presenter>

 <Summary>

 This paper discusses the fun and profit

 that are yours for the taking by cleverly

 applying XSLT Transformations to database-driven

 XML information.

 </Summary>

</TechnicalPaper>

The selection company's servers are not configured to handle information in the default

ROWSET/ROW format produced by the XML SQL Utility, so we'll need to transform the resulting XML

to deliver it in the format the company requires.

To help us out, the selection company has provided us with TechnicalPaper.dtd, an XML document

type description (DTD) that illustrates exactly the XML format they expect to receive from our

system. Using a tool like XML Authority, we can view the expected document structure, as shown

in Figure 5.5.

Figure 5.5. Viewing structure of TechnicalPaper DTD using

XML Authority

We can even use XML Authority's File Export Example XML Document... to produce a
skeleton XML file to work with in the expected format. Here is the example XML document

produced by the tool for the TechnicalPaper.dtd file:

<?xml version ="1.0"?>

<!DOCTYPE TechnicalPaper SYSTEM "TechnicalPaper.dtd">

<!-- Generated by XML Authority -->

<TechnicalPaper Id = "string" Conference = "string">

 <Subject>only text</Subject>

 <Presenter Email = "string">

 <Name>only text</Name>

 </Presenter>

 <Summary>only text</Summary>

</TechnicalPaper>

We can easily edit this skeleton XML document to turn it into the TechnicalPaper.xsl stylesheet in

Example 5.26. This XSLT stylesheet will transform the default XML SQL Utility output we saw

earlier into the expected <TechnicalPaper> format that our business partner needs.

Example 5.26. Stylesheet to Transform ROWSET/ROW to

TechnicalPaper

<!-- TechnicalPaper.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output indent="yes" doctype-system="TechnicalPaper.dtd"/>

 <xsl:param name="Conference"/>

 <xsl:template match="/ROWSET/ROW">

 <TechnicalPaper Id="{ID}" Conference="{$Conference}">

 <Subject><xsl:value-of select="TITLE"/></Subject>

 <Presenter Email="{EMAIL}">

 <Name><xsl:value-of select="PRESENTER"/></Name>

 </Presenter>

 <Summary><xsl:value-of select="ABSTRACT"/></Summary>

 </TechnicalPaper>

 </xsl:template>

</xsl:stylesheet>

We'll learn a lot more about how to create such a transformation in Chapter 7, but for now just

notice that the stylesheet looks like a skeleton example of the target XML document that has been

sprinkled with special <xsl:value-of> tags and simple XPath expressions inside curly braces to

plug values from the source document (in <ROWSET>/<ROW> format) into the desired tags of

the target document (in <TechnicalPaper> format).

We can load the TechnicalPaper.xsl stylesheet from the XMLFILES directory on our database

server machine into our xml_documents table with a document name of

'TechnicalPaperTransform' by issuing the command:

BEGIN

 xmldoc.save('TechnicalPaperTransform',

 BFileName('XMLFILES','TechnicalPaper.xsl'));

END;

Now we're ready to show how to leverage the Oracle XSLT processor inside the database to

perform the transformation using the stylesheet we just created and loaded into our

xml_documents table. The raw ingredients are provided by the Oracle XML Parser for PL/SQL's

xslprocessor package, but as we've done before, to put the most commonly used facilities right

at our fingertips we can create a final xslt helper package, as shown in Example 5.27. It contains

helper functions to do the following:

• Create an XSLT stylesheet object from its XML source in a VARCHAR2, CLOB, BFILE,

xmldom.DOMDocument, or from a URL

• Transform an XML document using an XSLT stylesheet object, producing the result in plain

text format

• Transform an XML document using an XSLT stylesheet object, returning the transformed

XML document as an xmldom.DOMDocument for further processing

• Create a parameter list to pass to a transformation to support parameterized stylesheets

• Free the memory used by an XSLT stylesheet when you're done using it

Example 5.27. The xslt Helper Package Specification

CREATE OR REPLACE PACKAGE xslt AS

 TYPE name_value IS RECORD(NAME VARCHAR2(40), VALUE VARCHAR2(200));

 TYPE paramlist IS TABLE OF name_value INDEX BY BINARY_INTEGER;

 none paramlist;

 -- Return an XSLT stylesheet based on XML document of the stylesheet source

 FUNCTION stylesheet(doc xmldom.DOMDocument) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheet(doc VARCHAR2) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheet(doc CLOB) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheet(doc BFILE) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheetFromURL(url VARCHAR2) RETURN xslprocessor.Stylesheet;

 -- Transform an XML Document by an XSLT stylesheet, returning a String

 FUNCTION transform(source xmldom.DOMDocument,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2;

 FUNCTION transform(source VARCHAR2,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2;

 FUNCTION transform(source CLOB,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2;

 -- Transform an XML Document by an XSLT stylesheet, returning an XML doc

 FUNCTION transformToDOM(source xmldom.DOMDocument,

 style xslprocessor.Stylesheet,

 params paramlist := none)

 RETURN xmldom.DOMDocument;

 FUNCTION transformToDOM(source VARCHAR2,

 style xslprocessor.Stylesheet,

 params paramlist := none)

 RETURN xmldom.DOMDocument;

 FUNCTION transformToDOM(source CLOB,

 style xslprocessor.Stylesheet,

 params paramlist := none)

 RETURN xmldom.DOMDocument;

 -- Return a paramlist to be used for a transformation.

 FUNCTION params(n1 VARCHAR2, v1 VARCHAR2,

 n2 VARCHAR2:=NULL,v2 VARCHAR2:=NULL,

 n3 VARCHAR2:=NULL,v3 VARCHAR2:=NULL,

 n4 VARCHAR2:=NULL,v4 VARCHAR2:=NULL,

 n5 VARCHAR2:=NULL,v5 VARCHAR2:=NULL) RETURN paramlist;

 -- Release the memory used by a Stylesheet

 PROCEDURE freeStylesheet(style xslprocessor.Stylesheet);

END;

As before, you'll find the full source code for the xslt package body in Appendix A.

With these useful facilities of our xslt helper package in hand, we can modify our original

submissionXML function that we created in the previous section to apply the TechnicalPaper.xsl

transformation before returning the result to the requester. The modified version appears in

Example 5.28.

Example 5.28. Modified submissionXML Function Uses the xslt

Helper Package

CREATE OR REPLACE FUNCTION submissionXML(id NUMBER) RETURN VARCHAR2 IS

 query VARCHAR2(100);

 queryXML xmldom.DOMDocument;

 stylesheet xslprocessor.Stylesheet;

 retval VARCHAR2(32767);

BEGIN

 query := 'select *

 from accepted_submission

 where id = :id';

 xmlgen.clearBindValues;

 xmlgen.setBindValue('id',id);

 -- (1) Create the stylesheet from TechnicalPaper.xsl loaded by

 -- name from the xml_documents table.

 stylesheet := xslt.stylesheet(xmldoc.get('TechnicalPaperTransform'));

 -- (2) Transform the xmlgen.getXML(query) results by the stylesheet,

 -- passing the value of "XML Europe" for the top-level stylesheet

 -- parameter named 'Conference'

 retval := xslt.transform(xmlgen.getXML(query),

 stylesheet,

 xslt.params('Conference','XML Europe'));

 -- (3) Free the stylesheet

 xslt.freeStylesheet(stylesheet);

 -- Return the transformed result

 RETURN retval;

END;

Notice that we've added code to do the following:

1. Create an XSLT stylesheet object from the TechnicalPaper.xsl stylesheet, loaded by name

from our xml_documents table using xmldoc.get:

stylesheet := xslt.stylesheet(xmldoc.get('TechnicalPaperTransform'));

2. Transform the results returned from xmlgen.getXML(query) by the stylesheet, passing

'XML Europe' as the value for the top-level stylesheet parameter named Conference:
3. retval := xslt.transform(xmlgen.getXML(query),

4. stylesheet,

 xslt.params('Conference','XML Europe'));

5. Free the stylesheet when we're done:

xslt.freeStylesheet(stylesheet);

To exercise the new version of submissionXML, we can just try to select a submission by number

from the dual table using the function:

SELECT submissionxml(600) FROM dual

which gives the resulting XML document in precisely the <TechnicalPaper> format needed by our

business partner:

SUBMISSIONXML(600)

--

<?xml version = '1.0' encoding = 'UTF-8'?>

<!DOCTYPE TechnicalPaper SYSTEM "TechnicalPaper.dtd">

<TechnicalPaper Id="600" Conference="XML Europe">

 <Subject>Using XPath Expressions as Validation Rules</Subject>

 <Presenter Email="smuench@yahoo.com">

 <Name>Steve Muench</Name>

 </Presenter>

 <Summary>By storing XPath expressions in a database table, grouped into

"rule sets", data-driven validation rules can be applied to an XML document by

iterating over the list of rules in a rule set and testing whether each XPath

expression is true or false.</Summary>

</TechnicalPaper>

At this point, we could easily combine functionality of our xml_http package and our

submissionXML function to post abstract submissions over the Web as we submit them to our

partner in the expected XML format.

Chapter 6. Processing XML with Java

In its relatively brief history, Java has become a dominant programming language for new

software development projects and the main language taught to waves of new programmers in

universities. Initially conceived as a portable language for client-side agents and user interfaces,

Java's most rapid adoption has been for writing complex, server-side applications. Since nearly

any interesting server-side application makes heavy use of a relational database, Oracle

responded to the strong demand for server-side Java and database integration by introducing

Oracle8i 's JServer product and has moved quickly to provide support for Java servlets and Java

Server Pages (JSPs) in its application server offerings. Starting with Oracle8i version 8.1.5,

JServer has been provided with the database.

XML emerged in the age of Java and has been nearly inseparable from it. It is frequently said that,

" Java is portable code, and XML is portable data"—a natural fit. In fact, from the beginning, the

majority of software tools available for processing XML have been Java-based, and that tradition

continues today. Vendors like Oracle and IBM—as well as organizations like the Apache Software

Foundation—have done all of their XML innovation in Java first, with other language

implementations—C, C++, PL/SQL, Perl, and others—being delivered in later phases. Given

these dynamics, it's not hard to figure out why Oracle8i 's integration of rich server-side support

for the industry's new standard for information exchange (XML) with the most popular

server-side programming language (Java) and the existing standard for data access and

manipulation (SQL) has caught a lot of developers' attention. The fact that Java and PL/SQL can

be used together seamlessly inside Oracle8i means that existing Oracle developers and DBAs can

learn Java at their own pace while new college grads dive headlong into Java.

By the end of this chapter, you'll understand how to combine Java, JDBC, SQL, and XML—both

outside and inside Oracle8i—in order to:

• Load external XML files into the database

• Parse XML using the Oracle XML Parser for Java

• Search XML documents in memory using XPath expressions

• Post an XML message to another server and get an XML response back

• Enqueue and dequeue XML messages from Oracle AQ queues

In addition, we'll cover the basic mechanics of producing XML automatically from SQL queries and

transforming the results into any desired XML structure using XSLT stylesheets. These two topics

are also covered in full in their own chapters later in the book.

6.1 Introduction to Oracle8i JServer

Before jumping into XML-specific Java programming with Oracle, you need to understand exactly

what Oracle8i JServer is and what options exist for the Java programmer regarding:

• Where Java code can be deployed

• How the deployed Java code talks to the database

• How the deployed Java code can be accessed by clients

Then we'll cover the basics of connecting to the Oracle8i database and the fundamentals of

working with CLOBs—Oracle8i 's native datatype for large character data documents like XML

documents.

6.1.1 What Is JServer?

JServer is Oracle's Java virtual machine (VM), the execution environment for Java code that runs

in the same process space as the Oracle8i database server. While functionally compatible with

any Java VM, JServer was completely written from scratch to exploit and tightly integrate with

Oracle's scalable and reliable server infrastructure. This makes Java in Oracle8i a safe choice for

server programming. Logging into Oracle8i Release 2 or later using the SQL*Plus command-line

tool, we can see that JServer announces itself as a built-in part of the database server:

SQL*Plus: Release 8.1.6.0.0 - Production on Fri Apr 14 21:31:51 2000

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to:

Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production

With the Partitioning option

JServer Release 8.1.6.0.0 - Production

SQL>

Of course, Oracle has been a programmable database server since version 7.0, which introduced

PL/SQL, but in Oracle8i, Java joins PL/SQL as a peer in this capacity. Any server contexts where

PL/SQL can be used—stored procedures, functions, packages, triggers, and object types—can

now be written using Java as well. Besides the obvious differences in language syntax, the key

difference for programmers between PL/SQL and Java is that Java programs that access Oracle

data and process XML can run unchanged both outside and inside the database.

Figure 6.1 shows where your Java code can run and what options are available for integrating

Java with Oracle database data.

Figure 6.1. Understanding where Java runs and how it talks to

Oracle

Your Java code can run outside the database or inside JServer. In either case, your code uses the

standard JDBC (Java DataBase Connectivity) interfaces to access and manipulate Oracle data.

These interfaces are exactly the same both outside the database and inside JServer, so your

database-centric Java code can work unchanged in either place. The key differences lie in the

implementation details:

• Outside the database, you can use a Java 1.1- or Java 1.2-based JDK. Inside JServer, your

code runs on its Java 1.2-compliant virtual machine.

• Outside the database, you can use either JDBC 1.x or JDBC 2.0 drivers. Inside JServer,

use the built-in JDBC 2.0-compliant driver.

• Outside the database, you can choose the pure-Java thin driver or the oci8 JDBC driver

implementation. Inside JServer, use the built-in native driver.

While the drivers support identical JDBC interfaces, a big difference in the implementation of the

thin and oci8 drivers used outside the database and the native driver used inside the database is

the mechanism for data transport. Your code running outside the database sends and receives

data over a network connection, while the native driver in JServer accesses data from the

Oracle8i server's in-memory caches. Data-intensive Java code can perform better when it is

sitting right on top of the data being manipulated inside of JServer, instead of sending and

receiving the data in packets over the network.

Developers using a version of Oracle prior to Oracle8i do not
have the option of running Java inside the database. However,
since almost everything we explore in this chapter works
unchanged outside the database as well, you can run programs
that way just fine.

Figure 6.2 illustrates the different deployment scenarios for Java code using Oracle8i. Your code

can be deployed inside JServer as:

• Java stored procedures, accessed from SQL and PL/SQL through JDBC

• CORBA servers, accessed through a CORBA remote interface by a client

• Enterprise Java Beans, accessed through an EJB remote interface by a client

• Java servlets (in Oracle8i Release 3, version 8.1.7), accessed through HTTP

Your code can also be run outside JServer anywhere Java is supported and can connect to the

database using JDBC, CORBA, or EJB.

Figure 6.2. Available deployment scenarios for Java code with

Oracle8i

While the details of JServer CORBA and EJB are beyond the scope of this book, Java stored

procedures—due to their simplicity and wide-ranging uses—are the most interesting option here,

and are an ideal choice for existing Oracle customers in any event.

Simply put, a Java stored procedure is a PL/SQL stored program specification, with a Java static

method implementation for the body. Since it has a PL/SQL specification, it appears to SQL and

PL/SQL as an indistinguishable twin of its pure-PL/SQL counterpart. Since it has a Java

implementation, it can leverage the rich functionality in the JDK classes or any supporting Java

classes that you load into the server. Java stored procedures can be functions or

procedures—either top-level or contained in packages—as well as triggers or object type bodies.

Figure 6.3 shows how a Java stored procedure works. After loading the SomeClass Java class into

JServer, you publish the Java stored procedure to the SQL and PL/SQL world as follows:

• Create a procedure as you normally would, but use the AS LANGUAGE JAVA syntax to

associate the PL/SQL specification with the Java implementation.

• Use the AUTHID CURRENT_USER or AUTHID DEFINER clause to indicate whether the

procedure should run with the privileges of the user invoking the routine (new in Oracle8i)

or of the user who created the procedure.

• Supply the NAME ' Class.Method(Args) ' clause to indicate the static method in the class

that provides the implementation. This also serves to indicate the desired datatype

mapping between PL/SQL arguments (and function return values, if applicable) and Java

object arguments.

Figure 6.3. Publishing a Java static method as a Java stored

procedure

Once you've published the Do_Something procedure, you can invoke it as you would any other

stored procedure. As we'll see later, JDeveloper automates all of these steps for you to make the

job as easy as a single menu selection.

6.1.2 Connecting to the Database in Java

In contrast to Chapter 5, whose PL/SQL examples always run inside the database in the context

of the currently connected database user, Java code can execute either outside or inside the

Oracle8i database. When acquiring a database connection using the JDBC

DriverManager.getConnection method, code running outside the database chooses either the

Oracle oci8 driver or the pure-Java thin driver by using an appropriate JDBC connection string:

• jdbc:oracle:oci8:

• jdbc:oracle:thin:

Code running inside the database uses a special, in-memory JDBC driver implementation called

the JServer Native Driver whose driver string is jdbc:oracle:kprb:. Since code running inside

the database is already running in the context of a currently connected database user, no

username or password is required. Examples of complete JDBC connection strings using these

three drivers are:

• jdbc:oracle:oci8:scott/tiger

• jdbc:oracle:thin:scott/tiger@xmlapps:1521:ORCL

• jdbc:oracle:kprb:

To write Java code that can work without code changes both outside and inside Oracle8i, we can

isolate the JDBC connection details into a helper class like the Examples class in Example 6.1.

Example 6.1. Examples Class Hides JDBC Connection Details

import java.sql.*;

import java.util.*;

import oracle.jdbc.driver.*;

public class Examples {

 // Return a JDBC Connection appropriately either outside or inside Oracle8i

 public static Connection getConnection() throws SQLException {

 String username = "xmlbook";

 String password = "xmlbook";

 String thinConn = "jdbc:oracle:thin:@localhost:1521:ORCL";

 String default8iConn = "jdbc:oracle:kprb:";

 Connection cn = null;

 try {

 // Register the JDBC Driver

 Driver d = new oracle.jdbc.driver.OracleDriver();

 // Connect with the Native (kprb) Driver if inside Oracle8i

 if (insideOracle8i()) {

 cn = DriverManager.getConnection(default8iConn);

 }

 else { // Connect with the Thin Driver

 cn = DriverManager.getConnection(thinConn,username,password);

 }

 // Make sure JDBC Auto-Commit is off.

 cn.setAutoCommit(false);

 return cn;

 }

 catch (Exception e) {throw new SQLException("Error Loading JDBC Driver"); }

 }

 public static boolean insideOracle8i() {

 // If oracle.server.version is non-null, we're running in the database

 String ver = System.getProperty("oracle.server.version");

 return (ver != null && !ver.equals(""));

 }

}

You may be wondering, "Is the Java class in Example 6.1

missing a package declaration?" Yes and no. To keep Java class

names short, all of the examples in the book use classes that
are not declared to be part of a specific package. This is okay; it
is still legal Java and saves some typing.

Examples.getConnection detects that it's running inside the Oracle8i server by checking

whether the oracle.server.version system property is defined. This property provides the

major and minor version number of the Oracle database we're connected to, (for example, 8.1.5,

8.1.6, etc.), and will only exist when we're running inside the database.

Examples.getConnection uses the insideOracle8i method to decide which connection string

to use. All of the Java examples in this chapter and others call Examples.getConnection to

acquire their JDBC connection appropriately for the context in which they are running.

To run the examples, you may have to edit the thinConn JDBC

database connection string in the Examples.java code. That
string assumes that your database is on the current machine,

localhost, has a SID of ORCL, and is listening for connections

on port 1521.

6.1.3 Reading XML from and Writing XML to CLOBs

The Oracle8i built-in Character Large Object (CLOB) datatype offers a way to store character data

like XML documents of any size from one character to four gigabytes. Since CLOB is the principal

datatype used for storing XML documents or document fragments in the server, here we'll explore

the basics of reading and writing CLOBs in Java.

Oracle's JDBC driver provides built-in support for:

• Reading the contents of a CLOB as an InputStream or Reader

• Writing the contents of an OutputStream or Writer to a CLOB

To work with an existing CLOB column value, you select it into a variable of type

oracle.sql.CLOB using a SELECT statement with an appropriate WHERE clause to identify the

row(s) you want to work with. For example:

SELECT docname /* VARCHAR2 */, xmldoc /* CLOB */

 FROM xml_documents

 WHERE docname /* Primary Key Column */ = ?

What you select from the database is not immediately the entire contents of the CLOB, but just a

handle to the actual contents, called the locator. You access the contents of the CLOB by calling

one of the following methods on the instance of the CLOB locator:

YourClob.getCharacterStream()

To return a character-based Reader

YourClob.getAsciiStream()

To return a byte-based InputStream

Neither of these method names seems like a good name for what it actually returns, but that's

what we have to work with. Example 6.2 shows the ReadCLOB class, whose fromColumn method

allows you to pass the name of any table, CLOB column in the table, and primary key column

name in the table. It returns a Reader on the value of the CLOB in the row whose primary key

column matches the primary key value passed in. The companion fromColumnAsInputStream

method does the real work of using a JDBC PreparedStatement to construct an appropriate

SELECT statement and to select the CLOB value to return.

Example 6.2. Reading a Stream of Characters from a CLOB

import oracle.sql.*;

import java.sql.*;

import oracle.jdbc.driver.*;

import java.io.*;

import org.w3c.dom.Document;

public class ReadCLOB {

 // Read a Clob from any column in any table, returning a character Reader

 public static Reader fromColumn(Connection conn, String tableName,

 String colName,String idCol, String idVal)

 throws FileNotFoundException {

 InputStream is = fromColumnAsInputStream(conn,tableName,colName,idCol,idVal);

 return is != null ? new InputStreamReader(is) : null;

 }

 // Read a Clob from any column in any table, returning an InputStream

 public static InputStream fromColumnAsInputStream(Connection conn,

 String tableName,

 String colName,

 String idCol,

 String idVal)

 throws FileNotFoundException {

 try {

 PreparedStatement p = conn.prepareStatement("SELECT " + colName +

 " FROM " + tableName +

 " WHERE " + idCol + "= ?");

 CLOB theClob = null;

 p.setString(1,idVal);

 ResultSet rs = p.executeQuery();

 boolean exists = false;

 if (rs.next()) {

 exists = true;

 theClob = ((OracleResultSet)rs).getCLOB(1);

 }

 rs.close();

 p.close();

 if (!exists) {

 throw new FileNotFoundException(idVal);

 }

 else {

 return theClob.getAsciiStream();

 }

 }

 catch (SQLException s) {

 return null;

 }

 }

}

Figure 6.4 shows the xml_documents table we created in Chapter 5.

Figure 6.4. Simple table for storing XML documents in CLOBs

We can retrieve the value of a document named /messages/order.xml by using our ReadCLOB

class like this:

Reader r = ReadCLOB.fromColumn(myJDBCConnection, // JDBC Connection

 "xml_documents", // Table Name

 "xmldoc", // CLOB Column Name

 "docname", // Key Column Name

 "/messages/order.xml"); // Key Column Value

To write the contents of a document into a CLOB, you must first either:

• Insert a new row into the table containing the CLOB column, using the empty_clob()

function to create a "blank" CLOB instance in the row

• Use a SELECT...FOR UPDATE statement to retrieve an existing CLOB and lock the row for

modification

Then use one of these methods on oracle.sql.CLOB to retrieve an output stream:

• getCharacterOutputStream() to return a character-based Writer

• getAsciiOutputStream() to return a byte-based OutputStream

With a Writer or OutputStream in hand, you simply write the document's data into the CLOB's

output stream. The changes become permanent when you commit the transaction. Example 6.3

shows a companion helper class to ReadCLOB called WriteCLOB. Its fromReader method takes the

contents of any Reader and writes it into the CLOB's output stream.

Notice that the code uses the CLOB's getChunkSize method to

determine the optimal buffer size for copying data into the
output stream. The optimal size depends on your database's
DB_BLOCK_ SIZE parameter in the INIT.ORA file.

Example 6.3. Writing Data from a Character Reader into a

CLOB

import java.sql.SQLException;

import oracle.sql.CLOB;

import java.io.*;

public class WriteCLOB {

 // Write the contents read from a Reader into a CLOB

 public static void fromReader(Reader in, CLOB theClob) throws SQLException {

 // Open character output stream for writing to the CLOB

 Writer out = theClob.getCharacterOutputStream();

 // Read in chunks from the input and write to the output,

 // asking the CLOB for its optimal ChunkSize

 int chunk = theClob.getChunkSize();

 char[] buffer = new char[chunk];

 int length = -1;

 try {

 while ((length = in.read(buffer)) != -1) {

 out.write(buffer, 0, length);

 }

 // Close streams

 in.close();

 out.close();

 }

 catch (IOException iox) { }

 }

}

Since the CLOB's getOutputStream method returns a Writer, we can use any Java code that can

write data to a Writer to set the contents of the CLOB. For example, the following code creates

a BufferedWriter on a CLOB using its optimal chunk size and then calls the print method on the

XMLDocument object passed in to "print" the serialized text representation of the XML document

into the CLOB:

import oracle.sql.CLOB;

import java.io.*;

import oracle.xml.parser.v2.XMLDocument;

public class XMLDocumentToClob {

 public static void write(XMLDocument doc, CLOB theClob) throws Exception {

 // Open a writer for writing into the CLOB, buffering the writes using

 // the CLOB's optimal chunk size.

 BufferedWriter out = new BufferedWriter(theClob.getCharacterOutputStream(),

 theClob.getChunkSize());

 // "print" the XML document into the clob

 doc.print(new PrintWriter(out));

 // Close the writer

 out.close();

 }

}

If you take another look at Figure 6.4 you'll see that, while the structure of the xml_documents

table is simple, it provides all we need to store useful XML documents inside the database in a

generic way. Although the table's docname column can be any String value, we could constrain

our docname string values to look like fully qualified filenames. In this way, we can think of the

value of the xmldoc CLOB column in the row of xml_documents with a docname equal to

/book/Chapter1.xml as the contents of the Chapter1.xml file in the /book directory.

We can build up a useful helper class called XMLDocuments to encapsulate the access to our

xml_documents table in a way that makes it very easy to retrieve, delete, list, and save XML

documents stored there. Building on the ReadCLOB and WriteCLOB helpers we wrote above, we

can provide methods in our new class like the following:

getReader()

To return a Reader on a CLOB in xml_documents with a given docname:

public static Reader getReader(Connection conn, String docname)

 throws FileNotFoundException {

 return

ReadCLOB.fromColumn(conn,"xml_documents","xmldoc","docname",docname);

}

delete()

To delete a row with a given docname from the table:

public static void delete(Connection conn,String docname) throws SQLException{

 PreparedStatement stmt = conn.prepareStatement("DELETE FROM xml_documents"+

 " WHERE docname = ?");

 stmt.setString(1,docname);

 stmt.execute();

 stmt.close();

 conn.commit();

}

list()

To provide a list of documents matching a given docname:

public static void list(Connection conn,String docname,PrintWriter out)

 throws SQLException {

 PreparedStatement ps = conn.prepareStatement(

 "SELECT docname,TO_CHAR(timestamp,'Mon DD HH24:MI')"

 +" FROM xml_documents"

 +" WHERE docname LIKE REPLACE(?,'*','%')||'%'"

 +" ORDER BY docname");

 ps.setString(1,docname);

 ResultSet rs = ps.executeQuery();

 while (rs.next()) {

 out.println(rs.getString(2)+" "+rs.getString(1));

 }

 ps.close();

}

save()

To save the contents of any Reader as a named document in xml_documents:

public static void save(Connection conn,String docname,Reader input)

 throws SQLException, SAXException {

 // Delete existing row if present

 delete(conn,docname);

 // Insert a new row with empty_clob()

 CallableStatement stmt = conn.prepareCall(

 "BEGIN " +

 " INSERT INTO xml_documents(docname, xmldoc) " +

 " VALUES(?, empty_clob()) "+

 " RETURNING xmldoc INTO ?;" + // Use RETURNING...INTO to get CLOB

 "END;");

 stmt.setString(1,docname); // Bind var in VALUES()

 stmt.registerOutParameter(2,OracleTypes.CLOB); // RETURNING INTO

 stmt.execute(); // Do it

 // Retrieve the returned values of CLOB locator

 CLOB theXMLClob = ((OracleCallableStatement)stmt).getCLOB(2);

 stmt.close();

 // Write the input to the CLOB

 WriteCLOB.fromReader(input, theXMLClob);

 // Commit the changes and close the connection.

 conn.commit();

}

With these routines in our XMLDocuments class to encapsulate access to xml_documents, we can

build a helpful command-line tool like XMLDoc in Example 6.4 to really make our lives easier. The

XMLDoc utility will let us:

• Save a file into xml_documents:

java XMLDoc save filename docname

• Retrieve a document:

java XMLDoc get docname

• List documents matching a docname:

java XMLDoc list docname

• Delete a document:

java XMLDoc delete docname

Setting Up to Run Examples

To successfully run the XMLDoc example and other command-line Java

programs in this chapter and the rest of the book, the following two
things must be true:

1. You must have a Java runtime environment properly set up.
2. You must list the fully qualified names of any directories and Java

archive (.jar) files containing classes you wish to run—as well as
classes on which these classes depend—in your CLASSPATH
environment variable.

If you have installed JDeveloper 3.1 from the CD-ROM accompanying
this book, then one option is to run the examples from within the
JDeveloper 3.1 IDE. In this scenario, everything is set up to work
properly in the workspace of example files that you downloaded from the

O'Reilly web site. If you want to run the examples from the command

line, you can simply run the .\bin\setvars.bat script to set up your

Java runtime environment correctly. If you have installed JDeveloper

into the C:\JDev directory, then the syntax to run setvars looks like this:

C:\> c:\jdev\bin\setvars c:\jdev

The first argument to setvars gives the name of the directory where

JDeveloper is installed. The script sets up your PATH and CLASSPATH to
properly run Java programs. However, as noted in step 2, you still may
need to add additional directories and/or .jar filenames to the
CLASSPATH environment variable in order to run particular programs.

For example, if you have compiled the examples for this chapter into the
C:\xmlbook\ch06\classes directory, and those examples depend on the
Oracle XML Parser for Java, you should add two entries to the front of the
CLASSPATH with the syntax (all on one line when you type it in):

C:\> set CLASSPATH=C:\xmlbook\ch06\classes;
 C:\JDev\lib\xmlparserv2_2027.jar;%CLASSPATH%

The syntax to do this on Unix platforms will differ slightly, as will the
directory separator character, but follow the syntax you normally use on
your platform for setting environment variable values.

Example 6.4. XMLDoc Lists, Loads, Saves, and Deletes XML

Documents

import java.io.*;

import java.sql.*;

import java.net.URL;

import XMLDocuments;

import oracle.xml.parser.v2.*;

// Command-line utility to get, delete, list, and save XML documents

public class XMLDoc {

 public static void main(String[] args) throws Exception {

 Connection conn = Examples.getConnection();

 PrintWriter out = new PrintWriter(System.out);

 int argCount = args.length;

 if (argCount > 1) {

 String filename = null;

 try {

 String cmd = args[0];

 filename = args[1];

 if (cmd.equals("get")) {

 writeReader(XMLDocuments.getReader(conn,filename),out);

 }

 else if (cmd.equals("list")) { XMLDocuments.list(conn,filename,out);}

 else if (cmd.equals("delete")) { XMLDocuments.delete(conn,filename);}

 else if (cmd.equals("save") && argCount > 2) {

 String docname = args[2];

 URL u = URLUtils.newURL(filename);

 // From Example 6-5

 Reader r = new InputStreamReader(u.openStream());

 XMLDocuments.save(conn,docname,r);

 }

 }

 catch (FileNotFoundException fnf) {

 out.println("File '"+filename+"' not found.");

 }

 }

 else {

 out.println("usage: XMLDoc [get|delete|list|[save file]] docname");

 }

 out.close(); conn.close();

 }

 // Write a Reader to a Writer

 private static void writeReader(Reader r, Writer out)

 throws IOException {

 char[] buffer = new char[8192];

 int length = -1;

 while ((length = r.read(buffer)) != -1) {

 out.write(buffer, 0, length);

 }

 out.flush();

 }

}

So if we just happen to have Shakespeare's A Midsummer Night's Dream in XML lying around in

the current directory (courtesy of Jon Bosak):

<?xml version="1.0"?>

<!DOCTYPE PLAY SYSTEM "play.dtd">

<PLAY>

<TITLE>A Midsummer Night's Dream</TITLE>

 <!-- ... etc ... -->

</PLAY>

we can load the files dream.xml and its accompanying DTD play.dtd into a "directory" named

/plays/shakespeare in our xml_documents table with these two simple commands:

java XMLDoc save dream.xml /plays/shakespeare/dream.xml

java XMLDoc save play.dtd /plays/shakespeare/play.dtd

and list the contents of /plays/shakespeare with the command:

java XMLDoc list /plays/shakespeare

which shows us the XML documents stored in CLOBs in xml_documents as if they were files with

timestamps.

Apr 14 18:39 /plays/shakespeare/dream.xml

Apr 14 18:39 /plays/shakespeare/play.dtd

So, in effect, we've built a little CLOB-based "filesystem" inside the Oracle8i database that is sure

to come in handy. In Chapter 13, we'll learn how to create an interMedia XML Search index on the

xmldoc CLOB column of the xml_documents table to enable fast XML searches over the document

content as well.

We'll see the full source code of the XMLDocuments class later in this chapter.

6.2 Parsing and Programmatically Constructing XML

The Oracle XML Parser for Java is an amazing little piece of software. It provides everything we

need to:

• Parse XML documents and DTDs

• Validate XML documents against a DTD

• Programmatically construct and manipulate XML documents

• Search XML documents using XPath expressions

• Transform XML documents using XSLT stylesheets

By the end of this chapter, we'll have done all these tasks, but in the next few sections we focus

on the first three. First, let's make sure we've got the latest version of the Oracle XML Parser for

Java software and that it's properly installed in your Oracle8i database.

6.2.1 Installing Oracle XML Parser for Java

To verify that the Oracle XML Parser for Java is properly installed in your Oracle8i database, do

the following:

1. Connect to your Oracle8i database with SQL*Plus:

sqlplus xmlbook/xmlbook

2. Check the status of the oracle.xml.parser.v2.DOMParser class by running the following

SQL statement:
3. SELECT SUBSTR(dbms_java.longname(object_name),1,30) AS class, status

4. FROM all_objects

5. WHERE object_type = 'JAVA CLASS'

 AND object_name = dbms_java.shortname('oracle/xml/parser/v2/DOMParser')

If you see the result:

CLASS STATUS

------------------------------ -------

oracle/xml/parser/v2/DOMParser VALID

then the Oracle XML Parser for Java is already installed and ready to be used. You do not need to

complete any further installation steps.

If instead you see the SQL*Plus no rows selected message, complete the following steps to

install the Oracle XML Parser for Java in your Oracle8i database:

1. Locate the xmlparserv2.jar file that contains the executable code for the XML Parser for

Java. You can do this in one of two ways:

o Download the latest release of the Oracle XML Parser for Java version 2 from

http://technet.oracle.com/tech/xml. You'll find the xmlparserv2.jar file in the ./lib

subdirectory of the .zip or .tar.gz file that you download.

o Use the xmlparserv2.jar file in the ./jlib subdirectory of your Oracle8i server

installation home directory. Note, however, that this may not be the latest version

available.

2. Change directory to the directory that contains the xmlparserv2.jar file you'll be installing.

3. Load the xmlparserv2.jar file into your schema using the loadjava command:

loadjava -verbose -resolve -user xmlbook/xmlbook xmlparserv2.jar

If the loadjava command does not appear to work, make sure

that the ./bin subdirectory of your Oracle installation home is in
your system path.

Repeat the test above to confirm that the status of the class is now VALID, so the XML Parser for

Java is ready to be used in the server.

6.2.2 Parsing XML from Files, Streams, and Strings

Before we get started, it's good to get an overview of the Java packages we'll use most frequently

for basic XML processing. Table 6.1 provides a list that you'll find comes in handy over and over

again.

Table 6.1. Commonly Used Java Packages for Basic XML Processing

To do this Import this package And use these classes/interfaces

Parse and optionally validate XML

documents
oracle.xml.parser.v2.* DOMParser or SAXParser

Transform XML documents with XSLT oracle.xml.parser.v2.*
XSLStylesheet and
XSLProcessor

Work with the individual nodes in the

"tree" of an XML document's "object

model"

org.w3c.dom.*
Document, Element,

Attribute, Text, etc.

Work with URLs java.net.* URL

Work with input and output streams

of characters or bytes
java.io.*

Reader, InputStream, Writer,

OutputStream, etc.

Handle generic parsing events

and/or catch generic parsing

exceptions

org.xml.sax.*
InputSource and
SAXParseException

The Oracle XML Parser for Java supplies the oracle.xml.parser.v2 package classes; the other

most commonly used packages are not Oracle-specific:

• The java.net and java.io packages are part of the standard JDK.

• The org.w3c.dom package of Document Object Model (DOM) interfaces is available from

the W3C web site at http://www.w3.org/TR/REC-DOM-Level-1/java-binding.zip.

• The org.xml.sax package of Simple API for XML interfaces is available from

http://www.megginson.com/SAX/saxjava-1.0.zip.

You don't really have to download the org.w3c.dom and org.xml.sax packages, however; for

your convenience, Oracle includes them in the Oracle XML Parser for Java's xmlparserv2.jar file

archive. With this public service message out of the way, we're ready to start parsing.

Recall a slightly modified version of our FAQWithMultipleEntities.xml file from Chapter 2:

<?xml version="1.0"?>

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[

 <!ENTITY jdev "Oracle JDeveloper">

 <!ENTITY ver "3.1">

 <!ENTITY lastyears SYSTEM "1999-Questions.xml">

 <!ENTITY webq_and_a SYSTEM "http://xml.us.oracle.com/webquestions.xml">

]>

<FAQ-List>

 <FAQ Submitter="smuench@oracle.com">

 <Question>Is it easy to get started with XML?</Question>

 <Answer>Yes!</Answer>

 </FAQ>

 <FAQ Submitter="smuench@oracle.com" Level="Neophyte">

 <Question>What is the current version of &jdev;?</Question>

 <Answer>The current version is &jdev; &ver;</Answer>

 </FAQ>

 &webq_and_a;

 &lastyears;

</FAQ-List>

Parsing the file requires three basic steps:

1. Construct an instance of the DOMParser class.

2. Create a FileReader to read the file we want to parse.

3. Parse the stream of XML in the FileReader by calling the DOMParser's parse method:
4. import oracle.xml.parser.v2.*;

5. import org.xml.sax.SAXParseException;

6. import java.io.FileReader;

7.

8. public class ParseFAQ {

9. public static void main(String[] args) throws Exception {

10. String filename = "FAQWithMultipleEntities.xml";

11. // (1) Create a new XML Parser

12. DOMParser dp = new DOMParser();

13. // (2) Open a Reader on the file (assuming its in current directory)

14. FileReader fileRdr = new FileReader(filename);

15. try {

16. // (3) Attempt to parse the stream

17. dp.parse(fileRdr);

18. System.out.println("Parsed ok.");

19. }

20. catch (SAXParseException spe) {

21. System.out.println(spe.getMessage());

22. }

23. }

}

However, running this code fails with the error:

Error opening external DTD 'FAQ-List.dtd'.

Let's look again at the line:

<!DOCTYPE FAQ-List SYSTEM "FAQ-List.dtd"[

Since the SYSTEM Identifier for the DOCTYPE does not refer to an absolute URL, the relative

reference to "FAQ-List.dtd" here means, intuitively, "Find FAQ-List.dtd in the same directory as

the current file." If you double-check, you'll see that FAQ-List.dtd is indeed in the same directory

as the file we're parsing. The problem is that since we fed the XML Parser a stream of characters

by calling:

dp.parse(fileRdr); // Parse a stream of characters

it has no way of inferring the filename from the sequence of characters we fed it. Without

understanding the filename it's currently parsing, it's logical that the parser also has no way of

knowing what directory the source XML is coming from. Without knowing the name of the current

directory, it is impossible for the parser to figure out what "find the DTD in the same directory as

the current file" means, so it gives up by complaining that it cannot find the external DTD.

The solution to the problem is to call the setBaseURL method on the DOMParser we're currently

using to help it find the filename that corresponds to the stream of characters we're asking it to

parse:

// Help the parser know what file:// URL this stream represents

dp.setBaseURL(urlForFile(filename));

The setBaseURL method expects a URL object, which in the case of a file URL looks like

file:///somedir/somefile.ext. We can use a method like urlForFile below to convert a

name like file.xml into the proper file URL it represents (including the full absolute path to the

directory it lives in) with a little code, like this:

private static URL urlForFile(String filename) throws MalformedURLException {

 // Get the absolute path of the file

 String path = (new File(filename)).getAbsolutePath();

 // If directory separator character is not a forward slash, make it so.

 if (File.separatorChar != '/') {

 path = path.replace(File.separatorChar,'/');

 }

 // Add a leading slash if path doesn't start with one (e.g. E:/foo/bar)

 if (!path.startsWith("/")) {

 path = "/"+path;

 }

 // Return the file URL

 return new URL("file://" + path);

 }

After we make these changes to our program, rerunning it to parse our file with an external DTD

gives a successful result. Note that while these examples have focused on using a FileReader,

the DOMParser cares only that the object you pass in is a Reader of some kind, so any valid

Reader subclass is easy to pass in for parsing. In fact, either a Reader or an InputStream can be

used. Just be sure to call setBaseURL to tell the parser what it's parsing in case the document has

any external resources (DTD or external entities) to read in from locations relative to the current

document's location.

Since we'll end up using this urlForFile logic over and over in our examples, it makes sense to

create a URLUtils helper class with a newURL method that takes any URL in string form, and

returns a valid URL object that it represents. In particular, for URLs with no protocol, the code in

Example 6.5 assumes the reference is to a file, and it determines the appropriate file URL.

Example 6.5. Helper Class to Handle String-based URLs

Intelligently

import java.io.*;

import java.net.*;

public class URLUtils {

 // Create a new URL from a string

 static URL newURL(String filename) throws MalformedURLException

 {

 URL url = null;

 try {

 // First try to see if filename is *already* a valid URL

 url = new URL(filename);

 }

 // If not, then assume it's a "naked" filename and make a URL

 catch (MalformedURLException ex) {

 // Get the absolute path of the file

 String path = (new File(filename)).getAbsolutePath();

 // If directory separator character is not a forward slash, make it so.

 if (File.separatorChar != '/') {

 path = path.replace(File.separatorChar,'/');

 }

 // Add a leading slash if path doesn't start with one (e.g. E:/foo/bar)

 if (!path.startsWith("/")) {

 path = "/"+path;

 }

 // Construct the file URL

 url = new URL("file://" + path);

 }

 return url;

 }

}

Now we can immediately put URLUtils to work in an example that shows another way to use the

DOMParser. In this example, we'll parse a URL directly, rather than send it in a character stream.

While we're at it, since it's just one extra line of code, let's ask the DOMParser to perform

validation against the DTD as well. Example 6.6 shows the code required.

Example 6.6. Parsing and Validating an XML File from a URL

import org.xml.sax.SAXParseException;

import org.xml.sax.InputSource;

import org.w3c.dom.Document;

import oracle.xml.parser.v2.*;

import java.io.*;

import java.net.*;

import URLUtils;

public class ParseFAQWithValidation {

 public static void main(String[] args) throws Exception {

 String filename = "FAQWithMultipleEntities.xml";

 // Use a URL directly from the beginning. No need to set SystemId

 URL fileURL = URLUtils.newURL(filename);

 // Create a new XML Parser

 DOMParser dp = new DOMParser();

 // Validate the document against its DTD

 dp.setValidationMode(true);

 try {

 // Attempt to parse the URL

 dp.parse(fileURL);

 System.out.println("Parsed ok.");

 // Get the parsed document

 Document xmldoc = dp.getDocument();

 // Print the document

 ((XMLDocument)xmldoc).print(System.out);

 }

 catch (SAXParseException spe) {

 System.out.println(spe.getMessage());

 }

 }

}

As we saw when using the oraxml command-line tool with the -v flag in Chapter 2, the validation

error against the DTD is shown:

Attribute value 'Neophyte' should be one of the declared enumerated values.

Because it is common to pass small XML documents as String arguments to methods for

processing, developers frequently ask "How can I parse an XML document from a string?" Luckily,

it's quite easy. Since we learned earlier that the DOMParser can parse any Reader, and since the

java.io package conveniently has the class StringReader to read the contents of any String,

we can put two and two together to parse the string-based XML document by:

1. Constructing a StringReader from our String:

StringReader myStringRdr = new StringReader(myXmlStringVar);

2. Passing it to the DOMParser as input:

dp.parse(myStringRdr);

A working sample is shown in Example 6.7.

Example 6.7. Parsing XML from a String Using a StringReader

import org.xml.sax.SAXParseException;

import java.io.StringReader;

import org.w3c.dom.Document;

import oracle.xml.parser.v2.*;

public class ParseFromString {

 public static void main(String[] args) throws Exception {

 String xmldocString = "<this>"+

 " <that/>"+

 " <!-- and the other -->"+

 "</this>";

 // Open a character reader on the string

 StringReader sr = new StringReader(xmldocString);

 // Create a new XML Parser

 DOMParser dp = new DOMParser();

 try {

 // Attempt to parse the reader

 dp.parse(sr);

 // Get the parsed document

 Document xmldoc = dp.getDocument();

 // Print the document

 ((XMLDocument)xmldoc).print(System.out);

 }

 catch (SAXParseException spe) {

 System.out.println(spe.getMessage());

 }

 }

}

As expected, this example prints out:

<this>

 <that/>

 <!-- and the other -->

</this>

Parsing XML in all of its forms is such a common operation that it, too, is a great candidate for a

quick helper class like XMLHelper in Example 6.8. In addition to helpful methods for quickly

parsing Readers, InputStreams, Strings, and URLs, we've also included a handy method to

format the SAXParseException for display, indicating the position and cause of the parsing error.

Example 6.8. XMLHelper Class to Simplify XML Parsing Tasks

import org.w3c.dom.*;

import oracle.xml.parser.v2.*;

import org.xml.sax.*;

import java.io.*;

import java.net.*;

public class XMLHelper {

 // Parse an XML document from a character Reader

 public static XMLDocument parse(Reader r, URL baseUrl)

 throws IOException, SAXParseException, SAXException {

 // Construct an input source from the Reader

 InputSource input = new InputSource(r);

 // Set the base URL if provided

 if (baseUrl != null) input.setSystemId(baseUrl.toString());

 // Construct a new DOM Parser

 DOMParser xp = new DOMParser();

 // Parse in Non-Validating Mode

 xp.setValidationMode(false);

 // Preserve Whitespace

 xp.setPreserveWhitespace(true);

 // Attempt to parse XML coming in from the Reader

 xp.parse(input);

 // If the parse is successful, return the DOM Document

 return (XMLDocument) xp.getDocument();

 }

 // Parse XML from an InputStream

 public static XMLDocument parse(InputStream is, URL baseURL)

 throws SAXParseException, SAXException, IOException {

 // Construct a Reader and call parse(Reader)

 return parse(new InputStreamReader(is), baseURL);

 }

 // Parse XML From a String

 public static XMLDocument parse(String xml, URL baseurl)

 throws MalformedURLException, IOException,

 SAXParseException, SAXException {

 // Construct a reader and call parse(Reader)

 return parse(new StringReader(xml),baseurl);

 }

 // Parse XML from a URL

 public static XMLDocument parse(URL url) throws IOException,

 SAXParseException,

 SAXException {

 // Construct an InputStream and call parse(InputStream)

 // Use the url passed-in as the baseURL

 return parse(url.openStream(), url);

 }

 // Format information for a parse error

 public static String formatParseError(SAXParseException s) {

 int lineNum = s.getLineNumber();

 int colNum = s.getColumnNumber();

 String file = s.getSystemId();

 String err = s.getMessage();

 return "XML parse error " + (file != null ? "in file " + file + "\n" : "")+

 "at line " + lineNum + ", character " + colNum + "\n" + err;

 }

}

Because XMLHelper can help us parse any InputStream, it can, in particular, easily parse

compressed XML contained in a .zip or .gzip file using built-in classes like GZIPInputStream in the

JDK's java.util.zip package. This process is so simple that it doesn't even warrant a full example,

just a few lines of code:

import java.util.zip.GZIPInputStream;

 :

// Create a URL for the GZip'd resource

URL u = URLUtils.newURL("test.xml.gz");

// Create a GZIPInputStream over the compressed stream of XML in the GZip file.

GZIPInputStream gz = new GZIPInputStream(u.openStream());

// Parse it with our XMLHelper like any other InputStream, passing base URL!

XMLDocument x = XMLHelper.parse(gz,u);

Next we'll look at some potential problems related to parsing XML documents from CLOB columns

inside the database, and come up with a nifty solution.

6.2.3 Simplifying CLOB-based XML Parsing

Let's apply what we've already learned to parsing XML from database CLOB columns. Earlier, we

used our XMLDoc utility to load the contents of Shakespeare's A Midsummer Night's Dream file,

dream.xml, and its corresponding play.dtd into our xml_documents table. We can parse the XML

contents of the CLOB with the help of three of our helper classes:

Examples.getConnection

To connect to the database

XMLDocuments.getReader

To get a Reader for the CLOB where dream.xml is stored

XMLHelper.parse

To parse the Reader

We are stoked; this will be easy! We try the following example code that puts these three steps

into action to read the document /plays/shakespeare/dream.xml:

import XMLHelper;

import java.io.Reader;

import java.sql.Connection;

public class ReadDream {

 public static void main(String[] args) throws Exception {

 // Connect to the database

 Connection conn = Examples.getConnection();

 // Get a reader for the CLOB named '/plays/shakespeare/dream.xml'

 Reader r = XMLDocuments.getReader(conn,"/plays/shakespeare/dream.xml");

 try { // To parse it...

 XMLHelper.parse(r,null);

 }

 catch (Exception ex) { // Doh!

 System.out.println(ex);

 }

 conn.close(); // Disconnect

 }

}

We get the following dreaded error because the parser cannot find the play.dtd in the same

directory as the dream.xml document it's currently parsing:

Error opening external DTD 'play.dtd'.

Well, we know how to fix that, don't we? We just call setBaseURL() with the URL of the document

we're parsing, right? Then the parser can properly find play.dtd in the same directory as the

current document. But let's think a little. What is the URL of the current character stream of

dream.xml coming from a CLOB? Not file://something because we're not reading it from a

filesystem. Not http:// something because we're not retrieving the document over the Web.

Certainly not ftp://something or gopher://something. So what kind of URL is it? Aye, there's

the rub.

You might be tempted to say:

• It's a database URL.

• It's a CLOB URL.

• It's an xml_documents table URL.

But none of these would be exactly right. The answer is that there is no URL that describes the

resource identified by the row in the xml_documents table whose docname column value is

/play/shakespeare/dream.xml. But since the "U" in URL stands for "uniform"—suggesting that

it's been designed to handle any possible need—we're in luck. The URL system is designed to be

extensible, so we can build the URL we need and slot it into the grand scheme of things. Since

we're trying to describe resources that live in the xml_documents table, let's invent a new kind of

URL protocol named xmldoc: so we can work with our CLOB-based document using the following

single line of Java code:

URL u = new URL("xmldoc:/play/shakespeare/dream.xml");

to refer to the resource we were trying unsuccessfully to parse earlier.

It turns out that it is not very much work at all to implement a new URL protocol. Figure 6.5

illustrates the steps involved in building our xmldoc: handler.

Figure 6.5. Implementing an xmldoc: URL protocol handler

The steps are as follows:

1. We need to create a class that implements the java.net.URLStreamHandlerFactory

interface.

This is required for any class that is intended to assist the URL mechanism in deciding how

to handle opening a stream for a URL. The default implementation of

URLStreamHandlerFactory can delegate responsibility to the correct URLStreamHandler

based on the protocol. We need to implement our XMLDocURLStreamHandlerFactory so

that it properly handles a request for our new xmldoc protocol, but hands control back to

the default mechanism for any other protocol by returning null. Here's the code:

import java.net.*;

import XMLDocURLStreamHandler;

public class XMLDocURLStreamHandlerFactory implements

URLStreamHandlerFactory {

 public URLStreamHandler createURLStreamHandler(String protocol) {

 // If the URL being constructed is an xmldoc:/foo/bar.xml Url, we do...

 if (protocol.equals("xmldoc")) return new XMLDocURLStreamHandler();

 // Otherwise, let the default URL mechanism handle it.

 else return null;

 }

}

2. We need to create a class that extends URLStreamHandler and defines what the

openConnection() method means for one of our new xmldoc: URLs. In our case, we

want it to return a new XMLDocURLConnection object to represent the connection to the

resource that the URL represents:
3. import java.net.*;

4. import java.io.IOException;

5. import XMLDocURLConnection;

6.

7. public class XMLDocURLStreamHandler extends URLStreamHandler {

8. protected URLConnection openConnection(URL u) throws IOException {

9. return new XMLDocURLConnection(u);

10. }

}

11. Finally, we need our XMLDocURLConnection to extend URLConnection and override the

getInputStream() method to return the input stream that we want for xmldoc: URLs.

We want to return the InputStream for the CLOB in the xml_documents table whose

docname equals the URL's filename. As shown in the code for XMLDocURLConnection in

Example 6.9, we use our XMLDocuments.getInputStream to do the real work.

Example 6.9. Returning the Input Stream for an xmldoc: URL

from a CLOB

import java.net.*;

import java.io.*;

import java.sql.*;

import oracle.jdbc.driver.*;

import XMLDocuments;

import Examples;

public class XMLDocURLConnection extends URLConnection {

 Connection conn = null;

 public XMLDocURLConnection (URL u) {

 super(u);

 }

 public void connect() {

 // Don't need to do anything here, but must implement this method

 }

 public InputStream getInputStream() throws IOException {

 Connection conn = null;

 try {

 // Get the default Oracle8i connection for the current user

 conn = Examples.getConnection();

 }

 catch (SQLException s) {

 throw new IOException("Fatal error getting database connection");

 }

 // Return InputStream for the requested "file" in xml_documents table

 return XMLDocuments.getInputStream(conn,url.getFile());

 }

 public void finalize() {

 // Close the database connection when object is garbage-collected

 try { if (conn != null) conn.close(); } catch (SQLException s) {}

 }

}

And with this, we're done. Well, almost done. We need to add a method to our XMLDocuments

class that puts our XMLDocURLStreamHandlerFactory in charge instead of the default

URLStreamHandlerFactory. That code for this method looks like this:

// Enable the use of xmldoc:/dir1/dir2/file.xml URLs in this session

public static void enableXMLDocURLs() {

 try {

 // Give *our* handler first chance to handle URL.openConnection() requests

 URL.setURLStreamHandlerFactory(new XMLDocURLStreamHandlerFactory());

 }

 catch(java.lang.Error alreadyDefined) { /* Ignore */ }

}

Now we're ready to test out our shiny new xmldoc: URLs. We already have our Shakespeare

dream.xml and play.dtd in our xml_documents table, but just for good measure, let's load

another document with external references of different kinds to make sure everything is working

properly. The following EntityText.xml document contains a relative URL reference to its external

test.dtd in a dtd subdirectory, an external entity using a relative URL "external.xml", an

external entity using an http: URL, and an external entity using a file: URL:

<?xml version="1.0" encoding="UTF-8"?>

<!-- DTD is in the "dtd" subdirectory -->

<!DOCTYPE test SYSTEM "dtd/test.dtd" [

 <!-- This external entity is in the "same" relative directory -->

 <!ENTITY e SYSTEM "external.xml">

 <!-- This external entity is retrieved by HTTP -->

 <!ENTITY f SYSTEM "http://xml.us.oracle.com/http-external.xml">

 <!-- This external entity is retrieved from the file system -->

 <!ENTITY g SYSTEM "file:///C:/xmlfiles/file-external.xml">

]>

<test>

 &e;

 &f;

 &g;

</test>

If our xmldoc: protocol is working properly, it should handle any references relative to the

original document being parsed because a URL relative to an xmldoc: URL will also be an xmldoc:

URL. The file: and http: URL entities should be retrieved correctly. So using XMLDoc, we can

load these extra few test files into our xml_documents table:

java XMLDoc save EntityTest.xml /testdir/EntityTest.xml

java XMLDoc save external.xml /testdir/external.xml

java XMLDoc save test.dtd /testdir/dtd/test.dtd

and run the test program in Example 6.10.

Example 6.10. Testing Our New xmldoc: URL Handler

import java.net.URL;

import oracle.xml.parser.v2.*;

import java.io.*;

import XMLDocURLStreamHandlerFactory;

import XMLHelper;

public class TestXMLDocURL {

 // debug_main is Oracle8i Java stored procedure Debugging entry point

 public static void debug_main() throws Exception {

 main(null);

 }

 public static void main(String[] args) throws Exception {

 // Enable the use of xmldoc URLs in this session

 XMLDocuments.enableXMLDocURLs();

 // Create an xmldoc URL for the /plays/shakespeare/dream.xml file

 URL u = new URL("xmldoc:/plays/shakespeare/dream.xml");

 // Parse the shakespeare document

 XMLDocument xmldoc = XMLHelper.parse(u);

 // Create an xmldoc URL for the /testdir/EntityTest.xml'

 u = new URL("xmldoc:/testdir/EntityTest.xml");

 // Parse the test document

 xmldoc = XMLHelper.parse(u);

 // Print out the test document

 xmldoc.print(System.out);

 }

}

Eureka! The program successfully parses dream.xml without complaining about the play.dtd as

before, and parses EntityTest.xml correctly to print out the document with all of its external

entities properly retrieved:

<?xml version = '1.0' encoding = 'UTF-8'?>

<!-- DTD is in the "dtd" subdirectory -->

<!DOCTYPE test SYSTEM "xmldoc:/testdir/dtd/test.dtd" [

<!ENTITY e SYSTEM "xmldoc:/testdir/external.xml">

<!ENTITY f SYSTEM "http://xml.us.oracle.com/http-external.xml">

<!ENTITY g SYSTEM "file:/C:/xmlfiles/file-external.xml">

]>

<test>

 <external>Local</external>

 <external>From HTTP</external>

 <external>From File</external>

</test>

6.2.4 Deploying and Debugging Stored Procedures

Now that we have demonstrated that our xmldoc: URL and its supporting classes work properly

outside the database, let's deploy them into the Oracle8i JServer VM and make sure they work

properly inside the database as well. The manual steps to deploy our TestXMLDocUrl class (and

all the classes it depends on) to JServer are as follows:

1. Compile all Java classes related to TestXMLDocUrl.

2. Create a Java archive (e.g., deploy.jar) containing all the classes in Step 1.

3. Use the loadjava command-line tool to load the Java archive into JServer into the

XMLBOOK schema:

loadjava -verbose -resolve -user xmlbook/xmlbook deploy.jar

4. Determine the proper datatype mapping between PL/SQL types and Java types for the

arguments in order to properly create a PL/SQL procedure specification.

5. Create a procedure specification using the AS LANGUAGE JAVA keywords that map to the

TestXMLDocUrl.debug_main static method.

In JDeveloper 3.1, the process is completely wizard-driven. The first time you want to deploy, just

select Project Deploy New Deployment Profile... from the menu to create a new Oracle8i
stored procedure deployment profile, as shown in Figure 6.6.

Figure 6.6. Selecting the type of deployment

Next, select the files from your project you want to deploy, as illustrated in Figure 6.7.

Figure 6.7. Selecting the files to deploy

JDeveloper analyzes class dependencies to make sure you don't forget any. Then select which of

the available static methods in the classes you are deploying should be published as Java stored

procedures as shown in Figure 6.8. You also select a "Database package" name and choose

whether your new Java stored procedures should run with the privileges of the CURRENT_USER or

the DEFINER.

Figure 6.8. Selecting static methods to publish as stored

procedures

Pick a database connection to use for the deployment from the list of preconfigured connections

on the next panel, and then, finally, provide a name for the deployment profile so your project's

files can be redeployed at any time with a single menu click. If you make changes to any of your

code, just select Deploy from the context menu on your deployment profile, as shown in Figure

6.9, and your files are instantly redeployed to JServer, no questions asked.

Figure 6.9. Redeploying a project with an existing profile

If something about your Java code running in JServer is not functioning as expected, you can

easily do remote debugging against the JServer virtual machine by visiting your project's

Properties dialog and setting the Debug Files as: pop-up list to "Oracle8i Stored Procedure", as

shown in Figure 6.10.

Figure 6.10. Setting up for JServer Java debugging

Set your desired breakpoints, then click on the Debug icon in the toolbar to begin your remote

debugging session with JServer. As illustrated in Figure 6.11, you can set breakpoints, examine

the call stack and any variables, step through, into, and out of routines, and even see the JServer

output conveniently in the JDeveloper message log instead of having to hunt through server trace

files to find your debugging messages.

Figure 6.11. JDeveloper 3.1 debugging Java stored

procedures

For Java stored procedure debugging, the program that you
want to debug must have the following method defined:

public static void debug_main()

This is the debug entry point method for remote JServer
debugging.

When we run the TestXMLDocURL inside JServer, one of two things will happen:

• It works successfully.

• It fails with JServer permission violations.

Being a secure server environment for production applications, JServer is no slouch when it

comes to enforcing the Java 2 security model. This means that not just anyone can run Java code

inside the database. The system administrator has fine control over what operations each user is

allowed to perform in his or her Java code.

In order for TestXMLDocURL to work properly inside JServer, we need permissions to:

• Set the URLStreamHandlerFactory to enable xmldoc: URLs

• Resolve the machine name xml.us.oracle.com and connect to it to allow the XML Parser

running inside JServer to retrieve the external entity from SYSTEM Identifier
http://xml.us.oracle.com/http-external.xml

• Read the files in the C:\xmlfiles directory on the local (i.e., database server) machine to

allow the XML Parser to retrieve the external entity from SYSTEM Identifier
file:///C:/xmlfiles/file-external.xml

• Debug the code running in JServer

The system administrator manages Java 2 security policies and permissions using the

grant_permission, revoke_permission, enable_permission, disable_permission, and

delete_permission procedures in the DBMS_JAVA package. The script in Example 6.11, if run as

SYS, grants the privileges necessary to successfully debug and test the TestXMLDocURL Java

stored procedure.

Example 6.11. Granting Java 2 Security Privileges Using the

dbms_java Package

BEGIN

 -- Grant Permission to read a file in the C:\xmlfiles directory

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:java.io.FilePermission',

 permission_name => 'C:\xmlfiles*',

 permission_action => 'read');

 -- Grant Permission to set the URLStreamHandlerFactory

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:java.lang.RuntimePermission',

 permission_name => 'setFactory',

 permission_action => '');

 -- Grant Permission to resolve and connect to URL at xml.us.oracle.com

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:java.net.SocketPermission',

 permission_name => 'xml.us.oracle.com',

 permission_action => 'connect,resolve');

 -- Grant Permission to debug JServer java code

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:oracle.aurora.security.JServerPermission',

 permission_name => 'Debug',

 permission_action => '');

 COMMIT;

END;

You can verify what privileges you have by running the useful SELECT SQL statement against the

data dictionary view java_user_policy in Example 6.12.

Example 6.12. Listing URL-Related Java Security Policies in

Oracle8i

PROMPT +==+

PROMPT | Your URL, File, and Debug-Related Java Security Settings |

PROMPT +==+

set pages 999

column "Permission" format a30

column "Name" format a20

column "Action" format a15

column "Enab?" format a5

column "Key" format 99999

SELECT SUBSTR(type_name,INSTR(type_name,'.',-1)+1)||CHR(10)||

 '('||SUBSTR(type_name,1,INSTR(type_name,'.',-1)-1)||')'

 AS "Permission",

 name AS "Name",

 action AS "Action",

 DECODE(SUBSTR(enabled,1,1),'E','Y','N') AS "Enab?",

 seq AS "Key"

 FROM user_java_policy

WHERE GRANTEE_NAME IN (USER,'JAVADEBUGPRIV') /* Eliminate PUBLIC privs */

 AND (type_name = 'java.net.SocketPermission'

 OR type_name = 'java.io.FilePermission'

 OR type_name = 'java.lang.RuntimePermission'

 OR type_name = 'java.util.PropertyPermission'

 OR (type_name = 'oracle.aurora.security.JServerPermission'

 AND name = 'Debug')

)

ORDER BY 1,3,2

/

After running the grant script in Example 6.11, Example 6.12 should produce results like this:

+==+

| Your URL, File, and Debug-Related Java Security Settings |

+==+

Permission Name Action Enab? Key

------------------------------ -------------------- --------------- ----- ------

FilePermission C:\xmlfiles* read Y 249

(java.io)

JServerPermission Debug Y 61

(oracle.aurora.security)

RuntimePermission setFactory Y 246

(java.lang)

SocketPermission xml.us.oracle.com connect,resolve Y 266

(java.net)

Table 6.2 gives a summary of the most common JServer permissions for working with XML inside

the database.

Table 6.2. Common JServer Permissions Used for Working with XML

If you want to You need this permission With this name
And

acti

Resolve a URL SYS:java.net.SocketPermission machine.domain.com con

or *.domain.com res

Open a file SYS:java.io.FilePermission
/dir/file.ext or
/dir/*

rea

Debug Java in JServer SYS:oracle.aurora.security.JServerPermission Debug

Use custom
URLStreamHandlerFactory

SYS:java.lang.RuntimePermission setFactory

Set a system property SYS:java.util.PropertyPermission propname wri

Last, but not least, we end this section with Example 6.13, the full source code of the

XMLDocuments class used previously to create a simple, CLOB-based filesystem on top of the

xml_documents table. Recall that our XMLDoc utility was a simple command-line shell over the

methods in the XMLDocuments class.

Example 6.13. Implementing a CLOB-based "Filesystem"

Inside JServer

import java.sql.Connection;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

import oracle.jdbc.driver.*;

import java.sql.*;

import oracle.sql.*;

import java.net.URL;

import java.io.*;

import java.sql.*;

import XMLDocURLStreamHandlerFactory;

import XMLHelper;

import ReadCLOB;

import WriteCLOB;

public class XMLDocuments {

 // get: Read an XML document from the xml_documents table.

 public static Document get(Connection conn,String idVal)

 throws FileNotFoundException, SAXException {

 Reader r = getReader(conn,idVal);

 try { return r != null ? XMLHelper.parse(r,null) : null; }

 catch (FileNotFoundException fnf) { throw fnf; }

 catch (IOException iox) { }

 return null;

 }

 // Return Reader on XML document named 'docname' from xml_documents table

 public static Reader getReader(Connection conn, String docname)

 throws FileNotFoundException {

 return ReadCLOB.fromColumn(conn,"xml_documents","xmldoc","docname",docname);

 }

 // Return InputStream on XML document named 'docname' from xml_documents

 public static InputStream getInputStream(Connection conn, String docname)

 throws FileNotFoundException {

 return ReadCLOB.fromColumnAsInputStream(conn,"xml_documents","xmldoc",

 "docname",docname);

 }

 // Save contents of a Reader into xml_documents with doc name of 'docname'

 public static void save(Connection conn,String docname,Reader input)

 throws SQLException, SAXException {

 // Delete existing row if present

 delete(conn,docname);

 // Insert a new row with empty_clob()

 CallableStatement stmt = conn.prepareCall(

 "BEGIN " +

 " INSERT INTO xml_documents(docname, xmldoc) " +

 " VALUES(?, empty_clob()) "+

 " RETURNING xmldoc INTO ?;" + // Use RETURNING...INTO to get CLOB

 "END;");

 stmt.setString(1,docname); // Bind var in VALUES()

 stmt.registerOutParameter(2,OracleTypes.CLOB); // RETURNING INTO

 stmt.execute(); // Do it

 // Retrieve the returned values of CLOB locator

 CLOB theXMLClob = ((OracleCallableStatement)stmt).getCLOB(2);

 stmt.close();

 // Write the input to the CLOB

 WriteCLOB.fromReader(input, theXMLClob);

 // Commit the changes and close the connection.

 conn.commit();

 }

 // Delete XML document named 'docname' from xml_documents

 public static void delete(Connection conn,String docname) throws SQLException{

 PreparedStatement stmt = conn.prepareStatement("DELETE FROM xml_documents"+

 " WHERE docname = ?");

 stmt.setString(1,docname);

 stmt.execute();

 stmt.close();

 conn.commit();

 }

 // Print a list of documents in xml_documents matching 'docname'

 // Allow either % or * as wildcard character in the name.

 public static void list(Connection conn,String docname,PrintWriter out)

 throws SQLException {

 PreparedStatement ps =

 conn.prepareStatement("SELECT docname,TO_CHAR(timestamp,'Mon DD HH24:MI')"

 +" FROM xml_documents"

 +" WHERE docname LIKE REPLACE(?,'*','%')||'%'"

 +" ORDER BY docname");

 ps.setString(1,docname);

 ResultSet rs = ps.executeQuery();

 while (rs.next()) {

 out.println(rs.getString(2)+" "+rs.getString(1));

 }

 ps.close();

 }

 // Enable the use of xmldoc:/dir1/dir2/file.xml URLs in this session

 public static void enableXMLDocURLs() {

 try {

 // Give *our* handler first chance to handle URL.openConnection() requests

 URL.setURLStreamHandlerFactory(new XMLDocURLStreamHandlerFactory());

 }

 catch(java.lang.Error alreadyDefined) { /* Ignore */ }

 }

}

6.2.5 Constructing XML from Ill-Formed HTML Input

In this section, we'll study an example that illustrates how to use the Oracle XML Parser for Java

to programmatically construct an XML document on the fly. To anyone excited about the power of

separating data from presentation, it remains a sad fact of life that most of the interesting

information on the Web today is still presented in HTML format. Book searches at Amazon.com,

stock quotes from http://quote.yahoo.com, or the latest international currency exchange rates at

http://www.x-rates.com are all available only as HTML pages. This is great for human eyeballs,

but depressingly useless if you'd like to have a computer application make heads or tails of the

valuable information contained in all those <TD> tags!

If HTML could be parsed as easily as XML, we might be able to attack the problem of scraping the

interesting data out of the advertisement-laden presentations, but, alas, most web developers

create their HTML without regard to its being well-formed. But a light at the end of this dim tunnel

is a clean-sounding, clever utility named "Tidy," by Dave Raggett, the lead for the HTML working

group at the World Wide Web Consortium (W3C). Tidy, which we introduced in Chapter 3,

understands many of the most common mistakes made by HTML page designers and quickly

corrects them to produce a well-formed XML document out of the messy HTML page you give it.[1]

[1] More information on the original C language version of Tidy is at http://www.w3.org/People/Raggett/tidy/.

Even more interesting for us at the moment is Andy Quick's Java port of Dave's Tidy utility, called

"JTidy". If you download JTidy from http://www3.sympatico.ca/ac.quick/jtidy.html, you can be

parsing HTML and turning it into XML in no time.

We're going to build a class called JTidyConverter that illustrates how to put JTidy to work to

parse an arbitrary HTML page and produce a well-formed XML tree of nodes in memory. Then

we'll use the Oracle XML Parser's implementation of the Document Object Model APIs to walk

JTidy's in-memory tree structure and programmatically construct an instance of XMLDocument on

which we can perform further processing, like data extraction.

Our goal is to start with an HTML page like the one shown in Figure 6.12 and end up with an

XMLDocument containing only the data we're interested in, like the Ticker and Price information

shown in Example 6.14.[2]

[2] While our Yahoo Quotes! example demonstrates the basic techniques needed to acquire information published in HTML and

transform it for further processing into a clean XML format, in practice, you must check the information supplier's policy on reuse

of information before including it in an application you build.

Example 6.14. Dynamically Scraping XML Data out of Existing

HTML Pages

<?xml version = '1.0' encoding = 'UTF-8'?>

<QuoteStream time="Tue Jun 20 3:57pm ET - U.S. Markets Closed.">

 <Quote Ticker="ORCL" Price="86.188"/>

 <Quote Ticker="GE" Price="50.500"/>

 <Quote Ticker="MSFT" Price="74.688"/>

 <Quote Ticker="IBM" Price="118.188"/>

 <Quote Ticker="T" Price="34.125"/>

 <Quote Ticker="LU" Price="59.812"/>

 <Quote Ticker="CSCO" Price="67.938"/>

</QuoteStream>

Figure 6.12. HTML stock quote information from Yahoo!

Since the JTidy bean does the "rocket science" part of the problem, we'll see that

programmatically creating the XML document based on JTidy's results is actually very

straightforward. Example 6.15 shows that to "XML-ify" HTML in our XMLifyHTMLFrom method, we

must perform these steps:

1. Construct an instance of JTidy's Tidy bean.

2. Set some JTidy HTML conversion options for the best results.

3. Construct a new XMLDocument object to use as the root of the well-formed XML document

our method will return.

4. Obtain an InputStream on the desired HTML page to tidy up by calling openStream() on

its URL.

5. Call tidy.parse() to parse the HTML InputStream into JTidy's in-memory DOM

representation.

6. Call cloneXMLFragment() on the root node of the JTidy DOM document to recursively

construct an Oracle XML Parser DOM tree.

Example 6.15. Using JTidy to Turn HTML into XML

import java.io.*;

import java.net.URL;

import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

import org.w3c.tidy.Tidy;

public class JTidyConverter {

 // Parse a URL returning for a possibly ill-formed HTML page and return

 // a "tidied" up XML document for the page using JTidy

 public XMLDocument XMLifyHTMLFrom(URL u) throws IOException {

 // (1) Construct a new Tidy bean to use for converting HTML to XML

 Tidy tidy = new Tidy();

 // (2) Set some Tidy options to get the best results for "data scraping"

 tidy.setMakeClean(true);

 tidy.setBreakBeforeBR(true);

 tidy.setShowWarnings(false);

 tidy.setOnlyErrors(true);

 tidy.setErrout(new PrintWriter(new StringWriter()));

 // (3) Construct an empty target Oracle XML DOM document

 XMLDocument xmldocToReturn = new XMLDocument();

 // (4) Get an InputStream of HTML from the URL

 InputStream HTMLInput = u.openStream();

 // (5) Ask Tidy to parse the incoming HTML into an in-memory DOM tree

 Document tidiedHTMLDoc = tidy.parseDOM(u.openStream(), null);

 // (6) Clone the JTidy DOM tree by recursively building up an Oracle DOM copy

 cloneXMLFragment(tidiedHTMLDoc,xmldocToReturn);

 return xmldocToReturn;

 }

 // Recursively build an Oracle XML Parser DOM tree based

 // on walking the JTidy DOM tree of the "tidied" page.

 private void cloneXMLFragment(Node node, Node curTarget) {

 if (node == null) return;

 Document d = curTarget instanceof Document ? (Document)curTarget :

 curTarget.getOwnerDocument();

 int type = node.getNodeType();

 switch (type) {

 // If we get the root node of the document, start the recursion

 // by calling build the Doc Element

 case Node.DOCUMENT_NODE:

 cloneXMLFragment(((Document)node).getDocumentElement(),d);

 break;

 // If we get an Element in the JTidy DOM, create Element in Oracle DOM

 // and append it to the current target node as a child. Also build

 // Oracle DOM attribute nodes for each attrib of the JTidy DOM Element

 case Node.ELEMENT_NODE:

 Element e = d.createElement(node.getNodeName());

 NamedNodeMap attrs = node.getAttributes();

 for (int i = 0; i < attrs.getLength(); i++) {

 e.setAttribute(attrs.item(i).getNodeName(),

 attrs.item(i).getNodeValue());

 }

 curTarget.appendChild(e);

 NodeList children = node.getChildNodes();

 // Recurse to build any children

 if (children != null) {

 int len = children.getLength();

 for (int i = 0; i < len; i++) {

 cloneXMLFragment(children.item(i),e);

 }

 }

 break;

 // If we get a Text Node in the JTidy DOM, create Text Node in Oracle

 // DOM and append it to the current target node as a child

 case Node.TEXT_NODE:

 curTarget.appendChild(d.createTextNode(node.getNodeValue()));

 break;

 }

 }

}

The cloneXMLFragment method is where the dynamic XML document creation is really happening.

Observe that our routine behaves differently depending on what type of DOM tree node we're

currently processing:

• If we see the root DOCUMENT_NODE, we start the recursive tree copy by calling

cloneXMLFragment on the top-level document element in the JTidy document.

• Whenever we see an ELEMENT_NODE, we do the following:

1. Create a new Element node in the Oracle XML DOM tree with the same name.

2. Append it to the current target node in the Oracle XML DOM tree as a child.

3. Copy all the Attribute name/value pairs from the JTidy DOM element to the Oracle

DOM element.

4. Recursively call cloneXMLFragment on each child node of the current element (if

any).

• Whenever we see a TEXT_NODE, we create a new Text node in the Oracle XML DOM tree

and append it to the current target node.

As a result, to retrieve any HTML page and convert it to an XML document for subsequent

processing, we need just three lines of code:

// Construct a JTidyConverter

JTidyConverter j = new JTidyConverter();

// Pick a URL with some HTML to process

URL u = new URL("http://quote.yahoo.com q?d2=v1&o=d&s=ORCL+GE+MSFT+IBM+T+LU+CSCO");

// Get back an XML document for the HTML page to process further

XMLDocument voila = j.XMLifyHTMLFrom(u);

Since server-side programs querying information from relational databases produce most

dynamically generated HTML pages, it's logical that these HTML pages will have some predictable,

repeating HTML structure. Imagine the pseudo-code for the Yahoo! Quotes web page service:

// Server-side Pseudo-code for the Yahoo! Quotes HTML page

printYahooFinanceBanner();

printSymbolLookupForm();

printAdsForPartners();

// 's' is the parameter passed in the URL with list of quotes

printQuoteTableFor(s);

printFooter();

The printQuoteTableFor(s) routine loops over the 20-minute delayed quote prices in the

database for the ticker symbols you've passed in and prints out a row of the HTML table for each

one.

If we actually run the three lines of code to put our JTidyConverter class to work on the Yahoo!

Quotes page, we get an XMLDocument containing the entire, well-formed content of the

dynamically produced page. Even though there's a lot of random HTML stuff around the wee bit

of data we're looking for, with XML in hand we're now in much better shape. The XMLDocument

returned by XMLifyHTMLFrom (with a few comments added to highlight the parts we're interested

in) looks like Example 6.16.

Example 6.16. Tidied Version of the Yahoo Quotes HTML Page

<?xml version = '1.0' encoding = 'UTF-8'?>

<html>

 <head>

 <meta content="HTML Tidy, see www.w3.org" name="generator"/>

 <title>Yahoo! Finance - (7) ORCL ... CSCO</title>

 </head>

 <body>

 <div style="text-align: center">

 <!-- Ads, Banner, and other preceding HTML removed for brevity -->

 <!-- Time of quotes is value of the <p> element preceding <table> -->

 <p>Tue Jun 20 3:57pm ET - U.S. Markets Closed.</p>

 <!--

 | Stock quotes start with the <table> whose first <th> header cell

 | in the first <tr> row has the value "Symbol"

 +-->

 <table cellspacing="0" cellpadding="1" border="1">

 <tr bgcolor="#dcdcdc">

 <th nowrap="">Symbol</th>

 <th colspan="2" nowrap="">Last Trade</th>

 <th colspan="2" nowrap="">Change</th>

 <th nowrap="">Volume</th>

 <th nowrap="">More Info</th>

 </tr>

 <!-- Stock Quote *data* starts in the 2nd <tr> row after headers -->

 <tr align="right">

 <!-- Ticker symbol is the value of the first <td> cell -->

 <td align="left" nowrap="">

 ORCL

 </td>

 <td align="center" nowrap="">Apr 14</td>

 <!-- Price is the value of third <td> cell -->

 <td nowrap="">

 86.188

 </td>

 <td style="color: #ff0020" nowrap="">+0.38</td>

 <td style="color: #ff0020" nowrap="">+0.44%</td>

 <td nowrap="">15,357,300</td>

 <td align="center" nowrap="">

 </td>

 </tr>

 <!-- Other identical "Stock Quote" <TR> rows removed for brevity -->

 </table>

 <!-- Other stuff removed -->

 </div>

 </body>

</html>

Since the HTML page is now well-formed XML, it's easier to recognize the repeating patterns we

are interested in:

• Out of many <table>s in the returned document, the <table> containing the stock quotes

is the one where the first <th> table header in the first <tr> table row has the value

Symbol.

• The effective time of the quote information is the value of the first <p> element preceding

this table.

• The actual stock quote data is in the individual <tr> rows of this <table>, starting with the

second row, since the first row is just column headers.

• In each row of stock quotes, the Ticker symbol is the value of the first <td> table data cell,

and the Price is the value of the third <td> cell.

By the value of the <td> cell we mean the text content inside

the <td> element or any of its nested elements (disregarding
attribute values). So the value of:

<td>
 86.188
</td>

is the text 86.188.

We can use an XSLT transformation to encapsulate the patterns we discovered above into a

simple stylesheet, like this:

<!-- YahooQuotes-to-QuoteStream.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="/">

 <!-- Find the <table> whose first row's first table header has "Symbol" -->

 <xsl:for-each select="//table[tr[1]/th[1]='Symbol']">

 <!-- The time of the quotes is in the first <p> preceding this table -->

 <QuoteStream time="{preceding::p[1]}">

 <!-- For each row after the first row -->

 <xsl:for-each select="tr[position()>1]">

 <!-- Ticker is value of first <td> cell -->

 <!-- Price is value of third <td> cell -->

 <Quote Ticker="{td[1]}"

 Price="{format-number(number(td[3]),'###,###.000')}"/>

 </xsl:for-each>

 </QuoteStream>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

We'll learn a lot more about how to create transformations like this in Chapter 7 and Chapter 9,

but it's pretty straightforward. The elements that start with <xsl:something> are XSLT

transformation actions. <xsl:for-each> lets us loop over elements in the source document that

match a particular pattern, described using an XPath expression. The attributes whose values are

surrounded by curly braces like time="{preceding::p[1]}" are created in the result with a

value that also comes from evaluating an XPath expression relative to the current loop.

This transformation reads the source XML document (our well-formed HTML page of Yahoo!

Quotes) and does the following:

1. For each <table> with Symbol in the first row's first header column, it creates a

<QuoteStream> element in the result with a time attribute equal to the value of the <p>

element preceding the table

2. Nested inside this <QuoteStream> element, it creates one <Quote> element for each <tr>

row of stock quote data matched in the sources.

3. For each <Quote> element, it creates Ticker and Price attributes with the respective

values pulled in from the first and third <td> elements in the current <tr> row

That's it. As we saw in Chapter 3, we could use the oraxsl command-line utility to transform the

single, tidied-up Yahoo! Quotes page above into a corresponding XML <QuoteStream> document

with the command:

oraxsl TidiedUpYahooQuotesPage.xml YahooQuotes-to-QuoteStream.xsl

But this will just produce XML results for a single page. We want to serve this real-time data over

the Web, so let's build a server-side Java program that leverages the cool machinery we've just

built.

Implementing a Java servlet is the standard way to write applications that respond to client

requests over the Web. While traditionally used to serve dynamic HTML pages in response to

requests from web browsers, by design, servlets are more general-purpose in nature. Requests

can come from any kind of client program, called a User Agent, and the servlet's response to

those requests can be of any MIME type, including the basic type for XML documents, text/xml.

Technically, a servlet is any class that implements the javax.servlet.Servlet interface. In

practice, most servlets extend the basic javax.servlet.HttpServlet class and override its

methods as appropriate to handle HTTP requests for a particular application. To respond to an

HTTP GET request, override the doGet method. To respond to an HTTP POST request, override

doPost. While doGet and doPost are the most common methods, Table 6.3 gives a short list of

servlet methods that developers typically override.

Table 6.3. Overview of HttpServlet Methods

Method

Name
Description

init
Called when the servlet is initialized. Servlet-wide resources such as database

connections can be acquired here and shared across multiple servlet threads (see the

discussion following the table).

doGet Called in response to a User Agent's request for a page using the HTTP GET method. A

GET request is called when the User Agent wants to retrieve a page of information. It is

not expected that a GET request will modify any persistent state in the server. This is

the most frequent kind of HTTP request.

doPost

Called in response to a User Agent's request for a page using the HTTP POST method,

typically used to post the contents of an HTML form to the server. A POST method

typically implies that the server will modify some persistent data using the results of the

request, then return a page indicating the status of the operation or presenting the next

step in a sequence of tasks to the user.

destroy
Called when the servlet is destroyed. Typically used to free system resources like

database connections that the servlet might have been using.

With this brief introduction to servlets in hand, let's take our Yahoo! Quotes example one last step

and build a Java servlet that makes use of the JTidyConverter class and the Oracle XSLT

processor to enable the data-scraping mechanism to be used dynamically over the Web. Example

6.17 shows the implementation of a YahooXMLQuotesServlet that does the job.

In the servlet's init() method, we construct an instance of a JTidyConverter and an

XSLStylesheet to use for processing each request. To show off yet another technique for parsing

XML from a stream, Example 6.17 uses the getClass().getResourceAsStream("filename")

method to load the source of the XSLT stylesheet YahooQuotes-to-QuoteStream.xsl from the

same location in the CLASSPATH as the current servlet class is found.

In the servlet's doGet() method, which runs each time a request for this servlet comes into the

web server, we do the following:

1. Set the MIME type of the servlet response to be text/xml.

2. Get the value of the HTTP parameter named symbols.

3. Create a URL for the Yahoo! Quotes page, tacking on the list of ticker symbols after

replacing commas with plus signs.

4. Call jtc.XMLifyHTMLFrom on the URL to get a tidied-up XML version of the returned Yahoo!

Quotes HTML page.

5. Create an instance of XSLProcessor and call processXSL() on it to transform the XML

results of our Yahoo! Quotes into a <QuoteStream>.

Example 6.17. Servlet to Convert Yahoo! Quotes to XML

Quotes in Real Time

import javax.servlet.http.*;

import oracle.xml.parser.v2.*;

import java.net.URL;

import javax.servlet.*;

import java.io.*;

import JTidyConverter;

public class YahooXMLQuotesServlet extends HttpServlet {

 JTidyConverter jtc = null;

 XSLStylesheet sheet = null;

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 String YahooQuotesURL = "http://quote.yahoo.com/q?d2=v1&o=d&s=";

 String quotes = req.getParameter("symbols");

 // First, tell the requestor we're sending her XML data as the response.

 resp.setContentType("text/xml");

 // Then, get the Servlet's output Writer to write the response into.

 PrintWriter out = resp.getWriter();

 if (quotes != null) {

 URL yahooUrl = new URL(YahooQuotesURL+quotes.replace(',','+'));

 try {

 // Convert the dynamically produced Yahoo! Quotes page to XML doc

 XMLDocument yahooquotes = jtc.XMLifyHTMLFrom(yahooUrl);

 // Transform the document using our stylesheet into <QuoteStream>

 // and let the XSLT processor write the result to our 'out' Writer

 XSLProcessor xslt = new XSLProcessor();

 xslt.processXSL(sheet,yahooquotes,out);

 }

 catch (Exception ex) {out.println("<error>"+ex.getMessage()+"</error>");}

 }

 else { out.println("<error>No Symbols Provided</error>"); }

 }

 public void init(ServletConfig sc) throws ServletException {

 super.init(sc);

 // Make sure the Servlet can "see" through the corporate firewall...

 System.setProperty("proxySet","true");

 System.setProperty("proxyHost","yourproxyserver.you.com");

 System.setProperty("proxyPort","80");

 // Construct a JTidyConverter. We can use the same one over and over.

 jtc = new JTidyConverter();

 try {

 // Read the Yahoo2Xml.xsl stylesheet from the CLASSPATH as a resource.

 InputStream styleSource =

 getClass().getResourceAsStream("YahooQuotes-to-QuoteStream.xsl");

 if (styleSource == null) {

 throw new ServletException("YahooQuotes-to-QuoteStream.xsl not found.");

 }

 // Cache a new stylesheet. Note: XSLStylesheet object is not threadsafe

 // in Oracle XSLT processor 2.0.2.7, but ok for this demo

 sheet = new XSLStylesheet(styleSource,null); // No base URL needed here!

 }

 catch (XSLException xslx) {

 throw new ServletException("Error preparing XSLT stylesheet.");

 }

 }

}

Now any user can browse our web server with a URL like this:

http://server/YahooXMLQuotesServlet?symbols=WBVN,YHOO,EBAY

and instantly receive an appropriate XML <QuoteStream> datagram over the Web containing just

the quotes they care about right now:

<?xml version = '1.0' encoding = 'UTF-8'?>

<QuoteStream time="Sun Apr 16 2:55pm ET - U.S. Markets Closed.">

 <Quote Ticker="WBVN" Price="5.688"/>

 <Quote Ticker="YHOO" Price="116.000"/>

 <Quote Ticker="EBAY" Price="139.562"/>

</QuoteStream>

Later in the chapter, we'll build an "XML Quote Service" that runs inside the Oracle8i database as

an example of how this kind of XML processing can be integrated into the server to periodically

retrieve XML-based information from another site and store it in tables in your database for fast,

local processing.

While we're talking about basic XML processing and servlets, it's worth mentioning here that in

addition to allowing the kind of remote JServer debugging we saw earlier, Oracle's JDeveloper 3.1

product also supports both local and remote debugging of Java servlets. This means that you can

quickly test and debug a servlet on your own machine, or attach the debugger to a live, remote

Apache JServ server where you are load-testing your production servlet code. The debugging

facilities are identical in every configuration, so this can really be a lifesaver for your web-based

XML development with Oracle.

For local debugging of a servlet, no special settings are necessary. Just click the Debug icon and

a single-user, local Java servlet engine is used to step through your code. To enable remote

debugging of servlets—or, in fact, any remotely executing Java code—visit your JDeveloper

Project Properties and set Debug Files as: to "Remote Debugging", as shown in Figure 6.13.

Figure 6.13. Setting up for remote Java debugging

Click on the Debug icon in JDeveloper and tell the debugger the machine name and debugging

port it should connect to, as shown in Figure 6.14.

Figure 6.14. Remote debugger attach dialog

When you dismiss the remote debugging dialog, the debugger attempts to attach to the running

process, and you're off to find the cause of the problem without resorting to

System.out.println() messages in an external file.

Apache JServ here is just an example. JDeveloper remote debugging works with any remotely

executing Java code running on a Java 1.2-compliant virtual machine. You can find details on

setting up your own server for remote debugging in JDeveloper's online help system.

6.2.6 Handling Very Large XML Data Streams

In the last section, we walked the in-memory tree structure of an XML document to copy its nodes.

A common question that developers ask is, "For a really big XML file, won't that in-memory tree

of DOM objects get really big?" Great question: the answer is a resounding "yes!" However, the

size of the tree of objects in memory is a function of how many elements, attributes, and text

nodes the tree contains, not strictly of its file size. For a concrete example, consider the following

two XML documents:

<!-- This document is 180 bytes long -->

<doc>

 Just one big text node here with

 lots of text in it. And some more

 and some more and some more and

 some more and...

</doc>

and:

<!-- This document is 180 bytes long -->

<doc>

 <a><c><d><e><f><g><h><i/></h></g></f></e></d></c>

 <a><c><d><e><f><g><h><i/></h></g></f></e></d></c>

</doc>

Both documents are exactly the same size—180 bytes—but parsing the first document produces

the in-memory structure shown in Figure 6.15.

Figure 6.15. Node tree representation with a single text node

This structure has a root node representing the Document, an Element node child of the root

representing the document element named <doc>, and a single Text node child of the document

element. This makes a total of just three objects in memory. On the other hand, parsing the

180-byte file in the second example produces the in-memory tree of objects, shown in Figure

6.16.

Figure 6.16. Node tree representation with nested elements

That tree contains a root node representing the Document, an Element node child of the root

representing the document element named <doc>, and then 18 additional Element nodes and

three Text nodes representing the whitespace (ws)—carriage returns, line feeds, spaces, and

tabs—in the file that makes the elements appear on different lines and look indented. So the

180-byte file in the first example requires just three objects in memory, while the second file

needs 23 objects. Clearly, the amount of memory required to parse an XML document is a

function both of its sheer size in bytes and of the number of elements, attributes, and text nodes

it contains. This is not an argument against using lots of elements in your XML, just a sign that for

large files we need a technique other than the straightforward parse-it-all-into-memory

approach.

When an XML file is used to export a large data set —for example, one year's worth of detailed

stock quote closing prices for all listed securities on the NASDAQ exchange—parsing the resulting

XML file into a single, in-memory tree of nodes can be impractical due to the amount of memory

required. However, it is often the case that these gigantic XML documents are composed of a

single containing element like <YearOfNasdaqCloses> in Example 6.18, whose children are a

series of a million repeating subdocuments like the contents of each <ClosingQuote> element in

this example.

Example 6.18. A Year of Closing Price Information for

NASDAQ Stocks

<!--

 | File size is approximately (137 bytes per entry) times (5207 securities)

 | times (5 days a week) times (52 weeks per year) = 176MB of XML

 +-->

<YearOfNasdaqCloses Year="1999" TotalSecurities="5207">

 <ClosingQuote Ticker="AAABB">

 <Date>01/01/1999</Date>

 <Price>6.25</Price>

 <Percent>0.5</Percent>

 </ClosingQuote>

 <ClosingQuote Ticker="AABC">

 <Date>01/01/1998</Date>

 <Price>7.05</Price>

 <Percent>1.25</Percent>

 </ClosingQuote>

 <!-- 1,353,817 Additional Entries Removed -->

 <ClosingQuote Ticker="ZVXI">

 <Date>12/31/1999</Date>

 <Price>16.10</Price>

 <Percent>-1.05</Percent>

 </ClosingQuote>

</YearOfNasdaqCloses>

An actual XML file containing closing quotes for each of the 5207 stocks on the NASDAQ for each

of the 5 business days in each of 52 weeks during the year—at about 140 bytes per entry—works

out to be approximately 176MB of XML! Since these huge XML data files are typically produced by

looping over rows of data in a relational table and writing out each row as a subdocument, it's

understandable that the subdocuments have a consistent, repeating structure. We will take

advantage of this fact to come up with a new approach to processing these large files.

Using a time-honored divide and conquer strategy, we'll design and implement a mechanism here

to split up the huge file into a sequence of subdocuments, processing each subdocument

separately instead of loading the entire 176MB into memory before starting. For this task, instead

of using the now-familiar DOMParser, we'll make use of its companion SAXParser class in the

oracle.xml.parser.v2 package.

The acronym SAX[3] stands for the "Simple API for XML," an API that allows us to process an XML

document as a stream of events instead of as a tree of nodes. When the SAXParser reads in the

stream of characters comprising the XML document, it simply announces the arrival of each

recognizable syntactic construct in the document. So the first of our earlier 180-byte example

files would be announced, in sequence, by the SAXParser as:

[3] You can find more details on SAX at http://www.megginson.com.

1. "Starting to parse the document"

2. "Starting to parse an element named doc with no attributes"

3. "Starting to parse a text node with these characters: `Just one big...' "

4. "Done parsing the element named doc"

5. "Done parsing the document"

In fact, announcing the syntactic constructs as it encounters them is the only thing a SAXParser

does! It does not create any in-memory objects that represent these structures, as the

DOMParser does. Given this fact, it's easy to understand why parsing a file with the SAXParser

requires very little memory: it just does I/O and sends parsing event notifications. The tradeoff is

that you have to write code to handle these events to actually do something interesting with the

XML document streaming in. The SAXParser scans the incoming characters and announces each

construct it encounters by calling an appropriate method of the SAX DocumentHandler interface:

public interface DocumentHandler {

 void setDocumentLocator(Locator p0);

 void startDocument() throws SAXException;

 void processingInstruction(String p0, String p1) throws SAXException;

 void startElement(String p0, AttributeList p1) throws SAXException;

 void characters(char[] p0, int p1, int p2) throws SAXException;

 void ignorableWhitespace(char[] p0, int p1, int p2) throws SAXException;

 void endElement(String p0) throws SAXException;

 void endDocument() throws SAXException;

}

Any class that implements the DocumentHandler interface above can be notified by the

SAXParser of these parsing events after calling the parser's setDocumentHandler() method to

register itself for notification. In addition to DocumentHandler, there are other org.xml.sax

handler interfaces like EntityResolver, DTDHandler, and ErrorHandler, so if necessary, your

class can have complete control over every aspect of the document being parsed.

To handle our task of splitting a large XML document into its many repeating subdocuments, we'll

implement an appropriately named XMLDocumentSplitter class. Since the useful base class

org.xml.sax.HandlerBase provides a default implementation for all of the SAX handling

interfaces, our XMLDocumentSplitter will extend this and override only the handling methods

that make sense for our task.

So what is the task, exactly? Given the name of the XML element representing the repeating

subdocument—for instance, <ClosingQuote> in our <YearOfNasdaqCloses> example—it will be

XMLDocumentSplitter's job to handle the startElement and endElement SAX events to enable

the separate handling of each subdocument.

Since working with SAX's event-based parsing can be confusing to developers who are not used

to such a programming paradigm, we'll choose a path that blends the best of the SAX and the

DOM approaches:

• We'll use a SAXParser in XMLDocumentSplitter to handle XML documents of arbitrary

size.

• For each subdocument we encounter, we'll build a DOM document for it and call a method

to handle that individual subdocument's processing.

This approach kills two birds with one stone: it alleviates the need to have all of the large XML

document in memory at once without sacrificing the easier-to-use DOM model to handle each

subdocument. Since we want XMLDocumentSplitter to be reusable, it makes sense to create an

XMLDocumentHandler interface to define the contract between the component doing the splitting

of the large XML file and the component that will handle the processing of each subdocument:

import java.net.URL;

import org.w3c.dom.Document;

public interface XMLDocumentHandler {

 void handleDocument(Document d , URL u) throws Exception;

}

With this simple interface in place, we can see how the interaction between SAX and DOM will

work in Figure 6.17.

Figure 6.17. Combining the best of SAX and DOM for large,

repetitive XML

XMLDocumentSplitter parses the entirety of the large file using a SAXParser. It registers itself to

be the handler for all of the startElement and endElement parsing events. In the startElement

handler, based on checking the name of the element being started, it does one of the following:

• Creates a new subdocument, if it's the start event for the splitter element

• Creates a new Element for the element being started and appends it to the current

element in the current subdocument under construction

• Ignores the element if it's not between the start and end element tags of the splitter

element

In the endElement handler, again based on checking the name of the element being ended,

XMLDocumentSplitter does one of the following:

• Calls the XMLDocumentHandler to handle the current subdocument, if we're seeing the

closing tag for the splitter element

• Sets the current node in the subdocument under construction to the parent of the current

current node, if we're "ending" any other element inside the subdocument

• Ignores the element if it's not between the start and end element tags of the splitter

element

Example 6.19 shows the commented source code for XMLDocumentSplitter.

Example 6.19. Processing Large Streams of Repeating

Subdocuments

import org.xml.sax.*;

import org.w3c.dom.*;

import java.io.*;

import java.net.*;

import oracle.xml.parser.v2.*;

public class XMLDocumentSplitter extends HandlerBase {

 private Document curDoc;

 private Node curNode;

 private Element curElement;

 private URL fileURL;

 private XMLDocumentHandler handler;

 private String splitOnElement = null;

 boolean seenDocElementYet = false;

 // Remember the XMLDocumentHandler we're being asked to use.

 public XMLDocumentSplitter(XMLDocumentHandler handler) {

 this.handler = handler;

 }

 // Split a large XML document into N subdocuments, each one identified

 // by the an opening 'splitElement' element. Invoke an XMLDocumentHandler

 // to process each subdocument encountered.

 public void split(URL fileURL, String splitElement)

 throws SAXParseException,SAXException,IOException {

 this.fileURL = fileURL;

 this.splitOnElement = splitElement;

 // Create a new SAXParser

 Parser parser = new SAXParser();

 // Register the current instance of this class as the Document Handler

 parser.setDocumentHandler(this);

 // Create a SAX InputSource on the URL's InputStream

 InputSource is = new InputSource(fileURL.openStream());

 // Start parsing the stream of XML

 parser.parse(is);

 }

 // Handle the <Element> "start-element" parsing event

 public void startElement(String name,AttributeList atl) throws SAXException {

 // If we were given a null element name to split on, behave "normally"

 // by using the document element as the splitElement.

 if (splitOnElement == null && !seenDocElementYet) {

 splitOnElement = name;

 seenDocElementYet = true;

 }

 // Construct a DOM Element node for the current element being parsed

 curElement = new XMLElement(name);

 // Add DOM Attribute nodes to the element for each attribute parsed

 for (int i=0; i<atl.getLength(); i++) {

 curElement.setAttribute(atl.getName(i),atl.getValue(i));

 }

 // If we're NOT currently building a subdocument and the element name

 // is the split element, then create a new XMLDocument for new subdocument

 if (curDoc == null) {

 if (name.equals(splitOnElement)) {

 curDoc = new XMLDocument();

 curNode = curDoc;

 }

 else {

 // If we're NOT building a subdocument but this element

 // is not the splitterElement, then do nothing.

 return;

 }

 }

 // Append the current DOM Element as a child of the current node in the

 // subdocument being constructured, and set it to be the new current node

 curNode.appendChild(curElement);

 curNode = curElement;

 }

 // Handle the </Element> "end-element" parsing event

 public void endElement(String name) throws SAXException {

 // If we're NOT building a subdocument, we don't care. Just return.

 if (curDoc == null) return;

 // If this is the endElement event for the subdocument splitElement

 // then we're done with the subdocument and are ready to call the

 // handler to handle it.

 if (name.equals(splitOnElement)) {

 if (curDoc != null) {

 try {

 // Call the XMLDocumentHandler.handle() method for current subdoc

 handler.handleDocument(curDoc,fileURL);

 }

 catch (Exception e) {

 System.err.println(e.getMessage());

 }

 }

 // Get ready for the next subdoc by nulling out our 'current' variables

 curDoc = null;

 curNode = null;

 curElement = null;

 }

 else {

 // If this is the endElement for any other element, make

 // its parent the new current node

 curNode = curNode.getParentNode();

 }

 }

 // Handle the "just got some text" parsing event

 public void characters(char[] cbuf, int start, int len) {

 // If we get text characters, create a new DOM Text node and

 // append it as a child of the current node.

 curElement.appendChild(new XMLText(new String(cbuf,start,len)));

 }

}

Now let's apply XMLDocumentSplitter to solve a problem with a large XML file. Imagine that you

are trying use Oracle8i 's powerful data warehousing features to analyze your web site's weekly

"click stream" information. Further, let's suppose that your web server outputs the raw

information for each web page access in an XML file like the one shown in Example 6.20.

Example 6.20. Excerpt from XML-based Web Server Access

Log File

<accesslog>

 <!--

 h="Host Making the Request"

 t="Time of Request"

 r="HTTP Request Header"

 s="Status of Request"

 b="Bytes Sent"

 f="Referred from URL"

 u="User Agent"/>

 -->

 <req h="146.74.93.17"

 t="13/Sep/1999:20:53:34 -0500"

 r="GET / HTTP/1.0"

 s="200"

 b="11058"

 f="http://www.yesyesyes.com/keylists/example.html"

 u="Mozilla/4.08 [en] (WinNT; I ;Nav)"/>

 <req h="146.74.93.17"

 t="13/Sep/1999:20:53:35 -0500"

 r="GET /sis_logo.jpg HTTP/1.0"

 s="200"

 b="26025"

 f="http://www.spunkyworld.com/"

 u="Mozilla/4.08 [en] (WinNT; I ;Nav)"/>

 <req h="146.74.93.17"

 t="13/Sep/1999:20:53:36 -0500"

 r="GET /services.gif HTTP/1.0"

 s="200"

 b="856"

 f="http://www.spunkyworld.com/"

 u="Mozilla/4.08 [en] (WinNT; I ;Nav)"/>

 <!-- Millions more page-views in the log where these came from! -->

</accesslog>

To quickly load this large XML file into an access_log table into your data warehouse, you need to

perform just two steps:

1. Write a LogEntryInsertHandler class that implements XMLDocumentHandler and

contains the code to handle a <req> subdocument by inserting its data into a row of the

access_log table.

2. Write an InsertAccessLog command-line program that takes a given access log XML file,

constructs an XMLDocumentSplitter to process the log in chunks, and uses the

LogEntryInsertHandler as the XMLDocumentHandler for the job.

The code for LogEntryInsertHandler is straightforward because:

• It only needs to handle a single <req> subdocument.

• We don't have to learn a new paradigm for handling this simple document just because it

happens to live in a huge file.

• We can use Oracle DOM methods like valueOf to simplify the job.

The code for LogEntryInsertHandler appears in Example 6.21.

Example 6.21. Handling the Insert for a Single Web Access

Log Entry

import java.net.URL;

import java.sql.*;

import org.w3c.dom.Document;

import java.sql.Connection;

import oracle.xml.parser.v2.XMLDocument;

import java.sql.Date;

public class LogEntryInsertHandler implements XMLDocumentHandler{

 private Connection conn;

 private CallableStatement cs;

 private long rows = 0;

 private long commitBatch = 10;

 // Remember the commit-batch quantity and database connection

 public LogEntryInsertHandler(Connection conn, long commitBatch)

 throws SQLException {

 this.commitBatch = commitBatch;

 this.conn = conn;

 setupCallableStatement();

 }

 // Return number of rows processed so far

 public long getRowsHandled() { return rows; }

 // Handle the processing of a single <req> document

 public void handleDocument(Document doc , URL u) throws Exception {

 XMLDocument d = (XMLDocument)doc;

 // Bump the row counter

 rows++;

 // Bind the values for the insert from values of XPath over current doc

 cs.setString(1,d.valueOf("/req/@h")); // host

 cs.setString(2,d.valueOf("/req/@r")); // request made

 cs.setString(3,d.valueOf("/req/@t")); // time of request

 cs.setString(4,d.valueOf("/req/@f")); // referred from

 cs.setString(5,d.valueOf("/req/@u")); // user agent

 // Do the insert

 cs.execute();

 if (rows % commitBatch == 0) {

 // Commit every 'commitBatch' rows

 conn.commit();

 }

 }

 // Setup reusable statement for inserts

 private void setupCallableStatement() throws SQLException {

 if (cs != null) {

 try { cs.close(); }

 catch (SQLException s) {}

 }

 cs = conn.prepareCall("INSERT INTO access_log VALUES(?,?,?,?,?)");

 }

 // Commit any uncommitted rows, and close statement and connection.

 protected void finalize() throws Throwable {

 try { conn.commit(); } catch (SQLException s) {}

 try { cs.close(); } catch (SQLException s) {}

 try { conn.close(); } catch (SQLException s) {}

 }

}

Note that this class uses valueOf() with an XPath expression relative to the document being

handled to retrieve the values of the <req> document content to be inserted. The

InsertAccessLog command-line driver program appears in Example 6.22.

Example 6.22. Utility to Insert XML-based Web Server Access

Log File

public class InsertAccessLog {

 public static void main(String[] args) throws Exception {

 // Take the access log filename from the first command-line argument

 String filename = args[0];

 // Split up the giant AccessLog file treating

 // each <req> element as its own subdocument.

 String splitElement = "req";

 // Create an instance of the document handler. Commit every 100

 LogEntryInsertHandler dochandler =

 new LogEntryInsertHandler(Examples.getConnection(),100);

 // Create a XMLDocumentSplitter

 XMLDocumentSplitter xds = new XMLDocumentSplitter(dochandler);

 long start = System.currentTimeMillis();

 // Tell the splitter to split based on the splitElement 'req'

 xds.split(URLUtils.newURL(filename),splitElement);

 long end = System.currentTimeMillis();

 long rows = dochandler.getRowsHandled();

 System.out.println("Inserted "+dochandler.getRowsHandled()+" rows..."+

 "in " + (end-start)+"ms." +

 " (" + ((end-start)/rows)+" ms. per row)");

 }

}

This example creates an instance of LogEntryInsertHandler indicating that the handler should

COMMIT every 100 records and passes it to the constructor of the XMLDocumentSplitter. Then

it calls the split() method on the document splitter to split—and handle—the contents of the

entire web server log file whose name is passed in as an argument. The result is that the contents

of an arbitrarily large XML-based web log file will be loaded into the access_log table.

In Chapter 14, we'll expand on this example to show combining

XMLDocumentSplitter with a handler that enables any size

XML document to be inserted into any number of database
tables.

Let's give our new utility a spin with the command:

java InsertAccessLog AccessLog.xml

For a 6MB AccessLog.xml log file containing 27625 <req> subdocuments, we can monitor the

memory usage using Windows NT's Task Manager as shown in Figure 6.18 to observe that using

this technique really does not require much memory at all to process very large files.

Figure 6.18. Low, flat memory usage on large XML files with

SAX

The test works fine and prints out a status message of:

Inserted 27265 rows...in 173049ms. (6 ms. per row)

6.3 Searching XML Documents with XPath

In this section, we'll work through several examples that illustrate the power and productivity

offered by the Oracle XML Parser's tightly integrated XPath support. Using these XPath

capabilities, we'll see how easy searching, extracting, evaluating, and retrieving the value of the

nodes in an XML document can be, avoiding tons of tedious DOM node manipulation code.

6.3.1 Basic Use of XPath in Java

Oracle's implementation of the Document Object Model extends the basic DOM APIs to provide

some simple yet powerful additional methods that can save you lots of time when writing

applications that process XML. These extensions come in the form of the following extra methods

on the XMLNode object:

selectNodes (XPathExpr)

Returns a DOM NodeList containing the nodes matching an XPath expression

selectSingleNode (XPathExpr)

Returns the first DOM node matching an XPath expression

valueOf (XPathExpr)

Returns a String with the text value of the nodes matching an XPath expression

print (Writer | OutputStream)

Serializes the node and its children to an output stream as XML markup

These methods are all defined on the XMLNode class that implements the DOM Node interface in

the Oracle XML Parser. Since XMLDocument extends from XMLNode, you can use any of these

methods on an entire XML document, or just scope them to a particular node. Since the methods

are not defined by the W3C's base DOM interfaces, in order to call the methods you have to cast

a Node object into an XMLNode before you can call them, like this:

for (int z = 0; z < matches; z++) {

 // Retrieve current node in a NodeList and cast it to an XMLNode

 XMLNode curNode = (XMLNode)myNodeList.item(z);

 // Use a method that is on XMLNode but not on the Node interface...

 System.out.println(curNode.valueOf("connection/username"));

}

Since the selectNodes and print methods will do all the hard work, it's easy to write an

XPath-enabled ecgrep utility to search the contents of an XML file for nodes matching an XPath

expression passed on the command line and print out the matches. If you have not used Unix,

where grep is a mainstay utility for searching through the contents of text files using regular

expressions, you may instead be familiar with the Windows findstr utility, which does the same

thing. To write our XPath-enabled grep utility requires three steps:

1. Use selectNodes() to get a NodeList of matches.

2. Loop over the nodes in the list.

3. Call print() on each node to serialize it as XML markup.

Example 6.23 shows the simple source code for such an XPathGrep utility.

Example 6.23. XPathGrep Searches XML Files with XPath

Expressions

import java.net.URL;

import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

import org.xml.sax.*;

import java.io.*;

public class XPathGrep {

 public static void main(String[] args) throws Exception {

 if (args.length == 2) {

 XPathGrep xpg = new XPathGrep();

 xpg.run(args[0],args[1]);

 }

 else {

 System.err.println("usage: XPathGrep filename.xml XPathExpr");

 System.exit(1);

 }

 }

 void run(String filename, String XPath) throws Exception {

 URL xmlurl = URLUtils.newURL(filename);

 DOMParser d = new DOMParser();

 try {

 d.parse(xmlurl);

 }

 catch(SAXParseException spe) {

 System.out.println("XPathGrep: File "+ filename+" is not well-formed.");

 System.exit(1);

 }

 catch(FileNotFoundException f) {

 System.out.println("XPathGrep: File "+filename+" not found.");

 System.exit(1);

 }

 // Cast getDocument() to an XMLDocument to have selectNodes() Method

 XMLDocument xmldoc = (XMLDocument)d.getDocument();

 if (XPath.equals("/")) {

 // If the path is the root, print the entire document

 xmldoc.print(System.out);

 }

 else {

 NodeList nl = null;

 // Otherwise handle the matching nodes

 try {

 // Select nodes matching XPath

 nl = xmldoc.selectNodes(XPath);

 }

 catch (XSLException err) {

 System.out.println("XPathGrep: "+err.getMessage());

 System.exit(1);

 }

 int found = nl.getLength();

 if (found > 0) {

 // Loop over matches

 for (int z=0; z < found; z++) {

 XMLNode curNode = (XMLNode)nl.item(z);

 // Print the current node as XML Markup to the output

 curNode.print(System.out);

 // Print a new line after Text or Attribute nodes

 int curNodeType = curNode.getNodeType();

 if (curNodeType == Node.ATTRIBUTE_NODE ||

 curNodeType == Node.TEXT_NODE ||

 curNodeType == Node.CDATA_SECTION_NODE) {

 System.out.print("\n");

 }

 }

 }

 else { System.out.println("XPathGrep: No matches for "+ XPath); }

 }

 }

}

A lot of the code in XPathGrep is needed only to process the command-line arguments! The real

XPath work is a piece of cake. We can quickly try it out on our dream.xml file to grep for all

<LINE>s in the play containing the word wood in a <SPEECH> spoken by the <SPEAKER> named

HELENA:

java XPathGrep dream.xml //SPEECH[SPEAKER='HELENA']/LINE[contains(.,'wood')]

This produces the output:

<LINE>Then to the wood will he to-morrow night</LINE>

<LINE>Nor doth this wood lack worlds of company,</LINE>

<LINE>We should be wood and were not made to woo.</LINE>

<LINE>I told him of your stealth unto this wood.</LINE>

If we turn our new utility loose on our YahooQuotesinXML.xml file to find all attributes in the file:

java XPathGrep YahooQuotesinXML.xml //@*

XPathGrep will produce:

time="Sun Apr 16 2:42am ET - U.S. Markets Closed."

 Ticker="ORCL"

 Price="86.188"

 Ticker="GE"

 Price="50.500"

 Ticker="MSFT"

 Price="74.688"

 Ticker="IBM"

 Price="118.188"

 Ticker="T"

 Price="34.125"

 Ticker="LU"

 Price="59.812"

 Ticker="CSCO"

 Price="67.938"

Besides being simple to implement, you'll find XPathGrep a handy sidekick in your daily work with

XML.

6.3.2 Using XPath for Reading Configuration Files

With the latest releases of the specifications for Java servlets and Enterprise Java Beans, Sun has

moved to an all-XML format for its configuration information. Here we show how simple it is to do

the same for our own programs using XPath.

Let's say we have the following Connections.xml file, which stores named database connections

and the appropriate connection information for each:

<!-- Connections.xml -->

<connections>

 <connection name="default">

 <username>xmlbook</username>

 <password>xmlbook</password>

 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>

 </connection>

 <connection name="demo">

 <username>scott</username>

 <password>tiger</password>

 <dburl>jdbc:oracle:thin:@xml.us.oracle.com:1521:xml</dburl>

 </connection>

 <connection name="test">

 <username>test</username>

 <password>test</password>

 <dburl>jdbc:oracle:thin:@linuxbox:1721:ORCL</dburl>

 </connection>

</connections>

We can create a ConnectionFactory class that reads the Connections.xml file as a resource from

the CLASSPATH, and returns a JDBC connection for the connection name passed in. Example 6.24

shows the implementation, which leverages the following methods:

selectSingleNode()

To find the named connection in the XML-based configuration file

valueOf()

On the <connection> element we find, to quickly grab the values of the interesting child

elements containing the JDBC connection information

Example 6.24. Using an XML File for Configuration

Information

import java.sql.*;

import oracle.jdbc.driver.*;

import oracle.xml.parser.v2.*;

import java.io.*;

public class ConnectionFactory {

 private static XMLDocument root;

 public static Connection getConnection(String name) throws Exception {

 if (root == null) {

 // Read Connections.xml from the runtime CLASSPATH

 Class c = ConnectionFactory.class;

 InputStream file = c.getResourceAsStream("Connections.xml");

 if (file == null) {

 throw new FileNotFoundException("Connections.xml not in CLASSPATH");

 }

 // Parse Connections.xml and cache the XMLDocument of config info

 root = XMLHelper.parse(file,null);

 }

 // Prepare an XPath expression to find the connection named 'name'

 String pattern = "/connections/connection[@name='"+name+"']";

 // Find the first connection matching the expression above

 XMLNode connNode = (XMLNode) root.selectSingleNode(pattern);

 if (connNode != null) {

 String username = connNode.valueOf("username");

 String password = connNode.valueOf("password");

 String dburl = connNode.valueOf("dburl");

 String driverClass = "oracle.jdbc.driver.OracleDriver";

 Driver d = (Driver)Class.forName(driverClass).newInstance();

 System.out.println("Connecting as " + username + " at " + dburl);

 return DriverManager.getConnection(dburl,username,password);

 }

 else return null;

 }

}

Then, in any program where you want to make use of this named database connection facility,

just include the lines:

import java.sql.Connection;

import ConnectionFactory;

 :

Connection myConn = ConnectionFactory.getConnection("default");

With this, you'll be on your way. It's easy to edit the Connections.xml file at any time to make

changes or add new named connections, and the code in ConnectionFactory doesn't need to

change to accommodate it.

6.3.3 Using XPath Expressions as Validation Rules

In Chapter 5, we learned how the XPath expression language can be used to create a set of

flexible validation rules for XML documents. By simply attempting to select the current node with

any XPath expression applied to it as a predicate:

myNode.selectSingleNode("./self::node()[AnyXPathExpr]")

we can determine whether the predicate is true or false. If we successfully select the current node,

then the predicate is true. If not, the predicate is false.

In Chapter 5, we built a system to load a XPath <ruleset> document like the following into the

database.

<ruleset name="AbstractSubmission">

 <rule name="Submission must have an abstract">

 /Submission/Abstract

 </rule>

 <rule name="Author must supply First name, Last name, and Email">

 /Submission/Author[Name/First and Name/Last and Email]

 </rule>

 <rule name="Title must be longer than 12 characters">

 string-length(/Submission/Title) > 12

 </rule>

 <rule name="You must have previous presentation experience.">

 //Author/PreviousExperience = "Yes"

 </rule>

</ruleset>

However, we hinted there that it would be very useful to supply a command-line utility that

allowed developers creating ruleset files to test their sets of rules against example XML

documents outside the production database environment. Let's build that utility here.

The basic algorithm for validating a source XML document against a ruleset of XPath-based

validation rules is as follows. For each <rule> in the <ruleset>:

1. Evaluate the current rule's XPath expression as a predicate applied to the root node of the

XML document.

2. If the current rule's XPath expression tests false, then print out the current rule's name to

indicate that the rule failed.

The code in Example 6.25 is all we need to accomplish the job.

Example 6.25. Command-line Tool Validates XML Against

XPath Rulesets

import java.net.URL;

import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

public class XPathValidator {

 public static void main(String[] args) throws Exception {

 if (args.length == 2) {

 XPathValidator xpv = new XPathValidator();

 xpv.validate(args[0],args[1]);

 }

 else errorExit("usage: XPathValidator xmlfile rulesfile");

 }

 // Validate an XML document against a set of XPath validation rules

 public void validate(String filename, String rulesfile) throws Exception {

 // Parse the file to be validated and the rules file

 XMLDocument source = XMLHelper.parse(URLUtils.newURL(filename));

 XMLDocument rules = XMLHelper.parse(URLUtils.newURL(rulesfile));

 // Get the name of the Ruleset file with valueOf

 String ruleset = rules.valueOf("/ruleset/@name");

 if (ruleset.equals("")) errorExit("Not a valid ruleset file.");

 System.out.println("Validating "+filename+" against " +ruleset+" rules...");

 // Select all the <rule>s in the ruleset to evaluate

 NodeList ruleList = rules.selectNodes("/ruleset/rule");

 int rulesFound = ruleList.getLength();

 if (rulesFound < 1) errorExit("No rules found in "+rulesfile);

 else {

 int errorCount = 0;

 for (int z = 0; z < rulesFound; z++) {

 XMLNode curRule = (XMLNode)ruleList.item(z);

 String curXPath = curRule.valueOf(".").trim();

 // If XPath Predicate test fails, print out rule name as an err message

 if (!test(source,curXPath)) {

 String curRuleName = curRule.valueOf("@name");

 System.out.println("("+(++errorCount)+") "+curRuleName);

 }

 }

 if (errorCount == 0) System.out.println("No validation errors.");

 }

 }

 // Test whether an XPath predicate is true with respect to a current node

 public boolean test(XMLNode n, String xpath) {

 NodeList matches = null;

 try { return n.selectSingleNode("./self::node()["+xpath+"]") != null; }

 catch (XSLException xex) { /* Ignore */ }

 return false;

 }

 private static void errorExit(String m){System.err.println(m);System.exit(1);}

}

So we can validate an XML document like our conference abstract submission:

<!-- Abstract_With_Error.xml -->

<Submission>

 <Title>Using XPath</Title>

 <Author>

 <Name>

 <First>Steve</First>

 </Name>

 <Email>smuench@yahoo.com</Email>

 <Company>Oracle</Company>

 <PreviousExperience>No</PreviousExperience>

 </Author>

</Submission>

using the command-line utility:

java XPathValidator Abstract_With_Error.xml AbstractSubmissionRules.xml

and immediately see the validation errors:

Validating Abstract_With_Error.xml against AbstractSubmission rules...

(1) Submission must have an abstract

(2) Author must supply First name, Last name, and Email

(3) Title must be longer than 12 characters

(4) You must have previous presentation experience.

even before loading the <ruleset> into the database. This tool is sure to come in handy for more

general kinds of XML document sanity checking as well. Just build a ruleset file describing the

XPath assertions you'd like to validate, and use this generic command-line tool to report any

errors.

6.4 Working with XML Messages

In this section, we'll learn the basic Java techniques required to exchange XML data:

• Over the Web in real time, by posting an XML message over HTTP to another server and

immediately receiving an XML-based response

• Asynchronously between processes, by enqueuing XML messages into and dequeuing

them out of Oracle AQ queues

These two important tasks are fundamental to the implementation of web services, the

business-to-business interchange of information using XML message formats and the HTTP

protocol.

6.4.1 Sending and Receiving XML Between Servers

As we saw in Chapter 1, the general approach for moving information of any kind around the Web

involves the exchange via requests and responses of text or binary resources over the HTTP

protocol. A requester requests information by using its Uniform Resource Locator (URL) and a

server handling requests for that URL responds appropriately, delivering the requested

information or returning an error. HTTP's request/response paradigm supports including a

resource with the request as well as receiving a resource back in the response, so it's a two-way

street for information exchange.

Any resources being exchanged between requester and server are earmarked by a distinguishing

MIME type so the receiver can understand what kind of information it is getting. The registered

MIME type for XML-based information resources is text/xml. Putting it all together, the phrase

"posting XML to another server" means precisely this: sending an HTTP POST request to that

server containing an XML document in the request body with a MIME Content-Type of text/xml.

Posting an XML datagram in the request is useful when you need to submit richly structured

information to the server for it to provide its service correctly. At other times, simple parameters

in the request are enough to get the answer you need. Here are two examples that make the

difference clear.

Each year, more and more Americans are filing their income taxes electronically over the Web. An

income tax return comprises a number of forms and schedules, each full of structured data that

the Internal Revenue Service wants to collect from you. Imagine a simplified tax return in XML as

shown in Example 6.26.

Example 6.26. Simplified XML Tax Form

<Form id="1040" xmlns="http://www.irs.gov">

 <Filer EFileECN="99454">

 <Name>Steven Muench</Name>

 <TaxpayerId>123-45-6789</TaxpayerId>

 <Occupation>XML Evangelist</Occupation>

 </Filer>

 <!-- etc. -->

 <Form id="8283">

 <Donation Amount="300" Property="yes">

 <ItemDonated>Working Refrigerator</ItemDonated>

 <Donee>Salvation Army</Donee>

 </Donation>

 </Form>

 <Schedule id="B">

 <Dividend Amount="-58.74">

 <Payer>Bank of America</Payer>

 </Dividend>

 <Dividend Amount="1234.56">

 <Payer>E*Trade Securities</Payer>

 </Dividend>

 </Schedule>

</Form>

Before filing your return electronically, you might first want to take advantage of a tax advice web

service: you submit your tax return—over secure HTTP (https:) of course—and the service

instantly returns information about errors in your return and suggestions on how to reduce your

tax liability. To submit your tax return to the tax advice service, you need to post a structured

XML datagram to the URL of the tax advice service:

https://www.goodtaxadvice.com/AdviceService

so the service can do its job analyzing all the information in your return. In response to posting

the XML tax form above, the tax advice service might reply in kind with an XML datagram back to

you that looks like this:

<TaxAdvice for="Steven Muench">

 <Reminder Form="8283">

 Make sure you include a documented receipt for

 your "Working Refrigerator" charitable property donation!

 </Reminder>

 <Error Schedule="B" Line="1">

 Negative dividends are not permitted. Check dividend amount of -58.74!

 </Error>

</TaxAdvice>

Once you've successfully filed your return electronically with the IRS, you may be interested in

getting an updated filing status for your return. In this case, sending your entire tax return as an

XML datagram is not required. You need only provide your Social Security number as a parameter

on the URL request, like this:

https://www.irs.gov/EFile/FilingStatus?ssn=123-45-6789

and the service might respond with an XML datagram like this:

<Form DCN="12-34567-123-33" id="1040" xmlns="http://www.irs.gov">

 <Filer EFileECN="99454">

 <Name>Steven Muench</Name>

 <TaxpayerId>123-45-6789</TaxpayerId>

 <Occupation>XML Evangelist</Occupation>

 </Filer>

 <StatusHistory>

 <Status time="17 Apr 2000 23:59:59">

 Your tax return was received successfully.

 </Status>

 <Status time="18 Apr 2000 08:11:20">

 Your tax return was accepted. Your DCN is 12-34567-123-33

 </Status>

 </StatusHistory>

</Form>

indicating that your return has been assigned a Document Control Number. The

"send-my-whole-tax-return-in-XML" scenario is an example of doing an HTTP POST

request—when a structured XML datagram must accompany the request. The

"check-the-status-of-my-return" scenario—where only URL parameters are needed—is an

example of an HTTP GET request. In both cases, you get a structured XML response back from the

server .

To simplify these XML POSTs and XML GETs over the Web, let's implement an XMLHttp helper

class to handle the details. The class needs methods like these:

// POST an XML document to a Service's URL, returning XML document response

XMLDocument doPost(XMLDocument xmlToPost, URL target)

// GET an XML document response from a Service's URL request

XMLDocument doGet(URL target)

The doPost method needs to:

1. Open an HttpUrlConnection to the target URL

2. Indicate a request method of POST

3. Set the MIME type of the request body to text/xml

4. Indicate that we want to both write and read from the connection

5. Write the content of the XML datagram to be posted into the connection

6. Get an InputStream from the connection to read the server's response

7. Use XMLHelper.parse to parse and return the response as an XMLDocument

The doGet method is extremely simple. It only needs to use XMLHelper.parse(url) to parse and

return the response from the URL request as an XMLDocument.

Example 6.27 provides a straightforward implementation of these two useful facilities.

Example 6.27. XMLHttp Class Simplifies Posting and Getting

XML

import java.net.*;

import oracle.xml.parser.v2.*;

import java.io.*;

import org.xml.sax.*;

import java.util.Properties;

public class XMLHttp {

 // POST an XML document to a Service's URL, returning XML document response

 public static XMLDocument doPost(XMLDocument xmlToPost, URL target)

 throws IOException, ProtocolException {

 // (1) Open an HTTP connection to the target URL

 HttpURLConnection conn = (HttpURLConnection)target.openConnection();

 if (conn == null) return null;

 // (2) Use HTTP POST

 conn.setRequestMethod("POST");

 // (3) Indicate that the content type is XML with appropriate MIME type

 conn.setRequestProperty("Content-type","text/xml");

 // (4) We'll be writing and reading from the connection

 conn.setDoOutput(true);

 conn.setDoInput(true);

 conn.connect();

 // (5) Print the message XML document into the connection's output stream

 xmlToPost.print(new PrintWriter(conn.getOutputStream()));

 // (6) Get an InputStream to read the response from the server.

 InputStream responseStream = conn.getInputStream();

 try {

 // (7) Parse and return the XML document in the server's response

 // Use the 'target' URL as the base URL for the parsing

 return XMLHelper.parse(responseStream,target);

 }

 catch (Exception e) { return null; }

 }

 // GET an XML document response from a Service's URL request

 public static XMLDocument doGet(URL target) throws IOException {

 try { return XMLHelper.parse(target); }

 catch (SAXException spx) { return null; }

 }

 // Set HTTP proxy server for current Java VM session

 public static void setProxy(String serverName, String port) {

 System.setProperty("proxySet","true");

 System.setProperty("proxyHost",serverName);

 System.setProperty("proxyPort",port);

 }

}

We can test out XMLHttp to post a new <moreovernews> XML newsgram to a web service that

accepts news stories from roving web correspondents with a little program like TestXmlHttp in

Example 6.28.

Example 6.28. Utility to Test Posting XML Newsgrams to a

Web Server

import XMLHttp;

import oracle.xml.parser.v2.XMLDocument;

import java.net.URL;

public class TestXmlHttp {

 // Test posting a new News Story to our Web Site that accepts stories in XML

 public static void main(String args[]) throws Exception {

 // Make sure we can see through the firewall

 XMLHttp.setProxy("yourproxyserver.you.com","80");

 // Here's the XML 'datagram' to post a new news story in a String

 String xmlDoc =

 "<moreovernews>"+

 " <article>"+

 " <url> http://technet.oracle.com/tech/xml </url>"+

 " <headline_text> Posting from Java </headline_text>"+

 " <source> you </source>"+

 " </article>"+

 "</moreovernews>";

 // Parse XML message in a string, no external references so null BaseURL OK

 XMLDocument docToPost = XMLHelper.parse(xmlDoc,null);

 // Here's the URL of the service that accepts posted XML news stories

 String url = "http://ws5.olab.com/xsql/demo/insertxml/insertnewsstory.xsql";

 // Construct the target service URL from the string above

 URL target = new URL(url);

 // Post the XML message.

 XMLDocument response = XMLHttp.doPost(docToPost,target);

 // Print the response.

 response.print(System.out);

 }

}

This parses the newsgram from a String, posts it to the appropriate service URL, and prints out

the XML response from the server indicating that one story was received and accepted:

<?xml version = '1.0'?>

<xsql-status action="xsql:insert-request" rows="1"/>

Let's generalize Example 6.28 by building a useful utility called PostXML that allows us to post any

XML file to any web service from the command line. Example 6.29 shows the PostXML utility that

processes command-line arguments, then calls XMLHelper.parse and XMLHttp.doPost.

Example 6.29. PostXML Posts XML to Any URL from the

Command Line

import oracle.xml.parser.v2.*;

import java.net.*;

import org.xml.sax.*;

import XMLHttp;

public class PostXML {

 public static void main(String[] args) throws Exception {

 String filename = null,targetURL = null, proxy = null;

 for (int z=0;z < args.length; z++) {

 if (args[z].equals("-x")) {

 if (args.length > z + 1) proxy = args[++z];

 else errorExit("No proxy specified after -x option");

 }

 else if (filename == null) filename = args[z];

 else if (targetURL == null) targetURL = args[z];

 }

 if (filename != null && targetURL != null) {

 // If user supplied a proxy, set it

 if (proxy != null) XMLHttp.setProxy(proxy,"80");

 // Post the xml!

 PostXML px = new PostXML();

 px.post(filename,targetURL);

 }

 else errorExit("usage: PostXML [-x proxy] xmlfile targetURL");

 }

 // Post XML document in 'filename' to 'targetURL'

 public void post(String filename, String targetURL) {

 try {

 // Parse the file to be posted to make sure it's well-formed

 XMLDocument message = XMLHelper.parse(URLUtils.newURL(filename));

 // Construct the URL to make sure it's a valid URL

 URL target = new URL(targetURL);

 // Post the XML document to the target URL using XMLHttp.doPost

 XMLDocument response = XMLHttp.doPost(message,target);

 if (response == null) errorExit("Null response from service.");

 // If successful, print out the XMLDocument response to standard out

 else response.print(System.out);

 }

 // If the XML to post is ill-formed use XMLHelper to print err

 catch (SAXParseException spx) {errorExit(XMLHelper.formatParseError(spx));}

 // Otherwise, print out appropriate error messages

 catch (SAXException sx) { errorExit("Error parsing "+filename); }

 catch (MalformedURLException m){ errorExit("Error: "+targetURL+" invalid");}

 catch (Exception ex) { errorExit("Error: "+ex.getMessage()); }

 }

 private static void errorExit(String m){System.err.println(m);System.exit(1);}

}

We can now accomplish what the previous sample code did in a generic way from the command

line by using PostXML to post the XML newsgram from a file:

java PostXML -x yourproxyserver.you.com NewsStory.xml http://server/service

But we can use the PostXML utility for lots of other purposes. It will come in handy to test out any

server-side code written to handle incoming, posted XML documents. In fact, let's look next at

exactly what the server-side Java code looks like on the receiving end of a posted XML datagram.

Since these messages are posted over HTTP, and since Java servlets are designed to enable you

to easily write server-side programs that handle HTTP requests, it's natural to study a servlet

example.

While the service it provides is arguably of little value, the XMLUpperCaseStringServlet in

Example 6.30 serves as a complete example for:

1. Receiving an XML datagram in the HTTP POST request and parsing it

2. Processing the data by using XPath expressions and selectNodes

3. Changing the document in some interesting way

4. Writing back an XML document as a response

The service we're providing in Example 6.30 is to accept any posted XML document, search it for

<String> elements, uppercase the value of each of these <String> elements, and write the

modified document back as the response XML datagram.

In Chapter 8, Chapter 9, and Chapter 11, we'll see how to make these services much more

interesting by interacting with your database information.

Example 6.30. Receiving, Parsing, Searching, and

Manipulating Posted XML

import javax.servlet.http.*;

import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

import org.xml.sax.SAXException;

import java.net.URL;

import javax.servlet.ServletException;

import java.io.*;

public class XMLUpperCaseStringServlet extends HttpServlet {

 // Handle the HTTP POST request

 protected void doPost(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 XMLDocument incomingXMLDoc = null;

 // Tell the requester she's getting XML in response

 resp.setContentType("text/xml");

 // Get the character writer to write the response into

 PrintWriter out = resp.getWriter();

 try {

 // If we're receiving posted XML

 if (req.getContentType().equals("text/xml")) {

 // Get the InputStream on the HTTP POST request's request body

 InputStream incomingXMLStream = req.getInputStream();

 // Parse it with our helper

 incomingXMLDoc = XMLHelper.parse(incomingXMLStream,null);

 // Find any <String> elements in the posted doc using selectNodes

 NodeList stringElts = incomingXMLDoc.selectNodes("//String");

 // Loop over any matching nodes and uppercase the string content

 int matches = stringElts.getLength();

 for (int z=0; z<matches; z++) {

 Text t = (Text)stringElts.item(z).getFirstChild();

 // Uppercase the node value of the first text-node Child

 t.setNodeValue(t.getNodeValue().toUpperCase());

 }

 // Write posted XML doc (with <String>'s now uppercased) to response

 incomingXMLDoc.print(out);

 }

 else out.println("<error>You did not post an XML document</error>");

 }

 catch (SAXException s) {

 out.println("<error>You posted an ill-formed XML document</error>");

 }

 catch (XSLException x) {

 out.println("<error>Error processing selectNodes</error>");

 }

 }

}

You'll notice that the only new trick is the use of the getContentType method on the

HttpServletRequest to sense if we're receiving posted XML, and the getInputStream method to

retrieve the contents of the posted document. If we use PostXML to test out our new servlet on

the following Sample.xml file:

<!-- Sample.xml -->

<Something>

 <Containing>

 <String>this is a string</String>

 <String>this is too</String>

 </Containing>

 <String>And a third...</String>

</Something>

with the command line:

java PostXML Sample.xml http://localhost/servlets/XMLUpperCaseStringServlet

We get back the XML response that includes the results of the service:

<!-- Sample.xml -->

<Something>

 <Containing>

 <String>THIS IS A STRING</String>

 <String>THIS IS TOO</String>

 </Containing>

 <String>AND A THIRD...</String>

</Something>

So we now we've seen how to both pitch and catch XML information over the Web.

6.4.2 Acquiring XML Data from Another Server

Next let's walk through an example of retrieving XML information from another web site from

inside Oracle8i. Just to mix things up a little, we'll show how Java and PL/SQL can be used

together to accomplish the job. We will do the following:

1. Build a class called CaptureQuotes that will:

o Use our JTidyConverter and YahooQuotes-to-QuoteStream.xsl transformation to

retrieve live XML <QuoteStream> data from Yahoo! Quotes over the Web

o Insert the Ticker and Price information returned with each <Quote> into the

database by invoking a stored procedure to do the handling

2. Create the latest_quotes table and an insert_quote stored procedure in PL/SQL that will

make sure only a single latest quote per day per ticker symbol stays in our table

3. Test our CaptureQuotes outside the database, then deploy it as a Java stored procedure

so it can be executed periodically by a DBMS_JOB database job

4. Deal with a few new JServer permissions that we'll need to make the whole thing work

So let's get started, taking the simple steps first. We can create the table to store our latest

quotes with the following command:

CREATE TABLE latest_quotes (

 ticker VARCHAR2(7),

 price NUMBER,

 day DATE

);

And creating the PL/SQL stored procedure to handle inserting a quote is easy, too:

CREATE OR REPLACE PROCEDURE insert_quote(sym VARCHAR2,cost NUMBER,eff DATE) IS

BEGIN

 -- Remove any previous "latest" quote from today for this symbol.

 -- Make sure an Oracle8i Functional index on (TRUNC(day),ticker) exists!

 DELETE FROM latest_quotes

 WHERE ticker = sym

 AND TRUNC(day) = TRUNC(eff);

 INSERT INTO latest_quotes VALUES(sym,cost,eff);

END;

Note that insert_quote first deletes any existing "latest" quote for the current ticker symbol by

searching the table for a row with the current ticker symbol and a TRUNC(day) equal to the

TRUNC(eff) effective date of the current quote being handled. Since this latest_quotes table may

contain millions of rows—as we might accumulate years of historical stock quotes—we need this

DELETE statement to be fast. Normally a WHERE clause that uses a function like TRUNC() on a

column immediately forfeits the use of the index, but Oracle8i sports a neat new feature called

functional indexes that allows us to happily issue the CREATE INDEX statement:

CREATE INDEX latest_quotes_idx ON latest_quotes (TRUNC(day),ticker);

Your database user needs to be granted the QUERY REWRITE
privilege—or be granted a role that has been granted the
permission—in order to successfully create a functional index.

So any search on the combination of ticker symbol and TRUNC(day) will be lightning fast. Next

we'll create CaptureQuotes. The guts of this class will borrow from our earlier

YahooXMLQuotesServlet, but with a few interesting twists. First, we'll read the XSLT stylesheet

to perform the transformation using the handy xmldoc URLs we created earlier. This means that

we can store the YahooQuotes-to-QuoteStream.xsl stylesheet in our xml_documents table and

easily retrieve it for use at any time without leaving the database. Second, rather than simply

spitting back the XML <QuoteStream> as the servlet did earlier, we'll use the XPath searching

facilities to loop over all of the matching quotes and insert each one in the database. Third, we'll

use a JDBC CallableStatement to execute the insert_quote stored procedure after binding the

values of the current quote information.

Note that after retrieving the Yahoo! Quotes as an XML <QuoteStream> we could simply call

XMLDocuments.save() to save our <QuoteStream> XML document in a CLOB, but this is not our

intention here. We want the historical data to be usable by existing report writing tools like Oracle

Reports, and existing data warehousing tools like Oracle Discoverer. We want to use powerful

SQL queries to sort and group and summarize the data to look for trends and quickly generate

charts and graphs. So having the information in regular rows of a regular database table makes

a whole lot of sense.

Example 6.31 shows the code for CaptureQuotes.

Example 6.31. Java Stored Procedure to Retrieve and Store

Web Stock Quotes

import javax.servlet.http.*;

import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

import java.net.URL;

import java.sql.*;

import java.io.*;

import JTidyConverter;

import XMLDocuments;

import Examples;

public class CaptureQuotes {

 private static CaptureQuotes cq = null;

 private Connection conn = null;

 private JTidyConverter jtc = null;

 private XSLStylesheet sheet = null;

 private CallableStatement stmt = null;

 private static final String YQUOTES = "http://quote.yahoo.com/q?d2=v1&o=d&s=";

 public CaptureQuotes(Connection conn) {

 this.conn = conn;

 }

 // Oracle8i Java stored procedure debugging entry point for testing.

 public static void debug_main() throws Exception {

 storeLatestQuotesFor("ORCL,INTC,MSFT");

 }

 // Static method to expose as Java stored procedure

 public static void storeLatestQuotesFor(String symbolList) throws Exception {

 if (cq == null) {

 cq = new CaptureQuotes(Examples.getConnection());

 cq.initialize();

 }

 cq.retrieve(symbolList);

 }

 // Retrieve Yahoo Quotes and save quote data in a table

 private void retrieve(String symbolList) throws Exception {

 if (symbolList != null && !symbolList.equals("")) {

 URL yahooUrl = new URL(YQUOTES+symbolList.replace(',','+'));

 // Convert the dynamically produced Yahoo! Quotes page to XML doc

 XMLDocument yahooquotes = jtc.XMLifyHTMLFrom(yahooUrl);

 // Transform the document using our stylesheet into <QuoteStream>

 // getting the transformed result in a DocumentFragment

 XSLProcessor xslt = new XSLProcessor();

 DocumentFragment result = xslt.processXSL(sheet,yahooquotes);

 // Get the document element of the transformed document

 XMLElement e = (XMLElement)result.getFirstChild();

 // Search for all <Quotes> in the resulting <QuoteStream>

 NodeList quotes = e.selectNodes(".//Quote");

 int matches = quotes.getLength();

 // Loop over any quotes retrieved; insert each by calling stored proc

 for (int z = 0; z < matches; z++) {

 XMLNode curQuote = (XMLNode)quotes.item(z);

 // Bind the 1st stored procedure argument to valueOf Ticker attribute

 stmt.setString(1,curQuote.valueOf("@Ticker"));

 // Bind the 2ND stored procedure argument to valueOf Price attribute

 stmt.setString(2,curQuote.valueOf("@Price"));

 // Execute the stored procedure to process this quote

 stmt.executeUpdate();

 }

 conn.commit();

 }

 }

 // Setup proxy server, Cache XSL Transformation, and Callable Statement

 private void initialize() throws Exception {

 if (jtc == null) {

 // Make sure the Servlet can "see" through the corporate firewall...

 System.setProperty("proxySet","true");

 System.setProperty("proxyHost","yourproxyserver.you.com");

 System.setProperty("proxyPort","80");

 // Construct a JTidyConverter. We can use the same one over and over.

 jtc = new JTidyConverter();

 XMLDocuments.enableXMLDocURLs();

 // Read the Yahoo2Xml.xsl stylesheet from an xmldoc:// URL in the DB

 URL u = new URL("xmldoc:/transforms/YahooQuotes-to-QuoteStream.xsl");

 InputStream styleSource = u.openStream();

 // Cache a new stylesheet. Not threadsafe in 2.0.2.7 but OK for demo.

 sheet = new XSLStylesheet(styleSource,null); // No base URL needed here!

 // Cache a reusable CallableStatement for invoking the PL/SQL Stored Proc

 stmt = conn.prepareCall("BEGIN insert_quote(?,?,SYSDATE); END;");

 }

 }

}

Note that the initialize() routine:

• Sets Java System properties to allow the program to talk to URLs outside the firewall

• Constructs a JTidyConverter to use for the life of the session

• Reads the stylesheet from xmldoc:/transforms/YahooQuotes-to-QuoteStream.xsl and

constructs a new XSLStylesheet object to use for the life of the session

• Creates a reusable CallableStatement object to execute over and over again with

different bind variable values to invoke the stored procedure

Also note that we've added a debug_main() method so we can use JDeveloper's JServer

debugging feature to find any problems that crop up. To test CaptureQuotes outside the

database, we can put the following lines of code in a little tester class:

CaptureQuotes.storeLatestQuotesFor("ORCL,INTC");

CaptureQuotes.storeLatestQuotesFor("WBVN,MSFT,IBM,WEBM");

This will test to make sure we can make multiple calls to the CaptureQuotes class in the same

session with no problem. After doing this, if we execute the SQL statement:

SELECT ticker, price, TO_CHAR(day,'MM/DD/YY HH24:MI') day

 FROM latest_quotes

 WHERE TRUNC(day) = TRUNC(SYSDATE)

ORDER BY 3,1

we'll see the latest quote data retrieved from over the Web sitting comfortably in our local

database table:

TICKER PRICE DAY

------- ---------- --------------

IBM 111.875 04/17/00 17:47

INTC 123 04/17/00 17:47

MSFT 75.875 04/17/00 17:47

ORCL 74.812 04/17/00 17:47

WBVN 4.531 04/17/00 17:47

WEBM 61.75 04/17/00 17:47

Finally, we'll deploy CaptureQuotes as a Java stored procedure into JServer. We went through

the basic steps earlier in the chapter, so we'll just highlight what's unique this time.

We use JDeveloper to create a new Java stored procedure deployment profile and select the

debug_main and storeLatestQuotesFor static methods of the CaptureQuotes class to be

published. We choose a name like YAHOOQUOTES (it can be different from the class name) for the

package in which JDeveloper will publish our two selected methods as package procedures.

Before deploying your Java stored procedure, you need to load the .jar file for the JTidy bean into

the database. This is done with the one-line command:

loadjava -verbose -resolve -user xmlbook/xmlbook tidy.jar

Then you can select your Java stored procedure profile to deploy it and everything should go

smoothly. JDeveloper's deployment wizard will automatically create the necessary Java stored

procedure specification:

CREATE OR REPLACE PACKAGE YAHOOQUOTES AUTHID CURRENT_USER AS

PROCEDURE STORELATESTQUOTESFOR ("symbolList" IN VARCHAR2)

AS LANGUAGE JAVA

NAME 'CaptureQuotes.storeLatestQuotesFor(java.lang.String)';

END YAHOOQUOTES;

And after loading the XSLT stylesheet into our xml_documents table (arguments all go on one

line):

java XMLDoc save YahooQuotes-to-QuoteStream.xsl

 /transforms/YahooQuotes-to-QuoteStream.xsl

we're good to go!

You can connect to the database in SQL*Plus and give the new Java stored procedure a whirl by

typing something like this to get the latest quotes for Apple Computer, Oracle, and Healtheon:

EXEC yahooquotes.storeLatestQuotesFor('AAPL,ORCL,HLTH')

At this point, it will either work correctly, or fail with a JServer security violation. The XMLBOOK

user needs the appropriate java.util.PropertyPermission to be able to set the System

variables to affect the proxy server name, as well as the familiar java.net.SocketPermission

from an earlier example for the *.yahoo.com domain. The script in Example 6.32—run as

SYS—grants XMLBOOK the appropriate privileges.

Example 6.32. Granting Privileges to Connect to an External

Web Site

BEGIN

 -- Grant Permission to set the proxy* System properties

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:java.util.PropertyPermission',

 permission_name => 'proxySet',

 permission_action => 'write');

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:java.util.PropertyPermission',

 permission_name => 'proxyHost',

 permission_action => 'write');

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:java.util.PropertyPermission',

 permission_name => 'proxyPort',

 permission_action => 'write');

 -- Grant Permission to resolve and connect to URL at *.yahoo.com

 dbms_java.grant_permission(

 grantee => 'XMLBOOK',

 permission_type => 'SYS:java.net.SocketPermission',

 permission_name => '*.yahoo.com',

 permission_action => 'connect,resolve');

 COMMIT;

END;

Retry the stored procedure and rerun the query from before:

TICKER PRICE DAY

------- ---------- --------------

IBM 111.875 04/17/00 17:47

INTC 123 04/17/00 17:47

MSFT 75.875 04/17/00 17:47

WBVN 4.531 04/17/00 17:47

WEBM 61.75 04/17/00 17:47

AAPL 123.875 04/17/00 18:27

HLTH 19.375 04/17/00 18:27

ORCL 74.812 04/17/00 18:27

to see that the new quotes for AAPL and HLTH have been added and the latest quote for ORCL for

today has been properly revised by the insert_quote procedure. We'll leave it as an exercise to

investigate setting up a periodic execution of yahooquotes.storeLatestQuotesFor in a

database cron job. The steps are the same as in the "Move bad XML documents to another table

in batch" exercise in Chapter 5 that used the DBMS_JOB.SUBMIT procedure.

6.4.3 Handling Asynchronous XML Messages in Queues

The examples in the previous few sections dealt with posting and getting XML in real time over the

Web. This meant making a request and waiting for the response. Sometimes the requester may

be interested in getting the process started, but may not be prepared to sit around waiting for a

response. This is typically the case when delivering the ultimate response—like receiving a book

in the mail that you ordered online—involves multiple, potentially time-consuming steps. This is

a perfect scenario for exploiting Oracle8i 's Advanced Queuing (AQ) feature.

In Chapter 5, we created an AQ queue called xml_msg_queue and used a PL/SQL helper package

called xmlq to easily enqueue and dequeue XML-based messages. Here we'll uncover the

analogous facilities in Oracle AQ's Java API and get the PL/SQL and Java programs talking XML

through the queue. An Oracle AQ can have one of two kinds of message payloads: a "Raw"

payload of up to 32K bytes, or a structured Oracle8 object type. We'll study the simplest of the

two—the Raw payload—in order to learn the ropes.

The .jar file for Oracle's AQ Java API is in ./rdbms/jlib/aqapi.jar
under your Oracle installation home. AQ also offers a Java
Messaging Service (JMS)-compliant API. Our examples use the
AQ native Java API.

To use an AQ queue, you need to do the following:

1. Be in the context of a JDBC database connection

2. Create a session with the queuing system

3. Ask the session to give you a handle to the queue you want to work with, given the schema

and name of the queue

We handle these administrative steps in the XMLQueue constructor in Example 6.33. So to work

with an queue like XMLBOOK's xml_msg_queue, we'll use code like this:

XMLQueue q = new XMLQueue(conn, "xmlbook","xml_msg_queue");

to get started. Since our XMLQueue class encapsulates access to an AQ queue, we need it to model

the two key operations we want to do with XML documents over a queue: enqueue an XML

message and dequeue an XML message. Appropriately, we'll add enqueue and dequeue methods

to our XMLQueue class. The steps involved in enqueuing an XML message are as follows:

1. Serialize the in-memory XML document as a byte array of XML markup.

2. Ask the queue to create a new, empty message.

3. Get a handle to the message's RawPayload "bay."

4. Write the byte array into the payload.

5. Enqueue the message.

6. Commit.

The steps required to dequeue a message are as follows:

1. Optionally set a flag to indicate whether we want to wait for a message.

2. Attempt to dequeue the message, raising an error if the queue is empty and we chose not

to wait.

3. Get a handle to the message's RawPayload "bay."

4. Create an InputStream on the byte array in the message.

5. Parse the InputStream of bytes into an XMLDocument.

6. Commit, and return the XMLDocument.

The full implementation is shown in Example 6.33.

Example 6.33. XMLQueue Class Simplifies Enqueuing and

Dequeuing XML

import oracle.xml.parser.v2.*;

import java.sql.*;

import oracle.AQ.*;

import java.io.*;

import org.xml.sax.SAXException;

import XMLQueueEmptyException;

public class XMLQueue {

 private Connection conn = null;

 private AQSession sess = null;

 private AQQueue queue = null;

 // Constructing an XMLQueue "binds" it to a particular AQ Queue

 public XMLQueue(Connection conn, String schema,String queueName)

 throws AQException,SQLException {

 this.conn = conn;

 conn.setAutoCommit(false);

 // Create the AQ Driver

 AQOracleDriver driver = new AQOracleDriver();

 // Create a new session to work in

 sess = AQDriverManager.createAQSession(conn);

 // Get a handle to the requested queue

 queue = sess.getQueue (schema,queueName);

 }

 // Enqueue an XMLDocument to the queue

 public void enqueue(XMLDocument xmldoc) throws AQException,IOException,

 SQLException {

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 // Print the XML document to serialize it as XML Markup

 xmldoc.print(baos);

 // Get the bytes to enqueue into the "Raw" message

 byte[] messageBytes = baos.toByteArray();

 // Ask the queue to create an empty message

 AQMessage message = queue.createMessage();

 // Get the Raw Payload "bay" to write the message into

 AQRawPayload payload = message.getRawPayload();

 // Set the contents of the payload to be the bytes of our XML Message

 payload.setStream(messageBytes,messageBytes.length);

 // Send the new message on its way into the queue

 queue.enqueue(new AQEnqueueOption(),message);

 // Sign, seal, and deliver

 conn.commit();

 }

 // Dequeue and return an XMLDocument from the queue

 public XMLDocument dequeue(boolean wait) throws AQException,

 SQLException,

 XMLQueueEmptyException {

 AQDequeueOption dqOpt = new AQDequeueOption();

 // If user asked NOT to wait, then set this flag in the Dequeue Options

 if (!wait) {

 dqOpt.setWaitTime(AQDequeueOption.WAIT_NONE);

 }

 AQMessage message = null;

 try {

 // Try to dequeue the message

 message = queue.dequeue(dqOpt);

 }

 catch (oracle.AQ.AQOracleSQLException aqx) {

 // If we get an error 25228 then queue was empty and we didn't want to wait

 if (java.lang.Math.abs(aqx.getErrorCode()) == 25228) {

 throw new XMLQueueEmptyException();

 }

 }

 // Retrieve the Raw Payload "bay" from the message

 AQRawPayload payload = message.getRawPayload();

 // Create an InputStream on the bytes in the message

 ByteArrayInputStream bais = new ByteArrayInputStream(payload.getBytes());

 XMLDocument dequeuedDoc = null;

 try {

 // Parse the XML message

 dequeuedDoc = XMLHelper.parse(bais,null);

 }

 catch (Exception spe) { /* Ignore, doc will be null */ }

 // Finalize the transactional dequeue operation by committing

 conn.commit();

 // Return the XMLDocument

 return dequeuedDoc;

 }

}

We can write a quick command-line test program called AQ to experiment with enqueuing and

dequeuing XML orders. Here we'll exercise the XMLQueue class to enqueue and dequeue orders

that are very simple—albeit perfectly valid—XML documents like:

<order id="101"/>

but the mechanics are identical for enqueuing and dequeuing any XML message up to 32K bytes

with the Raw payload technique. The implementation is shown in Example 6.34.

By using an Oracle AQ queue with an object type
payload—instead of the Raw payload we're experimenting with
here—and basing it on an object type with a CLOB attribute
like:

CREATE TYPE xml_message AS OBJECT(xml CLOB [,
other-attrs]);

you can easily enqueue and dequeue XML messages of
essentially any size by storing the XML message in the CLOB
attribute of the object type message.

Example 6.34. Utility to Test Enqueuing and Dequeuing

Messages

import java.sql.*;

import oracle.AQ.*;

import Examples;

import java.io.*;

import oracle.xml.parser.v2.*;

import XMLQueue;

import XMLQueueEmptyException;

public class AQ {

 // Fun little utility to test enqueuing and dequeing XML "Orders"

 public static void main(String[] args) throws Exception {

 Connection conn = Examples.getConnection();

 if (args.length > 0) {

 // Bind to the queue we want to work with

 XMLQueue xmlq = new XMLQueue(conn,"xmlbook","xml_msg_queue");

 // If user wants to enqueue a message

 if (args[0].startsWith("nq")) {

 int msgs = 0;

 for (int argpos=1; argpos < args.length; argpos++) {

 msgs++;

 String id = args[argpos];

 // Create a little <order> XML datagram (very little!)

 String xml ="<order id='"+id+"'></order>";

 // Parse the message into an XMLDocument

 XMLDocument xmldoc = XMLHelper.parse(xml,null);

 // Enqueue the XML message

 xmlq.enqueue(xmldoc);

 System.out.println("Successfully enqueued order# "+id);

 }

 System.out.println("Enqueued "+msgs+" new messages");

 }

 // If user wants to dequeue a message

 else if (args[0].startsWith("dq")) {

 // If they passed "dqw" then the "w" is for WAIT

 boolean wait = args[0].endsWith("w");

 XMLDocument dqDoc = null;

 try {

 // Dequeue the XML message

 dqDoc = xmlq.dequeue(wait);

 // Print it out

 dqDoc.print(System.out);

 }

 catch (XMLQueueEmptyException qee) {

 System.out.println("xml_msg_queue is empty.");

 }

 }

 else usage();

 }

 else usage();

 }

 private static void usage() {

 System.out.println("usage: AQ [nq ordid|dq[w]]");

 System.exit(1);

 }

}

The syntax for playing with our AQ command-line utility is:

java AQ nq xxx [yyy zzz ...]

To enqueue orders with order IDs xxx, yyy, zzz, etc.

java AQ dq

To dequeue an order if one is available without waiting.

java AQ dqw

To dequeue an order, waiting for one to arrive if none is presently in the queue.

We see the AQ utility in action in two separate command windows in Figure 6.19. The action

unfolds like this:

1. Top window enqueues three orders with IDs 123, 456, and 789.

2. Bottom window dequeues an order and gets <order id="123"/>.

3. Bottom window dequeues an order and gets <order id="456"/>.

4. Bottom window dequeues an order and gets <order id="789"/>.

5. Bottom window dequeues an order and gets "queue is empty" message.

6. Bottom window dequeues—and elects to wait for—an order. Since none is there, his

window sleeps until one comes in.

7. Top window enqueues an order with id 1011.

8. A moment later, bottom window wakes up and dequeues <order id="1011"/>.

Figure 6.19. Experimenting with enqueuing and dequeuing

XML orders

Since queues, like database tables, are technology- and language-agnostic, you can quite easily

experiment using the examples from Chapter 5 to enqueue orders and our Java-based AQ

command-line utility to dequeue them, or vice versa.

In your applications, you can use XMLQueue or similar Java code to post orders in a servlet to a

queue and have multiple database-resident agent programs listening on the queues to process

them. If the workflow of your orders involves multiple, logical phases, or perhaps involves

interacting with partners' systems to accomplish some of the phases, you can use multiple

queues to manage this assembly line of work. Since the queues are stored in tables, you can

easily use familiar SQL to look at your work loads and study your message traffic.

We are really just scraping the surface of the power of Oracle Advanced Queuing here. We've built

up some practical experience with using AQ together with XML messages, but we've taken all the

default options and not explored many of AQ's more sophisticated features. But even when you

leverage multiple-subscriber, SQL-predicate-based message subscription, and automatic,

distributed queue propagation, the basic model of enqueuing and dequeuing XML messages

doesn't change from what we've learned here.

6.5 Producing and Transforming XML Query Results

In this section, we'll briefly cover the mechanisms available in Java for producing XML from SQL

queries and for transforming XML using XSLT transformations:

• The XML SQL Utility provides capabilities to automatically deliver the results of any valid

SELECT statement as an XML document.

• The Oracle XSLT processor implements an XML transformation engine compliant with the

W3C XSLT 1.0 Recommendation (see http://www.w3.org/TR/1999/REC-xslt-19991116)

that allows you to transform XML in one format into XML, HTML, or text of another format.

These topics are covered in detail in Chapter 7 and Chapter 9, so here we'll focus mostly on the

basic mechanics of working with the XML SQL Utility and the Oracle XSLT processor. First, we

cover the steps required to verify that these facilities are properly installed in your database, and

then we'll present some simple examples of their use.

6.5.1 Installing XML SQL Utility and XSLT Processor

First, check to see if the Oracle XML SQL Utility is already installed in your Oracle8i database by

doing the following:

1. Connect to your Oracle8i database with SQL*Plus:

sqlplus xmlbook/xmlbook

2. Check the status of the oracle.xml.sql.query.OracleXMLQuery class by running the

following SQL statement:
3. SELECT SUBSTR(dbms_java.longname(object_name),1,35) AS class, status

4. FROM all_objects

5. WHERE object_type = 'JAVA CLASS'

 AND object_name =

dbms_java.shortname('oracle/xml/sql/query/OracleXMLQuery')

You should see the result:

CLASS STATUS

----------------------------------- -------

oracle/xml/sql/query/OracleXMLQuery VALID

If, instead, you see the SQL*Plus no rows selected message, complete the following steps to

install the Oracle XML SQL Utility in your Oracle8i database:

1. Make sure you've already loaded the Oracle XML Parser for Java into Oracle8i. The XML

SQL Utility depends on it, but we did this earlier in this chapter, so you should be all set.

2. Download the latest release of the Oracle XML SQL Utility from

http://technet.oracle.com/tech/xml. Use the following table to decide which version(s) of

the utility to download:

If you are using XML SQL utility
Download this

version

Inside Oracle8i Release 2 (8.1.6) or later XSU12.zip

Inside Oracle8i Release 1 (8.1.5) XSU111.zip

Outside the database with Oracle 8.1.5 JDBC Driver in classes111.zip XSU111.zip

Outside the database with Oracle 8.1.6 JDBC Driver for JDBC 1.x in

classes111.zip
XSU111.zip

Outside the database with Oracle 8.1.6 JDBC Driver for JDBC 2.0 in

classes12.zip
XSU12.zip

Outside the database with any other JDBC 1.x-based driver XSU111.zip

Outside the database with any other JDBC 2.0-based driver XSU12.zip

3. Extract the .zip or the .tar.gz file into a convenient directory.

4. Change directory to the ./lib subdirectory of the distribution.

5. Load the xsu12.jar file into your schema (or xsu111.jar for 8.1.5):

loadjava -verbose -resolve -user xmlbook/xmlbook xsu12.jar

Repeat the test above to verify that the oracle.xml.sql.query.OracleXMLQuery class is now

loaded and VALID.

Because the implementation of the Oracle XSLT processor is an integrated part of the Oracle XML

Parser for Java, we do not need to install the Oracle XSLT processor separately.

6.5.2 Producing XML from SQL Queries

The XML SQL Utility automates the task of returning an XML document representing the result set

of any valid SQL query. It can handle any SQL language feature or datatype that Oracle8i

supports, so we can immediately put it to the test on one of the most clever, little-known Oracle

SQL tricks: the CURSOR expression. Consider the following table:

CREATE TABLE course_assignments(

 school_id NUMBER,

 name VARCHAR2(80),

 age NUMBER,

 course VARCHAR2(80)

);

This is a "flat" table:

SCHOOL_ID NAME AGE COURSE

---------- -------- ---- ----------

 12332 matt 23 psych-399

 12332 joe 22 psych-399

 12332 steve 23 math-202

 12332 brenda 19 eecs-101

The CURSOR expression allows us to create nested grouping of information from an otherwise flat

table, or easily nest master/detail table information instead of flattening it into a join query. For

example, based on this flat list of course assignments, we can summon forth a list of distinct

courses and students who are assigned to each course using the query:

SELECT course, CURSOR(SELECT name,age

 FROM course_assignments b

 WHERE b.course = a.course

) AS students

 FROM course_assignments a

GROUP BY course

ORDER BY course

Example 6.35 shows a sample program that uses this query together with the XML SQL Utility's

OracleXMLQuery class to instantly produce nested XML query results for the data in question. We

create an instance of OracleXMLQuery, set some of its XML-generation options, and then call its

getXMLString() method to retrieve the "XML-ified" query results.

Example 6.35. Producing Nested XML from a SQL Query with

XML SQL Utility

import java.sql.*;

import oracle.xml.sql.query.*;

public class CourseAssignments {

 public static void main (String arg[]) throws Exception {

 // Get the database connection to our XMLBOOK user

 Connection cn = Examples.getConnection();

 String query = "SELECT course, CURSOR(SELECT name,age "+

 " FROM course_assignments b"+

 " WHERE b.course = a.course"+

 ") AS students"+

 " FROM course_assignments a"+

 " GROUP BY course"+

 " ORDER BY course";

 // Create an instance of the OracleXMLQuery object

 OracleXMLQuery q = new OracleXMLQuery(cn,query);

 // Set some of its XML Generation options

 q.useLowerCaseTagNames();

 q.setRowsetTag("courses");

 // Print it out and close the connection

 System.out.println(q.getXMLString());

 cn.close();

 }

}

Running CourseAssignments produces the XML document in Example 6.36.

Example 6.36. Output from OracleXMLQuery Class

<?xml version = '1.0'?>

<courses>

 <row num="1">

 <course>eecs-101</course>

 <students>

 <students_row num="1">

 <name>brenda</name>

 <age>19</age>

 </students_row>

 </students>

 </row>

 <row num="2">

 <course>math-202</course>

 <students>

 <students_row num="1">

 <name>steve</name>

 <age>23</age>

 </students_row>

 </students>

 </row>

 <row num="3">

 <course>psych-399</course>

 <students>

 <students_row num="1">

 <name>matt</name>

 <age>23</age>

 </students_row>

 <students_row num="2">

 <name>joe</name>

 <age>22</age>

 </students_row>

 </students>

 </row>

</courses>

Notice that nested rowsets created by the CURSOR expression are naturally reflected as nested

XML information in the document. In the next section, we'll see how to combine OracleXMLQuery

with an XSLT transformation to produce XML query results in an arbitrary XML format—for

example, in a business partner's specific DTD format.

Appetite whetted? Good. We explore the full functionality of the XML SQL Utility in Chapter 11,

Chapter 12, and Chapter 14, and it's quite a gem, as we'll discover.

6.5.3 Transforming XML Using XSLT

One of the most common questions on the Oracle Technology Network's XML Support forum is

"How do I serve my database data into the format of a particular DTD?" Here we go, step by step,

though the answer. The high-level steps involved in the process are:

1. Use the XML SQL Utility to produce an XML document for your database query results. You

can do this with a Java program that leverages OracleXMLQuery or simply use the

OracleXML getXML command-line utility we'll learn more about in Chapter 11 and Chapter

12. This is your source XML document.

2. Start with an example XML document that complies with your target DTD. You may have

such an example on hand, or if you use a DTD or schema editing tool, it may support

creating an example XML instance document from a DTD to jump-start this process. This

is an example of your target XML document format.

3. Evolve that example document into an XSLT stylesheet by replacing literal data with

special <xsl:value-of> tags to plug your database query results into the template in the

right places.

4. Use the oraxsl command-line utility to test transforming your source XML query results

into your target DTD format until you're satisfied with the result.

5. Finally, automate the transformation of live XML SQL query results into your desired DTD's

target format using the Oracle XSLT processor in your own program.

Let's take the process one step at a time. We performed Step 1 in the previous section, producing

an example of the XML SQL query results. Step 2 involves producing an example document in our

desired DTD format. Our business partner has supplied us with an Enrollment.dtd file that

describes the format in which they need to receive our enrollment information. Figure 6.20 shows

what this Enrollment.dtd looks like, using the XML Authority tool from Extensibility.

Figure 6.20. Studying the target DTD using XML Authority

Using XML Authority's File Export Example XML Document... feature, we can produce a
skeleton XML document to work with in our desired DTD format:

<?xml version ="1.0"?>

<!DOCTYPE SYSTEM "Enrollment.dtd">

<!--Generated by XML Authority.-->

<enrollment institution-id = "string" date = "string">

 <class id = "string">

 <attendee>

 <first-name>only text</first-name>

 <age>only text</age>

 </attendee>

 </class>

</enrollment>

For Step 3, we can turn the example document into an XSLT stylesheet like the one shown in

Example 6.37. We do this by wrapping it in an <xsl:stylesheet> element and using

<xsl:for-each>, <xsl:value-of>, and XSLT attribute value templates (attr="{expr}") to plug

data, parameters, or even Java function values into the target document as part of the

transformation. We cover a cookbook approach to creating this kind of stylesheet in Chapter 8.

Example 6.37. Stylesheet Turns ROWSET/ROW into a Specific

XML Vocabulary

<!-- Enrollment.xsl -->

<xsl:stylesheet version="1.0" exclude-result-prefixes="date"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:date="http://www.oracle.com/XSL/Transform/java/java.util.Date">

 <xsl:output indent="yes" doctype-system="Enrollment.dtd"/>

 <xsl:param name="School"/>

 <xsl:template match="/">

 <enrollment institution-id="{$School}" date = "{date:toString(date:new())}">

 <xsl:for-each select="courses/row">

 <class id = "{course}">

 <xsl:for-each select="students/students_row">

 <attendee>

 <first-name><xsl:value-of select="name"/></first-name>

 <age><xsl:value-of select="age"/></age>

 </attendee>

 </xsl:for-each>

 </class>

 </xsl:for-each>

 </enrollment>

 </xsl:template>

</xsl:stylesheet>

Note that in Enrollment.xsl we're employing the Oracle XSLT processor's support for XSLT Java

extension functions to use the java.util.Date class as part of the transformation definition in

order to generate today's date. We'll see full details on this Java extension capability in Chapter

16, but this will suffice for now. For Step 4, we use the oraxsl command-line tool to test out our

transformation, passing the value of the stylesheet's top-level School parameter on the

command line:

oraxsl -p School='12332' CourseAssignments.xml Enrollment.xsl

This produces the resulting XML document in the correct Enrollment.dtd format shown in Example

6.38.

Example 6.38. Course Assignments Datagram in

<enrollment> Format

<?xml version = '1.0' encoding = 'UTF-8'?>

<!DOCTYPE enrollment SYSTEM "Enrollment.dtd">

<enrollment institution-id="12332" date="Mon Apr 10 11:16:49 PDT 2000">

 <class id="eecs-101">

 <attendee>

 <first-name>brenda</first-name>

 <age>19</age>

 </attendee>

 </class>

 <class id="math-202">

 <attendee>

 <first-name>steve</first-name>

 <age>23</age>

 </attendee>

 </class>

 <class id="psych-399">

 <attendee>

 <first-name>matt</first-name>

 <age>23</age>

 </attendee>

 <attendee>

 <first-name>joe</first-name>

 <age>22</age>

 </attendee>

 </class>

</enrollment>

This looks pretty good. We'll dedicate the rest of this section to implementing Step 5 to automate

the combination of XML SQL query results and XSLT transformation to allow any queried

information to be returned in Enrollment.dtd format. The first class we'll create is

EnrollmentWriter. This takes the basic code from Example 6.35 and adds the following extras:

1. Calls getXMLDOM() on OracleXMLQuery instead of getXMLString() to return an

in-memory DOM tree for the XML SQL query results. This is more efficient because getting

the results as a string would force us to reparse the string into an XMLDocument to

transform it.

2. Creates and caches an XSLStylesheet object to use for the transformation. Depending on

whether we're running inside or outside the database, this either opens an

xmldoc:/transforms/Enrollment.xsl URL, or reads the Enrollment.xsl file from the current

directory on the filesystem.

3. Creates an XSLProcessor object to carry out the transformation, based on the

transformation instructions that are described in the XSLStylesheet object.

4. Calls processXSL on the XSLProcessor to effect the transformation and write out the

result to a PrintWriter, all in one step.

Example 6.39 shows the full implementation.

A very common mistake developers make is using the

XSLTProcessor class's processXSL method incorrectly. If your

stylesheet contains an <xsl:output> element, which provides
hints governing how the results should be serialized, you must

use:

public void processXSL(XSLStylesheet style,
 XMLDocument source,
 PrintWrinter out);

to see the effects of your <xsl:output> instruction. If instead
you accidentally use the method:

public DocumentFragment processXSL(XSLStylesheet
style,

XMLDocument source);

then the XSLT processor produces the transformed tree of
nodes but is never given the opportunity to serialize the results

according to the <xsl:output> hints. We will learn about all the

specifics of <xsl:output> in Chapter 7.

Example 6.39. Programmatically Transforming

ROWSET/ROW Query Results

import java.sql.*;

import oracle.xml.sql.query.*;

import oracle.xml.parser.v2.*;

import java.net.URL;

import java.io.*;

import XMLDocuments;

import URLUtils;

import Examples;

public class EnrollmentWriter {

 // Cache the stylesheet for the duration of the session

 private static XSLStylesheet sheet = null;

 private Connection conn = null;

 String schoolId = null;

 public EnrollmentWriter(String schoolId,Connection conn) {

 this.schoolId = schoolId;

 this.conn = conn;

 }

 // Print out the XML for an Enrollment by schoolid

 public void printXML(PrintWriter output) throws Exception {

 // Use a CURSOR() expression to get master/detail, nested results

 // of distinct courses and the students in each course

 String query = "SELECT course, CURSOR(SELECT name,age "+

 " FROM course_assignments b"+

 " WHERE b.course = a.course"+

 ") AS students"+

 " FROM course_assignments a"+

 " WHERE school_id = "+ schoolId +

 " GROUP BY course"+

 " ORDER BY course";

 // Create an instance of the OracleXMLQuery object

 OracleXMLQuery q = new OracleXMLQuery(conn,query);

 // Set some of its XML Generation options

 q.useLowerCaseTagNames();

 q.setRowsetTag("courses");

 // Retrieve the results as an in-memory XMLDocument

 XMLDocument xmldoc = (XMLDocument)q.getXMLDOM();

 // If the stylesheet is null, go set it up the first time

 if (sheet == null) setupStylesheet();

 // Set the top-level stylesheet parameter named "School"

 // Note that the value needs to be quoted!

 sheet.setParam("School","'"+schoolId+"'");

 // Transform the XML document using the stylesheet

 // Writing the output to System.out, then close the connection

 XSLProcessor xslt = new XSLProcessor();

 xslt.processXSL(sheet,xmldoc,output);

 }

 // Setup and cache XSLT stylesheet

 private void setupStylesheet() throws Exception {

 URL stylesheetURL = null;

 // If we're inside Oracle8i, read Enrollment.xsl from xml_documents table

 if (Examples.insideOracle8i()) {

 XMLDocuments.enableXMLDocURLs();

 stylesheetURL = new URL("xmldoc:/transforms/Enrollment.xsl");

 }

 // If we're outside Oracle8i, read Enrollment.xsl from current directory

 else stylesheetURL = URLUtils.newURL("Enrollment.xsl");

 try {

 // Construct the stylesheet from the XML coming in from the reader

 sheet = new XSLStylesheet(stylesheetURL,stylesheetURL);

 }

 catch (Exception e) {

 throw new RuntimeException("Failed to read Enrollment.xsl");

 }

 }

}

Now we need a program to drive EnrollmentWriter. We'll write an Enrollment class that acts as

a command-line driver, as well as a Java stored procedure driver, allowing a user in either

scenario to supply a school ID. We'll construct an instance of EnrollmentWriter—passing the

school ID—and call its printXML() method to write out the XML results. In the code for

Enrollment in Example 6.40, we've implemented a debug_main method to enable JServer

debugging, a standard main method for command-line access, and a getAsCLOB method to wrap

as a Java stored procedure.

Example 6.40. Class with Static Methods to Publish as Stored

Procedures

import java.sql.*;

import oracle.sql.CLOB;

import oracle.xml.sql.query.*;

import oracle.xml.parser.v2.*;

import java.net.URL;

import java.io.*;

import EnrollmentWriter;

public class Enrollment {

 // For debugging this inside JServer

 public static void debug_main() throws Exception {

 CLOB[] clob = new CLOB[1];

 getAsCLOB("12332",clob);

 TemporaryCLOB.free(Examples.getConnection(),(Clob)clob[0]);

 }

 // For running on the command line.

 public static void main (String args[]) throws Exception {

 if (args.length < 1) {

 System.err.println("usage: Enrollment schoolid");

 System.exit(1);

 }

 Connection conn = Examples.getConnection();

 EnrollmentWriter ew = new EnrollmentWriter(args[0],conn);

 ew.printXML(new PrintWriter(System.out));

 conn.close();

 }

 // For running inside a SQL Statement

 public static void getAsCLOB(String schoolId, CLOB[] clob) throws Exception {

 Connection conn = Examples.getConnection();

 EnrollmentWriter ew = new EnrollmentWriter(schoolId,conn);

 clob[0] = (CLOB)TemporaryCLOB.create(Examples.getConnection());

 ew.printXML(new PrintWriter(clob[0].getCharacterOutputStream()));

 conn.close();

 }

}

Study the argument list for the getAsCLOB method. It accepts a CLOB[]—an array of type

CLOB—as an argument. Why? Because the PL/SQL stored procedure we want to map to

getAsCLOB needs to have the signature:

PROCEDURE GETASCLOB ("schoolId" IN VARCHAR2, "clob" IN OUT NOCOPY CLOB)

using the IN OUT NOCOPY modifier on the CLOB attribute. It's a rule that any PL/SQL argument

with an OUT mode must map Java into an array of one element of the appropriate object type.

This allows the called program to set the value of the zeroth array element and have the calling

program see the changes.

We're targeting a stored procedure specification with an IN OUT NOCOPY CLOB argument instead

of a function that returns a CLOB because:

• The NOCOPY modifier avoids a potentially expensive memory copy of the CLOB's contents,

so we want to use it.

• Currently, the NOCOPY modifier is not supported on function return values, just on OUT

arguments.

Because the results of the transformed Enrollment datagram are being created on the fly, they

do not exist as a CLOB column in any table. We need to leverage Oracle8i 's temporary CLOB

feature to create transient character values to return to SQL values that can be very large. The

TemporaryCLOB helper in Example 6.41 shows the code to create a temporary CLOB and to free

it when we've finished using it.

Example 6.41. Helper Class to Create and Free Temporary

CLOB

import java.sql.*;

import oracle.jdbc.driver.*;

public class TemporaryCLOB {

 // Return a new temporary CLOB

 public static Clob create(Connection conn) {

 CallableStatement CS = null;

 Clob clob = null;

 try {

 CS = conn.prepareCall("begin dbms_lob.createtemporary(?,false);end;");

 CS.registerOutParameter(1,Types.CLOB);

 CS.execute();

 clob = CS.getClob(1);

 CS.close();

 return clob;

 }

 catch (SQLException s) {

 try { CS.close(); } catch (SQLException s2) { }

 }

 return null;

 }

 // Free a temporary CLOB

 public static void free(Connection conn, Clob clob) {

 PreparedStatement PS = null;

 try {

 PS = conn.prepareStatement("begin dbms_lob.freetemporary(?);end;");

 PS.setClob(1,clob);

 int rows = PS.executeUpdate();

 PS.close();

 }

 catch (SQLException s) {

 try { PS.close(); } catch (SQLException s2) { }

 }

 }

}

After following the steps in JDeveloper (now quite familiar to us) to create a stored procedure

deployment profile and automatically deploy our Enrollment class to the database, we can use

JDeveloper's database browser to inspect the ENROLLMENT specification package it created for us

to publish Enrollment as a Java stored procedure, as shown in Figure 6.21.

Figure 6.21. Browsing a stored procedure specification

Notice that JDeveloper was not able to infer that we wanted the NOCOPY option, so we can copy

and paste the source code for the default package and add NOCOPY ourselves, like this:

CREATE OR REPLACE PACKAGE ENROLLMENT

 AUTHID CURRENT_USER AS

 PROCEDURE DEBUG_MAIN

 AS LANGUAGE JAVA NAME 'Enrollment.debug_main()';

 PROCEDURE GETASCLOB ("schoolId" IN VARCHAR2,

 "clob" IN OUT NOCOPY CLOB)

 AS LANGUAGE JAVA NAME

 'Enrollment.getAsCLOB(java.lang.String,

 oracle.sql.CLOB[])';

END ENROLLMENT;

After rerunning this script to create the package, we're ready to try it out. We can use

ENROLLMENT.getAsCLOB() immediately in any PL/SQL program, but to include it directly inside

a SELECT statement, it must be a function. We can create the enrollmentxml wrapper function

to achieve this:

CREATE OR REPLACE FUNCTION enrollmentxml(schoolid VARCHAR2) RETURN VARCHAR2

IS

 c CLOB;

 retval VARCHAR2(32767);

BEGIN

 enrollment.getAsCLOB(schoolid,c);

 retval := dbms_lob.substr(c);

 dbms_lob.freetemporary(c);

 RETURN retval;

END;

And give it a quick spin in a handy SELECT FROM dual statement:

SELECT enrollmentxml('12332') FROM dual

This returns the enrollment information, queried using the XML SQL Utility, transformed into

Enrollment.dtd format using the XSLT processor. With that final flourish, our grand tour of XML

fundamentals with Java is complete.

Chapter 7. Transforming XML with XSLT

We've used XSLT stylesheets in previous chapters to transform database-driven XML into HTML

pages, XML datagrams of a particular vocabulary, SQL scripts, emails, and so on. If you're a

developer trying to harness your database information to maximum advantage on the Web, you'll

find that XSLT is the Swiss Army knife you want permanently attached to your belt. In a world

where the exchange of structured information is core to your success, and where the ability to

rapidly evolve and repurpose information is paramount, Oracle XML developers who fully

understand how to exploit XSLT are way ahead of the pack.

XSLT 1.0 is the W3C standard language for describing transformations between XML documents.

It is closely aligned with the companion XPath 1.0 standard and works in concert with it. As we'll

see in this chapter, XPath let's you say what to transform, and XSLT provides the complementary

language describing how to carry out the transformation. An XSLT stylesheet describes a set of

rules for transforming a source XML document into a result XML document. An XSLT processor is

the software that carries out the transformation based on these rules.

In the simple examples in previous chapters, we have seen three primary ways to use the Oracle

XSLT processor. We've used the oraxsl command-line utility, the XSLT processor's

programmatic API, and the <?xml-stylesheet?> instruction to associate a stylesheet with an

XSQL page. In this chapter, we begin exploring the full power of the XSLT language to understand

how best to use it in our applications.

7.1 XSLT Processing Mechanics

An XSLT stylesheet describes a transformation that operates on the tree-structured infoset of a

source XML document and produces a tree of nodes as its output.

Consider a simple XML document like this:

<!-- Emp.xml -->

<ROWSET>

 <ROW num="1">

 <EMPNO>7839</EMPNO>

 <ENAME>KING</ENAME>

 </ROW>

 <ROW num="2">

 <EMPNO>7788</EMPNO>

 <ENAME>SCOTT</ENAME>

 </ROW>

</ROWSET>

A transformation of this document operates on the document's corresponding node tree (shown

in Figure 7.1). The tree of nodes for an XML document always starts with a root node that

represents the document itself. Child nodes of the root can be the single document element

node—<ROWSET>, in our example—as well as comments and processing instructions. Child nodes

of the document element can be any combination of text nodes and element nodes, each of which

may, in turn, have similar child nodes. This nesting of nodes forms a tree.

Figure 7.1. Node tree for a simple ROWSET document

Remember that an XML document can look like this:

<ROWSET>
 <ROW num="1">
 <X>Y</X>
 </ROW>
</ROWSET>

or it can look like this:

<ROWSET><ROW num="1"><X>Y</X></ROW></ROWSET>

While both expressions contain a logically equivalent element
structure, the former example contains additional whitespace

(denoted by WS nodes in Figure 7.1) to give it that indented

look. Specifically, it contains a carriage return at the end of
every line followed by a series of spaces at the start of the next
line. When considering an XML document as a tree of nodes,
don't forget that the text nodes containing whitespace also

count as nodes the same as text like 7788 or SCOTT. Since you

can't see it, whitespace is easy to forget about.

To carry out a transformation, an XSLT processor requires two ingredients:

• The source tree of nodes

• An XSLT stylesheet containing a set of transformation rules

An XSLT stylesheet is an XML document that uses elements from the XSLT vocabulary to describe

a transformation. The document element of every stylesheet is an <xsl:stylesheet> element

whose content is a set of rules describing the transformation to be performed. Each rule in the

stylesheet contains an associated XPath pattern that matches the nodes in the source document

to which that rule should apply. Each rule is called a template and is represented by an

<xsl:template> element with a match="pattern" attribute for its associated XPath match

pattern. For example, a rule like this:

<xsl:template match="/">

 <!-- Some Result Content: Elements, Attributes, Text, etc. -->

</xsl:template>

applies to the root node of the document, matching the XPath pattern "/".

Similarly, a rule like this:

<xsl:template match="ROWSET/ROW[ENAME]">

 <!-- Some Result Content: Elements, Attributes, Text, etc. -->

</xsl:template>

applies only to <ROW> elements in the source document that have an <ENAME> child element and

occur as immediate children of a <ROWSET> element.

Each rule is called a template because the literal elements and attributes contained inside the

body of the rule act as a blueprint for constructing a part of the result tree. The XSLT processor

constructs the content of a rule's template in the result tree whenever it processes a source node

matching the rule's pattern. Figure 7.2 illustrates what happens when a rule like this:

<xsl:template match="ROWSET/ROW[ENAME]">

 <Employee id="NX-{EMPNO}">

 <xsl:value-of select="ENAME"/>

 </Employee>

</xsl:template>

is triggered by processing a <ROW> element in the source tree that matches the XPath pattern

ROWSET/ROW[ENAME].

Figure 7.2. Matching source tree node and constructing result

fragment

As the matching template is instantiated, the following three things occur:

1. Literal result elements and attributes in the template are created in the result tree. Result

elements and attributes that are not from the XSLT namespace are considered "literal"

since they are constructed as is in the result tree. In the example just given, the

<Employee> element and its id attribute are created.

2. Any attribute value templates of the form {XPathExpr} contained within literal attribute

values are replaced by the value of their XPath expression. In the example, the {EMPNO}

inside the literal attribute value NX-{EMPNO} is replaced by the value of the EMPNO XPath

expression. This evaluates to 7839, so the final value for the id attribute in the result tree

is NX-7839.

3. Any elements in the XSLT namespace are processed in document order. The

<xsl:value-of> element is processed and is replaced by a text node containing the string

value of the XPath expression in its select attribute—in this case, KING.

The basic operation can be summarized as follows: when a node in the source matches a rule's

pattern, the content of that rule is created in the result tree. Once you grasp this basic operation,

the overall XSLT processing model is easy to understand. Given a source tree and a stylesheet,

the XSLT processor carries out the transformation described by rules in the stylesheet by

following a sequence of steps, just like the ones we have described.

A list of nodes in the source tree is processed to create a portion, or "fragment," of the result tree.

The result tree fragment for the list of nodes is created by processing the nodes in order and

concatenating each of their respective result tree fragments together in the same order. The node

in the current node list being processed is known, not surprisingly, as the current node. The

current node is processed by considering the set of all possible rules that match it and then

selecting the single rule that matches it best. Only a single rule is ever used to process the current

node in the current node list.

To start the process, the XSLT processor begins with a node list containing only the document

root. It finds the template matching this root node—typically the rule with match="/"—and

instantiates the contents of the template in the result tree, following the three basic processing

steps to complete the job. If the template contains elements from the XSLT namespace that

select other nodes to process, the sequence of matching and template content instantiation

continues recursively until there are no nodes left to process. When processing is completed, the

result tree represents the target document produced by the transformation.

7.2 Single-Template Stylesheets

Many useful transformations can be expressed with just a single-root template. We'll examine the

single-template stylesheet here, but we'll spend the rest of this chapter learning why there's a

world beyond the root template and why it's worth learning about.

All of the stylesheets we've seen so far for transforming XML into HTML either have looked like

this:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- The "root" or "main" template -->

 <xsl:template match="/">

 <html>

 <body>

 <!--

 | Literal result elements and attributes, intermingled with

 | <xsl:for-each>, <xsl:value-of>, attribute value templates, etc.

 +-->

 </body>

 </html>

 <xsl:template>

</xsl:stylesheet>

or have used the simple form of the single-root template stylesheet, which looks like this:

<!-- In the "simple form" of a stylesheet, the root template is implied -->

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <body>

 <!--

 | Literal result elements and attributes, intermingled with

 | <xsl:for-each>, <xsl:value-of>, attribute value templates, etc.

 +-->

 </body>

</html>

When you see the xsl namespace declaration:

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

it is natural to think that the XSLT processor will try to access
that URL when your stylesheet is processed. However, the
declaration is only used as a unique string to identify the
namespace for XSLT. If you do not provide this exact string as

the namespace URI for the xsl namespace prefix, the XSLT

processor will simply ignore <xsl:template>,

<xsl:for-each>, <xsl:value-of>, and other elements with

the xsl prefix since it will not recognize them as XSLT actions.

Consider the stylesheet in Example 7.1.

Example 7.1. Single-Root Template Stylesheet to Transform

Emp.xml to HTML

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <html>

 <body>

 <xsl:for-each select="ROWSET">

 <table border="1" cellspacing="0">

 <xsl:for-each select="ROW">

 <tr>

 <td><xsl:value-of select="EMPNO"/></td>

 <td><xsl:value-of select="ENAME"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </xsl:for-each>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

This transforms our simple Emp.xml <ROWSET> document into an HTML document with the

employee data in a table, as shown in Figure 7.3.

Figure 7.3. Employee data in an HTML table

The content of the root template is a mixture of the familiar literal HTML elements <html>,

<body>, <table>, <tr>, and <td>, strategically sprinkled with <xsl:for-each> and

<xsl:value-of> elements. When the XSLT processor instantiates the root template, the

document root node is the current node. The <xsl:for-each> element:

1. Selects a list of source tree nodes to process

2. Makes this list of selected nodes the current node list

3. Begins processing the nodes in the current node list in order

The content of the <xsl:for-each> element is instantiated in the result tree for each node in the

current node list. The content of this instantiated result tree fragment is processed (with respect

to the current node) for additional XSLT elements, if any.

Any <xsl:value-of> elements encountered in the instantiated result tree fragments are

replaced by the string value of the XPath expression in their select attribute. Figure 7.4

illustrates the process.

Figure 7.4. Understanding a single-template stylesheet

The resulting HTML document is shown in Example 7.2.

Example 7.2. Output of Emp.xml Using Single-Root Template

Stylesheet

<html>

 <body>

 <table border="1" cellspacing="0">

 <tr>

 <td>7839</td>

 <td>KING</td>

 </tr>

 <tr>

 <td>7788</td>

 <td>SCOTT</td>

 </tr>

 </table>

 </body>

</html>

In this example, the XSLT processor only performs template matching for the root node. All

subsequent nodes selected for processing are the result of processing the <xsl:for-each>

action's select patterns and iterating over the node-sets they return.

If a stylesheet uses only the root template, then it can optionally use the simple-form stylesheet

syntax that allows <xsl:stylesheet> and <xsl:template match="/"> to be left out. In this case,

the literal element that would have been the first element in the root template is instead the first

element of the entire stylesheet. You must include the namespace declaration for the XSLT

namespace on the literal result element that is now the document element of the stylesheet

document, as well as add the namespace-qualified xsl:version="1.0" attribute to the element:

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <body>

 <xsl:for-each select="ROWSET">

 <table border="1" cellspacing="0">

 <xsl:for-each select="ROW">

 <tr>

 <td><xsl:value-of select="EMPNO"/></td>

 <td><xsl:value-of select="ENAME"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </xsl:for-each>

 </body>

</html>

This produces the same results as the stylesheet with normal syntax we saw earlier.

7.3 Understanding Input and Output Options

The XSLT transformation process described earlier was explained in terms of node trees. These

trees of nodes are the logical form that both the source and result of a transformation can take on

the "inside" of a transformation being performed by an XSLT processor. However, this is what

happens on the outside:

• The source document typically begins as a stream of human-readable characters.

• The result of the transformation typically needs to be written out as another stream of

human-readable characters—for example, to send the result back to a requesting browser

or to save the result in a file for later.

The input to an XSLT transformation must be a tree of source nodes produced by either parsing

a well-formed XML document or creating the tree programmatically (for example, via DOM or SAX

APIs).

All XSLT transformations process the source node tree to produce a tree of result nodes. If

multiple transformations are being applied in sequence by your application, the result tree of one

transformation becomes the source tree of the next transformation in sequence. When no more

transformations need to be done, the final tree of result nodes needs to be written out as a stream

of characters again. This process is called serializing the result tree.

Simple-form stylesheets take advantage of default serialization rules described by the XSLT 1.0

specification to make common cases simple. They serialize transformed output in the default

UTF-8 character set and support either of the following output formats:

• Indented, properly formatted HTML output, with a media type of text/html

• Non-indented XML output with no DOCTYPE and a media type of text/xml

Going beyond these defaults requires using the more verbose, standard XSLT stylesheet syntax

that begins with an <xsl:stylesheet> element that includes as a direct child an <xsl:output>

element, which offers control over the serialization process.

The most important serialization control to understand is the output method. This governs the

basic rules that the XSLT processor will use when serializing the result tree nodes to an output

stream. XSLT 1.0 supports three different output methods:

<xsl:output method="xml"/>

This method is the default and outputs the nodes as well-formed XML.

<xsl:output method="html"/>

This method is the default for result trees whose document element is <html>, <HTML>,

or any case-variation in between. It serializes elements and attributes in an HTML

4.0-friendly way that ensures existing browsers will recognize it. In particular, it does not

write out well-formed XML.

<xsl:output method="text"/>

This method outputs only the text nodes in the result tree in document order. It is used for

transforming XML into programming language source files, emails, or other plain text

output.

Consider the following example source document:

<!-- King.xml -->

<ROWSET>

 <ROW>

 <EMPNO>7839</EMPNO>

 <ENAME>KING</ENAME>

 </ROW>

</ROWSET>

The following stylesheet uses the xml output method to transform this King.xml <ROWSET>

document into an <Invitation> document:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">

 <Invitation>

 <To>

 <xsl:value-of select="ROWSET/ROW/ENAME"/>

 <xsl:text> & Family</xsl:text>

 </To>

 </Invitation>

 </xsl:template>

</xsl:stylesheet>

Transforming King.xml using this stylesheet produces the following result:

<?xml version="1.0"?>

<Invitation>

 <To>KING & Family</To>

</Invitation>

Remember that XSLT stylesheets are well-formed XML

documents, so characters that need to be escaped (like & and <)

must be escaped with & and < in your stylesheets, too.

While the > entity exists to escape the > character, its use is

optional. Finally, note that a numerical character entity like

& can be used as an alternative to represent the character

whose Unicode number in decimal is 38, which is the
ampersand, and some processors choose to emit all reserved
characters using this numerical approach. In your own

stylesheets, if you are more comfortable with hexadecimal, you
can use a hexadecimal numerical entity as well. For example, a
carriage return, Unicode number 10 or 0A in hex, can be

represented alternatively as
 using decimal or

using hex.

The following stylesheet uses the html output method and transforms the <ROWSET> document

into a simple HTML page with a paragraph tag and an image:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">

 <html>

 <body>

 <p>

 <xsl:value-of select="ROWSET/ROW/ENAME"/>

 <xsl:text> & Family</xsl:text>

 </p>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Transforming King.xml using this stylesheet produces the following result:

<html>

 <body>

 <p>KING & Family</p>

 </body>

</html>

Finally, this third example stylesheet uses the text output method to transform the <ROWSET>

document into plain text output with no markup tags:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:text>Hello </xsl:text>

 <xsl:value-of select="ROWSET/ROW/ENAME"/>

 <xsl:text> & Family,
</xsl:text>

 <xsl:text>Your id is </xsl:text>

 <xsl:value-of select="ROWSET/ROW/EMPNO"/>

 </xsl:template>

</xsl:stylesheet>

This produces the result:

Hello King & Family,

Your id is 7839

Note that we're using <xsl:text> elements to include literal text in the result of the

transformation. In general, whitespace is ignored in the stylesheet document, so tags can be

nicely indented for readability. However, the whitespace inside of <xsl:text> elements is

respected, so we use <xsl:text> when we want precise control over the whitespace that gets

created in the resulting document. Literal spaces, tabs, and carriage returns included in

<xsl:text> elements are included verbatim in the result. Note the use of &x0A; to represent the

literal carriage return in the result.

Figure 7.5 illustrates the source document, source node tree, result node trees, and final

serialization of the previous three transformations, abiding by each transformation's specified

output method.

Figure 7.5. Understanding how XSLT output methods affect

serialization

In addition to the output method, several other interesting serialization hints can be specified on

the <xsl:output> element in a stylesheet. Table 7.1 summarizes the <xsl:output> settings that

come in handy most frequently.

Table 7.1. Common xsl:output Settings

If target document needs Set this <xsl:output> attribute

Raw text output method="text"

HTML output method="html"

XML output method="xml"

Character set encoding ENC encoding="ENC"

SYSTEM Identifier URI doctype-system="URI"

PUBLIC Identifier URI doctype-public="URI"

Beautifying whitespace added indent="yes"

No additional whitespace added indent="no"

MIME/Media Type of TYP media-type="TYP"

With the fundamentals of single-root template transformations and their most common

serialization options now under our belts, let's move on to understand why developers ever

bother to use more than just a single-root template.

7.4 Improving Flexibility with Multiple Templates

As we've learned, a stylesheet is a set of rules. When you use only a single-root template, your

stylesheet has, accordingly, only a single rule: "When you see the root of the source document,

do everything inside this!"

As we'll learn in this section, this strategy has pros and cons similar to those of adopting an

"everything in a single main() method" coding style in Java:

public class doit {

 public static void main() (String[] args) {

 // When this program runs, do everything inside this!

 }

}

Developers learning Java find it easy to start with this simple approach, but they quickly find

themselves writing repetitive code that would be nice to factor into helper methods. When this

occurs, they would like to stand on the shoulders of other developers by extending others'

existing work, overriding just the methods that need to behave differently.

We'll see that there is a nice conceptual analogy between methods in Java classes and templates

in XSLT stylesheets. In Java, methods are both the unit of behavior and the unit of overriding. If

you write a class with all of the programming logic in a single main() method, then someone

extending your class can only override that single main() method. This means they have to

rewrite all the logic just to change one small behavioral aspect. The more effectively a class's

methods are logically factored to represent the set of subtasks the class must perform, the easier

it is to reuse a single useful method when appropriate, and the easier it is to override just a part

of the existing behavior, if necessary.

In XSLT, templates are the unit of behavior as well as the unit of overriding. Similar to the Java

analogy above, if you write a stylesheet with all of the transformation logic in a single-root

template, then someone extending your stylesheet can only override that entire template to

change the way your transformation behaves. The more effectively a stylesheet's templates are

logically factored to reflect the individual transformation tasks to be performed, the easier it is to

reuse a single useful template when appropriate, and the easier it is to override just a part of the

existing transformation behavior, if necessary.

7.4.1 Using Multiple Templates

Example 7.3 shows what our single-root template stylesheet from the previous section looks like

if we factored it into multiple templates. We've created a template for each element in the source

document that we will encounter and we have made each template responsible for a small part of

the transformation job. Each template uses the <xsl:apply-templates> action to tell the XSLT

processor to "carry on processing my children nodes" so recursive processing of the tree can

continue.

Example 7.3. Simple Stylesheet to Produce HTML Using

Multiple Templates

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output indent="no"/>

 <xsl:template match="/">

 <html>

 <body><xsl:apply-templates/></body>

 </html>

 </xsl:template>

 <xsl:template match="ROWSET">

 <table border="1" cellspacing="0"><xsl:apply-templates/></table>

 </xsl:template>

 <xsl:template match="ROW">

 <tr><xsl:apply-templates/></tr>

 </xsl:template>

 <xsl:template match="EMPNO">

 <td><xsl:apply-templates/></td>

 </xsl:template>

 <xsl:template match="ENAME">

 <td><xsl:apply-templates/></td>

 </xsl:template>

</xsl:stylesheet>

The way to read a template that looks like this:

<xsl:template match="ROWSET">

 <table border="1" cellspacing="0"><xsl:apply-templates/></table>

</xsl:template>

is as follows:

Whenever we match a <ROWSET> element in the source tree, construct a <table> element in the

result tree to contain the results of processing the children of the current <ROWSET>, and go

process those children now!

When the XSLT processor encounters an <xsl:apply-templates> action, it processes the

current node's children and includes any result tree fragments constructed by that processing at

the location in the result tree where the <xsl:apply-templates> appears. Accordingly, since

here <xsl:apply-templates> is nested inside the literal <table> result element, the result of

processing the children of the current <ROWSET> element will be nested inside the <table>

element in the result tree.

You can read the entire stylesheet in Example 7.3 as shown in the following table:

When we match Construct

The source

document's root "/"

<html> element and nested <body> element in the result tree to contain the

results of processing the document—that is, the children of the root

<ROWSET> element
<table> to contain the results of processing the current <ROWSET>'s child

nodes

<ROW> element <tr> to contain the results of processing the current <ROW>'s child nodes

<EMPNO> element
<td> to contain the results of processing the current <EMPNO>'s child

nodes

<ENAME> element <td> to contain the results of processing the current <ENAME>'s child nodes

Figure 7.6 illustrates the process that takes place during the transformation.

Figure 7.6. Transforming a source document using multiple

templates

As usual, the processor begins by processing the root node in the source tree and finding a rule

that matches it. Our stylesheet has a match="/" template, so it is instantiated with the root node

as the current node. The root template constructs the <html> and <body> elements, and then the

<xsl:apply-templates> is executed to process the list of children of the document root. The list

of children of the root includes one comment node and one element node, the <ROWSET>. To

construct the result tree fragment for this list of nodes, the processor processes each one in order.

The comment node is ignored (we'll learn why in a minute) and then the <ROWSET> element is

processed by finding a rule that matches it. Our match="ROWSET" template matches, so the

processor instantiates it in the result tree. This creates a literal <table> element in the result tree

nested inside the previously instantiated <html> and <body> elements; then

<xsl:apply-templates> is executed to process the list of children of the current <ROWSET>

element. The children of the current <ROWSET> element are the following four nodes, listed here

in order:

1. Text node containing whitespace

2. <ROW> element

3. Text node containing whitespace

4. <ROW> element

Each node in the current node list is processed by finding a matching template and instantiating

it. This has the effect of copying the whitespace to the result tree and instantiating the content of

the match="ROW" template twice to construct two <tr> elements in the result tree. And the

process continues.

The result of this transformation is the same as the result of our single-root template stylesheet,

but as we'll see in the next several examples, having things broken into multiple templates makes

for a much more powerful paradigm.

7.4.2 Understanding Built-in Templates

Before moving on, we need to understand why comments were ignored and how whitespace and

the text nodes for 7839, KING, 7788, and SCOTT found their way into the result tree.

Both of these results occurred based on the following built-in templates that are included by the

XSLT processor as part of every stylesheet:

<xsl:template match="/|*">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="text()|@*">

 <xsl:value-of select="."/>

</xsl:template>

<xsl:template match="processing-instruction()|comment()"/>

The following table shows how to read these templates:

When we match Construct

The source document's

root "/"

or any element "*"

Nothing, but continue by processing the children nodes of the current

node

A text node "text()"

or an attribute "@*"

A text node containing the value of the current node, effectively copying

the text or attribute value to the result tree

A processing

instruction

or a comment

Nothing

These built-in rules serve as fallbacks to keep the recursive processing going in case the current

node is not explicitly matched by any other template in the stylesheet. Their definitions reveal a

couple of interesting points:

• A rule can match any one of several patterns by using the XPath union operator "|"

between the patterns in its match attribute.

• To create a rule that matches a pattern and explicitly does nothing—that is, creates no

result tree nodes and does not continue processing to its children—just define an empty

<xsl:template> node.

To better understand the built-in rules, let's try to transform our simple Emp.xml document using

the following stylesheet that contains no <xsl:template> rules:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!-- This stylesheet contains no rules -->

</xsl:stylesheet>

We can use the oraxsl command-line tool with the command:

oraxsl Emp.xml OnlyBuiltinRules.xsl

to get the following result:

<?xml version = '1.0' encoding = 'UTF-8'?>

 7839

 KING

 7788

 SCOTT

The built-in rule for matching elements and the document root keeps the recursion going without

constructing any elements in the result tree. Each element that is encountered matches this rule,

which immediately says "process the children of the current node." When those children nodes

are the text nodes containing whitespace, or the text nodes containing 7839, KING, 7788, and

SCOTT, the built-in rule for text() is matched, and its default action is to do <xsl:value-of

select="."/>, which copies the string value of the current node—the text node, in this case —to

the result tree. Accordingly, the result tree is just a pile of all the text nodes in the document at

any level, in document order. Although this is interesting, and helpful to remember for debugging,

we won't likely be putting our empty stylesheet into production use any time soon.

7.4.3 Wildcard Matching and Whitespace Handling

Let's turn our attention back to the multiple-template stylesheet from Example 7.3. One of the

things that should bother you about it is that both of the following templates:

<xsl:template match="EMPNO">

 <td><xsl:apply-templates/></td>

</xsl:template>

<xsl:template match="ENAME">

 <td><xsl:apply-templates/></td>

</xsl:template>

are doing the same thing. They each match an element that we expect to be a child element of the

<ROW> and create a table cell <td> element to contain the result of processing the children. The

following query produced the simple Emp.xml document:

SELECT empno, ename

 FROM emp

 WHERE ename in ('KING','SCOTT')

 ORDER BY SAL

But what if we included all of the columns in the emp table? Would we have to perpetuate these

repetitive templates to cover each new element, like <SAL>, <COMM>, <DEPTNO>, and so on? We

could, but we should start getting the feeling that there must be a better way. Since we want to

do the same thing for every element that occurs as a child of the <ROW>, namely, construct a <td>

table cell to contain the result of processing its children, we can simply use XPath to say exactly

what we want. The pattern to match any element that is a child of a <ROW> element is ROW/*. So

we can eliminate all of the templates for each individual <ROW> child element and create a more

generic template to the job:

<!-- Match any element child of a ROW -->

<xsl:template match="ROW/*">

 <td><xsl:apply-templates/></td>

</xsl:template>

This leaves us the with the stylesheet in Example 7.4, which is ready to accommodate future

expansion in the number of columns by processing any child elements of a <ROW> in a generic

way.

Example 7.4. Stylesheet Using Multiple Templates for

ROWSET/ROW Data

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!--

 | EmpUsingRowStar.xsl:

 | Transform Emp.xml Into <table> using ROW/* to handle any column

 +-->

 <xsl:template match="/">

 <html>

 <body><xsl:apply-templates/></body>

 </html>

 </xsl:template>

 <xsl:template match="ROWSET">

 <table border="1" cellspacing="0"><xsl:apply-templates/></table>

 </xsl:template>

 <xsl:template match="ROW">

 <tr><xsl:apply-templates/></tr>

 </xsl:template>

 <!-- Match any element child of a ROW -->

 <xsl:template match="ROW/*">

 <td><xsl:apply-templates/></td>

 </xsl:template>

</xsl:stylesheet>

This should produce the same result as before, so let's try it. Using the command-line oraxsl tool

to transform our Emp.xml document using EmpUsingRowStar.xsl with the command:

oraxsl Emp.xml EmpUsingRowStar.xsl

We get the output:

<html>

 <body>

 <table border="1" cellspacing="0">

 <tr>

 <td>7839</td>

 <td>KING</td>

 </tr>

 <tr>

 <td>7788</td>

 <td>SCOTT</td>

 </tr>

</table>

 </body>

</html>

But wait. This does not look exactly the same as the nicely indented output we saw in Example 7.2

using the single-root template stylesheet from Example 7.1. The indenting of the <tr> elements

and closing </table> tag is wrong, for some reason. It's important to understand why, since it

relates to how XSLT handles whitespace in the source document. Recall that what makes the

Emp.xml document look indented is whitespace characters, like carriage returns and spaces.

Figure 7.7 illustrates what the document would look like if we could see these whitespace

characters.

Figure 7.7. Emp.xml document with whitespace highlighted

When the template matching <ROWSET> is processed in EmpUsingRowStar.xsl, it constructs the

<table> tag and continues recursive processing of <ROWSET>'s child nodes with

<xsl:apply-templates>. Recall from Figure 7.1 that the first-level child nodes of <ROWSET>

are the following, listed here in order:

1. A text node containing the whitespace characters to indent the line: carriage return, space,

space

2. A <ROW> element

3. A text node containing the indentation whitespace characters: carriage return, space,

space

4. A <ROW> element

Using the multiple-template approach, the XSLT processor processes these child nodes of

<ROWSET>, in order and tries to find templates that match. When processing the first text node

child, no explicit templates in EmpUsingRowStar.xsl match this text node, so the built-in template

matching "text()|@*" matches as a fallback and performs its built-in action of copying the text

to the result tree. There is nothing special about how whitespace-only text nodes are handled by

the built-in rule: the characters are simply copied verbatim to the result like any text node. These

extra carriage returns copied as is into the result by the built-in template explain why the

indenting behavior of the output was slightly disturbed.

It's equally important to understand why our stylesheet in Example 7.1 did not run into this

problem. Using that single-root template stylesheet, the XSLT processor does template matching

only for the root node. After this, the only nodes that are processed are the ones explicitly

selected by actions like <xsl:for-each>. Since that stylesheet never explicitly selected any text

nodes for processing, the problem of copying their contents to the result never materialized.

To remedy the situation for EmpUsingRowStar.xsl, we can instruct the XSLT processor to strip,

and hence ignore for transformation, any text nodes in the source tree that consist entirely of

whitespace characters. We can accomplish this by adding an <xsl:strip-space> element to the

top level of our stylesheet:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!--

 | Strip text node children consisting entirely of whitespace for

 | all elements in the source document.

 +-->

 <xsl:strip-space elements="*"/>

The value of the elements attribute of <xsl:strip-space> is a whitespace-separated list of

element names whose text node children consist entirely of whitespace you would like to strip.

Using an asterisk (*) strips space from all elements. To strip space from all but one or all but a few

elements, you can use <xsl:strip-space> in combination with the companion

<xsl:preserve-space> element which takes an analogous elements attribute, listing elements

for which you want to preserve whitespace. By default, an XSLT processor preserves whitespace

child nodes from all elements in the source document.

With this issue sorted out, let's build the following simple XSQL page to test

EmpUsingRowStar.xsl on live database data:

<?xml version="1.0"?>

<!-- Emp.xsql -->

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT empno, ename, sal, deptno

 FROM emp

 ORDER BY ename DESC

</xsql:query>

The query in this page includes a couple of extra columns and, instead of just returning the rows

for ̀ KING' and ̀ SCOTT', will return all the rows in the emp table. As we saw in Chapter 3, we can

reuse the data from the Emp.xsql page by including it in other XSQL pages with the

<xsql:include-xsql> action. In this way, we can apply different stylesheets to the same data

page produced. This will come in handy to test the various stylesheets we develop in the rest of

this chapter.

For example, we can create an EmpUsingRowStar.xsql page that includes Emp.xsql and

associates the EmpUsingRowStar.xsl stylesheet to it. The page looks like this:

<?xml version="1.0"?>

<!-- EmpUsingRowStar.xsql -->

<?xml-stylesheet type="text/xsl" href="EmpUsingRowStar.xsl"?>

<!-- Include Emp.xsql and style it with EmpUsingRowStar.xsl -->

<xsql:include-xsql href="Emp.xsql" xmlns:xsql="urn:oracle-xsql"/>

Running EmpUsingRowStar.xsql from JDeveloper 3.1 we can see the results shown in Figure 7.8.

Figure 7.8. Transformed HTML output of

EmpUsingRowStar.xsql

So our ROW/* template is correctly working not only for the <EMPNO> and <ENAME> elements, but

also for the additional <SAL> and <DEPTNO> elements in the result. However, the results look

pretty plain and are missing column headers. Let's fix that.

7.4.4 Processing Source Nodes in Different Modes

Today, many developers creating HTML pages use Cascading Style Sheets (CSS) to separate the

presentation style information for many pages into a single, external stylesheet file, then

reference the CSS stylesheet from the HTML pages to control font and color information globally.

We can leverage this same tried and true technique in the HTML pages we create simply by

placing the correct <link> tag inside the <head> section of our HTML page. If our CSS stylesheet

is called Table.css then the <head> and <link> elements we need look like this:

<head><link rel="stylesheet" type="text/css" href="Table.css"/></head>

To create table column headers in a generic way, we need to process all child elements of a <ROW>

and then use the names of the elements—as opposed to their values—as the content of the table

header cells. However, we already have a template with a ROW/* match pattern to process the

children of a <ROW>; we're using it to create the table cells for each row generically.Specifically,

we need a way to process the same source tree elements multiple different ways to generate the

column headers. We need to process the children of a <ROW> as follows:

• Once in a special "Column Headers" mode, to transform the children of a <ROW> into the

appropriate column headers

• Once in a regular way to format the query results

Luckily, XSLT has just the functionality we need. When you create a template, in addition to the

match pattern, it can also have a mode attribute that assigns a name to the special mode in which

you want to invoke the template. Since we need a special mode to format column headers, we can

create a template with match="ROW/*" and mode="ColumnHeaders". The name of the mode

needs to be meaningful only to us; the processor never interprets the name in any way. The

template looks like this:

<!-- Match any element child of a ROW when in "ColumnHeaders" Mode -->

 <xsl:template match="ROW/*" mode="ColumnHeaders">

 <th>

 <!-- Put the value of the *name* of the current element -->

 <xsl:value-of select="name(.)"/>

 </th>

 </xsl:template>

Now, when we're processing a <ROW> element child in ColumnHeaders mode, we create <th> table

header elements instead of <td> table cell elements, and we use the XPath name() function to

refer to the name of the current element instead of to its value. Remember that in XPath, the dot

represents the current node, so name(.) is the name of the current node.

When you create templates with an associated mode, you have to explicitly request that the

engine process a list of nodes using that mode. You accomplish this by going beyond the default

use of <xsl:apply-templates> (which, by default, processes the children of the current node

without using any special mode) to include a mode="CurrentHeaders" attribute, like this:

<!-- Apply templates to children of the current node in "ColumnHeader" mode -->

<xsl:apply-templates mode="ColumnHeaders"/>

We need the column headers to be created before all of the <ROW> elements are processed to

produce the table rows, so we add the above <xsl:apply-templates> inside our ROWSET

template, like this:

<xsl:template match="ROWSET">

 <table border="1" cellspacing="0">

 <!-- Apply templates in "ColumnHeader" mode first -->

 <xsl:apply-templates mode="ColumnHeaders"/>

 <!-- Then apply templates to all child nodes normally -->

 <xsl:apply-templates/>

 </table>

</xsl:template>

However, if we attempt to use this template as is, the <xsl:apply-templates> for the

ColumnHeader mode will process all of the child nodes of the <ROWSET>, since that's what

<xsl:apply-templates> does. This will produce a set of column headers across the top for each

<ROW> in the <ROWSET>, which will give us many repeated column headers. We need to process

just a single child <ROW> of the <ROWSET> to pick up the column header names.

We can handle this easily by modifying the default behavior of <xsl:apply-templates> by

adding an optional select attribute that specifies an XPath expression, identifying the list of

nodes to process. We accomplish this by changing:

<xsl:apply-templates mode="ColumnHeaders"/>

to:

<xsl:apply-templates select="ROW[1]/*" mode="ColumnHeaders"/>

Now we can select the list of child elements under only the first <ROW> child of <ROWSET>. This will

give us just a single set of column headers.

There is no longer anything specific to the Emp.xml document left in this stylesheet. It can handle

the task of transforming any <ROWSET> into an HTML table with column headers, so we'll name it

appropriately. The final TableBaseWithCSS.xsl stylesheet, incorporating CSS and column headers,

produced using modes, appears in Example 7.5.

Example 7.5. Transforming Any ROWSET into a Table with

Headers

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!--

 | TableBaseWithCSS:

 | Basic stylesheet to format any ROWSET of ROWS into a table

 | with column headings in a generic way. Leverages Table.css

 | CSS stylesheet to control font/color information for the page.

 +-->

 <xsl:template match="/">

 <html>

 <!-- Generated HTML result will be linked to Table.css CSS stylesheet -->

 <head><link rel="stylesheet" type="text/css" href="Table.css"/></head>

 <body><xsl:apply-templates/></body>

 </html>

 </xsl:template>

 <xsl:template match="ROWSET">

 <table border="1" cellspacing="0">

 <!-- Apply templates in "ColumnHeader" mode to just *first* ROW child -->

 <xsl:apply-templates select="ROW[1]/*" mode="ColumnHeaders"/>

 <!-- Then apply templates to all child nodes normally -->

 <xsl:apply-templates/>

 </table>

 </xsl:template>

 <xsl:template match="ROW">

 <tr><xsl:apply-templates/></tr>

 </xsl:template>

 <!-- Match any element child of a ROW -->

 <xsl:template match="ROW/*">

 <td><xsl:apply-templates/></td>

 </xsl:template>

 <!-- Match any element child of a ROW when in "ColumnHeaders" Mode-->

 <xsl:template match="ROW/*" mode="ColumnHeaders">

 <th>

 <!-- Put the value of the *name* of the current element -->

 <xsl:value-of select="name(.)"/>

 </th>

 </xsl:template>

</xsl:stylesheet>

If we create an XSQL page to test the stylesheet above, we see that the result looks like Figure

7.9.

Figure 7.9. HTML table with column headers

We've seen that by using multiple templates, it's possible to build stylesheets that process source

nodes in a more generic way, and that we can use modes to process the same source tree nodes

in different ways. Next, we'll start to see how templates can be overridden to build on base

libraries of existing templates to create custom templates for new tasks.

7.4.5 Reusing and Customizing Existing Stylesheets

Let's say we need to produce a table displaying employee information where employees who earn

more than $2000 are highlighted. This task differs from our previous work in only one small detail:

ROWs with a SAL > 2000 need to be highlighted differently from other ROWs. We hope it's possible

to focus just on this new requirement. It most definitely is possible with XSLT.

We can create a new EmpOver2000.xsl stylesheet that builds on our TableBaseWithCSS.xsl

stylesheet and adds one new template to handle the new highlighting task. We can leverage our

previous work by using the <xsl:import> action at the top level of our stylesheet to import all of

the templates we've already created for doing the basic job of formatting a <ROWSET> as a table.

Example 7.6 shows the minimal syntax we need.

Example 7.6. Importing a Base Stylesheet and Adding New

Templates

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import all the templates from "TableBaseWithCSS.xsl" as a base -->

 <xsl:import href="TableBaseWithCSS.xsl"/>

 <!-- Override imported template for ROW to match ROWs with a SAL > 2000 -->

 <xsl:template match="ROW[SAL > 2000]">

 <tr class="Highlight"><xsl:apply-templates/></tr>

 </xsl:template>

</xsl:stylesheet>

We've imported the TableBaseWithCSS.xsl stylesheet and added a template with the match

pattern of ROW[SAL>2000] to match nodes with a <SAL> child element whose value is greater than

2000. Rather than hard-coding font and color information directly into the template, notice that

we're using a CSS class attribute to refer to the name of a CSS class called Highlight that will

externally specify the fonts and colors to use for highlighted rows. If we enhance our previous

Table.css to include the new Highlight CSS class like this:

body { font-family: Verdana }

 th { background-color: yellow }

.Highlight { background-color: #e7e7e7 }

then all that's left to do is to build an XSQL page to include our original Emp.xsql information and

transform it using EmpOver2000.xsl like this:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="EmpOver2000.xsl"?>

<xsql:include-xsql href="Emp.xsql" xmlns:xsql="urn:oracle-xsql"/>

Now, when we request this new EmpOver2000.xsql page, we see what's shown in Figure 7.10.

Figure 7.10. HTML table with high-paid employees highlighted

When processing the source tree using this stylesheet, for each child <ROW> in the list of

children of the <ROWSET> element, the XSLT processor looks for templates that match <ROW>.

Earlier, there was only a single template with a match pattern of "ROW", so there was only one

template to choose from. However, in EmpOver2000.xsl the match="ROW" template is imported

from the TableBaseWithCSS.xsl stylesheet, and we've also added a new

match="ROW[SAL>2000]" template. This means that when processing a <ROW> element in the

current node list for rows that have a <SAL> over 2000, the processor finds two matching

templates. Since the current node is a <ROW> element, it matches the match="ROW" template, but

since it's a <ROW> with a SAL greater than 2000, it also matches the match="ROW[SAL>2000]"

template.

Remember from the basic transformation rules we learned earlier in this chapter that the

processor considers all matching templates and then selects the one that matches best. In this

case, the ROW[SAL>2000] is a more specific pattern than the basic ROW pattern, so ROW[SAL>2000]

qualifies as a better match.

Let's try another example that imports TableBaseWithCSS.xsl and:

• Formats even-numbered rows in one color

• Formats odd-numbered rows in a different color

• Formats rows in the "Top-Secret" department to say "Classified"

The stylesheet that accomplishes these tasks appears in Example 7.7.

Example 7.7. Formatting Alternating Rows and Conditionally

Hiding Data

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!-- Import all the templates from "TableBaseWithCSS.xsl" as a base -->

 <xsl:import href="TableBaseWithCSS.xsl"/>

 <!-- Match all ROWS in Top-Secret Department 20 -->

 <xsl:template match="ROW[DEPTNO = 20]">

 <tr>

 <td align="center" colspan="{count(*)}">

 <table border="0">

 <tr>

 <td>Classified</td>

 </tr>

 </table>

 </td>

 </tr>

 </xsl:template>

 <!-- Match all even ROWS -->

 <xsl:template match="ROW[position() mod 2 = 0]">

 <tr class="Even"><xsl:apply-templates/></tr>

 </xsl:template>

 <!-- Match all odd ROWS -->

 <xsl:template match="ROW[position() mod 2 = 1]">

 <tr class="Odd"><xsl:apply-templates/></tr>

 </xsl:template>

</xsl:stylesheet>

The stylesheet contains three additional templates that match:

• Even rows with ROW[position() mod 2 = 0]

• Odd rows with ROW[position() mod 2 = 1]

• Top-Secret rows with ROW[DEPTNO=20]

The stylesheet leverages the XPath position() function and mod operator to calculate the

remainder by integer division by two of the current position in the current node list. Rows in

even-numbered positions will be divisible by two so they have a zero remainder. Rows in

odd-numbered positions have a remainder of one.

Applying this stylesheet produces the results shown in Figure 7.11. This does format the even and

odd rows but—oops!—we've just revealed our Top-Secret Department 20 information to users

browsing the page.

Figure 7.11. HTML table with alternating employee rows

highlighted

This unexpected result occurs because of the way XSLT resolves conflicts among multiple

matching XPath expressions. For rows in Department 20, the XSLT processor considers all the

templates that match the <ROW> element in question. If the row is in an even position in the list,

it will match both ROW[position() mod 2 = 0] and ROW[DEPTNO=20]. Similarly, if it's in an odd

position in the list, it will match the ROW[position() mod 2 =0] template and the ROW[DEPTNO=20]

template. Unlike the previous example we worked with (when it was clear to the processor that

one template was more specific than another), in this case, both templates match a specific

<ROW> element name and both templates have a qualifying predicate. Based on the XSLT

template conflict resolution rules, neither one is better. In this situation, the processor picks the

template that occurs last in the stylesheet. ROW[DEPTNO=20] was never selected because it was at

the top of the stylesheet, above both the "even row" and "odd row" templates.

7.4.6 Avoiding Template Conflicts with Priorities

The basic scheme for determining which templates are more specific than others is as follows: the

generic pattern * is less specific than a pattern like SOMETHING or xyz:SOMETHING, which is less

specific than SOMETHING[predicate] or SOMETHING/SOMETHINGELSE.

But when multiple patterns exist at the same level of specificity, you have to help the XSLT

processor by telling it explicitly which templates are higher priority than others. You can assist the

processor in this tie-breaking task by assigning a priority="realnumber" attribute on your

template. The priority can be any positive or negative real number. When no "best" template can

be selected automatically by the processor, the template with the highest assigned priority wins.

A priority greater than 0.5 makes your template more important than any of the built-in

priorities.

So, if we add a priority="2" attribute to our ROW[DEPTNO=20] template, we make it more

important than the even row and odd row templates. When a row with DEPTNO equal to 20 is

processed, the ROW[DEPTNO=20] template will be chosen by the processor. Example 7.8 shows

the stylesheet with the priority properly indicated.

Example 7.8. Getting the Right Template to Fire by Indicating

Priorities

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!-- Import all the templates from "TableBaseWithCSS.xsl" as a base -->

 <xsl:import href="TableBaseWithCSS.xsl"/>

 <!-- Match all ROWS in Top-Secret Department 20 -->

 <xsl:template match="ROW[DEPTNO = 20]" priority="2">

 <tr>

 <td align="center" colspan="{count(*)}">

 <table border="0">

 <tr>

 <td>Classified</td>

 </tr>

 </table>

 </td>

 </tr>

 </xsl:template>

 <!-- Match all even ROWS -->

 <xsl:template match="ROW[position() mod 2 = 0]">

 <tr class="Even"><xsl:apply-templates/></tr>

 </xsl:template>

 <!-- Match all odd ROWS -->

 <xsl:template match="ROW[position() mod 2 = 1]">

 <tr class="Odd"><xsl:apply-templates/></tr>

 </xsl:template>

</xsl:stylesheet>

Rerunning the example with this modified stylesheet shows us that the result is now what we are

expecting, as illustrated in Figure 7.12.

Figure 7.12. Template priorities at work to produce correct

output

7.4.7 Creating Reusable Named Templates

Next, we'll look at a simple example of formatting numbers to make salaries appear as dollars and

cents and we'll refine our strategy for coloring the alternating rows. XSLT includes the

format-number() function, which allows any element whose value can be converted to a number

to be formatted using the number format masks specified by the java.text.DecimalFormat

class in the Java JDK. We see this function in action in the following stylesheet:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import all the templates from "TableBaseWithCSS.xsl" as a base -->

 <xsl:import href="TableBaseWithCSS.xsl"/>

 <!-- Another technique for alternating row colors -->

 <xsl:template match="ROW">

 <!-- value of class attribute will alternate between "tr0" and "tr1" -->

 <tr class="tr{position() mod 2}"><xsl:apply-templates/></tr>

 </xsl:template>

 <xsl:template match="ROW/SAL">

 <td align="right">

 <xsl:value-of select="format-number(.,'$0.00')"/>

 </td>

 </xsl:template>

</xsl:stylesheet>

Here we're again importing the TableBaseWithCSS.xsl and including a template to accomplish

alternating row coloring, as well as a template matching ROW/SAL to override the formatting of

<SAL> elements that occur as children of <ROW> elements. Note that we're employing a different

technique to handle the alternating rows in this example. Rather than using separate even row

and odd row templates, we use a single <ROW> template but alternate the name of the CSS class

in use on the row by using an attribute value template:

<tr class="tr{position() mod 2}"><xsl:apply-templates/></tr>

This constructs <tr> elements in the result that will have a class attribute whose value will

alternate between tr0 and tr1, depending on whether we're in an even or odd row, respectively.

We can add CSS classes in our Table.css CSS stylesheet to define the colors we want, like this:

body { font-family: Verdana; font-size: 8pt }

 th { background-color: yellow }

.Highlight { background-color: #e7e7e7 }

.tr1 {background-color: #f7f7e7; color: black}

.tr0 {background-color: #f9f9f9; color: black}

By building a quickie XSQL page to include Emp.xsql and format it with this new stylesheet, as

follows:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="FormatSal.xsl"?>

<xsql:include-xsql href="Emp.xsql" xmlns:xsql="urn:oracle-xsql"/>

we can request the page and see the results shown in Figure 7.13.

Figure 7.13. HTML table showing employees with formatted

salaries

If we anticipate frequently needing to format table cells with numeric values, we can further

factor our templates for reuse by creating a named template to handle the formatting. We can

replace the match attribute on the <xsl:template> element with a name attribute to turn the

template into a callable subroutine to be used in any situation requiring a table cell to be

formatted as dollars and cents, like this:

<!-- "Utility" template to format money is a common way -->

<xsl:template name="moneyCell">

 <td align="right"><xsl:value-of select="format-number(.,'$0.00')"/></td>

</xsl:template>

Then, wherever we need to invoke the template, we can use <xsl:call-template> to invoke the

subroutine by name with the syntax:

<xsl:call-template name="moneyCell"/>

Named templates are never automatically triggered by the processor; they must be explicitly

invoked. When a calling template invokes a named template using <xsl:call-template>, the

literal elements and xsl actions in the named template are instantiated as if they had been

included at the current position in the invoking template. This means that the called template

sees the same current node as the template that invoked it, in contrast to

<xsl:apply-templates select="pattern"/>, which changes the current node list.

Common Template Errors

As you begin using match-pattern-based templates and named
templates together in your XSLT work, a very common mistake is to

accidentally type:

<!-- My template to match ROWSET/ROW incorrectly -->
<xsl:template name="ROWSET/ROW">

when you mean:

<!-- My template to match ROWSET/ROW -->
<xsl:template match="ROWSET/ROW">

Another related mistake is to accidentally type:

<!-- Apply templates matching ROWSET/ROW incorrectly-->
<xsl:apply-templates match="ROWSET/ROW">

when you mean:

<!-- Apply templates matching ROWSET/ROW -->
<xsl:apply-templates select="ROWSET/ROW">

If it seems that your templates are not being triggered properly, these
common errors are typically the first thing you should check. To help

further diagnose the problem, you can add an <xsl:message> element at

any point in a template to emit a helpful debugging message. Anything

that is legal in a template can be used as the content of <xsl:message>.

By placing a strategic <xsl:message> element in your template and

using the oraxsl command-line utility to perform the transformation,

you will see all messages on the console. If you use the optional -debug

flag when invoking oraxsl, you will see helpful line number information

for each message as well.

You can use <xsl:message> to emit a simple string argument like this:

<xsl:message>Got Here!</xsl:message>

or the value of any XPath expression, including any variable values:

<xsl:message>
 <xsl:value-of select="XPathExpression"/>
<xsl:message>

For example, to print out the value of the <EMPNO> element, you can do

this:

<xsl:message>
 <xsl:value-of select="EMPNO"/>
</xsl:message>

Like other templates, named templates can be included in a "library" stylesheet that is destined

to be imported when their functionality is needed; for example:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Handle even/odd formatting of rows using CSS classes "tr0" and "tr1" -->

 <xsl:template match="ROW">

 <tr class="tr{position() mod 2}"><xsl:apply-templates/></tr>

 </xsl:template>

 <!-- "Utility" template to format money is a common way -->

 <xsl:template name="moneyCell">

 <td align="right"><xsl:value-of select="format-number(.,'$0.00')"/></td>

 </xsl:template>

</xsl:stylesheet>

We can include both our alternating row coloring and our named moneyCell template in this

CommonLibrary.xsl stylesheet and then import it into the following FormatSalUsingLibrary.xsl

stylesheet:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:import href="TableBaseWithCSS.xsl"/>

 <xsl:import href="CommonLibrary.xsl"/>

 <xsl:template match="ROW/SAL">

 <xsl:call-template name="moneyCell"/>

 </xsl:template>

</xsl:stylesheet>

Notice that the ROW/SAL template here uses an <xsl:call-template> to invoke the common

moneyCell template's services by name. The result is the same as that produced by our earlier

stylesheet, but now we're reusing common templates from two different libraries, including both

normal pattern-matching templates and named templates.

At this point, we've got our XSLT feet firmly planted on the ground and we're ready to delve

deeper into using XSLT in combination with Oracle XSQL Pages in the next chapter. Then in

Chapter 9, we cover a number of important XSLT topics beyond the basics we've learned here,

including using XSLT variables, efficient sorting and grouping of information, and a number of

basic transformation techniques for XML datagrams. We'll see in the many examples throughout

the rest of this book that by using XSQL Pages together with stylesheets, we can publish any data

in any format we need for the Web.

Chapter 8. Publishing Data with XSQL Pages

Once you discover the advantages of working with database information in XML, you'll find

yourself building XML datagrams from SQL statements for many common tasks. In addition to

providing XML components that simplify this job for developers, Oracle has anticipated a much

broader interest in serving database-driven XML, and has provided an easier route for

non-programmers. Using Oracle's XSQL Pages facility, anyone who is familiar with SQL can

quickly and easily build XML data pages from easy-to-author templates.

8.1 Introduction to XSQL Pages

XSQL pages are templates in *.xsql files that allow anyone familiar with SQL to declaratively:

• Assemble dynamic XML "data pages" based on one or more parametrized SQL queries

• Transform a data page to produce a final result in any desired XML, HTML, or text-based

format using an associated XSLT stylesheet

These templates are processed by a common XSQL page processor engine shared by the XSQL

Servlet, the XSQL command-line utility, and the programmatic API for processing XSQL pages

called the XSQLRequest class, as shown in Figure 8.1.

Figure 8.1. Overview of XSQL Pages architecture

As this chapter will illustrate, you can accomplish surprising things in a declarative way by

combining SQL, XML, and XSLT.

As part of the Oracle XML Developer's Kit, Oracle XSQL Pages is
included in Oracle JDeveloper 3.1 and is pre-installed and ready
to use with Oracle Internet Application Server and Oracle8i
Release 3. In addition, the technology is designed to work with
any servlet engine (Apache JServ, Tomcat, JRun, ServletExec,
etc.) and can be downloaded from the Oracle Technology
Network web site at http://technet.oracle.com/tech/xml. You'll
find complete installation instructions for using XSQL Pages
with several popular servlet engines in Appendix B.

8.1.1 Your First XSQL Page

An XSQL page template is an XML document that uses <xsql:query> tags anywhere you want

dynamic XML query results to be included. By convention, the template lives in a file with an .xsql

extension. To serve new kinds of XML datagrams as new needs arise, you simply build new XSQL

pages rather than writing, compiling, debugging, and deploying custom programs or servlets

every time. The Oracle XSQL Servlet does the dirty work of handling requests for any of your

XSQL pages automatically.

Since XSQL pages are themselves XML documents, you can build them in your favorite text editor

or XML editing tool. As we learned in Chapter 4, Oracle JDeveloper 3.1 is a great choice since it

provides color-coded XML syntax highlighting, integrated XML syntax checking, and built-in

support for testing your XSQL pages.

Whatever tool you choose, the simplest possible XSQL page you can create looks like

HelloWorld.xsql in Example 8.1.

Example 8.1. HelloWorld.xsql, the Simplest XSQL Page

<?xml version="1.0"?>

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT 'Hello, World!' AS text

 FROM DUAL

</xsql:query>

Recall from Chapter 2, that xmlns:xsql="urn:oracle-xsql"

in Example 8.1 defines the xsql prefix for the namespace that

identifies elements in the XSQL Pages vocabulary whose unique

namespace identifier is the string urn:oracle-xsql. This

allows us to freely and unambiguously mix elements in the
XSQL vocabulary with any other XML element in a document.
You must include this declaration in your document or it won't
be recognized as an XSQL page.

This simple example uses a single <xsql:query> tag as the document element of the template.

The connection="xmlbook" attribute on the document element (not just in any child element) of

the XSQL page determines which named database connection to use. The SQL statement inside

the <xsql:query> tag defines the query to be executed, which in this case will return a single row

with a single column containing the literal text Hello, World! in a column aliased to the name

TEXT (assuming that your servlet engine is configured to serve XSQL).

Immediately after saving HelloWorld.xsql to disk, you can request the page through a browser

using a URL such as:

http://xmlapps/examples/HelloWorld.xsql

and you will receive the following XML datagram in your browser:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <TEXT>Hello, World!</TEXT>

 </ROW>

</ROWSET>

If you want to run these examples on your own machine,

replace xmlapps in the

http://xmlapps/examples/HelloWorld.xsql URL with

localhost. If you're working in JDeveloper 3.1, you can save

your XSQL page and test it immediately by selecting Run from
the right mouse button menu in the project navigator. Your
local host machine will be used to serve the content from the
XSQL Servlet.

If, instead, you're trying this on your own web server,

substitute xmlapps in the

http://xmlapps/examples/HelloWorld.xsql URL with the

name of your server.

For testing and debugging purposes, or to use your XSQL pages from within command scripts for

offline XML data publishing, Oracle provides the companion XSQL command-line utility. Both the

XSQL Servlet and the XSQL command-line utility use the same XSQL page processor engine

internally, so the command:

xsql examples/HelloWorld.xsql

produces the same results as requesting that page by URL, making it easy to save the results in

a file for inspection or further processing.

Here we returned the raw data page as a datagram in response to the request, but the page can

also include a reference to an XSLT stylesheet, like this:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="HelloWorld.xsl"?>

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT 'Hello, World!' AS text

 FROM DUAL

</xsql:query>

This indicates your intention to transform the data page in the server using the following

HelloWorld.xsl stylesheet:

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <body>

 <h2>Server Says</h2>

 <xsl:value-of select="ROWSET/ROW/TEXT"/>

 </body>

</html>

before returning the final, transformed result to the requester. As we learned in Chapter 7, the

special element <xsl:value-of> from the xsl namespace makes it easy to plug information from

your data page into the stylesheet that acts as a template for your desired output document. So,

in this simple example, rather than seeing the <ROWSET> and <ROW> tags from the raw data

page, the requester's browser receives a document like this:

<html>

 <body>

 <h2>Server Says</h2>

 Hello, World!

 </body>

</html>

To the requester's browser, this is just a regular HTML page, so it will be displayed as such. The

requester has no way of knowing that you produced this dynamic result by plugging information

from your XSQL data page into an XSLT stylesheet. As we'll explore in more detail later, XSLT

stylesheets can be used to easily transform the structure of your XSQL page into any other

structure you might be looking to deliver: XML of another shape, HTML, or just plain text.

HelloWorld.xsql is the simplest possible example. Your XSQL pages can:

• Contain SQL statements of arbitrary complexity in their <xsql:query> tags

• Use the values of requester-supplied parameters in any query

• Include multiple queries in a page

• Control XML generation options on each query

• Transform the output differently depending on the requesting program or browser

We cover all of this and much more in this chapter and even more features of XSQL in Chapter 15.

As this simple example shows, the XSQL Pages facility lets you easily serve any data in XML, and

easily transform that data into any format required by the requester, cleanly separating the data

content from the data presentation.

8.1.2 Defining Your Database Connections Settings

When you include a connection="connname" attribute on the document element of an XSQL

page, the Oracle XSQL page processor consults its configuration file, XSQLConfig.xml, to

determine the actual username, password, driver, and dburl values to use for the database

connection. XSQLConfig.xml is an XML-based configuration file that is read from the CLASSPATH

of the environment in which the XSQL page processor is running. The file contains a connection

definition section like the following:

<?xml version="1.0"?>

<connectiondefs dumpallowed="no">

 <connection name="xmlbook">

 <username>xmlbook</username>

 <password>xmlbook</password>

 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>

 <driver>oracle.jdbc.driver.OracleDriver</driver>

 </connection>

 <connection name="demo">

 <username>scott</username>

 <password>tiger</password>

 <dburl>jdbc:oracle:thin:@demo-machine:1521:demo</dburl>

 <driver>oracle.jdbc.driver.OracleDriver</driver>

 </connection>

 <connection name="lite">

 <username>system</username>

 <password>manager</password>

 <dburl>jdbc:Polite:POlite</dburl>

 <driver>oracle.lite.poljdbc.POLJDBCDriver</driver>

 </connection>

</connectiondefs>

Each connection you want to use with your XSQL pages should be defined in this file with an

appropriate <connection> element, which should have a unique value for its name attribute. Each

<connection> element should have the four child elements <username>, <password>, <dburl>,

and <driver>, which provide the information necessary to properly establish a JDBC connection

using the indicated JDBC driver class name. If the <driver> is omitted, its value defaults to

oracle.jdbc.driver.OracleDriver, but any JDBC driver is okay to use.

By default, the XSQLConfig.xml file is found in the /lib subdirectory of the XSQL Pages installation

directory. If you use JDeveloper 3.1 to edit and test your XSQL pages, you'll also want to edit the

XSQLConfig.xml file found in the /lib subdirectory of the JDeveloper 3.1 installation.

It is important that you keep the XSQLConfig.xml file in a
directory that is not browsable by URL from your web server.
This means you do not want it in a subdirectory or any directory
mapped to a virtual path in your web server configuration file.
Failure to check this may allow users to browse your database
configuration information, which is definitely undesirable.

8.1.3 Using Parameters in Your Queries

An XSQL page is even more versatile when its results can change based on the values of one or

more parameters supplied by the requester. To accommodate this, you can reference the values

of any number of substitution parameters in your <xsql:query> tag's SELECT statement using

the notation {@paramname}. Use this notation wherever you want the value of parameter

paramname to be substituted in the query. The value of the parameter paramname is derived from

the first of the following criteria to be met:

1. The value of the URL parameter named paramname, if supplied

2. The value of the HTTP session object named paramname, if present

3. The value of the XML attribute named paramname on the current <xsql:query> element,

if present

4. The value of the first XML attribute named paramname found on any ancestor element of

the current query element, if found

5. An empty string

So, as Example 8.2 illustrates, the msg parameter can be referenced in the query with {@msg} and

a default value can be specified by providing a value for the msg attribute on the <xsql:query>

element. If the requester does not provide a value for the msg parameter in the request, the

default value of Hello, World! is used.

Example 8.2. Using Parameters in a Query

<?xml version="1.0"?>

<xsql:query connection="xmlbook" msg="Hello, World!"

 xmlns:xsql="urn:oracle-xsql">

 SELECT '{@msg}' AS text,

 TO_CHAR(sysdate,'DD-MON-YYYY HH24:MI:SS') AS sent

 FROM dual

</xsql:query>

If the requester provides a value for the msg parameter; for example, using the URL:

http://xmlapps/examples/HelloWorld.xsql?msg=Welcome

the XSQL page processor produces the result:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <TEXT>Welcome</TEXT>

 <SENT>05-SEP-1999 15:11:45</SENT>

 </ROW>

</ROWSET>

An identical result is produced if a value for the msg parameter is provided on the command line

of the XSQL command-line processor using the syntax:

xsql HelloWorld.xsql msg=Welcome

In Example 8.2, we used the parameter in the SELECT list. You can also use a parameter in a

WHERE clause to match a column like the id of a doctor:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT *

 FROM doctor

 WHERE id = '{@id}'

</xsql:query>

This parameterized XSQL page can be used to retrieve information about doctors, given the value

of their email id in the requesting URL like this:

http://xmlapps/examples/DoctorInfo.xsql?id=bproto

which returns the datagram:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <ID>bproto</ID>

 <FIRSTNAME>Bryan</FIRSTNAME>

 <LASTNAME>Proto</LASTNAME>

 <HOMEOFFICE>French44</HOMEOFFICE>

 </ROW>

</ROWSET>

Parameter references like {@paramname} in an XSQL page's <xsql:query> are substituted with

their appropriate parameter values from the query string whenever the page is requested. This

means you can build a page that uses parameters to provide parts of the query statement, like

this:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" select="*" where="1=1" order="1"

 xmlns:xsql="urn:oracle-xsql">

 SELECT {@select}

 FROM {@from}

 WHERE {@where}

 ORDER BY {@order}

</xsql:query>

This XSQL page allows the requester to control all the parts of the syntax of the SELECT

statement. You can use XML attributes with the same names as the parameters to provide

defaults in case the requester does not provide a specific value.

Taking the last example a step further, you can build a page that uses a parameter to represent

the entire SQL statement:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT *

 FROM ({@sql})

</xsql:query>

Such a page allows any requester with the authorization to access the page the ability to return

XML datagrams for any SQL statement on your server. This obviously is not something you would

want to use on a production system without appropriate authentication. Since XSQL pages can be

secured using standard web page security mechanisms, this access can be set up so it is not

abused.

8.1.4 Customizing the XSQL Results

The most basic way to get XML results from queries into your XSQL page is to include the text of

the desired SQL query between the <xsql:query> and </xsql:query> tags. Using this technique,

each query in the page will produce the following structure by default:

• A <ROWSET> element containing the query's results

• A <ROW> element and a row identifier, for each row in the result set

• A child element for each non-NULL column in each <ROW>

The element names for each column in the result set are derived from the column names or

column aliases if provided.

8.1.4.1 Changing element names by aliasing columns

You can use the standard SQL columnname AS alias syntax to rename a column included in the

SELECT list or to specifically provide a column alias for a SQL expression like this:

<?xml version="1.0"?>

<xsql:query connection="scott" xmlns:xsql="urn:oracle-xsql">

 SELECT dept.deptno AS department,

 SUM(sal) AS "TOTAL-SALARIES"

 FROM emp,dept

 WHERE dept.deptno = emp.deptno

 GROUP BY dept.deptno

 ORDER BY 1

</xsql:query>

If you include the column alias in double quotes, the alias will be used verbatim; otherwise,

names are converted to uppercase. In this case, the double quotes are required, since a name

with a dash in it, like TOTAL-SALARIES in the following example, is not a valid SQL column name:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <DEPARTMENT>10</DEPARTMENT>

 <TOTAL-SALARIES>8750</TOTAL-SALARIES>

 </ROW>

 <ROW num="2">

 <DEPARTMENT>20</DEPARTMENT>

 <TOTAL-SALARIES>10875</TOTAL-SALARIES>

 </ROW>

 <ROW num="3">

 <DEPARTMENT>30</DEPARTMENT>

 <TOTAL-SALARIES>9400</TOTAL-SALARIES>

 </ROW>

</ROWSET>

8.1.4.2 Tailoring XML query results

In addition to using column aliasing and parameter values to control the query's XML output, you

can also specify values for any combination of the <xsql:query> tag attributes in Table 8.1. This

allows you to further refine each query's XML results.

Table 8.1. xsql:query Attributes to Control XML Output

Attribute Name Description

rowset-element
Element name to use as a parent for the rowset of query results. The

default name is <ROWSET>. Set equal to the empty string to suppress

printing an element for the rowset.

row-element
Element name to use as a parent element for each row in the query

results. The default name is <ROW>. Set equal to the empty string to

suppress printing a row element.

max-rows

Maximum number of rows to fetch from the query. Useful in combination

with an ORDER BY in your query for fetching the top-N rows. When used

in combination with skip-rows, it's easy to implement getting the next-N

rows from a query result to page through a set of query results. The

default is to fetch all rows.

skip-rows Number of rows to skip over before returning the query results. The

default is not to skip any rows.

id-attribute
Attribute name for the row identifier attribute for each row in the query

result. The default is num.

id-attribute-column
Column name to use to supply the value of the row identifier attribute for

each row in the query result. The default is to use the row count as the

value.

null-indicator
If set to y or yes, causes a null-indicator attribute to be used on the

element for any column whose value is NULL. The default is to omit the

element in the result for any column with a NULL value.

tag-case

If set to upper, causes the element names for columns in the query result

to be in uppercase. If set to lower, causes the element names for

columns in the query result to be in lowercase. The default is to use the

case of the column name (or column aliases if provided) from the query.

fetch-size
Explicitly sets the number of records retrieved in each round-trip to the

database for this query. This overrides the default fetch size set in the

XSQL configuration file.

For example, using rowset-element and row-element you can serve a datagram for a list of

department numbers and a sum of all the salaries in each department as a <DEPARTMENT-LIST>

document with nested <DEPARTMENT> elements. The XSQL page for this looks like the following:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql"

 rowset-element="DEPARTMENT-LIST" row-element="DEPARTMENT">

 SELECT dept.deptno AS "NUMBER",

 sum(sal) AS "TOTAL-SALARIES"

 FROM emp,dept

 WHERE dept.deptno = emp.deptno

 GROUP BY dept.deptno

 ORDER BY 1

</xsql:query>

Requesting this page produces the result:

<?xml version = '1.0'?>

<DEPARTMENT-LIST>

 <DEPARTMENT num="1">

 <NUMBER>10</NUMBER>

 <TOTAL-SALARIES>8750</TOTAL-SALARIES>

 </DEPARTMENT>

 <DEPARTMENT num="2">

 <NUMBER>20</NUMBER>

 <TOTAL-SALARIES>10875</TOTAL-SALARIES>

 </DEPARTMENT>

 <DEPARTMENT num="3">

 <NUMBER>30</NUMBER>

 <TOTAL-SALARIES>9400</TOTAL-SALARIES>

 </DEPARTMENT>

</DEPARTMENT-LIST>

To suppress the row identifier attribute, and force all of the XML element names to lowercase, we

can add the id-attribute="" and tag-case="lower" attributes:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" id-attribute="" tag-case="lower"

 rowset-element="DEPARTMENT-LIST" row-element="DEPARTMENT"

 xmlns:xsql="urn:oracle-xsql">

 SELECT dept.deptno AS "NUMBER",

 sum(sal) AS "TOTAL-SALARIES"

 FROM emp,dept

 WHERE dept.deptno = emp.deptno

 GROUP BY dept.deptno

 ORDER BY 1

</xsql:query>

This produces the expected changes in the resulting datagram:

<?xml version = '1.0'?>

<department-list>

 <department>

 <number>10</number>

 <total-salaries>8750</total-salaries>

 </department>

 <department>

 <number>20</number>

 <total-salaries>10875</total-salaries>

 </department>

 <department>

 <number>30</number>

 <total-salaries>9400</total-salaries>

 </department>

</department-list>

You may set either or both rowset-element and row-element to the empty string to suppress

their output. Doing so can be useful when you know that the results of the query will produce a

single row or a single column and you don't need the extra levels of <rowset> and <row> elements

in the resulting document. As an example, the following XSQL page:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" id-attribute="" xmlns:xsql="urn:oracle-xsql"

 rowset-element="" row-element="">

 SELECT sum(sal) AS "TOTAL"

 FROM emp,dept

 WHERE dept.deptno = emp.deptno

 AND dept.deptno = {@dept}

 GROUP BY dept.deptno

 ORDER BY 1

</xsql:query>

produces this one-element document containing only the <TOTAL> tag generated for the TOTAL

column in the results:

<?xml version = '1.0'?>

<TOTAL>10875</TOTAL>

When suppressing rowset-element or row-element in an XSQL page comprised of only a single

query tag, you must ensure that your results still generate a well-formed XML document. For

example, this XSQL page, which specifies both rowset-element="" and row-element="":

<?xml version="1.0"?>

<xsql:query connection="xmlbook" rowset-element="" row-element=""

 xmlns:xsql="urn:oracle-xsql">

 /* This query returns one row, two columns */

 SELECT 1 AS VALUE1, 2 AS VALUE2 FROM DUAL

</xsql:query>

would generate the following result:

<?xml version = '1.0'?>

<VALUE1>1</VALUE1>

<VALUE2>2</VALUE2>

This is not a well-formed XML document, since it has two top-level elements instead of the single

document element required by the XML specification. Similarly, an example like this:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" rowset-element="" row-element="PERSON"

 xmlns:xsql="urn:oracle-xsql">

 /* This query returns two rows of one column each */

 SELECT 'Emma' AS NAME FROM DUAL

 UNION

 SELECT 'Amina' AS NAME FROM DUAL

</xsql:query>

returns two rows but suppresses the rowset-element:

<?xml version = '1.0'?>

<PERSON>

 <NAME>Emma</NAME>

</PERSON>

<PERSON>

 <NAME>Amina</NAME>

</PERSON>

This again, is not well-formed XML. In both cases, rather than returning an invalid page, the XSQL

page processor will return an error:

Oracle XSQL Command Line page processor

XSQL-014: Resulting page is an empty document or had multiple document elements.

If you are building a page with a query that you think should return a single row, you can

guarantee that only a single row will be returned by using the max-rows="1" attribute on your

query tag to avoid this situation.

8.1.4.3 Using parameters in <xsql:query> tag attributes

In addition to using parameters in the SQL statement for an <xsql:query> tag, the values of

<xsql:query> tag attributes can also reference parameters. This makes it easy for the requester

to pass in values for the attributes that control the query's XML output. For example, a page like

this:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" cat="news" skip="0"

 max-rows="2" skip-rows="{@skip}" xmlns:xsql="urn:oracle-xsql">

 SELECT title,url

 FROM site_entry

 WHERE categories like '%'||UPPER('{@cat}')||'%'

 ORDER BY id desc

</xsql:query>

uses the following <xsql:query> tag attributes:

cat="news"

Specifies news as the default category for requested headlines

skip="0"

Defaults the value of the skip parameter to zero

max-rows="2"

Shows at most two rows of results

skip-rows="{@skip}"

Skips the number of rows specified in the skip parameter before returning data

So the following URL:

http://xmlapps/examples/BrowseHeadlines.xsql

produces an XML datagram showing the first two stories from the news category:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <TITLE>New XML Content on Oracle TechNet</TITLE>

 <URL>http://technet.oracle.com/tech/xml</URL>

 </ROW>

 <ROW num="2">

 <TITLE>XML.org Premieres As Repository For Schemas</TITLE>

 <URL>http://www.infoworld.com/cgi-bin/displayStory.pl?990526.ice.htm</URL>

 </ROW>

</ROWSET>

If we add the URL parameter skip=2, then the skip-rows="{@skip}" attribute on the query tag

will evaluate to 2, overriding the default value of zero. So the result of requesting:

http://xmlapps/examples/BrowseHeadlines.xsql?skip=2

is the XML datagram showing just the third and fourth rows of the results:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="3">

 <TITLE>Microsoft's Maritz at TechEd on XML</TITLE>

<URL>http://www.infoworld.com/cgi-bin/displayStory.pl?990524.icmaritz.htm</URL>

 </ROW>

 <ROW num="4">

 <TITLE>IBM XML Translator Generator</TITLE>

 <URL>http://www.alphaworks.ibm.com/tech/xmltranslatorgenerator</URL>

 </ROW>

</ROWSET>

Providing a value for the cat parameter in the URL allows the requester to request a different

category of stories. The following request:

http://xmlapps/examples/BrowseHeadlines.xsql?cat=software&skip=4

shows the fifth and sixth news stories in the software category:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="5">

 <TITLE>Beta 1.5 of Microsoft XML Notepad</TITLE>

 <URL>http://msdn.microsoft.com/xml/notepad/intro.asp</URL>

 </ROW>

 <ROW num="6">

 <TITLE>SAXON 4.2 Released</TITLE>

 <URL>http://home.iclweb.com/icl2/mhkay/saxon.html</URL>

 </ROW>

</ROWSET>

Here we've seen parameters in use for attribute values to control the behavior of individual

<xsql:query> tags, but as a final note to this section, we recall that it's also possible to use a

parameter to control the page-level connection. By simply including a parameter in the

connection attribute on the document element, you can build a page that allows the requester to

provide the name of the named connection as a parameter to the request. So, with a page that

begins like this:

<page xmlns:xsql="urn:oracle-xsql" connection="{@conn}">

the requester can provide a parameter like conn="prod" or conn="test" to select between the

production database whose named definition is prod and the test database instance whose

named definition is test. Using the techniques we learned earlier, a default value for the conn

attribute can be supplied using an attribute of that name on the document element, like this:

<page xmlns:xsql="urn:oracle-xsql" conn="prod" connection="{@conn}">

This causes the page to default to the connection named prod, but allows the conn="test"

parameter to be supplied to override the default value and use the test database connection for

a particular request.

8.1.5 Using Multiple Queries on a Page

Our examples so far have all used a single <xsql:query> tag as the only element in the XSQL

page. However, there is no limit to the number of queries that can appear in a page or to where

the <xsql:query> tags can appear in the page. The only overriding rule is that the XSQL page

itself must be a well-formed XML document: an <xsql:query> tag can appear anywhere an

element can appear in a document:

<?xml version="1.0"?>

<a-query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <can-go-here/>

 <xsql:query> SELECT * FROM table1 </xsql:query>

 <or-here>

 <xsql:query> SELECT * FROM table2 </xsql:query>

 </or-here>

 Or even <xsql:query> SELECT * FROM table3 </xsql:query> here.

</a-query>

Conversely, anywhere it would be illegal to put an XML element in a well-formed document is an

illegal place for an <xsql:query> tag. The following page shows three illegal places for an

<xsql:query> tag to appear:

<?xml version="1.0"?>

<a-query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <cannot go-here="<xsql:query> SELECT * FROM table1 </xsql:query>"/>

 <or-here<xsql:query> SELECT * FROM table2</xsql:query>/>

 <!--

 Ok here, but has no effect in a comment

 <xsql:query> SELECT * FROM table3 </xsql:query>

 -->

</a-query>

<but-not-here>

 <xsql:query> SELECT * FROM table4 </xsql:query>

</but-not-here>

An <xsql:query> tag cannot appear:

• Inside the value of an XML attribute

• As part of an element or attribute name.

• Outside the document element

Of course it's legal, even useful sometimes, to include an <xsql:query> tag inside a comment

between <!-- and --> in the page, but when it's inside a comment it won't be executed by the

XSQL page processor.

Example 8.3 shows an XSQL page for returning a client's stock portfolio information; it includes

<xsql:query> tags wherever we need dynamic output inserted.

Example 8.3. Portfolio of Quotes Using Multiple Queries

<?xml version="1.0"?>

<client-portfolio connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:query rowset-element="" row-element="">

 select to_char(sysdate,'DD-MON-YYYY') as "effective-date" from dual

 </xsql:query>

 <client>

 <info>

 <xsql:query rowset-element="" row-element="" id-attribute=""

tag-case="lower">

 SELECT id, name, homeaddress, workaddress

 FROM clients

 WHERE id = {@id}

 </xsql:query>

 </info>

 </client>

 <xsql:query rowset-element="portfolio" row-element="quote" tag-case="lower" >

 SELECT q.symbol,

 q.price,

 q.change

 FROM quotes q, portfolio_stocks ps

 WHERE q.symbol = ps.symbol

 AND ps.owner = {@id}

 </xsql:query>

</client-portfolio>

Let's examine a few things that make this XSQL page different from those we've seen previously:

• The page starts with the <client-portfolio> element instead of an <xsql:query> tag.

• Since it must appear on the document element of the page, the connection="xmlbook"

appears on the <client-portfolio> element instead of on any individual <xsql:query>

element.

• The page uses three <xsql:query> tags instead of just a single one.

• The second <xsql:query> tag appears nested inside the static elements <client> and

<info>.

• Two different queries in the page both refer to the {@id} parameter.

Requesting this page with the URL:

http://xmlapps/examples/ ClientPortfolio.xsql?id=101

produces the output shown in Example 8.4.

Example 8.4. Results of an XSQL Page with Multiple Queries

<?xml version = '1.0'?>

<client-portfolio>

 <effective-date>26-SEP-1999</effective-date>

 <client>

 <info>

 <id>101</id>

 <name>

 <givenname>Tim</givenname>

 <familyname>Jones</familyname>

 </name>

 <homeaddress>

 <street>301 Ruxpin Road</street>

 <city>Palo Alto</city>

 <state>CA</state>

 <postcode>94301</postcode>

 <country>USA</country>

 </homeaddress>

 <workaddress>

 <street>12 Infinite Loop</street>

 <city>Cupertino</city>

 <state>CA</state>

 <postcode>95014</postcode>

 <country>USA</country>

 </workaddress>

 </info>

 </client>

 <portfolio>

 <quote num="1">

 <symbol>GE</symbol>

 <price>103.50</price>

 <change>0.80</change>

 </quote>

 <quote num="2">

 <symbol>ORCL</symbol>

 <price>27.33</price>

 <change>3.40</change>

 </quote>

 </portfolio>

</client-portfolio>

This example is worth examining a little more closely. The first query uses rowset-element=""

and row-element="" to produce a single <effective-date> element in the result as a child

element of the <client-portfolio> element. This technique can be used anywhere a single,

dynamic element is useful.

The second query in the page produces an additional, nested element structure for the <name>,

<homeaddress>, and <workaddress> elements in the result. This is an example of what

automatically occurs when the datatype for a column is a user-defined object type, rather than

one of the simple scalar datatypes like VARCHAR2, DATE, or NUMBER.

In this case, since we define the clients table as:

CREATE TABLE clients (

 id NUMBER PRIMARY KEY,

 name PERSON_NAME,

 homeaddress ADDRESS,

 workaddress ADDRESS

);

the user-defined PERSON_NAME and ADDRESS datatypes are being used and the results

automatically reflect the nested structure of their attributes.

If we come up with a simple query over the Oracle Data Dictionary views USER_TAB_COLUMNS

and USER_TYPE_ATTRS, we can quickly build an XSQL page like the one in Example 8.5 to

examine the structure of any table or type in our schema interactively.

Example 8.5. Describe.xsql Explores the Oracle Data

Dictionary

<?xml version="1.0"?>

<xsql:query connection="xmlbook" rowset-element="COLUMNS" row-element="COLUMN"

 tag-case="lower" id-attribute="" xmlns:xsql="urn:oracle-xsql">

 SELECT column_id as id, column_name as name, data_type as "TYPE"

 FROM user_tab_columns

 WHERE table_name = UPPER('{@obj}')

 UNION

 SELECT attr_no as id, attr_name as name, attr_type_name as "TYPE"

 FROM user_type_attrs

 WHERE type_name = UPPER('{@obj}')

 ORDER BY id

</xsql:query>

We can use this page to confirm our theory about why the extra nested structure appeared in the

query over the clients table. By requesting the page with the URL parameter of obj=clients, like

this:

http://xmlapps/examples/Describe.xsql?obj=clients

as shown in Example 8.6, we'll immediately see a list of the columns and datatypes for the clients

table.

Example 8.6. Column Information for Table with Object-Type

Columns

<?xml version = '1.0'?>

<columns>

 <column>

 <id>1</id>

 <name>ID</name>

 <type>NUMBER</type>

 </column>

 <column>

 <id>2</id>

 <name>NAME</name>

 <type>PERSON_NAME</type>

 </column>

 <column>

 <id>3</id>

 <name>HOMEADDRESS</name>

 <type>ADDRESS</type>

 </column>

 <column>

 <id>4</id>

 <name>WORKADDRESS</name>

 <type>ADDRESS</type>

 </column>

</columns>

We can see that the results are as we expected them to be: the user-defined type names appear

as the datatypes for the columns NAME, HOMEADDRESS, and WORKADDRESS. Repeating the request to

examine the structure of the ADDRESS type:

http://xmlapps/examples/Describe.xsql?obj=address

produces the results shown in Example 8.7.

Example 8.7. Querying the Data Dictionary for Column-Type

Information

<?xml version = '1.0'?>

<columns>

 <column>

 <id>1</id>

 <name>STREET</name>

 <type>VARCHAR2</type>

 </column>

 <column>

 <id>2</id>

 <name>CITY</name>

 <type>VARCHAR2</type>

 </column>

 <column>

 <id>3</id>

 <name>STATE</name>

 <type>VARCHAR2</type>

 </column>

 <column>

 <id>4</id>

 <name>POSTCODE</name>

 <type>VARCHAR2</type>

 </column>

 <column>

 <id>5</id>

 <name>COUNTRY</name>

 <type>VARCHAR2</type>

 </column>

</columns>

Here we see that the ADDRESS type has been defined to have attributes STREET, CITY, STATE,

POSTCODE, and COUNTRY, all of type VARCHAR2. Note that the query in the Describe.xsql page

used the SQL UNION operator to select information from a combination of the

USER_TAB_COLUMNS and USER_TYPE_ATTRS tables. Since a table and a type cannot both have

the same name, for any given value of the obj parameter passed our page, the query will return

either table information or type information, but not both.

8.1.6 Producing XML from SQL with Nested Structure

Let's look more closely at the different ways to produce XML with nested structure.Structured

columns can be one of three types:

• Strongly typed, user-defined object

• Strongly typed, user-defined collection

• Untyped collection based on a SQL statement

The underlying Oracle XML SQL Utility for Java natively supports producing richly structured XML

from SQL statements that make use of these types, so your Oracle XSQL Pages has this capability.

We'll look at two simple examples.

8.1.6.1 Using user-defined object types

Suppose that you have used the object/relational capabilities of Oracle8i to create a user-defined

object type called POINT using the command:

CREATE TYPE POINT AS OBJECT (X NUMBER, Y NUMBER);

and have used your new POINT type as the datatype of the ORIGIN column in your LOCATION

table with the following DDL statement:

CREATE TABLE LOCATION (

 NAME VARCHAR2(80),

 ORIGIN POINT

);

Suppose further that you have inserted a row into this LOCATION table using an INSERT

statement with the POINT() constructor, like this:

INSERT INTO LOCATION VALUES ('Someplace', POINT(11,17));

COMMIT;

Then you can construct an XSQL page like point.xsql that does a query over the LOCATION table

like this:

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT name, origin

 FROM location loc

 WHERE loc.origin.x = {@x-coord}

</xsql:query>

When requested using a URL like:

http://yourmachine.com/xsql/demo/point.xsql?x-coord=11

this page produces the following output:

<ROWSET>

 <ROW num="1">

 <NAME>Someplace</NAME>

 <ORIGIN>

 <X>11</X>

 <Y>17</Y>

 </ORIGIN>

 </ROW>

</ROWSET>

This demonstrates how the nested X and Y attributes in the POINT datatype structure of the

ORIGIN column appear automatically as nested <X> and <Y> elements in the XML output. It is

about the simplest example of using a user-defined type to get more richly structured XML output

from your object/relational database. In Chapter 12, we cover Oracle8 object types more

extensively as we explore how to use them to model the structure of XML documents to be

inserted into the database, and in Chapter 17, we illustrate how to use object views with nested

collection types to group master/detail information for a news portal we build in that chapter.

8.1.6.2 Using the CURSOR operator for nested rowsets

If you have not created object types that contain a predefined structure, you can still introduce

nested structure into your SQL queries using the CURSOR operator, which allows you to select a

nested rowset as a column in the SELECT list of a query. While almost any nested query is legal

to include inside the CURSOR operator in the SELECT list, the most useful query selects a nested

set of detail rows for the current master row.

Taking the familiar dept and emp tables as an example, the following XSQL page contains a query

that selects the DNAME column from the dept table and, for each row returns a nested rowset of

the EMPLOYEES from the emp table who work in that department:

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">

 SELECT dname,

 CURSOR(SELECT ename,sal

 FROM emp

 WHERE emp.deptno = dept.deptno) as employees /* Column Alias */

 FROM dept

 WHERE deptno = {@department}

</xsql:query>

Requesting this page:

http://yourserver.com/xsql/demo/empdept.xsql?department=10

produces the resulting XML data page:

<ROWSET>

 <ROW num="1">

 <DNAME>ACCOUNTING</DNAME>

 <EMPLOYEES>

 <EMPLOYEES_ROW num="1">

 <ENAME>CLARK</ENAME>

 <SAL>2450</SAL>

 </EMPLOYEES_ROW>

 <EMPLOYEES_ROW num="2">

 <ENAME>KING</ENAME>

 <SAL>5000</SAL>

 </EMPLOYEES_ROW>

 <EMPLOYEES_ROW num="3">

 <ENAME>MILLER</ENAME>

 <SAL>1300</SAL>

 </EMPLOYEES_ROW>

 </EMPLOYEES>

 </ROW>

</ROWSET>

Note that the second column in the SELECT statement is the CURSOR() expression used to select

the details. Since it is a column like any other, it can be aliased to the column name EMPLOYEES by

using the AS COLUMNALIAS syntax as shown above. Since the EMPLOYEES column is a nested

rowset, it appears as a set of <EMPLOYEES_ROW> elements nested within its parent <ROW>.

Given the following facts, you can quickly see how structured information can be created on the

fly in almost any structure you are looking for:

• One or more CURSOR operators can be used in the SELECT list of any SQL statement.

• One or more CURSOR operators can be used in the SELECT list of SQL statements that

appear inside any CURSOR operator (to any level of nesting).

• Virtually any valid SQL statement (including GROUP BY and ORDER BY, etc.) may appear

with the CURSOR operator.

• Any SQL statement can be included in an <xsql:query> tag in an XSQL page.

This allows you to exploit the processing speed of the database for sorting and grouping instead

of having to rely on slower techniques that would attempt these operations on flat data from

within the XSLT stylesheet.

By using these query techniques in the <xsql:query> tags of an XSQL page, you can combine

master/detail XML data pages with the database sorting and grouping. These database

operations are applied to the data pages by the SQL engine before subsequently applying an XSLT

stylesheet to the resulting data page (as we learned earlier). In this way, we can transform the

resulting data page into any presentation format you need.

8.1.7 Providing a Fallback Query

Under normal circumstances, if an <xsql:query> tag in your XSQL page contains a SELECT

statement that returns no rows when the page is processed, the <xsql:query> tag is simply

replaced by an empty <ROWSET/> element with no <ROW> elements as children. However,

sometimes it is useful to attempt an alternate query as a fallback when the original query

produces no rows.

This most often comes in handy when you want to look up some information by an exact match

on a parameter value in the original query, and then retry a different query which searches for a

fuzzy match using the LIKE operator if no exact match is found. Employing a fallback query in

your XSQL page is easy. For any <xsql:query> tag in your XSQL page, the XSQL page processor

recognizes a nested <xsql:no-rows-query> tag as the fallback query to try in case the parent

query retrieves no rows. All of the attributes available to control the output of the <xsql:query>

tag are equally functional on the nested <xsql:no-rows-query>.

Consider the ValidateAirport.xsql page in Example 8.8. It implements an HTTP-based airport

validation service against a database table named AIRPORT containing the more than 9000

airports on the planet and their International Air Transport Association (IATA) three-letter

abbreviations. The page includes a single <xsql:query> tag that searches case-insensitively for

an airport whose three-letter code exactly matches the value of the {@code} parameter. Nested

inside the outer <xsql:query> is a <xsql:no-rows-query> that searches for any airports whose

description contains the value of the {@code} parameter, case-insensitively using SQL's UPPER

function.

Example 8.8. XSQL Page to Validate Airport Codes

<?xml version="1.0"?>

<xsql:query connection="xmlbook" max-rows="1" rowset-element="Ok"

 row-element="Airport" xmlns:xsql="urn:oracle-xsql">

 SELECT tla "Code", description "Description"

 FROM AIRPORT

 WHERE tla = UPPER('{@code}')

 <xsql:no-rows-query max-rows="4" rowset-element="Error" row-element="Airport">

 SELECT tla "Code", description "Description"

 FROM AIRPORT

 WHERE UPPER(description) LIKE UPPER('%{@code}%')

 ORDER BY 2

 </xsql:no-rows-query>

</xsql:query>

Note these highlights in the example page:

• The <xsql:query> sets rowset-element="Ok" while the <xsql:no-rows-query> sets

rowset-element="Error". This allows the returned page to signal the success or failure

of the exact match while also providing additional information on matching airports in

either case.

• The <xsql:query> expects an exact match and specifies max-rows="1" while the

<xsql:no-rows-query> uses a max-rows="4" to return the first four fuzzy matches.

Any software that wants to validate the existence of an airport by code can do so over the Web by

requesting a URL like:

http://xmlapps/examples/ValidateAirport.xsql?code=xml

This attempts to validate the existence of an airport with XML as its three-letter code. Surprisingly,

this request produces an exact match with the result:

<?xml version = '1.0'?>

<Ok>

 <Airport num="1">

 <Code>XML</Code>

 <Description>Minlaton, Sa, Australia</Description>

 </Airport>

</Ok>

The 900 residents of this small South Australian town must be quite proud of all the attention

their fine airport is now receiving! An attempt to validate an airport code of good using the same

page:

http://xmlapps/examples/ValidateAirport.xsql?code=good

fails the exact match and falls back to the <xsql:no-rows-query> to produce the result:

<?xml version = '1.0'?>

<Error>

 <Airport num="1">

 <Code>YGH</Code>

 <Description>Ft. Good Hope, Nwt, Canada</Description>

 </Airport>

 <Airport num="2">

 <Code>GNG</Code>

 <Description>Gooding, Idaho, Usa</Description>

 </Airport>

 <Airport num="3">

 <Code>GLD</Code>

 <Description>Goodland, Kansas, Usa</Description>

 </Airport>

 <Airport num="4">

 <Code>GNU</Code>

 <Description>Goodnews Bay, Alaska, Usa</Description>

 </Airport>

</Error>

The requesting agent, which may be a Java program using the Oracle XML Parser or a dynamic

HTML page in Internet Explorer 5.0 with its integrated client-side XML parser, can notice that the

document element of the returned XML datagram is <Error> and can proceed to collect the list of

suggested matches for subsequent processing or display to the user. It is worth noting that while

any <xsql:query> can have at most one nested <xsql:no-rows-query>, a

<xsql:no-rows-query> itself can have a nested <xsql:no-rows-query> with no limit on the

depth.

8.2 Transforming XSQL Page Results with XSLT

Since the data page that results from executing the queries in your XSQL page template is an XML

document, and since XSLT offers a robust, declarative mechanism for transforming XML

documents into anything else, we can put the two together to achieve a highly effective one-two

punch:

1. The XSQL page assembles XML information relevant to the task at hand.

2. The XSLT stylesheet transforms it into an appropriate format for delivery.

We'll look at a few examples in this section that illustrate this approach.

8.2.1 Associating a Stylesheet with an XSQL Page

To associate an XSLT stylesheet with an XSQL page, we use the standard technique prescribed by

the W3C (see http://www.w3.org/TR/xml-stylesheet), the <?xml-stylesheet?> processing

instruction. It goes after the <?xml version="1.0"?> declaration and before the document

element in your XSQL page. It must include as attributes two key pieces of information required

to identify the stylesheet:

• An href attribute that describes the absolute or relative location of the desired stylesheet

• A type="text/xsl" attribute that indicates the type of stylesheet in use

Including an <?xml-stylesheet?> instruction of type "text/xsl" in your XSQL page causes the

XML document obtained by expanding the XSQL page's <xsql:query> tags to be transformed by

the indicated stylesheet in the server before returning the results to the requester. Only an

<?xml-stylesheet?> instruction with an attribute of type="text/xsl" will be considered for use,

since the XSQL page processor supports only this type of stylesheet.

8.2.2 Using a Stylesheet to Produce HTML

A simple example of an XSQL page that includes a reference to an XSLT stylesheet is the

following:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="Bookmark.xsl"?>

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT title, url

 FROM bookmark

 ORDER BY title

</xsql:query>

This page queries information about web browser bookmarks from the bookmark table, and uses

the following Bookmark.xsl stylesheet to format the results:

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <head>

 <title>My Bookmarks</title>

 </head>

 <body>

 <h2>My Bookmarks</h2>

 <xsl:for-each select="ROWSET/ROW">

 <xsl:value-of select="TITLE"/>

 </xsl:for-each>

 </body>

</html>

This means that in response to the web request:

http://xmlapps/examples/Bookmark.xsql

The requester won't get the basic raw data page delivered as an XML datagram:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <TITLE>Free XML Software</TITLE>

 <URL>http://www.stud.ifi.uio.no/~larsga/linker/XMLtools.html</URL>

 </ROW>

 <ROW num="2">

 <TITLE>Oracle Technet XML Page</TITLE>

 <URL>http://technet.oracle.com/tech/xml</URL>

 </ROW>

</ROWSET>

Instead, the requester will receive the following, which the browser will display as shown in Figure

8.2:

<html>

 <head>

 <title>My Bookmarks</title>

 </head>

 <body>

 <h2>My Bookmarks</h2>

 <a href="http://www.stud.ifi.uio.no/~larsga/linker/

 XMLtools.html">Free XML Software

 Oracle

 Technet XMLPage< a>

 </body>

</html>

Figure 8.2. HTML list of bookmarks produced using a

stylesheet

It's easy to change the name of the stylesheet being referenced in the XSQL page to change the

look of the page. If you change the stylesheet being referenced, by modifying the value of the

href attribute in your <?xml-stylesheet?> instruction to refer to a different stylesheet, you can

format the same web bookmark data formatted differently in no time at all. Suppose, for instance,

that you use this stylesheet instead:

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <head>

 <link rel="stylesheet" type="text/css" href="Bookmark.css" />

 <title>My Bookmarks</title>

 </head>

 <body>

 <h2>My Bookmarks</h2>

 <table border="1" cellspacing="0">

 <xsl:for-each select="ROWSET/ROW">

 <tr>

 <td><xsl:value-of select="TITLE"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

</html>

Using an example of the desired HTML page as a template, this XSLT stylesheet:

1. Declares the xsl namespace on the root <html> tag so we can use XSL elements in the

stylesheet to loop over data and plug values into the result page

2. Uses <xsl:for-each select="ROWSET/ROW"> to loop through all the <ROW> elements that

appear as children of the <ROWSET> element, creating an HTML table row and table data

tag for each <ROW> encountered

3. Specifies the attribute value template href="{URL}" on the <a> element to plug the

value of the <URL> element from the current <ROW> into the <xsl:for-each> loop

4. Uses <xsl:value-of select="TITLE"/> to plug in the value of the <TITLE> element from

the current <ROW> as the text for the hyperlink

Note the use of the {URL} syntax. It is an example of an XSLT attribute value template, which

provides the handy shortcut syntax of {XPathExpression} for inserting the value of an XPath

expression into an attribute value in the result document.

The XSLT attribute value syntax of {XPathExpression} is very

similar to the syntax for referring to a parameter in an XSQL

page {@paramname}, but they are used in two different

contexts.

The XSLT stylesheet transforms the XSQL data page into an HTML page that uses tables and has

a linked CSS stylesheet Bookmark.css to be used by the browser:

body { font-family: Garamond }

h2 { color: red }

td { font-size: 12pt ; background: yellow }

Requesting the page now produces the list of bookmarks with a different look.

We'll learn even more of what you can do with XSLT stylesheets in Chapter 9, but from this simple

example you should be able to see that the clean separation of powers between the XSQL page for

data and the XSL stylesheet for transformation is going to be big. Really big!

8.2.3 Using a Stylesheet to Produce a Datagram

Besides serving your web bookmarks in HTML for convenient browser access and navigation, it

makes sense to serve the data in the XML Bookmark Exchange Language (XBEL) (see

http://www.python.org/topics/xml/xbel/). XBEL is an XML DTD created by the Python XML

Special Interest Group (see http://www.python.org/sigs/xml-sig/) to support the automated

exchange of web links over the Web.

We can copy the Bookmark.xsql page to a new filename like XBEL-Bookmark.xsql; replacing the

href attribute in the <?xml-stylesheet?> instruction with the name of an XSLT stylesheet that

transforms the XSQL data page into a valid XBEL document:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="XBEL.xsl" ?>

<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 SELECT title, url

 FROM bookmark

 ORDER BY title

</xsql:query>

We happen to have the XBEL.xsl stylesheet, which does just this, lying around:

<xbel xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <info>

 <metadata owner="Steve Muench"/>

 </info>

 <folder id="myfolder">

 <title>My Bookmarks</title>

 <xsl:for-each select="ROWSET/ROW">

 <bookmark href="{URL}">

 <title><xsl:value-of select="TITLE"/></title>

 </bookmark>

 </xsl:for-each>

 </folder>

</xbel>

Using an example of an XBEL document as a template, the XSLT stylesheet:

1. Declares the xsl namespace on the root <xbel> tag so we can use XSL elements in the

stylesheet to loop over data and plug values into the result document

2. Uses <xsl:for-each select="ROWSET/ROW"> to loop through all the rows of data in the

XSQL data page, creating one <bookmark> element for each <ROW> encountered

3. Specifies the attribute value template href="{URL}" on the <bookmark> element to plug

the value of the <URL> element from the current <ROW> of the <xsl:for-each> loop

4. Uses <xsl:value-of select="TITLE"/> to plug in the value of the <TITLE> element from

the current <ROW> as the value of the XBEL document's <title> element

Now, if we request:

http://xmlapps/examples/XBEL-Bookmark.xsql

it uses the XBEL.xsl stylesheet in the server to return the following XBEL document to the

requester:

<xbel>

 <info>

 <metadata owner="Steve Muench"></metadata>

 </info>

 <folder id="myfolder">

 <title>My Bookmarks</title>

 <bookmark href="http://www.stud.ifi.uio.no/~larsga/linker/XMLtools.html">

 <title>Free XML Software</title>

 </bookmark>

 <bookmark href="http://technet.oracle.com/tech/xml">

 <title>Oracle Technet XML Page</title>

 </bookmark>

 </folder>

</xbel>

Using XSQL and XSLT, any tool or program that understands bookmarks in the XBEL format could

import any bookmarks from your database using the dynamically produced XBEL document as

the exchange medium.

8.2.4 Using a Stylesheet on Static XML Documents

You can use the XSQL Servlet to do server-side XSLT transformation on any XML document. While

all of the examples we've seen so far have contained at least one <xsql:query> tag and a

connection attribute indicating what database connection to use, neither of these characteristics

is a strict requirement. If the XSQL page processor doesn't notice any <xsql:query> tags to

process, it moves on to perform its normal server-side XSLT transformation based on the

<?xml-stylesheet?> processing instruction in your document.

The simplest way to feed a static XML document to the XSQL page processor is to rename it to

have an .xsql file extension. For example, take Jon Bosak's dream.xml, an XML version of

Shakespeare's A Midsummer Night's Dream, shown in Example 8.9.

Example 8.9. Excerpt from XML Version of A Midsummer

Night's Dream

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="shakespeare.xsl" ?>

<!DOCTYPE PLAY SYSTEM "play.dtd">

<PLAY>

<TITLE>A Midsummer Night's Dream</TITLE>

<FM>

<P>Text placed in the public domain by Moby Lexical Tools, 1992.</P>

<P>SGML markup by Jon Bosak, 1992-1994.</P>

<P>XML version by Jon Bosak, 1996-1998.</P>

<P>This work may be freely copied and distributed worldwide.</P>

</FM>

<PERSONAE>

<TITLE>Dramatis Personae</TITLE>

<PERSONA>THESEUS, Duke of Athens.</PERSONA>

<PERSONA>EGEUS, father to Hermia.</PERSONA>

<!-- etc. -->

</PLAY>

If you rename the file to dream.xsql, then requesting:

http://xmlapps/examples/dream.xsql

causes the XSQL page processor to transform dream.xsql using the associated shakespeare.xsl

stylesheet and return the formatted results to the requester. Technically speaking, it would be

fine if dream.xsql had no <?xml-stylesheet?> instruction. The net effect would be to serve the

XML document for A Midsummer Night's Dream to the requester verbatim. Serving a raw XML

document using the XSQL page processor with no <xsql:query> tags and no

<?xml-stylesheet?> instruction would only make sense if you intended to introduce either of

these instructions into the document later. If no dynamic data and no server-side XSLT

transformation are necessary, letting your web server serve the static dream.xml page off the

filesystem will be faster.

A more mundane use for an XSQL page with purely static XML elements might be as a prototyping

technique to put some static XML elements in place—representing information you will eventually

query from a database—while you work on the XSLT stylesheets to present those elements. For

example, say we start by keeping the menu structure of our web site in a static XML document

like the one shown in Example 8.10.

Example 8.10. Static XML Datagram Describing Web Site

Structure

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="SiteMenu.xsl"?>

<website>

 <categories>

 <category>

 <name>News</name>

 <icon>news.gif</icon>

 <url>newshome.html</url>

 </category>

 <category>

 <name>Software</name>

 <icon>software.gif</icon>

 <url>software.html</url>

 </category>

 <category>

 <name>Standards</name>

 <icon>stds.gif</icon>

 <url>standard.html</url>

 </category>

 <category>

 <name>Resources</name>

 <icon>resources.gif</icon>

 <url>helpfullinks.html</url>

 </category>

 </categories>

</website>

By associating the SiteMenu.xsl stylesheet from Example 8.11 to the XSQL page containing the

site structure elements, the HTML page for the web site's navigation bar is produced.

Example 8.11. Simple XSLT Stylesheet for an HTML Menu Bar

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <head><title>XML Central</title></head>

 <body>

 <center>

 <table border="0" cellpadding="10">

 <tr>

 <xsl:for-each select="website/categories/category">

 <td>

 <xsl:value-of select="name"/>

 </td>

 </xsl:for-each>

 </tr>

 </table>

 </center>

 </body>

</html>

Using an example of the desired HTML page as a template, this XSLT stylesheet does the

following:

1. Declares the xsl namespace on the root <html> tag so we can use XSL elements in the

stylesheet to loop over data and plug values into the result page

2. Uses <xsl:for-each select="website/categories/category"> to loop through all the

<category> elements that appear as children of the <categories> element within the

<website> element, creating an HTML table data tag for each <category> encountered

3. Specifies the attribute value template src="{icon}" on the element to plug the

value of the <icon> element from the current <category> into the loop

4. Specifies the attribute value template href="{url}" on the <a> element to plug in the

value of the <url> element from the current <category>

5. Uses <xsl:value-of select="name"/> to plug in the value of the <name> element from

the current <category> as the text for the hyperlink

Now if we request the URL:

http://xmlapps/examples/SiteMenu.xsql

the XSQL page processor produces the HTML results shown in Figure 8.3.

Figure 8.3. Web site menu bar rendered with a stylesheet

If the structure of the site becomes more dynamic later on, you can substitute the static XML tags

in the XSQL page with dynamic XML results using the now familiar <xsql:query> tag as shown in

Example 8.12.

Example 8.12. Querying Web Site Categories from a Table

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="SiteMenu.xsl"?>

<website connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:query rowset-element="categories" row-element="category"

 tag-case="lower">

 SELECT name, icon, url

 FROM site_category

 ORDER BY pos

 </xsql:query>

</website>

By setting the <xsql:query> tag's attributes appropriately:

• rowset-element="categories"

• row-element="category"

• tag-case="lower"

the element names in the dynamic results stay the same as they were in the static case, so no

changes are required in your XSLT stylesheet.

8.2.5 Offline Publishing of XSQL Pages

We've seen how to use the XSQL Pages facility to materialize data and apply XSLT

transformations. If the data used in a page is not changing frequently, you can improve

performance by processing the XSQL page offline and serving the static results instead of

dynamically transforming the same content on each request. We can use the XSQL command-line

utility to process any XSQL page offline to support this style of working where it makes sense. To

process an XSQL page offline, simply use the oracle.xml.xsql.XSQLCommandLine class and

send the output to standard out or to a filename we provide as an argument on the command line.

Command-line page processing can be useful as:

• An automation technique to produce the results of XSQL pages from interactively or

periodically executed batch scripts

• A data page "snapshot" technique to deliver an example XML document to a web designer

who has no access to a database connection

• An optimization technique to avoid requerying database information that does not change

frequently by capturing it as static XML elements

The full syntax of running the XSQL command-line utility is:

java oracle.xml.xsql.XSQLCommandLine xsqlURI [outputFile]

If you take advantage of the .\bin\xsql.bat DOS batch file and .\bin\xsql shell script that are

provided as a convenience with the XSQL Pages distribution, you can use the shorter command:

xsql xsqlURI [outputFile]

Both the batch file and the shell script set up the CLASSPATH to contain all of the required .jar

files, then call Java to run the oracle.xml.xsql.XSQLCommandLine class. Note that you may

need to edit the path values in the script for the xsql script to work in your environment.

You can set the value of parameters your page uses by providing them on the command line in

the following way:

xsql StatusReport.xsql week=27-SEP-99 title="My Status"

If you want to send the output to an output file instead of standard out, the output file comes

before the parameters, like this:

xsql StatusReport.xsql MyReport.html week=27-SEP-99 title="My Status"

8.3 Troubleshooting Your XSQL Pages

While you're developing your XSQL pages, if for any reason you receive an unexpected result, the

following techniques may help diagnose the problem.

8.3.1 Common Problems for XSQL Pages with No Stylesheet

If your page does not include any <?xml-stylesheet?> instructions, there are only a few problems

that can affect the page:

• If you request the page and receive a result that still has your <xsql:query> tags in it, the

problem is one of the following:

o You are running an XSQL page from within the JDeveloper 3.1 environment and

have not properly included the "XSQL Runtime" library in your current project's

library list. To remedy this, select Project Project Properties... from the main
JDeveloper 3.1 menu, and select the Libraries tab of the Project Properties dialog.

Click the Add button and select the "XSQL Runtime" library from the list to add it to

your project.

o You are running the XSQL Servlet using a servlet engine that has not been correctly

configured to associate the oracle.xml.xsql.XSQLServlet class to the file

extension *.xsql. To remedy, see Appendix B for instructions on setting this up

correctly for your servlet engine.

o You have used an incorrect namespace URI to define the xsql namespace prefix

for use on your <xsql:query> elements. To remedy, double-check that your

namespace declaration is exactly as follows:

xmlns:xsql="urn:oracle-xsql"

• If your returned "data page" contains <xsql-error> elements like:

• <xsql-error action="xsql:query">

• <message>No connection attribute specified on document element.</message>

</xsql-error>

you have forgotten to put a connection="connname" attribute on the document element

of your page. The document element is the outermost enclosing element of the template.

XSQL pages do not strictly require a connection attribute; however, if any of the action

elements used on the page (<xsql:query>, for example) require a database connection to

do their job, you'll get this error message as part of the resulting data page.

• If your returned data page contains <xsql-error> elements like:

• <xsql-error action="xsql:query">

• <statement>select ename, sal where sal > 50</statement>

• <message>ORA-00923: FROM keyword not found where expected</message>

</xsql-error>

your query has a syntax error that needs to be resolved.

• If your page contains <ERROR> tags like:

• <ERROR>

• oracle.xml.sql.OracleXMLSQLException:

• invalid character xx in tag yyxx

</ERROR>

your <xsql:query> likely contains a SQL statement with expressions in the SELECT list

that have not been aliased to names that qualify as valid XML element names. For

example, the following query would produce this error:

SELECT 10+20, SYSDATE+2 FROM dual

because the first column's unaliased column name would be the string "10+20" and the

second column's unaliased column name would be "SYSDATE+2", neither of which is a

valid XML element name. Use column aliases like:

SELECT 10+20 AS thirty, SYSDATE+2 AS futuredate FROM dual

to make sure that the column names are legal XML element names.

8.3.2 Common Problems for Pages with a Stylesheet

If your page includes one or more <?xml-stylesheet?> instructions, errors in your data page like

the ones mentioned in the previous section can cause the transformation to behave incorrectly. If

you request a page and receive an unexpected result or blank screen in your browser, chances

are your stylesheet is not correctly matching the structure of the elements in your data page. This

can happen because:

• The underlying data page had errors, so the elements your stylesheet was expecting

weren't actually in the data page it tried to process.

• The select patterns or {attribute value templates} in your stylesheet contained

typographical errors or incorrect path expression.

In either case, you need to take a look at what data page the XSLT engine is seeing when it

performs the transformation. If your page does not disallow it with an

allow-client-style="no" attribute on its document element, temporarily disable the

transformation your page is attempting to perform by adding the parameter

xml-stylesheet=none to the URL requesting the page. For example if you are receiving strange

or blank transformation results from a page called SomePage.xsl, you can request the page again

with the URL:

http://xmlapps/SomePage.xsql?xml-stylesheet=none

to view the raw data page underneath. After your page is working correctly, you may wish to

prevent further client overrides of your stylesheet (including the ability to disable the stylesheet

with xml-stylesheet=none) by adding the allow-client-style="no" attribute to your XSQL

page's document element.

8.3.3 Summary of Basic Error Messages

If you receive an XSQL error message, the following information may help you determine what

the problem is and what action to take to resolve it:

XSQL-001: Cannot locate requested XSQL file. Check the name.

Cause : You requested a page that the XSQL page processor cannot find.

Action: Make sure the path to the file is correct. As a test, put an HTML file in the same

directory and try to request it from your browser.

XSQL-002: Cannot acquire database connection from pool: connname.

Cause : A database error prevented the XSQL page processor from acquiring a connection

from the pool of connections it maintains for the connection named connname.

Action: This could be caused by a database shutdown or a database resource's being

exceeded. Check the connection using SQL*Plus (or some JDBC program, if available, if

the problem is specific to JDBC). Contact the database administrator to find out if there are

problems with the server.

XSQL-003: Failed to find 'XSQLConfig.xml' file in server CLASSPATH.

Cause : The directory containing the file XSQLConfig.xml is not listed in CLASSPATH.

Action: Make sure you have included the name of the directory where the XSQLConfig.xml

file is located in the Java CLASSPATH of your servlet engine. The way to set the

CLASSPATH of the servlet engine is different for each engine, but typically involves

changing configuration files or setting the CLASSPATH environment variable before

starting your web server. Detailed instructions for setting up the XSQL Servlet properly

are included in Appendix B.

XSQL-004: Could not acquire a database connection named: connname

Cause : Your page specifies a value for the connection attribute on its document element

that does not correspond to a named connection defined in the <connectiondefs> section

of the XSQLConfig.xml file.

Action: Check the value of your connection attribute for typographical errors. If it's correct,

make sure that there is a matching <connection> entry in the <connectiondefs> section

of the XSQLConfig.xml file. If it's there, make sure that your servlet engine's CLASSPATH

is not pointing at some archive or directory containing another XSQLConfig.xml file that

might be found before the one you're looking at.

XSQL-005: XSQL page is not well-formed.

Cause : Your XSQL page does not parse properly because it is not well-formed XML.

Action: This error is accompanied by the specific XML Parser error, including line and

character position information, to help correct the error. After correcting the syntax error

in your page, request the page again to see the results. You can use the Check XML

Syntax . . . feature in Oracle JDeveloper 3.1 to check the well-formedness of your XSQL

page before attempting to request it.

XSQL-006: XSLT stylesheet is not well-formed: stylesheet.xsl.

Cause : Your XSLT stylesheet does not parse properly because it is not well-formed XML.

Action: This error is accompanied by the specific XML Parser error, including line and

character position information to help correct the error. After correcting the syntax error

in your stylesheet, request the XSQL page that references it again to see the results. You

can use the Check XML Syntax... feature in Oracle JDeveloper 3.1 to check the

well-formedness of your XSLT stylesheet before attempting to request an XSQL page that

uses it.

XSQL-007: Cannot acquire a database connection to process page.

Cause : The named connection referenced in the XSQL page's connection attribute was

valid, but the attempt to connect to the database using the information for this connection

in XSQLConnections.xml produced an error.

Action: The specific error should be given in the error message. Check the values of the

<username>, <password>, <dburl>, and <driver> elements for this connection name

nested inside your <connection> definition in the <connectiondefs> section of

XSQLConfig.xml.

XSQL-008: Cannot find XSLT Stylesheet: stylesheet.xsl.

Cause : You specified an href attribute on a <?xml-stylesheet?> instruction whose value

references an XSLT stylesheet the XSQL page processor cannot find. Alternatively, if your

href attribute indicates a stylesheet using an HTTP-based URL, the attempt to retrieve the

stylesheet over the Web failed.

Action: Make sure that the path to the file is correct. The stylesheet URI is relative to the

location of the requested XSQL page, unless specified as an absolute URL. If you are trying

to use an HTTP-based URL, make sure that the address is correct and that you've defined

the proxy server settings appropriately in the XSQLConfig.xml file if your server sits

behind a firewall.

XSQL-009: Missing arguments on command line.

Cause : You failed to provide the minimum number of arguments to the XSQL

command-line utility.

Action: Provide at least the name of the XSQL page to process, and optionally the name of

an output file.

XSQL-010: Error creating: outfilename.

Cause : The XSQL command-line utility encountered an error opening the outfilename file

for writing the results of the page processing request.

Action: Check that the directory exists, that you have permission to write in it, that the file

doesn't already exist and is read-only, and that your disk has space left on it.

XSQL-011: Error processing XSLT stylesheet: stylesheet.xsl.

Cause : The XSQL page processor encountered a runtime error while processing your

stylesheet.

Action: This error could be caused by the use of an undefined function or unrecognized

element in the xsl namespace in the stylesheet. It is accompanied by the specific error

raised by the XSLT Engine to assist in tracking down the problem.

XSQL-012: Cannot read XSQL page.

Cause : The XSQL page exists but an I/O error was encountered trying to open it.

Action: Make sure that the contents of the file are not corrupt and verify the file

permissions on your page. Specifically, the page must be readable by the user under

which the servlet engine is running.

XSQL-013: XSQL page URI is null or has an invalid format.

Cause : This error only occurs if the XSQL Servlet is used by a servlet engine which

incorrectly implements the Servlet API.

Action: Try another servlet engine. The list of supported servlet engines appears in

Appendix B.

XSQL-014: Resulting page is an empty document or had multiple document elements.

Cause : You suppressed the default rowset-element and/or row-element attributes on an

<xsql:query> tag at the root of your XSQL page such that the resulting XML

representation of your query results is not a well-formed XML document.

Action: Use max-rows="1" to limit the number of rows or don't suppress the row-element

and the rowset-element attributes if your query returns more than one column.

XSQL-017: Unexpected error occurred.

Cause : An unexpected Java exception was thrown by a user-written action handler or by

the XSQL page processor itself. A complete stack trace of the offending statement

accompanies the error page.

Action: If the unexpected error is caused by your own action handler, debug the problem

using Oracle JDeveloper 3.1's remote debugging feature, as described in Chapter 16, to

find out why the exception is being thrown. If the error is thrown by the XSQL page

processor itself, report the problem to Oracle Support with a test case that reproduces the

problem.

XSQL-018: Unexpected error occurred processing stylesheet: stylesheet.xsl.

Cause : An unexpected Java exception was thrown by a user-written XSLT extension

function or by the Oracle XSLT processor itself. A complete stack trace of the offending

statement accompanies the error page.

Action: If the unexpected error is caused by your own XSLT Java extension function,

debug the problem using Oracle JDeveloper 3.1's remote debugging feature to find out

why the exception is being thrown. If it was thrown by the Oracle XSLT processor itself,

report the problem to Oracle Support with a test case that reproduces the problem.

Chapter 9. XSLT Beyond the Basics

In this chapter, I delve into some of the most common kinds of transformations you will want to

do on datagrams. In the process, we'll explore several XSLT features and techniques you can use

to perform these transformations.

9.1 Using XSLT Variables

This section explains how to use XSLT variables and how to steer clear of some common traps

that first-time XSLT developers run into when trying to use them.

9.1.1 What Are XSLT Variables?

XSLT variables allow you to assign a meaningful name to the value of an XPath expression or

result tree fragment and to refer to that value by name later. The value assigned to a variable can

be any of the four basic XPath data types (string, number, boolean, and node-set) or a literal

tree of XML nodes.

Defining a variable is easy. You just use:

<xsl:variable name="varname" select="XPathExpression"/>

to assign the value of the XPathExpression to the variable named varname, or the alternative

syntax:

<xsl:variable name="varname">

 <some>

 <nodes val="xx">

 <here/>

 </nodes>

 </some>

</xsl:variable>

If you use the latter syntax, and if the tree of nodes you include between <xsl:variable> and

</xsl:variable> is a single text node like this:

<xsl:variable name="varname">Some Value</xsl:variable>

then this is equivalent to setting the variable to a string value containing the value of that text

node.

A common mistake developers make when assigning a string
value to a variable is to use:

<xsl:variable name="var" select="MyString"/>

This is not syntactically wrong, but it does not do what you
think. Recall that the value of the select attribute on
<xsl:variable> is an XPath expression, and that the XPath

expression MyString selects the set of <MyString> elements

that are children of the current node. So assuming that your
source document does not have any <MyString> elements that

are children of the current node, the variable var will be

assigned a value that is an empty node-set. To assign the string

'MyString' to the variable var, you need to include the value

in quotes to be treated as a literal string and not as a pattern
matching an element name:

<!--Extra enclosing quotes around 'MyString' -->
<xsl:variable name="var" select="'MyString'"/>

or you can use the following less error-prone alternative:

<xsl:variable name="var">MyString</xsl:variable>

Variables can be defined inside a template or at the top level of the stylesheet. If you define a

variable at the top level of the stylesheet outside any template, as a direct child of the

<xsl:stylesheet> element, you can reference the variable in any template in the stylesheet. If

defined inside a particular template, the value of a variable may be referenced on any sibling

elements following the <xsl:variable> element that assigned the value, as well as on any

descendent elements of those siblings. To refer to the value of a variable when it is in scope, use

the $varname notation. This example illustrates the variable scoping rules:

<xsl:template match="something">

 <a>

 <!--

 | Count number of ROW elements have a SAL greater than 2000

 | and assign to a variable named 'var'.

 +-->

 <xsl:variable name="var" select="count(ROW[SAL > 2000])"/>

 <xsl:value-of select="$var"/><!-- $var is visible here -->

 <c abc="{$var}"><!-- and here in an attribute value template -->

 <d><xsl:value-of select="$var * 10"/></d><!-- And here -->

 </c>

 <!-- Outside here $var is undefined and will produce an error. -->

 <xsl:value-of select="$var"/>

</xsl:template>

As with any language, variables are useful for storing values so you can reference them later one

or more times without having to recalculate the values. If the select expression used in the

<xsl:variable> assignment produces a set of nodes as its result, as would an example like this:

<!--

 | Select all <error> elements at any level below the current node

 | and assign this list of error nodes to the variable named 'var'.

 +-->

<xsl:variable name="errors" select=".//error"/>

then you can use the variable as the first step in a subsequent XPath expression:

<!--

 | Select all <code> child elements of <error> elements in

 | the node-set assigned to the 'errors' variable

 +-->

<xsl:for-each select="$errors/code">

Before moving on to some more advanced ways to assign a variable its value, we need to

understand one final fundamental trait of XSLT variables that can cause confusion for Java and

PL/SQL developers. Once an <xsl:variable> element assigns a value to a variable, that variable

behaves like a constant. Its value cannot be reassigned in the same scope inside a template in

which the existing variable is visible. This is similar to how local final variables behave in Java:

final String var = "Some Value";

or CONSTANT variables in PL/SQL:

var CONSTANT VARCHAR2(10) := 'Some Value';

The constant nature of variables allows the XSLT processor to perform optimizations at runtime

that would not be possible if variable values could be arbitrarily reassigned.

9.1.2 Assigning a Variable a Computed Value

When you assign a tree of nodes to a variable using the syntax:

<xsl:variable name="var">

 <!-- Something here -->

</xsl:variable>

it is not immediately obvious that you can make use of nested XSLT elements inside the variable

assignment. At first, this concept may strike you as odd, but the idea has a lot of potential. Using

this technique, you can assign an arbitrarily complex computed value to a variable by using any

elements that are valid content for an <xsl:template> inside an <xsl:variable> to construct its

value. Inside an <xsl:variable> element, literal elements and other XSLT elements instantiate

a tree of nodes in much the same way they would when used inside <xsl:template>. The

differences are as follows:

• Inside <xsl:template>, the instantiated nodes are created in the result tree.

• Inside <xsl:variable>, the instantiated nodes are created in a node tree fragment that is

simply assigned to the variable.

If the constructed tree of nodes consists entirely of text nodes, then the variable is assigned the

string value of all the text nodes concatenated together. The following example illustrates this

technique. It makes use of the <xsl:for-each>, <xsl:sort>, <xsl:value-of>, <xsl:if>, and

<xsl:text> elements to assign a comma-separated list of employee names to a variable in

ascending alphabetical order:

<!-- Assign sorted, comma-separated list of employee names to a variable -->

<xsl:variable name="empNameList">

 <!-- Select all ROW children of ROWSET for processing -->

 <xsl:for-each select="/ROWSET/ROW">

 <!-- Sort ascending by ENAME -->

 <xsl:sort select="ENAME"/>

 <!-- Select the text of ENAME into the fragment being constructed -->

 <xsl:value-of select="ENAME"/>

 <!-- If not the last one, add a literal comma and a space -->

 <xsl:if test="position() != last()"><xsl:text>, </xsl:text></xsl:if>

 </xsl:for-each>

</xsl:variable>

This assigns a string value like:

BLAKE, CLARK, FORD, JONES, KING, SCOTT

to the empNameList variable.

We haven't seen the <xsl:sort> element yet in our XSLT travels, so we'll defer an explanation to

later in this chapter, where we cover it in detail. Here we'll just note that it allows you to sort

nodes selected by an <xsl:for-each>. We also haven't seen the <xsl:if> element before, but

it shouldn't present any surprises. If the boolean XPath expression in its test attribute evaluates

to true, then its content is instantiated; otherwise, it is not.

As another illustration of a computed variable assignment, consider the following example; this

one assigns maxSalary to have the maximum value of SAL elements in a /ROWSET/ROW node-set:

<!-- Select max value of salaries being formatted -->

<xsl:variable name="maxSalary">

 <xsl:for-each select="/ROWSET/ROW">

 <xsl:sort data-type="number" select="SAL" order="descending"/>

 <xsl:if test="position()=1">

 <xsl:value-of select="SAL"/>

 </xsl:if>

 </xsl:for-each>

</xsl:variable>

This example achieves its effect by using a combination of:

<xsl:for-each>

To select a list of /ROWSET/ROW elements

<xsl:sort>

To sort the list numerically in descending order based on the value of the <SAL> child

element in the <ROW>s

<xsl:if>

To select only the first item in the ordered list

Since the list of <ROW> elements is sorted in descending order by <SAL>, selecting the value of the

first <SAL> in the list results in assigning the maximum SAL value to the maxSalary variable.

We've directly embedded XSL elements inside <xsl:variable>

to construct a computed value to assign to the variable. It is
worth noting that it is also totally legal to invoke a named
template like a subroutine to calculate the value. The syntax for
assigning the content constructed by a named template

myUsefulTemplate as the value of a variable var looks like

this:

<xsl:variable name="var">
 <!-- Invoke a named template to construct the value
-->
 <xsl:call-template name="myUsefulTemplate">

 <xsl:with-param name="arg1" select="value-1"/>
 <!-- any number of args can be passed to the template
-->
 <xsl:with-param name="argn" select="value-n"/>
 </xsl:call-template>
</xsl:variable>

9.1.3 Conditionally Assigning Variable Values

The conditional assignment of a variable is a fundamental task in any programming language. For

example, in PL/SQL:

/* Conditionally setting a variable in PL/SQL */

IF b > 45 THEN

 n := 15;

ELSE

 n := 20;

END IF;

or in Java:

/* Conditionally setting a variable in Java */

if (b > 45) {

 n = 15;

}

else {

 n = 20;

}

XSLT provides the <xsl:choose> element, which you can use to perform if-then-else kinds of

decisions in a stylesheet, so this is a natural element to investigate for conditional variable

assignment. The basic syntax of <xsl:choose> is:

<xsl:choose>

 <xsl:when test="BooleanXPathExpression-1">

 <!-- Something here if first expression is true -->

 </xsl:when>

 <!-- Any number of <xsl:when> elements -->

 <xsl:when test="BooleanXPathExpression-N">

 <!-- Something here if Nth expression is true -->

 </xsl:when>

 <xsl:otherwise>

 <!-- Something here if no <xsl:when>'s test expression is true -->

 </xsl:otherwise>

</xsl:choose>

Using <xsl:choose> to conditionally assign a variable, as a Java or PL/SQL developer your first

instinct would likely compel you to do the following:

<!-- Variable n does not exist here since it's not been set yet -->

<xsl:choose>

 <xsl:when test="b > 45">

 <xsl:variable name="n" select="15"/>

 <!-- Variable n has value "15" inside this <xsl:when> -->

 </xsl:when>

 <xsl:otherwise>

 <xsl:variable name="n" select="20"/>

 <!-- Variable n has value "20" inside this <xsl:otherwise> -->

 </xsl:otherwise>

</xsl:choose>

<!-- Variable n does not exist here since it's out of scope -->

While this is completely legal XSLT, it is probably not what you intended. It creates a variable n

with value 15 that is scoped to the part of the stylesheet tree nested inside the <xsl:when>

element where the variable is set. So the variable n comes into existence, but no other element

nested within the <xsl:when> element makes use of its value. It dies a silent death, unnoticed.

Then within the <xsl:otherwise> a new variable—coincidentally, also named n—is bound to the

value 20; however, it meets a similar fate. If the developer tries to reference the value of n

outside of this <xsl:choose>, it will be undefined because of the scoping rules we learned earlier.

Rather than thinking of conditionally assigning a variable, in XSLT you need to think instead of

assigning a variable a conditional value. An example will make things clear. Here is the right way

to assign the variable n to the conditional value 15 or 20:

<xsl:variable name="n">

 <!-- Conditionally instantiate a value to be assigned to the variable -->

 <xsl:choose>

 <xsl:when test="b > 45">

 <xsl:value-of select="15"/><!-- We either instantiate a "15" -->

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="20"/><!-- ... or a "20" -->

 </xsl:otherwise>

 </xsl:choose>

</xsl:variable>

<!-- Value of n is visible here and will be either 15 or 20 -->

9.1.4 Copying Variables to the Result Tree

Before I close this section, I'll point out a common pitfall that developers encounter when using

XSLT variables. Once you have assigned a value to a variable, you may want to copy the variable

value to the result tree. There are two ways to do this: <xsl:value-of> and <xsl:copy-of>.

Both of these XSLT elements take a select attribute whose value is an XPath expression, so both

of the following are legal:

<xsl:value-of select="$var"/>

<xsl:copy-of select="$var"/>

If the XPath expression in the select attribute (including the simple $var variable reference)

identifies a string, number, or boolean value, then these two elements behave identically: they

create a text node in the result tree with the value of the expression as its text. The key difference

between them occurs when the type of the expression being evaluated is a node-set or result tree

fragment, the two XSLT data types that have an inherent structure. In this case, <xsl:copy-of>

copies the value of the expression to the result tree with its structure intact, that is, without first

converting it to a string. So to select a list of all XYZ elements into a variable named var, and then

copy the entire list of XYZ elements to the result tree, you would do this:

<!-- Select node-set of XYZ elements into 'var' variable -->

<xsl:variable name="var" select="XYZ"/>

<!-- Then later, copy the list of XYZ elements intact into the result -->

<xsl:copy-of select="$var"/>

With these variables now under our belt, let's venture on to meet the identity transformation and

learn how many common transformation tasks can be accomplished by extending its basic

functionality.

9.2 The Talented Identity Transformation

The XSLT identity transformation is a stylesheet that transforms a document into itself. It does

this using a single template that matches any node or any attribute ("node()|@*") and whose

content is the single <xsl:copy> action that copies the current node. Example 9.1 shows what the

identity transformation looks like:

Example 9.1. The XSLT Identity Transformation

<!-- The Identity Transformation -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Whenever you match any node or any attribute -->

 <xsl:template match="node()|@*">

 <!-- Copy the current node -->

 <xsl:copy>

 <!-- Including any attributes it has and any child nodes -->

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

The <xsl:copy> action copies the current node and its namespaces; however, by default it

doesn't copy any of the current node's attributes or child nodes. You indicate which attributes and

child nodes should be copied by instantiating them in the body of the <xsl:copy> element. In the

case of the identity transformation, the template selects all attributes and all child nodes to be

included recursively.

9.2.1 Renaming and Suppressing Elements

Whenever you want to make global changes to a document but leave its fundamental structure

intact, the identity transformation is a great place to start. By importing the Identity.xsl

stylesheet into your new transformation, you can provide additional templates that effect the

changes you want, while the identity transformation's match="node()|@*" template copies the

rest of the structure intact.

For example, consider the following simple ItemList.xml document:

<ItemList>

 <Item Id="1234" Color="Red">

 <Description>Singular Red Hat</Description>

 <Price>15.00</Price>

 </Item>

 <Item Id="9876" Color="Blue">

 <Description>Blue Jeans</Description>

 <Price>25.00</Price>

 </Item>

</ItemList>

If you want to rename all elements named <Description> to <Name>, you can build a stylesheet

like this:

<!-- Rename.xsl: Rename <Description> to <Name> -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Whenever you match a Description, construct a Name -->

 <xsl:template match="Description">

 <Name><xsl:apply-templates select="@*|node()"/></Name>

 </xsl:template>

</xsl:stylesheet>

Given ItemList.xml above as the source, this transformation produces:

<ItemList>

 <Item Id="1234" Color="Red">

 <Name>Singular Red Hat</Name>

 <Price>15.00</Price>

 </Item>

 <Item Id="9876" Color="Blue">

 <Name>Blue Jeans</Name>

 <Price>25.00</Price>

 </Item>

</ItemList>

To rename many elements, just include more templates. The stylesheet in Example 9.2, for

example, renames all of the elements and attributes into Italian.

Example 9.2. Renaming Multiple Elements into Another

Language

<!-- RenameIntoItalian.xsl: Rename elements and attributes into Italian -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Translate all elements into their Italian equivalents -->

 <xsl:template match="ItemList">

 <ListaArticoli><xsl:apply-templates select="@*|node()"/></ListaArticoli>

 </xsl:template>

 <xsl:template match="Item">

 <Articolo><xsl:apply-templates select="@*|node()"/></Articolo>

 </xsl:template>

 <xsl:template match="Description">

 <Descrizione><xsl:apply-templates select="@*|node()"/></Descrizione>

 </xsl:template>

 <xsl:template match="Price">

 <Prezzo><xsl:apply-templates select="@*|node()"/></Prezzo>

 </xsl:template>

 <xsl:template match="@Color">

 <xsl:attribute name="Colore">

 <xsl:value-of select="."/>

 </xsl:attribute>

 </xsl:template>

</xsl:stylesheet>

When applied to ItemList.xml, this stylesheet produces the following:

<ListaArticoli>

 <Articolo Id="1234" Colore="Red">

 <Descrizione>Singular Red Hat</Descrizione>

 <Prezzo>15.00</Prezzo>

 </Articolo>

 <Articolo Id="9876" Colore="Blue">

 <Descrizione>Blue Jeans</Descrizione>

 <Prezzo>25.00</Prezzo>

 </Articolo>

</ListaArticoli>

You can build a stylesheet to suppress certain elements and attributes as well. The next

stylesheet suppresses the Color attribute and the <Price> element by including a template that

matches these, but with no template body:

<!-- NoPriceColor.xsl: Suppress Color attribute and Price Element -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Strip text nodes that are all whitespace -->

 <xsl:strip-space elements="*"/>

 <!-- Indent the result -->

 <xsl:output indent="yes"/>

 <!-- Whenever you match a Color attribute or Price element, do nothing -->

 <xsl:template match="@Color|Price"/>

</xsl:stylesheet>

To avoid having blank slots in the result where whitespace was copied to the result tree but an

element like <Price> was removed, we can use <xsl:strip-space> to disregard all extraneous

whitespace in the source tree. We can still get nicely indented output by adding an <xsl:output>

with indent="yes". This produces:

<ItemList>

 <Item Id="1234">

 <Description>Singular Red Hat</Description>

 </Item>

 <Item Id="9876">

 <Description>Blue Jeans</Description>

 </Item>

</ItemList>

9.2.2 Adding and Stripping Whitespace

While on the subject of indenting, let me mention that you can build a stylesheet that will indent

any existing XML document that might be missing whitespace with the stylesheet:

<!-- Indent.xsl: Indents the source datagram -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Strip text nodes that are all whitespace -->

 <xsl:strip-space elements="*"/>

 <!-- Indent the result -->

 <xsl:output indent="yes"/>

</xsl:stylesheet>

This would transform a document like:

<a><c/>

into:

<a>

 <c/>

With the reverse strategy, we have a stylesheet that removes whitespace:

<!-- RemoveWhitespace.xsl: Removes extraneous whitespace from source doc -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Strip text nodes that are all whitespace -->

 <xsl:strip-space elements="*"/>

 <!-- Indent the result -->

 <xsl:output indent="no"/>

</xsl:stylesheet>

This transforms our ItemList.xml document into:

<ItemList><Item Id="1234" Color="Red"><Description>Singular Red Hat</Description>

<Price>15.00</Price></Item><Item Id="9876" Color="Blue"><Description>Blue Jeans</

Description><Price>25.00</Price></Item></ItemList>

9.2.3 Converting Between Elements and Attributes

We could write a stylesheet to transform all subelements of <Item> into attributes on <Item>

instead:

<!-- ItemChildrenToAttributes.xsl: Turn subelements of Item into attributes -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <xsl:template match="Item">

 <xsl:copy>

 <xsl:apply-templates select="@*|*"/>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="Item/*">

 <xsl:attribute name="{name(.)}">

 <xsl:value-of select="."/>

 </xsl:attribute>

 </xsl:template>

</xsl:stylesheet>

One template matches <Item> and copies it, selecting attributes and children elements as the

content to include. The other template matches an element under <Item> and uses

<xsl:attribute> to construct an attribute whose name is dynamically assigned.

name="{name(.)}" uses an attribute value template to set the attribute's name being created to

the name of the current node. This turns ItemList.xml into:

<ItemList>

 <Item Id="1234" Color="Red" Description="Singular Red Hat" Price="15.00"/>

 <Item Id="9876" Color="Blue" Description="Blue Jeans" Price="25.00"/>

</ItemList>

To do the reverse, here's the AttrToElement.xsl stylesheet, which turns attributes into elements:

<!-- AttrToElement.xsl: Turn all attributes into subelements -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <xsl:strip-space elements="*"/>

 <xsl:output indent="yes"/>

 <!-- Match any Attribute and turn it into an element -->

 <xsl:template match="@*">

 <xsl:element name="{name(.)}"><xsl:value-of select="."/></xsl:element>

 </xsl:template>

</xsl:stylesheet>

Its template matches any attribute @* and uses <xsl:element> to construct an element with a

dynamically assigned name. The name="{name(.)}" on <xsl:element> uses an attribute value

template to set the name of the element being created to the name(.) of the current node. This

transforms ItemList.xml into:

<ItemList>

 <Item>

 <Id>1234</Id>

 <Color>Red</Color>

 <Description>Singular Red Hat</Description>

 <Price>15.00</Price>

 </Item>

 <Item>

 <Id>9876</Id>

 <Color>Blue</Color>

 <Description>Blue Jeans</Description>

 <Price>25.00</Price>

 </Item>

</ItemList>

9.2.4 Annotating Elements in the Source Tree

So far, we've employed very simple XPath expressions in our templates that augment the identity

transformation. Your templates can use more specific XPath expressions containing predicates to

affect only certain elements in the source. For example, the following stylesheet adds an

<OnSale> element to any <Item> whose Color is Red and whose Price is under $20.00:

<!-- MarkcheapRedItemsOnSale.xsl: Adds <OnSale> to Red items under $20.00 -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Strip text nodes that are all whitespace -->

 <xsl:strip-space elements="*"/>

 <!-- Indent the result -->

 <xsl:output indent="yes"/>

 <xsl:template match="Item[@Color='Red' and 20 > Price]">

 <xsl:copy>

 <!-- First copy Item's attributes -->

 <xsl:apply-templates select="@*"/>

 <!-- Then add a literal <OnSale> element -->

 <OnSale/>

 <!-- Then copy the rest of any children nodes -->

 <xsl:apply-templates select="node()"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

This transforms ItemList.xml into:

<ItemList>

 <Item Id="1234" Color="Red">

 <OnSale/>

 <Description>Singular Red Hat</Description>

 <Price>15.00</Price>

 </Item>

 <Item Id="9876" Color="Blue">

 <Description>Blue Jeans</Description>

 <Price>25.00</Price>

 </Item>

</ItemList>

Note that in match="Item[@Color='Red' and 20 > Price]"

above we use 20 > Price instead of Price < 20. They are

equivalent, but using Price < 20 would mean having to escape

the less-than sign as < in the attribute value.

9.2.5 Performing Value Lookups

Sometimes you need to transform a source document and translate data within it using some

form of a lookup table. These kinds of transformations are easy to do using the XSLT document()

function that gives you access to the node tree of another XML source tree during the

transformation. Using document(), it is possible to select additional source nodes from:

• An external XML file

• A URL returning an XML document

• The stylesheet source tree itself

document() takes a string argument that is a URI of another XML resource. The XSLT processor

reads that resource and parses it as an XML document into its source tree, then returns a

node-set containing the root node of that new, external source tree. Typically, the string value

passed to the document() function will either be a relative URL—interpreted as relative to the

stylesheet containing the node where the document() function appears in an expression—or an

absolute URL. The external resource is retrieved only once per transformation.

Consider a simple <TripReports> document like this:

<TripReports>

 <Report>

 <Purpose>102</Purpose>

 <Comment>Flight was late. Peanuts were ok.</Comment>

 </Report>

 <Report>

 <Purpose>101</Purpose>

 <Comment>Food was actually good. Coffee was piping hot</Comment>

 </Report>

</TripReports>

Imagine that we need to transform the numerical value of the <Purpose> code in this source

document into a textual equivalent via a lookup table contained in an external XML document, like

this TripReportLookup.xml document:

<!-- TripReportLookup.xml -->

<Lookup>

 <Msg id="101">

 <Text lang="it">Vacanze</Text>

 <Text lang="en">Vacation</Text>

 </Msg>

 <Msg id="102">

 <Text lang="it">Affari</Text>

 <Text lang="en">Work</Text>

 </Msg>

</Lookup>

The lookup document contains text messages keyed by their message ID. Multiple languages are

included so that a transformation can request the text version of a particular purpose code in

either English or Italian. The TranslateTripCode.xsl stylesheet in Example 9.3 provides a top-level

stylesheet parameter to indicate the language into which the purpose codes should be translated,

defaulting to the value en for English. As a convenience, it selects the root node of the external

lookup document into the codes variable.

Example 9.3. Looking Up External Information During a

Transformation

<!-- TranslateTripCode.xsl: Lookup Codes from external file -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Parameterize language for lookup code translation, default to "en" -->

 <xsl:param name="lang" select="'en'"/>

 <!-- Select root node of external document into "codes" variable -->

 <xsl:variable name="codes" select="document('TripReportLookup.xml')"/>

 <!--

 | Whenever you match a Purpose element, replace numeric value by

 | lookup up codes from external file.

 +-->

 <xsl:template match="Purpose">

 <xsl:copy>

 <xsl:value-of select="$codes/Lookup/Msg[@id=current()]/Text[@lang=$lang]"/>

 </xsl:copy>

 </xsl:template>

</xsl:stylesheet>

The template that matches <Purpose> uses <xsl:copy> to copy the <Purpose> element, and the

content of the <xsl:copy> includes an <xsl:value-of> to select the text child node of

<Purpose> in the result. The select expression used by this <xsl:value-of> illustrates two

concepts we have not seen yet:

• If you select a node-set into a variable, then you can use the node-set variable directly as

the root of an XPath expression.

• You can use the XSLT current() function to refer to the node that is the current node.

The expression here:

$codes/Lookup/Msg[@id=current()]/Text[@lang=$lang]

selects the <Msg> element having an id attribute equal to the value of the current node—that is,

the current <Purpose> element—then selects the <Text> child of the <Msg> identified in the

previous step whose lang attribute is equal to the value of the $lang parameter. The result is that

the <Text> element for the <Msg> corresponding to the current <Purpose> element's numerical

code value is returned in the proper language.

We find the current() function handy here because using the . inside square brackets to

represent the current node does not do what we want. For example, suppose the previous

expression were written like this:

$codes/Lookup/Msg[@id=.]/Text[@lang=$lang]

This would look for the <Msg> element whose id attribute was equal to the value of the <Msg>

element. Within the square brackets, the node being qualified is the current node inside the

predicate. The current() function, on the other hand, always returns a node-set containing the

current node as it was at the start of the current expression.

Note the use of a top-level <xsl:param> element, which defines

a top-level stylesheet parameter. As we'll see in many
examples in Chapter 17, parameters—like variables—can be
defined inside individual templates or as top-level items. The
key difference between XSLT variables and parameters is that
the value assigned to a parameter acts as the default value,

which can be overridden by the caller. If the <xsl:param>

appears in a template, then by invoking the template with

<xsl:call-template> or <xsl:apply-templates>, you can

use the optional <xsl:with-param> element to pass a specific

value for the parameter. If the <xsl:param> appears at the top

level, the XSLT 1.0 specification provides a processor-specific

way to assign these stylesheet-level parameters. The oraxsl

command-line utility supports a -p flag that allows one or more

command-line arguments to be passed to assign values to

stylesheet parameters. The XSLStylesheet object supports

similar APIs to allow the same thing to be done
programmatically.

We can try out the transformation with oraxsl:

oraxsl TripReports.xml TranslateTripCode.xsl

which produces the result:

<TripReports>

 <Report>

 <Purpose>Work</Purpose>

 <Comment>Flight was late. Peanuts were ok.</Comment>

 </Report>

 <Report>

 <Purpose>Vacation</Purpose>

 <Comment>Food was actually good. Coffee was piping hot</Comment>

 </Report>

</TripReports>

If we pass a different value for the top-level stylesheet parameter as follows:

oraxsl -p lang='it' TripReports.xml TranslateTripCode.xsl

the result document has the lookup code translate values into Italian instead of English:

<TripReports>

 <Report>

 <Purpose>Affari</Purpose>

 <Comment>Flight was late. Peanuts were ok.</Comment>

 </Report>

 <Report>

 <Purpose>Vacanze</Purpose>

 <Comment>Food was actually good. Coffee was piping hot</Comment>

 </Report>

</TripReports>

As an alternative, you can store lookup information in the stylesheet itself, and use the

document('') function with an empty string argument to refer to the root of the stylesheet

document. This technique can avoid rereading the external "lookup" document on each run of the

stylesheet if your applications cache stylesheets—as the XSQL Servlet does for you. You can use

the XPath expression:

document('')/xsl:stylesheet/m:Lookup

Refer to the <m:Lookup> element embedded in the stylesheet as a child of the <xsl:stylesheet>

document element. Elements appearing at the top level of a stylesheet must be qualified with a

namespace other than the XSLT namespace. The stylesheet in Example 9.4 performs the same

lookup functionality as the TranslateTripCode.xsl stylesheet in Example 9.3.

Example 9.4. Embedding Lookup Information Inside the

Stylesheet Itself

<!-- TranslateTripCodeInternal.xsl: Lookup Codes from inside stylesheet -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:m="temp">

 <!-- Import the identity transformation. -->

 <xsl:import href="Identity.xsl"/>

 <!-- Parameterize language for lookup code translation, default to "en" -->

 <xsl:param name="lang" select="'en'"/>

 <!-- Select root node of stylesheet lookup codes -->

 <xsl:variable name="codes" select="document('')/xsl:stylesheet/m:Lookup"/>

 <!--

 | Whenever you match a Purpose element, replace numeric value by

 | lookup up codes from external file.

 +-->

 <xsl:template match="Purpose">

 <xsl:copy>

 <xsl:value-of

 select="$codes/m:Msg[@id=current()]/m:Text[@lang=$lang]"/>

 </xsl:copy>

 </xsl:template>

 <!-- Lookup Codes inside the stylesheet must be qualified by a namespace -->

 <m:Lookup>

 <m:Msg id="101">

 <m:Text lang="it">Vacanze</m:Text>

 <m:Text lang="en">Vacation</m:Text>

 </m:Msg>

 <m:Msg id="102">

 <m:Text lang="it">Affari</m:Text>

 <m:Text lang="en">Work</m:Text>

 </m:Msg>

 </m:Lookup>

</xsl:stylesheet>

So we've seen that by using simple templates to augment the identity transformation, we can do

lots of very interesting kinds of transformations.

9.3 Grouping Repeating Data Using SQL

One of the most common questions developers learning XSLT ask is, "How can I use XSLT to

group repeating information?" In this section, we'll learn how to exploit the database to do the

bulk of the grouping and sorting for us, and then use XSLT to format the information. In situations

where you don't have the luxury of formulating the database query yourself—for example, if you

receive the XML document from a business partner—you still need to perform grouping and

sorting. In the following section, we outline techniques for performing the grouping in your

stylesheet, including a state-of-the-art approach that uses XSLT "keys" like database indexes to

increase by an order of magnitude the speed of traditional pure XSLT grouping techniques. Either

way, by the end of this chapter, you'll be aware of all the grouping approaches available and

which is best for the task at hand.

9.3.1 Multilevel Grouping with CURSOR Expressions

If we are producing XML documents from SQL query results, we can leverage the native grouping

functionality provided by Oracle to deliver the results straight from the database grouped the way

we want. Let's start with a simple XSQL page that queries information about software bugs and

the developer who is assigned to fix them:

<xsql:query connection="xmlbook" rowset-element="open-bugs" row-element="bug"

 id-attribute="" tag-case="lower" xmlns:xsql="urn:oracle-xsql" >

 SELECT ID,ABSTRACT,OWNER,PRIORITY FROM BUG

 ORDER BY PRIORITY

</xsql:query>

Requesting this XSQL page produces a result like the one shown in Example 9.5.

Example 9.5. Result from XSQL Bug Query Page

<open-bugs>

 <bug>

 <id>10677</id>

 <abstract>NullPointerException Entering Blank Name Value</abstract>

 <owner>rjust</owner>

 <priority>1</priority>

 </bug>

 <bug>

 <id>11601</id>

 <abstract>Expanding Node Makes Project Tree Flicker</abstract>

 <owner>echan</owner>

 <priority>2</priority>

 </bug>

 <!-- etc. -->

 <bug>

 <id>10445</id>

 <abstract>Resizing Methods Panel Doesn't Resize Control</abstract>

 <owner>rjust</owner>

 <priority>3</priority>

 </bug>

</open-bugs>

Suppose that instead of this flat list of <bug>s and assigned <owner>s we would like the output to

be grouped by developer, showing each distinct owner and a nested list of the bugs assigned to

that developer. Assuming that you've created appropriate indexes on your tables—for example,

an index on the OWNER column in the Bug table—grouping the data inside the database engine will

be very efficient.

We can change our query to use the nested CURSOR expression we learned about in the last

chapter to group the data by the owner and, while we're at it, include a count of the bugs assigned

to each developer. As one of the columns in the query, we can use a CURSOR expression to select,

for each unique developer, the appropriate list of assigned bugs:

<xsql:query connection="xmlbook" rowset-element="open-bugs" row-element="bug"

 id-attribute="" tag-case="lower" xmlns:xsql="urn:oracle-xsql" >

 SELECT OWNER,COUNT(ID) as "count",

 CURSOR(SELECT ID,ABSTRACT,PRIORITY

 FROM BUG b

 WHERE b.OWNER = BUG.OWNER

 ORDER BY PRIORITY

) AS buglist

 FROM BUG

 GROUP BY OWNER

 ORDER BY OWNER

</xsql:query>

Queries containing ORDER BY clauses in nested subqueries or
in view definitions will not work in versions of Oracle prior to
Oracle8i.

In Oracle8i we can even include an ORDER BY in the nested SELECT statement in the CURSOR

expression, which is quite handy. With our rewritten query, our XSQL page now produces the

results shown in Example 9.6.

Example 9.6. Two-Level Query Results Using a CURSOR

Expression

<open-bugs>

 <bug>

 <owner>echan</owner>

 <count>1</count>

 <buglist>

 <buglist_row num="1">

 <id>11601</id>

 <abstract>Expanding Node Makes Project Tree Flicker</abstract>

 <priority>2</priority>

 </buglist_row>

 </buglist>

 </bug>

 <!-- etc. -->

 <bug>

 <owner>rjust</owner>

 <count>2</count>

 <buglist>

 <buglist_row num="1">

 <id>10677</id>

 <abstract>NullPointerException Entering Blank Name Value</abstract>

 <priority>1</priority>

 </buglist_row>

 <buglist_row num="2">

 <id>10445</id>

 <abstract>Resizing Methods Panel Doesn't Resize Control</abstract>

 <priority>3</priority>

 </buglist_row>

 </buglist>

 </bug>

</open-bugs>

We can take the CURSOR grouping to as many levels as needed. Consider the following tables:

BUG

All bugs reported against a software product

PERSON

Developers assigned to fixing the bugs

TEAM

Groups of developers working together

The page in Example 9.7 consists of a single query with two levels of nested details:

• Select the list of teams that have developers with open bugs to fix, calculate the total bug

count for the team, and order by the bug count so the team with the most bugs is listed

first.

• For each team in the list, include the set of developers on the team who have open bugs

to fix along with their individual bug count, and order the list to show which developers on

the team have the most open bugs assigned to them.

• In each row of these particular developers, include the set of open bugs assigned to them.

The XSQL page in Example 9.7 produces the data page for the Developer's Bug List. Note that

we've already included a reference to the DevBugList.xsl stylesheet we'll write in the next section

to format this multilevel data into HTML.

Example 9.7. Multilevel Query Using Nested CURSOR

Expressions

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="DevBugList.xsl"?>

<xsql:query connection="xmlbook" row-element="team" xmlns:xsql="urn:oracle-xsql"

 tag-case="lower" fixby="3.0">

 SELECT t.name,

 COUNT(b.id) TEAMBUGS,

 /* Detail Set of Team Members With Open Bugs for Current Team */

 CURSOR(SELECT b1.owner,

 COUNT(b1.id) AS bugs,

 /* Detail Set of Open Bugs for Current Developer */

 CURSOR(SELECT b2.id bug,

 b2.priority,

 InitCap(b2.abstract) abstract

 FROM bug b2

 WHERE b2.owner = b1.owner

 AND b2.status = 11

 AND b2.fixby = '{@fixby}'

 ORDER BY b2.priority, b2.id DESC

) as BUGLIST

 FROM team t1, person p1, bug b1

 WHERE p1.teamid = t1.id

 AND t1.name = t.name

 AND b1.owner = p1.name

 AND status = 11

 AND fixby = '{@fixby}'

 GROUP BY b1.owner, p1.teamid

 ORDER BY 2 DESC

) AS members

 FROM team t, person p, bug b

 WHERE p.teamid = t.id

 AND b.owner = p.name

 AND b.status = 11

 AND b.fixby = '{@fixby}'

 GROUP BY t.name

 ORDER BY 2 DESC

</xsql:query>

As we learned in the last chapter, by requesting the page with the xml-stylesheet=none

parameter like this:

http://server/DevBugList.xsql?xml-stylesheet=none

we can temporarily suppress the processing of the transformation indicated in the

<?xml-stylesheet?> instruction to inspect the page's raw XML output. This reveals the three

levels of nested information, grouped in the way we need it, as shown in Example 9.8.

Example 9.8. Three-level Query Results Using Nested CURSOR

Expressions

<?xml version = '1.0'?>

<rowset>

 <team num="1">

 <name>Design Time</name>

 <teambugs>3</teambugs>

 <members>

 <members_row num="1">

 <owner>rjust</owner>

 <bugs>2</bugs>

 <buglist>

 <buglist_row num="1">

 <bug>10677</bug>

 <priority>1</priority>

 <abstract>Nullpointerexception Entering Blank Name Value</abstract>

 </buglist_row>

 <buglist_row num="2">

 <bug>10445</bug>

 <priority>3</priority>

 <abstract>Resizing Methods Panel Doesn't Resize Control</abstract>

 </buglist_row>

 </buglist>

 </members_row>

 <members_row num="2">

 <owner>echan</owner>

 <bugs>1</bugs>

 <buglist>

 <buglist_row num="1">

 <bug>11601</bug>

 <priority>2</priority>

 <abstract>Expanding Node Makes Project Tree Flicker</abstract>

 </buglist_row>

 </buglist>

 </members_row>

 </members>

 </team>

 <!-- etc. -->

</rowset>

The CURSOR expression is very powerful for shaping data, but
you need to understand how it works to avoid using it
irresponsibly. Including a CURSOR expression in your SELECT
list asks the database to open a cursor for the SQL statement
inside the CURSOR expression and return a "handle" to that
open cursor in the result set. In order to access the data in the
result set represented by the returned cursor handle, the client
application—the XML SQL Utility, or SQL*Plus, for
example—must fetch the rows from that nested cursor using its
handle. This equates to a network round-trip per nested cursor
if the client application is running outside the database. This
shouldn't be a shocking revelation, since this behavior is the
same as would be required for a database client program doing
nested loops over cursor results, but you should keep this in
mind when using CURSOR expressions

9.3.2 Formatting Grouped Data into HTML

We can create a stylesheet to format our three-level nested datagram from the previous section

by:

1. Using an HTML editor to design a mockup like the one shown in Figure 9.1

2. Using the tidy -indent -asxml command to turn the HTML into well-formed XML

3. Adding the xsl:version="1.0" and xmlns:xsl namespace declaration to the <HTML>

element to turn it into an XSLT stylesheet

Figure 9.1. HTML mockup for bug summary display

Then we can introduce three nested <xsl:for-each> loops to iterate over:

• Each team in the rowset with select="rowset/team"

• Each member of the current team with select="members/member_row"

• Each bug in current members' buglist with select="buglist/buglist_row"

This produces the DevBugList.xsl stylesheet in Example 9.9.

Example 9.9. Simple-Form Stylesheet to Format Multilevel

Bug Information

<html xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <head>

 <title>Open Bugs By Team By Developer</title>

 </head>

 <body style="font-family:verdana; font-size: 8pt">

 <table border="0" cellspacing="0" cellpadding="4" width="100%">

 <!-- v-[Team]-v --><xsl:for-each select="rowset/team">

 <tr>

 <td bgcolor="#DADADA" width="*">

 <xsl:value-of select="name"/>

 (<xsl:value-of select="teambugs"/> Open)

 </td>

 </tr>

 <tr>

 <td width="100%">

 <table width="100%" border="1" cellspacing="0" cellpadding="4">

 <!-- v-[Team Member]-v --><xsl:for-each select="members/members_row">

 <tr>

 <td width="50" align="center" bgcolor="#EAEAEA">

 <xsl:value-of select="owner"/>

 </td>

 <td width="*">

 <table width="100%" border="0" cellpadding="2" cellspacing="2">

 <!-- v-[Bug]-v --><xsl:for-each select="buglist/buglist_row">

 <tr>

 <td width="*"><xsl:value-of select="abstract"/></td>

 <td width="20" align="center"><xsl:value-of select="priority"/></td>

 <td width="20" align="center"><xsl:value-of select="bug"/></td>

 </tr>

 <!-- ^-[Bug]-^ --></xsl:for-each>

 </table>

 </td>

 <td width="10" align="center" bgcolor="#EAEAEA">

 <xsl:value-of select="bugs"/>

 </td>

 </tr>

 <!-- ^-[Team Member]-^ --></xsl:for-each>

 </table>

 </td>

 </tr>

 <!-- ^-[Team]-^ --></xsl:for-each>

 </table>

 </body>

</html>

Requesting the DevBugList.xsql page with this stylesheet produces an executive summary of the

teams with open bugs and shows which teams have the most open bugs and which developers on

each team have the biggest open bug count. The results are illustrated in Figure 9.2.

Figure 9.2. HTML bug summary grouped by team and by

developer

9.4 Sorting and Grouping Repeating Data with XSLT

If you do not have the luxury of controlling the SQL statement producing the XML information you

are working with, XSLT 1.0 can be used to sort and group any information in an XML document.

The <xsl:sort> action allows you to sort your node lists—either selected by <xsl:for-each> or

matched through <xsl:apply-templates> —based on any string or number values that they

contain. However, such a claim cannot be made for grouping repeating information. In short,

there is no <xsl:group> action that provides this capacity.

9.4.1 Sorting on Element or Attribute Values

The <xsl:sort> action allows you to sort by string or number values as a part of your

transformation. Let's look at some examples of how you can put this action to use. Suppose we

have a simple shopping list document like this:

<!-- ShoppingList.xml -->

<list>

 <item maker="Friendly Foods">

 <name>Granola Crust Pizza</name>

 <price>11.99</price>

 </item>

 <item maker="Ammondale Farms">

 <name>Yogurt</name>

 <price>1.00</price>

 </item>

 <item maker="Ammondale Farms">

 <name>ChocoFlakes</name>

 <price>3.49</price>

 </item>

</list>

We can create a stylesheet to transform the shopping list into an equivalent structure ordered by

the name of the items. To use <xsl:sort>, you include it as a child element of either

<xsl:apply-templates> or <xsl:for-each>. The following SortByName.xsl stylesheet

illustrates using <xsl:sort> with <xsl:apply-templates> to cause the XSLT processor to

process the <item> child elements of the <list> in sorted order based on the value of the <name>

element:

<!-- SortByName.xsl: Sort shopping-list items by name -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes"/>

 <xsl:template match="list">

 <xsl:copy>

 <xsl:apply-templates select="item">

 <xsl:sort select="name"/>

 </xsl:apply-templates>

 </xsl:copy>

 </xsl:template>

 <xsl:template match="item">

 <xsl:copy-of select="."/>

 </xsl:template>

</xsl:stylesheet>

The select attribute of the <xsl:sort> element selects the expression that identifies the value

to be sorted. The select expression is relative to the current node list of matching <item>

elements in this case, so select="name" on <xsl:sort> indicates that you want to sort on the

value of the <name> element child of <item> elements.

If we transform ShoppingList.xml using SortByName.xsl like this:

oraxsl ShoppingList.xml SortByName.xsl

we see the result document with <item> elements now sorted by item name:

<?xml version = '1.0' encoding = 'UTF-8'?>

<list>

 <item maker="Ammondale Farms">

 <name>ChocoFlakes</name>

 <price>3.49</price>

 </item>

 <item maker="Friendly Foods">

 <name>Granola Crust Pizza</name>

 <price>11.99</price>

 </item>

 <item maker="Ammondale Farms">

 <name>Yogurt</name>

 <price>1.00</price>

 </item>

</list>

We can sort information either as strings or as numbers. The default is to sort values as strings.

To indicate that you want to sort values numerically, add the optional data-type="number"

attribute to your <xsl:sort> element. The following SortByPrice.xsl stylesheet transforms our

shopping list into a plain text document that lists the name and price of each item, sorted

numerically by item price:

<!-- SortByPrice.xsl: Sort shopping-list items by price -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text" />

 <xsl:template match="/">

 <xsl:for-each select="list/item">

 <xsl:sort select="price" data-type="number"/>

 <xsl:value-of select="name"/>

 <xsl:text>, $</xsl:text>

 <xsl:value-of select="price"/>

 <xsl:text>
</xsl:text>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

Note that in this example we're using <xsl:sort> as a child of <xsl:for-each>.The result of

transforming ShoppingList.xml using SortByPrice.xsl looks like this:

Yogurt, $1.00

ChocoFlakes, $3.49

Granola Crust Pizza, $11.99

If we had forgotten to put data-type="number" on <xsl:sort>, then the value of the price

element would have been sorted lexically instead of numerically, so that the prices starting with

the character 1 would sort before those starting with the character 3, like this:

Yogurt, $1.00

Granola Crust Pizza, $11.99

ChocoFlakes, $3.49

The value of the select attribute on <xsl:sort> can be any XPath expression, so it's easy to sort

on attribute values by simply selecting the desired attribute with the @attrname syntax. Besides

being able to sort on any expression, you can also sort on any number of keys by listing multiple

<xsl:sort> elements. The first <xsl:sort> defines the primary key for sorting, the second one

defines the secondary sort key, and so on.

The following SortByMakerByPriceDesc.xsl stylesheet illustrates a multi-key sort. First it sorts by

the value of the maker attribute, and then by the value of the <price> element. By adding the

additional order="descending" attribute on the second <xsl:sort>, we can indicate that we

want the prices sorted numerically in descending order:

<!-- SortByMakerByPriceDesc.xsl: Sort shopping-list items by maker by price -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text"/>

 <xsl:template match="/">

 <xsl:for-each select="list/item">

 <!-- Can sort on anything you can select, so attributes work fine -->

 <xsl:sort select="@maker"/>

 <!-- Can sort on multiple keys, and control ascending/descending -->

 <xsl:sort select="price" data-type="number" order="descending"/>

 <xsl:value-of select="@maker"/>

 <xsl:text>: </xsl:text>

 <xsl:value-of select="name"/>

 <xsl:text>, $</xsl:text>

 <xsl:value-of select="price"/>

 <xsl:text>
</xsl:text>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

The result of transforming ShoppingList.xml using SortByMakerByPrice.xsl is:

Ammondale Farms: ChocoFlakes, $3.49

Ammondale Farms: Yogurt, $1.00

Friendly Foods: Granola Crust Pizza, $11.99

We've seen that sorting in XSLT is quite straightforward. Grouping is another story. Since there

is no analogous <xsl:group> element to make grouping easy, we're forced to invent a

mechanism to achieve grouping functionality by using other built-in XSLT facilities. As we'll see in

the following sections, there are two basic techniques, one that is slow but a little easier to

understand, and one that is fast but a little more obscure.

9.4.2 Grouping by Scanning Preceding Elements

Grouping is the process of converting flat data with repeating values into a nested set of data that

factors out the unique values of the repeating information. For example, suppose we start with an

XML document that looks like this:

<staff>

 <employee><deptno>20</deptno><name>Angel</name></employee>

 <employee><deptno>10</deptno><name>Collins</name></employee>

 <employee><deptno>20</deptno><name>Roger</name></employee>

 <employee><deptno>10</deptno><name>Mark</name></employee>

</staff>

We frequently will want to perform transformations that group flat information like the employees

in the list above into a nested set of data that factors out a repeating value like <deptno> and

groups the employees into their respective departments to produce a result document like this

one:

<staff>

 <department id="10">

 <employee><name>Collins</name></employee>

 <employee><name>Mark</name></employee>

 </department>

 <department id="20">

 <employee><name>Angel</name></employee>

 <employee><name>Roger</name></employee>

 </department>

</staff>

To simulate a grouping facility, it is common practice among XSLT developers to scan all elements

that precede the current one to determine whether the current element's value is occurring for

the first time in the document. By selecting only the first occurrences of values for a given

element, you can produce the unique list of values that particular element takes on in the

document. For example, consider the XML document of open bugs assigned to developers in

Example 9.10.

Example 9.10. Open Bug List, Sorted by Priority

<open-bugs>

 <bug>

 <id>6708</id>

 <abstract>Error Occured for Table with Chinese Character</abstract>

 <dev>Juan</dev>

 <priority>2</priority>

 </bug>

 <bug>

 <id>7468</id>

 <abstract>Tester Tool Flickers When View Selected</abstract>

 <dev>Charles</dev>

 <priority>2</priority>

 </bug>

 <bug>

 <id>6714</id>

 <abstract>Xml Data Generator Ignores Attribute Selection</abstract>

 <dev>Steve</dev>

 <priority>3</priority>

 </bug>

 <bug>

 <id>2085</id>

 <abstract>Upgrade XML SQL Utility To Latest</abstract>

 <dev>Steve</dev>

 <priority>3</priority>

 </bug>

 <bug>

 <id>11675</id>

 <abstract>After Insert New Master Row, Icon Disappears</abstract>

 <dev>Juan</dev>

 <priority>3</priority>

 </bug>

 <bug>

 <id>600</id>

 <abstract>View Criteria Needs "Smarts" About LIKE Queries</abstract>

 <dev>Steve</dev>

 <priority>4</priority>

 </bug>

</open-bugs>

It appears that whoever produced this XML document performed a query that sorted the bugs by

priority. However, let's assume that we need to produce a list of bugs grouped by unique

developer. The "scan all preceding" technique works like this:

• If the current element does not appear among preceding elements having the value of the

current element, then you have just found the first occurrence.

• If the current node does appear among nodes preceding it, then it is not the first

occurrence.

We can write an XSLT stylesheet to produce the list of bugs grouped by developer using this

technique by simply using a clever XPath expression to select each open-bugs/bug/dev element

having a value that does not occur in any of the preceding <dev> elements. The XPath pattern for

this is:

/open-bugs/bug/dev[not(preceding::dev=.)]

This selects the /open-bugs/bug/dev elements that do not have any preceding <dev> elements

with the value of the current <dev> element.

Using the syntax preceding::elementName instead of just elementName in one of the steps of an

XPath pattern indicates that you want to find elementName elements that occur in the set of

preceding nodes—that is, nodes that come earlier in the document order than the current node,

excluding nodes that are your parent nodes. The preceding:: qualifier changes the default

behavior of finding elementName elements that occur as children of the current node for a step of

the path expression. Similarly, you can use following::elementName to find elementName

elements that follow the current node in document order.

A stylesheet that exploits the XPath expression above to select unique developers and construct

a list of the bugs assigned to them appears in Example 9.11.

Example 9.11. Grouping Repeating Data in XSLT the Slow Way

<!-- SlowerGrouping.xsl: The slow way to group repeating info by scanning -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output indent="yes"/>

 <xsl:template match="/">

 <BugsByDeveloper>

 <!--

 | Select all unique developer names by selecting the

 | unique "open-bugs/bug/dev" elements. A unique "dev" is one

 | having no preceding dev element with the same value as it has.

 +-->

 <xsl:for-each select="/open-bugs/bug/dev[not(preceding::dev=.)]">

 <!-- Sort by the value of dev, the current node "." -->

 <xsl:sort select="."/>

 <BugList for="{.}">

 <!-- Select and copy all bugs for the current developer -->

 <xsl:for-each select="/open-bugs/bug[dev = current()]">

 <!-- Copy the current <bug> node -->

 <xsl:copy>

 <!-- Including children <id>,<abstract>,<priority> -->

 <xsl:copy-of select="id|abstract|priority"/>

 </xsl:copy>

 </xsl:for-each>

 </BugList>

 </xsl:for-each>

 </BugsByDeveloper>

 </xsl:template>

</xsl:stylesheet>

The preceding:: and following:: modifiers are known as

search axes. Other axes available to explicitly override the
default for searching among children nodes are:

• ancestor::, which searches among the parent node of

the current node and its parent node, and so on, up to the
document root

• preceding-sibling::, which searches among sibling

nodes that come earlier in the document than the current
node

• following-sibling::, which searches among sibling

nodes that come after the current node in the document

This is not the complete list of axes, but these are the most
commonly used ones.

Using the command-line oraxsl utility to perform the transformation:

oraxsl OpenBugs.xml SlowerGrouping.xsl

produces the result shown in Example 9.12.

Example 9.12. Results of Grouping Bug List by Developer

<?xml version = '1.0' encoding = 'UTF-8'?>

<BugsByDeveloper>

 <BugList for="Charles">

 <bug>

 <id>7468</id>

 <abstract>Tester Tool Flickers When View Selected</abstract>

 <priority>2</priority>

 </bug>

 </BugList>

 <BugList for="Juan">

 <bug>

 <id>6708</id>

 <abstract>Error Occured for Table with Chinese Character</abstract>

 <priority>2</priority>

 </bug>

 <bug>

 <id>11675</id>

 <abstract>After Insert New Master Row, Icon Disappears</abstract>

 <priority>3</priority>

 </bug>

 </BugList>

 <BugList for="Steve">

 <bug>

 <id>6714</id>

 <abstract>Xml Data Generator Ignores Attribute Selection</abstract>

 <priority>3</priority>

 </bug>

 <bug>

 <id>2085</id>

 <abstract>Upgrade XML SQL Utility To Latest</abstract>

 <priority>3</priority>

 </bug>

 <bug>

 <id>600</id>

 <abstract>View Criteria Needs "Smarts" About LIKE Queries</abstract>

 <priority>4</priority>

 </bug>

 </BugList>

</BugsByDeveloper>

Since this technique involves scanning and rescanning the nodes in the document, you can

imagine that it is far from efficient. For example, if we increase the number of <bug> elements in

the <open bugs> document to a number like 642, then the above transformation takes about nine

seconds to perform on a Pentium II 450MHz laptop.

Before learning the better performing technique, let's build a quick-and-dirty benchmark

program to perform the transformation programmatically five times and print out the average.

The code for this utility appears in Example 9.13.

Example 9.13. Simple Utility to Measure Stylesheet

Performance

import oracle.xml.parser.v2.*;

import java.io.*;

// Quick-and-Dirty XSLT processor benchmarking test

public class BenchmarkXSLT {

 // Assume 1st arg is name of XML file, 2nd arg is name of XSLT stylesheet

 public static void main(String[] arg) throws Exception {

 // Open FileReaders on the XML source and XSLT stylesheet

 FileReader xmlfile = new FileReader(arg[0]);

 FileReader xslfile = new FileReader(arg[1]);

 // Create an XML Parser to parse both documents

 DOMParser parser = new DOMParser();

 // Parse and get the XML source for the transformation

 parser.parse(xmlfile);

 XMLDocument xmlSource = (XMLDocument) parser.getDocument();

 // Parse and get the XSL stylesheet source for the transformation

 parser.parse(xslfile);

 XMLDocument xslSource = (XMLDocument) parser.getDocument();

 // Construct an XSLStylesheet object from the XSL source

 XSLStylesheet xslTransform = new XSLStylesheet(xslSource, /*baseurl*/null);

 // Create an XSLT processor

 XSLProcessor processor = new XSLProcessor();

 long sumOfFiveTries = 0;

 for (int z = 1; z <= 5; z++) {

 long start = System.currentTimeMillis();

 // Do the transformation, ignoring the DocumentFragment return

 processor.processXSL(xslTransform,xmlSource);

 long time = System.currentTimeMillis() - start;

 System.out.println("Run " + z + " = " + time + " msecs.");

 sumOfFiveTries += time;

 }

 long avg = sumOfFiveTries / 5;

 System.out.println("Five Run average time: " + avg + " msecs.");

 }

}

We'll use this program in a minute to demonstrate the dramatic difference in performance of the

new technique for grouping described in the next section.

9.4.3 Faster Grouping Using XSL Keys

To improve on the performance of grouping, it should be clear that we need to avoid all the

scanning and rescanning of document nodes to determine uniqueness. If we think a moment

about database queries, we'll recall this familiar maxim: "To make sure your query performance

is optimized, avoid full table scans by creating indexes on the frequently accessed columns."

XSLT 1.0 supports a feature called <xsl:key> that allows you to effectively create functional

indexes on any frequently accessed expression in any node-set. The syntax for <xsl:key> is:

<xsl:key name="index-name"

 match="XPathPattern"

 use="RelativeExpressionToIndex"/>

You assign a meaningful name to the index using the name attribute, provide an XPath pattern in

the match attribute to describe the particular node-set you are interested in creating an index on,

and indicate with the use attribute the relative expression you would like indexed.

To create an index named dev-index on the value of <dev> in the node-set identified by the

pattern /open-bugs/bug, use the syntax:

<xsl:key name="dev-index"

 match="/open-bugs/bug"

 use="dev"/>

If you stretch your imagination a little, you'll realize that this is conceptually similar to creating

functional indexes over a database view. Imagine a pseudo-SQL syntax like:

CREATE INDEX dev-index ON NodeSet{/open-bugs/bug}(dev)

to index the dev expression in the /open-bugs/bug node-set.

Once this index is defined—by including the <xsl:key> element as a top-level element in your

stylesheet—you can easily exploit the named dev-index by using the built-in XSLT key()

function. The syntax of the key() function looks like this:

key('index-name', valueToLookup)

This returns the set of all nodes in the indexed node-set having valueToLookup as the value of

their indexed expression. As a concrete example, if our stylesheet has used <xsl:key> to declare

dev-index, then we can very efficiently return a list of all <bug> elements having the value

"Steve" as their <dev> by using the expression key('dev-index','Steve'). Just as creating an

index can make a night-and-day difference with SQL GROUP BY performance, using an

<xsl:key> index in place dramatically speeds up grouping in XSLT.

When you define a database index, you are requesting the Oracle database engine to use a little

extra storage space to keep track of a lookup table that organizes the list of ROWIDs that match

each unique value of the indexed expression for fast retrieval. It is an additional structure whose

only purpose in life is to avoid full table scans for searches involving the indexed column in the

indexed table.

Exactly the same concept applies to an XSLT key-based index. When you define an <xsl:key>

index, you are requesting the XSLT processor to use a little extra memory to manage a lookup

table that organizes the list of internal node IDs that match each unique value of the indexed

expression. It is an additional memory structure whose only purpose in life is to avoid full

document tree scans for searches involving the indexed expression in the indexed node-set.

Figure 9.3 illustrates the in-memory lookup table that an <xsl:key>-based index maintains.

Figure 9.3. Understanding why xsl:key accelerates grouping

In order to select a list of the unique <dev> elements in the /open-bugs/bug node-set, we need

only figure out a way to select the first <bug> element in the index's list of <bug> elements that

match each unique dev value. Once we find the first <bug> element for a given value of <dev>, we

can select its <dev> child to get a <dev> element representing the unique value we seek. The

XPath expression that accomplishes this is:

/open-bugs/bug/dev[generate-id(.) =

 generate-id(key('dev-index',.)[1]/dev)]

The XSLT built-in generate-id() function allows you to access the internal node ID of any node

in the source tree. This is not the value of the id attribute on any element. It is a

machine-generated unique ID that the XSLT processor has assigned to the source node. During

a transformation, the internal node IDs are guaranteed to be unique; however, the values of

these internal IDs are not guaranteed to be the same in different runs of the same stylesheet.

Consequently, they are useful only for determining if two nodes are exactly the same node within

the context of a single transformation.

The previous XPath expression says:

Select the /open-bugs/bug/dev elements having an internal node ID equal to the internal node

ID of the <dev> child element of the first node in the dev index's lookup table of nodes that has

a dev with the current <dev> node's value.

That's a mouthful you'll find easier to understand after looking at the vertical stripe of node IDs

illustrated in Figure 9.3.

Example 9.14 shows an XSLT transformation that performs effectively the same grouping task

done earlier using the "scan preceding elements" strategy, but this example leverages <xsl:key>

to create an index on the dev value of the /open-bugs/bug node-set. Then it exploits that index

to select unique developers' names. While looping over the unique developers' names, it uses the

key again to quickly retrieve the list of bugs assigned to the current developer and copies these

bug elements to the result tree as their developer-specific bug list.

Example 9.14. Grouping Repeating Data Using an xsl:key

Index

<!-- FasterGrouping.xsl: Leverage XSLT key's like database indexes -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output indent="yes"/>

 <!--

 | Use xsl:key to create index on the "dev" value in /open-bugs/bug node-set

 | This is conceptually similar to:

 | CREATE INDEX dev-index ON /open-bugs/bug (dev) in a SQL-like Syntax

 +-->

 <xsl:key name="dev-index" match="/open-bugs/bug" use="dev"/>

 <xsl:template match="/">

 <BugsByDeveloper>

 <!--

 | Select all unique developer names by selecting the

 | first node indexed by the XSLT key for the current value of <dev>

 +-->

 <xsl:for-each select="/open-bugs/bug/dev[generate-id(.)=

 generate-id(key('dev-index',.)[1]/dev)]">

 <!-- Sort by the value of dev, the current node "." -->

 <xsl:sort select="."/>

 <BugList for="{.}">

 <!--

 | Select and copy all bugs for the current developer.

 | Given the dev name, the key('dev-index',.) returns

 | the node-set of all that developer's bugs.

 +-->

 <xsl:for-each select="key('dev-index',.)">

 <!-- Copy the current <bug> node -->

 <xsl:copy>

 <!-- Including children <id>,<abstract>,<priority> -->

 <xsl:copy-of select="id|abstract|priority"/>

 </xsl:copy>

 </xsl:for-each>

 </BugList>

 </xsl:for-each>

 </BugsByDeveloper>

 </xsl:template>

</xsl:stylesheet>

Within the <xsl:for-each> loop that efficiently selects a list of unique <dev> elements, we need

to select the list of <bug> elements assigned to that developer. We could certainly use the

pattern:

/open-bugs/bug[dev=current()]

to select the list of bugs for the current developer; however, we can do better. Remember that the

<xsl:key> index already has a fast-access list of the <bug> elements matching each unique value

of dev. So we can use the key('dev-index',.) expression to select the list of all <bug> elements

matching the value of the current node—the current developer's name—and then copy each of

the <bug> elements found to the result tree with <xsl:copy>.

Using the BenchmarkXSLT program we showed earlier in the expanded "open bugs" document

containing 642 <bug> elements, we find the following:

C:\> java BenchmarkXSLT C:\temp\bugs642.xml SlowerGrouping.xsl

Run 1 = 8312 msecs.

Run 2 = 8011 msecs.

Run 3 = 7401 msecs.

Run 4 = 7030 msecs.

Run 5 = 7220 msecs.

Five Run average time: 7594 msecs.

C:\> java BenchmarkXSLT C:\temp\bugs642.xml FasterGrouping.xsl

Run 1 = 1643 msecs.

Run 2 = 490 msecs.

Run 3 = 491 msecs.

Run 4 = 411 msecs.

Run 5 = 410 msecs.

Five Run average time: 689 msecs.

This shows that the <xsl:key>-based technique is more than ten times faster than the "scan

preceding nodes" technique for grouping . Nice!

Chapter 10. Generating Datagrams with PL/SQL

Developers using the Oracle database, the Oracle Developer toolset, or any of
Oracle's family of packaged applications are likely to be familiar with Oracle's
built-in procedural language, PL/SQL. Conceived as a language for data
processing, PL/SQL features seamless integration with SQL and makes quick
work of virtually any task that involves programmatically querying or modifying
database data. This chapter covers the basic techniques available in PL/SQL for
delivering XML datagrams as part of your Oracle XML applications. Even Java
developers may find PL/SQL comes in handy for some database stored
procedures and triggers, so we start with a quick overview of PL/SQL.

10.1 Programmatically Generating XML Using PL/SQL

In releases of the Oracle database prior to Oracle8i, PL/SQL is the language for
server-side application code. In Oracle8i, where Java and PL/SQL may be used
interchangeably for server-side development, even Java developers may find
PL/SQL easier to use for certain data-intensive tasks.

Here we take a rapid tour of the bare necessities required to understand the
structure of PL/SQL programs and to put the basic PL/SQL language constructs to
work for XML data publishing.

For more detailed information on PL/SQL, see the O'Reilly
Oracle Center online at http://oracle.oreilly.com/ for numerous
authoritative titles on the subject, including Oracle PL/SQL
Programming, second edition, by Steven Feuerstein and Bill
Pribyl.

10.1.1 Organization of PL/SQL Code

PL/SQL programs are organized into code blocks that define the scope in which
declared variables are visible and in which exceptions can be handled. A block of
PL/SQL code is delimited with the BEGIN and END keywords. Any code block may
include a declaration section where locally scoped variables are declared, as well
as an exception section where exceptions are handled. Blocks of PL/SQL code can
be nested to any level.

Example 10.1 shows a simple block of PL/SQL code with both a declaration
section and an exception section.

Example 10.1. Sample PL/SQL Code Block

DECLARE
 symbol VARCHAR2(40);
 price NUMBER;
 lastTrade DATE;
BEGIN
 SELECT ticker_symbol, selling_price, trade_date
 INTO symbol, price, lastTrade
 FROM stock_trades
 WHERE transaction_id = 12345;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 MyErrorHandlingProcedure(12345);
END;

The database server can parse, compile, and execute a block of PL/SQL code on
the fly, typed in by hand, or run from a script file. You can also create stored
procedures and functions in PL/SQL that allow a block of PL/SQL code to easily
accept any number of parameters and to be easily reused by name by other
database programs. For improved modularity, groups of one or more PL/SQL
procedures and functions can be grouped into packages, allowing a clean
separation of the programming interface of the reusable routines from their
implementation.

Your own PL/SQL packages can take advantage of the functionality provided in
the built-in packages Oracle supplies with the database server. The built-in
packages offer easy access to many, many useful database capabilities through
simple APIs. Oracle Built-in Packages, by Steven Feuerstein, Charles Dye, and
John Beresniewicz (O'Reilly & Associates) offers a complete rundown of all of the
built-in packages, their interfaces, and techniques for using them effectively in
your programs.

We'll immediately put a few of these built-in packages to work in the next section
as we see how to generate text output for the Web from database queries.

10.1.2 Formatting Data for Output Using PL/SQL

Because code that runs inside the database is not associated with a particular
terminal or web browser, outputting text-based information of any kind requires
printing the desired text to an intermediate buffer during the execution of your
PL/SQL code. Upon completion of your operation, the "page buffer" can then be
flushed to the terminal or web browser originating the request. Oracle provides a

built-in DBMS_OUTPUT package that you can use to generate text-based output,

including information from database query results, to the console for debugging.
We'll look at this basic text-output technique, then shift our focus to web-based
output.

10.1.2.1 Hello World example in PL/SQL

Example 10.2 illustrates the simplest possible PL/SQL code for outputting text
from the database.

Example 10.2. PL/SQL Hello World

BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello World');
END;

The most common routines in the DBMS_OUTPUT package are the PUT and

PUT_LINE procedures that print a string to the output buffer and print an entire

line (with carriage return) to the output buffer, respectively. Developers routinely

use the routines in the DBMS_OUTPUT package to help debug their PL/SQL

programs, but you can use the same facility to output text of any kind based on
database query results.

10.1.2.2 Processing database query results in PL/SQL

In order to output information from the result set of a SQL query, we need to loop
over the rows in the result. Fortunately, looping over data in PL/SQL is one of the
language's strong points. The FOR...IN...LOOP construct lets us easily iterate the
results of any SQL statement, as shown in Example 10.3.

Example 10.3. PL/SQL FOR Loop

BEGIN
 FOR curQuote IN (SELECT symbol, price, change
 FROM quotes
 WHERE change > 3.00)
 LOOP

 DBMS_OUTPUT.PUT_LINE(' Symbol: '||curQuote.symbol||
 ' Price: '||curQuote.price ||
 ' Change: '||curQuote.change);
 END LOOP;
END;

Notice that we provide curQuote as the name of the cursor loop variable, which

is then referenced inside the loop to access the column values of the current row.

To access a columnName column in the current row, use the

loopVariable.columnName syntax. The cursor loop variable is a record variable

that is dynamically declared to match the structure of the result set of the SQL
query used in the loop.

If you plan to use several queries, your code may be more manageable and
easier to read if you assign meaningful names to your queries using a cursor via
the CURSOR statement. A cursor lets you define the queries you need in the
declaration section of your program, then loop through the results of those
queries as needed in the body, referring to the queries by their cursor name. In
Example 10.4, we see that instead of supplying a SQL query in-line in the

FOR...IN...LOOP, we can use the name of a cursor, like c_BigMovers.

Example 10.4. PL/SQL FOR Loop with a Cursor

DECLARE
 CURSOR c_BigMovers
 IS SELECT symbol, price, change
 FROM quotes
 WHERE change > 3.00;
BEGIN
 FOR curQuote IN c_BigMovers
 LOOP
 DBMS_OUTPUT.PUT_LINE(' Symbol: '||curQuote.symbol||
 ' Price: '||curQuote.price ||
 ' Change: '||curQuote.change);
 END LOOP;
END;

In practice, most interesting queries will depend on some kind of bind variable
value being provided. Examples include a customer ID, a shipping reference code,
a purchase order number, a beginning and ending date range, and so on. Cursors

can optionally define a list of bind variables that can be referenced in the cursor's
SQL statement anywhere bind variables are allowed.

Any time such a cursor is used, specific values can be assigned to the bind
variables by passing them as arguments to the cursor. The declared cursor bind
variables can have associated default values, as shown in Example 10.5, to be
used if the caller does not provide a specific value.

Example 10.5. PL/SQL FOR Loop with a Cursor and Bind

Variables

DECLARE
 CURSOR c_BigMovers (cp_Symbol VARCHAR2 DEFAULT '%')
 IS SELECT symbol, price, change
 FROM quotes
 WHERE change > 3.00
 AND symbol LIKE '%'||cp_Symbol||'%';
BEGIN
 FOR curQuote IN c_BigMovers('ORCL')
 LOOP
 DBMS_OUTPUT.PUT_LINE(' Symbol: '||curQuote.symbol||
 ' Price: '||curQuote.price ||
 ' Change: '||curQuote.change);
 END LOOP;
END;

To complete the basic overview of PL/SQL for outputting database query
information, we show that the PL/SQL block in Example 10.5 can easily be turned
into a stored procedure using the CREATE PROCEDURE command, taking any
number of arguments required by the caller. In Example 10.6, the

ShowBigMovers procedure takes a single VARCHAR2 argument named

theSymbol that is passed internally as the parameter to the c_BigMovers cursor

to appropriately restrict its query results.

Example 10.6. PL/SQL Procedure Taking a Parameter

CREATE PROCEDURE ShowBigMovers(theSymbol VARCHAR2) IS
 CURSOR c_BigMovers (cp_Symbol VARCHAR2 DEFAULT '%')
 IS SELECT symbol, price, change
 FROM quotes

 WHERE change > 3.00
 AND symbol LIKE '%'||cp_Symbol||'%';
BEGIN
 FOR curQuote IN c_BigMovers(theSymbol)
 LOOP
 DBMS_OUTPUT.PUT_LINE(' Symbol: '||curQuote.symbol||
 ' Price: '||curQuote.price ||
 ' Change: '||curQuote.change);
 END LOOP;
END ShowBigMovers;

10.1.3 Formatting Database Data for the Web

The process of generating dynamic web pages based on database query results is
nearly identical to the process used in the previous examples, which made use of

the DBMS_OUTPUT package. The only difference is that instead of using

DBMS_OUTPUT, you use the Oracle Web Agent's HTP package to print the lines of

text you want to return.

10.1.3.1 The Oracle Web Agent PL/SQL packages

Oracle provides a set of PL/SQL packages with the Oracle Internet Application
Server that makes returning dynamic web pages based on database query
results much easier. Originally provided as part of the Oracle Web Agent utility,
these packages have retained that heritage in their names. In fact, most people
refer to them as the OWA packages .

These packages help you print data from database query results along with the
HTML tags needed to format the information. Similar in function to the

DBMS_OUTPUT package, the OWA routines populate a temporary page buffer

whose contents are returned to the web server upon successful completion of
your stored procedure.

Web servers that support serving pages directly from the Oracle database using
the OWA packages are:

• Oracle Internet Application Server 1.0 (via modplsql)

• Oracle WebDB Lightweight Listener
• Oracle Application Server 4.0

• Oracle Web Application Server 3.0
• Oracle Web Server 2.1

modplsql is the name of the Apache web listener module from

Oracle that enables PL/SQL procedures using the OWA
packages to serve database-driven content over the Web. The
Oracle HTTP Server, an integral part of the Oracle Internet
Application Server, which Oracle released in the summer of

2000, is powered by Apache and uses modplsql to deliver the

functionality we discuss in this chapter.

Table 10.1 lists the packages most commonly used by web developers working in
PL/SQL.

Table 10.1. Oracle Web Agent Packages

Package Name Description

HTP Procedures to print HTML markup to the current page buffer.

HTF
Functions to print HTML markup to the current page buffer. They offer the same

functionality as the HTP package, but the function versions are used within string

expressions.

OWA_UTIL
Procedures and functions to work with the information in the HTTP request and

response.

OWA_COOKIE Procedures and functions to read and write HTTP cookies.

OWA_SEC Procedures and functions to work with security information of the requesting user.

We'll use these packages in the next section to format a web page containing
database query results.

10.1.3.2 Returning an HTML page of stock quotes

By creating a PL/SQL procedure that uses the OWA packages to print dynamic
content to the PL/SQL agent's page buffer, we can create web pages that format
the results of database queries. The two main differences between Examples
Example 10.6 and Example 10.7 are:

• We're using HTP.P instead of DBMS_OUTPUT.PUT_LINE to print the

formatted data to the output buffer.
• We're printing extra HTML tags around the data values.

That's it! The net effect is that the dynamic output of HTML tags and query results

goes to the Oracle Web Agent's page buffer instead of to DBMS_OUTPUT 's output

buffer. When invoked through a web server (which we'll see how to do soon) the
page produced by the stored procedure is automatically returned to the user
agent requesting the page; no additional work is necessary.

Example 10.7. Procedure to Return HTML Page of Stock

Quotes

CREATE PROCEDURE QuotesForStocksInPortfolio(id NUMBER) IS
 -- Select all stocks for the user with id passed in
 CURSOR c_QuotesForUserid(cp_Userid NUMBER)
 IS SELECT q.symbol, q.price, q.change
 FROM quotes q, portfolio_stocks ps
 WHERE q.symbol = ps.symbol
 AND ps.owner = cp_Userid;
BEGIN
 HTP.P('<HTML><BODY><TABLE>');
 HTP.P('<TR>');
 HTP.P('<TH>Symbol</TH>');
 HTP.P('<TH>Price</TH>');
 HTP.P('<TH>Change</TH>');
 HTP.P('</TR>');
 FOR curQuote IN c_QuotesForUserid(id)
 LOOP
 HTP.P('<TR>');
 HTP.P('<TD>' || curQuote.symbol || '</TD>');
 HTP.P('<TD>' || curQuote.price || '</TD>');
 HTP.P('<TD>' || curQuote.change || '</TD>');
 HTP.P('</TR>');
 END LOOP;
 HTP.P('</TABLE></BODY></HTML>');
END QuotesForStocksInPortfolio;

Once you've created a procedure to format query results for the Web, you can
test it one of two ways:

• You can execute the procedure from the SQL*Plus command line using the
EXEC command as follows:

EXEC QuotesForStocksInPortfolio(101)

After successful execution, you can see the resulting contents of the web
page buffer by issuing:

EXEC OWA_UTIL.SHOWPAGE

If you have previously issued SET SERVEROUTPUT ON from SQL*Plus, you
will see the contents of the page buffer in your SQL*Plus command console.
After requesting the page buffer, the OWA routines flush the buffer.

• If you are using one of the web servers listed earlier on a computer named

yourserver, and you have properly registered a virtual path location

named yourpath to point to the database schema where you created the

previous PL/SQL procedure, you can request the page through a web
browser (or any program capable of making an HTTP request) using the
URL:

http://yourserver/yourpath/QuotesForStocksInPortfolio?id=101

10.1.4 Formatting Database Data in XML Using PL/SQL

The process of generating dynamic XML documents in PL/SQL based on query
results is identical to the procedure used for generating HTML:

1. Identify the set of data to publish in XML by executing one or more SQL
queries.

2. Loop over the resulting data.
3. Output the data, surrounded by appropriate XML tags.

10.1.4.1 Returning an XML stock quote datagram

When you want to format database query results in XML instead of HTML, the
programming techniques remain the same; only the tags around the data change.
By making slight modifications to Example 10.7, we can generate dynamic XML
datagrams filled with stock quotes in no time.

Studying Example 10.8, you'll notice a few obvious changes:

• We're explicitly setting the MIME type of the returned document to

text/xml using the MIME_HEADER routine in the built-in OWA_UTIL package.

• We're outputting an XML declaration instead of an <HTML> tag as the very

first text in the page.
• The tags used to mark up the data have meaningful element names that

reflect the structure of the query result's information, unlike the fixed set of

HTML tags, like <TD>, which signify visual presentation of the data.

Example 10.8. Procedure to Return XML Stock Quote

Datagram

CREATE PROCEDURE XMLQuotesForStocksInPortfolio(id NUMBER) IS
 -- Select all stocks for the user with id passed in
 CURSOR c_QuotesForUserid(cp_Userid NUMBER)
 IS SELECT q.symbol, q.price, q.change
 FROM quotes q, portfolio_stocks ps
 WHERE q.symbol = ps.symbol
 AND ps.owner = cp_Userid;
BEGIN
 OWA_UTIL.MIME_HEADER('text/xml');
 HTP.P('<?xml version="1.0"?>');
 HTP.P('<Quotes>');
 FOR curQuote IN c_QuotesForUserid(id)
 LOOP
 HTP.P('<Quote>');
 HTP.P('<Symbol>' ||curQuote.symbol||'</Symbol>');
 HTP.P('<Price>' ||curQuote.price ||'</Price>');
 HTP.P('<Change>' ||curQuote.change||'</Change>');
 HTP.P('</Quote>');
 END LOOP;
 HTP.P('</Quotes>');
END XMLQuotesForStocksInPortfolio;

We have to set the MIME type of the result to text/xml so that a requesting user

agent can make an informed decision about how it wants to handle the XML
document we're returning. Depending on the web server you're using, you may

also have to register text/xml as one of the valid MIME types the server

recognizes.

Web developers producing static pages with graphics and text never need to
think about MIME types, since most modern web servers automatically set the
MIME type of requested web resources like .html and .gif files based on their file
extension.

In addition, many developers producing dynamic HTML pages don't have to think
about MIME types, since most web servers default the MIME type of dynamically

generated pages to text/html. With dynamically generated XML, however, we

must take care to set the MIME type manually; otherwise, your data pages will
most likely be handled like HTML when they get to their destination.

If you begin to write lots of PL/SQL stored procedures that format XML, you'll

quickly get tired of printing out the tags manually. Just as the HTP and HTF

packages offer routines for more reliably creating common HTML tags, we can
write a quick helper routine to assist with the formatting of opening and closing
tags for our XML.

Example 10.9 creates a PL/SQL package named xmlhelper by providing its

PACKAGE specification and companion PACKAGE BODY, defining the
implementation of the routines in the package.

Example 10.9. Helper Package to Simplify XML Creation

CREATE OR REPLACE PACKAGE xmlhelper IS
 PROCEDURE prolog;
 PROCEDURE startTag(elementName VARCHAR2);
 PROCEDURE tag(elementName VARCHAR2,
 content VARCHAR2 := NULL);
 PROCEDURE endTag(elementName VARCHAR2);
 END xmlhelper;

CREATE OR REPLACE PACKAGE BODY xmlhelper IS
 PROCEDURE prolog IS
 BEGIN
 OWA_UTIL.MIME_HEADER('text/xml');
 HTP.P('<?xml version="1.0"?>');
 END prolog;

 PROCEDURE startTag(elementName VARCHAR2) IS
 BEGIN
 HTP.P('<'||elementName||'>');

 END startTag;

 PROCEDURE tag(elementName VARCHAR2,
 content VARCHAR2 := NULL) IS
 BEGIN
 HTP.P('<'||elementName||'>'
 ||content ||
 '</'||elementName||'>');
 END tag;

 PROCEDURE endTag(elementName VARCHAR2) IS
 BEGIN
 HTP.P('</'||elementName||'>');
 END endTag;
END xmlhelper;

The prolog routine encapsulates the setting of the text/xml MIME type as well

as the printing of the XML declaration. prolog should always be called before

calling any of the other routines to generate tags for the content of the page. The

startTag and endTag routines do what their names imply, while the tag routines

combine these to print the start tag, some text content, and the end tag in one
command.

If we were to rewrite Example 10.8 using our new xmlhelper package, our code

would look like Example 10.10.

Example 10.10. Improved Procedure Returning XML Stock

Quotes

CREATE PROCEDURE XMLQuotesForStocksInPortfolio(id NUMBER) IS
 -- Select all stocks for the user with id passed in
 CURSOR c_QuotesForUserid(cp_Userid NUMBER)
 IS SELECT q.symbol, q.price, q.change
 FROM quotes q, portfolio_stocks ps
 WHERE q.symbol = ps.symbol
 AND ps.owner = cp_Userid;
BEGIN
 xmlhelper.prolog;
 xmlhelper.startTag('Quotes');

 FOR curQuote IN c_QuotesForUserid(id)
 LOOP
 xmlhelper.startTag('Quote');
 xmlhelper.tag('Symbol', curQuote.symbol);
 xmlhelper.tag('Price', curQuote.price);
 xmlhelper.tag('Change', curQuote.change);
 xmlhelper.endTag('Quote');
 END LOOP;
 xmlhelper.endTag('Quotes');
END XMLQuotesForStocksInPortfolio;

As before with the HTML-producing stored procedure, we can test the output of
our XML-producing stored procedure using:

EXEC XmlQuotesForStocksInPortfolio(101)

followed by:

EXEC OWA_UTIL.SHOWPAGE

from the SQL*Plus command line, or by browsing the URL:

http://yourserver/yourpath/XmlQuotesForStocksInPortfolio?id=101

10.2 Automatic XML Generation with DBXML

We could certainly continue with PL/SQL examples, demonstrating how to write
stored procedures to:

• Format the query results from multiple SQL statements into a single
resulting XML page

• Generically process any SQL query, using the built-in DBMS_SQL package,

generating appropriate XML tags for their column names
• Automatically search for additional information in related tables by

checking the database dictionary views for metadata about foreign key and
primary key constraints

But luckily, we don't have to write this code ourselves, since Oracle provides all
this functionality in the freely downloadable set of XML Utilities for PL/SQL called
PLSXML which includes lots of demos and source code (see
http://technet.oracle.com/tech/xml/info/plsxml/xml4plsql.htm). The
readme.html file in the readme directory in the PLSXML distribution provides
setup instructions.

10.2.1 Letting DBXML Do the Work for You

The heart of the PLSXML suite of utilities is a PL/SQL package called DBXML. The

package offers a key procedure named Query that accepts a SQL query to be

processed and automatically produces the XML output in the OWA page buffer. As

Example 10.11 illustrates, it is practically no work at all to use Dbxml.Query.

Passing any query to it as a string causes the appropriately formatted XML

document representing its query results to be sent to the HTP page buffer.

Example 10.11. Automatically Producing Stock Quote XML

with DBXML

CREATE PROCEDURE StockQuotesDbxmlBasic(id NUMBER) IS
BEGIN
 Dbxml.Query('SELECT q.symbol as Symbol,
 q.price as Price,
 q.change as Change
 FROM quotes q, portfolio_stocks ps
 WHERE q.symbol = ps.symbol
 AND ps.owner = ' || id);
END;

With a single line of PLSQL, any query can be published in XML over the Web! By

default, for a query whose leading table name is TABLENAME in the FROM clause,

Dbxml.Query creates:

• A <TABLENAMELIST> element to wrap the entire set of rows

• A <TABLENAME> element to wrap each row of data

• The database column names as element names for each column's data

The default output from Dbxml.Query for a simple query like Example 10.11

looks like this:

<?xml version="1.0" ?>
<!-- Oracle DBXML Version 1.1.10 Query Results at 20-JUN-2000 22:10:57
-->
<!--
SELECT SYMBOL,PRICE,CHANGE
FROM quotes q, portfolio_stocks ps
WHERE q.symbol = ps.symbol
 AND ps.owner = 101
-->
<QLIST>
 <Q>
 <SYMBOL>GE</SYMBOL>
 <PRICE>103.5</PRICE>
 <CHANGE>.8</CHANGE>
 </Q>
 <Q>
 <SYMBOL>ORCL</SYMBOL>
 <PRICE>27.33</PRICE>
 <CHANGE>3.4</CHANGE>
 </Q>
</QLIST>

By providing values for some of Dbxml.Query 's optional parameters, you can

control certain aspects of its automatic XML generation. A simple example of this
is to substitute the default tags with custom values, as in Example 10.12.

Example 10.12. XML Stock Portfolio Using DBXML

CREATE PROCEDURE StockQuotesDbxml(id NUMBER) IS
BEGIN
 Dbxml.Query('SELECT q.symbol as Symbol,
 q.price as Price,
 q.change as Change
 FROM quotes q, portfolio_stocks ps
 WHERE q.symbol = ps.symbol
 AND ps.owner = ' || id,
 theDocElement => 'PORTFOLIO',
 tableElement => 'QUOTE');
END;

This produces the requested effect on the output:

<?xml version="1.0" ?>

<!-- Oracle DBXML Version 1.1.11 Query Results at 05-JUL-1999 18:58:12
-->
<!--
SELECT SYMBOL,PRICE,CHANGE
 FROM quotes q, portfolio_stocks ps
 WHERE q.symbol = ps.symbol
 AND ps.owner = 101
-->
<PORTFOLIO>
 <QUOTE>
 <SYMBOL>GE</SYMBOL>
 <PRICE>103.5</PRICE>
 <CHANGE>.8</CHANGE>
 </QUOTE>
 <QUOTE>
 <SYMBOL>ORCL</SYMBOL>
 <PRICE>27.33</PRICE>
 <CHANGE>3.4</CHANGE>
 </QUOTE>
</PORTFOLIO>

After looking in the next section at using Dbxml.Query to work with information

for multiple tables in a single request, we'll cover all of the options available to

control Dbxml.Query 's output.

10.2.2 Returning XML Information for Multiple Tables

One of the key values of XML is its ability to elegantly represent trees of related
information. For example, if you imagine an XML document representing a
patient's medical history, you would assume such a document should include
information about the patient, the patient's medical visits with various doctors at
one or more medical facilities, as well as other details. In a relational database
like Oracle, the information for each of these different kinds of business entities
is stored in separate tables, and relationships between the entities are captured
by referential constraints between tables. As an example, Figure 10.1 shows a
simple schema for a Medical Visit Tracking application.

Figure 10.1. Sample schema to track medical visits

Depending on the information needs of the moment, the tables in Figure 10.1
provide the foundation for many different XML documents:

• A <PATIENT> profile, with related information about the patient's <VISIT>s

and which <DOCTOR>s the patient saw at what <FACILITY>s

• A <DOCTOR> profile, with related information about the list of the doctor's

<VISIT>s and <PATIENT>s visited

• A <STATE> profile, with related information about the list of <CITY>s in the

state, and what medical <FACILITY>s exist in each city

The list could clearly go on. The key point is that the tables in a relational
database, together with the referential constraints among them, have the
potential to represent many different XML documents, depending on your desired
point of view.

Dbxml.Query offers a built-in capability to "walk" relationships and include data

tables that are related to the table you provide as the starting point. By providing

Dbxml.Query an initial query based on the PATIENT table, for example, it will

include information about related medical visits from the VISIT table. The
process is recursive, so information from the VISIT table will be supplemented by
related details from the FACILITY table where the visit took place as well as
information from the DOCTOR table about the doctor who saw the patient. You

can provide a parameter upon invoking Dbxml.Query to indicate which tables you

wish to exclude from the set of details to control how far the "walking" goes.

Let's look at a couple of simple examples using this feature of Dbxml.Query and

the tables from Figure 10.1. Example 10.13 shows an example of a patient profile
datagram.

Example 10.13. Multi-Table Patient Profile with DBXML

CREATE PROCEDURE PatientProfile(id NUMBER) IS
BEGIN
 Dbxml.Query('SELECT * FROM patient
 WHERE id = '|| id ,
 includeDetails => 'Y',
 detailExclusionList => 'FACILITY');
END;

Executing the PatientProfile procedure through the Oracle Web Agent

produces the XML document in Example 10.14.

Example 10.14. Nested DBXML Query Results for the Patient

Table

<?xml version="1.0" ?>
<!-- Oracle DBXML Version 1.1.10 Query Results at 20-JUN-2000 22:27:22
-->
<!--
SELECT *
FROM patient
WHERE id = 2099344
-->
<PATIENTLIST>
 <PATIENT>
 <ID>2099344</ID>
 <FIRSTNAME>Laurel</FIRSTNAME>
 <LASTNAME>Birch</LASTNAME>
 <VISITLIST>
 <VISIT>
 <ID>198554</ID>

 <VISITDATE>05-JUL-99</VISITDATE>
 <PATIENTID>2099344</PATIENTID>
 <FACILITYID>Bay03</FACILITYID>
 <DOCTORID>bproto</DOCTORID>
 <DOCTOR>
 <ID>bproto</ID>
 <FIRSTNAME>Bryan</FIRSTNAME>
 <LASTNAME>Proto</LASTNAME>
 <HOMEOFFICE>French44</HOMEOFFICE>
 </DOCTOR>
 </VISIT>
 <VISIT>
 <ID>197111</ID>
 <VISITDATE>24-JUN-99</VISITDATE>
 <PATIENTID>2099344</PATIENTID>
 <FACILITYID>French44</FACILITYID>
 <DOCTORID>bproto</DOCTORID>
 <DOCTOR>
 <ID>bproto</ID>
 <FIRSTNAME>Bryan</FIRSTNAME>
 <LASTNAME>Proto</LASTNAME>
 <HOMEOFFICE>French44</HOMEOFFICE>
 </DOCTOR>
 </VISIT>
 <VISIT>
 <ID>196223</ID>
 <VISITDATE>11-JUN-99</VISITDATE>
 <PATIENTID>2099344</PATIENTID>
 <FACILITYID>Bay03</FACILITYID>
 <DOCTORID>krhymes</DOCTORID>
 <DOCTOR>
 <ID>krhymes</ID>
 <FIRSTNAME>Kathryn</FIRSTNAME>
 <LASTNAME>Rhymes</LASTNAME>
 <HOMEOFFICE>Bay03</HOMEOFFICE>
 </DOCTOR>
 </VISIT>
 </VISITLIST>
 </PATIENT>
</PATIENTLIST>

Passing a 'Y' for the includeDetails parameter tells Dbxml.Query to "walk" to

find related information in the initial table, PATIENT. The detailExclusionList

parameter is a list of table names to exclude from the set of related details. By

setting this value equal to 'FACILITY' we're asking that no additional details

from the related FACILITY table be included in the resulting XML document. This
effectively eliminates not only information from the FACILITY table, but also any
of its details.

Again using the tables from Figure 10.1, the stored procedure in Example 10.15
produces results by starting with the identified row in the STATE table, and by
proceeding to format related information from CITY and FACILITY, but excluding
the details that would have been included by default from COUNTRY, DOCTOR,
and VISIT.

Example 10.15. Multi-Table State Profile with DBXML

CREATE PROCEDURE StateProfile(abbrev VARCHAR2) IS
BEGIN
 Dbxml.Query('SELECT * FROM state
 WHERE name = '''|| abbrev ||'''' ,
 includeDetails => 'Y',
 detailExclusionList => 'COUNTRY,DOCTOR,VISIT');
END;

The results of this stored procedure appear in Example 10.16.

Example 10.16. Nested DBXML Query Results for the State

Table

<?xml version="1.0" ?>
<!-- Oracle DBXML Version 1.1.10 Query Results at 20-JUN-2000 22:29:23
-->
<!--
SELECT *
 FROM state
 WHERE name = 'CA'
-->
<STATELIST>
 <STATE>
 <NAME>CA</NAME>
 <COUNTRYNAME>USA</COUNTRYNAME>
 <CITYLIST>
 <CITY>

 <NAME>San Francisco</NAME>
 <STATENAME>CA</STATENAME>
 <FACILITYLIST>
 <FACILITY>
 <CODE>Bay03</CODE>
 <NAME>Bayside Medical</NAME>
 <ADDRESS>201 Oceanview Rd.</ADDRESS>
 <CITY>San Francisco</CITY>
 </FACILITY>
 <FACILITY>
 <CODE>French44</CODE>
 <NAME>Downtown French Campus</NAME>
 <ADDRESS>11 Battery Street</ADDRESS>
 <CITY>San Francisco</CITY>
 </FACILITY>
 </FACILITYLIST>
 </CITY>
 <CITY>
 <NAME>Oakland</NAME>
 <STATENAME>CA</STATENAME>
 <FACILITYLIST>
 </FACILITYLIST>
 </CITY>
 <CITY>
 <NAME>Los Angeles</NAME>
 <STATENAME>CA</STATENAME>
 <FACILITYLIST>
 </FACILITYLIST>
 </CITY>
 </CITYLIST>
 </STATE>
</STATELIST>

10.2.3 Controlling How the XML Is Generated

Table 10.2 provides the full list of optional parameters to Dbxml.Query that

control how it generates XML documents.

Table 10.2. Dbxml.Query Parameters to Control Output

Parameter Name Description

theQuery The SQL statement to execute. This is the only required parameter.

theDocElement
Name of the element to use for the entire set of rows in the query result.

(Default is 'ROWSET', which produces the <ROWSET> tag we've seen in the

example output.)

tableElement
Name of the element to use for each row of the query result. (Default is

'ROW', which produces the <ROW> tag we've seen in the example output.)

maximumRows
Maximum number of rows to fetch from the query. If combined with an

ORDER BY in the query statement, can be useful for retrieving the top N

rows from a query. (Default is to fetch up to 200 rows.)

includeDetails
If set to 'Y', causes DBXML to attempt its "relationship walking" for

including detail data. (Default is 'N'.)

detailExclusionList

Comma-separated list of table names to exclude from the detail table

traversal. If a table appears in the list, neither it nor any of its details will

appear in the result. Useful for defining the boundaries of what related

information to include from a complex schema with many related tables.

(Default is NULL, which includes all details.)

stylesheet

Provides the relative or absolute URL of the stylesheet to be included by

reference using an <?xml-stylesheet?> processing instruction at the

top of the resulting XML document. (Default is NULL, which omits any

stylesheet reference.)

NoRowsException

If set to 'Y', causes a PL/SQL NO_DATA_FOUND exception to be raised if no

rows are found by the query. (Default is 'N' which raises no exception

when no rows are found, and returns just an XML document with an

empty <ROWSET> document element.)

theMainTable

If the query is a join, or DBXML has trouble identifying the main table by

parsing the query statement, use this to indicate the name of the table to

use for the purpose of traversing to find related details. (Default is

PL/SQL NULL.)

singleRow
If set to 'Y', causes DBXML to fetch only a single row and causes it not to

use the top-level <ROWSET> element as the document element. (Default is

'N'.)

In your code, use PL/SQL's named parameter calling syntax to provide values for

any of the optional Dbxml.Query parameters you want to use. After specifying a

SQL query string as the first argument to Dbxml.Query, the optional named

parameters can appear in any order in your procedure call.

We've seen that writing PL/SQL to loop over database query results and produce
XML datagrams is quite straightforward, and the techniques presented in this
section work in virtually any version of the Oracle database server with any
release of the Oracle Internet Application Server or previous application server

products from Oracle. For many typical cases, Dbxml.Query can completely

automate the rendering of SQL query results as an XML document, optionally
including a set of detail information from related tables.

Chapter 11. Generating Datagrams with Java

Java programmers using Oracle8i have a myriad of options for outputting database information

as XML. This chapter covers all of the available approaches, proceeding in order from the most

manual to the most automatic, with examples every step of the way.

11.1 Generating XML Using Java

In this section, we'll learn the basics of using Java to generate XML datagrams containing

database query results. The two basic programmatic techniques for accessing SQL query results

from Java are the JDBC API and SQLJ.

11.1.1 Generating XML with JDBC

The most basic way in Java to produce XML from database information is to use a JDBC

ResultSet to execute a SQL statement and loop over its results. Developers familiar with

database programming using the JDBC interface will find this technique to be second nature.

Example 11.1 issues a query to retrieve current stock quotes for all the positions in a particular

customer's portfolio. Most interesting queries in an application depend on some kind of context

information being supplied. Example 11.1 shows how to use a bind variable in the SQL statement,

setting the value of the bind variable to the customer id passed in as a command-line argument.

This allows the same SQL statement to be used for retrieving the appropriate stock quotes in any

customer's portfolio.

Example 11.1. Using a JDBC Result Set to Produce XML

import java.sql.*;

class StockQuotesXmlJdbc

{

 public static void main (String arg[]) throws Exception

 {

 // Connect to the database

 Connection cn = Examples.getConnection();

 // Prepare the query statement containing a bind variable "?"

 PreparedStatement ps =

 cn.prepareStatement("SELECT q.symbol, q.price, q.change" +

 " FROM quotes q, portfolio_stocks ps" +

 " WHERE q.symbol = ps.symbol" +

 " AND ps.owner = ?");

 // Use first command line arg as customer id

 int id = Integer.parseInt(arg[0]);

 // Bind value of customer id to first (and only) bind variable

 ps.setInt(1, id);

 // Execute the query

 ResultSet rs = ps.executeQuery();

 // Generate the XML document

 System.out.println("<?xml version=\"1.0\"?>");

 System.out.println("<Quotes>");

 // Loop over the rows in the query result

 while (rs.next ()) {

 System.out.println("<Quote>");

 System.out.println("<Symbol>" + rs.getString(1) + "</Symbol>");

 System.out.println("<Price>" + rs.getString(2) + "</Price>") ;

 System.out.println("<Change>" + rs.getString(3) + "</Change>");

 System.out.println("</Quote>");

 }

 System.out.println("</Quotes>");

 rs.close(); ps.close(); cn.close();

 }

}

For each row of stock quote information retrieved, we generate an appropriate <Quote> element

with nested elements wrapping the stock quote data. All of this data is nested inside the top-level

<Quotes> element. Note from the following example output that Example 11.1 does not go out of

its way to nicely indent the XML tags that structure the data:

<?xml version="1.0"?>

<Quotes>

<Quote>

<Symbol>GE</Symbol>

<Price>103.5</Price>

<Change>0.8</Change>

</Quote>

<Quote>

<Symbol>ORCL</Symbol>

<Price>27.33</Price>

<Change>3.4</Change>

</Quote>

</Quotes>

Of course, an XML parser is happy to read a document without the extra beautifying whitespace,

but having it in there can make your dynamically generated documents easier for humans to

understand. For now, we won't worry about the indenting in our examples. We'll see later in the

chapter that some of the more automated techniques of producing XML from database

information handle the "pretty-printing" for us.

With a technique similar to the one used in Example 11.1, we can create Java code to generate

XML for any query we like. While this technique provides full control over the resulting XML

document, writing code by hand to create the appropriate tags for many different SQL statements

will soon have you looking for a more automated approach. By exploiting the fact that any

ResultSet can provide information about its columns and their datatypes at runtime, we can

certainly improve on this basic example.

Example 11.2 shows the XMLForResultSet class, whose print() method produces a valid XML

document for the query results of any ResultSet. By calling the getResultSetMetaData()

method on the ResultSet passed in, we can reference a companion ResultSetMetaData

interface. We then can use it to determine interesting structural information about that

ResultSet. Specifically, here we make use of:

• getColumnCount() to find the number of columns in the ResultSet's SELECT list

• getColumnName(n) to retrieve the name of the nth column

Example 11.2. Generating XML for Any ResultSet Using

ResultSetMetaData

import java.sql.*;

import java.io.*;

public class XMLForResultSet {

 public static void print(ResultSet rs, String resultElt, String rowElt,

 PrintWriter out) throws SQLException {

 ResultSetMetaData rsMeta = rs.getMetaData();

 int colCount = rsMeta.getColumnCount();

 out.println("<?xml version=\"1.0\"?>");

 // Document element for the result

 out.println("<"+resultElt+">");

 // Loop over the rows in the query result

 while (rs.next ()) {

 // Element for each row

 out.println("<"+rowElt+">");

 // For each column in the result set

 for (int curCol = 1; curCol <= colCount; curCol++) {

 String curName = rsMeta.getColumnName(curCol);

 out.println("<"+curName+">"+rs.getString(curCol)+"</"+curName+">");

 }

 out.println("</"+rowElt+">");

 }

 out.println("</"+resultElt+">");

 }

}

XMLForResultSet.print() lets the caller pass in:

• The ResultSet providing the data

• The document element name to use for the query results

• The element name to generate for each row in the result

• The java.io.PrintWriter to use for output

With these four ingredients in hand, plus the information obtained from ResultSetMetaData, the

job of producing an XML document from the ResultSet's data is a straightforward task of looping

over the rows, and for each row, looping over the columns in the row.

Example 11.3 demonstrates how to use XMLForResultSet in a simple program. We've rewritten

Example 11.1 to call the XMLForResultSet.print() method in place of all the hand-coded XML

tag generation. When XML utilities are driven off runtime metadata, one line of code can be very

effective.

Example 11.3. Using XMLForResultSet.print() to Produce XML

import java.sql.*;

import java.io.*;

public class StockQuotesXml {

 public static void main (String arg[]) throws Exception

 {

 // Use first command line arg as customer id

 int id = Integer.parseInt(arg[0]);

 print(id, System.out);

 }

 public static void print(int customerId, OutputStream out) throws Exception {

 // Connect to the database

 Connection cn = Examples.getConnection();

 // Prepare the query statement (Note column aliases!)

 PreparedStatement ps =

 cn.prepareStatement("SELECT q.symbol as \"Symbol\", " +

 " q.price as \"Price\", " +

 " q.change as \"Change\" " +

 " FROM quotes q, portfolio_stocks ps" +

 " WHERE q.symbol = ps.symbol" +

 " AND ps.owner = ?");

 // Bind value of the customerId parameter

 ps.setInt(1, customerId);

 // Execute the Query

 ResultSet rs = ps.executeQuery();

 PrintWriter pw = new PrintWriter(out);

 // Generate the XML document for this ResultSet

 XMLForResultSet.print(rs,"Quotes","Quote", pw);

 pw.close(); rs.close(); ps.close(); cn.close();

 }

}

Besides removing a lot of code, we've also slightly changed the SQL query statement in this

example. Example 11.3 introduces column aliases for each column in the SELECT list, which

provide precise control over the case of the column names. If we left the query as it was in

Example 11.1, our generic XMLForResultSet routine would have generated an XML document

like this:

<?xml version="1.0"?>

<Quotes>

<Quote>

<SYMBOL>GE</SYMBOL>

<PRICE>103.50</PRICE>

<CHANGE>0.80</CHANGE>

</Quote>

<Quote>

<SYMBOL>ORCL</SYMBOL>

<PRICE>27.33</PRICE>

<CHANGE>3.40</CHANGE>

</Quote>

</Quotes>

The element names for <SYMBOL>, <PRICE>, and <CHANGE> are in uppercase, while the document

element <Quotes> and the <Quote> row elements are in mixed case. By default, tables created in

Oracle have uppercase column names, and column names in SQL statements are treated

case-insensitively. By default, column aliases are treated case-insensitively and returned in

uppercase as well, so we must use double quotes around the column alias if we want a

mixed-case name. The query statement in Example 11.3 adopts this technique to create column

aliases of Symbol, Price, and Change for the selected data. This causes the output to look like this

instead:

<?xml version="1.0"?>

<Quotes>

<Quote>

<Symbol>GE</Symbol>

<Price>103.5</Price>

<Change>0.8</Change>

</Quote>

<Quote>

<Symbol>ORCL</Symbol>

<Price>27.33</Price>

<Change>3.4</Change>

</Quote>

</Quotes>

11.1.2 Generating XML with SQLJ

Real-world database applications in Java typically require a significant amount of SQL to SELECT,

INSERT, UPDATE, and DELETE data to meet business processing needs. Even the few examples

above, which only perform SELECT statements to retrieve data, illustrate that working with SQL

in Java using JDBC can be quite tedious. Java developers using JDBC SQL in their code have to:

• Split long SQL statements into many line-sized chunks, making the SQL hard to read and

even harder to edit

• Invoke several APIs, typically, to accomplish each SQL operation

• Set each bind variable value by position through code, making SQL statements with many

bind variables hard to understand and more prone to editing errors

• Wait until runtime to discover SQL syntax errors

• Retrieve column values by passing the string name or position of the column and calling an

appropriate get method, according to the datatype of the column value

While JDBC is really the only game in town for working with dynamic SQL in Java programs, for

cases when SQL operations are known in advance, SQLJ offers an industry-standard syntax that

enables developers to work with static SQL inside Java much more productively. SQLJ allows Java

developers to include #sql directives in their Java source code to seamlessly embed, execute,

and process the results of any SQL operation. A SQLJ source file is precompiled using the Oracle

SQLJ command-line compiler. The compiler translates the preprocessor directives into Java

source code, which invokes the JDBC APIs corresponding to the indicated operations. This gives

the developer using SQL and Java a number of valuable benefits:

• SQL statements can be embedded verbatim in Java source code, spanning any number of

lines

• SQL SELECT, INSERT, UPDATE, DELETE, and EXEC (stored procedure) operations are

carried out without developer-written JDBC API calls

• SQL statements can reference Java variables by name as bind variables

• SQL syntax can be validated during precompilation for early error detection instead of

waiting until runtime

• Type-safe iterators can be defined to access query results more conveniently than using

native JDBC

As an added benefit, developers using the Oracle JDeveloper Integrated Development

Environment (IDE) can work with SQLJ files as easily as with Java source code. The IDE handles

invoking the Oracle SQL precompiler when necessary.

Example 11.4 illustrates the stock quotes example implemented using SQLJ. At the top, we use

the #sql iterator directive to define a named, type-safe iterator class for iterating the results of

the query. The line:

#sql iterator QuotesIter(String symbol, float price, float change);

declares an iterator class named QuotesIter, establishing the names and expected Java types of

each column in a row of query results. The iterator column names must match the names of the

columns in the SQL statement that you assign to the iterator later in the program. Note that

neither the case of the column names nor their position needs to match exactly.

Example 11.4. Generating XML Using SQLJ

import java.sql.*;

import sqlj.runtime.ref.DefaultContext;

#sql iterator QuotesIter(String symbol, float price, float change);

class StockQuotesSqlj

{

 public static void main (String arg[]) throws Exception

 {

 QuotesIter quotes;

 // Connect to the Database

 DefaultContext.setDefaultContext(new

DefaultContext(Examples.getConnection()));

 // Use first command line arg as customer id

 int id = Integer.parseInt(arg[0]);

 #sql quotes = { SELECT q.symbol as "Symbol",

 q.price as "Price",

 q.change as "Change"

 FROM quotes q, portfolio_stocks ps

 WHERE q.symbol = ps.symbol

 AND ps.owner = :id };

 System.out.println("<?xml version=\"1.0\"?>");

 System.out.println("<Quotes>");

 while (quotes.next()) {

 System.out.println("<Symbol>" + quotes.symbol() + "</Symbol>");

 System.out.println("<Price>" + quotes.price() + "</Price>") ;

 System.out.println("<Change>" + quotes.change() + "</Change>");

 }

 System.out.println("</Quotes>");

 quotes.close();

 }

}

SQLJ also simplifies sharing of the same database connection across many SQL operations in a

program by hiding the details in the SQLJ default connection context. All the programmer has to

do is construct a new DefaultContext instance, passing in the connection, and set it as the

default. Then all subsequent #sql statements share the same connection without having to

complicate their syntax.

Once the iterator is defined, we declare the Java program variable quotes to be of type

QuotesIter and then use the following syntax:

#sql quotes = { SQL Statement };

to assign the query to the iterator. Notice that the SQL statement appears intact in the code,

without any distracting string concatenation, and that the Java program variable id can be

directly referenced in the SQL statement using :id , prefixing the name of the variable with a

colon to indicate its use as a bind variable. To loop over and reference the resulting data, we use

the iterator's default next method and type-safe column-accessor methods. For example, the call

to quotes.price() returns the price column of the current row as a float as defined in the

iterator declaration.

Since SQLJ interoperates easily with JDBC, you can mix and match the two in the same program.

A JDBC ResultSet can be cast to a SQLJ iterator, and any SQLJ iterator exposes its underlying

ResultSet through the iterator's getResultSet method. Example 11.5 shows how the

SQLJ-based stock quotes example can make use of our XMLForResultSet class to avoid

handwritten XML tag generation code.

Example 11.5. Generating XML Using SQLJ with

XMLForResultSet

import java.sql.*;

import java.io.*;

import sqlj.runtime.ref.DefaultContext;

#sql iterator QuotesIter2(String symbol, float price, float change);

class StockQuotesSqljRsetMeta

{

 public static void main (String arg[]) throws Exception

 {

 QuotesIter2 quotes;

 // Connect to the Database

 DefaultContext.setDefaultContext(new

DefaultContext(Examples.getConnection()));

 // Use first command line arg as customer id

 int id = Integer.parseInt(arg[0]);

 #sql quotes = { SELECT q.symbol as "Symbol",

 q.price as "Price",

 q.change as "Change"

 FROM quotes q, portfolio_stocks ps

 WHERE q.symbol = ps.symbol

 AND ps.owner = :id };

 PrintWriter out = new PrintWriter(System.out);

 XMLForResultSet.print(quotes.getResultSet(),"Quotes","Quote",out);

 out.close();

 quotes.close();

 }

}

11.2 Serving XML Datagrams over the Web

The examples we've encountered so far in this chapter show that using Java to produce XML for

database query results is straightforward. However, all of the examples we've seen so far print

the XML datagram to the standard "console" output stream System.out. While this makes sense

for use on the command line and in scripts, it is one step short of what we need for real Oracle

XML applications. For these to be effective, we need to serve application information in XML over

the Web.

11.2.1 Serving Datagrams Using Java Servlets

Leveraging the work we've already done in the StockQuotesXml class from Example 11.3, we can

produce dynamic stock quote datagrams for web delivery by extending HttpServlet in a class

called StockQuotesXmlServlet and performing these simple steps inside its overridden doGet

method:

• Set the MIME type of the servlet's response to text/xml

• Retrieve the customer id from a URL parameter instead of a command-line argument

• Call StockQuotesXml.print() to produce the XML for the stocks in the customer's

portfolio

• Pass the output stream to the Servlet's HttpServletResponse object instead of
System.out

The StockQuotesXmlServlet class in Example 11.6 shows the code that gets the job done.

To run a Java servlet from JDeveloper 3.1, just select Run from
the right mouse button menu in the project navigator.
JDeveloper will launch a single-user web server on port 7070
and start your default browser to exercise the running servlet
code. You can also debug servlet code by clicking on the Debug
menu option instead of Run.

Example 11.6. Returning XML Stock Quotes Using a Servlet

import javax.servlet.*;

import javax.servlet.http.*;

public class StockQuotesXmlServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, java.io.IOException {

 // Set MIME type of Response to indicate XML

 response.setContentType("text/xml");

 // Use HTTP request parameter 'id' as customer id

 int id = Integer.parseInt(request.getParameter("id"));

 try {

 // Use StockQuotesXml.print to generate the XML Stock Quotes,

 // passing the Servlet's HTTP Response OutputStream.

 StockQuotesXml.print(id, response.getOutputStream());

 }

 catch (Exception e) {

 throw new ServletException("Error processing query");

 }

 }

}

To generalize this servlet to handle requests for XML datagrams that may contain the results of

any SQL statement, we start by creating another helper class called XMLForQuery. This class

encapsulates the XML generation for a SQL statement provided as a string. Example 11.7 shows

that we just need to:

1. Create a ResultSet from the SQL statement passed in

2. Pass the ResultSet to the XMLForResultSet.print() method

3. Handle any SQL errors that might come back from the query

Example 11.7. Generating XML for Any SQL Query

import java.sql.*;

import java.io.*;

public class XMLForQuery {

 public static void print(String sql, String resultElt, String rowElt,

 PrintWriter out) throws SQLException {

 Connection cn = null;

 ResultSet rs = null;

 try {

 cn = Examples.getConnection();

 // Execute the sql statement to produce a ResultSet

 rs = cn.createStatement().executeQuery(sql);

 XMLForResultSet.print(rs,resultElt,rowElt,out);

 }

 catch (Exception e) {

 out.println("<?xml version=\"1.0\"?>"+

 "<ERROR>"+

 "<SQL>" + sql + "</SQL>"+

 "<MSG>" + e.getMessage() + "</MSG>"+

 "</ERROR>");

 }

 finally {

 // Clean up

 try {rs.close();cn.close();}

 catch (Exception e2) { /* Ignore */ }

 }

 }

}

We include the error handling block to make sure that an XML datagram is printed to the output

even if the SQL statement passed in contains syntax errors or attempts to access tables that do

not exist. As a useful extra touch, we generate an "errorgram" with the statement attempted and

the SQL error message as XML element content.

By calling the XMLForQuery.print() method in Example 11.7, instead of

StockQuotesXml.print() as we did in Example 11.6, we can quickly create a

XMLForQueryServlet, as shown in Example 11.8, which can return the results of any SQL

statement passed as a parameter in an HTTP request. In this example, we retrieve the SQL

statement from the HTTP request parameter sql. This parameter can be specified as a parameter

in a URL or as the value of an HTML <FORM> field.

Example 11.8. Returning XML for Any SQL Query Using a

Servlet

import javax.servlet.*;

import javax.servlet.http.*;

public class XmlForQueryServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, java.io.IOException {

 // Set MIME type of Response to indicate XML

 response.setContentType("text/xml");

 // Use value of URL parameter 'sql' as SQL statement to execute

 String query = request.getParameter("sql");

 try {

 // Use XMLForQuery.print to generate the XML Results,

 // passing the Servlet's HTTP Response PrintWriter.

 // Use "ROWSET" and "ROW" as top-level and per-row tags, respectively

 XMLForQuery.print(query, "ROWSET", "ROW", response.getWriter());

 }

 catch (Exception e) {

 throw new ServletException("Error processing query");

 }

 }

}

Since we are focusing on getting data out of the database in XML in this chapter, the examples

here have only needed to override the HttpServlet's doGet method. We have also consciously

kept things simple by opening and closing the connection to the database with each request.

It is important to note, however, that servlets typically run inside multi-threaded web servers.

These servers can handle multiple service requests simultaneously, so the onus of synchronizing

access to any shared resources, such as database connections, network connections, or the

servlet's own class and instance variables falls squarely on the servlet developer.

11.2.2 Serving Datagrams with JavaServer Pages

It's easy to use JavaServer Pages (JSPs) to produce dynamic XML documents. Just provide a

skeleton XML page and use JavaBeans™ or Java scriptlets to fill in the dynamic content. Example

11.9 shows dynamic information plugged into an XML-based JSP page.

Example 11.9. JSP Page Using a Scriptlet Expression and a

JavaBean

<?xml version="1.0"?>

<jsp:useBean id="ad" class="AdvertisementBean"/>

<timegram>

 <time><%= new Date() %></time>

 <sponsor>

 <name><jsp:getProperty name="ad" property="Sponsor"/></name>

 <url><jsp:getProperty name="ad" property="AdvertURL"/></url>

 </sponsor>

</timegram>

We see in Figure 11.1 that the <%= new Date() %> scriptlet expression has been evaluated and

the <jsp:getProperty> tags have been replaced with the AdvertisementBean's property values

plugged in as the content of the XML tags in a <timegram> document. Using a browser like

Internet Explorer 5.0 to test the CurrentDateXML.jsp page shows the default rendering of the XML

<timegram> information, as seen in Figure 11.1.

Figure 11.1. Viewing CurrentDateXML.jsp in Internet Explorer

5.0

Using CurrentDateXML.jsp, we can provide a useful service to any program on the network that

wants to know what time it is on our server. Any program can request a <timegram> using the

URL http://xmlapps/CurrentDateXML.jsp and process its contents to discover the time and the

sponsor's name by using XPath to search for the timegram/time and timegram/sponsor/name

elements in the <timegram> it receives. Example 11.10 illustrates a simple Java client program

that requests and processes a <timegram>.

Example 11.10. Retrieving a Timegram from

CurrentDateXML.jsp

import oracle.xml.parser.v2.*;

import org.w3c.dom.NodeList;

public class TestTimegram{

 static XMLDocument theTimegram = null;

 public static void main(String arg[]) throws Exception {

 // Construct a parser

 DOMParser dp = new DOMParser();

 // Parse the XML document returned by CurrentDateXML.jsp

 dp.parse("http://xmlapps/ch11/CurrentDateXML.jsp");

 // Get the XML Document

 theTimegram = dp.getDocument();

 // Use XPath expression /timegram/time to fetch the time

 System.out.println("Current time: " +

 theTimegram.valueOf("/timegram/time"));

 // Use XPath expression /timegram/sponsor/name to fetch the time

 System.out.println(" Courtesy of: " +

 theTimegram.valueOf("/timegram/sponsor/name"));

 }

}

TestTimegram uses the Oracle XML Parser's DOMParser to parse the <timegram> document

returned by the JSP page, and calls the the valueOf method on the root node to search the

<timegram> in memory for the value of the desired elements. Notice that the searching is

performed using XPath expressions that describe the elements we're looking for:

/timegram/time and /timegram/sponsor/name. Obviously, serving up requests for the current

time is probably not a winning business plan for the next great Silicon Valley startup, but this

simple example demonstrates the same principles that would be used to serve and request any

dynamic XML document built with a JSP page.

Serving database information in XML directly from a JSP requires only that we have a JavaBean

handy to turn a SQL statement into a ResultSet over which we can then iterate in the page. With

minimal work, we can wrap the JDBC ResultSet in a JavaBean to be reused anywhere in our JSPs

where dynamic content needs to be based on the results of a SQL query. The QueryBean class in

Example 11.11 shows how we would do this.

Example 11.11. JavaBean Wrapping a JDBC ResultSet

import java.sql.*;

public class QueryBean {

 Connection cn = null;

 ResultSet rs = null;

 boolean ownConnection = true;

 public void setConnection(Connection conn) {

 cn = conn; ownConnection = false;

 }

 public void setQuery(String sql) {

 try {

 if (cn == null) cn = Examples.getConnection();

 rs = cn.createStatement().executeQuery(sql);

 }

 catch (SQLException s) { /* Ignore */ }

 }

 public boolean next() {

 try { return (rs != null) ? rs.next() : false; }

 catch (SQLException s) { return false; }

 }

 public String column(int colNumber) {

 try { return (rs != null) ? rs.getString(colNumber) : ""; }

 catch (SQLException s) { return ""; };

 }

 public void close() {

 try { rs.close(); if (ownConnection) cn.close();}

 catch (Exception e) { /* Ignore */ }

 }

}

Our QueryBean automatically acquires itself a database connection without extra work on the JSP

developer's part, making it easy to use QueryBean by itself on a JSP. Example 11.12 shows

QueryBean used in a JSP page to render the results of our familiar stock portfolio query with the

<jsp:useBean> tag.

Example 11.12. ShowQuotes.jsp Returning XML Using a

QueryBean

<?xml version="1.0"?>

<Quotes>

<jsp:useBean id="qb" class="QueryBean"/>

<%@ page contentType="text/xml" %>

<% qb.setQuery("SELECT q.symbol, q.price, q.change"+

 " FROM quotes q, portfolio_stocks ps"+

 " WHERE q.symbol = ps.symbol "+

 " AND ps.owner = " + request.getParameter("id")); %>

<% while (qb.next ()) { %>

 <Quote>

 <Symbol><%= qb.column(1) %></Symbol>

 <Price><%= qb.column(2) %></Price>

 <Change><%= qb.column(3) %></Change>

 </Quote>

<% } qb.close(); %>

</Quotes>

Once the <jsp:useBean> tag has been introduced, any subsequent part of the page can reference

the instance of the bean in a scriptlet using the name you provide in the <jsp:useBean>'s id

attribute. We take advantage of this fact in the three scriptlets this page uses.

The first scriptlet sets the QueryBean's SQL statement, retrieving the desired customer ID from

the URL parameter named id:

<% qb.setQuery("SELECT q.symbol, q.price, q.change"+

 " FROM quotes q, portfolio_stocks ps"+

 " WHERE q.symbol = ps.symbol "+

 " AND ps.owner = " + request.getParameter("id")); %>

This next scriptlet opens the while loop around the group of tags we want to repeat for each row

in the QueryBean's results:

<% while (qb.next ()) { %>

Finally, this scriptlet closes the while loop (note the matching, closing curly brace) and calls

close on the QueryBean to close the query:

<% } qb.close(); %>

Inside the while loop, we use scriptlet expressions like <%= qb.column(n) %> to insert the value

of the nth column in the query result. The net effect is that for each row returned in the query, a

<Quote> element and its children appear in the resulting document. Figure 11.2 shows the results

of requesting the ShowQuotes.jsp page for customer number 101.

Figure 11.2. Viewing XML results of ShowQuotes.jsp in IE5

Since a more complicated example may require pulling data from many different SQL queries on

a single JSP page, let's introduce a JavaBean that wraps a JDBC Connection, and show how we

can combine one ConnectionBean and several QueryBeans on the same page. This allows

multiple QueryBeans to share the same database connection. The task of wrapping the

Connection is even simpler than wrapping the ResultSet, requiring just one constructor and one

getConnection() method, as shown in Example 11.13.

Example 11.13. Simple JavaBean Wrapping a JDBC

Connection

import java.sql.*;

public class ConnectionBean {

 Connection cn = null;

 public ConnectionBean() {

 try { cn = Examples.getConnection(); }

 catch (SQLException s) { /* Ignore */ }

 }

 public Connection getConnection() { return cn; }

 public void close() {

 try {cn.close();}

 catch (Exception e) { /* Ignore */ }

 }

}

Using exactly the same techniques as for ShowQuery.jsp, we can build the ShowPortfolio.jsp

page shown in Example 11.14, which:

1. Uses ConnectionBean with <jsp:useBean> to establish a connection object named conn

for the page

2. Uses two instances of QueryBean, named client and quotes

3. Calls setConnection() and setQuery() on both client and quotes to set their

connection and query respectively, using a scriptlet

4. Calls close on conn to close the connection

Example 11.14. Multiple QueryBeans in a Page Returning XML

<?xml version="1.0"?>

<Portfolio>

 <Date><%= new Date() %></Date>

<jsp:useBean id="dbConn" class="ConnectionBean"/>

<jsp:useBean id="client" class="QueryBean"/>

<jsp:useBean id="quotes" class="QueryBean"/>

<% client.setConnection(dbConn.getConnection());

 quotes.setConnection(dbConn.getConnection());

 client.setQuery("SELECT givenname, surname"+

 " FROM client_table"+

 " WHERE id = " + request.getParameter("id"));

 quotes.setQuery("SELECT q.symbol, q.price, q.change"+

 " FROM quotes q, portfolio_stocks ps"+

 " WHERE q.symbol = ps.symbol "+

 " AND ps.owner = " + request.getParameter("id")); %>

<% while (client.next()) { %>

 <Customer>

 <Name>

 <First><%= client.column(1) %></First>

 <Last><%= client.column(2) %></Last>

 </Name>

 </Customer>

<% } client.close(); %>

<Quotes>

<% while (quotes.next()) { %>

 <Quote>

 <Symbol><%= quotes.column(1) %></Symbol>

 <Price><%= quotes.column(2) %></Price>

 <Change><%= quotes.column(3) %></Change>

 </Quote>

<% } quotes.close(); dbConn.close(); %>

</Quotes>

</Portfolio>

The XML results of browsing this page are shown in Figure 11.3.

Figure 11.3. Viewing XML results of ShowPortfolio.jsp in IE5

Although we have not explicitly said it so far, it is worth mentioning that the JavaServer Pages

facility builds on the foundation of Java servlets, cleverly hiding the complexities of servlets with

a simplifying layer on top. JSP's simpler packaging makes a large set of common dynamic pages

easier to build, allowing a wider audience of developers to benefit. Here's a brief description of

what's going on under the covers.

The first time a JavaServer page is accessed by your web server, you'll notice that it takes a little

longer than subsequent requests do. That's because your web server's JSP Runtime environment

first translates the page into the equivalent source code for a Java servlet that implements the

page. Once translated, the servlet code for the JSP page is compiled, and finally executed to

respond to the request. All subsequent requests are immediately executed by the compiled

version of the page, so they do not suffer from the delay of the initial request. If you edit the JSP

source code and save the changes, the JSP Runtime notices the change in time stamp on the JSP

source code, and proceeds automatically to retranslate and recompile the page.

11.3 Automatic XML from SQL Queries

In Example 11.2, we wrote a class that produces the XML output of any SQL query using the JDBC

ResultSetMetaData class. This example takes a straightforward approach, producing the XML

representation for all of the rows of a ResultSet with columns of type NUMBER, DATE, and

VARCHAR2. In practice, developers need a more robust solution that supports the full range of

Oracle8i object-relational SQL features, including the ability to query user-defined datatypes.

They need better control over the number of rows retrieved and the format of the output tags.

Extending our XMLForResultSet class to offer generic support for these additional requirements

would be a non-trivial task. Luckily, we don't have to build this code ourselves since Oracle

provides the XML SQL Utility for Java, which includes the OracleXMLQuery component that

automates the entire job.

11.3.1 Using OracleXMLQuery to Do the Work for You

OracleXMLQuery is a utility class that automates the task of producing XML from SQL query

results. It gracefully handles all SQL queries, returning XML for result sets containing both scalar

datatypes and user-defined object types in their row values. It offers numerous handy options to

control the XML output and is equally adept at producing query results as XML text for web

delivery, and in-memory Document Object Model (DOM) tree structures.

To exploit the facilities of the XML SQL Utility, you can use the OracleXML command-line program

or you can use the OracleXMLQuery class in your own custom programs. To use the

command-line program, ensure that the Java archive files for the XML SQL Utility, the Oracle XML

Parser version 2, and the Oracle JDBC driver are in your CLASSPATH, and invoke the command:

java OracleXML

to see the command-line options. The first argument can either be the keyword getXML to

exercise the functionality of retrieving XML from SQL, or putXML to store an XML file into a table

or view. We'll see more of the OracleXML utility in Chapter 12.

To use the XML SQL Utility's functionality in your own programs, you simply:

1. Create an instance of OracleXMLQuery, passing a Connection and either a SQL query

String or an existing ResultSet

2. Call set methods to override any default XML-generation settings

3. Retrieve the XML results by calling either of the following methods:

o getXMLString() to read the query results as an XML document in a string

o getXMLDOM() to return the query results as a DOM Document

When using getXMLString() you can optionally include a document type definition reflecting the

structure of the query results by calling getXMLString(true) instead of just getXMLString() as

shown in Example 11.15. This shows a simple JavaServer Page using OracleXMLQuery to produce

XML datagrams for any SQL statement passed in, optionally including a dynamically generated

DTD.

Example 11.15. ShowQuery.jsp Returns XML for Any Query

<%@ page import="java.sql.*, Examples, oracle.xml.sql.query.*"

contentType="text/xml"%>

<%

 // Get a connection

 Connection cn = Examples.getConnection();

 // SQL Statement from URL Parameters

 String sql = request.getParameter("sql");

 // Create SQL-to-XML Handler

 OracleXMLQuery q = new OracleXMLQuery(cn, sql);

 // Generate XML results and write to output

 out.println(q.getXMLString());

 cn.close();

%>

Requesting the URL:

http://xmlapps/ShowQuery.jsp?dtd=y&sql=select+*+from+doctor+where+id='bblatt'

produces the results:

<?xml version="1.0"?>

<!DOCTYPE ROWSET [

<!ELEMENT ROWSET (ROW)*>

<!ELEMENT ROW (ID, FIRSTNAME?, LASTNAME?, HOMEOFFICE?)>

<!ATTLIST ROW num CDATA #REQUIRED>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT FIRSTNAME (#PCDATA)>

<!ELEMENT LASTNAME (#PCDATA)>

<!ELEMENT HOMEOFFICE (#PCDATA)>

]>

<ROWSET>

 <ROW num="1">

 <ID>bblatt</ID>

 <FIRSTNAME>Bruce</FIRSTNAME>

 <LASTNAME>Blatt</LASTNAME>

 <HOMEOFFICE>Bay03</HOMEOFFICE>

 </ROW>

</ROWSET>

By setting a few of OracleXMLQuery 's many XML-generation options, it is easy to limit the

number of rows returned and to change the default element names used for the document

element or for each row in the query result. For example, given an AIRPORT table, we can write

a JSP page to return an <AirportList> of as many as four <Airport>s matching a name search

string passed as a parameter in this URL. Example 11.16 shows the code for the page.

Example 11.16. AirportList.jsp List of Matching Airports

<%@page contentType="text/xml"

 import="Examples, java.sql.*, oracle.xml.sql.query.*"

%><%

 Connection cn = Examples.getConnection();

 // Retrieve airport code to be found from the "find" URL parameter

 String code = request.getParameter("find");

 // SQL statement to search table of all known airports

 // Uses an Oracle8i functional index on UPPER(Description)

 String qry = "SELECT tla as \"Code\", description as \"Name\""+

 " FROM airport "+

 " WHERE tla = UPPER('" + code + "')"+

 " OR UPPER(description) LIKE UPPER('%"+ code + "%')"+

 " ORDER BY UPPER(description)";

 // Create an OracleXMLQuery object

 OracleXMLQuery oxq = new OracleXMLQuery(cn, qry);

 // Retrieve only the first four matches

 oxq.setMaxRows(4);

 // Use <AirportList> as document element for Rowset

 oxq.setRowsetTag("AirportList");

 // Use <Airport> for each row in the result

 oxq.setRowTag("Airport");

 // Get the XML results as a String and write to the output stream

 out.println(oxq.getXMLString());

 cn.close();

%>

Here are a few key things to note in the example:

• setMaxRows(4) limits the number of rows returned to 4.

• setRowsetTag("AirportList") overrides the default <ROWSET> document element

name.

• setRowTag("Airport") overrides the default <ROW> element name for each row.

It's also interesting to observe that the query's WHERE clause searches for a match against the

three-letter abbreviation (tla) of the airport as well as against its description in a

case-insensitive fashion using the UPPER function. Testing this page in Internet Explorer 5.0 to

search for airports matching sfo produces the result shown in Figure 11.4.

Figure 11.4. List of airports matching sfo

The document returned includes both an exact match on the three-letter code SFO as well as three

fuzzy matches on airports whose name includes the three consecutive letters s, f, and o. In many

cases, when requesting an XML datagram like our <AirportList> above, it is desirable to first

check for an exact match and return that immediately if found. If no exact match exists, then

instead of returning an empty document, it can be more helpful to the requestor to receive a

document which indicates that the exact match was not found and provides alternative

information to assist in refining the original request

The XML document returned by such a web request can be thought of as an XML validationgram,

since it validates whether or not a particular thing exists in the database, and it can provide useful

information about that thing in the return document. Example 11.17 illustrates a JSP example of

this technique. ValidateAirport.jsp uses an initial SQL query that attempts an exact match on the

airport code provided in the find URL parameter. It calls the setRaiseNoRowsException()

method to request that OracleXMLQuery raise a runtime exception in case the query returns no

rows—that is, if no exact match exists on the airport code. When handling this exception, the

catch block attempts a different query, checking for any potential matches on the description.

Example 11.17. ValidateAirport.jsp Produces an Airport

Validationgram

<%@page import="java.sql.*, Examples, oracle.xml.sql.query.*" %>

<%

 Connection cn = Examples.getConnection();

 String code = request.getParameter("find");

 // First try an exact match on the airport 3-letter code

 String qry = "SELECT tla as \"Code\", description as \"Name\""+

 " FROM airport "+

 " WHERE tla = UPPER('" + code + "')";

 OracleXMLQuery oxq = new OracleXMLQuery(cn, qry);

 // Signal a catchable exception when no data found

 oxq.setRaiseNoRowsException(true);

 // Setting RowsetTag to "" omits it from the result.

 oxq.setRowsetTag("");

 oxq.setRowTag("Airport");

 try {

 out.println(oxq.getXMLString());

 }

 catch (oracle.xml.sql.OracleXMLSQLNoRowsException e) {

 // If no rows found, try a "fuzzy" match on the airport description

 qry = "SELECT tla as \"Code\", description as \"Name\""+

 " FROM airport "+

 " WHERE UPPER(description) LIKE UPPER('%"+ code + "%')"+

 " ORDER BY UPPER(description)";

 OracleXMLQuery oxq2 = new OracleXMLQuery(cn,qry);

 oxq2.setRowsetTag("Error");

 oxq2.setRowTag("Airport");

 out.println(oxq2.getXMLString());

 }

 cn.close();

%>

An attempt to retrieve information about the airport sfo produces an exact match, returning an

XML document containing a single <Airport> element, as shown in Figure 11.5.

Figure 11.5. Validationgram indicating success from

ValidateAirport.jsp

For the exact match case, we know there will be exactly one row matching, so we opt to use the

<Airport> as the document element. By calling setRowsetTag() with an empty string, we

indicate that we don't want a rowset-level tag to be generated. This only works when there is

exactly one row in the query result. If you try to turn off the rowset-level tag when two or more

rows are returned, an error will result, since the resulting document would not be valid XML.

An attempt to retrieve information about the airport turin fails the initial query attempt for the

exact match, but succeeds in returning a list of two airports whose description matches the value

of the find parameter passed in: Maturin, Venezuela, and Turin, Italy, as shown in Figure 11.6.

Figure 11.6. Validationgram indicating failure from

ValidateAirport.jsp

The second instance of OracleXMLQuery performs a case-insensitive fuzzy match using the LIKE

operator, and uses setRowsetTag() to force the document element to be <Error>, sending a

signal back to the requester that the search for an exact match failed. The requesting client

application, sensing the presence of an <Error> element after parsing the returned XML

validationgram, could choose to search the in-memory document for all <Airport> elements to

present a list of possible airports to the user.

11.3.2 Controlling How the XML Is Generated

In the examples shown earlier in this chapter, we've used a few of the methods on

OracleXMLQuery to control how it outputs XML. Table 11.1 shows the comprehensive set of

methods and describes the effect each one has on the resulting XML.

Table 11.1. OracleXMLQuery Methods to Control XML Output

Method Name Description

setRowsetTag(String)
Element name to use for the query results. Set equal

to the empty string to suppress printing a document

element. (Default is <ROWSET>.)

setRowTag(String)
Element name to use for each row in the query

results. Set equal to the empty string to suppress

printing a row element. (Default is <ROW>.)

setMaxRows(int)

Maximum number of rows to fetch from the query. If

the SQL query contains an ORDER BY clause, this is

useful for fetching the top N or bottom N records. Use

in combination with the setSkipRows method, to

retrieve the next N rows from a query result. (Default

is to fetch all rows.)

setSkipRows(int)

Number of rows to skip over before returning the

query results. Stateless applications can use this

method to page through sets of rows in a query

result. Use setSkipRows(n) in combination with

setMaxRows(m) to retrieve the set of m rows from n+1

to n+1+m. (Default is to not skip any rows.)

setRowIdAttrName(String)
Attribute name for the row identification attribute on

each row in the query result. (Default is num .)

setRowIdColumn(String)

Column name whose value should be used as the

value of the row identifier attribute for each row in the

query result. (Default is to use the running row count

as the value of the row identification attribute.)

useNullAttributeIndicator(boolean)
If set to true, causes a null-indicator attribute to be

used on the element for any column whose value is

NULL. (Default is to omit the element in the result for

any column with a NULL value.)

useLowerCaseTagNames(boolean)
If set to true, causes the element names for columns

in the query result to be in lowercase.

useUpperCaseTagNames(boolean)
If set to true, causes the element names for columns

in the query result to be in UPPERCASE.

keepCursorState(boolean)

By default, the ResultSet is closed after returning

the requested number of rows (or all rows, whichever

comes first). Passing true to this method leaves the

ResultSet open and subsequent requests will pick up

where they left off, so to speak. Useful in combination

with setMaxRows for stateful applications returning N

rows at a time to the client.

setErrorTag(String)
Element name to use when reporting SQL errors.

(Default is <ERROR>.)

setRaiseException(boolean)

If set to true, causes an OracleXMLSQLException

exception to be thrown if a SQL error is encountered

while processing the query. (Default is to return an

<ERROR> document showing the error.)

setRaiseNoRowsException(boolean)

If set to true, causes an

OracleXMLSQLNoRowsException to be thrown if the

query returns no rows. Use this to catch the case

when no rows are returned, typically to be able to

attempt a different query instead of the original one.

(Default is to return a document with no row

elements).

setStylesheet(String)

If a value is set, it is used as the URI in the href

attribute of an <?xml-stylesheet?> processing

instruction added to the top of the generated XML

document.

By combining these settings appropriately, you'll find you can programmatically produce a wide

range of XML datagrams, presenting virtually any information in your entire database in a useful

XML format over the Web.

In this chapter, I've delved into the details of producing the XML for any database information

that can be summoned by a SQL query. We've demonstrated how to serve that information over

the Web in a raw XML format. As we saw in Chapter 6, by combining this with a programmatically

applied XSLT transformation, XML-based query results can be transformed into alternative XML

formats or directly into HTML for web-based presentation.

Chapter 12. Storing XML Datagrams

As we'll see in this chapter, XML datagrams of any shape and size can be stored in the database

via straightforward techniques using Oracle's XML SQL Utility. Once stored, any or all of the data

can be retrieved and delivered on request using XSQL pages and XSLT transformations. This

means that XML can be the lingua franca for data exchange outside the database without

sacrificing any flexibility, scalability, or performance for data retrieval, processing and

management inside the database.

As we've seen in previous chapters, XML datagrams are documents with a rigid, predictable

structure, typically comprised of nested elements and attributes, as Example 12.1 shows.

Example 12.1. Credit Card Authorization Datagram

<?xml version="1.0"?>

<!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

<AuthorizationRequest>

 <CardNumber>4678223355451001</CardNumber>

 <Expiration>10/2001</Expiration>

 <Amount Currency="ITL">118000</Amount>

 <MerchantId>84592342</MerchantId>

 <Date>27-12-1999 11:27:04</Date>

</AuthorizationRequest>

In contrast to the rigid structure of XML datagrams, XML documents that represent the written

word in some form—technical manuals, contracts, legal proceedings, screenplays, news articles,

and others—often contain text mixed with embedded markup tags. Often, a datagram will contain

a fragment of this mixed text and markup as an embedded structure, like the <Description> of

the <Book> in Example 12.2.

Example 12.2. Datagram with a Mixed Markup Document

Fragment

<?xml version="1.0"?>

<Book>

 <ISBN>0395415012</ISBN>

 <Title>Sunrise With Seamonsters</Title>

 <Price>12.75 </Price>

 <Author>

 <First>Paul</First>

 <Last>Theroux</Last>

 </Author>

 <Description>

 Published by <Pub>Houghton Mifflin Co</Pub> in

 <Year>1985</Year>, this <Ed>First</Ed> Edition,

 has a blue and grey <Cov>Hard</Cov> cover.

 <Damage>Light wear to top of spine</Damage>.

 <DJ>Very good</DJ> dust jacket.

 </Description>

</Book>

In this chapter, we'll study approaches to storing small to medium-sized datagrams of these two

types.

What if you need to store XML documents that are multiple
megabytes in size—typically because they contain thousands of
nested records with the same, repeating structure? Chapter 14,
provides a more advanced technique that builds on what we
learn here and on techniques developed in Chapter 6, to handle
the job efficiently.

12.1 Overview of XML Storage Approaches

There are three basic approaches to storing XML information in an Oracle database:

• You can store an XML document's information content broken down into the columns of

one or more databases tables.

• You can store the entire XML document intact in a single column in the database, with an

ID value (like the ISBN number in the book example) that plays the role of the document

ID.

• You can blend the two approaches to:

o Store information from elements containing pure data in their own database

columns while storing elements containing "document chunks" intact as document

fragments

o Store the entire XML document intact but save some metadata about the

document in separate, individual columns

Figure 12.1 illustrates an example of the first approach. The <Book> datagram is stored into a

combination of the BOOK and AUTHOR tables in the database. Since the data is in relational

tables, it can be queried using SQL. If a <Book> datagram needs to be retrieved from the server,

a join query over BOOK and AUTHOR produces the necessary data, which you can transform into

a <Book> datagram using an XSLT stylesheet.

Figure 12.1. Storing datagram into one or more relational

tables

Figure 12.2 shows an example of the second approach. The <Book> datagram is stored in a

single Character Large Object (CLOB) column, and the <ISBN> number functions as the primary

key for the document "row" in the table. As we'll see in Chapter 13, the document column can be

indexed using the Text component of interMedia to enable precise textual searches on the XML

document, leveraging its XML element structure, attributes, and nested element hierarchy. Using

the integrated InterMedia search operators in SQL, you can locate any books by Paul Theroux that

have "Light wear" cited in the <Damage> element of their <Description>. If a <Book> datagram

needs to be retrieved from the server, you simply return the contents of the CLOB column.

Figure 12.2. Saving an entire document into a single column

Figure 12.3 demonstrates the third, hybrid approach. Pure data like the title, price, and author

information goes into its own columns, while the <Description> document fragment is stored

intact in a table column. Again, using a query over the BOOK and AUTHOR tables together with an

appropriate XSLT stylesheet, you can retrieve information on demand in its original XML format.

Figure 12.3. Saving both data and document fragments in

columns

We'll cover all these techniques for storing datagrams in this chapter.

12.2 Loading Datagrams with the XML SQL Utility

The Oracle XML SQL Utility is a command-line utility and a set of Java classes used to automate

getting XML out of your database and putting XML into your database. We have seen that the

OracleXMLQuery class handles all the details of getting SQL query results out of the database in

a canonical XML format. The XML SQL Utility also contains a companion class called

OracleXMLSave that performs the opposite job of putting XML information back into Oracle tables

or views.

The OracleXMLSave class understands how to insert any information that OracleXMLQuery knows

how to produce. In other words, the canonical structure of the output from OracleXMLQuery

defines the kinds of structures for input that OracleXMLSave can automatically insert for us.

12.2.1 Transforming Datagrams for Insertion

The fact that OracleXMLSave can only insert XML documents that look like they were produced by

OracleXMLQuery may at first sound like a drastic limitation. However, this is not the case by any

stretch of the imagination. By taking advantage of an appropriate XSLT transformation, virtually

any XML document can be transformed to the canonical format required by OracleXMLSave.

Given an arbitrary XML document YourDoc and a database table or view into which you want to

insert the document, you can create an XSLT transformation that transforms the source

document YourDoc into a target document YourDocCanonical having precisely the structure

needed for automatic insertion into your table or view.

Let's say that the source document is an XML news feed like the one you'd see if you were to

browse the following URL:

http://www.moreover.com/cgi-local/page?index_xml+xml

A shortened version of such an XML document appears in Example 12.3.

Example 12.3. Moreover.com XML News Feed

<?xml version="1.0"?>

 <!DOCTYPE moreovernews

 SYSTEM "http://www.moreover.com/xml/moreovernews.dtd">

 <moreovernews>

 <article id="4227581">

 <url>http://d.moreover.com/click/here.pl?x4227575</url>

 <headline_text>Austin: webMethods gets deal with Dell</headline_text>

 <source>dbusiness.com</source>

 <media_type>text</media_type>

 <cluster>XML and metadata news</cluster>

 <tagline>Austin</tagline>

 <document_url>http://washington.dbusiness.com/</document_url>

 <harvest_time>Oct 30 1999 7:08AM</harvest_time>

 <access_registration> </access_registration>

 <access_status> </access_status>

 </article>

 <article id="4202251">

 <url>http://d.moreover.com/click/here.pl?x4202247</url>

 <headline_text>IBM Brings XML To MQSeries</headline_text>

 <source>Internet Week</source>

 <media_type>text</media_type>

 <cluster>XML and metadata news</cluster>

 <tagline></tagline>

 <document_url>http://www.internetwk.com/</document_url>

 <harvest_time>Oct 28 1999 4:28PM</harvest_time>

 <access_registration> </access_registration>

 <access_status> </access_status>

 </article>

 </moreovernews>

Next, let's say that you have a table called newsstory that you created with the following DDL

statement:

CREATE TABLE newsstory(

 id NUMBER PRIMARY KEY,

 title VARCHAR2(200),

 url VARCHAR2(200),

 source VARCHAR2(200)

);

And further, let's suppose you want to insert information from the Moreover.com XML news feed

into this table. We need to produce an XSL transformation that transforms the information in the

XML news feed from Moreover.com into the canonical format that OracleXMLSave knows how to

insert into the newsstory table.

After inserting a sample news story, we start by using an XSQL page to quickly produce one row

of canonical query results from the newsstory table. We can produce this with the XSQL page

shown in Example 12.4.

Example 12.4. XSQL Page to Produce Canonical

ROWSET/ROW Format

<?xml version="1.0"?>

<!-- newsstory-canonical.xsql -->

<xsql:query connection="xmlbook" max-rows="1" xmlns:xsql="urn:oracle-xsql">

 SELECT * FROM newsstory

</xsql:query>

We can either request this page through the web server, or more conveniently for this job, we can

use the XSQL command-line utility to quickly put the XSQL page's output into a file:

xsql newstory-canonical.xsql newsstory.xml

This command processes the newsstory.xsql page and writes the output to the newsstory.xml file.

The contents of the newsstory.xml file will look like this:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <ID>1911</ID>

 <TITLE>Some Title</TITLE>

 <URL>http://somemachine/somepage.html</URL>

 <SOURCE>SomeSource</SOURCE>

 </ROW>

</ROWSET>

We can take this one row of canonical output from a SELECT * query over the newsstory table and

immediately turn it into our "insert transformation" by following these steps:

1. Add an xsl namespace declaration to the document element and the required

xsl:version="1.0" attribute to signal that this document will be used as an XSLT

transformation.

2. Remove the num="1" attribute from the <ROW> element since it serves no purpose to the

XML SQL Utility for inserts.

3. Remove any elements corresponding to columns whose values will be assigned by

database triggers (for this example, we'll remove the <ID> element).

4. Surround the <ROW> element with an <xsl:for-each> that loops over the <article>

elements in the source document from Moreover.com.

5. Replace the literal text between the <TITLE>, <URL>, and <SOURCE> elements with an

appropriate <xsl:value-of> element to plug in the appropriate information from the

current <article> we're looping over to the enclosing <xsl:for-each> loop.

Applying these changes to the newsstory.xml file produces the XSL transformation in Example

12.5.

Example 12.5. Transforming Moreover.com News to

ROWSET/ROW Format

<!-- moreover-to-newsstory.xsl -->

<ROWSET xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0">

 <xsl:for-each select="moreovernews/article">

 <ROW>

 <TITLE><xsl:value-of select="headline_text"/></TITLE>

 <URL><xsl:value-of select="url"/></URL>

 <SOURCE>

 <xsl:choose>

 <xsl:when test="source != ''">

 <xsl:value-of select="source"/>

 </xsl:when>

 <xsl:otherwise>Moreover.com</xsl:otherwise>

 </xsl:choose>

 </SOURCE>

 </ROW>

 </xsl:for-each>

</ROWSET>

Recall that this is the simple form of an XSLT transformation
that looks like a literal example of the result.

This example illustrates:

• Adding the xsl namespace declaration to the <ROWSET> element and adding the required

xsl:version="1.0" attribute:

<ROWSET xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0">

• Adding the <xsl:for-each> element to loop over each <article> element that occurs as

a child of the <moreovernews> element in the source document:

• <xsl:for-each

select="moreovernews/article">

so that for each <article> we find in the source, we create a <ROW> in the target.

• Removing the <ID> element, since its value will be assigned by our database trigger that

assigns new story IDs from a database sequence.

• Changing the following tags:

• <TITLE>Some Title</TITLE>

<URL>http://somemachine/somepage.html</URL>

to:

<TITLE><xsl:value-of select="headline_text"/></TITLE>

<URL><xsl:value-of select="url"/></URL>

to plug in the value of the current <headline_text> and <url> elements for the current

<article>.

• Using an <xsl:choose> element to conditionally provide the value of the <SOURCE>

element indicating where this news story came from:

• <SOURCE>

• <xsl:choose>

• <xsl:when test="source != ''">

• <xsl:value-of select="source"/>

• </xsl:when>

• <xsl:otherwise>Moreover.com</xsl:otherwise>

• </xsl:choose>

</SOURCE>

This construct selects the value of the <source> element from the current article if its

value is a non-empty string; otherwise, it assigns the hard-coded value of Moreover.com

as the content of the <SOURCE> element in the target document.

If we rename the now-edited newsstory.xml file to moreover-to-newsstory.xsl to reflect its new

role as an XSLT transformation, we can use the command-line oraxsl utility to test our

transformation:

oraxsl moreover.xml moreover-to-newsstory.xsl out.xml

The moreover.xml file includes a doctype declaration with an

http:// reference to the MoreoverNews DTD:

<!DOCTYPE moreovernews
 SYSTEM
"http://www.moreover.com/xml/MoreoverNews.dtd">

If you are working on a machine that accesses the Internet
through a firewall, you need to provide the following three extra
Java virtual machine parameters to allow the Oracle XML Parser
to properly find and parse the DTD through your proxy server:

java -DproxySet=true
 -DproxyHost=yourproxyserver
 -DproxyPort=80
 oracle.xml.parser.v2.oraxsl moreover.xml
moreover-to-newsstory.xsl out.xml

Failure to do this when required will result in a long pause while
the XML Parser times out waiting for a network connection to
resolve the DTD location outside your firewall.

If we use Internet Explorer to browse the resulting out.xml file, we can see the results of the

transformation in Figure 12.4.

Figure 12.4. Moreover news results transformed into

ROWSET/ROW format

If we pass this resulting target document to the OracleXML utility using the putXML option, it will

effortlessly insert all of the Moreover.com data into our newsstory table:

java OracleXML putXML -user xmlbook/xmlbok -fileName out.xml newsstory

However, if we try to execute this command now, we'll get the following error:

ORA-01400: cannot insert NULL into ("XMLBOOK"."NEWSSTORY"."ID")

This occurs because the transformed out.xml document (on purpose!) does not include any <ID>

element for each NEWSSTORY <ROW>. Therefore, the OracleXML utility tries to insert a NULL for

the ID column in the newsstory table that fails, since ID is the primary key for the table and

therefore cannot be NULL.

To have the database automatically assign the ID column a unique NEWSSTORY ID value from a

database sequence, we can use the standard trick of creating a BEFORE INSERT trigger on the

newsstory table to select the new ID number from a sequence. Assuming that we have a

sequence named newsstory_id_seq lying around, the code looks like Example 12.6.

Example 12.6. BEFORE INSERT Trigger Assigns Unique

NEWSSTORY ID

CREATE TRIGGER newsstory_autoid

BEFORE INSERT ON newsstory FOR EACH ROW

BEGIN

 SELECT newsstory_id_seq.nextval

 INTO :new.id

 FROM dual;

END;

In the body of a database trigger, the values of the columns
being inserted can be accessed as fields of the special,

record-structured new bind variable. So by using :new.id in

Example 12.6 as an INTO target variable for the SELECT

statement, we're effectively setting the value of the ID column

that's about to be inserted (remember, the example is a
BEFORE INSERT trigger) to the next value from the database
sequence.

When we try the command again:

java OracleXML putXML -user xmlbook/xmlbook -fileName out.xml newsstory

we get a successful outcome:

successfully inserted 2 rows into newsstory

So we've shown that given a news feed of stories from Moreover.com in their published XML news

format, we can store the parts of the news stories we care about internally in a database table of

our own choosing. To further underscore the fact that the internal storage of the news stories is

a detail that external clients need not care about, let's see how we can serve the information in

our newsstory table in the appropriate Moreover.com news format.

To retrieve the information back from the database in the Moreover.com news format, we again

can use an XSLT transformation to transform the results of a standard <ROWSET>/<ROW> XML

query over the newsstory table into the exact Moreover.com XML news format.

To create the newsstory-to-moreover.xsl transformation, we can follow a cookbook approach

similar to what we did earlier to create the moreover-to-newsstory.xsl transformation in Figure

12.4:

1. Start with an XML document that is a literal example of your desired target format. In this

case, we'll start with a minimal example of one article in a Moreover.com XML news feed,

containing a single <article>:
2. <?xml version="1.0"?>

3. <!DOCTYPE moreovernews

4. SYSTEM "http://www.moreover.com/xml/moreovernews.dtd">

5. <moreovernews>

6. <article id="4227581">

7. <url>http://d.moreover.com/click/here.pl?x4227575</url>

8. <headline_text>Austin: webMethods gets deal with

Dell</headline_text>

9. <source>dbusiness.com</source>

10. <media_type>text</media_type>

11. <cluster>XML and metadata news</cluster>

12. <tagline>Austin</tagline>

13. <document_url>http://washington.dbusiness.com/</document_url>

14. <harvest_time>Oct 30 1999 7:08AM</harvest_time>

15. <access_registration> </access_registration>

16. <access_status> </access_status>

17. </article>

 </moreovernews>

18. Decide whether you can use the simple form of an XSLT transformation or whether you

need to begin the transformation with an initial <xsl:stylesheet> element.

In this case, since we want to include a <!DOCTYPE> in our transformed result, we need to

use the <xsl:output> element to indicate the desired URI for the DTD in its

doctype-system attribute. Since <xsl:output> is only legal if it appears at the top level

of a transformation enclosed by an <xsl:stylesheet> element, we cannot use the simple

form of the transformation.

19. Add the bits of necessary information to turn the literal example into a legal XSLT

transformation. Given the simple form of a transformation, this means adding the XSLT

namespace declaration and xsl:version="1.0" attribute to the document element of

your transformation, like this:
20. <DocElementName xsl:version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

For the more general case, this means adding:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

before your opening document element name tag, and:

</xsl:template>

</xsl:stylesheet>

after the closing document element name tag.

So in this case we'll have:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <moreovernews>

 <!-- etc -->

 </moreovernews>

 </xsl:template>

</xsl:stylesheet>

21. Wrap the literal elements that must repeat for each <ROW> of query results with an

<xsl:for-each select="ROWSET/ROW"> element. Since we want one <article> element

in the Moreover.com format for each <ROW> in the query results from our newsstory table,

we'll have:
22. <?xml version="1.0"?>

23. <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

24. <xsl:template match="/">

25. <moreovernews>

26. <xsl:for-each select="ROWSET/ROW">

27. <article id="4227581">

28. <url>http://d.moreover.com/click/here.pl?x4227575</url>

29. <headline_text>Austin: webMethods gets deal with

Dell</headline_text>

30. <source>dbusiness.com</source>

31. <media_type>text</media_type>

32. <cluster>XML and metadata news</cluster>

33. <tagline>Austin</tagline>

34. <document_url>http://washington.dbusiness.com/</document_url>

35. <harvest_time>Oct 30 1999 7:08AM</harvest_time>

36. <access_registration> </access_registration>

37. <access_status> </access_status>

38. </article>

39. </xsl:for-each>

40. </moreovernews>

41. </xsl:template>

</xsl:stylesheet>

42. Remove any literal elements and attributes that you don't want in the transformed output

and:

o Replace literal examples of element text content needing a dynamic value by an

appropriate <xsl:value-of select="pattern"/> element.

o Replace literal examples of attribute value content needing a dynamic value by an

appropriate {pattern} attribute value template.

Our transformation will look like this:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <moreovernews>

 <xsl:for-each select="ROWSET/ROW">

 <article id="{ID}">

 <url><xsl:value-of select="URL"/></url>

 <headline_text><xsl:value-of select="TITLE"/></headline_text>

 <source><xsl:value-of select="SOURCE"/></source>

 </article>

 </xsl:for-each>

 </moreovernews>

 </xsl:template>

</xsl:stylesheet>

Here, {ID} is used to plug the value of the <ID> of the current <ROW> into the value of the

<article> element's id attribute, and appropriate <xsl:value-of> elements are used to

plug in the appropriate dynamic element values.

43. If you need to associate a DTD with the transformed result or wish to change the default

for other output hints like indentation, add an <xsl:output> element. In this case, we

need:
44. <xsl:output indent="yes"

 doctype-system="http://www.moreover.com/xml/moreovernews.dtd"/>

The final newsstory-to-moreover.xsl transformation is shown in Example 12.7.

Example 12.7. Transforming ROWSET/ROW to Moreover.com

News Format

<!-- newsstory-to-moreover.xsl -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output indent="yes"

 doctype-system="http://www.moreover.com/xml/moreovernews.dtd"/>

 <xsl:template match="/">

 <moreovernews>

 <xsl:for-each select="ROWSET/ROW">

 <article id="{ID}">

 <url><xsl:value-of select="URL"/></url>

 <headline_text><xsl:value-of select="TITLE"/></headline_text>

 <source><xsl:value-of select="SOURCE"/></source>

 </article>

 </xsl:for-each>

 </moreovernews>

 </xsl:template>

</xsl:stylesheet>

After learning some more advanced XSLT concepts in Chapter
14, we will create a stylesheet and an XSQL page that automate
the creation of these insert transformations for any table or
view.

If we build an XSQL page like latest-news.xsql in Example 12.8 to query a set of news stories from

our newsstory table and associate our new newsstory-to-moreover.xsl transformation with it,

we'll be in business.

Example 12.8. XSQL Page Displaying Two Most Recent Stories

<?xml version="1.0"?>

<!-- latest-news.xsql -->

<?xml-stylesheet type="text/xsl" href="newsstory-to-moreover.xsl"?>

<xsql:query connection="xmlbook" max-rows="2" xmlns:xsql="urn:oracle-xsql">

 SELECT *

 FROM newsstory

 ORDER BY ID DESC

</xsql:query>

Here we present the two most recent stories using an ORDER BY ID DESC (assuming that the

greater the sequence-generated ID value, the more recently the story was added) and a

max-rows="2" on the <xsql:query> element. Now anyone who wants to request the latest news

stories in Moreover.com XML news format can request the URL:

http://yourserver/latest-news.xsql

and receive the following XML document:

<?xml version = '1.0' encoding = 'UTF-8'?>

<!DOCTYPE moreovernews

 SYSTEM "http://www.moreover.com/xml/moreovernews.dtd">

<moreovernews>

 <article id="2">

 <url>http://d.moreover.com/click/here.pl?x4202247</url>

 <headline_text>IBM Brings XML To MQSeries</headline_text>

 <source>Moreover.com</source>

 </article>

 <article id="1">

 <url>http://d.moreover.com/click/here.pl?x4227575</url>

 <headline_text>Austin: webMethods gets deal with Dell</headline_text>

 <source>Moreover.com</source>

 </article>

</moreovernews>

So we've walked through the complete loop of getting an XML datagram in and out of relational

tables. The information arrives in Moreover.com XML news format and it goes out in

Moreover.com news format, but internally we can work with it from existing or new applications

using familiar SQL against the newsstory table.

12.2.2 A Slightly More Complicated Storage Example

Let's look at another example. Recall the credit card authorization from the beginning of the

chapter:

<?xml version="1.0"?>

<!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

<AuthorizationRequest>

 <CardNumber>4678223355451001</CardNumber>

 <Expiration>10/2001</Expiration>

 <Amount Currency="ITL">118000</Amount>

 <MerchantId>84592342</MerchantId>

 <Date>27-12-1999 11:27:04</Date>

</AuthorizationRequest>

Here are a few things that make this example different from the Moreover.com example we saw

earlier:

• The Currency is an attribute on the <Amount> element.

• The <Expiration> element contains embedded month and year information in a MM/YYYY

string format.

• The <Date> element uses a format that is not the standard Java date format.

We'll see that the same approach we took earlier still works here, but we need to make a few

changes to accommodate these little twists.

Assume that our credit card authorization_request table looks like this:

CREATE TABLE authorization_request (

 request_id NUMBER PRIMARY KEY,

 request_date DATE,

 card_number NUMBER(16,0),

 exp_month NUMBER,

 exp_year NUMBER,

 amount NUMBER,

 currency VARCHAR2(3),

 merchant_id NUMBER,

 approved VARCHAR2(1),

 authorization NUMBER

);

As we did in Example 12.4, assuming there is at least one row of data in the table, we can obtain

the canonical XML format of a row in this table by doing a SELECT * query from the table in an

XSQL page with max-rows="1":

<?xml version="1.0"?>

<xsql:query connection="xmlbook" max-rows="1" xmlns:xsql="urn:oracle-xsql">

 SELECT * FROM authorization_request

</xsql:query>

If we save this XSQL page in a file called creditcardauthcanonical.xsql, we can quickly produce the

canonical XML output into a temporary file like out.xml by using the XSQL command-line utility:

xsql creditcardauthcanonical.xsql out.xml

This produces the following output; the out.xml file can now be used as the basis for our insert

transformation to transform the <AuthorizationRequest> into a <ROWSET> document that can

be inserted:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <REQUEST_ID>43</REQUEST_ID>

 <REQUEST_DATE>1999-12-27 11:27:04.0</REQUEST_DATE>

 <CARD_NUMBER>4678223355451001</CARD_NUMBER>

 <EXP_MONTH>10</EXP_MONTH>

 <EXP_YEAR>2001</EXP_YEAR>

 <AMOUNT>118000</AMOUNT>

 <CURRENCY>ITL</CURRENCY>

 <MERCHANT_ID>84592342</MERCHANT_ID>

 </ROW>

</ROWSET>

To morph this sample file of canonical XML query output from the authorization_request table into

our insert transformation for credit card authorizations, we can follow a similar approach to the

one we took in the previous section:

1. Add an xsl namespace declaration to the document element and the required

xsl:version="1.0" attribute to signal that this document will be used as an XSLT

transformation.

2. Remove the num="1" attribute from the <ROW> element.

3. Remove any elements corresponding to columns whose values will be assigned by

database triggers (for this example, we'll remove <REQUEST_ID>).

4. Surround the <ROW> element with an <xsl:for-each> to make the transformation loop

over any <AuthorizationRequest> elements in the source document, producing one <ROW>

in the target for each <AuthorizationRequest> in the source.

5. Replace the literal text between the <REQUEST_DATE>, <CARD_NUMBER>, <EXP_MONTH>,

<EXP_YEAR>, <AMOUNT>, <CURRENCY>, and <MERCHANT_ID> elements with an appropriate

<xsl:value-of> element to plug in the appropriate information from the current

<AuthorizationRequest>.

Applying these changes to the out.xml file and renaming it to a more meaningful name produces

the creditcardauth-to-rowset.xsl transformation in Example 12.9.

Example 12.9. Transform AuthorizationRequest to

ROWSET/ROW Format

<!-- creditcardauth-to-rowset.xsl -->

<ROWSET xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0">

 <xsl:for-each select="AuthorizationRequest">

 <ROW>

 <REQUEST_DATE><xsl:value-of select="Date"/></REQUEST_DATE>

 <CARD_NUMBER><xsl:value-of select="CardNumber"/></CARD_NUMBER>

 <EXP_MONTH><xsl:value-of select="substring(Expiration,1,2)"/></EXP_MONTH>

 <EXP_YEAR><xsl:value-of select="substring(Expiration,4)"/></EXP_YEAR>

 <AMOUNT><xsl:value-of select="Amount"/></AMOUNT>

 <CURRENCY><xsl:value-of select="Amount/@Currency"/></CURRENCY>

 <MERCHANT_ID><xsl:value-of select="MerchantId"/></MERCHANT_ID>

 </ROW>

 </xsl:for-each>

</ROWSET>

Here we have done the following:

• Added the xsl namespace declaration to the <ROWSET> element:

<ROWSET xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

• Added the <xsl:for-each> element to loop over the (one) <AuthorizationRequest>

element in the source document:

<xsl:for-each select="AuthorizationRequest">

• Removed the <REQUEST_ID> element since its value will be assigned by a database trigger

from a sequence.

• Changed the following tags:

• <REQUEST_DATE>1999-12-27 11:27:04.0</REQUEST_DATE>

• <CARD_NUMBER>4678223355451001</CARD_NUMBER>

• <EXP_MONTH>10</EXP_MONTH>

• <EXP_YEAR>2001</EXP_YEAR>

• <AMOUNT>118000</AMOUNT>

• <CURRENCY>ITL</CURRENCY>

<MERCHANT_ID>84592342</MERCHANT_ID>

to:

<REQUEST_DATE><xsl:value-of select="Date"/></REQUEST_DATE>

<CARD_NUMBER><xsl:value-of select="CardNumber"/></CARD_NUMBER>

<EXP_MONTH><xsl:value-of select="substring(Expiration,1,2)"/></EXP_MONTH>

<EXP_YEAR><xsl:value-of select="substring(Expiration,4)"/></EXP_YEAR>

<AMOUNT><xsl:value-of select="Amount"/></AMOUNT>

<CURRENCY><xsl:value-of select="Amount/@Currency"/></CURRENCY>

<MERCHANT_ID><xsl:value-of select="MerchantId"/></MERCHANT_ID>

to plug the values from the appropriate <AuthorizationRequest> child elements and

attributes (using patterns that are relative to the current <AuthorizationRequest>) into

the <xsl:for-each> loop.

To plug the value of the Currency attribute of the <Amount> element in the source into the

value of <AMOUNT> element in the target, we use the pattern Amount/@Currency. To pick

out the two digits of the month and the four digits of the year from the <Expiration>

element's MM/YYYY value, we make use of the XPath substring() function in the

patterns for the values of <EXP_MONTH> and <EXP_YEAR>, respectively.

Although our example has only a single

<AuthorizationRequest> element, it still makes sense to use

<xsl:for-each> to loop over that element. This allows the

select expressions in any nested <xsl:value-of> or XSL

attribute value templates to be given as patterns relative to the

current <AuthorizationRequest> in the loop, so it keeps the

patterns shorter, requires less typing, and makes the
transformation source easier to understand.

We can use the Oracle XSLT Processor's command-line utility oraxsl to transform the

<AuthorizationRequest> in creditcardauth.xml using the creditcardauth-to-rowset.xsl

transformation; we'll save the output into a temporary file called out.xml, which will have the

canonical <ROWSET>/<ROW> structure the Oracle XML SQL Utility understands:

oraxsl creditcardauth.xml creditcardauth-to-rowset.xsl out.xml

The resulting out.xml file looks like this:

<?xml version = '1.0' encoding = 'UTF-8'?>

<ROWSET>

 <ROW>

 <REQUEST_DATE>27-12-1999 11:27:04</REQUEST_DATE>

 <CARD_NUMBER>4678223355451001</CARD_NUMBER>

 <EXP_MONTH>10</EXP_MONTH>

 <EXP_YEAR>2001</EXP_YEAR>

 <AMOUNT>118000</AMOUNT>

 <CURRENCY>ITL</CURRENCY>

 <MERCHANT_ID>84592342</MERCHANT_ID>

 </ROW>

</ROWSET>

which is ready for automatic insertion into the authorization_request table using the OracleXML

command-line utility with this command (all arguments should be on one line):

java OracleXML putXML -user xmlbook/xmlbook

 -dateFormat "d-M-y H:m:s"

 -fileName out.xml

 authorization_request

This time, we need to provide the -dateFormat flag, with a time pattern mask of d-M-y H:m:s

corresponding to the format of the date value 27-12-1999 11:27:04 in our <REQUEST_DATE>

element. We need this flag because our date format differs from the default Java string format,

which would be 1999-12-27 11:27:04.0.

The list of valid date formats the OracleXML utility accepts is documented in the

JavaDoc for the java.text.SimpleDateFormat class, available at

http://java.sun.com/products/jdk/1.1/docs/api/java.text.SimpleDateFormat.html.

To avoid the ORA-01400 error we got last time, we'll use a database sequence to create unique

values:

CREATE SEQUENCE authorization_request_seq;

and a BEFORE INSERT trigger on the authorization_request table to make the assignment of the

new request_id automatic:

CREATE TRIGGER authorization_request_befins

BEFORE INSERT ON authorization_request

FOR EACH ROW

BEGIN

 -- Only assign a new id number if one is not supplied

 IF :new.request_id IS NULL THEN

 SELECT authorization_request_seq.nextval

 INTO :new.request_id

 FROM dual;

 END IF;

END;

The code for this trigger is a slight variation on the trigger from
Example 12.6. This trigger shows how to conditionally assign

the request_id only in the case that it was not already

provided.

Now, repeating the OracleXML putXML command from before:

java OracleXML putXML -user xmlbook/xmlbook

 -dateFormat "d-M-y H:m:s"

 -fileName out.xml

 authorization_request

produces the success message:

successfully inserted 1 rows into authorization_request

Once the data has made its way successfully into our authorization_request table, we should be

prepared to serve the data back on request in the appropriate <AuthorizationRequest> format.

We can build an XSQL page like creditcardauth.xsql in Example 12.10 to create a datagram for

the row of the authorization_request table with request_id matching the id passed in the

request.

Example 12.10. Serving <AuthorizationRequest> Datagrams

<?xml version="1.0"?>

<!-- creditcardauth.xsql -->

<?xml-stylesheet type="text/xsl" href="rowset-to-creditcardauth.xsl"?>

<xsql:query xmlns:xsql="urn:oracle-xsql" connection="xmlbook" max-rows="1" >

 SELECT card_number, exp_month, exp_year, amount, currency, merchant_id,

 /* Use TO_CHAR to format date as we want it in resulting XML */

 TO_CHAR(request_date,'DD-MM-YYYY HH24:MI:SS') as request_date

 FROM authorization_request

 WHERE request_id = {@id}

</xsql:query>

By associating an appropriate XSLT transformation to this XSQL page, we can ensure that the

requester sees a perfectly valid <AuthorizationRequest> document instead of the default

<ROWSET> document that an <xsql:query> would return by default. To create the appropriate

stylesheet, we follow the same steps that we did earlier:

1. Start with an XML document that is a literal example of your desired target format. In this

case, we'll start with an example of an <AuthorizationRequest>:
2. <?xml version="1.0"?>

3. <!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

4. <AuthorizationRequest>

5. <CardNumber>4678223355451001</CardNumber>

6. <Expiration>10/2001</Expiration>

7. <Amount Currency="ITL">118000</Amount>

8. <MerchantId>84592342</MerchantId>

9. <Date>27-12-1999 11:27:04</Date>

</AuthorizationRequest>

10. Decide whether you can use the simple form of an XSLT transformation, or whether you

need to begin the transformation with an initial <xsl:stylesheet> element. Since we

want to include a <!DOCTYPE> in our transformed result, we need to use the <xsl:output>

element to indicate the desired URI for the DTD in its doctype-system attribute.

11. Add the bits of necessary information to turn the literal example into a legal XSLT

transformation. Here, we add:
12. <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

before the <AuthorizationRequest> element, and:

</xsl:template>

 </xsl:stylesheet>

after the closing </AuthorizationRequest> tag.

In this case, we'll have:

<?xml version="1.0"?>

<!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <AuthorizationRequest>

 <!-- etc -->

 </AuthorizationRequest>

 </xsl:template>

</xsl:stylesheet>

13. Wrap the literal elements that must repeat for each <ROW> of query results with an

<xsl:for-each select="ROWSET/ROW"> element. Since we want one

<AuthorizationRequest> for each <ROW> in the query results from our

authorization_request table, we don't have to do anything in this step:
14. <?xml version="1.0"?>

15. <!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

16. <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

17. <xsl:template match="/">

18. <xsl:for-each select="ROWSET/ROW">

19. <AuthorizationRequest>

20. <CardNumber>4678223355451001</CardNumber>

21. <Expiration>10/2001</Expiration>

22. <Amount Currency="ITL">118000</Amount>

23. <MerchantId>84592342</MerchantId>

24. <Date>27-12-1999 11:27:04</Date>

25. </AuthorizationRequest>

26. </xsl:for-each>

27. </xsl:template>

</xsl:stylesheet>

28. Remove any literal elements and attributes you don't want in the transformed output and:

o Replace literal examples of element text content needing a dynamic value with an

appropriate <xsl:value-of select="pattern"> element.

o Replace literal examples of attribute value content needing a dynamic value with

an appropriate {pattern} attribute value template.

For this case, our transformation will look like this:

<?xml version="1.0?">

<!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/

 Transform" xsl:version="1.0">

 <xsl:template match="/">

 <xsl:for-each select="ROWSET/ROW">

 <AuthorizationRequest>

 <CardNumber><xsl:value-of select="CARD_NUMBER"/></CardNumber>

 <Expiration>

 <xsl:value-of select="EXP_MONTH"/>

 <xsl:text>/</xsl:text>

 <xsl:value-of select="EXP_YEAR"/>

 </Expiration>

 <Amount Currency="{CURRENCY}"><xsl:value-of

select="AMOUNT"/></Amount>

 <MerchantId><xsl:value-of select="MERCHANT_ID"/></MerchantId>

 <Date><xsl:value-of

select="substring-before(REQUEST_DATE,'.')"/></Date>

 </AuthorizationRequest>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

Here we have appropriate <xsl:value-of> elements to plug in the appropriate dynamic

values and {CURRENCY} to plug the value of <CURRENCY> in the current <ROW> into the

value of the <Amount> element's Currency attribute.

29. If present, replace the <!DOCTYPE> with an <xsl:output> element to create the correct

DOCTYPE in the transformed result by specifying a value for the doctype-system attribute.

In this case, we need:

<xsl:output doctype-system="creditcardauth.dtd"/>

Example 12.11 shows the results of following the earlier steps.

Example 12.11. Transforming ROWSET/ROW to

AuthorizationRequest Format

<!-- rowset-to-creditcardauth.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output doctype-system="creditcardauth.dtd" indent="yes"/>

 <xsl:template match="/">

 <xsl:for-each select="ROWSET/ROW">

 <AuthorizationRequest>

 <CardNumber><xsl:value-of select="CARD_NUMBER"/></CardNumber>

 <Expiration>

 <xsl:value-of select="EXP_MONTH"/>

 <xsl:text>/</xsl:text>

 <xsl:value-of select="EXP_YEAR"/>

 </Expiration>

 <Amount Currency="{CURRENCY}"><xsl:value-of select="AMOUNT"/></Amount>

 <MerchantId><xsl:value-of select="MERCHANT_ID"/></MerchantId>

 <Date><xsl:value-of select="REQUEST_DATE"/></Date>

 </AuthorizationRequest>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

Now, if someone needs to retrieve information about an authorization request with an id of

2002322, they simply request the URL:

http://yourserver/creditcardauth.xsql?id=2002322

and they will receive:

<?xml version = '1.0' encoding = 'UTF-8'?>

<!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

<AuthorizationRequest>

 <CardNumber>4678223355451001</CardNumber>

 <Expiration>10/2001</Expiration>

 <Amount Currency="ITL">118000</Amount>

 <MerchantId>84592342</MerchantId>

 <Date>27-12-1999 11:27:04</Date>

</AuthorizationRequest>

This is the result of doing the query from authorization_request matching the id passed in, and

applying the rowset-to-creditcardauth.xsl transformation from Example 12.11 before returning

the result.

12.2.3 Using Object Types and Object Views for XML

The Moreover.com news stories and the authorization request were both fairly simple XML

datagrams with a single level of child elements. Next, we'll look at a datagram that contains some

nested structure. Since we don't need a complicated example to explain the concepts, we'll stick

with a datagram that contains just a single example of nested structure. Once the basics are clear,

we'll dig into a meatier example.

Relational databases support only the basic structure of rows of scalar-valued columns in a table.

Object-relational databases such as Oracle8i extend the primitive set of scalar types like NUMBER,

VARCHAR, and DATE with the ability to create your own user-defined types to model frequently

occurring structures in your applications. In Oracle8i, user-defined structures, or types, are

defined with the CREATE TYPE command:

CREATE TYPE Point AS OBJECT (

 Degrees NUMBER(3),

 Minutes NUMBER(2),

 Seconds NUMBER(2,2),

 Hemisphere VARCHAR2(1)

);

A type is comprised of a list of attributes that can be all scalar-valued, as in the simple Point type

above, or any mix of scalar values and user-defined types. So you can define a type called

Map_Location that has Longitude and Latitude attributes of type Point:

CREATE TYPE Map_Location AS OBJECT (

 Latitude Point,

 Longitude Point,

 Elevation NUMBER

);

and a type called Airport that comprises a Name, Code, and Location of type Map_Location:

CREATE TYPE Airport AS OBJECT (

 Name VARCHAR2(30),

 Code VARCHAR2(3),

 Location Map_Location

);

and finally, a Flight type that has, among other attributes, an Origin and Destination airport

of type Airport:

CREATE TYPE Flight AS OBJECT (

 Carrier VARCHAR2(2),

 Flight_Number NUMBER,

 Origin Airport,

 Destination Airport

);

Although these examples are trivial, you can see that user-defined types allow you to build up

complicated, user-defined objects to match the structure of the items in your problem domain.

Once user-defined types are created, they can be used virtually anywhere scalar types are

allowed. For example, they can appear as the column types in a table. So our flight_schedule

table can include a column named flight of type Flight along with the flight's scheduled

departure date:

CREATE TABLE flight_schedule (

 flight Flight,

 departs_at DATE

);

The SQL language in Oracle8i offers enhanced support for working with these user-defined

structures, and the extended SQL can be used in combination with any other features of the SQL

language. Example 12.12 demonstrates a query over the flight_schedule table to find the earliest

departing flight on 26 April 2000 originating at an airport whose location is at zero degrees

longitude.

Example 12.12. SQL Query Using Extended Dot Notation

SELECT *

 FROM (SELECT *

 FROM flight_schedule fs

 WHERE fs.Flight.Origin.Location.Longitude.Degrees = 0

 AND TRUNC(departs_at) = '26-APR-2000'

 ORDER BY departs_at)

WHERE ROWNUM <= 1

The syntax of the query in Example 12.12:

SELECT * FROM (SELECT ... ORDER BY ...)

is not a typo, but rather an example of a new SELECT feature of
Oracle8i SQL called a top N query. The "inner" statement
includes an ORDER BY that orders the data by some criteria you
care about, and the "outer" SELECT uses the WHERE ROWNUM
<= N clause to pick just the top N rows from the inner query
based on your ordering. Here we're querying the single top

Flight ordered by departure time, but the same trick can be

used, for example, to show the top five salespeople ordered by
quarterly sales. This type of query could not be done in a single
SQL statement before Oracle8i.

Example 12.12 uses extended dot notation in the WHERE clause to navigate the nested structures

of the user-defined types involved in the query :

WHERE fs.Flight.Origin.Location.Longitude.Degrees = 0

If this information were stored in several different tables, writing a similar WHERE clause would

take numerous joins and complicated join-clause predicates. So besides helping to model

real-world structure, types also benefit developers by simplifying queries, allowing them to be

phrased more directly.

The XML SQL Utility offers bidirectional support for working with these user-defined structured

data sources and XML documents. When retrieved through the XML SQL Utility or an XSQL page,

the results of the query in Example 12.12 look like Example 12.13.

Example 12.13. Datagram from Query Using Object Types

<ROWSET>

 <ROW num="1">

 <FLIGHT>

 <CARRIER>BA</CARRIER>

 <FLIGHT_NUMBER>586</FLIGHT_NUMBER>

 <ORIGIN>

 <NAME>London Heathrow</NAME>

 <CODE>LHR</CODE>

 <LOCATION>

 <LATITUDE>

 <DEGREES>51</DEGREES>

 <MINUTES>28</MINUTES>

 <SECONDS>34.02</SECONDS>

 <HEMISPHERE>N</HEMISPHERE>

 </LATITUDE>

 <LONGITUDE>

 <DEGREES>0</DEGREES>

 <MINUTES>37</MINUTES>

 <SECONDS>56.08</SECONDS>

 <HEMISPHERE>W</HEMISPHERE>

 </LONGITUDE>

 <ELEVATION>119</ELEVATION>

 </LOCATION>

 </ORIGIN>

 <DESTINATION>

 <NAME>Venice Italy</NAME>

 <CODE>VCE</CODE>

 <LOCATION>

 <LATITUDE>

 <DEGREES>45</DEGREES>

 <MINUTES>26</MINUTES>

 <SECONDS>0</SECONDS>

 <HEMISPHERE>N</HEMISPHERE>

 </LATITUDE>

 <LONGITUDE>

 <DEGREES>12</DEGREES>

 <MINUTES>20</MINUTES>

 <SECONDS>0</SECONDS>

 <HEMISPHERE>E</HEMISPHERE>

 </LONGITUDE>

 <ELEVATION>10</ELEVATION>

 </LOCATION>

 </DESTINATION>

 </FLIGHT>

 <DEPARTS_AT>2000-04-26 08:40:00.0</DEPARTS_AT>

 </ROW>

</ROWSET>

Of course, extended dot notation can be used in the SELECT list as well, to return only a certain

substructure from the complex object. For example, if we changed the query from Example 12.12

to be:

SELECT *

 FROM (SELECT fs.Flight.Carrier||' '||fs.Flight.Flight_Number

 AS flight,

 fs.Flight.Origin.Name||' ('||fs.Flight.Origin.Code||')'

 AS "FROM",

 fs.Flight.Destination.Name||' ('||fs.Flight.Destination.Code||')'

 AS "TO",

 TO_CHAR(fs.departs_at,'HH24:MI')

 AS departs

 FROM flight_schedule fs

 ORDER BY departs_at)

WHERE ROWNUM <= 1

then our XML query results would look like this:

<ROWSET>

 <ROW num="1">

 <FLIGHT>BA 586</FLIGHT>

 <FROM>London Heathrow (LHR)</FROM>

 <TO>Venice Italy (VCE)</TO>

 <DEPARTS>08:40</DEPARTS>

 </ROW>

</ROWSET>

Besides supporting the creation of tables with object types as structured column values, Oracle8i

also supports the creation of database views that can deliver structured rows of data.

We're familiar with the idea that database views can be used to join, project, and filter

information to create new logical views based on one or more other tables (or views). In the same

spirit, you can use database views in combination with user-defined object types to create

structured logical views on the fly based on one or more other tables or views. Creating structured

object views on top of relational tables allows you to have the best of all worlds:

• You can preserve investments in existing applications, tools, and training by keeping the

fundamental storage model the same.

• You can create one or more logical views of your physical table data, allowing you to serve

and store complex XML datagrams into the same underlying tables with less work.

• You can query the logical views of the structured data using extended dot notation with

the same query performance as the more cumbersome join queries against the underlying

flat tables.

This means that if we have a set of existing tables like these:

CREATE TABLE airport_table (

 Name VARCHAR2(30),

 Code VARCHAR2(3),

 Lat_Degrees NUMBER(3),

 Lat_Minutes NUMBER(2),

 Lat_Seconds NUMBER(4,2),

 Lat_Hemisphere VARCHAR2(1),

 Long_Degrees NUMBER(3),

 Long_Minutes NUMBER(2),

 Long_Seconds NUMBER(4,2),

 Long_Hemisphere VARCHAR2(1),

 Elevation NUMBER

);

CREATE TABLE flight_schedule_table (

 carrier VARCHAR2(2),

 flight_number NUMBER,

 departing VARCHAR2(3),

 arriving VARCHAR2(3),

 departs_at DATE

);

we can create a view like flight_schedule_view in Example 12.14 to, in effect, superimpose a

user-defined logical structure over the join of information from the two flat tables, airport_table

and flight_schedule_table.

Example 12.14. Object View Imposes Rich Structure over Flat

Tables

CREATE VIEW flight_schedule_view AS

SELECT Flight(ft.carrier,

 ft.flight_number,

 airport(ao.Name,

 ao.Code,

 Map_location(

 Point(

 ao.Lat_Degrees,

 ao.Lat_Minutes,

 ao.Lat_Seconds,

 ao.Lat_Hemisphere),

 Point(

 ao.Long_Degrees,

 ao.Long_Minutes,

 ao.Long_Seconds,

 ao.Long_Hemisphere),

 ao.Elevation)),

 Airport(ad.Name,

 ad.Code,

 Map_location(

 Point(

 ad.Lat_Degrees,

 ad.Lat_Minutes,

 ad.Lat_Seconds,

 ad.Lat_Hemisphere),

 Point(

 ad.Long_Degrees,

 ad.Long_Minutes,

 ad.Long_Seconds,

 ad.Long_Hemisphere),

 ad.Elevation))) as flight,

 ft.departs_at

 FROM flight_schedule_table ft,

 airport_table ao, /* Origin Airport */

 airport_table ad /* Destination Airport */

 WHERE ft.departing = ao.Code

 AND ft.arriving = ad.Code;

Notice how in the SELECT list we use the Flight() constructor to create an instance of our

user-defined Flight object. Nested inside the arguments passed to the Flight() constructor

are other constructors to create nested instances of Map_Locations and Points where required.

Viewing just the nesting of the constructors, without the extra detail, the SELECT statement looks

like this:

SELECT Flight(...,

 Airport(...,

 Map_Location(

 Point(...),

 Point(...),...)),

 Airport(...,

 Map_Location(

 Point(...),

 Point(...),...))) as flight

This reflects the on-the-fly Flight structure we're imposing over the rows of data in the join

between flight_schedule_table and airport_table.

A query over the flight_schedule_view using the XML SQL Utility or an XSQL page produces the

exact same XML we saw from Example 12.13, but there is one big difference. Before, we had to

create a single new table whose columns had the appropriate user-defined datatypes. Here,

we've taken a set of existing tables and imposed the same object structure on top of them

through the constructors in the object view definition. Object types can be used both for physical

storage and for virtual, logical views, depending on your needs.

As we'll see in the next section, in addition to supporting structured querying of data, object views

support inserts, updates, and deletes whose behavior can be customized using special database

triggers designed for views called INSTEAD OF triggers. When combined with the XML SQL Utility,

this facility gives us a nice approach to working with more complex XML datagrams.

12.2.4 Using Object Types and Object Views for Insert

Let's get started by recalling a simplified version of the <Book> datagram from Example 12.2:

<Book>

 <ISBN>0395415012</ISBN>

 <Title>Sunrise With Seamonsters</Title>

 <Price>12.75</Price>

 <Author>

 <First>Paul</First>

 <Last>Theroux</Last>

 </Author>

</Book>

Let's say we create two tables, author_table and book_table, where we store author and book

information:

CREATE TABLE author_table (

 id NUMBER PRIMARY KEY,

 first_name VARCHAR2(80),

 last_name VARCHAR2(80)

);

and:

CREATE TABLE book_table (

 isbn NUMBER PRIMARY KEY,

 title VARCHAR2(80),

 price NUMBER,

 author_id NUMBER,

 CONSTRAINT authored_by FOREIGN KEY (author_id)

 REFERENCES author_table

);

We can create an object view as a query based on author_table and book_table to present a

single, structured view to handle the <Book> datagram. We'll then use this object view to produce

<Book> datagrams as well as insert new <Book> datagrams into the author_table and book_table

tables.

We start by analyzing the <Book> datagram and thinking of its structure as a composition of

objects. This is a pretty simple example, so it shouldn't surprise you that the two real-world items

represented in the <Book> datagram are a Book and a Person, who is the author of the book.

Figure 12.5 shows a UML object model of our two simple objects.

Figure 12.5. Modeling the <Book> datagram in objects

Since we want to work with <Book>-structured rows that have the same structure as the <Book>

datagram, we'll create an object view to superimpose the correct logical structure on top of a join

of the two physical tables.

We start by creating user-defined types for Book_T and Person_T for the Book and Person objects

in our object model. These define the structure and the appropriate attribute names that we want

to produce as our object view materializes <Book>-structured rows. In other words, each row in

our view will be an instance of the Book_T type.

The following syntax creates the two types we need:

CREATE TYPE Person_T AS OBJECT (

 first VARCHAR2(80),

 last VARCHAR2(80)

);

CREATE TYPE Book_T AS OBJECT (

 isbn NUMBER,

 title VARCHAR2(80),

 price NUMBER,

 author Person_T

);

Next, we create a books object view like the one in Example 12.15 that joins information from the

book_table and author_table tables. It uses the Book_T() constructor to create instances of

Book_T objects on the fly. Nested as an attribute to the Book_T() constructor is the Person_T()

constructor used to create an instance of a Person_T as the <Book>'s author.

Example 12.15. Object View for the Book Datagram

CREATE VIEW books AS

SELECT Book_T(b.ISBN,

 b.Title,

 b.Price,

 Person_T(a.First_Name, a.Last_Name)

) as Book

 FROM book_table b,

 author_table a

 WHERE b.author_id = a.id;

With the books view in place, we can verify that it's producing the structure we want by building

a quick XSQL page with a SELECT * FROM books query like:

<?xml version="1.0"?>

<xsql:query connection="xmlbook" max-rows="1" xmlns:xsql="urn:oracle-xsql">

 SELECT * FROM books

</xsql:query>

Using the XSQL command-line utility to produce the output, we see that the books view (with the

exception of the case of the element names) will produce the XML output with the nested element

structure we want, as in Example 12.16.

Example 12.16. Canonical XML Output for the Books View

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <BOOK>

 <ISBN>395415012</ISBN>

 <TITLE>Sunrise with Seamonsters</TITLE>

 <PRICE>12.75</PRICE>

 <AUTHOR>

 <FIRST>Paul</FIRST>

 <LAST>Theroux</LAST>

 </AUTHOR>

 </BOOK>

 </ROW>

</ROWSET>

In addition to allowing us to produce correctly-structured XML in each row, the new books view

can be used as an insert target for the OracleXML utility's putXML option to automatically insert

<Book> datagrams into the database.

As with most database views that involve multiple underlying database tables, we need to help

the database understand our intended behavior for an insert into this join view by using an

INSTEAD OF INSERT database trigger.

You can create INSTEAD OF triggers for INSERT, UPDATE,
and/or DELETE operations on any database view in order to
provide the appropriate implementation of that operation. As
with any stored procedure or trigger in Oracle8i, INSTEAD OF
triggers can be implemented in PL/SQL or Java.

Since the XML SQL Utility effectively does INSERT statements into the target table or view, we will

focus our attention on the implementation of an INSTEAD OF INSERT trigger for the books view,

which will properly insert into the underlying book_table and author_table tables.

To illustrate how an INSTEAD OF trigger can effectively handle both inserts and updates, Example

12.17 shows the PL/SQL code required to accomplish the following desired behavior:

1. If the inserted <Book> datagram has an <Author> with <First> and <Last> names

matching an author we already have on file in the author_table, insert the value of the

existing author's id into the book_table's author_id column.

2. If the author name does not match an existing author in the author_table, insert a row in

author_table for this new author and insert the value of the author's (newly assigned) id

for the insert into book_table for the author_id column.

3. If the ISBN number for the book being inserted is already on file in the book_table, rather

than doing an INSERT into the book table, do an UPDATE instead to reflect new

information in the document about the existing book.

Example 12.17. INSTEAD OF Trigger Handles Book Datagram

Inserts

CREATE TRIGGER instead_of_insert_on_books

INSTEAD OF INSERT ON books

FOR EACH ROW

DECLARE

 theAuthorId NUMBER;

 theISBN NUMBER;

BEGIN

 -- Check if the author being inserted already exists in the AUTHOR table.

 BEGIN

 SELECT id

 INTO theAuthorId

 FROM author_table

 WHERE first_name = :new.Book.Author.First

 AND last_name = :new.Book.Author.Last;

 EXCEPTION

 -- If author not found, create a new row in the author table

 WHEN NO_DATA_FOUND THEN

 INSERT INTO author_table (id, first_name, last_name)

 VALUES (authorseq.nextval,

 :new.Book.Author.First,

 :new.Book.Author.Last)

 RETURNING id INTO theAuthorId;

 END;

 -- Check if a book already exists in the BOOK table with this ISBN

 SELECT isbn

 INTO theISBN

 FROM book_table

 WHERE isbn = :new.Book.ISBN;

 -- We found an existing book, so *update* BOOK instead of inserting.

 UPDATE book_table

 SET title = :new.Book.Title,

 price = :new.Book.Price,

 author_id = theAuthorId

 WHERE isbn = :new.Book.ISBN;

EXCEPTION

 -- If no existing book found with the new ISBN, then

 -- insert the new book into the BOOK table.

 WHEN NO_DATA_FOUND THEN

 -- Insert the new book into the underlying BOOK table

 INSERT INTO book_table (isbn,title,price,author_id)

 VALUES (:new.Book.ISBN,:new.Book.Title,:new.Book.Price, theAuthorId);

END;

Since the books view has a column named Book, our intuition tells us that :new.Book refers to the

value of the Book column in the row being inserted. In turn, since the Book column is of a

user-defined Book type, you can use extended dot notation in PL/SQL to refer to any part of the

nested attributes and structure of the Book column value. This allows us to

use :new.Book.Author.Last to refer to the author's last name for the book being inserted.

Now let's put the books view to work on our <Book> XML datagram. If we assume a <Book>

document like the following is in a file named theroux.xml:

<Book>

 <ISBN>0395415012</ISBN>

 <Title>Sunrise With Seamonsters</Title>

 <Price>12</Price>

 <Author>

 <First>Paul</First>

 <Last>Theroux</Last>

 </Author>

</Book>

Then we have just two steps to follow:

1. Transform theroux.xml into a <ROWSET>/<ROW> document that matches the canonical

format we saw in Example 12.16.

2. Use OracleXML putXML to insert the transformed document into the books view.

Since the books view already has a structure that exactly matches the <Book> datagram, we only

need to wrap a <ROWSET> and <ROW> tag around it to put it into canonical form for insert. This is

done with a simple XSLT transformation like Example 12.18.

Example 12.18. Transforming Book Datagram for Insert

<!-- book-to-rowset.xsl -->

<ROWSET xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0">

 <xsl:for-each select="//Book">

 <ROW><xsl:copy-of select="."/></ROW>

 </xsl:for-each>

</ROWSET>

This selects all the <Book> elements in the source document, and wraps each one verbatim in a

<ROW> element using <xsl:copy-of>. Applying this transformation using:

oraxsl theroux.xml book-to-rowset.xsl out.xml

produces the following out.xml result document:

<?xml version = '1.0' encoding = 'UTF-8'?>

<ROWSET>

 <ROW>

 <Book>

 <ISBN>0395415012</ISBN>

 <Title>Sunrise With Seamonsters</Title>

 <Price>12</Price>

 <Author>

 <First>Paul</First>

 <Last>Theroux</Last>

 </Author>

 </Book>

 </ROW>

</ROWSET>

We can insert this document into the books view using:

java OracleXML putXML -user xmlbook/xmlbook

 -fileName out.xml

 -ignoreCase

 books

The elements in theroux.xml (and consequently, in the transformed out.xml) have mixed-case

names like <Title> and <Author>, so we need to specify the following flag:

-ignoreCase

since the corresponding columns in the books view have uppercase names like TITLE and

AUTHOR.

Assuming that Paul Theroux is already an author in our author_table and has been assigned an

author_id of 1027, running OracleXML putXML does the following:

1. The <Book> datagram is inserted into the books view, causing the INSTEAD OF INSERT

trigger to fire.

2. The trigger finds an existing author with first name "Paul" and last name "Theroux", so it

uses his author_id.

3. The trigger also inserts a new row into the book_table for the new book with the existing

author's author_id.

This was an example of a single book, but in addition suppose we had a file like list-of-books.xml

in Example 12.19.

Example 12.19. Datagram Representing Multiple Books

<BookList>

 <Book>

 <ISBN>0449908585</ISBN>

 <Title>The Happy Isles of Oceania : Paddling the Pacific</Title>

 <Price>13</Price>

 <Author>

 <First>Paul</First>

 <Last>Theroux</Last>

 </Author>

 </Book>

 <Book>

 <ISBN>0804104549</ISBN>

 <Title>Riding the Iron Rooster : By Train Through China</Title>

 <Price>11</Price>

 <Author>

 <First>Paul</First>

 <Last>Theroux</Last>

 </Author>

 </Book>

 <Book>

 <ISBN>0804104549</ISBN>

 <Title>Oracle: Forms Developer's Companion</Title>

 <Price>44</Price>

 <Author>

 <First>Steve</First>

 <Last>Muench</Last>

 </Author>

 </Book>

 <Book>

 <ISBN>0395415012</ISBN>

 <Title>Sunrise With Seamonsters</Title>

 <Price>19</Price>

 <Author>

 <First>Paul</First>

 <Last>Theroux</Last>

 </Author>

 </Book>

</BookList>

Since we've taken care of matching the structure of each <Book> with a row of our books view, we

can use the same transformation from Example 12.18 to transform list-of-books.xml into

<ROWSET>/<ROW> format:

oraxsl list-o-books.xml book-to-rowset.xsl out.xml

and insert the whole lot with:

java OracleXML putXML -user xmlbook/xmlbook

 -fileName out.xml

 -ignoreCase

 books

Using Mixed-Case Column Names

We could have created the books view with column names in mixed case

to exactly match the element names in the <Book> document by aliasing

each column in the view with a quoted name:

CREATE VIEW books AS
SELECT b.isbn,
 b.title as "Title",
 b.price as "Price",
 PERSON_NAME_TYPE(a.first_name, a.last_name) as "Author"
 FROM book b,
 author a
WHERE b.author_id = a.id;

We did not do this because working in SQL with mixed-case column
names requires that names always be quoted, which quickly becomes
frustrating for developers, who cannot understand why:

SELECT title FROM books

gives them the confusing error:

ORA-00904: invalid column name

because the developer forgot to say:

SELECT "Title" FROM books

Since column aliases (including, of course, quoted, mixed-case column

aliases) can be used on any SQL query in your XSQL pages or Java
programs to specify exact names, using mixed-case column names in
tables and views turns out to be more trouble than it's worth.

This will successfully insert all four books in the list-of-books.xml file, resulting in several new

rows and one updated row. If we go to SQL*Plus and look at the raw underlying data in

book_table and author_table, we'll see that:

• The two new rows in book_table corresponding to the new <Book>s that had an <Author>

of Paul Theroux were properly assigned the AUTHOR_ID for the existing row for Paul

Theroux in author_table.

• A new row has been added to author_table for Steve Muench and to book_table for the

Forms Developer's Companion.

• The price of the existing Paul Theroux book, Sunrise with Seamonsters, has been updated

to 19.

We've seen that by using object views and object types to match the structure of a datagram, and

by providing an appropriate INSTEAD OF trigger to implement any custom insert logic you desire,

you can get more complex XML datagrams into the database.

12.2.5 Inserting Nested, Repeating Information

You'll often encounter a datagram like Example 12.20, which contains nested repeating

information. This <DepartmentList> datagram contains a list of <Department> elements, each of

which has a set of one or more <Employee> elements as nested, repeating information.

Example 12.20. Sample Datagram with Nested, Repeating

Entries

<DepartmentList>

 <Department>

 <Id>98</Id>

 <Name>Research</Name>

 <Employees>

 <Employee>

 <Id>101</Id>

 <Name>Paul</Name>

 <Salary>2000</Salary>

 </Employee>

 <Employee>

 <Id>198</Id>

 <Name>Humphrey</Name>

 <Salary>3200</Salary>

 </Employee>

 </Employees>

 </Department>

 <Department>

 <Id>99</Id>

 <Name>Research</Name>

 <Employees>

 <Employee>

 <Id>167</Id>

 <Name>Amina</Name>

 <Salary>4350</Salary>

 </Employee>

 </Employees>

 </Department>

</DepartmentList>

Assuming that we have already created the dept and emp tables, our challenge will be to build an

object view on top of the dept and emp tables that mimics the structure of the <DepartmentList>

datagram. Once we accomplish this, we can use the XML SQL Utility to insert the

<DepartmentList> datagram into the database through the object view, putting the department

information in the dept table and the nested, repeating employee information into the emp table.

We saw in the previous section how we can use user-defined object types and object views on top

of existing relational tables to create user-defined virtual structures that map directly to the

structure we want in XML datagrams. However, we did not deal with nested, repeating

information. To work with this kind of data, we can use collection types.

Once a user-defined object type is created, we can define a collection type to model a list or array

of that type. So if we define an emp_t type to capture the logical structure of an <Employee> in

our XML datagram like this:

CREATE TYPE emp_t AS OBJECT (

 empno NUMBER,

 ename VARCHAR2(80),

 sal NUMBER

);

we can very easily create a type to represent a list of <Employee>s with the command:

CREATE TYPE emp_list AS TABLE OF emp_t;

We can use the emp_list type in an object view to model a repeating (unbounded) set of elements

with the emp_t structure, like the repeating <Employee> elements in a <Department> in the

datagram above.

Taking a closer look at the structure of the <DepartmentList> datagram, we see that it is just a

set of <Department> elements. Trying to think of this as a set of rows, we can easily identify

<DepartmentList> as a set of <Department> elements that repeat like rows in a rowset. If we can

create an object view in which each row returned has the exact structure of a <Department>

element, then we can transform the <DepartmentList> datagram into the canonical ROWSET/ROW

format and have the XML SQL Utility insert it for us.

Each <Department> element contains the following:

• <DeptNo>

• <DName>

• <Employees>, a repeating collection of <Employee> elements

To mimic this row structure we create a view that selects the following columns:

• deptno column

• dname column from the dept table

• employees column of type emp_list with corresponding rows from the emp table for the

current department

The appropriate view definition appears in Example 12.21.

Example 12.21. Department View with Nested Employees

Collection

CREATE VIEW department

AS SELECT deptno, dname,

 CAST(MULTISET(SELECT empno, ename, sal

 FROM emp

 WHERE emp.deptno = dept.deptno

) AS emp_list) employees

 FROM dept;

Notice the use of the following syntax:

CAST(MULTISET(query) AS collection_type_name) column_alias

to cast the results of the query:

SELECT empno, ename, sal

FROM emp

WHERE emp.deptno = dept.deptno

into a collection-valued column of type emp_list with the name employees. The canonical output

of the XML SQL Utility for a query against this new department view using the XML SQL Utility is

shown in Example 12.22.

Example 12.22. Canonical Output for Object View with Nested

Collection

<?xml version="1.0"?>

<ROWSET>

 <ROW num="1">

 <DEPTNO>10</DEPTNO>

 <DNAME>ACCOUNTING</DNAME>

 <EMPLOYEES>

 <EMPLOYEES_ITEM>

 <EMPNO>7782</EMPNO>

 <ENAME>CLARK</ENAME>

 <SAL>2450</SAL>

 </EMPLOYEES_ITEM>

 <EMPLOYEES_ITEM>

 <EMPNO>7839</EMPNO>

 <ENAME>KING</ENAME>

 <SAL>5000</SAL>

 </EMPLOYEES_ITEM>

 <EMPLOYEES_ITEM>

 <EMPNO>7934</EMPNO>

 <ENAME>MILLER</ENAME>

 <SAL>1300</SAL>

 </EMPLOYEES_ITEM>

 </EMPLOYEES>

 </ROW>

</ROWSET>

which we can produce from the command line by issuing the command:

java OracleXML getXML

 -user xmlbook/xmlbook

 "select * from department where deptno = 10"

As we can see, the structure perfectly matches the structure of a <Department> row in the

<DepartmentList> datagram. All we need to do now is to create an XSLT stylesheet that

transforms a <DepartmentList> datagram into the canonical output of the department view.

Following the same cookbook approach we've taken previously, we create the transformation in

Example 12.23.

Example 12.23. Transforming Master/Detail Information for

Insert

<!-- deptemp.xsl -->

<ROWSET xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0">

 <xsl:for-each select="DepartmentList/Department">

 <ROW>

 <DEPTNO><xsl:value-of select="Id"/></DEPTNO>

 <DNAME><xsl:value-of select="Name"/></DNAME>

 <EMPLOYEES>

 <xsl:for-each select="Employees/Employee">

 <EMPLOYEES_ITEM>

 <EMPNO><xsl:value-of select="Id"/></EMPNO>

 <ENAME><xsl:value-of select="Name"/></ENAME>

 <SAL><xsl:value-of select="Salary"/></SAL>

 </EMPLOYEES_ITEM>

 </xsl:for-each> <!-- Employees -->

 </EMPLOYEES>

 </ROW>

 </xsl:for-each> <!-- Departments -->

</ROWSET>

Notice that in this transformation we have two <xsl:for-each> loops:

<xsl:for-each select="DepartmentList/Department">

This loops over the <Department> element children of <DepartmentList>.

<xsl:for-each select="Employees/Employee">

This loops over each nested <Employee> element in the <Department>.

By applying the deptemp.xsl stylesheet to the original <DepartmentList> datagram with the

command:

oraxsl deptemp.xml deptemp.xsl deptemp-transformed.xml

we can produce the deptemp-transformed.xml file in canonical XML format, shown in Example

12.24, that is ready to be inserted into the department view.

Example 12.24. Result of Transforming deptemp.xml for

Insert

<?xml version = '1.0' encoding = 'UTF-8'?>

<ROWSET>

 <ROW>

 <DEPTNO>98</DEPTNO>

 <DNAME>Research</DNAME>

 <EMPLOYEES>

 <EMPLOYEES_ITEM>

 <EMPNO>101</EMPNO>

 <ENAME>Paul</ENAME>

 <SAL>2000</SAL>

 </EMPLOYEES_ITEM>

 <EMPLOYEES_ITEM>

 <EMPNO>198</EMPNO>

 <ENAME>Humphrey</ENAME>

 <SAL>3200</SAL>

 </EMPLOYEES_ITEM>

 </EMPLOYEES>

 </ROW>

 <ROW>

 <DEPTNO>99</DEPTNO>

 <DNAME>Research</DNAME>

 <EMPLOYEES>

 <EMPLOYEES_ITEM>

 <EMPNO>167</EMPNO>

 <ENAME>Amina</ENAME>

 <SAL>4350</SAL>

 </EMPLOYEES_ITEM>

 </EMPLOYEES>

 </ROW>

</ROWSET>

However, since we are working here with a virtual view with a collection structure based on

multiple underlying tables, the database engine cannot infer the appropriate treatment of an

insert into this view. We need to create an INSTEAD OF INSERT trigger to instruct the server with

a little code of our own how we intend to handle an INSERT into this view:

CREATE TRIGGER department_ins

INSTEAD OF INSERT ON department

FOR EACH ROW

DECLARE

 emps emp_list; -- Holds a list of Employees

 emp emp_t; -- Holds a single Employee

BEGIN

 -- Insert the master

 INSERT INTO dept(deptno, dname)

 VALUES (:new.deptno, :new.dname);

 -- Insert the details, using value of :new.deptno as the DEPTNO

 emps := :new.employees;

 FOR i IN 1..emps.COUNT LOOP

 emp := emps(i);

 INSERT INTO emp(deptno, empno, ename, sal)

 VALUES (:new.deptno, emp.empno, emp.ename, emp.sal);

 END LOOP;

END;

This trigger inserts the :new.deptno and :new.dname values into the dept table, then loops over

the collection of <Employees> being inserted and inserts the values of each one as a new row in

the emp table, using the value of :new.deptno as the DEPTNO foreign key value in the emp table.

With the department view in place, and the <DepartmentList> datagram transformed into

canonical format in the deptemp-transformed.xml file, we can insert the transformed document

using OracleXML like this:

java OracleXML putXML

 -user xmlbook/xmlbook

 -fileName deptemp-transformed.xml

 department

This successfully inserts two rows into the department object view, with each row inserted in the

object view translating into one row in the dept table and one or more rows added to the emp

table.

12.2.6 Inserting Datagrams with Document Fragments

The <product-list> datagram in Example 12.25 contains the nested structure for <weight>,



 <dimensions>

 <units>mm</units>

 <width>133</width>

 <length>152</length>

 <height>33</height>

 </dimensions>

 <price>159.95</price>

 <features>

 SteadySound, The Next Generation Of Skip Protection, surpasses

 Sony's current 20-second Buffer Memory system.

 Synthesized Digital AM/FM Stereo Tuner precisely locks in the

 most powerful signal for accurate, drift-free reception.

 New Compact Design has attractive yet functional styling

 </features>

 </product>

</product-list>

Since we've dealt with some of these situations in previous examples, we'll move a little faster

through this example to get to the new nuance—the handling of the nested document fragment.

To capture the nested structure of <weight>, 

 <dimensions>

 <units>mm</units>

 <width>133</width>

 <length>152</length>

 <height>33</height>

 </dimensions>

 <price>159.95</price>

 <features>

 SteadySound, The Next Generation Of Skip Protection surpasses

 Sony's current 20-second Buffer Memory system.

 Synthesized Digital AM/FM Stereo Tuner precisely locks in

the

 most powerful signal for accurate, drift-free reception.

 New Compact Design has attractive yet functional styling

 </features>

 </product>

</product-list>

In this example, all the opening angle bracket characters in the content of the <features>

element have been replaced by the numerical character entity < to represent a literal

less-than sign, which is synonymous with the named character entity <.

Now we can use the following command to insert the transformed document into the product

table:

java OracleXML putXML

 -user xmlbook/xmlbook

 -fileName product-to-insert.xml

 -rowTag product

 -ignoreCase

 product

To complete the round-trip into the database and back out, let's look at how we would

dynamically serve a <product-list> datagram out of our product table for a product with a

particular SKU number on request over the Web.

Just as we used an XSLT transformation to convert the nested content of the <features> element

to a text fragment of XML markup on the way into the database, we'll use XSLT again on the way

out to turn the text fragment back into nested elements of the datagram we serve. We'll use a

similar transformation that performs the identity transformation on all elements of the document

except <features>, which we'll handle in a special way. Example 12.28 shows the required

transformation.

Example 12.28. Transforming Document Fragment Text into

Elements

<!-- features-frag-to-elts.xsl -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="xml" omit-xml-declaration="yes"/>

 <xsl:include href="identity.xsl"/>

 <!--

 | <features> is a column with embedded XML markup in its

 | corresponding column in the database. By disabling

 | the output escaping it will be included verbatim

 | (i.e. angle-brackets intact instead of < and >)

 | in the resulting document

 +-->

 <xsl:template match="features">

 <features>

 <xsl:value-of select="." disable-output-escaping="yes"/>

 </features>

 </xsl:template>

</xsl:stylesheet>

Example 12.28 uses the disable-output-escaping="yes" attribute on <xsl:value-of> to

request that the XSLT Processor include the text of the features document fragment verbatim in

the transformed output instead of "escaping" the less-than signs in the text with a character

entity like lt; or #60;.

To serve the <product-list> datagram, we just create a simple XSQL page with a SELECT *

FROM PRODUCT query, and associate it with the features-frag-to-elts.xsl transformation in its

<?xml-stylesheet?> instruction:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="features-frag-to-elts.xsl"?>

<xsql:query xmlns:xsql="urn:oracle-xsql" connection="xmlbook"

 rowset-element="product-list" row-element="product" id-attribute=""

 tag-case="lower">

 SELECT *

 FROM product

 WHERE sku = {@sku}

</xsql:query>

When a request comes in for this XSQL page with an appropriate sku parameter like:

http://yourserver/product.xsql?sku=1234567

this delivers a <product-list> datagram that looks exactly like what we started with at the

beginning of this section.

You can use the output of one XSQL page as the input of another to format a dynamic XML

datagram including document fragments as an attractive web page. Assuming that

show-product.xsl is an XSLT stylesheet that transforms a <product-list> datagram into

eye-catching HTML, you can use the <xsql:include-xsql> tag to include the output of the

product.xsql page as part of the input data for another XSQL page called show-product.xsql.

Simply create a show-product.xsql page that looks like:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="show-product.xsl"?>

<xsql:include-xsql href="product.xsql?sku={@sku}"

 xmlns:xsql="urn:oracle-xsql" />

This associates the show-product.xsl stylesheet to the page. Now a web request for:

http://yourserver/show-product.xsql?sku=1234567

uses the show-product.xsl stylesheet to transform the output of the product.xsql page, a

<product-list> datagram, into a lovely web page.

12.3 Storing Posted XML Using XSQL Servlet

We've seen that the general steps for inserting XML into the database are as follows:

1. Choose the table or view you want to use for inserting the XML information.

2. Create an XSL transformation that transforms the inbound document into the canonical

format for this table or view.

3. Transform the inbound document into the canonical format for the table or view into which

it will be inserted.

4. Insert the transformed document into your table or view with the OracleXML utility.

The Oracle XML SQL Utility works well for inserting XML documents you have in front of you in

operating system files. However, if you need to have other computers post live XML information

to your web site for insertion into your database, you'll need to use a slight twist on this approach.

12.3.1 Storing Posted XML Using XSQL Pages

The Oracle XSQL Servlet supports the <xsql:insert-request> action element, which you can

include in any XSQL page to automate these steps:

1. Read a posted XML document from the HTTP request.

2. Transform it into the canonical format for insertion using any XSLT transformation you

provide.

3. Insert the transformed document into the table or view of your choice.

4. Indicate the status of the operation by replacing the <xsql:insert-request> action

element with an <xsql-status> element to show how many rows were inserted or to

report an error.

Behind the scenes, the insert_request action handler makes programmatic use of the Oracle

XSLT Processor to do the transformation and the Oracle XML SQL Utility to do the insert, so

everything we've learned earlier applies here.

Given the name of the table or view to use as the insert target and the name of the XSLT

transformation to use, you add the following tag anywhere in your XSQL page:

<xsql:insert-request table="table_or_view_name"

 transform="transformname.xsl"/>

to transform and insert the posted XML document.

For example, recall the Moreover.com news feed from Example 12.3 and the

moreover-to-newsstory.xsl transformation we created in Example 12.5. The XSQL page in

Example 12.29 is all you need to insert posted XML news stories instead over the Web into your

newsstory table.

Example 12.29. XSQL Page to Insert Posted XML News Stories

<?xml version="1.0"?>

<!-- SimpleNewsInsert.xsql -->

<xsql:insert-request connection="xmlbook" xmlns:xsql="urn:oracle-xsql"

 table="newsstory"

 transform="moreover-to-newsstory.xsl"/>

One tag, that's it! No custom servlet to write, no XML to parse, and no transformation to do

manually. Deploying a new XSQL page to insert posted XML is as easy as copying the .xsql file to

a directory on your web server.

We can test the SimpleNewsInsert.xsql page by using the XSQL command-line utility with the

command:

xsql SimpleNewsInsert.xsql posted-xml=SomeFileToPost.xml

or, if the source of XML is coming directly from a URL, we can do this:

xsql SimpleNewsInsert.xsql posted-xml=http://example.com/someurl

Setting the posted-xml command-line parameter to the name of an XML file or URL returning

XML causes the XSQL page processor to treat that XML source as the posted XML source for

insert.

We can also test SimpleNewsInsert.xsql using any client program that can post an XML document

full of news stories. One approach is to use JavaScript in an HTML page to post some XML to the

server. In our example, we'll post XML the user types into a <TEXTAREA> so you can see what's

going on, but the technique used in the example applies to any XML.

The Internet Explorer 5.0 browser includes support for an XMLHttpRequest object that makes

quick work of the task from the browser client. Example 12.30 shows the JavaScript code of the

PostXMLDocument() function, which does the job of posting any XML document you pass in to the

URL you pass as a parameter.

Example 12.30. Function to Post XML Document to a Web

Server from IE5

// PostXMLDocument.js

// Uses HTTP POST to send XML Document "xmldoc" to URL "toURL"

function PostXMLDocument (xmldoc, toURL)

{

 // Create a new XMLHttpRequest Object (IE 5.0 or Higher)

 var xmlhttp = new ActiveXObject ("Microsoft.XMLHTTP");

 // Open a synchronous HTTP Request for a POST to URL "toUrl"

 xmlhttp.open("POST", toURL , /* async = */ false);

 // Could set HTTP Headers Here (We don't need to in this example)

 // xmlhttp.setRequestHeader("some-header-param","some value");

 // Send the request with in-memory XML Document "xmldoc" as body

 xmlhttp.send(xmldoc);

 // Return the response from the request (assumes it is an XML Doc)

 return xmlhttp.responseXML;

}

The function does the following:

1. Creates an XMLHttpRequest Object

2. Opens the request, indicating a method of POST

3. Sends the request, passing the XML document as the request body

4. Returns the XML document sent back by the server as a response

If the XSQL Servlet encounters an <xsql:insert-request> action
element and there is no posted XML document in the current
request, it will replace the action element in the data page with
the following innocuous <xsql-status> element:

<xsql-status action="xsql:insert-request"

 result="No Posted Document to Process" />

This will also be the case if any of the following is true:

• The XSQL page was requested as an HTTP GET.
• The MIME type of the HTTP POSTed document was not

text/xml, or the request didn't contain a valid XML

document.
• The request contained XML that was not well-formed.

We can use the PostXMLDocument() function in an HTML page by including the

PostXMLDocument.js JavaScript file in a <SCRIPT> tag like this:

<SCRIPT src="PostXMLDocument.js"></SCRIPT>

This is just what we've done in the newsstory.html page in Example 12.31. It includes a

<TEXTAREA> containing some sample XML that you can edit, a submit button that invokes the

parseXMLinTextAreaAndPostIt() in its onclick event, and a <DIV> named StatusArea where

the results returned from the server will be displayed.

Example 12.31. NewsStory.html Page Posts XML to

SimpleNewsInsert.xsql

<HTML>

 <HEAD>

 <SCRIPT src="PostXMLDocument.js"></SCRIPT>

 <SCRIPT>

 function parseXMLinTextAreaAndPostIt(){

 // Create a new XML Parser Object

 var xmldoc = new ActiveXObject ("Microsoft.XMLDOM");

 // Do the parsing synchronously

 xmldoc.async = false;

 // Parse the text in the TEXTAREA as XML

 xmldoc.loadXML(xmldocText.value);

 // Post the parsed XML document to the SimpleNewsInsert.xsql Page

 var response = PostXMLDocument(xmldoc, "SimpleNewsInsert.xsql");

 // Display the XML text of the response in the "StatusArea" DIV

 StatusArea.innerText = response.documentElement.xml;

 }

 </SCRIPT>

 </HEAD>

 <BODY>

 Type in an XML Document in Moreover.com News Format to Post:

 <TEXTAREA rows="7" style="width:100%" cols="70" name="xmldocText">

<moreovernews>

 <article>

 <url> http://technet.oracle.com/tech/xml </url>

 <headline_text> Oracle Releases XML Parser </headline_text>

 <source> Oracle </source>

 </article>

</moreovernews></TEXTAREA>

 <INPUT TYPE="button" Value="Post XML Document"

 onclick=" parseXMLinTextAreaAndPostIt()">

Response:<hr>

 <DIV id="StatusArea" style="font-family:monospace"></DIV>

 </BODY>

</HTML>

Figure 12.6 shows the newsstory.html page in action. It allows the user to type in an XML

document in Moreover.com news format and post it to the SimpleNewsInsert.xsql page for

processing.

Figure 12.6. Posting XML to an XSQL page from IE5

We can see that clicking on the button has posted the <moreovernews> datagram to the

SimpleNewsInsert.xsql page. The text of the XML response datagram returned from the server is

displayed in the status area of the web page, confirming the successful insertion of one news

article.

In a real application, your client code could search the XML response using XPath expressions.

The returned XML datagram might include elements or attributes to signal whether the request

was successful or not, as well as other useful information.

In Internet Explorer 5.0, the selectNodes() function on any node of the document can assist

with this task. For example, we can add this code:

// Try to find the rows attribute on <xsql-status rows="xx"/>

var result = response.selectSingleNode("//xsql-status/@rows");

if (result != null) {

 alert("Successfully posted " + result.text + " Stories ");

}

else {

 // Try to message element child of an <xsql-error>

 result = response.selectSingleNode("//xsql-error/message");

 alert(result.text);

}

to the newsstory.html page just after the line that reads:

StatusArea.innerText = response.documentElement.xml;

you can see how easy it is to search the response for information and to do something with the

data sent back in the XML response from the server.

You may be wondering what happens if the user makes a mistake in typing the XML. The answer:

you get an error. On the client side, in this case, since the xmldoc.loadXML() method is

attempting to parse the text in the <TEXTAREA> into an XML document. However, if you used

another method to post an XML document to the server that is not well-formed, the server will

likely just ignore it; this is what the XSQL Servlet will do if you post ill-formed XML.

We can prevent this from happening by adding a little code to check for parse errors and showing

the user any errors it finds. Add the following code to the newsstory.html page:

err = xmldoc.parseError;

// Stop and show any parse error to the user

if (err != 0) {

 StatusArea.innerText = "Your XML document is not well-formed.\n" +

 err.srcText + "\n" + "Line " + err.line + ", Pos " + err.linepos +

 "\n" + err.reason;

 return;

}

just after the line that reads:

xmldoc.loadXML(xmldocText.value);

If the user makes a mistake in the XML document, a helpful error is displayed in the status area

on the browser, as shown in Figure 12.7.

Figure 12.7. XML parse error displayed in the browser

Let's return now to posting news stories directly from the Moreover.com XML news feed. Using

the XSQL command-line utility we can insert the entirety of the live XML news feed using the

command:

xsql SimpleNewsInsert.xsql posted-xml=http://www.moreover.com/cgi-local/

 page?index_xml+xml

This will treat the XML document retrieved from the provided URL as the posted XML to the

SimpleNewsInsert.xsql page, transform the results for insert, then perform the insert into the

newsstory table, returning the resulting data page that indicates the successful insert of 30 news

stories:

<?xml version = '1.0'?>

<!-- SimpleNewsInsert.xsql -->

<xsql-status action="xsql:insert-request" rows="30"/>

However, let's say that due to the nature of this news feed, news stories stay in the feed for a few

days. If we want to avoid inserting the same story over and over again, we can easily do that by

making sure we don't insert a story unless its title and URL are a unique combination in our

newsstory table.

As we've done in previous examples, let's implement this behavior using a database INSTEAD OF

INSERT trigger. In the code of the trigger, we can check for the uniqueness of the news story and

only insert it if it is unique; otherwise, we'll just ignore it.

Since INSTEAD OF triggers can only be defined on database views in Oracle8i, we need to create

the newsstoryview as follows:

CREATE VIEW newsstoryview AS

SELECT *

 FROM newsstory

Then we can create the INSTEAD OF INSERT trigger on the new newsstoryview with this code:

CREATE OR REPLACE TRIGGER insteadOfIns_newsstoryview

INSTEAD OF INSERT ON newsstoryview FOR EACH ROW

DECLARE

 notThere BOOLEAN := TRUE;

 tmp VARCHAR2(1);

 CURSOR chk IS SELECT 'x'

 FROM newsstory

 WHERE title = :new.title

 AND url = :new.url;

BEGIN

 OPEN chk;

 FETCH chk INTO tmp;

 notThere := chk%NOTFOUND;

 CLOSE chk;

 IF notThere THEN

 INSERT INTO newsstory(title,url,source)

 VALUES (:new.title,:new.url,:new.source);

 END IF;

END;

Here we are assuming that the uniqueness of a story is defined by the combination of its TITLE

and its URL columns.

To check for existing news stories quickly, we can create a

unique index on the (TITLE,URL) combination with the

command:

CREATE UNIQUE INDEX newsstory_unique_title_url
 ON newsstory(title,url);

Finally, the only thing left to do is to change the <xsql:insert-request> action element in

SimpleNewsInsert.xsql above to use the newsstoryview instead of the newsstory table by

changing the line to read table="newsstoryview" instead of table="newsstory":

<xsql:insert-request table="newsstoryview"

 transform="moreover-to-newsstory.xsl"/>

Now, only unique news stories from the Moreover.com XML news feed will be inserted. Duplicate

entries will be ignored when they are posted.

Our SimpleNewsInsert.xsql is a page with just a single <xsql:insert-request> action element.

Of course, the <xsql:insert-request> tag can be combined with other XSQL action elements in

a page like <xsql:query> to first insert any posted XML document and then return some data

from queries. For example, the following XSQL page inserts any news stories from the posted XML

document (if any) and then returns an XML datagram showing the two most recently added

(max-rows="2") news stories from the newsstory table:

<?xml version="1.0"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:insert-request table="newsstoryview"

 transform="moreover-to-newsstory.xsl"/>

 <lateststories>

 <xsql:query tag-case="lower" max-rows="2"

 rowset-element="" row-element="story" >

 select *

 from newsstoryview

 order by id desc

 </xsql:query>

 </lateststories>

</page>

If this XSQL page is saved in a file called submitNewsStories.xsql, then browsing the URL:

http://yourserver/submitNewsStories.xsql

from Internet Explorer 5.0 produces the results shown in Figure 12.8.

Figure 12.8. Browsing the raw data page for

submitNewsStories.xsql

In this case, there was "No Posted Document to Process" since a browser uses the HTTP GET

method to retrieve a page whose address you type into the "Address" field, and a GET method has

no request body, just URL parameters. However, if this new submitNewsStories.xsql page were

the target of an HTTP POST with an XML message body as in the newsstory.html page in Example

12.31, the raw XML message you see in the browser would be returned as the XML response

datagram to the requester. The requester could use XPath expressions to programmatically

process the two latest news stories.

As a final observation in this section, we see above that the raw XML datagram is returned to the

browser because our XSQL page has no <?xml-stylesheet?> processing instruction to associate

an XSL stylesheet with it. However, with the addition of one extra line in the XSQL page:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="latest-news-stories.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <!-- etc -->

</page>

we could have an XSLT transformation called latest-news-stories.xsl format the <story>

elements in the data page on the server and return a nicely formatted HTML page to present the

results.

12.3.2 Posting and Inserting HTML Form Parameters

Sometimes, it's convenient to accept posted information as a set of HTML <FORM> parameters

since this is the native way browsers use to post information to a server. Consider the following

simple HTML page, which allows users to submit new news stories interactively from their

browser, as shown in Figure 12.9.

Figure 12.9. HTML form collecting data to be inserted

Every HTML form specifies a URL to use as the "submit action" for the form. Typically, this action

URL refers to some kind of server-side program that processes the set of HTML <FORM>

parameters sent by the browser in the HTTP POST request:

<FORM METHOD="post" ACTION="/cgi-bin/somescript">

We can also use an XSQL page as the action URL for an HTML form:

<FORM METHOD="post" ACTION="/mydir/somepage.xsql">

This way, when the form is submitted by the user, the XSQL Servlet receives an HTTP POST

request for the XSQL page with a message body containing all the HTML <FORM> parameters. This

is not technically the same as receiving a posted XML document in the message body as we did in

the previous section, but the XSQL Servlet allows the <xsql:insert-request> action element to

work equally well in both cases.

In the case of an HTML form submission, if the XSQL Servlet encounters an

<xsql:insert-request> action in your page, it synthesizes an XML document representing the

HTTP request. This request document contains all of the HTTP request parameters, session

variables, and cookies for the current request, and has the general form:

<request>

 <parameters>

 <param1>value1</param1>

 <param2>value2</param2>

 :

 </parameters>

 <session>

 <name1>val1</name1>

 <name2>val2</name2>

 :

 </session>

 <cookies>

 <cookiename1>value1</cookiename1>

 :

 </cookies>

</parameters>

Multiple Parameters with the Same Name

If multiple parameters are posted with the same name, they will
automatically be "rowified" to make subsequent processing easier. For
example, a request that posts or includes the following parameters:

• id=101
• name=Steve
• id=102
• name=Sita
• operation=update

will create a "rowified" set of parameters:

<request>
 <parameters>
 <row>

 <id>101</id>
 <name>Steve</name>
 </row>
 <row>
 <id>102</id>
 <name>Sita</name>
 </row>
 <operation>update</operation>
 </parameters>
 :
</request>

Once this <request> document has been created, the processing of the <xsql:insert-request>

tag behaves just as if an actual XML document had been posted. The value of the transform

attribute can be the name of an XSLT transformation to be used for transforming the synthesized

<request> document into the canonical format required for insertion into the table or view you

specify in the table attribute.

So to get the HTML <FORM> parameters inserted into the newsstoryview, we need to create an

XSLT stylesheet to transform the <request> document into the canonical format for the

newsstoryview. It helps to have an example of an actual <request> document our HTML form

produces when it is submitted. The easiest way to achieve this is to temporarily change the action

URL of our HTML form to point to an XSQL page that will echo back the request document to the

browser. The XSQL Servlet supports an <xsql:include-request-params> tag that does exactly

this:

<?xml version="1.0"?>

<xsql:include-request-params xmlns:xsql="urn:oracle-xsql"/>

The <xsql:include-request-params> includes the synthesized <request> document for your

posted form and returns it verbatim to the browser for inspection. If we name this file

echoPostedParams.xsql, we can modify the source code of our earlier NewsForm.html page to

have echoPostedParams.xsql as the action URL of the HTML form, like this:

<html>

<body>

 Insert a new news story...

 <form action="echoPostedParams.xsql" method="post">

 Title<input type="text" name="title_field" size="30">

 URL<input type="text" name="url_field" size="30">

 <input type="submit">

 </form>

<body>

</html>

If we browse the form, enter in some values into the Title and URL form fields, and submit the

form, the echoPostedParams.xsql page includes the <request> XML document for the current

form posting and returns the page back to your browser. From there, you can View Source... and

save the source file to disk to work with as you build your XSLT transformation. In this case, we

get back a <request> document that looks like this:

<request>

 <parameters>

 <title_field>Test Story</title_field>

 <url_field>http://foo.bar</url_field>

 </parameters>

 <session/>

 <cookies/>

</parameters>

This reflects the two input fields in the HTML form, title_field and url_field. We need to

transform this request document into the following document:

<ROWSET>

 <ROW>

 <TITLE>Test Story</TITLE>

 <URL>http://foo.bar</URL>

 <SOURCE>Some Source</SOURCE>

 </ROW>

</ROWSET>

The simple stylesheet in Example 12.32 will perform this transformation.

Example 12.32. Transforming Request Datagram to

ROWSET/ROW Format

<?xml version = '1.0'?>

<!-- request-to-newsstory.xsl -->

<ROWSET xsl:version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:for-each select="request/parameters">

 <ROW>

 <TITLE><xsl:value-of select="title_field"/></TITLE>

 <URL><xsl:value-of select="url_field"/></URL>

 <SOURCE>User-Submitted</SOURCE>

 </ROW>

 </xsl:for-each>

</ROWSET>

Note that this stylesheet is nearly identical to Example 12.5. The only difference is that we're

looping over request/parameters instead of over moreovernews/article elements.

Now we just need an XSQL page—let's call it insertnewsform.xsql —with an

<xsql:insert-request> tag that refers to request-to-newsstory.xsl and provides a table name

of newsstoryview:

<xsql:insert-request

 table="newsstoryview"

 transform="request-to-newsstory.xsl"/>

This, again, is just a slight variation on what we used for inserting XML posted in the

Moreover.com news format into the newsstory table. By modifying our NewsForm.html source to

put the insertnewsform.xsql as the action URL as shown in Example 12.33, we'll finish the

process.

Example 12.33. Inserting Posted HTML Form Parameters with

XSQL

<html>

<body>

 Insert a new news story...

 <form action="insertnewsform.xsql" method="post">

 Title<input type="text" name="title_field" size="30">

 URL<input type="text" name="url_field" size="30">

 <input type="submit">

 </form>

<body>

</html>

If we let a user fill out and post the form as is, the user will get the following raw XML as a

response from the insertnewform.xsql page:

<xsql-status action="xsql:insert-request" rows="1"/>

This is surely not going to win awards for user-friendliness. However, we can use two familiar

techniques to improve on this:

• Enhance insertnewsform.xsql to return the five latest news stories from the

newsstoryview as part of the response by adding an <xsql:query> tag to the page as

follows:

• <?xml version="1.0"?>

• <?xml-stylesheet type="text/xsl" href="lateststories.xsl"?>

• <page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

• <xsql:insert-request table="newsstoryview"

• transform="request-to-newsstory.xsl"/>

• <xsql:query tag-case="lower" max-rows="5"

• rowset-element="" row-element="story" >

• SELECT *

• FROM newsstoryview

• ORDER BY ID DESC

• </xsql:query>

</page>

• Associate a lateststories.xsl stylesheet to the insertnewsform.xsql page to transform the

five latest news stories in the XSQL data page into an HTML document before returning it

to the user:

• <html xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0">

• <head>

• <title>Latest Stories</title>

• </head>

• <body>

• <h2>Thanks for your Story!</h2>

• Here's a list of the latest stories we've received...

• <table border="0" cellspacing="0">

• <xsl:for-each select="page/story">

• <tr>

• <td><xsl:value-of select="title"/></td>

• </tr>

• </xsl:for-each>

• </table>

• </body>

</html>

Now, when the user posts a new news story, the raw XML datagram returned by the

insertnewsform.xsql page will be replaced by the HTML page, as shown in Figure 12.10.

Figure 12.10. Transformed results of posting a new news

story

12.4 Inserting Datagrams Using Java

In this section, we'll study how the previous techniques can be applied from within your own Java

programs.

12.4.1 Inserting Arbitrary XML Using Java

We've learned so far that the Oracle XML SQL Utility can be used to insert XML datagrams into

database tables and views. We used the command-line oraxsl utility to transform the XML

datagram into canonical <ROWSET>/<ROW> format before feeding it to the OracleXML utility for

insertion into the database. Later, we saw how a simple <xsql:insert-request> action element

could be used in an XSQL page to accomplish the same thing. The XSQL Servlet is able to

automate these steps since both the Oracle XSLT Processor (oraxsl) and the Oracle XML SQL

Utility (OracleXML) can be used programmatically by any Java program.

The API for the Oracle XSLT Processor comprises two simple-to-use objects, XSLStylesheet and

XSLProcessor, and the API for the Oracle XML SQL Utility is even simpler. The OracleXMLSave

object takes care of inserting XML into the database for us. Here we'll look at an example of using

these three objects in a simple Java program to insert the contents of a live Moreover.com news

story datagram fetched directly over the Web into our newsstoryview.

Example 12.34 does the following to accomplish this feat:

1. Parses the live XML news feed from Moreover.com by calling the parse() method of a

DOMParser object, passing it a string URL to the live news feed:
2. // Create a DOM Parser to Parse the News Document

3. DOMParser dp = new DOMParser();

4. dp.parse(theNews);

5. // Parse the document at the URL specified in theURLString

XMLDocument moreoverNewsDoc = dp.getDocument();

6. Searches the XML datagram retrieved to count how many articles were received by using

the selectNodes() method on the XML Document object, passing the XPath expression of

moreover/article:
7. // Search for a list of all the matching articles and print the count

8. NodeList nl = moreoverNewsDoc.selectNodes("moreovernews/article");

9. int articleCount = nl.getLength();

System.out.println("Received " + articleCount + " articles...");

10. Constructs a new XSLStylesheet object by finding the moreover-to-newsstory.xsl

transformation source file in the CLASSPATH using getResourceAsStream():
11. // Load the XSL Stylesheet from the top-level directory on CLASSPATH

12. InputStream xslstream = Object.class.getResourceAsStream("/"+theXSL);

XSLStylesheet transform = new XSLStylesheet(xslstream,null);

13. Constructs an XSLProcessor object and calls processXSL on it to transform the incoming

XML news feed document into the canonical format that OracleXMLSave understands

using the XSL transformation:
14. // Create an instance of XSLProcessor to perform the transformation

15. XSLProcessor processor = new XSLProcessor();

16. // Transform moreoverNewsDoc by theXSL and get result as a DOM Document

Fragment

17. DocumentFragment df = processor.processXSL(transform, moreoverNewsDoc);

18. // Create a new XML Document and append the fragment to it

19. Document result = new XMLDocument();

result.appendChild(df);

20. Constructs an OracleXMLSave object, passing it a JDBC connection and the name of the

newsstoryview we want to use for the insert operation:
21. // Pass the transformed document (now in canonical format) to OracleXMLSave

22. Connection conn = Examples.getConnection();

OracleXMLSave oxs = new OracleXMLSave(conn,"newsstoryview");

23. Calls insertXML on the OracleXMLSave object, passing the transformed XML document in

canonical format:

int rowsInserted = oxs.insertXML(result);

24. Commits the transaction and closes the connection:
25. conn.commit();

conn.close();

The result is the MoreoverIntoNewsStory.java program, which could be used to periodically pick

up news feeds over the Web and dump them into your database. The full source is shown in

Example 12.34.

Example 12.34. Programmatically Inserting News Stories

import oracle.xml.parser.v2.*;

import java.io.InputStream;

import org.w3c.dom.*;

import java.net.URL;

import java.sql.Connection;

import oracle.xml.sql.dml.OracleXMLSave;

import Examples;

public class MoreoverIntoNewsstory {

 public static void main(String[] arg) throws Exception {

 String theNews = "http://www.moreover.com/cgi-local/page?index_xml+xml",

 theXSL = "moreover-to-newsstory.xsl";

 // Create a DOM Parser to parse the news document

 DOMParser dp = new DOMParser();

 dp.parse(theNews);

 // Parse the document at the URL specified in theURLString

 XMLDocument moreoverNewsDoc = dp.getDocument();

 // Search for a list of all the matching articles and print the count

 NodeList nl = moreoverNewsDoc.selectNodes("moreovernews/article");

 int articleCount = nl.getLength();

 System.out.println("Received " + articleCount + " articles...");

 // Load the XSL Stylesheet from the top-level directory on CLASSPATH

 InputStream xslstream = Object.class.getResourceAsStream("/"+theXSL);

 XSLStylesheet transform = new XSLStylesheet(xslstream,null);

 // Create an instance of XSLProcessor to perform the transformation

 XSLProcessor processor = new XSLProcessor();

 // Transform moreoverNewsDoc by theXSL and get result as a DOM Document Fragment

 DocumentFragment df = processor.processXSL(transform, moreoverNewsDoc);

 // Create a new XML Document and append the fragment to it

 Document result = new XMLDocument();

 result.appendChild(df);

 // Pass the transformed document (now in canonical format) to OracleXMLSave

 Connection conn = Examples.getConnection();

 OracleXMLSave oxs = new OracleXMLSave(conn,"newsstoryview");

 int rowsInserted = oxs.insertXML(result);

 conn.commit();

 conn.close();

 System.out.println("Inserted " + rowsInserted + " articles...");

 }

}

12.4.2 Using XPath Expressions to Insert Data

When a truly custom storage mapping is required, XPath expressions can be used

programmatically to select any necessary pieces of information from the incoming XML datagram

that need to be stored in the database. You can then use standard Java or PL/SQL code to insert

this information into one or more tables.

Recall that the Oracle XML Parser supports the programmatic use of XPath expressions using the

following functions on any node of an XML document:

selectNodes(XPathExpression)

Selects the set of nodes matching the arbitrary XPathExpression you supply.

selectSingleNode(XPathExpression)

Selects the first node matching the XPathExpression you supply.

valueOf(XPathExpression)

Selects the value of the XPathExpression you supply using the same semantics as the

<xsl:value-of select="XPathExpression"/> you supply.

Recall our credit card <AuthorizationRequest> datagram from Example 12.1:

<?xml version="1.0"?>

<!DOCTYPE AuthorizationRequest SYSTEM "creditcardauth.dtd">

<AuthorizationRequest>

 <CardNumber>4678223355451001</CardNumber>

 <Expiration>10/2001</Expiration>

 <Amount Currency="ITL">118000</Amount>

 <MerchantId>84592342</MerchantId>

 <Date>27-12-1999 11:27:04</Date>

</AuthorizationRequest>

If req is a variable holding the <AuthorizationRequest> element as a result of calling

getDocumentElement() on the parsed authorization request XML datagram, then this code:

String currency = req.valueOf("Amount/@Currency");

retrieves the value of the Currency attribute of the <Amount> element in the

<AuthorizationRequest>, and the code:

NodeList nl = req.selectNodes("Amount[@Currency='GBP']");

retrieves a list of <Amount> elements (perhaps none!) that have a Currency attribute with the

value GBP for British pounds sterling.

Observe in Example 12.35 how the valueOf() method is used on the document element of the

incoming <AuthorizationRequest> XML datagram to extract all of the interesting data from it

into program variables. Once we've extracted the data we want to insert into these variables, we

can use a JDBC PreparedStatement or a SQLJ statement to do the database INSERT into the

authorization_request table.

Example 12.35. Inserting AuthorizationRequest with XPath

and SQLJ

import java.sql.*;

import oracle.xml.parser.v2.XMLElement;

import org.w3c.dom.Document;

import sqlj.runtime.ref.DefaultContext;

import Examples;

public class CreditAuthorization {

 public static long newRequest(Document authDoc)

 throws Exception {

 // Connect to the database

 DefaultContext.setDefaultContext(new

DefaultContext(Examples.getConnection()));

 XMLElement req = (XMLElement)authDoc.getDocumentElement();

 // Get String values of important elements in XML Document

 // in preparation for insert

 String cardNumber = req.valueOf("CardNumber");

 String expiration = req.valueOf("Expiration");

 String amount = req.valueOf("Amount");

 String currency = req.valueOf("Amount/@Currency");

 String merchantId = req.valueOf("MerchantId");

 String requestDate = req.valueOf("Date");

 // Split up the MM/YYYY expiration value for insert

 String expMonth = expiration.substring(0,2);

 String expYear = expiration.substring(3);

 // Request Id assigned to this request during the insert

 String requestId;

 // Insert the information content into appropriate

 // database columns, using a Sequence for generating

 // a unique request Id.

 #sql{BEGIN

 INSERT INTO authorization_request (request_id,

 request_date,

 card_number,

 exp_month,

 exp_year,

 amount,

 currency,

 merchant_id)

 VALUES(authorization_request_seq.nextval,

 TO_DATE(:requestDate,'DD-MM-YYYY HH24:MI:SS'),

 :cardNumber,

 :expMonth,

 :expYear,

 :amount,

 :currency,

 :merchantId)

 RETURNING request_id INTO :OUT requestId;

 COMMIT;

 END;

 };

 return Long.parseLong(requestId);

 }

}

This example is simple, but you can see that by applying the techniques demonstrated here to

extract relevant information from the datagram using XPath expressions and to insert the

information collected into one or more database tables, you can achieve an arbitrarily

complicated storage mapping for any XML datagram that does not lend itself to the techniques

discussed earlier.

Chapter 13. Searching XML with interMedia

In previous chapters, we've seen a variety of ways that XML datagrams can be
broken up and stored relationally. Applications can then use XML for universal
data exchange and SQL for sophisticated data management and speedy queries.
However, not all XML documents are pure datagrams. When applied to pure
documents and datagrams with embedded document fragments, the combined
XML/SQL method stores at least some XML in its original form as marked-up text.
In order to utilize stored marked-up text in a query, you'll need interMedia's Text
component, which adds XML document search and full-text search capabilities to
SQL.

13.1 Why Use interMedia?

To illustrate why interMedia is needed to fully leverage XML stored in Oracle, let's
work through an example, using the simple insurance claim document shown in
Example 13.1.

Example 13.1. Insurance Claim Document #77804

<!-- claim77804.xml -->
<Claim>
 <Payment>1000</Payment>
 <DamageReport>
 The insured's <Vehicle Make="Volks">Beetle</Vehicle>
 broke through the guard rail and plummeted into a ravine.
 The cause was determined to be <Cause>faulty brakes</Cause>.
 Amazingly there were no casualties.
 </DamageReport>
</Claim>

This document can be broken up and stored in a table as follows:

CREATE TABLE claim (
 claimid NUMBER PRIMARY KEY,
 payment NUMBER,
 damagereport CLOB
);

where the <DamageReport> fragment is stored in the damagereport column.

Because it's a CLOB (Character Large Object) datatype, the damagereport

column can store large text values, including entire XML documents or document
fragments. We use a CLOB in this case instead of a VARCHAR2 column because a
VARCHAR2 cannot exceed 4000 bytes, while a CLOB can hold up to 4 gigabytes
of text.

Stored in the table, our example document would look like the sample shown in
Figure 13.1.

Figure 13.1. Insurance claim damage report stored in a CLOB

column

The claim IDs and payment amounts are stored in NUMBER columns, for which
Oracle provides a very rich feature set: you can index them, reference them in
WHERE and ORDER BY clauses, and use them in calculations and functions. In

contrast, the damagereport column is just a chunk of stored text. Oracle8i

doesn't provide many native features to leverage this data other than simple
pattern matching and extracting substrings by offset. How can we utilize the

information that's now locked up in the damagereport column?

If the document were an XML file outside the database, you might think of using

an XSLT stylesheet with templates that uses the XPath contains() function to

search the document's <DamageReport> text. For example, the following

stylesheet returns a message if the word "brakes" is found within a <Cause>

element nested inside a <DamageReport> element:

<!-- search-cause.xsl -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:output method="text"/>
 <xsl:template match="/">

 <!-- XPath to find 'brakes' within <Cause> within <DamamgeReport>
-->
 <xsl:if test=" //DamageReport//Cause[contains(.,'brakes')] ">
 Document Contains "brakes" inside the Cause
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

If we use the command-line oraxsl utility to apply this stylesheet to the

claim77804.xml document in Example 13.1 like this:

oraxsl claim77804.xml search-cause.xsl

we'll get the result:

Document Contains "brakes" inside the Cause

On the other hand, applying the stylesheet to the following claim document,
claim77085.xml, produces no output, because "brakes" is not found within the

<Cause> element nested inside the <DamageReport>.

<!-- claim77805.xml -->
<Claim>
 <ClaimId>77805</ClaimId>
 <Payment>1200</Payment>
 <DamageReport>
 The insured's <Vehicle Make="Audi">TT</Vehicle>
 hit a tree. The cause was determined to be
 a <Cause>missing bolt</Cause> in the wheel assembly.
 </DamageReport>
</Claim>

Technically, this approach provides the document searching functionality we
need, but it clearly doesn't scale. This brute force approach runs very slowly if the
document is large or if you have hundreds of thousands of documents to plough
through.

We want Oracle's proven scalability and its sophisticated query and data
manipulation capabilities without sacrificing the functionality of the XPath

contains() function for finding text within our XML documents and document

fragments. We need the XPath contains() functionality inside Oracle—a way to

search stored XML for specific words within specific XML elements.

The answer is interMedia, which provides exactly what we need. In fact, not only

does interMedia provide XPath contains()-type XML text-searching

functionality, it's also faster, scalable to data warehouses or content repositories
of millions of XML documents, and supports searches that can be much more
sophisticated than XPath substring pattern matching, as we'll see in this chapter.

13.2 What Is interMedia?

interMedia is a family of database extensions that allows Oracle8i to more
effectively manage multimedia types such as images, movies, sound clips, and
documents. interMedia Text is the component of interMedia that enables
searching XML documents, document fragments, and other document content.
While the interMedia extensions are technically a separate product, they are
included on the Oracle8i CD and can be installed and used at no additional cost.
The examples in this chapter require and assume that interMedia Text has been
installed in your Oracle8i Release 2 (8.1.6) database.

The main feature of interMedia Text is scalable full-text search—that is, the
ability to quickly search through a huge number of documents and find those that
contain a certain word or phrase, like a web search engine. Let's walk through an

example, returning to our claim table. We want to do XPath contains()-like

full-text searches on the damagereport column. The first step is to build a

specialized index on the column:

CREATE INDEX damagereportx ON claim(damagereport) INDEXTYPE IS
ctxsys.context;

interMedia Text versions 8.1.5 and 8.1.6 use PL/SQL external
procedures for indexing. This means that in order for a CREATE
INDEX to work, you need to have a Net8 listener running and
configured to invoke external procedures. If the listener is not
running or is not properly configured, the CREATE INDEX
statement will fail with the error message:

DRG-50704: Net8 listener is not running or cannot start
external procedures

Details on how to configure the listener.ora and tnsnames.ora
files can be found in the Oracle8i Administrator's Guide (see the
section "Managing Process for External Procedures") or in the
interMedia 8.1.5 Technical Overview; both are available online
at the Oracle Technology Network web site,
http://technet.oracle.com.

The INDEXTYPE clause tells the database to build a special type of index called a
context index, instead of the regular index used for other types of data. A regular
index allows efficient equality and range searches. The context index, on the
other hand, allows full-text searching, using the SQL CONTAINS() function:

SELECT claimid
 FROM claim
 WHERE CONTAINS(damagereport, 'brakes') > 0;

The first argument to CONTAINS is the column being searched. The second
argument is the text search string. The CONTAINS function returns a number for

each row indicating how closely the document matches the query. The number 0

(zero) means that the document does not match at all, so the > 0 part of the

query predicate is needed to eliminate rows that do not contain brakes from the

result set. This does not mean that CONTAINS blindly marches down the table

searching each row and returning 0 or non-zero for each one. On the contrary,

CONTAINS uses the context index to go directly to matching ROWIDs in a way
that's conceptually similar to how a range search uses a regular index.

Putting it all together, the example query will return the IDs of those claims
where the word "brakes" appears anywhere in the text content of the XML

fragment stored in damagereport. This will find our previous example claim

77804 row, and any other claims in the table that have "brakes" in damagereport.

Furthermore, because it uses the context index, this query can be applied to
tables containing millions of claims and return matching results in seconds or
better.

So now we know how to do efficient full-text searches on our XML fragments.
However, if we are only looking for claims where the cause involves brakes, we

may get more claims than we want using this query. For instance, a damage
report like this in a claim:

<DamageReport>
 The insured's <Vehicle Make="Toyota">Camry</Vehicle>
 <Cause>ran through a red light</Cause> and collided
 with another vehicle. An inspection of the brakes found no defects.
</DamageReport>

also contains the word "brakes," although they're not the cause of the accident.
Our earlier example XPath query:

//DamageReport//Cause[contains(.,'brakes')]

is more precise than the interMedia XML query expression we used:

WHERE CONTAINS(damagereport, 'brakes') > 0

because the former narrows the scope of the contains() function to the text

content of the <Cause> element within the DamageReport. The latter finds the

word "brakes" anywhere inside the damage report, not just inside the <Cause>

tag. We need this more precise searching functionality in our interMedia query,
too.

In order to reference XML elements in our SQL CONTAINS query, we need to
modify the context index to use a component called a sectioner. The sectioner
knows about structured formats like XML, and adds information about each
document's structure to the index. The specific sectioner we'll use here is called
the autosectioner.

13.2.1 Using the Autosectioner

To use the autosectioner in the index, first drop the existing index:

DROP INDEX damagereportx;

then recreate the index, specifying the autosectioner in the CREATE INDEX
statement's PARAMETERS clause like this:

CREATE INDEX damagereportx ON claim(damagereport)
INDEXTYPE IS ctxsys.context
PARAMETERS ('section group ctxsys.auto_section_group');

We can use this same technique to create an XML document

search index over the xmldoc column in our xml_documents

table from Chapter 5, and Chapter 6. This enables fast XML
searches over the XML documents stored there using the
techniques in this chapter. The syntax is:

CREATE INDEX xmldoc_idx ON xml_documents(xmldoc)
INDEXTYPE IS ctxsys.context PARAMETERS ('section group
ctxsys.auto_section_group');

Once the index is built with the autosectioner, we can narrow the text search
scope to particular XML tags using the WITHIN keyword:

SELECT claimid
 FROM claim
 WHERE CONTAINS(damagereport, 'brakes WITHIN cause') > 0;

This query looks for the word "brakes" in the damagereport text, but only when

it occurs in between <Cause> and </Cause>. This would match claim 77804 but

would not match a document with the previous Toyota Camry <DamageReport>

since "brakes" was not within the <Cause> element there. Our goal was to

achieve the functionality of matching documents where the following XPath
expression was true:

//DamageReport//Cause[contains(.,'brakes')]

Modifying the previous query to include:

CONTAINS(damagereport, 'brakes WITHIN cause') > 0

delivers results that are semantically similar to the XPath example. However, the
two queries are not exactly the same. There are some important differences
between XPath and CONTAINS queries:

• An XPath query is designed to apply to a single document. The SQL
CONTAINS, on the other hand, is designed to be applied to a whole table of
documents, returning those that match the criteria. In order to apply the
XPath query to a set of files, we would need to parse the entire set of
documents into memory each time, or iterate over each file in the set, one
at a time. Yikes!

• An XPath predicate can return parts of an XML document or fragment.

The following XPath query uses the XSLT document() function to apply our

earlier expression as a predicate on the claim77804.xml document, then

continues to select only the <Vehicle> subelements:

document("claim77804.xml")[//DamageReport
 //Cause[contains(.,'brakes')]
]//Vehicle

This returns the <Vehicle> element if the text content of the <Cause>

element, nested within the <DamageReport> element, contains the text

"brakes."

The SQL query, on the other hand, returns what's in the SELECT list of your
query, that is, full column values. So, in our example, you can get just the

claimid of matching claims, or the sum of the payments with

SUM(payment), or the full text content of the <DamageReport> element,

because these are column values. You cannot, however, get just the

<Vehicle> part of the <DamageReport> element, as the above XPath query

does, without parsing the content of each returned damagereport using a

stored function like xpath.extract() from Chapter 5.

The hard part of the problem, finding only those documents in a large set

that contain the word "brakes" within their damage report's <Cause> tag, is

done very efficiently. If the number of documents in the result set will be
reasonably small, parsing the document fragment of matching rows in the
result set to extract child elements is very feasible.

• An XPath query can match documents based purely on the existence of
elements. For instance:

document("claim77804.xml")[//Cause]

matches if the document has a <Cause> element. SQL CONTAINS, on the

other hand, is built for text searching, so while you can find all documents

where the <Cause> element contains a word or phrase, you cannot search

just for the existence of the <Cause> element.

• Although it depends on the XPath query engine, most likely an XPath

contains() is done through a brute force search of the element content,

like a grep or a Search and Replace in a word processor. The SQL

CONTAINS, on the other hand, uses the context index, which allows it to go
directly to the matching documents. It's more like a fast web search
engine.

• XPath contains() does substring matching like the SQL function INSTR.

The SQL CONTAINS, on the other hand, does word matching.

This means that an XPath contains() like:

contains(., 'amount')

would match any of these strings:

amount
amounting
tantamount

because they all have "amount" as a substring. However, only the first is
the word "amount" and so a SQL CONTAINS like:

CONTAINS(text, 'amount')

would match only the first string. interMedia Text can do substring
matching, but it is not the default behavior.

• Another difference resulting from substring matching versus word
matching is phrase searching. When searching for phrases, interMedia
looks for two words in a specific order; intervening whitespace and

punctuation are ignored. The SQL CONTAINS:

CONTAINS(text, 'faulty brakes')

would match any of these strings:

faulty brakes
faulty(tab)brakes
faulty(newline)brakes
faulty: brakes

but the XPath contains():

contains(.,'faulty brakes')

would match only the first string, as it is doing strict substring matching.

Even with the XPath normalize-space() function:

contains(normalize-space(.,'faulty brakes'))

XPath can match only the first three strings.

• By default, interMedia does case-insensitive word matching. For example,
searching for "brakes" would find "brakes," "Brakes," or "BRAKES" in the
indexed text. XPath, which does strict substring matching, will do
case-sensitive matching. interMedia is capable of doing case-sensitive
searching, but it is not the default behavior.

A future version of the Oracle8i database may offer native
XPath element extraction in the core searching engine. But until
then, the best strategy is to combine an interMedia search with
the CONTAINS function to find the "needle in a haystack," so to

speak, and then use the xpath.extract() function we built in

Chapter 5 to dig into the document fragments so we can extract
just the subelements we are looking for. A simple example of
this would be:

SELECT claimid,
xpath.extract(damagereport,'//Vehicle') as
VehicleFrag
 FROM claim
 WHERE CONTAINS(damagereport, 'brakes WITHIN cause') >
0;

This would return a result like:

CLAIMID VEHICLEFRAG
------- --
77804 <Vehicle Make="Volks">Beetle</Vehicle>

Keep these differences in mind for the remainder of the chapter. When we see a

SQL CONTAINS query and an XPath contains() query together, remember that

they are only analogues, and not direct equivalents of each other.

From this point on in the chapter, when we discuss a CONTAINS query, we'll show
only the text query string. However, we now understand that this string needs to
be placed inside a CONTAINS function, and that the CONTAINS must be part of a
whole, valid SQL statement, as in most of the previous examples. Similarly, for
the rest of the chapter, when we see the syntax of an XPath predicate to compare
it with the interMedia query syntax, it's understood that the predicate is being
used to qualify a document root node, as in:

document("somedoc.xml")[example-predicate]

So far, we've seen basic text searching with interMedia: how to index and search
text columns, and how to reference XML elements to increase precision. Now
we'll take a closer look at the interMedia query language to see how we can
perform more sophisticated XML searches.

13.3 The interMedia Query Language

As we've learned, interMedia by default performs case-insensitive word matching,
ignoring punctuation. So the CONTAINS query:

snow

matches all the following:

snow man
Snow Day
Let it snow!

A multiple-word query is treated as a phrase search. The words must come in the
specified order, with no intervening words. For instance, the query:

snow tires

matches:

Snow tires are required.
Very deep snow -- tires require chains.

but not:

Bob quickly tires -- snow shoveling is hard work. (incorrect order)
Snow man tires are the best you can buy! (intervening words)

The query language also offers familiar Boolean operators. The query:

snow AND tires

finds any document with the word "snow" as well as the word "tires," while:

snow OR tires

finds any document with the word "snow" or the word "tires," or both.
Parentheses can be used for grouping:

(rain OR snow) AND tires

Keep in mind that this whole expression is a single argument to the SQL
CONTAINS function, so a real query would look like this:

SELECT claimid
 FROM claim
 WHERE CONTAINS(damagereport, '(rain OR now) AND tires') > 0

13.3.1 The WITHIN Operator

The syntax of the WITHIN operator is fairly simple:

text_subquery WITHIN elementname

text_subquery can involve words, phrases, Boolean operators—pretty much

anything and everything we've seen so far. element can be any XML tag.

Although XML tags and XPath queries are case-sensitive, the interMedia query
language is not, so all case variations of the tag are matched. In most search
applications, this is actually a benefit, but if your queries must distinguish tag
case, the index can use the XML sectioner—covered later in this chapter—instead
of the autosectioner.

Like an XPath contains(), a WITHIN search searches the entire text content of

the named tag, including the text content of all descendants of the tag. For
instance, the query:

XML WITHIN title

would match this fragment:

<Title>
 Structured Documents
 <Subtitle>
 An introduction to HTML, XML, and SGML
 </Subtitle>
</Title>

even though the word "XML" is in the text content of <Subtitle>, and not in the

direct text children of <Title>.

WITHIN has higher precedence than the AND and OR operators, so you need to
use parentheses when using these in the text subquery. For example, if you were
looking for claims caused by bad weather, you might try:

rain OR snow WITHIN cause

However, because of the tight binding, WITHIN will apply only to "snow," so this
query will find documents where the word "snow" appears in between the

<Cause> tags, and documents where the word "rain" appears anywhere in the

text. This would be like the XPath contains() predicate:

contains(.,'rain') or .//Cause[contains(.,'snow')]

This isn't what we want. The correct syntax for our SQL CONTAINS query includes
parentheses:

(rain OR snow) WITHIN cause

which is like the XPath:

.//Cause[contains(.,'rain') or contains(.,'snow')]

The parentheses force the WITHIN to apply to the whole subquery.

If you're using a text subquery, it must match a specific occurrence of the
element. For instance, taking a fragment of the Shakespearean play example
used in a previous chapter:

<LINE>Now, fair Hippolyta, our nuptial hour</LINE>
<LINE>Draws on apace; four happy days bring in</LINE>

we have two occurrences of the <LINE> element. The query:

(fair and days) WITHIN line

is similar to the XPath:

.//LINE[contains(.,'fair') and contains(.,'days')]

Neither matches this document fragment. Although the fragment contains the

word "fair" and the word "days", and both are within <LINE> elements, they are

in different <LINE> elements. The word "fair" is in the first occurrence, and "days"

is in the second. We can rewrite the query as:

(fair WITHIN line) AND (days WITHIN line)

which is like the XPath:

.//LINE[contains(.,'fair')] and .//LINE[contains(.,'days')]

We now have two independent WITHIN clauses, and this query would match the
fragment. To complete the example, the query:

(fair and hour) WITHIN line

also finds the fragment, because the words "fair" and "hour" appear within the

same instance of the <LINE> element.

13.3.2 Combined WITHIN Clauses

An interMedia query can have multiple WITHIN clauses, allowing you to perform
more sophisticated XML searches. Combining multiple WITHIN clauses with the
AND operator searches different parts of the document at the same time, which
is useful for finding data based on the intersection of criteria. As an example, let's
take a database of movie description fragments:

<Movie>
 <Title>The Man Who Knew Too Much</Title>
 <Actors>
 <Actor>James Stewart</Actor>
 <Actor>Doris Day</Actor>
 </Actors>
 <Director>Alfred Hitchcock</Director>
</Movie>

with AND-combined WITHIN clauses, we can find Hitchcock movies with Jimmy
Stewart:

(James Stewart WITHIN actor) AND (Alfred Hitchcock WITHIN director)

Combining WITHIN clauses with OR is useful when dealing with heterogeneous
document sets—in which not all documents use the same doctype. In such cases,
different DTDs might choose different tags to represent the same information.
Consider a table with these two rows:

Row 1 <LastName>Chan</LastName>
Row 2 <Surname>Chan</Surname>

The first row's fragment uses <LastName> tags for the last name, while the

second uses <Surname> tags. In order to search the whole table for Chan, you'll

need to use OR-combined WITHIN clauses:

(chan WITHIN lastname) OR (chan WITHIN surname)

Later in this chapter we'll see an alternative method of handling heterogeneous
doctypes using logical tags.

13.3.3 Nested WITHIN Clauses

The element part of a WITHIN query applies to any occurrence of the element in

the XML at any level of the document—no matter where it is, how deeply it is
nested, or what the ancestor elements are. In other words, the CONTAINS query:

brakes WITHIN cause

is similar to the XPath:

.//Cause[contains(.,'brakes')]

The // applies no constraints on the ancestry or level of <Cause>. Sometimes,

however, parentage is very significant. Consider these three fragments from a
multimedia catalog:

<Book>
 <Title>Oracle Design</Title>
 <Description>
 This book looks thoroughly at the field of Oracle
 relational database design
 </Description>
</Book>
<CD>
 <Title>Oracle: The Soundtrack</Title>
 <Description>
 Music inspired by the flexibility and speed of
 Everyone's favorite RDBMS
 </Description>
</CD>
<Book>
 <Title>Ancient Prophecies</Title>
 <Description>
 The history of Greece's Oracle at Delphi
 </Description>
</Book>

If you're looking for books on Oracle programming (and who wouldn't be?), you
might try:

oracle WITHIN title

This is imprecise because it will also return the Oracle Soundtrack CD, which is
not a book. You might then try:

oracle WITHIN book

This would filter out the CD, but now you'd get a history text because the word

"Oracle" is mentioned in the <Description>, which is part of the <Book> element

text content.

To perform this query, you need to nest WITHIN clauses:

(oracle WITHIN title) WITHIN book

This will search for the word "oracle" within the <Title> tags, but only where the

<Title> tags are within a <Book> tag—in other words, this will find books whose

titles include "oracle". This is analogous to the XPath:

.//Book//Title[contains(.,'oracle')]

There are several important things to keep in mind when you're using nested
WITHIN searches:

• You must use parentheses around the inner WITHIN expression. The
query:

oracle WITHIN title WITHIN book

is not legal syntax.

• The left-hand operand of WITHIN must be a text query and cannot be an
element. The query:

oracle WITHIN (title WITHIN book)

is illegal.

• Like any WITHIN search, direct parentage is not guaranteed. The XPath
analogue of the example nested WITHIN query is:

.//Book//Title[contains(.,'oracle')]

and not:

.//Book/Title[contains(.,'oracle')]

• Because of the internal details of how XML element indexing is
implemented, equal elements, which bracket the same text content,
cannot be distinguished. For instance, the query:

(important WITHIN italic) WITHIN bold

would match:

<Bold><Italic>Really Important</Italic></Bold>

but it would also match:

<Italic><Bold>Really Important</Bold></Italic>

Continuing with our multimedia catalog example, say that we're now looking for
a general book on databases that discusses Oracle. The criteria are:

• It must be a book.
• Its title must contain the word "database".
• Its description must contain the word "oracle".

For this search, we need to use both nested WITHIN clauses and AND-combined
WITHIN clauses:

((database WITHIN title) AND (oracle WITHIN description)) WITHIN book

This is similar to the XPath:

.//Book[.//Title[contains(.,'database') and
 .//Description[contains(.,'oracle')]]

Although relatively complex, this query leverages the entire XML element
structure for a very precise and sophisticated text query.

We've seen how combined WITHIN clauses and nested WITHIN clauses can be
used to improve search precision. AND-combined WITHIN clauses can narrow
searches by the intersection of criteria, while nested WITHIN clauses can help
filter out ambiguous uses of a tag. Nested AND-combined WITHIN clauses can
perform more precise searches.

13.3.4 Namespaces

interMedia currently supports indexing based on the core XML 1.0 standard and
is not currently aware of XML namespaces. For example, it does not know that
the tag is composed of an arbitrary namespace prefix and tag name. In these two
documents:

<x xmlns:edi='http://ecommerce.org/schema'>
 <edi:transid>12345</edi:transid>
</x>

<x xmlns:ecomm='http://ecommerce.org/schema'>
 <ecomm:transid>12345</ecomm:transid>
</x>

<edi:transid> and <ecomm:transid> are really the same element, because the

namespace URIs (Uniform Resource Identifiers) are the same. However,
interMedia treats these as different tags. To search both of them, you'll need to
use OR-combined multiple WITHIN clauses:

(12345 WITHIN edi:transid) OR (12345 WITHIN ecomm:transid)

This is not a problem if your documents standardize on the namespace prefixes.
Also, if there are only a few variants of namespace prefixes in your document set,
you can use the XML sectioner, covered later in this chapter, to map them to the
same logical tag name.

13.3.5 Attribute Value Searching

So far, we've covered the use of XML element names in the WITHIN clause. The
autosectioner and WITHIN are also capable of text searching within attribute
values. For instance, let's return to our original insurance fragment:

<DamageReport>
 The insured's <Vehicle Make="Volks">Beetle</Vehicle>
 broke through the guard rail and plummeted into a ravine.
 The cause was determined to be <Cause>faulty brakes</Cause>.
 Amazingly there were no casualties.
</DamageReport>

We might want to find all damage reports which involve Volkswagen cars.
However, attribute text is not ordinarily searchable in interMedia. The query:

Volks WITHIN vehicle

will not find the fragment, nor will the simple query:

Volks

Why? Because, as in XPath, the text value of an element's attributes (or any
nested element's attributes) is not considered part of the text content of an

element. To search attribute text, you need to specify an attribute in the element

operand of WITHIN:

text_subquery WITHIN elementname@attributename

Our query for Volks appearing within the Make attribute of the <Vehicle>

element can be properly phrased as:

Volks WITHIN vehicle@make

which finds the example fragment. Note that this syntax is designed to be close
to the analogous XPath:

.//Vehicle/@Make[contains(.,'Volks')]

Attribute searching in interMedia has some important limitations, however. The
first limitation is that you cannot nest attribute searches. For instance, if you
were looking for damage reports for Volkswagen Beetles, you might try to
simulate the XPath:

.//Vehicle[@Make = "Volks" and contains(.,'Beetle')]

with the CONTAINS query:

((Volks WITHIN vehicle@make) AND Beetle) WITHIN vehicle

But this is not syntactically valid. This kind of query—an attribute value-sensitive
WITHIN search— cannot be performed in the current version of interMedia Text.
You can approximate the effect in this case with:

(Volks WITHIN vehicle@make) AND (Beetle WITHIN vehicle)

However, this approach breaks down when there is more than one <Vehicle>

element.

The second limitation is that interMedia is a text-searching engine, so attribute
values are searched as text. This has several implications:

• As with element text, there is no way to limit an attribute value search to
exact equality. The query:

John Doe WITHIN book@author

would find the fragment:

<Book Author="John Doe">Yes, That's My Real Name</Book>

as well as cases where the Author attribute contains more than the search

term:

<Book Author="John Doe, Jr.">Yes, That's My Real Name</Book>

In other words, the query is not equivalent to the XPath:

.//Book[@Author = "John Doe"]

• Numeric and date values are not type-converted. This prevents some rows
from being matched when searching attribute values. For instance:

3 WITHIN review@rating

would find the fragment:

<Review Rating="3" Movie="The Big Sleep">A three-star
movie</Review>

but would not find the fragment:

<Review Rating="3.0" Movie="The Big Sleep">A three-star
movie</Review>

In the world of numbers, "3" is equal to "3.0"; however, in the world of text
these are totally different.

• interMedia provides no way to do range searches on attribute values. You
cannot do queries like finding books in a certain price range or news articles
published this week.

The third limitation—again, as with text content—is that interMedia can search
within attribute values, but cannot search for the existence of attributes. For
instance, an XPath like:

//Vehicle[/@Make]

tests for the existence of a Make attribute of a <Vehicle> element. Because the

product is primarily for text searching, there is no analogue in interMedia.

The attribute value searching functionality of interMedia is a subset of what is
possible in XPath; on the other hand, interMedia has more sophisticated word
search functionality combined with better performance and scalability. Moreover,

interMedia is sufficient in many circumstances and will usually meet your needs if
your XML data doesn't rely heavily on attributes.

For those cases where you find yourself needing to use numeric comparison or
exact equality tests on attribute values, it's usually a better idea to factor out
those values and store them redundantly in relational columns. You can then use
Oracle's full feature set for those values in combination with interMedia for the
text search, a technique we'll take a closer look at in the next section.

13.3.6 Mixing CONTAINS and SQL Predicates

So far we've seen that WITHIN clauses in a CONTAINS query can utilize data
stored in XML fragments for precise searches. However, other columns may
include equally important information. As Figure 13.2 illustrates, a datagram with
embedded document fragments can be broken up and stored in a combination of
atomic and unstructured text columns.

Figure 13.2. Storing a Book datagram into multiple columns

Since the fragment does not have the full XML document, a CONTAINS query
alone is limited in the criteria it can use to find matching rows. To leverage all the
data contained in the original XML document, you must combine the CONTAINS
clause with other SQL predicates. Using our example, we can find books
published in 1985 by Houghton Mifflin using CONTAINS alone:

SELECT ISBN, title
 FROM book
 WHERE CONTAINS(description,
 '(1985 WITHIN year) AND (Houghton Mifflin WITHIN pub)')
> 0

But what if we now wish to add a price range criteria? Price is not contained in the
XML fragment, and interMedia doesn't provide range searching (even if it did
contain the price). The solution is quite simple. Because interMedia searching is
integrated with SQL, you merely add a SQL BETWEEN clause to the statement's
WHERE clause:

SELECT ISBN, title
 FROM book
 WHERE price BETWEEN 10 and 20
 AND CONTAINS(description,
 '(1985 WITHIN year) AND (Houghton Mifflin WITHIN pub)')
> 0

This relatively simple statement finds the ISBNs and titles of all books published
by Houghton Mifflin in 1985 whose price is between $10.00 and $20.00. By
combining SQL predicates and CONTAINS searches on relationally decomposed
XML documents in this way, you can perform sophisticated and precise searches
very quickly, often exceeding the capabilities and performance of what would be
possible with intact XML documents stored in the filesystem or a document
repository.

13.4 Handling Heterogeneous Doctypes

The examples we've seen so far with the autosectioner work relatively well when
all of the documents have the same doctype. This cannot always be guaranteed.
Information aggregators receive data from multiple sources that usually do not
share a common DTD, for instance. XSL transformation could be used to
transform incoming documents to a single standard, but this approach suffers
from two limitations:

• It may not be possible to come up with a single standard DTD that can
accommodate all expressible data in the various incoming DTDs. Even
when this is possible, the process may be irreversible so that you can't get
the original document back, or the standard DTD may be so broad that
documents vary quite a bit.

• Transformation may be an expensive process, limiting data import
capacity.

In most cases like this, the various doctypes are stored in the same table,
creating a document set that is heterogeneous. In such cases, the autosectioner
may have difficulty searching the entire document set. For instance:

• Different doctypes may use different tags to represent the same
information. This will force queries to use OR-combined WITHIN clauses,
which looks messy and is less efficient than single WITHIN clauses.

• Different doctypes may use the same tags to represent different
information, or the autosectioner's inability to distinguish tag case may
lead to a tag collision. These situations will make queries less precise
because the WITHIN clause will be unable to distinguish between the two
different uses of the same tag.

What's needed to handle these situations in heterogeneous document collections
is a more abstract concept of document structure, independent of the lexical
representation of tags—essentially, a "logical tag." These logical tags are called
sections in interMedia, and interMedia Text provides the XML sectioner to index
them and enable searching on them.

13.4.1 Using the XML Sectioner

Unlike the autosectioner, which automatically indexes every XML tag, the XML
sectioner indexes only those tags specified by the user at the time the index is
created. All other XML elements are disregarded. To illustrate this, let's index our
first example using the XML sectioner instead of the autosectioner.

In our autosectioner example, we used the keywords section group

CTXSYS.AUTO_SECTION_GROUP in the parameters string to employ the

autosectioner. This tells the index to use the section group owned by CTXSYS

named AUTO_SECTION_GROUP.

A section group is an object consisting of a section type specification and a
collection of tags that should be indexed. The type specification tells the section
group two things:

• The format of the documents being indexed. Different types exist to handle
XML, HTML, and mail/news formats.

• How to parse the format.

Two types exist for XML: XML_SECTION_GROUP and AUTO_SECTION_GROUP. The

difference between the two is that AUTO_SECTION_GROUP indexes every XML tag

by default, while XML_SECTION_GROUP indexes only the tags in its tag collection.

For the AUTO_SECTION_GROUP type, a predefined section group exists—the

referenced CTXSYS.AUTO_SECTION_GROUP, created at install time. No such

predefined section group exists for the XML sectioner, so we need to create one
using PL/SQL:

EXEC ctx_ddl.create_section_group('MYGRP','XML_SECTION_GROUP');

Users will need to execute the following statement to have the
CTXAPP role in order to successfully run the command above.
You or your DBA will need to:

GRANT CTXAPP TO YourUserName

This example creates an XML section group named MYGRP. Remember that unlike

the AUTO_SECTION_GROUP, the XML_SECTION_GROUP type does not automatically

index every tag. So, if we create the index on the table using this section group:

CREATE INDEX damagereportx ON claim(damagereport)
INDEXTYPE IS ctxsys.context
PARAMETERS ('section group mygrp');

we can do full text searches but not WITHIN searches. If we use a query like this:

SELECT claimid
 FROM claim
 WHERE CONTAINS(damagereport, 'faulty brakes WITHIN cause') > 0;

it produces the error:

ORA-20000: interMedia Text error: DRG-10837: section cause does not
exist

This is because we did not declare <Cause> to be an indexed tag. The XML

sectioner disregarded the <Cause> tag information, so it cannot perform the

WITHIN search. To be able to perform this search, we have to drop the index, add

<Cause> to the section group tag collection, and re-index:

DROP INDEX damagereportx;

EXEC ctx_ddl.add_zone_section('MYGRP','cause', 'Cause');

The first argument to add_zone_section is the section group name. The second

is the section name, which we will call the tag in WITHIN searches. The third

argument is the tag itself. This statement adds the <Cause> tag to the indexing

list, naming it as the cause section. Don't worry too much about what a "zone"

section is at this point. Suffice it to say that interMedia has several different types
of sections; a zone section is bracketed by tags and indexed as a range of words.

Now that we have a cause section in our section group's tag collection, we can

recreate the index by executing:

CREATE INDEX damagereportx ON claim(damagereport)
INDEXTYPE IS ctxsys.context
PARAMETERS ('section group mygrp');

With that, our WITHIN query works and finds our example document.

Although declaring all tags to index before creating the index is more work than
using the autosectioner, it offers several advantages. The first is that this
declaration process enables the XML sectioner to handle heterogeneous doctype

collections. For instance, the third argument to add_zone_section, the tag, is

case-sensitive. So, if instead we had done this:

EXEC ctx_ddl.add_zone_section('MYGRP','cause', 'cause');

our WITHIN query would not match our example document since the example

XML document uses the tag <Cause>, not the tag <cause>. This means that,

unlike the autosectioner, the XML sectioner can distinguish tag case.

A second advantage is that multiple tags can be mapped to the same section
name. This separates logical structure from lexical expression, and allows a
single WITHIN search to find content in multiple doctypes. For instance, let's take
our last name fragments from earlier in the chapter:

Row 1 <LastName>Chan</LastName>
Row 2 <Surname>Chan</Surname>

We can map both the <LastName> and <Surname> tags to the section name

lname:

EXEC ctx_ddl.add_zone_section('mygrp','lname','LastName');
EXEC ctx_ddl.add_zone_section('mygrp','lname','Surname');

Thus, we can find both documents with the query:

chan WITHIN lname

In contrast, the autosectioner, tied to the lexical expression of the tags, must use
multiple OR-combined WITHIN clauses, which is less efficient and a more
complicated and messier query.

The autosectioner also cannot effectively handle cases where different doctypes
the same tag for different purposes. Take, for example, these two fragments:

<Book>
 <Title>Windsor Castle</Title>
</Book>

<Person>
 <Name>Prince Charles</Name>
 <Title>Duke of Windsor</Title>
</Person>

A simple WITHIN search on title cannot distinguish between these two different

uses of the tag. Nested WITHIN clauses must be used to narrow the focus to
books or people.

Using a special syntax for the tag in our section, you can specify a doctype limiter
to address this. For instance:

EXEC ctx_ddl.add_zone_section('mygrp', 'booktitle', '(Book)Title');

EXEC ctx_ddl.add_zone_section('mygrp', 'persontitle',
'(Person)Title');

Here we are mapping the tag <Title> of doctype Book to the section name

booktitle, and the tag <Title> of doctype Person to the section name

persontitle. Because these two different uses of the tag are indexed as

different section names, WITHIN clauses can precisely specify which title to
search:

windsor WITHIN persontitle

13.4.2 Attribute Value Searching

The XML sectioner is also able to index attribute values, as the autosectioner
does. To declare an attribute value to index, you must add an attribute section,

using the add_attr_section procedure. Use the tag@attribute syntax to

specify the tag and attribute; for example:

EXEC ctx_ddl.add_attr_section('mygrp', 'make', 'Vehicle@Make');

To search an attribute value, simply use the section name. For instance, to find
damage reports involving Volkswagen cars, specify:

Volks WITHIN make

Using the XML sectioner instead of the autosectioner clearly involves more work
and planning. However, the abstraction of sections—logical tags can lead to more
elegant and efficient queries on heterogeneous document sets, and is sometimes
the only way to achieve precise queries when different doctypes use the same
tags.

13.5 Handling Doctype Evolution

As time goes on, the DTD of your document collection may change, going
through several versions as it evolves. A heterogeneous collection faces that
challenge, as well as the challenge of new, unanticipated doctypes entering the
system. How can interMedia cope with these changes?

The autosectioner indexes every XML tag, so as soon as a new XML tag appears
in your collection, you can use it in WITHIN searches. The only trouble spot to
watch out for is tag collision.

The XML sectioner has a harder time handling new tags. With the XML sectioner,
the user must define which tags to keep before creating the index. Every
undefined tag is thrown away. As new tags appear in the document collection,
they are simply thrown away as well.

When this happens, the index owner must modify the index to add the new tags
to the index's list of tags to keep. This is done using an ALTER INDEX command.

If our <DamageReport> fragments start to include a <Lawsuit> tag, for instance,

the following command:

ALTER INDEX damagereportx REBUILD
PARAMETERS ('add zone section lawsuit tag Lawsuit')

will modify the index metadata and add the tag <Lawsuit> as the section

lawsuit. Don't be scared by the ALTER INDEX . . . REBUILD syntax—the index is

not really going to be dropped and recreated. This is a quick metadata change
only. In fact, because the index is not dropped and recreated, this will not affect
documents already in the system, although documents added after this call with

the <Lawsuit> tag will be searchable. Existing documents with the <Lawsuit>

tag must be manually reindexed. The easiest way to do this is to update the row's
value to itself, as shown here:

UPDATE claim
 SET damagereport = damagereport
 WHERE claimid = 12345;

In general, to force an XML searching index to be brought up to date with
changes made to your document table, you can issue the command:

EXEC ctx_ddl.sync_index('indexname');

You'll need the CTXSYS user to grant you the CTXAPP role in order to perform the

sync_index() operation. Since it's just a PL/SQL stored procedure, sync_index()

can be easily included in a scheduled database job (e.g., with the DBMS_JOB

package) to perform a sync on the index as frequently as makes sense for your

application. For example, here's a command script that causes a database job to

be created to sync the index named xmldoc_idx every 30 minutes:

SET SERVEROUTPUT ON
DECLARE
 jobId NUMBER;
 resync_interval NUMBER := 30; -- In Minutes!
 index_name VARCHAR2(30) := 'xmldoc_idx';
BEGIN
 dbms_job.submit(jobId,
 'ctx_ddl.sync_index(''||index_name||'');',
 interval=>'SYSDATE+'||resync_interval||'/1440');
 dbms_output.put_line('Submitted Job#'||jobId);
END;

13.6 Advanced interMedia

This chapter covers only a small number of features available through interMedia
Text. Just to whet your appetite, here are some of the broader text-searching
features of interMedia not covered in this chapter:

More advanced features of the query language

The interMedia query language is extensive and supports Booleans,
proximity, stem form expansion, wildcards, thesaurus operations,
linguistic-based theme queries, relevance ranking and more. Most of these
features can be used in conjunction with WITHIN for powerful XML
searching. For instance, a stem form expansion query like:

$go WITHIN title

would find any of the following:

<TITLE>Go</TITLE>
<TITLE>Going Home</TITLE>
<TITLE>Gone With the Wind</TITLE>
<TITLE>The Englishman Who Went Up a Hill</TITLE>

Case-sensitive text and substring matching

Remember that when we contrasted the XPath contains() and the SQL

CONTAINS earlier in this chapter, we noted that two aspects of XPath

contains() were not mirrored in the SQL CONTAINS. Actually, with proper

settings, interMedia can do case-sensitive text and substring searching;
they just aren't the default behavior.

Field sections and stop sections

These are different from the zone sections covered in this chapter. Field
sections are useful for small, non-overlapping sections like header
information. Field sections are more efficient than zone sections for
WITHIN queries on large homogenous document sets. Stop sections are
used for common XML elements that are not useful for WITHIN searching.
They can be added to the autosectioner to avoid indexing them, thereby
saving space.

DML processing

Context indexes do not support transactional DML; when a new document
is inserted and committed, the document is not searchable right away.
Instead, the index must go through a batch update to process changes
asynchronously. This batch process can be invoked manually, by the

DBMS_JOB package, or by a background daemon process called ctxsrv.

Datastore support

Your XML documents do not need to be stored in the database. They can be
files, web pages, or even virtual XML documents constructed on the fly
through PL/SQL.

Language support

interMedia has language-specific technology that allows full-text searching
of the major Western European languages, with even more specialized
support for German, Dutch, Japanese, Chinese, and Korean. This includes
language-specific stemming, base letter transformations, common
alternate spellings, compound word decomposition, and Asian language
segmentation—all very useful features for foreign-language or
multilanguage document collections. Furthermore, all these features can
be applied to WITHIN searching, so your XML documents are not limited to
English.

And, as they say, much, much more. The interMedia documentation set and the
technical overviews available on the Oracle Technology Network provide more
in-depth information.

Chapter 14. Advanced XML Loading Techniques

In this chapter, we apply a combination of techniques learned in previous chapters to build an

XMLLoader utility that assists in loading complex XML into multiple tables. We also explore using

stylesheets that generate stylesheets for automating the creation of "insert transformations"

needed to convert the structure of incoming XML into the canonical ROWSET/ROW format for

insertion by the XML SQL utility or an XSQL page with an <xsql.insert.request> tag.

14.1 Storing Datagrams in Multiple Tables

We saw in Chapter 12, that collection types can be used with object views to handle the automatic

storage of XML datagrams containing nested, repeating information. Note that this technique

works for any number of single-level nested collections, but does not work for multilevel nesting

of repeating elements. This means that we can use the collection types technique to store

<Department> datagrams that contain a nested set of <Employee>s. We can also use that

technique to store <Department> datagrams that contain both a nested set of <Employee>s and

a nested set of <QuarterlyAudit> entries. In general, any number of single-level repeating

elements can be handled with collection types and object views, but if <Department>s contain

repeating <Employee>s, and if <Employee>s, in turn, contain repeating <Dependent>s, then the

technique no longer applies. This situation results from the limitation in Oracle8i that collection

types cannot contain nested collections.

We need a different technique to handle the two or more levels of nested, repeating elements

we'd see in examples of datagrams containing a <Customer> with a list of one or more open

<Order>s, each of which has one or more <Item>s, as shown in Figure 14.1.

Figure 14.1. Datagrams with more than two levels of nesting

Another example might be a <Department> with a list of one or more open <Employee>s, each of

which has one or more <Dependent>s. Let's roll up our sleeves and build an XMLLoader utility that

exploits all the concepts we've learned earlier in this book but adds a little twist that enables us

to handle the automatic insertion of datagrams with any number of nested levels of repeating

elements into any number of tables.

We'll start with the XML datagram in Example 14.1, a variation on the <Department> and

<Employee> datagram we worked with in an earlier chapter.

Example 14.1. Multiple Levels of Nested, Repeating Elements

<DepartmentList>

 <Department>

 <Id>97</Id>

 <Name>Finance</Name>

 <BudgetPlan>10</BudgetPlan>

 <BudgetPlan>20</BudgetPlan>

 <Employee>

 <Id>111</Id>

 <Name>Ziggie</Name>

 <Salary>1200</Salary>

 <Dependent>

 <Name>Zoe</Name>

 </Dependent>

 <Dependent>

 <Name>Reggy</Name>

 </Dependent>

 </Employee>

 <Employee>

 <Id>193</Id>

 <Name>Hubert</Name>

 <Salary>2200</Salary>

 </Employee>

 </Department>

</DepartmentList>

The DTD for this datagram appears in Figure 14.2.

Figure 14.2. Examining the DepartmentList DTD structure

Three aspects distinguish this example from the one we worked with in Chapter 12 (see Example

12.20):

• <Employee> elements repeat as direct children of the <Department> element, without an

enclosing <Employees> "container" element.

• <Department> has one or more <BudgetPlan> element children.

• Each <Employee> can have zero or more <Dependent> elements.

We want to store this XML datagram into the dept, emp, dependent, and

budget_plan_assignment tables, as illustrated in Figure 14.3.

Figure 14.3. Inserting multilevel datagram into multiple

tables

In nearly all previous examples of this kind, we've seen two recurring themes:

• The use of XSLT stylesheets to transform an arbitrary XML datagram into a datagram

having the canonical <ROWSET>/<ROW> structure for the target table or view

• The use of the Oracle XML SQL Utility's "XML Save" functionality to insert that canonical

XML document into the desired table or view

Note that our desired storage for the <DepartmentList> datagram (as depicted in Figure 14.3)

effectively represents four save operations:

• Saving <Department> information into the dept table

• Saving <BudgetPlan> information into the budget_plan_assignment table

• Saving <Employee> information into the emp table

• Saving <Dependent> information into the dependent table

We know from previous examples that if we present OracleXMLSave with a <ROWSET> document

full of <ROW>s, it can insert the data into a table whose structure matches the element structure

of each <ROW>. To accomplish the four different save operations into the four different tables, we

simply have to:

• Transform the <Department> information into a <ROWSET> document with the right <ROW>

structure for the dept table, and use an OracleXMLSave object to save it

• Transform the <BudgetPlan> information into a <ROWSET> document with the right <ROW>

structure for the budget_plan_assignment table, and use an OracleXMLSave object to

save it

• Transform the <Employee> information into a <ROWSET> document with the right <ROW>

structure for the emp table, and use an OracleXMLSave object to save it

• Transform the <Dependent> information into a <ROWSET> document with the right <ROW>

structure for the dependent table, and use an OracleXMLSave object to save it

We could perform these transformations one step at a time, but it is more efficient to tackle all

four transformations in a single stylesheet. If we transform a <DepartmentList> into a document

that looks like this:

<INSERT>

 <ROWSET>

 <!-- Rows to insert into dept -->

 </ROWSET>

 <ROWSET>

 <!-- Rows to insert into budget_plan_assignment -->

 </ROWSET>

 <ROWSET>

 <!-- Rows to insert into emp -->

 </ROWSET>

 <ROWSET>

 <!-- Rows to insert into dependent -->

 </ROWSET>

</INSERT>

we can then programmatically loop over each of the four <ROWSET> children and pass each

<ROWSET> to an appropriate OracleXMLSave object for inserting into the right table. We could

hardcode the logic to expect the first <ROWSET> to be for the dept table, the second <ROWSET> to

be for the budget_plan_assignment table, and so on. However, in order to make our XMLLoader

utility generic and reusable for other multitable insert scenarios, we'll adopt the convention of

putting the target table name into a table="tablename" attribute on the <ROWSET> element. This

way, our programmatic logic that processes a multitable insert can work for any set of <ROWSET>

elements, targeting any tables necessary.

For this example, we need a stylesheet that will transform the <DepartmentList> into a

multitable insert document that looks like Example 14.2.

Example 14.2. Skeleton of Canonical Form for a Multitable

Insert

<INSERT>

 <ROWSET table="dept">

 <ROW>

 <!-- Elements for DEPT columns being inserted -->

 </ROW>

 :

 </ROWSET>

 <ROWSET table="budget_plan_assignment">

 <ROW>

 <!-- Elements for BUDGET_PLAN_ASSIGNMENT columns being inserted -->

 </ROW>

 :

 </ROWSET>

 <ROWSET table="emp">

 <ROW>

 <!-- Elements for EMP columns being inserted -->

 </ROW>

 :

 </ROWSET>

 <ROWSET table="dependent">

 <ROW>

 <!-- Elements for DEPENDENT columns being inserted -->

 </ROW>

 :

 </ROWSET>

</INSERT>

Example 14.3 provides the stylesheet we need.

Example 14.3. Transforming for Multitable Insert

<INSERT xsl:version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <ROWSET table="dept">

 <xsl:for-each select="Department">

 <ROW>

 <DEPTNO><xsl:value-of select="Id"/></DEPTNO>

 <DNAME><xsl:value-of select="Name"/></DNAME>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 <ROWSET table="budget_plan_assignment">

 <xsl:for-each select="Department/BudgetPlan">

 <ROW>

 <DEPTNO><xsl:value-of select="../Id"/></DEPTNO>

 <BUDGETCODE><xsl:value-of select="."/></BUDGETCODE>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 <ROWSET table="emp">

 <xsl:for-each select="Department/Employee">

 <ROW>

 <EMPNO><xsl:value-of select="Id"/></EMPNO>

 <ENAME><xsl:value-of select="Name"/></ENAME>

 <SAL><xsl:value-of select="Salary"/></SAL>

 <DEPTNO><xsl:value-of select="../Id"/></DEPTNO>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 <ROWSET table="dependent">

 <xsl:for-each select="Department/Employee/Dependent">

 <ROW>

 <EMPNO><xsl:value-of select="../Id"/></EMPNO>

 <NAME><xsl:value-of select="Name"/></NAME>

 </ROW>

 </xsl:for-each>

 </ROWSET>

</INSERT>

Notice that each of the four <ROWSET> elements in the stylesheet fills in its <ROW> elements by

looping over the relevant repeating information destined for that table using <xsl:for-each>

and an appropriate XPath pattern.

We now have to write the code to handle the processing of this multitable insert document

consisting of one or more <ROWSET> elements, each destined for insertion into a table whose

name is indicated by the value of its table="tablename" attribute.

MultiTableInsertHandler.java in Example 14.4 handles the job nicely. Its constructor takes:

• A JDBC Connection object to be used for the insert operations

• An XSLStylesheet object to transform each document handled into the canonical

multitable insert format

• An ignoreErrors boolean flag that indicates whether errors in one insert operation should

roll back the entire set of inserts performed (default is false) or ignore individual errors

(default is true)

To insert an XML datagram using the MultiTableInsertHandler, simply call the

handleDocument() method to pass the datagram as a DOM document and the URL to the

datagram (if available; otherwise, pass NULL). Internally, handleDocument() calls the private

handle() method to do the real work. This method does the following:

1. Transforms the source XML datagram if necessary. If the source XML datagram is already

in the multitable insert canonical format, this transformation can be skipped by passing a

NULL for the sheet parameter of the MultiTableInsertHandler constructor.

2. Uses selectNodes() to find the <ROWSET> elements in the multitable insert document.

3. Loops over the list of <ROWSET> elements found, and for each one:

o Creates a new XMLDocument insDoc containing only the current <ROWSET> element

and its child nodes

o Picks up the target table name from the table attribute on the current <ROWSET>

element

o Creates an OracleXMLSave object to handle the insertion, passing the JDBC

connection and the current target table name

o Calls insertXML() on the OracleXMLSave object, passing the current <ROWSET>

document

Example 14.4. Handler to Insert Datagram into Multiple

Tables

import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

import oracle.xml.sql.dml.OracleXMLSave;

import java.sql.*;

import java.net.URL;

public class MultiTableInsertHandler implements XMLDocumentHandler {

 private XMLDocument categories = null;

 private String path = null;

 private String table = null;

 private XSLStylesheet sheet = null;

 private String dateFormat = null;

 private int itemsHandled = 0;

 private int itemsInserted = 0;

 private boolean ignoreErrors = false;

 Connection conn;

 // Provide a JDBC connection and optionally an XSL transformation

 // to be used to transform the XML datagram into multitable insert format

 // If 'ignoreErrors' is true, then individual inserts can succeed even if

 // some fail due to errors. If false, any error on insert does a rollback.

 public MultiTableInsertHandler(Connection conn,

 XSLStylesheet sheet,

 boolean ignoreErrors) {

 this.conn = conn;

 this.sheet = sheet;

 this.ignoreErrors = ignoreErrors;

 }

 // Process an XML datagram for multitable insertion

 public void handleDocument(Document d, URL u) throws Exception {

 try {

 itemsHandled++;

 handle(d,u);

 conn.commit();

 itemsInserted++;

 System.out.println(formatted(itemsHandled)+": Inserted.");

 }

 catch (oracle.xml.sql.OracleXMLSQLException ex) {

 try { conn.rollback(); } catch (SQLException s) {}

 System.out.println(formatted(itemsHandled)+": Failed, ORA-" +

 formatted(ex.getErrorCode()));

 }

 }

 // Handle the transformation and multitable inserting

 private void handle(Document d, URL u) throws Exception {

 XMLDocument result = null;

 NodeList nl = null;

 // If a transformation has been specified, do the transformation

 if (sheet != null) {

 XSLProcessor processor = new XSLProcessor();

 DocumentFragment df = processor.processXSL(sheet, (XMLDocument)d);

 result = new XMLDocument();

 result.appendChild(df);

 }

 else {

 result = (XMLDocument)d;

 }

 // First check if document element is ROWSET. If present, only one ROWSET

 nl = result.selectNodes("/ROWSET");

 if (nl != null && nl.getLength() == 0) {

 XMLElement e = (XMLElement) result.getDocumentElement();

 // If ROWSET is not Doc Element, Search for ROWSET children elements

 nl = e.selectNodes("ROWSET");

 }

 String table = null;

 int rowsets = nl != null ? nl.getLength() : 0;

 // Loop over all the ROWSET elements we found.

 for (int z = 0; z < rowsets; z++) {

 // Create a new document with current ROWSET as doc element.

 XMLDocument insDoc = new XMLDocument();

 XMLElement curElt = (XMLElement)nl.item(z);

 curElt.getParentNode().removeChild(curElt);

 insDoc.appendChild(curElt);

 // Pick up the target tablename from the table attribute of ROWSET tag

 table = curElt.valueOf("@table");

 // If table name was given and ROWSET element has some child elements

 if (table != null && insDoc.getDocumentElement().getFirstChild() != null) {

 try {

 // Create the XMLSave object and pass current ROWSET doc and tablename

 OracleXMLSave xs = new OracleXMLSave(conn,table);

 xs.setCommitBatch(1);

 xs.setIgnoreCase(true);

 if (dateFormat != null) {

 xs.setDateFormat(dateFormat);

 }

 int rows = xs.insertXML(insDoc);

 }

 catch (oracle.xml.sql.OracleXMLSQLException ex) {

 // If we're ignoring errors, then note the error and continue.

 if (ignoreErrors) {

 System.out.println(formatted(itemsHandled)+": Ignoring, ORA-" +

 formatted(ex.getErrorCode()) + " on table " + table);

 }

 else {

 throw ex;

 }

 }

 }

 }

 }

 public int getItemsHandled() { return itemsHandled; };

 public void setDateFormat(String format) {

 dateFormat = format;

 }

 private String formatted(long n) {

 java.text.DecimalFormat df = new java.text.DecimalFormat();

 df.applyPattern("00000");

 return df.format(n).toString();

 }

}

The last step is to create a command-line XMLLoader utility that makes use of

MultiTableInsertHandler to let us handle the current task at hand for our <DepartmentList>

datagram, as well as any future multitable insert scenarios we may need for our more

complicated XML datagrams. While we're at it, we'll make sure our XMLLoader utility can handle

inserting XML datagrams of any size.

14.2 Building an XMLLoader Utility

Since many of the XML datagrams you encounter will have been produced by formatting rows of

database query results as XML, it will be quite common for the XML datagrams to have a "List of

Something" format like this one:

<ListOfSomething>

 <Something>

 :

 </Something>

 <Something>

 :

 </Something>

 :

 <!-- repeating potentially thousands of times -->

 :

 <Something>

 :

 </Something>

</ListOfSomething>

In the case of our <DepartmentList> example in the previous section, we might encounter a

<DepartmentList> datagram that looks like this:

<DepartmentList>

 <Department>

 :

 </Department>

 <Department>

 :

 </Department>

 :

 <!-- repeating potentially thousands of times -->

 :

 <Department>

 :

 </Department>

</DepartmentList>

If the <DepartmentList> datagram contains hundreds or thousands of <Department> elements,

parsing the document into a tree of nodes in memory can become a problem. This is where our

XMLDocumentSplitter class from Chapter 6, will come in handy.

Recall that XMLDocumentSplitter uses the stream-based SAXParser to process the XML

datagram in question as a sequential stream of tags. It takes a divide and conquer approach to

processing large XML documents that have the "List of Something" format by splitting the stream

of incoming tags into a sequence of incoming documents based on the tag name of the

<Something> element that repeats inside the <ListOfSomething> document element. The net

effect is that all of the <Something> "sub-datagrams" are processed and the amount of memory

used is only as much as a single <Something> datagram requires.

Since our MultiTableInsertHandler class implements the XMLDocumentHandler interface:

import java.net.URL;

import org.w3c.dom.Document;

public interface XMLDocumentHandler {

 void handleDocument(Document d , URL u) throws Exception;

}

we can easily use MultiTableInsertHandler as the document handler that

XMLDocumentSplitter will invoke to handle each document it "splits" out of the stream it's

processing. Figure 14.4 illustrates how the two classes work in combination when processing a

large <DepartmentList> datagram.

Figure 14.4. How the XMLLoader utility works

For example, if we call the XMLDocumentSplitter class's split() method with the tag name of

Department, it will invoke the handleDocument() method on MultiTableInsertHandler for

each <Department> subdocument it encounters. As we saw earlier, the

MultiTableInsertHandler then handles the details of inserting each individual <Department>

document into multiple tables.

Using our ConnectionFactory class from Chapter 6 to pick up named connections from a

Connections.xml file, we can round out the functionality for the XMLLoader utility in Example 14.5.

The utility provides a command-line shell that allows us to apply the combination of

XMLDocumentSplitter and MultiTableInsertHandler to any situation we encounter by

providing the appropriate command-line options, as shown in Table 14.1.

Table 14.1. XMLLoader Command-Line Options

Attribute Name Description

-file filename Filename of XML source to read.

-connName

connectionName

Name of connection to use to connect to the database. Connection

definitions are found in the Connections.xml file in the CLASSPATH. If no

connection is specified, the "default" connection is used.

-docTag
Name of the document element comprising the subdocuments you want

processed for loading. If no element is specified, the entire file is processed

for loading as a single document.

-ignoreErrors
If specified, allows individual table inserts to fail with an error (for example,

"Row Already Exists") without rolling back the entire set of inserts for the

current subdocument being loaded.

-transform

stylesheetURI

If specified, the XSLT stylesheet with the URI provided will be used to

transform each subdocument processed into the multitable ROWSET/ROW

canonical format for insert.

-dateFormat

datePattern

If specified, uses the supplied java.text.SimpleDateFormat date pattern

to parse values in the insert document destined for insertion into database

columns of type DATE.

This means that to load our <DepartmentList> datagram from the previous section, we can issue

the command:

java XMLLoader -file dept-emp-depend.xml

 -transform dept-emp-depend.xsl

 -docTag Department

where dept-emp-depend.xml is the name of the file containing the <DepartmentList> datagram

from Example 14.1 and dept-emp-depend.xsl is the XSLT stylesheet from Example 14.3. Since

this example contains only a single <Department> datagram inside it, you'll see:

Connecting as <username> at <dburl>

00001: Inserted.

Processed 1 Documents

If we want to load a really large <DepartmentList> datagram from the huge-department-file.xml

file containing 5000 <Department> datagrams inside it, we issue the exact same command:

java XMLLoader -file huge-department-file.xml

 -transform dept-emp-depend.xsl

 -docTag Department

The output this time will be:

Connecting as <username> at <dburl>

00001: Inserted.

00002: Inserted.

 :

05000: Inserted.

Processed 5000 Documents

The full source code of XMLLoader appears in Example 14.5.

Example 14.5. Utility to Load Any Size Document into Any

Number of Tables

import java.net.*;

import java.io.*;

import java.sql.Connection;

import oracle.xml.parser.v2.XSLStylesheet;

import URLUtils;

public class XMLLoader {

 private static String dateFormat = null;

 private static String docElement = null;

 private static Connection conn = null;

 private static String connName = "default";

 private static URL file;

 private static URL trans;

 private static boolean ignoreErrs = false;

 private static XSLStylesheet sheet = null;

 public static void main(String[] args) throws Exception {

 try {

 processArgs(args);

 conn = ConnectionFactory.getConnection(connName);

 if (trans != null) {

 try {

 sheet = new XSLStylesheet(trans,trans);

 }

 catch (Exception xe) {

 System.err.println("Error loading stylesheet " + trans);

 System.exit(1);

 }

 }

 // Create a multitable insert handler

 MultiTableInsertHandler mtih =

 new MultiTableInsertHandler(conn,sheet,ignoreErrs);

 // Set the date format for the insert handler (null is ok)

 mtih.setDateFormat(dateFormat);

 // Use an XMLDocumentSplitter to handle large documents, passing

 // MultiTableInsertHandler to be used for each "SubDocument" found

 XMLDocumentSplitter splitter = new XMLDocumentSplitter(mtih);

 // Process the input document, splitting it into subdocs to be

 // handled based on the specified docElement.

 splitter.split(file,docElement);

 System.out.println("Processed " + mtih.getItemsHandled() + " Documents");

 conn.close();

 }

 catch(Exception ex) {

 System.err.println("Error: " + ex.toString());

 }

 }

 private static void processArgs(String[] arg) throws Exception {

 int args = arg.length;

 for (int q=0; q<args; q++) {

 String cur = arg[q];

 if (cur.equals("-connName")) {

 connName = q!=args ? arg[q+1] : null;

 }

 if (cur.equals("-docTag")) {

 docElement = q!=args ? arg[q+1] : null;

 }

 if (cur.equals("-transform")) {

 trans = q!=args ? URLUtils.newURL(arg[q+1]) : null;

 }

 if (cur.equals("-file")) {

 file = q!=args ? URLUtils.newURL(arg[q+1]) : null;

 }

 if (cur.equals("-ignoreErrors")) {

 ignoreErrs = true;

 }

 if (cur.equals("-dateFormat")) {

 dateFormat = q!=args ? arg[q+1] : null;

 }

 }

 if (file == null) {

 System.err.println("usage: XMLLoader -file filename");

 System.err.println("[-connName connectionName]");

 System.err.println("[-docTag tagname]");

 System.err.println("[-ignoreErrors]");

 System.err.println("[-transform stylesheet.xsl]");

 System.err.println("[-dateFormat yyyy-MM-d]");

 System.exit(1);

 }

 }

}

14.3 Creating Insert Transformations Automatically

In Chapter 12, we learned how to use the <xsql:insert-request> element to get posted XML or

HTML form data into our database. Recall that the <xsql:insert-request> action element has

the following syntax:

<xsql:insert-request table="targettable" transform="style.xsl"/>

where it is the job of the style.xsl stylesheet to transform the inbound XML document into the

canonical ROWSET/ROW format that reflects the structure of the targettable table or view. If

you're like me, you tire quickly of manually creating these "insert transform" stylesheets and you

start thinking of a way to automate their creation. You need look no further than the effective

combination of XSQL pages and XSLT to get the data we need and XSLT to produce the "insert

transform" for a given table.

Recall that the canonical XML structure required for insert is the same structure that is produced

by doing a SELECT * query over the table in question. So let's build a simple XSQL page to do that

SELECT * query over a table whose name is a parameter supplied in the request:

<?xml version="1.0"?>

<page connname="xmlbook" connection="{@connname}">

 <xsql:query null-indicator="yes" xmlns:xsql="urn:oracle-xsql">

 <![CDATA[

 SELECT *

 FROM {@table}

 WHERE rownum < 2

]]>

 </xsql:query>

</page>

The FROM clause uses the {@table} syntax to refer to an XSQL page parameter and is wrapped

in by a CDATA section so that none of the characters that occur between the opening

<![CDATA[and the closing]]> need to be quoted; for instance, the less-than sign in our WHERE

clause. We use the WHERE rownum < 2 clause to make sure we only retrieve a single row from the

table whose name is passed in as a parameter to the XSQL page request, since we need only a

single row to understand the canonical structure. Finally, note that we've included the

null-indicator="yes" attribute on <xsql:query> so that the underlying XML SQL utility

produces an element for a column whose value is NULL instead of leaving it out. We'd like to make

sure all columns are present in the XML fragment produced by the query. While we're at it, we've

also parameterized the named connection, and we've provided a fallback attribute named

connname so that if we're using the xmlbook connection name, we don't have to supply a value for

the connname parameter.

Now that you're seeing more and more XSQL pages in
combination with XSLT stylesheets, you might begin to confuse
the XSQL Pages syntax for parameter substitution

{@paramname} and the XSLT syntax for an attribute value

template {XPathExpression}. Check the file extension of the

file you're working on if you have any doubts.

If we use the xsql command-line utility to run the preview page above on a table like

site_newsstory:

xsql GenerateInsertTransform.xsql outfile.xml table=site_newsstory

the XML output in Example 14.6 is saved to the file outfile.xml.

Example 14.6. One Row of Canonical Output from the

site_newsstory Table

<?xml version = '1.0'?>

<page connname="xmlbook">

 <ROWSET>

 <ROW num="1">

 <ID>802</ID>

 <TITLE>CommerceOne and Extensibility Partner Around XML Schema</TITLE>

 <URL>http://www.extensibility.com/company/headlines/commerce_one.htm</URL>

 <CATEGORY>1</CATEGORY>

 <DESCRIPTION>CommerceOne and Extensibility have entered into...</DESCRIPTION>

 <TIMESTAMP>1/30/2000 18:54:0</TIMESTAMP>

 <SOURCE>Extensibility.com</SOURCE>

 </ROW>

 </ROWSET>

</page>

We need a stylesheet to transform this document into the skeleton of a working XSLT stylesheet

that reproduces this same structure but supplies appropriate <xsl:value-of> elements to

replace the literal text, and <xsl:for-each> elements to wrap elements that can repeat, like

<ROW> or the repeating XXX_ITEM elements inside an object view's nested table or VARRAY

column_name column.

Writing a stylesheet that produces a stylesheet gets a little tricky because you want to produce

elements like <xsl:for-each> in the transformed output, but you have to use <xsl:for-each>

elements in the stylesheet that performs this transformation to process nodes in the source tree.

The solution is to use a different namespace prefix to represent the XSLT namespace in the

stylesheet that creates a stylesheet. For example, rather than the conventional xsl prefix, we can

use:

xmlns:xslt="http://www.w3.org/1999/XSL/Transform"

to define the prefix for the XSLT namespace to be xslt instead. Then we can use xsl as the prefix

for a temporary namespace whose name is any convenient string (like "temp") using the

namespace declaration:

xmlns:xsl="temp"

Then, after screwing our brain on tightly, we proceed to write the stylesheet using elements like:

<xslt:stylesheet>

<xslt:template>

<xslt:for-each>

<xslt:value-of>

for the "real" XSLT actions, and:

<xsl:stylesheet>

<xsl:template>

<xsl:for-each>

<xsl:value-of>

as the literal elements they now are, since they are no longer qualified by a prefix for the XSLT

namespace.

The last step is to use the special <xsl:namespace-alias> action, which we'll need to refer to as

<xslt:namespace-alias>. The syntax is:

<xsl:namespace-alias stylesheet-prefix="xsl" result-prefix="xslt"/>

This rewires the namespace associated to elements in the result tree prefixed by xsl to be the

namespace used by the prefix xslt in the stylesheet. That's hard to say in a sentence, but

basically it means that instead of creating a result like:

<xsl:stylesheet version="1.0" xmlns:xsl="temp">

which would not be a valid XSLT stylesheet, it will instead create:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Example 14.7 shows the source code for the transformation that creates a stylesheet. In addition

to <xsl:namespace-alias>, it features several interesting XSLT twists we haven't seen before.

To make it easier to follow along, we'll list them with the xslt prefix they are using in this

example:

• A top-level stylesheet <xslt:param> allows passing in the table name externally.

• <xslt:strip-space> with an elements ="*" pattern strips any text nodes contained in

any element that consist of only whitespace. This can be very convenient when you have

a template that matches text(), as we do in this stylesheet. Stripping whitespace for all

elements means that our template can assume it won't see the carriage returns and

indents it doesn't care about.

• <xslt:comment> lets our stylesheet construct comments in the result tree.

• <xslt:copy> copies the current node to the result tree. The nested content of an

<xslt:copy> determines which elements or attributes will appear as attributes on and

descendent elements of the copied node.

• A clever XPath pattern to match elements that contain elements whose name is the name

of their parent element with the suffix _ITEM appended to it, like:

• <SETTLEMENTS>

 <SETTLEMENTS_ITEM>

Example 14.7. Stylesheet to Create an Insert Transformation

for Any Table

<xslt:stylesheet version="1.0" xmlns:xsl="temp"

 xmlns:xslt="http://www.w3.org/1999/XSL/Transform">

 <xslt:output method="xml" indent="yes"/>

 <!-- Disregard all whitespace in the source document -->

 <xslt:strip-space elements="*"/>

 <!-- "Rewire" xsl prefix to use xslt prefix's namespace in the result -->

 <xslt:namespace-alias stylesheet-prefix="xsl" result-prefix="xslt"/>

 <!-- Get the tablename as a parameter -->

 <xslt:param name="table"/>

 <!-- Output an xslt:stylesheet using the temporary prefix xsl -->

 <xslt:template match="/">

 <xslt:comment>

 <xslt:text> Created by GenerateInsertTransform.xsl </xslt:text>

 </xslt:comment>

 <xslt:text>
</xslt:text>

 <xsl:stylesheet version="1.0">

 <!-- Create a comment in the output -->

 <xslt:comment>

 <xslt:text> Transform XXXX into ROWSET for </xslt:text>

 <xslt:value-of select="$table"/>

 <xslt:text> </xslt:text>

 </xslt:comment>

 <!-- Create a root xslt:template in the output using xsl -->

 <xsl:template match="/">

 <xslt:apply-templates select="page/ROWSET/ROW[1]"/>

 </xsl:template>

 </xsl:stylesheet>

 </xslt:template>

 <!--

 | Match a ROW and create an xsl:for-each in the output. Needs a

 | priority="1" to make more important than template matching *[*] below

 +-->

 <xslt:template match="ROW" priority="1">

 <ROWSET>

 <xslt:comment>

 <xslt:text> XPath for repeating source rows </xslt:text>

 </xslt:comment>

 <xsl:for-each select="page/ROWSET/ROW">

 <ROW>

 <xslt:apply-templates/>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 </xslt:template>

 <!--

 | Match elements that contain other elements or

 | elements that contain text and copy them to the output.

 +-->

 <xslt:template match="*[*]|*[text()]">

 <xslt:copy>

 <xslt:apply-templates select="*|text()"/>

 </xslt:copy>

 </xslt:template>

 <!-- Match text() nodes for column values & output xsl:value-of -->

 <xslt:template match="text()">

 <xsl:value-of select="{name(..)}"/>

 </xslt:template>

 <!--

 | Match an element containing an element whose name is

 | the concatenation of its parent's name and the suffix '_ITEM'

 | This matches object view nested collection columns/attributes

 | whose collection element name <XXX> will contain the items

 | in the collection named <XXX_ITEM>.

 | Copy the current element, add a nested comment, and

 | process the *first* <XXX_ITEM> child

 +-->

 <xslt:template match="*[*[name(.)=concat(name(..),'_ITEM')]]">

 <xslt:copy>

 <xslt:comment>

 <xslt:text> XPath for repeating </xslt:text>

 <xslt:value-of select="name(.)"/>

 <xslt:text> items from source </xslt:text>

 </xslt:comment>

 <xsl:for-each select="{name(.)}_ITEM">

 <xslt:apply-templates select="*[1]"/>

 </xsl:for-each>

 </xslt:copy>

 </xslt:template>

</xslt:stylesheet>

We edit our GenerateInsertTransform.xsql page to associate this GenerateInsertTransform.xsl

stylesheet, as well as add a new <xsql:set-stylesheet-param> action element to assign the

value of the XSQL page parameter named table to the XSLT top-level stylesheet parameter

named table:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="GenerateInsertTransform.xsl"?>

<page connname="xmlbook" connection="{@connname}">

 <xsql:query null-indicator="yes" xmlns:xsql="urn:oracle-xsql">

 <![CDATA[

 select *

 from {@table}

 where rownum < 2

]]>

 </xsql:query>

 <xsql:set-stylesheet-param name="table" value="{@table}"

 xmlns:xsql="urn:oracle-xsql" />

</page>

Now we can try it out to produce a stylesheet to be used when transforming a posted HTML form

or XML document for inserting a new news story in the site_newsstory table. We can use the xsql

command-line utility again:

xsql GenerateInsertTransform.xsql NewTransform.xsl table=site_newsstory

This produces the following machine-generated XSLT stylesheet in the NewTransform.xsl file:

<?xml version = '1.0' encoding = 'UTF-8'?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Transform XXXX into canonical ROWSET for site_newsstory -->

 <xsl:template match="/">

 <ROWSET>

 <!-- XPath for repeating source rows -->

 <xsl:for-each select="page/ROWSET/ROW">

 <ROW>

 <ID><xsl:value-of select="ID"/></ID>

 <TITLE><xsl:value-of select="TITLE"/></TITLE>

 <URL><xsl:value-of select="URL"/></URL>

 <CATEGORY><xsl:value-of select="CATEGORY"/></CATEGORY>

 <DESCRIPTION><xsl:value-of select="DESCRIPTION"/></DESCRIPTION>

 <TIMESTAMP><xsl:value-of select="TIMESTAMP"/></TIMESTAMP>

 <SOURCE><xsl:value-of select="SOURCE"/></SOURCE>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 </xsl:template>

</xsl:stylesheet>

This saves a lot of typing. The only step left after using our new facility to create the skeleton

insert transformation is to fill in the right XPath expressions to match the nodes in the source

document that need to be inserted, or delete any elements for columns whose values you don't

plan to supply in the insert.

Part III: Oracle XML Applications

This part of the book describes how to build applications using Oracle and XML technologies. It

consists of the following chapters:

Chapter 15, builds on Chapter 8, explaining the additional features that make XSQL Pages an

extensible framework for assembling, transforming, and delivering XML information of any kind.

Chapter 16, describes how to extend the functionality of the XSQL Pages framework using custom

action handlers and how to extend the functionality of XSLT stylesheets by calling Java extension

functions.

Chapter 17, builds further on Chapter 11, and on earlier chapters, describing best practice

techniques to combine XSQL pages and XSLT stylesheets to build personalized information portal

and sophisticated online discussion forum applications.

Chapter 15. Using XSQL Pages as a Publishing

Framework

In Chapter 8, we explored the two cornerstone features of Oracle XSQL Pages:

• Assembling an XML data page using one or more parameterized

<xsql:query> elements

• Transforming that data page for delivery using an associated XSLT
stylesheet

However, the Oracle XSQL Pages technology provides many additional features
that make it a truly extensible framework for assembling, transforming, and
delivering XML information of any kind. In this chapter, we'll get acquainted with
its full feature set by studying some simple examples of each feature.

15.1 Overview of XSQL Pages Facilities

We'll begin with an overview of how XSQL page processing works, and proceed to
explore all of the facilities available to your XSQL pages.

15.1.1 Understanding XSQL Page Processing

At the heart of the XSQL Servlet and the XSQL command-line processor is the
XSQL page processor, an engine that uses the Oracle XML Parser, the Oracle XML
SQL Utility, and the Oracle XSLT engine to breathe life into your XSQL page
template whenever the page is requested. Figure 15.1 illustrates what happens
when your web server receives a request for SomePage.xsql that contains a
reference to the stylesheet SomeStyle.xsl.

Figure 15.1. Process flow for an XSQL page with a stylesheet

The XSQL page processor:

1. Receives a request from the XSQL Servlet to process SomePage.xsql
2. Parses SomePage.xsql using the Oracle XML Parser version 2 and caches it

for subsequent reuse
3. Acquires an appropriate database connection based on the value of the

connection attribute on the document element

4. Materializes the XML data page by replacing each XSQL action element of

the form <xsql:xxxx> with the XML results returned by its built-in action

handler
5. Parses the SomeStyle.xsl stylesheet and caches it for subsequent reuse
6. Transforms the data page by passing it, together with the SomeStyle.xsl

stylesheet, to the Oracle XSLT Processor
7. Returns the resulting XML or HTML document to the requester

To make each page request more efficient, the XSQL page processor
implements:

• Database connection pooling, growing and shrinking the number of pooled
database connections based on load

• Caching of XSQL page templates (instances of DOM Document objects)

using a "least recently used" (LRU) algorithm to keep the most frequently
accessed page templates in memory for fast access

• Caching and pooling of XSLT stylesheets (instances of XSLStylesheet

objects) to improve throughput by allowing multiple requests to be
transformed simultaneously on different threads

Of course, if an XSQL page or XSLT stylesheet changes, the cached copies are
thrown away and the new source is read in automatically. All of these features
can be tuned with parameters in the XSQL configuration file, which includes
lengthy comments describing the use of each parameter. The following list
highlights what can be configured in the XSQLConfig.xml configuration file:

• The named connection definitions
• The default number of records to fetch per database round trip for

<xsql:query> actions

• The size (in number of pages) of the LRU cache for XSQL page templates
• The size (in number of stylesheets) of the LRU cache for XSLT stylesheets
• The size (in bytes) of the supplementary output stream buffer to use for the

XSQL Servlet (zero to disable if your servlet engine already buffers output)
• The initial and increment size of the connection pool, as well as the timeout

threshold (in seconds) for cleaning up connections
• The initial and increment size of the XSLT stylesheet pool, as well as the

timeout threshold (in seconds) for cleaning up stylesheet instances
• The MIME types for which to suppress setting character set information
• Whether or not to reload named connection definitions when an unknown

connection name is requested
• Whether or not to include per-page and/or per-action timing information in

the XSQL page output
• Whether browser-based connection-pool status "dumping" is enabled

With this information under our belts, let's dive into the details of the supporting
action elements you can use in your XSQL pages.

15.1.2 Overview of Built-in XSQL Page Actions

The <xsql:query> element is just one of many action elements supported in

your XSQL page templates. Table 15.1 provides a list of all built-in action
elements and a brief description of each.

Table 15.1. Overview of Built-in XSQL Action Elements

Action Element Description

<xsql:set-stylesheet-param> Sets the value of a top-level XSLT stylesheet parameter

<xsql:set-page-param>
Sets a page-level (local) parameter that can be referred to in

subsequent actions in the page

<xsql:set-session-param>
Sets an HTTP session-level parameter, whose value persists

across page requests

<xsql:set-cookie> Sets an HTTP cookie, whose value is stored in the browser

<xsql:query>
Executes an arbitrary SQL statement and includes its result

set in canonical XML format

<xsql:ref-cursor-function>
Includes the canonical XML representation of the result set of

a cursor returned by a PL/SQL stored function

<xsql:include-param>
Includes a parameter and its value as an element in your

XSQL page

<xsql:include-request-params>
Includes all request parameters as XML elements in your

XSQL page

<xsql:include-xml>
Includes arbitrary XML resources at any point in your page by

relative or absolute URL

<xsql:include-owa>
Includes the results of executing a stored procedure that

makes use of the Oracle Web Agent (OWA) packages inside

the database to generate XML

<xsql:include-xsql>
Includes the results of one XSQL page at any point inside

another

<xsql:insert-request>
Inserts the XML document (or HTML form) posted in the

request into a database table or view

<xsql:insert-param>
Inserts the XML document contained in the value of a single

parameter into a table or view

<xsql:dml> Executes a SQL DML statement or PL/SQL anonymous block

<xsql:action>
Invokes a user-defined action handler, implemented in Java,

for executing custom logic and including custom XML

information into your XSQL page

We'll examine each action element in more detail in the following sections. Each
section presents a simple example to help you understand the common usage
scenario.

15.1.3 Working with Parameters

We saw in Chapter 8 how the value of a URL parameter or a parameter supplied
on the command line using the XSQL command-line utility can be used inside

<xsql:query> elements and in the values of attributes on the <xsql:query>

element. The XSQL parameter mechanism that supports this facility also
supports these features:

• Any XSQL action element or attribute can use parameters in the same way

they are used with <xsql:query> elements.

• XSQL parameters can reference page-level parameters, HTTP session
parameters, and HTTP cookie values in addition to the request-level
parameters we saw earlier.

When you reference a parameter like myParam inside the content of an XSQL

action element, as follows:

<xsql:query>
 select name from users where userid = {@myParam}
</xsql:query>

or in the attribute value of an XSQL action element, as follows:

<xsql:query max-rows="{@myParam}">
 :
</xsql:query>

the XSQL page processor determines the value of the parameter by using the
following logic:

• If the XSQL Servlet is invoking the page processor to handle the request,

the processor checks in the following order to determine if myParam is the

name of:
o An XSQL local page parameter
o An HTTP cookie
o An HTTP session variable
o An HTTP request parameter

• If instead, the XSQLCommandLine or the XSQLRequest classes are driving

the XSQL page processor, the processor checks in the following order to

determine if myParam is:

o An XSQL local page parameter
o An XSQL request parameter provided on the command line or passed

into the XSQLRequest.process() method.

In either case, if none of the attempts produce a matching parameter value, the

XSQL page processor looks for a fallback value for myParam by searching the

current action element and its ancestor elements (that is, the elements that
contain it) in order to find an XML attribute of the same name as the parameter.

If such an attribute is found, its value is used as the value of myParam.

Regardless of the type of parameter, the syntax used to refer to its value is the
same. Let's look at each type of parameter and see how to set its value.

All parameter names and references to their values are treated
case-sensitively.

15.1.3.1 Setting private page-level parameters

If you need to retrieve a value from the database and refer to that value in a
subsequent action element as a parameter, you can use

<xsql:set-page-param> to assign the value to a page-level parameter. The

basic syntax is:

<xsql:set-page-param name="pname">
 <!-- Select statement returning one row and one column here -->
 SELECT Statement
</xsql:set-page-param>

The <xsql:set-page-param> action performs the SELECT statement and

retrieves the first row in the result. The value of the first column in the SELECT list

is assigned to the pname page-level parameter. Anywhere parameters are valid,

you can refer to {@pname} to use the value you retrieved.

The following example illustrates retrieving a user preference from a database
table, assigning it to a page-level parameter, then referencing the retrieved
value in an attribute of a subsequent query:

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <!-- Retrieve the value of a page-level param from a query -->
 <xsql:set-page-param name="stories-to-display">
 SELECT headings
 FROM user_prefs
 WHERE userid = {@user}
 </xsql:set-page-param>
 <!-- Use the retrieved parameter value in a subsequent action element
-->
 <xsql:query max-rows="{@stories-to-display}">
 SELECT title, url
 FROM latestnews
 </xsql:query>
</page>

It's also possible to assign the page-level parameter a value using the syntax:

<xsql:set-page-param name="pname" value="val"/>

This can be useful to set a page-level parameter to the value of another
parameter, the concatenation of other parameters, or a static value. For example,

if the value of the icon parameter is "star" and the value of the ext parameter is

".gif ," then the action:

<xsql:set-page-param name="image" value="../images/{@icon}.{@ext}"/>

results in setting the page-level parameter named image to the

value ../images/star.gif. Values of page-level parameters are private to the

page in which they are set, so they are not visible to other XSQL pages that might

be included in the current page using the <xsql:include-xsql> action discussed

later.

15.1.3.2 Setting HTTP session variables

When using XSQL Pages with the XSQL Servlet, you can refer to variables set in
the HTTP session. These are variables whose values persist for a single user's
session with your web server. If you have not otherwise created the HTTP session,

then it is created the first time an <xsql:set-session-param> action is

encountered. The HTTP session and the variables within it stay alive for a period
of time specified by your servlet engine configuration.

To set the value of an HTTP session-level variable, use the syntax:

<xsql:set-session-param name="pname" value="val"/>

As with any action element attribute, the value="val" attribute can reference

other parameters or be a static value. You can also assign the session-level
variable a value retrieved from the database using the syntax:

<xsql:set-session-param name="pname">
 <!-- Select statement returning one row and one column here -->
 SELECT Statement
</xsql:set-session-param>

For example, the following syntax sets the value of the session-level shopper-id

parameter to the next value from a database sequence:

<!-- Set the value of a session-level param to value from the database
-->
<xsql:set-session-param name="shopper-id">
 SELECT shopper_id.nextval FROM DUAL
</xsql:set-session-param>

Usually, you want to set a session-level variable only once during the current
session. You can ensure that this happens by including the additional

only-if-unset="yes" attribute on the action element, like this:

<!--
 | Set the value of a session-level param to value from the database
 | Only set it if the value has never been set before in this session.
 +-->
<xsql:set-session-param name="shopper-id" only-if-unset="yes">

 SELECT shopper_id.nextval FROM DUAL
</xsql:set-session-param>

In addition, you may not want to set the value of the session variable at all if the
value to which it is being assigned is a blank or null value. To prevent a session
variable from having its value assigned to an empty string, add the

ignore-empty-value="yes" attribute on the action element, like this:

<!--
 | Set the value of the session level variable to 'Yes' if a row is
 | returned from the query. If no row is returned (producing a NULL value
 | to be set) do not set the parameter value.
 +-->
<xsql:set-session-param name="existing-customer"
ignore-empty-value="yes">
 SELECT 'Yes'
 FROM customer_table
 WHERE customer_id = {@custid}
</xsql:set-session-param>

The same technique applies to the case when the value is set using the

value="val" syntax:

<!--
 | Remember the value of the most recently selected menu choice
 | in a session level parameter. Only set the value of "last-menu-choice"
 | to a new value if the "choice" parameter has a non-empty value.
 +-->
<xsql:set-session-param name="last-menu-choice"
 value="{@choice}"
 ignore-empty-value="yes"/>

You can combine only-if-unset="yes" and ignore-empty-value="yes" to

achieve both effects if desired. As we've seen, session-level variables can be
good for remembering values across page requests that are specific to a given
user's current session. Note that JavaServer pages or servlets can set session
variables programmatically that are visible to your XSQL pages, and your XSQL
pages can set session-level variables that can be read by JSPs or servlets
executed by the same browser user in the current session.

15.1.3.3 Setting HTTP cookie values

You can store parameter values across user sessions using HTTP cookies. The

<xsql:set-cookie> action enables your XSQL pages to set the name and value

of the cookie, as well as several parameters that govern its lifetime and visibility.
The basic syntax is:

<xsql:set-cookie name="pname">
 <!-- Select statement returning one row and one column here -->
 SELECT Statement
</xsql:set-cookie>

or:

<xsql:set-cookie name="pname" value="val"/>

The following additional attributes can be used on an <xsql:set-cookie>

element:

max-age ="numsecs"

Indicates that the cookie value will expire after numsecs seconds. If no

number is specified, the cookie will expire when the user exits the current
browser instance.

domain ="servername"

Indicates that the cookie value will be readable in the servername domain.

If no server is specified, the cookie will be readable in the full domain name
of the current XSQL page being requested.

path ="pathname"

Indicates that the cookie value will be readable only for URLs in the

pathname path relative to the cookie's domain or in subdirectories. If no

path is specified, the cookie will be readable in the URL path of the current
XSQL page being requested.

The ignore-empty-value="yes" and only-if-unset="yes" attributes may also

be used, and will behave the same as for session-level parameters. For example,
assume that a user has submitted an HTML login form complete with username
and password. You can look up this username/password combination in your

registered_users table and set the value of a cookie named siteuser if the

combination matches. The following XSQL page would handle this:

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <!--
 | If the username/password combo matches,
 | set a siteuser cookie that will expire in
 | 1 year (= 365 days * 24 hours * 60 min * 60 sec)
 +-->
 <xsql:set-cookie name="siteuser" max-age="31536000"
 only-if-unset="yes" ignore-empty-value="yes">
 SELECT username
 FROM site_users
 WHERE username = '{@username}'
 AND password = '{@password}'
 </xsql:set-cookie>
 <!-- Other Actions Here -->
</page>

Because they are HTTP-specific, session-level parameters and
cookies are useful only in XSQL pages that will be requested
through the XSQL Servlet over HTTP. If you use the XSQL

command-line utility or the XSQLRequest class to process an

XSQL page containing <xsql:set-session-param> and/or

<xsql:set-cookie> actions, session-level parameters and

cookies will have no effect.

15.1.3.4 Setting XSLT stylesheet parameters

XSLT stylesheets can be parameterized by declaring top-level stylesheet
parameters. An example of a stylesheet that declares such a parameter is shown
here:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- XSLT stylesheet parameter "imageDir", overridable default value
provided -->
 <xsl:param name="imageDir">/images</xsl:param>
 <!-- XSLT stylesheet parameter "Theme", overridable default value
provided -->
 <xsl:param name="Theme">default.css</xsl:param>

 <xsl:template match="/">
 <!-- etc. -->
 </xsl:template>
</xsl:stylesheet>

Using the <xsql:set-stylesheet-param> action, an XSQL page can assign

values to these stylesheet parameters. Following the examples above, the syntax
is either:

<xsql:set-stylesheet-param name="pname">
 <!-- Select statement returning one row and one column here -->
 SELECT Statement
</xsql:set-stylesheet-param>

or:

<xsql:set-stylesheet-param name="pname" value="val"/>

For example, the following XSQL page sets the values of the imageDir and Theme

stylesheet parameters:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="SomeSheet.xsl"?>
<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <!-- Set the stylesheet parameter named imageDir -->
 <xsql:set-stylesheet-param name="imageDir"
value="{@subdir}/graphics"/>
 <!-- Set the stylesheet param named Theme by retrieving a user
preference -->
 <xsql:set-stylesheet-param name="Theme">
 SELECT selected_theme
 FROM user_prefs
 WHERE userid = {@currentuser}
 </xsql:set-stylesheet-param>
 <!-- Other actions here -->
</page>

If you find yourself using <xsql:set-stylesheet-param> to set many stylesheet

parameters to the value of XSQL page parameters, you might consider using

<xsql:include-request-params>, described later, which includes all request

parameters, session variables, and cookies into your XSQL data page in a single
action. Once they are part of your data page, they are accessible in the stylesheet
via XPath expressions.

15.1.4 Supported Sources of XML Content

In addition to the static XML elements in your XSQL page and the dynamically

produced XML content resulting from the <xsql:query> action elements, you can

exploit several additional options for assembling interesting XML information into
your XSQL data page before delivering it or transforming it using XSLT.

15.1.4.1 Including parameter values

To include the value of any parameter pname into your XSQL data page, use the

<xsql:include-param> action. It takes a single name attribute indicating the

name of the parameter to include:

<xsql:include-param name="pname"/>

The <xsql:include-param> element is replaced by an element with the same

name as the parameter having the parameter value as its text content. Therefore,
an action like:

<xsql:include-param name="sku"/>

produces the element:

<sku>1234567</sku>

Note that it is possible to use this in combination with <xsql:set-page-param>

to retrieve a value from the database as a page-level parameter and then insert
it into the database. For example:

<!-- Retrieve name of sales rep for customer whose id is passed in 'cust'
parameter -->
<xsql:set-page-param name="salesRepName">
 SELECT rep_name
 FROM customer_sales_rep
 WHERE custid = {@cust}
</xsl:set-page-param>
<!-- Insert salesRepName param into the data page -->
<xsql:include-param name="salesRepName"/>

produces the XML element:

<salesRepName>Jimmy</salesRepName>

However, it is more convenient to use <xsql:query> directly, in combination

with SQL column aliasing and suppressing rowset-element and row-element:

<!-- Insert salesRepName for customer whose id is passed in 'cust'
parameter -->
<xsql:query rowset-element="" row-element="">
 SELECT rep_name AS "salesRepName"
 FROM customer_sales_rep
 WHERE custid = {@cust}
</xsql:query>

which produces the equivalent single element:

<salesRepName>Jimmy</salesRepName>

This technique is preferable for including "singleton" database lookup values
because it can easily be leveraged to use a single SELECT statement to retrieve
multiple lookup values in a single database round-trip. For example, if you need
to retrieve not only a sales representative's name, but also the rep's phone
number and fax number, you can extend the previous example to look like this:

<!-- Insert salesRepName for customer whose id is passed in 'cust'
parameter -->
<xsql:query rowset-element="" row-element="">
 SELECT rep_name AS "salesRepName",
 rep_phone AS "phoneNumber",
 rep_fax AS "faxNumber"
 FROM customer_sales_rep
 WHERE custid = {@cust}

</xsql:query>

and, with a single SQL statement, you add these three elements to the page:

<salesRepName>Jimmy</salesRepName>
<phoneNumber>677-899-1001</phoneNumber>
<faxNumber>677-899-1002</faxNumber>

If, instead, you used the combination of <xsql:set-page-param> and

<xsql:include-param> you would need three queries to achieve the same effect,

since each <xsql:set-page-param> assigns only the value of a single parameter

from the first column of the SELECT statement. Therefore,

<xsql:include-param> is most useful for including a single or a small number of

request parameters in the data page.

15.1.4.2 Including all request parameters

If you want to make the entire set of all request parameters, session variables,
and cookies available to the XSLT stylesheet in your XSQL page, use the

<xsql:include-request-params> action. The action element is replaced in the

page at page-request time with a subtree of XML elements that represents all of
the interesting parameters available to the request. The format of the included
XML document fragment when the page is requested through the XSQL Servlet
looks like this:

<request>
 <parameters>
 <param1>value1</param1>
 <param2>value2</param2>
 :
 </parameters>
 <session>
 <name1>val1</name1>
 <name2>val2</name2>
 :
 </session>
 <cookies>
 <cookiename1>value1</cookiename1>
 :

 </cookies>
</parameters>

When you use the XSQL command-line utility or the XSQLRequest class, the

<session> and <cookies> sections are not relevant, so they are not present. The

included document fragment in these cases will look like this:

<request>
 <parameters>
 <param1>value1</param1>
 <param2>value2</param2>
 :
 </parameters>
</parameters>

In contrast with the <xsql:include-param>, this technique makes it possible to

distinguish whether a parameter is a request parameter, session parameter, or
cookie because its value will appear as an element in a child of

request/parameters, request/session, or request/cookies, respectively.

Using <xsql:include-param>, only the value of the parameter is included; and

it is not possible to infer whether the value was a request, session, or
cookie-based value. For example, in the following XSQL page:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="SomeSheet.xsl"?>
<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <!-- Include all request parameters in the data page -->
 <xsql:include-request-params/>
 <!-- Other actions here -->
</page>

the associated SomeSheet.xsl stylesheet can contain conditional logic to format
the page differently if the user is logged in, based on the presence of an HTTP

cookie named forumuser. A fragment of such a stylesheet would look like this:

<!-- If the user is logged in, say hello. Otherwise show login link
-->
<xsl:choose>
 <xsl:when test="/page/request/cookies/forumuser">

 Hello, <xsl:value-of
select="/page/request/cookies/forumuser"/>
 </xsl:when>
 <xsl:otherwise>
 Login
 </xsl:otherwise>
</xsl:choose>

Using <xsql:include-request-params>, the stylesheet can tell the difference

between a forumuser cookie that it set and a forumuser request parameter that

a clever user might pass as part of the URL.

15.1.4.3 Including encapsulated, dynamic queries

When delivering data that must be highly customized by users, or when trying to
support an arbitrary query by example on many optional query parameters, even

the most clever use of XSQL parameter substitution in your <xsql:query>'s

SELECT statement is often not right for the job. In these cases, when the
structure of the query itself must change dynamically, it is possible to handle the

job quite easily by using the <xsql:ref-cursor-function> action instead of

<xsql:query>.

As the name implies, <xsql:ref-cursor-function> allows you to invoke a

database function that returns a reference to a dynamically created cursor and
automatically include an XML representation of its query results in your data page.
Leveraging Oracle8i 's native dynamic SQL feature, your database stored
function can literally create any valid SELECT statement in a string, based on any
number of decisions your code needs to make, and return a cursor over the query
results on that query to your XSQL page. All of the optional attributes supported

on the <xsql:query> action element with the exception of fetch-size are also

supported on the <xsql:ref-cursor-function> so you have the same degree of

control with total flexibility as to the nature of the query being performed.

To return a dynamic query result, your database stored function must exist in a
package that declares a weakly typed REF CURSOR type in the package
specification to use as the function return value, like this:

PACKAGE myDynamicQueryPackage IS
 TYPE myCursorType IS REF CURSOR;
 FUNCTION latestNewsForUser(userid VARCHAR2) RETURN myCursorType;
END;

In the function body, your code opens a cursor for the dynamic SQL query by
using this syntax:

-- Open the cursor for the dynamic query
OPEN myCursorVariable
FOR myQueryInAString
USING bindargone,bindargtwo,... ;
-- Return the cursor variable to the caller
RETURN myCursorVariable;

As a simple yet complete example, the following package function returns a
cursor variable for a query over the dept table if you pass in a number less than
1000 or for a query over the emp table if you pass in a number greater than or
equal to 1000. The package specification looks like this:

CREATE OR REPLACE PACKAGE DeptOrEmp IS
 TYPE myCursorVariable IS REF CURSOR;
 FUNCTION getInfo(id NUMBER) RETURN myCursorVariable;
END;

and the package body looks like this:

CREATE OR REPLACE PACKAGE BODY DeptOrEmp IS
 FUNCTION getInfo(id NUMBER) RETURN myCursorVariable IS
 the_cursor myCursorVariable;
 BEGIN
 IF id < 1000 THEN
 -- Open the cursor for a dept query using the id parameter passed
 -- in as the value of the :d bind variable.
 OPEN the_cursor
 FOR 'select * from dept where deptno = :d'
 USING id;
 ELSE
 -- Open the cursor for an emp query using the id parameter passed
 -- in as the value of the :e bind variable.
 OPEN the_cursor
 FOR 'select * from emp where empno = :e'
 USING id;
 END IF;
 RETURN the_cursor;

 END;
END;

To test the function, we create the simple XSQL page:

<xsql:ref-cursor-function connection="xmlbook"
xmlns:xsql="urn:oracle-xsql">
 DeptOrEmp.getInfo({@id})
</xsql:ref-cursor-function>

When this page is invoked with the URL:

http://xmlapps/enpdept.ssgl?id=7839

we get:

<ROWSET>
 <ROW num="1">
 <EMPNO>7839</EMPNO>
 <ENAME>KING</ENAME>
 <JOB>PRESIDENT</JOB>
 <HIREDATE>11/17/1981 0:0:0</HIREDATE>
 <SAL>5000</SAL>
 <DEPTNO>10</DEPTNO>
 </ROW>
</ROWSET>

However, if we invoke the page with the URL:

http://xmlapps/empdept.xsql?id=10

we get:

<ROWSET>
 <ROW num="1">
 <DEPTNO>10</DEPTNO>
 <DNAME>ACCOUNTING</DNAME>
 <LOC>NEW YORK</LOC>
 </ROW>
</ROWSET>

Using Several Bind Variables

If your dynamic SQL statement uses several bind variables, you need to
include the correct number of bind variable values in the correct order in

the USING clause of the OPEN cursorVariable statement. For example, if
your query is the string:

query := 'SELECT decode(:flag,1,:sal+10,2,:sal+20) AS someval
 FROM some_table
 WHERE id = :id
 AND sal BETWEEN :sal AND :sal*10';

you need to provide bind values in the USING clause for all unique bind

variable names—:flag, :sal, and :id—in the positional order in which

each unique bind variable first appears in the query string. In this

example, disregarding repeated occurrences, :flag appears first in the

string, :sal appears second, and :id appears third, so you would open a

dynamic cursor using the syntax:

 OPEN myCursor
 FOR query
USING myFlagVariable, mySalVariable, myIdVariable;

While the DeptOrEmp.getInfo() example is very simple, it clearly illustrates

that a single function can return completely different query results based on
programmatic logic depending on any number of arguments passed in by the

caller—in this case, the XSQL page's <xsql:ref-cursor-function> action.

Using functions that return ref cursors is also useful for building XSQL pages that
do not reveal the queries they are doing in their page source (if, for some reason,
developers were not allowed to know what tables were really being accessed to
deliver the data). With this technique, only the results of the queries are known.

15.1.4.4 Including external XML resources by URL

You can use the <xsql:include-xml> action to include the contents of any

XML-based resource that's addressable by a URL. The URL might refer to a static
XML file on another server or, more interestingly, it might be the URL for a web
service. The server on the other side of the request may be delivering an XML
resource that is a static XML file on its filesystem, or the dynamically created XML
from a programmatic resource, such as a servlet, JSP page, Perl program, ASP
page, XSQL page, and so on.

To include these kinds of XML-based content in your XSQL page, get the correct
URL and make sure that your XSQL configuration file has set your HTTP proxy
server properly, if one is required in your environment.

For example, the XSQL page:

<page xmlns:xsql="urn:oracle-xsql">
 <ScriptingNewsInfo>
 <xsql:include-xml
href="http://scriptingnews.userland.com/xml/rss.xml"/>
 </ScriptingNewsInfo>
 <AirportInfo>
 <xsql:include-xml

href="http://ws5.olab.com/xsql/demo/airport/airport.xsql?airport={
@tla}"/>
 </AirportInfo>
</page>

when requested with the URL:

http://server/include-xml-example.xsql?tla=XML

returns the XML data page shown in Example 15.1.

Example 15.1. Data Page with XML Assembled from External

Sources

<page>
 <ScriptingNewsInfo>
 <rss version="0.91">
 <channel>
 <title>Scripting News</title>
 <link>http://scriptingnews.userland.com/</link>
 <description>Dave Winer's weblog, covering
scripting...</description>
 <language>en-us</language>
 <pubDate>Fri, 07 Apr 2000 07:00:00 GMT</pubDate>
 <lastBuildDate>Fri, 07 Apr 2000 19:10:00 GMT</lastBuildDate>
 <managingEditor>dave@userland.com (Dave
Winer)</managingEditor>
 <webMaster>dave@userland.com (Dave Winer)</webMaster>
 <item>

 <title>A win-win solution</title>

<link>http://www.zdnet.com/pcweek/stories/columns/0,4,0,00.html</l
ink>
 <description>A win-win solution: "The Internet
has...</description>
 </item>
 <!-- Lots more <item>s here -->
 </channel>
 </rss>
 </ScriptingNewsInfo>
 <AirportInfo>
 <Ok>
 <Airport num="1">
 <Code>XML</Code>
 <Description>Minlaton, Sa, Australia</Description>
 </Airport>
 </Ok>
 </AirportInfo>
</page>

Of course, the results of the XML resource referenced by an <xsql:include-xml>

element must be well-formed XML; otherwise, an <xsql-error> element will be

added to your XSQL page instead of the XML you were expecting.

15.1.4.5 Including dynamic XML from PL/SQL

In Chapter 10, we learned the basic techniques PL/SQL developers can use to
serve XML using the Oracle Web Agent (OWA) packages. The generated XML is

printed to a PL/SQL page buffer using the routines in the HTP package, and the

result is pulled from that buffer and delivered to the requester over the Web by
any of the following:

• Oracle Internet Application Server 1.0 with modplsql

• Oracle Web Application Server 3.0/4.0
• Oracle Web Server 2.1
• WebDB Lightweight Listener

If this style of XML creation is familiar and effective for you, you can use the

<xsql:include-owa> action in your XSQL page to exploit your OWA-generated

XML. The basic syntax is:

<!-- Invoke a single stored procedure or packaged procedure -->
<xsql:include-owa>
 StoredProcedureName(args);
</xsql:include-owa>

One clever use of <xsql:include-owa> is to invoke a PL/SQL stored procedure

that validates the arguments passed to it and returns a structured fragment of
XML indicating any validation failures that have occurred. If no errors occur, the
procedure can perform a DML operation like an insert, update, or delete. As a
simple example, consider the following PL/SQL procedure:

CREATE PROCEDURE UpdatePrice(sku_to_change VARCHAR2, new_price
VARCHAR2) IS
 pricenum NUMBER;
 errors BOOLEAN := false; -- Assume no errors to begin with
 PROCEDURE show_xml_err(field VARCHAR2, msg VARCHAR2) IS
 BEGIN
 HTP.P('<Error Field="'||field||'">'||msg||'</Error>');
 errors := TRUE;
 END;
BEGIN
 HTP.P('<UpdatePrice>');
 -- Check whether sku_to_change begins with letter 'K'
 IF sku_to_change IS NULL OR SUBSTR(sku_to_change,1,1)<>'K' THEN
 show_xml_err('sku','SKU must be non-null and begin with a K');
 END IF;
 -- Check whether new_price is a positive number
 BEGIN
 IF new_price IS NULL THEN RAISE VALUE_ERROR; END IF;
 pricenum := TO_NUMBER(new_price);
 EXCEPTION
 WHEN VALUE_ERROR THEN
 show_xml_err('price','Price must be a non-null, positive
number');
 END;
 IF NOT errors THEN
 UPDATE product SET price = pricenum WHERE sku = sku_to_change;
 HTP.P('<Success/>');
 END IF;

 HTP.P('</UpdatePrice>');
END;

It generates an <UpdatePrice> "statusgram" that contains either a list of one or

more <Error> elements or the single element <Success/> if no validation errors

occur. We can call the UpdatePrice procedure from an XSQL page like this:

<xsql:include-owa connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 UpdatePrice('{@sku}','{@price}');
</xsql:include-owa>

Then, if an HTML form posts (or URL includes) parameters to this XSQL page with

values like sku=J123, which does not start with a letter K, and price=$10, which

inadvertently includes a dollar sign, the resulting data page will reflect the
multiple XML errors in its statusgram:

<UpdatePrice>
 <Error Field="sku">SKU must be non-null and begin with a K</Error>
 <Error Field="price">Price must be a non-null, positive
number</Error>
</UpdatePrice>

An associated XSLT stylesheet could use this error information to render an HTML
form that displays the errors in context. A similar validation approach could be
performed using Java code in a custom action handler; we'll learn more about
this in Chapter 16.

15.1.4.6 Modularizing reusable XML information content

The ace up our sleeve in this category of include elements is the

<xsql:include-xsql> action. It allows you to assemble one XSQL page by

including the results of other XSQL pages. While you'll find this action has 1001
uses, a few of the most common are:

• Factoring a query that occurs in multiple pages into a reusable XSQL page
that can be shared by all of them

• Including data from multiple database connections in the same page
• Transforming information using a chain of multiple XSLT stylesheets

• Layering a desired XSLT transformation on top of an existing XSQL data
page without modifying the original document

Let's look at some examples. Say you have a BrowseProduct.xsql page like the
following that retrieves product information for the current product being
browsed, along with a list of active promotions going on this hour like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="BrowseProduct.xsl"?>
<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <xsql:query>
 <!-- Retrieve product information -->
 SELECT sku, price, description,
 decode(qty,0,'Backordered','In Stock') as status
 FROM product
 WHERE sku = '{@id}'
 </xsql:query>
 <xsql:query>
 <!-- Retrieve any active promotions going on this hour -->
 SELECT promocode, blurb, discount
 FROM active_promotions
 WHERE effective_date BETWEEN SYSDATE AND SYSDATE+(1/24)
 </xsql:query>
</page>

If you use the "product info" query and the "promotions this hour" query in
several different pages, you can create ProductInfo.xsql and
PromosThisHour.xsql to factor these queries into their respective files, as
follows:

<!-- ProductInfo.xsql -->
<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <!-- Retrieve product information -->
 SELECT sku, price, description,
 decode(qty,0,'Backordered','In Stock') as status
 FROM product
 WHERE sku = '{@id}'
</xsql:query>

and:

<!-- PromosThisHour.xsql -->
<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <!-- Retrieve any active promotions going on this hour -->
 SELECT promocode, blub, discount

 FROM active_promotions
 WHERE effective_date BETWEEN SYSDATE AND SYSDATE+(1/24)
</xsql:query>

Then you can reuse these files in your original BrowseProduct.xsql and any
others that need common queries, like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="BrowseProduct.xsl"?>
<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <xsql:include-xsql href="ProductInfo.xsql"/>
 <xsql:include-xsql href="PromosThisHour.xsql"/>
</page>

Notice that when the <xsql:query> elements in the original BrowseProduct.xsql

page are moved to their own files, each becomes an XSQL page in its own right

and requires a connection="connname" attribute on its document element, as

well as an xmlns:xsql="urn:oracle-xsql" namespace declaration.

When the XSQL page processor is processing the new, modularized

BrowseProduct.xsql, it encounters the <xsql:include-xsql> elements and

recursively processes these nested page requests. All of the request, session,
and cookie parameters that are visible to the enclosing BrowseProduct.xsql page
are also visible to these nested pages. To pass additional parameters or to
forcibly override the value of a request parameter for just the nested request,
you can tack on parameters to the XSQL page name like this:

<xsql:include-xsql href="ProductInfo.xsql?p1=v1&p2=v2"/>

The href attribute can be any URL; however, relative URLs are the most efficient

because the XSQL page processor can cache the XSQL page templates. With a
relative URL, you can refer to nested XSQL pages in other directories relative to
the one the current XSQL page resides in, like this:

<xsql:include-xsql href="../common/ProductInfo.xsql"/>

The XSQL page processor is designed to handle these nested page requests

efficiently, so using <xsql:include-xsql> does not incur additional HTTP

requests or additional database connections if the nested pages use the same
named connection as the enclosing page.

If a page like the reworked BrowseProduct.xsql page uses

<xsql:include-xsql> actions and does not include any actions

that require a database connection, like <xsql:query>,

<xsql:ref-cursor-function>, or <xsql:include-owa>, then

technically speaking it does not need a

connection="connname" attribute on its document element.

However, sometimes there is a good reason for leaving the
attribute there.

If two or more nested XSQL pages use the same connection, it

is more efficient to declare the connection on the enclosing

page as well. This way, the nested pages will notice that the
page including them already has the required database
connection, so it will not bother to acquire a new connection
from the pool.

Since each of our XSQL pages has its own connection attribute, it would be very

easy to retrieve the information for the ProductInfo.xsql attribute from

connection="inventory"; the information for the PromosThisHour.xsql

attribute connection="marketing" is obtained by using the right connection

name where needed in the nested pages.

If the page included using <xsql:include-xsql> is selecting XML-based

information that is stored in the database as literal text, you can use the optional

reparse="yes" attribute to force the text to be parsed and included as elements

in your including page, instead of just as text.

For example, imagine that you have some B2B XML messages in a queue or in a
simple table where you store the XML messages in a CLOB column. You can build
an XSQL page to select the text of the XML messages from the table by message
ID, like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="Message.xsl"?>
<xsql:query connection="xmlbook" xmlns:xsql="urn:oracle-xsql"
 rowset-element="" row-element="">
 SELECT message as "Message"
 FROM xml_business_messages
 WHERE id = {@id}
</xsql:query>

The Message.xsql page uses the following Message.xsl stylesheet to output the
XML text selected from the CLOB column verbatim, without quoting the angle

brackets contained in the text as < and > as would be the default:

<!--
 | Message.xsl: includes text of <Message> element *verbatim*
 | using disable-output-escaping="yes" to avoid turning
 | angle-brackets in XML text into < and >
 + -->
<Message xsl:version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:value-of disable-output-escaping="yes" select="/Message"/>
</Message>

The result is that requesting the message with ID 101 using the URL:

http://server/Message.xsql?id=101

will produce the document:

<Message>
 <Order tracking="123456">
 <Client>99023</Client>
 <Item Qty="4" Sku="1232123">Ticonderoga Yellow Pencil</Item>
 </Order>
</Message>

Without the disable_output_escaping attribute, the document would have all

angle brackets quoted, like this:

<Message>
 <Order tracking="123456">
 <Client>99023</Client>

 <Item Qty="4" Sku="1232123">Ticonderoga Yellow
Pencil</Item>
 </Order>
</Message>

You can then include the XML element content of any business message by ID

into another XSQL page using <xsql:include-xsql> with the reparse="yes"

attribute. For example, the following page:

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <xsql:include-xsql reparse="yes" href="Message.xsql?id={@msgid}"/>
 <xsql:query>
 SELECT name
 FROM customer
 where id = {@custid}
 </xsql:query>
</page>

can be requested with a URL like:

http://server/CustomerMessageProfile.xsql?custid=99023&msgid=101

This produces an assembled XSQL data page of:

<page>
 <Message>
 <Order tracking="123456">
 <Client>99023</Client>
 <Item Qty="4" Sku="1232123">Ticonderoga Yellow Pencil</Item>
 </Order>
 </Message>
 <ROWSET>
 <ROW>
 <NAME>Neiman Marcus</NAME>
 </ROW>
 </ROWSET>
</page>

We saw earlier that if a page included using <xsql:include-xsql> has an

associated XSLT stylesheet (like Message.xsql, which was associated to
Message.xsl), that stylesheet's transformation is performed before including the

resulting XML into the page. If the page that makes use of <xsql:include-xsql>

has its own XSLT stylesheet, it is processed in the normal fashion to transform
the assembled data page before returning it. Figure 15.2 illustrates using this
technique to chain stylesheets together or to create pages that style the same
underlying XML information in multiple, different ways. The basic steps are as
follows:

Figure 15.2. Rendering data multiple ways and chaining

stylesheets

1. Emp.xsql produces the basic XML information for the employee data.
2. EmpList.xsql includes Emp.xsql and styles it with EmpTable.xsl into HTML,
3. PeopleGroup.xsql includes Emp.xsql and transforms it with

PeopleGroup.xsl into a hypothetical industry-standard XML format.
4. PeopleChecklist.xsql uses a PeopleChecklist.xsl provided by the

industry-standard group to transform the XML results from
PeopleGroup.xsql into a standard HTML presentation.

This shows that, in general, if you already have a SomePage.xsql XSQL page, you
can apply transformations to it without changing the original page itself to

introduce <?xml-stylesheet?> instructions. You simply build one or more new

XSQL pages that look like this:

<?xml version="1.0"?>
<!--
 | Apply SomeNewTransformation.xsl to an existing SomePage.xsql
 | without changing the original page in any way.
 +-->
<?xml-stylesheet type="text/xsl" href="SomeNewTransformation.xsl"?>

<xsql:include-xsql href="SomePage.xsql"
xmlns:xsql="urn:oracle-xsql"/>

Now that you've seen these examples, I hope it's becoming more clear why users

are enthusiastic about the flexibility enabled by <xsql:include-xsql>.

15.1.5 Modifying the Database Using Submitted Data

So far, we've seen pages containing actions that set parameters and actions that
include XML content. In this section, we briefly describe the actions that allow you
to modify database information based on information submitted in the request.

15.1.5.1 Doing DML or executing PL/SQL

Any time your pages need to update tables, insert information into a table, or
invoke stored procedures to accomplish any needed functionality, the

<xsql:dml> action is your friend. The basic syntax is:

<xsql:dml>
 DML Statement
</xsql:dml>

or:

<xsql:dml>
 BEGIN
 Any valid PL/SQL Statement
 END;
</xsql:dml>

For example, to insert the current username stored in a siteuser cookie into a

page_request_log table, you can do this:

<xsql:dml>
 BEGIN
 INSERT INTO page_request_log(page,userid)
 VALUES('thispage.xsql', '{@siteuser}');
 COMMIT;
 END;
</xsql:dml>

Some users may prefer to always invoke stored procedures instead of including
raw DML operations in a page, but both are supported. If the operation is

successful, an <xsql-status> element is added to your page to replace the

<xsql:dml> action; it reports the number of rows affected as reported by JDBC:

<xsql-status action="xsql:dml" rows="n"/>

If the statement returns an error, an <xsql-error> element is added to the page

to report the problem:

<xsql-error action="xsql:dml">
 <statement>update emp set sal = sal * 10</statement>
 <message>ORA-01031: insufficient privileges</message>
</xsql-error>

Similar to the <xsql:query> example we saw in Chapter 8, the <xsql:dml>

action can use parameters to represent any part of the DML or PLSQL statement
that it will attempt to execute, including the extreme case of using a parameter
for the entire statement, like this:

<page connection="xmldemo" xmlns:xsql="urn:oracle-xsql">
<xsql:dml>{@statement}</xsql:dml>
</page>

While this at first looks very appealing because of its flexibility, be aware that it
also allows any user who can request the page to send any DML command to the
database named in the connection. For example, the following would dutifully
drop your orders table:

http://server/dmlpage.xsql?statement=drop%20table%20orders

To wield such power responsibly, you can either restrict the database privileges

granted to the account named in the xmldemo connection, or use the facilities

provided by your web server to password-protect the directory where this page
resides.

15.1.5.2 Handling posted HTML forms and XML documents

You can use the <xsql:insert-request> action to insert the data content of

posted HTML forms or XML documents into a table or view. If a posted XML
document is supplied in a single parameter, the companion

<xsql:insert-param> action does the job. The basic syntax is:

<xsql:insert-request table="table-or-viewname"/>
<xsql:insert-param table="table-or-viewname"/>

You might immediately wonder:

• How does the action know what data I want to insert?
• How does the action know what columns to insert the data into?

The answer is simple: the insert action doesn't know the answer to either of

these questions on its own. You have to assist in the process by supplying an

XSLT stylesheet in the optional transform="stylesheetname" attribute that

transforms the structure of the posted information into the canonical

<ROWSET>/<ROW> structure for the target table or view. The more typical syntax

for this action is:

<xsql:insert-request table="table-or-viewname"
transform="stylesheetname"/>
<xsql:insert-param table="table-or-viewname"
transform="stylesheetname"/>

An additional date-format="datemask" attribute is supported to inform the XML

SQL utility used under the covers what format to expect for date values. We saw

extensive examples of using <xsql:insert-request> in Chapter 12.

15.1.6 Accessing XSQL Pages from JSP

So far we've seen two ways to access XSQL pages, tapping into the services of
the XSQL page processor to return the transformed results: the XSQL Servlet and
the XSQL command-line utility. In addition to these two mechanisms, it is also

possible to access XSQL pages programmatically or from JavaServer Pages
(JSPs). A JavaServer page can forward a request to an XSQL page by using the

JSP tag called <jsp:forward>. The syntax is:

<jsp:forward page="relativeURLToXSQLPage"/>

This effectively means that the JSP page transfers responsibility to the XSQL
page to continue handling the request and return a response. Before doing the

<jsp:forward>, the JSP page can perform any number of tasks required by using

Java scriptlets in the page or by invoking bean methods on a JavaBean.

If you just want to include the results of an XSQL page into a JSP at a strategic

point, you can instead use the <jsp:include> tag in your JSP. The syntax is:

<jsp:include flush="true" page="relativeURLToXSQLPage"/>

Note that the flush parameter is required by JSP.

15.1.7 Requesting XSQL Pages Programmatically

The oracle.xml.xsql.XSQLRequest class allows you to use the XSQL page

processor from within your own Java programs. Example 15.2 shows a simple
example of using this class.

Example 15.2. Programmatically Requesting an XSQL Page

import oracle.xml.xsql.XSQLRequest;
import java.util.Hashtable;
import java.io.PrintWriter;
import java.net.URL;

public class XSQLRequestSample {
 public static void main(String[] args) throws Exception {
 // Construct the URL of the XSQL Page
 URL pageUrl = new URL("file:///C:/foo/bar.xsql");
 // Construct a new XSQL Page request
 XSQLRequest req = new XSQLRequest(pageUrl);
 // Setup a Hashtable of named parameters to pass to the request

 Hashtable params = new Hashtable(3);
 params.put("param1","value1");
 params.put("param2","value2");
 /* If needed, treat an existing, in-memory XMLDocument as if
 ** it were posted to the XSQL Page as part of the request:
 **
 ** req.setPostedDocument(myXMLDocument);
 */
 // Process the page, passing the parameters and writing the output
 // to std out.
 req.process(params,new PrintWriter(System.out)
 ,new PrintWriter(System.err));
 }
}

You can also call processToXML() instead of process() to return the

in-memory XML document that results from processing the XSQL page requested
and applying any associated XSLT transformation.

15.2 Additional XML Delivery Options

This section describes additional options available to you for delivery of XML in a
variety of special cases.

15.2.1 Optimizing Presentation for Requesting Device

It is often desirable to serve the same data differently depending on what kind of
program makes the request. For example, you may want to customize the
XSLT-based presentation of an XSQL page to specifically optimize for the
different capability Sets of the Netscape, Internet Explorer, and Lynx browsers.
There are many reasons why you might want to differentiate in this way; here are
a few of the most common:

• Optimizing an interactive web page for Netscape 4's layer-based dynamic
HTML requires coding techniques that are different from those used in
optimizing for Internet Explorer's fully dynamic Document Object Model
(DOM) in DHTML.

• Internet Explorer 5.0 supports client-side XSLT, allowing the browser to
handle the presentation of XML-based information instead of the server,

• Lynx, because it's a character-mode browser, supports only a subset of
HTML that it can faithfully display on character terminals.

Luckily, the XSQL page processor makes targeted transformations like this very

easy. You can add any number of <?xml-stylesheet?> processing instructions

to the top of your XSQL page, each of which may specify an optional media

attribute, as in the following example:

<!-- Use "SiteMenu-ie5.xsl" for an IE5 browser -->
<?xml-stylesheet type="text/xsl" media="msie 5.0"
href="SiteMenu-ie5.xsl"?>
<!-- Use "SiteMenu-ie.xsl" for an IE browser other than 5.0 -->
<?xml-stylesheet type="text/xsl" media="msie"
href="SiteMenu-ie.xsl"?>
<!-- Use "SiteMenu-ns.xsl" for a Netscape browser -->
<?xml-stylesheet type="text/xsl" media="mozilla"
href="SiteMenu-ns.xsl"?>
<!-- Use "SiteMenu-lynx.xsl" for a Lynx browser -->
<?xml-stylesheet type="text/xsl" media="lynx"
href="SiteMenu-lynx.xsl"?>
<!-- Use "SiteMenu.xsl" as a fallback for any other kind of browser
-->
<?xml-stylesheet type="text/xsl" href="SiteMenu.xsl"?>
<website>
 :
</website>

By convention, programs requesting resources through HTTP include a
user-agent string in their request header to identify themselves. For example:

• Netscape 4.6 on NT sends Mozilla/4.6 [en] (WinNT; I).

• IE 5.0 on NT sends Mozilla/4.0 (compatible; MSIE 5.0; Windows NT).

• Lynx 2.8 on Solaris sends Lynx/2.8.2rel.1 libwww-FM/2.14.

The XSQL page processor considers the <?xml-stylesheet?> instructions in

order and uses the first one whose media attribute value matches part of the

requesting program's user-agent string. The string match is done

case-insensitively so a media="mozilla" attribute would match a user-agent

value containing "Mozilla" somewhere in the string.

Internet Explorer sends Mozilla/4.0 as part of its user-agent

string, so you should include an <?xml-stylesheet?> with a

media="msie" to check for an Internet Explorer browser

request earlier in the list than one that uses media="mozilla"

to test for a Netscape browser.

An <?xml-stylesheet?> that does not include a media attribute matches any

requesting user-agent, so you can include one of these as a fallback to use in

case none of the values from the other processing instructions' media attribute

matches. If none of the <?xml-stylesheet?> processing instructions present are

selected, the XSQL page processor behaves as if none were specified in the file.

If your browser supports client-side XSLT transformation, you may wish to
deliver the XSQL data page to the client as a pure XML document containing a
reference to the stylesheet. You can request this behavior by including the

client="yes" attribute in the <?xml-stylesheet?> processing instruction

whose media attribute matches the appropriate browser.

Example 15.3 combines these various <?xml-stylesheet?> options to transform

the XSQL data page:

• In the client using SiteMenu-ie5.xsl for Internet Explorer 5.0 browsers
• In the server using SiteMenu-lynx.xsl for Lynx browsers
• In the server using SiteMenu.xsl for all others

Example 15.3. Serving a Format Appropriate to the

Requesting Browser

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" media="msie 5.0" client="yes"
<?xml-stylesheet type="text/xsl" media="lynx"
href="SiteMenu-lynx.xsl"?>

<?xml-stylesheet type="text/xsl" href="SiteMenu.xsl"?>
<website connection="xmlbook">
 <xsql:query rowset-element="categories" row-element="category"
 tag-case="lower" xmlns:xsql="urn:oracle-xsql">

 SELECT name, icon, url
 FROM site_category
 ORDER BY pos

 </xsql:query>
</website>

For example, requesting the SiteMenu.xsql page in Example 15.3 page from an
IE5 browser will return the results shown in Figure 15.3.

Figure 15.3. HTML results for a site menu bar transformed in

the client

This looks the same as the result produced earlier when requested from a
Netscape browser in Chapter 8 (in Figure 8.3); however, there is a big difference
under the covers. If we select View Source... we'll see what's shown in Example
15.4.

Example 15.4. Viewing the XML Source Served Directly to IE5

<?xml version = '1.0'?>
<?xml-stylesheet type="text/xsl" media="msie 5.0" client="yes"
<website>
 <categories>
 <category num="1">
 <name>News</name>
 <icon>newspaper.gif</icon>
 </category>
 <category num="2">
 <name>Software</name>

 <icon>software.gif</icon>
 </category>
 <category num="3">
 <name>Standards</name>
 <icon>standards.gif</icon>
 </category>
 <category num="4">
 <name>Resources</name>
 <icon>resources.gif</icon>
 </category>
 </categories>
</website>

This confirms that the page is an XML document with an embedded

<?xml-stylesheet?> processing instruction, rather than the HTML results of a

server-side transformation that were returned to a Netscape browser. The
browser will retrieve the indicated SiteMenu-ie5.xsl stylesheet, and use it to
transform the XML page into HTML for display.

Using client-side transformation, you need to make sure to use an XSLT
stylesheet that the client's XSLT engine supports. Internet Explorer 5.0 supports
the December 12, 1998 Working Draft of XSLT (see
http://www.w3.org/TR/1998/WD-xsl-19981216), which used a slightly different
syntax from the final XSLT Specification (see http://www.w3.org/TR/xslt). This
doesn't present a problem since we can select a stylesheet with the appropriate
IE5-XSL syntax for IE5 browsers when client-side transformation is requested.

At the time of this writing, Microsoft has made available several
interim "technology previews" of their updated XSLT Processor,
which supports the XSLT 1.0 Recommendation syntax and
features, on their MSDN site at
http://msdn.microsoft.com/xml. Once this technology reaches
production quality and is included in a future version of Internet
Explorer, the same XSLT syntax and stylesheets will work both
server-side and client-side. Hooray! In addition, a client-side
XSLT engine will likely be included in a future Netscape browser
as well. This will offer developers choices to offload UI styling to
the client when appropriate. Using the mechanism described in
this section, developers using XSQL Pages can decide based on
the user-agent string which browsers should receive results
transformed on the server, and which, if any, should perform
the final transformation into HTML inside the browser itself.

You may recognize the SiteMenu-ie5.xsl stylesheet shown in the next example as
a slight modification of the SiteMenu.xsl stylesheet from Chapter 8. The key
differences between this IE5-specific example and the earlier standard XSLT
version are the following:

• The stylesheet has to include the <xsl:stylesheet> element, because

IE5-XSL does not recognize simple-form stylesheets.

• The URI string defining the xsl namespace is different.

• The "shortcut" attribute value template syntax like src="{icon}" is

replaced by an explicit <xsl:attribute name="src"> element using an

<xsl:value-of> to supply the attribute's value from the <icon> element

in the data page. Attribute value templates were introduced in the XSLT
specification after IE5 shipped to customers.

The SiteMenu-ie5.xsl stylesheet appears in Example 15.5.

Example 15.5. IE5-Specific XSL Stylesheet for a Site

Navigation Bar

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
<html><head><title>XML Central</title></head>
 <body>
 <center>
 <table border="0" cellpadding="10">
 <tr>
 <xsl:for-each select="website/categories/category">
 <td>

 <xsl:attribute name="src"><xsl:value-of
select="icon"/></xsl:attribute>

 <a>
 <xsl:attribute name="href"><xsl:value-of
select="url"/></xsl:attribute>
 <xsl:value-of select="name"/>

 </td>

 </xsl:for-each>
 </tr>
 </table>
 </center>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>

If a Lynx browser requests the same URL for the SiteMenu.xsql page, then the
following SiteMenu-lynx.xsl stylesheet will be used for the server-side
transformation:

<html xsl:version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<head><title>XML Central</title></head>
 <body>
 <hr/>
 <xsl:for-each select="website/categories/category">
 <xsl:value-of select="name"/>
 </xsl:for-each>
 <hr/>
 </body>
</html>

This Lynx-specific stylesheet avoids the use of HTML tables and images, simply
listing the web site category hyperlinks between two horizontal rules. The user of
the Lynx browser sees the appropriately simplified view of the site shown in
Figure 15.4.

Figure 15.4. Lynx browser showing appropriately simplified

HTML page

Finally, if you build XSQL pages with user-agent-dependent stylesheets, you can
test their output both through the various targeted browsers and through the
XSQL command-line utility. To simulate a particular user-agent from the
command line, pass an appropriate value for the command-line parameter

named useragent whose value will be treated by the XSQL page processor as if

it were the HTTP request's user-agent string for the purpose of stylesheet
selection.

15.2.2 Supplying a Stylesheet in the Request

In addition to the stylesheets referenced in the <?xml-stylesheet?> instructions

at the top of your page, a request can directly supply the name of the stylesheet

using the optional xml-stylesheet parameter. Requesting a URL like:

http://xmlapps/SomePage.xsql?xml-stylesheet=SomeOtherStyle.xsl

asks the XSQL Servlet to deliver the results of SomePage.xsql transformed by the
XSLT stylesheet named SomeOtherStyle.xsl. This request conceptually adds an
equivalent processing instruction to the top of the document, before any other

<?xml-stylesheet?> instructions (if any are present):

<?xml-stylesheet type="text/xsl" href="SomeOtherStyle.xsl"?>

This parameter causes the stylesheet supplied in the request to override the one
that would have been selected for transformation. If the page had no stylesheet
specified, the stylesheet parameter causes the page to be transformed using the
requested stylesheet rather than returning the XSQL data page as an XML
datagram.

The value of the xml-stylesheet parameter is treated exactly the same as the

value of the href parameter in an <?xml-stylesheet?> instruction in the page,

so it will be interpreted relative to the location of the requested page. In the
previous example, the SomeOtherStyle.xsl stylesheet would need to exist in the
same directory as the SomePage.xsql page.

By default, if the request supplies an xml-stylesheet parameter, the

transformation using the supplied stylesheet is performed on the server. The

request may include an additional transform parameter which, if set to the value

client, will cause the transformation to be performed on the client instead.

Since it is not always desirable to allow a client request to override your choice of
stylesheets, the XSQL page processor provides a mechanism to disallow this

facility on a page-by-page basis. Adding an attribute allow-client-style="no"

on the document element of your XSQL page causes any attempt by the client

request to provide a value for the xml-stylesheet parameter to be ignored.

When the special value of none is provided for the xml-stylesheet parameter in

the request, no stylesheet is used (if the page allows the client style to be
overridden) and the raw data page is returned as an XML datagram to the
requester. This approach can often be useful when your XSQL page and XSLT
stylesheet aren't cooperating to produce the output you expect.

15.2.3 Controlling Media Type of the Returned Page

By default, the XSQL page processor assumes that XML datagrams served from

an XSQL page containing no <?xml-stylesheet?> instructions have text/xml as

the media type. On the other hand, if your page does include an

<?xml-stylesheet?> instruction to associate an XSLT stylesheet, the XSQL page

processor determines the media type of the result by consulting the XSLT

processor. The XSLT processor returns a media type of text/html for a

transformed document whose document element is <html>; otherwise, it returns

a media type of text/xml.

In order to explicitly control the media type of your XSQL page's output, you

exploit the <xsl:output> element at the top level of the stylesheet associated

with your page. For example, to return a media type of image/svg, you would

add the following to your stylesheet:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!-- xsl:output goes here, at the top-level of the stylesheet -->
 <xsl:output media-type="image/svg"/>

 <xsl:template match="/">
 <!-- etc. -->

For a lengthier example, let's consider building XSQL pages to return information
to a wireless device that supports the Wireless Markup Language (WML). Your

returned documents need a media type of text/vnd.wap.wml. WML documents

represent a "deck" of display "cards" that a supporting wireless device can
receive, present to the user, and enable the user to navigate. To return a valid
WML deck, you'll need:

<xsl:output media-type="text/vnd.wap.wml"/>

at the top of your SiteMenu-wml.xsl stylesheet. For a valid WML document, you

also need a doctype-system and doctype-public attribute, so a working

example looks like this:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:output doctype-public="-//WAPFORUM//DTD WML 1.1//EN"
 doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"
 media-type="text/vnd.wap.wml"
 indent="yes"/>
 <xsl:template match="/">
 <wml xsl:version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <card id="top">
 <p>
 <xsl:text>Please choose a news category:</xsl:text>
 <select name="pickcategory">
 <xsl:for-each select="website/categories/category">
 <option value="{name}"><xsl:value-of
select="name"/></option>
 </xsl:for-each>
 </select>
 </p>
 </card>
 </wml>

 </xsl:template></xsl:stylesheet>

If you associate this with our SiteMenu.xsql page, and request the SiteMenu.xsql
page from your WML-enabled browser, your device will receive the page:

<?xml version = '1.0' encoding = 'UTF-8'?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="top">
 <p>Please choose a news category:
 <select name="pickcategory">
 <option value="News">News</option>
 <option value="Software">Software</option>
 <option value="Standards">Standards</option>
 <option value="Resources">Resources</option>
 </select>
 </p>
 </card>
</wml>

The returned XML document will have a media type of text/vnd.wap.wml,

enabling it to be directly "consumed" by a WML-enabled handheld device—for
example, a late-model cell phone or a PDA.

15.2.4 Detecting and Formatting Errors

Errors raised during the processing of any XSQL action elements are reported as
specific XML elements so that XSL stylesheets can easily detect their presence
and optionally format them for presentation if desired. The action element
containing the error will be replaced in the page by:

<xsql-error action="xxx">

Depending on the error, the <xsql-error> element will contain a nested

<message> element and a <statement> element with the offending SQL

statement.

Here is an example fragment of an XSLT stylesheet that tests for the presence of

an <xsql-error> element in the document and formats any error it finds for

display:

<xsl:if test="//xsql-error">
 <table style="background:yellow">
 <xsl:for-each select="//xsql-error">
 <tr>
 <td>Action</td>
 <td><xsl:value-of select="@action"/></td>
 </tr>
 <tr valign="top">
 <td>Message</td>
 <td><xsl:value-of select="message"/></td>
 </tr>
 </xsl:for-each>
 </table>
</xsl:if>

Chapter 16. Extending XSQL and XSLT with Java

In this chapter, we examine how Java developers can extend the universe of
built-in XSQL action handlers to provide custom actions and information sources
and expand the universe of built-in functions in XSLT and XPath for use in
stylesheets.

16.1 Developing Custom XSQL Actions

Oracle XSQL Pages is an extensible framework. With very straightforward Java
code, you can introduce new kinds of actions to perform virtually any kind of
custom processing required by your application and to easily incorporate XML
information from custom sources. In this section, we'll learn how to write custom
XSQL action handlers.

16.1.1 How Action Handlers Work

As we highlighted in Chapter 15, the XSQL page processor processes an XSQL

page by looking for action elements from the xsql namespace, and invoking an

appropriate action element handler class to process each action. An action
handler is a Java class that handles the runtime behavior of an action element in
an XSQL page. Each action handler has full access to the objects it requires:

The DOM object representing the action element in the XSQL page

Allows the action handler to examine the attributes, nested elements, or
text content of the action element to drive the behavior of the action

The XSQL page requesting the context object

Contains all the parameter values visible in the page, the current JDBC
database connection (if any), and other resources available to the current
page request

The XML result tree for the action

The root node for the tree of XML element content the action produces, if
any

Oracle XSQL Pages ships with a number of built-in action handlers whose
functionality we've outlined in previous chapters. Each of the built-in actions is

implemented using the same facilities available to you as a developer for building
your own actions, so each of the action elements listed in Table 16.1 could have
been written by you!

Table 16.1. Built-in XSQL Action Elements and Action Handler Classes

XSQL Action Element Handler Class in oracle.xml.xsql.actions

<xsql:query> XSQLQueryHandler

<xsql:dml> XSQLDMLHandler

<xsql:set-stylesheet-param> XSQLStylesheetParameterHandler

<xsql:insert-request> XSQLInsertRequestHandler

<xsql:include-xml> XSQLIncludeXMLHandler

<xsql:include-request-params/> XSQLIncludeRequestHandler

<xsql:include-xsql> XSQLIncludeXSQLHandler

<xsql:include-owa> XSQLIncludeOWAHandler

<xsql:action> XSQLExtensionActionHandler

<xsql:ref-cursor-function> XSQLRefCursorFunctionHandler

<xsql:include-param> XSQLGetParameterHandler

<xsql:set-session-param> XSQLSetSessionParamHandler

<xsql:set-page-param> XSQLSetPageParamHandler

<xsql:set-cookie> XSQLSetCookieHandler

<xsql:insert-param> XSQLInsertParameterHandler

Let's study one of our earlier examples. Consider the following XSQL page
containing two action elements:

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <xsql:query max-rows="3">
 SELECT ticker, price
 FROM stock_quotes
 WHERE portfolio_id = {@pid}
 ORDER BY ticker
 </xsql:query>
 <xsql:set-cookie name="portfolio" value="{@pid}"/>
</page>

The action handler for that <xsql:query> element, the XSQLQueryHandler class,

contains code that performs the following tasks:

1. Examines the action element attributes, checking for max-rows, skip-rows,

rowset-element, etc. The default implementation automatically handles

{@param} references in the attribute values.

2. Examines the action element text content to retrieve the text of the
SELECT statement the action needs to perform. The default

implementation automatically handles {@param} references in the text.

3. Obtains the current JDBC connection from the XSQL page request context
object.

4. Uses the Oracle XML SQL Utility to return an XML document representing
the query results.

5. Appends the returned XML document to the action element's XML result
tree's root node.

The action handler for the <xsql:set-cookie> element performs these steps:

1. Examines the action element attributes, checking for name, value, max-age,

and so on.

2. Obtains the HttpServletResponse object from the XSQL page request.

3. Sets the cookie of the indicated name to the indicated value.

The following XSQL data page results from processing the previous example:

<page>
 <ROWSET>
 <ROW>
 <TICKER>AAPL</TICKER>
 <PRICE>115.48</PRICE>
 </ROW>
 <ROW>
 <TICKER>ORCL</TICKER>
 <PRICE>74.81</PRICE>
 </ROW>
 </ROWSET>
</page>

Notice that an XSQL action handler can add XML content to the page (as

<xsql:query> does), or can simply perform some action without adding any XML

content (as <xsql:set-cookie> does).

16.1.2 Writing Your Own Custom XSQL Action Handler

Let's get down to specifics so we can start building our own custom action
handlers. The only technical requirement of an action handler is that it implement

the simple oracle.xml.xsql.XSQLActionHandler interface:

public interface XSQLActionHandler {
 /**
 * Initialize the action handler
 *
 * @param env XSQLPageRequest object
 * @param e DOM element representing the Action Element being
handled
 **/
 void init(XSQLPageRequest env, Element e);

 /**
 * Handle the action, typically by executing some code
 * and appending new child DOM nodes to the rootNode.
 *
 * The XSQL page processor replaces the action element in
 * the XSQL page being processed with the document fragment
 * of nodes that your handleAction method appends to the rootNode.
 *
 * @param rootNode Root node of generated document fragment
 **/
 void handleAction(Node rootNode) throws SQLException;
}

After the XSQL page processor constructs an instance of your action handler class
using the default constructor (no arguments), it performs the following two
steps:

1. Initializes the handler by calling its init() method, passing in the

XSQLPageRequest context object and the DOM Element representing the

action element being handled.

2. Invokes the handler's handleAction() method to handle the action,

passing in the root node of the action handler's XML result tree.

Any XML nodes appended to the root of the handler's XML result tree are included
automatically by the page processor in the resulting XSQL data page.

You can save a tremendous amount of time by extending the base

implementation class oracle.xml.xsql.XSQLActionHandlerImpl, which

provides a default implementation of the init() method and a set of many

helper methods. In practice, if your action handler extends the

XSQLActionHandlerImpl base class, you need to provide only a handleAction()

method that does what you want it to do. As a first example, let's build a custom

action handler called JavaDate that adds a <CurrentDate> element with the

value of the current system date to the page.

If you are using JDeveloper 3.1 and have included the XSQL Runtime library in
your current project, you can select File New... from the main menu, select the
Class icon from the gallery, and fill in the Class Wizard dialog as shown in Figure
16.1.

Figure 16.1. Creating a skeleton action handler with the Class

Wizard

Note that we've selected the oracle.xml.xsql.XSQLActionHandlerImpl class

to extend for our example JavaDate action handler. After clicking on OK, you'll

end up with a skeleton Java class with the right imports and the correct extends

clause.

Next, add the handleAction() method to the class like this:

import oracle.xml.xsql.*;
import org.w3c.dom.Node;

public class JavaDate extends XSQLActionHandlerImpl {
 public void handleAction(Node root) {

 }
}

Inside the handleAction() for this example, we need to append a

<CurrentDate> element to the root of the XML result tree. The

XSQLActionHandlerImpl base class provides a useful helper method called

addResultElement that simplifies this task. In fact, we can accomplish what we

need to in a single line of code like:

addResultElement(root,"CurrentDate",(new Date()).toString());

This means that our first working custom action handler looks like this:

import oracle.xml.xsql.*;
import java.util.Date;
import org.w3c.dom.Node;

public class JavaDate extends XSQLActionHandlerImpl {
 public void handleAction(Node root) {
 addResultElement(root,"CurrentDate",(new Date()).toString());
 }
}

16.1.3 Using Custom XSQL Action Handlers in a Page

To invoke a custom action handler, you include the <xsql:action> action

element in your XSQL page. This is a built-in action whose behavior is to
instantiate and invoke any other action by class name. The basic syntax is:

<xsql:action handler="yourpackage.YourCustomHandler"/>

To quickly test the JavaDate action handler we developed in the previous section,

we can create an XSQL page like this:

<!-- TestJavaDate.xsql -->
<xsql:action handler="JavaDate" xmlns:xsql="urn:oracle-xsql"/>

From inside JDeveloper 3.1, we can click the right mouse button on this
TestJavaDate.xsql page and select Run to run the page inside the JDeveloper
environment for rapid testing. When we request the page in the browser, we'll
see:

<!-- TestJavaDate.xsql -->
<CurrentDate>Wed May 03 09:32:26 PDT 2000</CurrentDate>

This indicates that our first custom action handler is working. If we extend the

JavaDate handler to accept an attribute indicating a date format mask, then a

user of our action simply adds that new attribute to the <xsql:action> element

like this:

<!-- TestJavaDateWithMask.xsql -->
<xsql:action handler="JavaDate" mask="d/MM/yyyy"
xmlns:xsql="urn:oracle-xsql"/>

On the code side, we can extend our simple JavaDate class to take advantage of

the getActionElement() and getAttributeAllowingParam() methods

inherited from XSQLActionHandlerImpl. These methods return the DOM

Element object representing the current action element and the value of an

attribute on an element, respectively. We use getAttributeAllowingParam()

instead of the normal DOM getAttribute() method because the former

automatically handles the presence of any XSQL parameter values that might be

in use as well. The code for JavaDate then becomes:

import oracle.xml.xsql.*;
import java.util.Date;
import java.text.SimpleDateFormat;
import org.w3c.dom.Node;

public class JavaDate extends XSQLActionHandlerImpl {
 public void handleAction(Node root) {
 String mask =
getAttributeAllowingParam("mask",getActionElement());
 String dateValue = null;
 if (mask != null && !mask.equals("")) {
 SimpleDateFormat sdf = new SimpleDateFormat(mask);
 dateValue = sdf.format(new Date()).toString();
 }
 else {
 dateValue = (new Date()).toString();
 }
 addResultElement(root,"CurrentDate",dateValue);

 }
}

and a quick test of our TestJavaDateWithMask.xsql page shows that we get the
following document, which is now using our new format mask to format the date:

<!-- TestJavaDateWithMask.xsql -->
<CurrentDate>3/05/2000</CurrentDate>

To show the value that getAttributeAllowingParam() is providing, we can

make a quick edit to the TestJavaDateWithMask.xsql file to allow the mask to be

sent in as a parameter named format in the request. We'll also provide a fallback

or default value for the format parameter by adding a format attribute to the

element as follows:

<!-- TestJavaDateWithMask.xsql -->
<xsql:action handler="JavaDate" xmlns:xsql="urn:oracle-xsql"
 format="d/MM/yyyy"
 mask="{@format}" />

With this edit in place, we can try out a URL like:

http://xmlapps/TestJavaDateWithMask.xsql?format=EEEE,KK:mma

This produces the date formatted using the requester-supplied format mask:

<!-- TestJavaDateWithMask.xsql -->
<CurrentDate>Wednesday,10:07AM</CurrentDate>

As we learned in Chapter 6, you can quickly reference the

JavaDoc for the java.text.SimpleDateFormat class, which

contains a table summarizing the supported date format mask
patterns: press Ctrl-/, type in the full classname, press Enter
and click on the Doc tab of the code editor.

You might be wondering what happens if the requester passes in a value for the

format parameter that is not a valid format pattern recognized by the

SimpleDateFormat class, for example, by requesting the URL:

http://server/TestJavaDateWithMask.xsql?format=Q

In this case, the requester will see the following error message page in its
browser:

Oracle XSQL Servlet Page Processor 1.0.0.0
XSQL-017: Unexpected Error Occurred
java.lang.IllegalArgumentException: Illegal pattern character 'Q'

The XSQL page processor has built-in error handling to catch unhandled
exceptions raised in any phase of the page processing, including unhandled
exceptions thrown by your custom action handlers. Obviously, it would be nicer

to use a try...catch block in our action handler code to catch this problem

ourselves and report an error using the standard mechanism that other XSQL

action handlers use. We can leverage the reportError() method in the

XSQLActionHandlerImpl base class to do this. Example 16.1 shows an enhanced

version of the JavaDate action handler that catches the

IllegalArgumentException and reports the error.

Example 16.1. Action Handler That Catches and Handles

Exceptions

import oracle.xml.xsql.*;
import java.util.Date;
import java.text.SimpleDateFormat;
import org.w3c.dom.Node;

public class JavaDate extends XSQLActionHandlerImpl {
 public void handleAction(Node root) {
 // Get the value of the mask attribute
 String mask =
getAttributeAllowingParam("mask",getActionElement());
 String dateValue = null;
 if (mask != null && !mask.equals("")) {
 // If we have a non-empty mask, use SimpleDateFormat to format
the date
 SimpleDateFormat sdf = new SimpleDateFormat(mask);
 try {
 dateValue = sdf.format(new Date()).toString();
 }

 catch (IllegalArgumentException iax) {
 // If we catch an error, report it
 reportError(root,mask+" is not a valid date format mask");
 return;
 }
 }
 else {
 // Otherwise, just use Date's default string format
 dateValue = (new Date()).toString();
 }
 // Add a <CurrentDate> element to the result with the date value
 addResultElement(root,"CurrentDate",dateValue);
 }
}

With this extra error-checking in place, an attempt to request the page again with

the illegal value of format=Q now produces the document:

<!-- TestJavaDateWithMask.xsql -->
<xsql-error action="xsql:action">
 <message>Q is not a valid date format mask</message>
</xsql-error>

For our second simple example, we'll build an action handler that interacts with

the database to produce its content. We'll create a Sequence handler that takes

the name of a sequence and returns the next value from the sequence as XML
content in the data page. The code appears in Example 16.2.

Example 16.2. Action Handler to Return a Database Sequence

Number

import oracle.xml.xsql.*;
import org.w3c.dom.Node;

public class Sequence extends XSQLActionHandlerImpl {
 public void handleAction(Node root) {
 // Get the value of the name attribute
 String seqname =
getAttributeAllowingParam("name",getActionElement());
 // Report an error if the attribute is missing since it's required
 if (seqname == null || seqname.equals("")) {

 reportMissingAttribute(root,"name");
 return;
 }
 // Build a select statement to retrieve the next value from the
sequence
 String query = "select "+seqname+".nextval from dual";
 // Retrieve the value of the first column of the first row of the
result
 String nextval = firstColumnOfFirstRow(root,query);
 if (nextval != null) {
 // Add a <NextValue> element to the page with the new sequence
number
 addResultElement(root,"NextValue",nextval);
 }
 }
}

Since what we need to accomplish here can be phrased in terms of a query that
returns a single row and a single column, we can leverage the

firstColumnOfFirstRow() method in the XSQLActionHandlerImpl class to do

the dirty work of getting the current JDBC connection from the page request
context object, executing the query, and returning the result. If you need to do
more complicated database interactions, you can use:

Connection curConn = getPageRequest().getJDBCConnection();

to get access to the live connection from the connection pool that has been
assigned to the current page request. If we build a quick XSQL page to test the

new Sequence handler:

<!-- TestSequence.xsql -->
<page xmlns:xsql="urn:oracle-xsql">
 <ID>
 <xsql:action handler="Sequence" name="customer_id_seq"/>
 </ID>
</page>

and then run the page from the JDeveloper IDE to test requesting it from our
browser, we'll get:

<!-- TestSequence.xsql -->
<page>
 <ID>

 <xsql-error action="xsql:action">
 <message>No connection attribute specified on document
element.</message>
 </xsql-error>
 </ID>
</page>

This happens because we forgot to specify a connection attribute on the

document element of our page. Our earlier examples using the JavaDate custom

action handler didn't require a database connection to perform any of the actions
on the page, so we didn't see the error earlier. After adding an appropriate

connection attribute:

<!-- TestSequence.xsql -->
<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <ID>
 <xsql:action handler="Sequence" name="customer_id_seq"/>
 </ID>
</page>

we can request again, and we get our desired result:

<!-- TestSequence.xsql -->
<page>
 <ID>
 <NextValue>1253213</NextValue>
 </ID>
</page>

Note that we're using the reportMissingAttribute() method inherited from

XSQLActionHandlerImpl to report an error condition when a required attribute is

missing.

As a simple example of a custom action handler that works with HTTP-specific
information, let's build one that retrieves the value of any HTTP header. This

might be useful to retrieve the user-agent or the referer of a page, for example.

To illustrate a technique other than getting values from attributes as we've done
earlier, we'll let the user enter one or more header names separated by

whitespace as the text content of the action element, instead of as one of its
attributes.

The XSQL page processor expects to process requests that implement the

XSQLPageRequest interface. There are three different implementations of this

interface:

XSQLServletPageRequest

HTTP-based requests

XSQLCommandLinePageRequest

Command-line requests

XSQLURLPageRequest

Programmatic requests

To exploit a feature that is specific to one of these implementations, you need to

code your action handler to first check getPageRequest().getRequestType()

for the values "Servlet," "CommandLine," or "Programmatic" before casting the

XSQLPageRequest interface returned by getPageRequest() into one of these

specific classes. Most frequently, you'll find it necessary only to test for "Servlet"

and cast to XSQLServletPageRequest, as we do in the HTTPHeaders

implementation in Example 16.3.

Example 16.3. Action Handler to Return HTTP Header

Information

import oracle.xml.xsql.*;
import java.util.*;
import javax.servlet.http.*;
import org.w3c.dom.*;

public class HTTPHeaders extends XSQLActionHandlerImpl {
 public void handleAction(Node root) {
 if (getPageRequest().getRequestType().equals("Servlet")) {
 // If request type is "Servlet" then it's ok to cast

 XSQLServletPageRequest xspr =
(XSQLServletPageRequest)getPageRequest();
 // Then we can get the HTTPServletRequest from the
XSQLServletPageRequest
 HttpServletRequest req = xspr.getHttpServletRequest();
 // Create an element using the action element's owning document
 Element e =
getActionElement().getOwnerDocument().createElement("Headers");
 // Get the text content of the action element that contains the
 // list of HTTP headers the user wants the values of
 String headerList = getActionElementContent();
 // Use a string-tokenizer to parse the text into
 // the list of whitespace-separated tokens it contains
 if (headerList != null && !headerList.equals("")) {
 Enumeration headerNames = null;
 // If user gave just the name "all", then show all headers
 if (headerList.trim().equals("all")) {
 headerNames = req.getHeaderNames();
 }
 else {
 headerNames = new StringTokenizer(headerList);
 }
 while (headerNames.hasMoreElements()) {
 String headerName = (String)headerNames.nextElement();
 String headerValue = req.getHeader(headerName);
 // Append the <Name>Value</Name> to the <Headers> element
 addResultElement(e,headerName,headerValue);
 }
 }
 // Append the <Headers> element to the XML result root for the
action
 root.appendChild(e);
 }
 }
}

A few interesting things happen in the implementation of HTTPHeaders.java:

• We call the getActionElement().getOwnerDocument() method to

invoke createElement() to construct a new <Headers> element to be the

parent element of all the elements representing retrieved HTTP header
values.

• We use addResultElement to add <Name>Value</Name> elements as

children of the <Headers> element instead of directly as children of the XML

result root.

• We allow the user to enter the string "all" to get all headers and in this

case use the getHeaderNames() method on HTTPServletRequest instead

of using a StringTokenizer to get the list of header names to iterate over.

To try out our new handler, we might create a test page like this:

<!-- TestHTTPHeaders.xsql -->
<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <xsql:action handler="HTTPHeaders">all</xsql:action>
 <xsql:action handler="Sequence" name="customer_id_seq"/>
 <xsql:action handler="JavaDate"/>
</page>

Clicking on an HTML anchor from the PageReferringToTestHTTPHeaders.html
page that links to TestHTTPHeaders.xsql returns the page:

<!-- TestHTTPHeaders.xsql -->
<page>
 <Headers>
 <accept-language>en-us</accept-language>
 <host>127.0.0.1</host>
 <cookie>WTGBID=c15k9ixg; siteuser=smuench</cookie>
 <accept>image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
/</accept>
 <user-agent>Mozilla/4.0 (compatible; MSIE 5.01; Windows
NT)</user-agent>

<referer>http://127.0.0.1/PageReferingToTestHTTPHeaders.html</refe
rer>
 <connection>Keep-Alive</connection>
 <accept-encoding>gzip, deflate</accept-encoding>
 </Headers>
 <NextValue>1253214</NextValue>
 <CurrentDate>Wed May 03 13:57:37 PDT 2000</CurrentDate>
</page>

Notice that the value of page/Headers/referer reports the name of the page we

came from. Since we specified "all" as the text content of our <xsql:action>

element, all header names are displayed. If we change TestHTTPHeaders.xsql as
follows:

<!-- TestHTTPHeaders.xsql -->
<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">
 <xsql:action handler="HTTPHeaders">

 referer
 user-agent
 {@others}

 </xsql:action>
 <xsql:action handler="Sequence" name="customer_id_seq"/>
 <xsql:action handler="JavaDate"/>
</page>

then clicking on a link from a referring page that includes the following URL:

http://server/TestHTTPHeaders.xsql?others=accept-language

returns the following page:

<!-- TestHTTPHeaders.xsql -->
<page>
 <Headers>

<referer>http://127.0.0.1/PageReferingToTestHTTPHeaders.html</refe
rer>
 <user-agent>Mozilla/4.0 (compatible; MSIE 5.01; Windows
NT)</user-agent>
 <accept-language>en-us</accept-language>
 </Headers>
 <NextValue>1253215</NextValue>
 <CurrentDate>Wed May 03 14:24:38 PDT 2000</CurrentDate>
</page>

This illustrates how getActionElementContent() automatically handles

parameter substitution, as getAttributeAllowingParam() did in our earlier

examples.

In addition to adding XML content to the data page, it is possible for action
handlers to set private page-level parameters whose values can be referred to by
other actions later in the page. Assume that you have configured your web server
to use Basic Authentication to protect a directory containing XSQL pages. This
means a user will be prompted for a username/password to authenticate with the
web server before being allowed access to request the XSQL pages in that
directory. It is definitely useful to be able to refer to the authenticated user's
name within your XSQL pages to, for example, query user-specific settings or

preferences from tables in your database. The following SetAuthUserParams

action handler sets the values of the AuthUser and AuthUserHost page-level

parameters:

import oracle.xml.xsql.*;
import javax.servlet.http
import org.w3c.dom.Node;
import java.sql.SQLException;
// Capture Basic Authentication username and hostname in XSQL parameters
public class SetAuthUserParams extends XSQLActionHandlerImpl {
 public void handleAction (Node result) throws SQLException {
 XSQLPageRequest xpr = getPageRequest ();
 // If this is a servlet request, then set the private page parameters
 // named "AuthUser" and "AuthUserHost" to values from the HTTP
Request
 if (xpr.getRequestType().equals("Servlet")) {
 XSQLServletPageRequest xspr = (XSQLServletPageRequest)xpr;
 HttpServletRequest req = xspr.getHttpServletRequest();
 String user = req.getRemoteUser();
 String host = req.getRemoteHost();
 if (user !=null)
xpr.setPageParam("AuthUser",req.getRemoteUser());
 if (host !=null)
xpr.setPageParam("AuthUserHost",req.getRemoteHost());
 }
 }
}

Then an XSQL page can use the values of the AuthUser parameter in a

subsequent query like this:

<page xmlns:xsql="urn:oracle-xsql" connection="xmlbook">
 <xsql:action handler="SetAuthUserParams"/>
 <xsql:query>

 SELECT favorite_thing AS favorite
 FROM site_user_prefs
 WHERE username = '{@AuthUser}'
 </xsql:query>
</page>

Our final example illustrates how to build custom action handlers that invoke
built-in action handlers and programmatically augment their results before

including the final result in the page. The CustomInclude handler in Example

16.4 includes an arbitrary XSQL page by exploiting the <xsql:include-xsql>

action handler shown in Table 16.1 and performs some custom Java
programmatic logic on the result before including it into the invoking page.

Example 16.4. Customizing the Output of a Built-in Action

Handler

import oracle.xml.xsql.*;
import oracle.xml.xsql.actions.XSQLIncludeXSQLHandler;
import org.w3c.dom.*;
import java.sql.SQLException;

public class CustomInclude extends XSQLActionHandlerImpl {
 XSQLActionHandler nestedHandler = null;
 public void handleAction(Node root) throws SQLException {
 // Create an instance of an XSQLIncludeXSQLHandler
 // and init() the handler by passing the current request/action
 nestedHandler = new XSQLIncludeXSQLHandler();
 nestedHandler.init(getPageRequest(),getActionElement());

 // Rather than passing the default XML result "root" that we're given,
 // we create an empty DocumentFragment and feed *that* to
 // the XSQLIncludeXSQLHandler as its root to work with
 DocumentFragment tmpRoot =
root.getOwnerDocument().createDocumentFragment();
 nestedHandler.handleAction(tmpRoot);

 // Custom Java code here can work on the returned document fragment
 // in tmpRoot before appending the final, modified document to the
 // XML result "root" node we're given by the XSQL page processor
 //
 // For example, add an attribute to the first child

 Element e = (Element)tmpRoot.getFirstChild();
 if (e != null) {
 e.setAttribute("ExtraAttribute","SomeValue");
 }
 // Finally, append the modified tmpRoot fragment as the XML result
 root.appendChild(tmpRoot);
 }
}

To test the new handler, we cook up a quick test page like the following:

<page xmlns:xsql="urn:oracle-xsql">
 <IncludedStuff>
 <xsql:action handler="CustomInclude"
 href="TestJavaDateWithMask.xsql?format=EEEE,K:mma"/>
 </IncludedStuff>
</page>

Requesting this page through our browser produces:

<page>
 <IncludedStuff>
 <CurrentDate
ExtraAttribute="SomeValue">Wednesday,4:22PM</CurrentDate>
 </IncludedStuff>
</page>

which shows that the TestJavaDateWithMask.xsql page was included, correctly

picking up the format parameter passed in the href URL, and that the

ExtraAttribute attribute was added programmatically.

Even though none of these test pages has included an <?xml-stylesheet?> at

the top, this is certainly possible. Since all of the built-in action elements are
implemented as action handlers in the same way we've just seen, the model does
not change a bit when you augment the built-in actions with actions of your own.

16.1.4 Debugging Action Handlers

Inevitably, you'll want to debug your custom action handlers, and luckily,
JDeveloper 3.1 makes this a piece of cake. The basic approach is to follow these
steps:

1. Run your XSQL page from the JDeveloper 3.1 IDE.
2. Set breakpoints in your custom action handler's Java code.
3. Click on the Debug icon to attach to the running servlet engine that hosts

the XSQLServlet.

4. Request the page through your browser and step through your code after
hitting your breakpoint.

The absolute easiest way to set this up is to use two different JDeveloper projects
in the same workspace. The first project contains your action handlers' Java code,
while the second project contains the XSQL pages that use and test your custom
action handlers.

Figure 16.2 illustrates a simple example of using two projects for some of the
custom action handlers we created in the previous section.

Figure 16.2. Using two projects simplifies action handler

debugging

Given a two-project workspace, do the following to prepare for debugging your
action handlers:

1. Double-click on the ActionHandlerTestPages project containing the XSQL

pages to test your handlers to bring up its Project Properties dialog.
2. Select the Run/Debug tab.

3. Add the -XXdebugondemand parameter to the list of Java VM parameters.

4. Make sure the Debug Files As list indicates "Normal Java Class", its default
setting.

5. Select the Paths tab.

6. Make sure Output Root Directory is set to the same output root directory as

the ActionHandlers project to ensure that the compiled class files for your

action handlers are automatically included in the CLASSPATH when you run
your XSQL pages from this project.

7. Click OK to dismiss the dialog.

8. Double-click on the ActionHandlers project containing the Java code for

your action handlers to bring up its Project Properties dialog.
9. Select the Run/Debug tab.
10. Select the "Remote Debugging" option from the Debug Files As list.
11. Click OK to dismiss the dialog.

At this point, we've configured the ActionHandlerTestPages project to run your

XSQL pages using the on-demand remote debugging feature. We've also

configured the ActionHandlers project to enable attaching on demand to the

servlet engine running your pages, allowing you to debug your action handlers
live as you exercise them through the browser. To start debugging:

1. Click the right mouse button on the desired XSQL page in the

ActionHandlerTestPages project and select Run.

2. Set any initial breakpoints you need in the Java source code for your action

handlers in the ActionHandlers project.

3. With the ActionHandlers project still active in the navigator, click the

Debug icon in the toolbar.
4. In the Remote Debugging dialog, set the following items:

o Set Debugging Protocol to "Oracle JVM".

o Set Hostname to "localhost".

o Set Port to "4000", the default debugging.

5. Click the Attach button to attach the debugger.
6. Request the XSQL page from your browser.

This will cause your code to run, and when it reaches the first of the breakpoints
you set, at that point, you can step through and examine your code to your
heart's content.

To stop debugging, click on the Stop icon from the debugger toolbar. This
detaches the on-demand debugger from the remotely debuggable servlet engine

running your XSQL page. After making any changes to your action handler code

to fix the problem, recompile your classes in the ActionHandlers project; then

repeat the previous steps to debug again.

Selecting to run the XSQL page again will kill the existing, running servlet engine
and start a new one. You can explicitly kill a servlet engine at any time by
selecting its process name from the Run Terminate menu. Figure 16.3

illustrates a running example of debugging our Sequence.java action handler

using the technique described in this section .

Figure 16.3. Debugging custom action handlers with

JDeveloper 3.1

16.1.5 Deploying Custom Action Handlers

When you've built a set of XSQL pages that use custom action handlers, you'll
need to deploy the Java classes for your custom handlers in such a way that they
can be included in the CLASSPATH of their target servlet environment.

Deploying your classes to a Java archive can be done by hand using the
standard .jar utility, or it can be automated by creating a simple Java
archive-based deployment profile in JDeveloper. For example, to create a

deployment profile for the Sequence and JavaDate handlers from the previous

section using JDeveloper 3.1, perform the following steps:

1. Select the ActionHandlers project to make it active.

2. Select New Deployment Profile... from the right mouse button menu for the
project.

3. On the Deployment Profile Wizard's Step 1 of 3: Delivery panel, select
Deploy as a Simple archive file.

4. On the Step 2 of 3: Project panel, select the files to include in the archive.
5. On the Step 3 of 3: Archive panel, give the archive a name.
6. On the Finish panel, give the deployment profile a name and click the Finish

button.

After creating the deployment profile, you can click on the right mouse button to
select the Deploy option to redeploy the classes to the archive file at any time. In
your production environment, make sure this .jar file is included in the server
CLASSPATH and your custom actions will work just like the built-in XSQL page
actions on any server.

16.2 Integrating Custom XML Sources

In this section, we'll depart from simple examples designed to help understand
the technology and provide a real-world example of a custom XSQL action
handler that does something really useful. In Chapter 6 we built a class called

JTidyConverter, which leveraged the freely available JTidy JavaBean to

convert HTML into a well-formed XML document. Then we wrote some examples
illustrating how basic XPath expressions in an XSLT stylesheet could easily
extract interesting information like stock quotes from HTML returned by a live
request against the Yahoo! Quotes web site. Here we will show a parallel example
that illustrates how such useful, dynamic XML information can be adapted into

the XSQL Pages framework. Example 16.5 shows the code for this LiveQuotes

action handler.

As with our more straightforward examples earlier in this chapter, the

LiveQuotes handler uses getAttributeAllowingParam to get the list of ticker

symbols from the symbols attribute on the action element, then employs the

JTidyConverter class to retrieve the dynamic HTML page delivered from the

Yahoo! Quotes server and return it as an in-memory XML document. Rather than
writing code to perform the XSLT transformation ourselves, we take advantage of

the XSQL page processor's own XSQLStylesheetProcessor, which automatically

loads, caches, and pools the YahooQuotes-to-QuoteStream.xsl stylesheet. Note

that we have to call getPageRequest().translateURL() so that the relative

URL YahooQuotes-to-QuoteStream.xsl is turned into an absolute URL. By

calling the processToDocument() method instead of just process(), we can get

back the transformed <QuoteStream> as an in-memory XML document.

In order to add the <QuoteStream> XML as the result of our LiveQuotes handler,

we perform these final steps:

• Get the document element of the transformed <QuoteStream> document.

• Remove it from the document that currently owns it.

• Append it to the action handler's XML result root.

Example 16.5. Action Handler to Include Live XML Quotes

from Yahoo! Quotes

import oracle.xml.xsql.*;
import oracle.xml.parser.v2.*;
import org.w3c.dom.*;
import java.net.*;
import java.util.StringTokenizer;
import java.sql.SQLException;
import JTidyConverter;
import java.io.IOException;

public class LiveQuotes extends XSQLActionHandlerImpl {
 private static final String YQUOTES =
"http://quote.yahoo.com/q?d2=v1&o=d&s=";
 private static final String YTRANSF =
"YahooQuotes-to-QuoteStream.xsl";
 public void handleAction(Node root) throws SQLException {
 XSQLPageRequest req = getPageRequest();

 Element actElt = getActionElement();
 // Get the list of Symbols from the action element's "symbols"
attribute
 String symbolList = getAttributeAllowingParam("symbols",actElt);
 if (symbolList == null || symbolList.equals("")) {
 reportMissingAttribute(root,"symbols");
 return;
 }
 try {
 // Prepare the URL to get quotes from Yahoo! Quotes
 URL yahooUrl = new URL(YQUOTES+symbolList.replace(',','+'));
 JTidyConverter jtc = new JTidyConverter();
 // Convert the dynamically produced Yahoo Quotes page to XML
Document
 XMLDocument yahooquotes = jtc.XMLifyHTMLFrom(yahooUrl);

 // Use the XSQL page processor's built-in Stylesheet Processor
to
 // have the page processor automatically cache and pool this
 // transformation as needed. Use processToDocument() to get the
 // transformed results as an in-memory XML document.
 Document quoteStream =
 XSQLStylesheetProcessor.processToDocument(yahooquotes,

req.translateURL(YTRANSF),
 req);
 // Append the quotes to the root of our XML result
 Element docElement = quoteStream.getDocumentElement();
 quoteStream.removeChild(docElement);
 root.appendChild(docElement);
 }
 catch(MalformedURLException mfx) { /* Ignore */ }
 catch(IOException io) {
 this.reportError(root,"Unable to retrieve quotes");
 }
 catch(Exception ex) {
 this.reportError(root,"Unable to retrieve quotes");
 }
 }
}

Instant XML stock quotes are now available to any XSQL page we build that needs
them. We can throw together a quick LiveQuotes.xsql test page:

<?xml version="1.0"?>

<page xmlns:xsql="urn:oracle-xsql">
 <!--
 | Include live stock quotes from Yahoo for any symbols
 | includes in the "s" parameter passed in. If no "s"
 | parameter is supplied, we provide a default list
 +-->
 <xsql:action handler="LiveQuotes"
 symbols="{@s}"
 s="ORCL,MSFT,IBM"/>
</page>

and request it through our browser with some appropriate ticker symbols in the

value of the s parameter:

http://server/LiveQuotes.xsql?s=ORCL,MSFT,GE,T,PFE,DIS,CSCO,HLTH

As if by magic, our live quotes appear in the browser:

<?xml version = '1.0'?>
<page>
 <!--
 | Include live stock quotes from Yahoo for any symbols
 | included in the "s" parameter passed in. If no "s"
 | parameter is supplied, we provide a default list
 +-->
 <QuoteStream time="Wed May 3 7:52pm ET - U.S. Markets Closed.">
 <Quote Ticker="ORCL" Price="75.812"/>
 <Quote Ticker="MSFT" Price="70.562"/>
 <Quote Ticker="GE" Price="156.062"/>
 <Quote Ticker="T" Price="39.812"/>
 <Quote Ticker="PFE" Price="42.688"/>
 <Quote Ticker="DIS" Price="41.250"/>
 <Quote Ticker="CSCO" Price="66.062"/>
 <Quote Ticker="HLTH" Price="18.562"/></QuoteStream>
</page>

To prove we haven't forgotten about using XSLT to make our XSQL data page
look pretty, we can finish by creating a tiny page as follows:

<?xml version="1.0"?>
<!-- LiveQuotesHTML.xsql -->
<?xml-stylesheet type="text/xsl" href="QuoteTable.xsl"?>
<xsql:include-xsql href="LiveQuotes.xsql"
xmlns:xsql="urn:oracle-xsql"/>

that includes the XML data page from LiveQuotes.xsql and applies the
QuoteTable.xsl stylesheet in Example 16.6 for HTML presentation.

Example 16.6. Stylesheet to Format Live Stock Quotes

<html xsl:version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <head>
 <style>
 BODY {font-family: Verdana}
 TH {background-color:#cccc99;color:#336699;font-weight:bold;}
 .r1 {background-color: #f7f7e7; color: black}
 .r0 {background-color: #f9f9f9; color: black}

 </style>
 </head>
 <body>
 <center>
 <h2>Yahoo! Quotes</h2>
 <xsl:value-of select="page/QuoteStream/@time"/>
 <hr/>
 <table>
 <tr>
 <th>Ticker</th>
 <th>Price</th>
 </tr>
 <xsl:for-each select="page/QuoteStream/Quote">
 <xsl:sort select="@Price" data-type="number"
order="descending"/>
 <tr class="r{position() mod 2}">
 <td><xsl:value-of select="@Ticker"/></td>
 <td align="right"><xsl:value-of
select="format-number(@Price,'0.00')"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </center>
 </body>
</html>

Executing this, we instantly see our live quotes in a more presentable manner, as
shown in Figure 16.4.

Figure 16.4. Browsing live Yahoo! quote results

Note some of the interesting XSLT features we're using in QuoteTable.xsl:

• We've nested an <xsl:sort> element inside our familiar <xsl:for-each>

loop to cause our live XML quotes to be sorted in descending order by price:
• <xsl:for-each select="page/QuoteStream/Quote">
• <xsl:sort select="@Price" data-type="number"

order="descending"/>
• Content

</xsl:for-each>

• We're using an attribute-value template together with the XPath mod

operator and the position() function to alternate between CSS class

names r0 and r1 achieving the striped coloring of even/odd rows:

<tr class="r{position() mod 2}">

• We're using the XPath format-number() function to format the stock

quotes to just two decimal places, even though we retrieved them from
Yahoo! Quotes with three digits of precision.

So far in this chapter, we've seen that extending the XSQL framework to include
custom actions and XML information sources is straightforward, particularly in
combination with JDeveloper 3.1 to assist in development, testing, and
debugging. In Chapter 17, we'll see how all of the pieces fit together.

16.3 Working with XSLT Extension Functions

XSLT and XPath provide numerous built-in functions, many of which we've seen
and all of which are listed in the handy XSLT/XPath reference available in
Appendix D. In addition to these built-in functions, XSLT 1.0 defines an extension
mechanism that allows user-defined functions to be written in any language. By
associating an appropriate XML namespace to an external function or function
library, you can use the methods and functions in that external library in your
stylesheet.

Vendors are free to provide language bindings for their XSLT processor to enable
users to author extension functions in those languages. The Oracle XSLT
processor supports the XSLT 1.0 specification for extension functions in Java.

16.3.1 Using Existing Java Classes as Extensions

While building stylesheets, you may run into situations where you cannot find a
built-in XSLT or XPath function to do the job, and you may already know that
there's a Java class that provides the functionality you want. In these cases, you
can use an existing Java class as an extension function to augment your
transformation to include virtually anything you can access in Java.

To use the methods in a Java class as extension functions, you must declare a
namespace for the Java class in your stylesheet. The namespace prefix can be
any convenient name, but the namespace URI for the Java class must be a very

specific value. To use a class named package.qualified.Classname, declare a

namespace with the URI:

http://www.oracle.com/XSL/Transform/java/package.qualified.Classna
me

A future version of the XSLT specification may standardize the
mechanism for extension functions in particular languages like
Java, JavaScript, etc. In the interim, each vendor implementing
XSLT 1.0 has picked their own scheme for associating a
namespace URI with a Java class. Despite this, later in this
chapter we illustrate a technique for building a stylesheet that
uses Java extensions and works with multiple XSLT processors.

For example, to use the java.lang.Integer class in your stylesheet, you would

declare a namespace on the <xsl:stylesheet> element like this:

<xsl:stylesheet version="1.0" exclude-result-prefixes="Int"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:Int="http://www.oracle.com/XSL/Transform/java/java.lang.Inte
ger">

The exclude-result-prefixes attribute on <xsl:stylesheet> or the

xsl:exclude-result-prefixes attribute on a simple-form stylesheet provides

a mechanism to tell the XSLT processor that certain namespaces are only

meaningful for use by the stylesheet. Here we've chosen Int as the prefix for the

java.lang.Integer class's namespace, so we include Int as the value of

exclude-result-prefixes. If we do not use exclude-result-prefixes, then

the processor must dutifully copy the Int namespace along into the result

document. This would do no harm, but it clutters the result document and could
be confusing to someone looking at the result of your transformation.

The easiest kind of method to call is a public static method. To invoke a

public static method like toHexValue() on the java.lang.Integer class that

we've set ourselves up to use, we can simply use the syntax

Int:toHexValue(expr) anywhere in an XPath expression that functions are

allowed. This is the namespace-qualified method name using the Int

namespace.

As with nearly everything in XML, XSLT, and Java, names are
case-sensitive, including the method names used here for
invoking Java extension functions.

Although it's not very useful in practice, the following stylesheet imports our
TableBaseWithCSS.xsl from Chapter 7, and provides a template that overrides

the formatting of the <SAL> element inside a <ROW> by displaying its salary value

in hexadecimal:

<!-- EmpHex.xsl: Overide basic ROWSET to table to show SAL in Hexadecimal
-->
<xsl:stylesheet version="1.0" exclude-result-prefixes="Int"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:Int="http://www.oracle.com/XSL/Transform/java/java.lang.Inte
ger">
 <xsl:import href="TableBaseWithCSS.xsl"/>
 <xsl:template match="SAL">
 <!-- Invoke public static toHexString() method on current node "."
-->
 <td align="right"><xsl:value-of
select="Int:toHexString(.)"/></td>
 </xsl:template>
</xsl:stylesheet>

We can create a quick Employees.xsql page to provide some emp data:

<!-- Employees.xsql: Query over emp with dynamic ORDER BY -->
<xsql:query sort="Ename" connection="xmlbook"
xmlns:xsql="urn:oracle-xsql" >
 <!--
 | The {@dept}+0 "trick" allows the query to be syntactically
 | correct even when no value for the dept parameter is specified.
 | It has to be {@dept}+0 and *not* 0+{@dept} since if {@dept} is
 | missing, you end up with "+0" or "0+". The former is interpreted
 | as "positive zero", a harmless operation. The latter is invalid
 | SQL since "0+" is missing an operand to add to zero...
 +-->
 SELECT ename, sal

 FROM emp
 WHERE {@dept}+0 = 0
 OR deptno = {@dept}+0
 ORDER BY {@sort} {@dir}
</xsql:query>

Then we can reuse the Employees.xsql data page inside an EmpHex.xsql page
that applies our EmpHex.xsl stylesheet to the Employees.xsql page's data like
this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="EmpHex.xsl" ?>
<!-- Include datapage from Employees.xsql and style it with EmpHex.xsl
-->
<xsql:include-xsql href="Employees.xsql"
xmlns:xsql="urn:oracle-xsql"/>

Requesting EmpHex.xsql in the browser with a URL like:

http://server/EmpHex.xsql?dept=20

produces a listing like the one shown in Figure 16.5 of the employees for
department 20 with salaries in hexadecimal.

Figure 16.5. Employees in department 20 with hexadecimal

salaries

Your accountant might not like the look of the hex numbers with lowercase letters,

so you can use utility methods on a Java class like java.lang.String to fix the

problem. In contrast to the toHexString() method on java.lang.Integer that

was public static, the toUpperCase() method on java.lang.String needs to

be called on an instance of a String object. This is handled by using XSLT

variables.

Using a variable, you can assign the return value of a Java extension function

without converting its result to one of the built-in XSLT types: String, Number,

Boolean, NodeSet, or ResultTreeFragment. This means you can invoke one

function to return an arbitrary Java object into a variable, and then pass that
object as an argument to another function using this variable name. XSLT does
not understand or do anything with the arbitrary Java object; it just provides the
named variable mechanism to assign a name to an instance of the return value
and pass it to another extension function.

When calling instance variables in Java, you invoke the method on an instance of
an object like this:

String name = "steve";
String upperName = name.toUpperCase(); // Invoke method on instance
of String obj

In XSLT, to invoke an instance method, you have to pass the instance of the
object on which you want the method invoked as the first argument to the

function instead. Assuming you've defined the Str namespace earlier in the

stylesheet with the following syntax:

xmlns:Str="http://www.oracle.com/XSL/Transform/java/java.lang.Stri
ng"

you can invoke an instance method like toUpperCase() on the String class like

this:

<!-- Assume current node has a child element named <LASTNAME> -->
<xsl:value-of select="Str:toUpperCase(LASTNAME)"/>

So the toUpperCase() instance method is invoked in XSLT by calling a

namespace-qualified function of the same name and passing the instance as the
first argument. If the Java instance method takes arguments, you must still pass
the instance variable as the first argument to the extension function in XSLT,
followed by expression values for the remaining Java method arguments in
order.

The following EmpHexUpper.xsl stylesheet combines the use of

java.lang.Integer and java.lang.String, invoking a public static method on

the former and an instance method on the latter, to produce a list of employees
with salaries whose values are uppercased hexadecimal:

<!-- EmpHexUpper.xsl: Illustrate calling instance methods -->
<xsl:stylesheet version="1.0" exclude-result-prefixes="Int"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:Int="http://www.oracle.com/XSL/Transform/java/java.lang.Inte
ger"

xmlns:Str="http://www.oracle.com/XSL/Transform/java/java.lang.Stri
ng">
 <xsl:import href="TableBaseWithCSS.xsl"/>
 <xsl:template match="SAL">
 <!-- Invoke public static toHexString() method on current node "."
-->
 <xsl:variable name="HexSal" select="Int:toHexString(.)"/>
 <!-- Invoke instance method on the String instance returned -->
 <td align="right"><xsl:value-of
select="Str:toUpperCase($HexSal)"/></td>
 </xsl:template>
</xsl:stylesheet>

Refreshing our browser with the earlier URL, we can add the additional URL
parameter xml-stylesheet=EmpHexUpper.xsl to quickly test this new stylesheet:

http://server/EmpHex.xsql?dept=20&xml-stylesheet=EmpHexUpper.xsl

We see that it now produces the uppercased hexadecimal salaries.

If you need to actually construct new instances of Java objects
from within the stylesheet, as opposed to invoking public static
methods that return an instance that's been constructed inside

their Java implementation, you can use the new() function

qualified by the namespace for your Java class. For example,

assuming you've declared a namespace prefix date for the

java.util.Date class, you can do this:

<!-- Construct a new java.util.Date
instance in variable "d" --> <xsl:variable name="d"
select="date:new()"/> <!-- Call Date's toString()
method on
the new instance -->
<xsl:value-of select="date:toString($d)"/>

or you can combine these two steps into one:

<xsl:value-of
select="date:toString(date:new())"/>

16.3.2 Formatting Rainbow-Colored SVG with XSLT

We'll get a little more creative here and illustrate how to put some simple yet
useful Java extension functions to work transforming database query results into
scalable vector graphics (SVG). SVG is a W3C standard XML vocabulary for
encoding scalable line drawings. It includes XML representations for drawing
primitives to do some very amazing things, but we'll confine ourselves to using

the SVG elements <rect> and <text> to draw some rectangles and text on a

colorful, dynamic bar chart of employee salary information queried straight out of
the database.

Example 16.7 shows a utility stylesheet called CoolColor.xsl containing a named

template called Mayura:CoolColor. Just as element names can be

disambiguated using XML namespaces, XSLT allows you to use
namespace-qualified template names. This can be very useful if you build
stylesheets that include or import templates from other stylesheets, especially
stylesheets developed by others. Namespace-qualified template names can help
you keep your named templates from accidentally overriding each other due to
name clashes.

The Mayura:CoolColor template makes use of the java.awt.Color class and

the java.lang.Integer class as extension functions. It declares namespace

prefixes for both of these classes, as well as for the Mayura prefix used to qualify

the Mayura:CoolColor template name. All three of these prefixes are added

appropriately to the exclude-result-prefixes attribute value to avoid being

copied into result documents produced by the transformation.

The author of Mayura Draw, an impressive shareware drawing tool for Postscript
and SVG available from http://www.mayura.com, sent me a "cool colors"

algorithm that I turned into the Mayura:CoolColor XSLT template for use by

stylesheets. The named template handles the job of calculating an eye-pleasing
rainbow of cool colors with a parameterized number of colored stripes. Given a
particular index number for a stripe in the rainbow, it returns the HTML RGB (Red
Green Blue) value for the current color of that stripe in the hexadecimal form

RRGGBB. Using some magic cool color constants for saturation and brightness, the

template sets a variable to the return value of the public static getHSBColor()

method to retrieve an instance of a java.awt.Color object having the correct

hue. Then it passes that object instance using this variable to three instance

methods on java.lang.Color to retrieve the Red, Green, and Blue RGB values

separately. Finally, it uses the public static toHexString() method on

java.lang.Integer to convert the RGB values to hex.

Example 16.7. Template for a Rainbow of Cool-Colored Bars

<!-- CoolColor.xsl: Return HTML #RRGGBB color for "cool" color
combination -->
<xsl:stylesheet version="1.0" exclude-result-prefixes="Color Int
Mayura"
 xmlns:xsl ="http://www.w3.org/1999/XSL/Transform"
 xmlns:Color
="http://www.oracle.com/XSL/Transform/java/java.awt.Color"
 xmlns:Int
="http://www.oracle.com/XSL/Transform/java/java.lang.Integer"
 xmlns:Mayura ="http://www.mayura.com/">
<!--
 | This stylesheet implements a "CoolColor" algorithm that Rajeev, the
 | creator of the shareware SVG editor "Mayura Draw" sent me.
 |
 | Given a total number of colors T and an index N between 1 and T
 | the CoolColor algorithm determines an eye-pleasing color combination

 | for the range of T different colors, and returns the HTML #RRGGBB
 | hex representation of the Nth color in the range.
 +-->
 <xsl:template name="Mayura:CoolColor">
 <!-- Accept a color index and the total number of colors in the range
-->
 <xsl:param name="colorIndex"/>
 <xsl:param name="totalColors"/>
 <!-- These are the magic values of saturation and brightness -->
 <xsl:variable name="SAT" select="number(0.6)"/>
 <xsl:variable name="BRT" select="number(0.9)"/>
 <!-- Calculate "r","g","b" values for the 'colorIndex'-th color in
range -->
 <xsl:variable name="hue" select="$colorIndex div $totalColors"/>
 <!--
 | Use the public static getHSBColor method on java.awt.Color
 |
 | NOTE: This returns a Java object of the Color class as a return
value
 | into the XSLT variable named "c".
 +-->
 <xsl:variable name="c" select="Color:getHSBColor($hue, $SAT,
$BRT)"/>
 <!--
 | Pass the instance of a java.awt.Color object to three other
 | methods on java.awt.Color to extract the r,g,b values separately
 +-->
 <xsl:variable name="r" select="Color:getRed($c)"/>
 <xsl:variable name="g" select="Color:getGreen($c)"/>
 <xsl:variable name="b" select="Color:getBlue($c)"/>
 <!--
 | Use the public static toHexString() method on java.lang.integer
 | to convert the integer color numbers to Hex for HTML #RRGGBB value.
 +-->
 <xsl:variable name="rs" select="Int:toHexString($r)"/>
 <xsl:variable name="gs" select="Int:toHexString($g)"/>
 <xsl:variable name="bs" select="Int:toHexString($b)"/>
 <!-- If any of r, b, or b values was less than 16, add a leading
0 -->
 <xsl:if test="$r < 16">0</xsl:if><xsl:value-of select="$rs"/>
 <xsl:if test="$g < 16">0</xsl:if><xsl:value-of select="$gs"/>
 <xsl:if test="$b < 16">0</xsl:if><xsl:value-of select="$bs"/>
 </xsl:template>
</xsl:stylesheet>

We can immediately put the Mayura:CoolColor template to work in an XSLT

stylesheet that transforms our familiar <ROWSET> query results from an XSQL

page into a rainbow-colored bar chart. We do this simply by creating a

transformation that transforms a <ROWSET> like this:

<ROWSET>
 <ROW num="1">
 <ENAME>CLARK</ENAME>
 <SAL>2450</SAL>
 </ROW>
 <ROW num="2">
 <ENAME>KING</ENAME>
 <SAL>5000</SAL>
 </ROW>
 <ROW num="3">
 <ENAME>MILLER</ENAME>
 <SAL>1300</SAL>
 &lt;/ROW>
</ROWSET>

into a document using the SVG vocabulary like this:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<!DOCTYPE svg SYSTEM "svg-19990812.dtd">
<svg width="1000" height="1000">
 <desc>Salary Chart</desc>
 <g
style="stroke:#000000;stroke-width:1;font-family:Arial;font-size:1
6">
 <rect x="100" y="55" height="25" width="245" style="fill:#e6975c
"/>
 <text x="20" y="73">CLARK</text>
 <text x="355" y="73">2450</text>
 <rect x="100" y="90" height="25" width="500" style="fill:#e6d25c
"/>
 <text x="20" y="108">KING</text>
 <text x="610" y="108">5000</text>
 <rect x="100" y="125" height="25" width="130"
style="fill:#bee65c "/>
 <text x="20" y="143">MILLER</text>
 <text x="240" y="143">1300</text>
 </g>

</svg>

When an SVG-compliant viewer opens a document like this having the MIME type

image/svg, it renders the shapes in the drawing to produce a scalable vector

graphic image. By using a browser plug-in like the Adobe SVG plug-in, your
Internet Explorer or Netscape browser becomes an SVG-compliant viewer as
well.

You can download the Adobe SVG plug-in from:

http://www.adobe.com/svg/

and the IBM SVG viewer from:

http://www.alphaworks.ibm.com

First, let's attack the job of drawing a single SVG bar with a label in the chart.
Each bar is made up of a sequence of SVG elements like this:

<text ... /> <!-- Text for label -->
<rect ... /> <!-- Rectangle for the "bar" -->
<text ... /> <!-- Text for the value being charted -->

A single row is shown in Figure 16.6.

Figure 16.6. A single bar in an SVG-based bar chart

Example 16.8 shows the drawBar named template, which provides a number of

input parameters, some with default values. The drawBar template allows the

caller to specify values for the following parameters:

barIndex

Picks the desired cool color stripe in the rainbow

label

The text label on the chart; for example, JAMES

value

The value to chart with respect to the maxValue parameter

maxValue

Scales the current value parameter appropriately

chartWidth

Scales the length of the actual rectangle drawn to fit within the dimensions
provided by the caller

rowCount

Calculates the total number of color stripes in the rainbow

The drawBar template invokes the Mayura:CoolColor template with the current

bar's index position and the total number of rows to calculate the appropriate cool
color for the current bar.

Example 16.8. Drawing an SVG Bar for a Bar Chart

<!-- LabeledSVGBar.xsl: Draw a colorful, labeled rectangle for SVG Bar
Chart -->
<xsl:stylesheet version="1.0"
 xmlns:xsl ="http://www.w3.org/1999/XSL/Transform"
 xmlns:Mayura ="http://www.mayura.com/"
 exclude-result-prefixes="Mayura">
 <!-- Include the stylesheet with the "Mayura:CoolColor" template. -->
 <xsl:include href="CoolColor.xsl"/>
 <!-- Draw a rectangle by creating an SVG <rect> element -->
 <xsl:template name="drawBar">
 <xsl:param name="barIndex" select="0"/>
 <xsl:param name="label"/>
 <xsl:param name="value" select="0"/>
 <xsl:param name="chartWidth" select="1000"/>
 <xsl:param name="maxValue" select="$chartWidth"/>
 <xsl:param name="rowCount" select="1"/>
 <!-- Set up some constant values to use for calculations -->
 <xsl:variable name="xOffset" select="100"/>
 <xsl:variable name="yOffset" select="1"/>

 <xsl:variable name="barHeight" select="20"/>
 <xsl:variable name="gap" select="4"/>
 <!-- Calculate the "x" and "y" coordinates for the rectangle -->
 <xsl:variable name="x" select="$xOffset"/>
 <xsl:variable name="y" select="$yOffset + $barIndex * ($barHeight
+ $gap)"/>
 <!--
 | Calculate the width of the bar
 |
 | NOTE: division in XPath is done with the "x div y" and not "x/y"
 | since "x/y" is an XPath pattern that matches <y> elements
 | when they occur as children of <x> elements.
 +-->
 <xsl:variable name="barWidth"
 select="($chartWidth * $value) div (2 * $maxValue)"/>
 <xsl:variable name="fontHeight" select="18"/>
 <!-- Create SVG <text> element to display the label -->
 <text x="20" y="{$y + $fontHeight}">
 <xsl:value-of select="$label"/>
 </text>
 <!-- Create SVG <rect> element to display the label -->
 <rect x="{$x}" y="{$y}" height="{$barHeight}" width="{$barWidth}">
 <!-- Create the <rect> elements "style" attribute w/ dynamic value
-->
 <xsl:attribute name="style">
 <xsl:text>fill:#</xsl:text>
 <!--
 | Call the "coolColor" template to get RRGGBB hex value for
 | a pleasing color combination
 +-->
 <xsl:call-template name="Mayura:CoolColor">
 <xsl:with-param name="colorIndex" select="$barIndex"/>
 <xsl:with-param name="totalColors" select="$rowCount"/>
 </xsl:call-template>
 <xsl:text> </xsl:text>
 </xsl:attribute>
 </rect>
 <xsl:variable name="x2" select="$xOffset + $barWidth + 10"/>
 <!-- Create SVG <text> element to display the value being charted
-->
 <text x="{$x2}" y="{$y + $fontHeight}">
 <xsl:value-of select="$value"/>
 </text>
 </xsl:template>

</xsl:stylesheet>

Finally, Example 16.9 shows the stylesheet needed to perform the

<ROWSET>-to-<svg> transformation for the simple bar chart. The stylesheet uses

an <xsl:output> element to set the required serialization options for the

resulting SVG document as follows:

• It sets the standalone="yes" attribute on the <?xml?> declaration.

• It sets the SYSTEM URI of the doctype to the required svg-19990812.dtd

DTD.

• It sets the media type to image/svg.

The stylesheet also uses indent="yes" to make the result more readable, but

this is not an SVG requirement. It includes the LabeledSVGBar.xsl stylesheet so

it can call the drawBar template to draw each bar in the bar chart inside its

<xsl:for-each> that loops over the ROWSET/ROW elements. It also puts to use

some of what we learned in Chapter 9, to calculate the values of the top-level

stylesheet variables maxSalary and totalEmps.

Example 16.9. Producing Scalable Vector Graphics with XSLT

<!-- SalChart.xsl: Draw a colorful bar chart using SVG-->
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!-- Include the stylesheet with the "drawBar" template -->
 <xsl:include href="LabeledSVGBar.xsl"/>
 <!-- Width/Height size of chart area-->
 <xsl:variable name="chartSize" select="1000"/>
 <!-- Select max value of salaries being charted -->
 <xsl:variable name="maxSalary">
 <xsl:for-each select="/ROWSET/ROW">
 <xsl:sort data-type="number" select="SAL" order="descending"/>
 <xsl:if test="position()=1">
 <xsl:value-of select="SAL"/>
 </xsl:if>

 </xsl:for-each>
 </xsl:variable>
 <!-- Select count of number of ROW's -->
 <xsl:variable name="totalEmps">
 <xsl:value-of select="count(/ROWSET/ROW)"/>
 </xsl:variable>
 <!--
 | SVG Viewers expect XML Document with SVG DTD and a Media Type of
"image/svg"
 +-->
 <xsl:output standalone="yes" doctype-system="svg-19990812.dtd"
 media-type="image/svg" indent="yes"/>
 <!-- Root Template creates outmost <svg> and <g> graphics element-->
 <xsl:template match="/">
 <svg width="{$chartSize}" height="{$chartSize}">
 <xsl:comment><xsl:value-of select="$maxSalary"/></xsl:comment>
 <desc>Salary Chart</desc>
 <g
style="stroke:#000000;stroke-width:1;font-family:Arial;font-size:1
6">
 <!-- Loop over each ROW in the ROWSET -->
 <xsl:for-each select="ROWSET/ROW">
 <!-- Call the "drawBar" template to draw each bar -->
 <xsl:call-template name="drawBar">
 <xsl:with-param name="barIndex" select="position()"/>
 <xsl:with-param name="label" select="ENAME"/>
 <xsl:with-param name="value" select="SAL"/>
 <xsl:with-param name="chartWidth" select="$chartSize"/>
 <xsl:with-param name="maxValue" select="$maxSalary"/>
 <xsl:with-param name="rowCount" select="$totalEmps"/>
 </xsl:call-template>
 </xsl:for-each>
 </g>
 </svg>
 </xsl:template>
</xsl:stylesheet>

We can create an XSQL page called SalChart.xsql that includes the
Employees.xsql data page and applies the SalChart.xsl stylesheet like this:

<?xml version="1.0"?>
<!-- SalChart.xsql -->
<?xml-stylesheet type="text/xsl" href="SalChart.xsl" ?>
<!-- Include datapage from Employees.xsql and style it with SalChart.xsl
-->

<xsql:include-xsql href="Employees.xsql"
xmlns:xsql="urn:oracle-xsql"/>

We can now request our database-driven, XSLT-powered SVG chart in our
browser (after installing the Adobe SVG plug-in) using the URL:

http://server/SalChart.xsql

which returns the chart of the data ordered by ENAME as shown in Figure 16.7.

Running your XSQL pages from within JDeveloper 3.1, the IDE
automatically makes sure that the CLASSPATH contains any
classes in your current project as well as those from any
libraries in your project's Library List.

Figure 16.7. Dynamic SVG bar chart transformed from live

data

Since the underlying Employees.xsql page contained a parameterized ORDER BY

clause, we can pass the value SAL to the page's sort parameter to sort the data

in the data page by salary before it's charted using the SalChart.xsl stylesheet
with the URL:

http://server/SalChart.xsql?sort=sal

This produces the chart ordered by the SAL column.

16.3.3 Writing Your Own Java Extension Functions

When you cannot find the function you need among the built-in XPath and XSLT
functions, and when no existing Java class does exactly what you need for your
transformation, you can write your own Java extension functions and use them in
a stylesheet just as we used the Java JDK classes above.

Overloading based on number and type of parameters is supported. The XSLT

processor does implicit type conversion between the XSLT types String, Number,

Boolean, and ResultTreeFragment, and it also performs implicit conversion

from a NodeSet to a String, Number, Boolean, or ResultTreeFragment.

Attempting to overload methods based on two types that can be implicitly
converted to each other will result in an error.

The following table illustrates the datatype mapping performed between
XSLT/XPath types and Java types:

XSLT/XPath Datatype Java Datatype

String java.lang.String

Number int, float, double

Boolean boolean

NodeSet oracle.xml.parser.v2.XMLNodeList, org.w3c.dom.NodeList

ResultTreeFragment
oracle.xml.parser.v2.XMLDocumentFragment,
org.w3c.dom.DocumentFragment

Example 16.10 shows the MarkupExtensions class with its xmlMarkup() public

static method that we put to use in Chapter 12. Given any NodeSet passed in as

an argument, it returns the string representation of that NodeSet as XML markup.

Techniques to achieve this using pure XSLT are quite messy and difficult to

understand. In Java, simply invoke the print() method on each node in the

node list to serialize that node as XML.

Example 16.10. Extension Function to Write XML as Text

Markup

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.io.*;
public class MarkupExtensions {
 public static String xmlMarkup(NodeList nl) throws Exception {
 if (nl != null) {
 // Wrap a StringWriter by a PrintWriter
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 int nodes = nl.getLength();
 // Loop over the nodes in the node list. Tell each one to print
itself
 for (int z = 0; z < nodes ; z++) {
 // Print XML markup for current node
 ((XMLNode)nl.item(z)).print(pw);
 }
 // Return the StringBuffer of the StringWriter
 return sw.toString();
 }
 return "";
 }
}

In Chapter 17, we'll see some examples of XSLT named templates that perform
string replacement. The technique relies on a named template's recursively
invoking itself until there are no occurrences left of the substring you're trying to
replace. If you need to replace many different strings by many different other
strings, this technique can get messy in a hurry with pure XSLT syntax. A great
example of this scenario is creating URLs with illegal characters properly escaped
as hex codes.

Certain characters have special meaning in a URL:

Character Meaning in a URL

? Separates the base URL from any request parameters

& Separates multiple request parameters

/ Separates directory names in the URL

Space Creates gaps in the characters comprising the URL

% Used to quote illegal characters

The Internet Engineering Task Force (IETF) RFC2396 specification says that
these as well as several others should be quoted as two-digit hex values
representing their ASCII code equivalents when they occur in a URL. The

URLEncoder.EncodeURLArgs() method in Example 16.11 efficiently handles the

substitution of all necessary illegal URL characters by their xx hex equivalents.

Example 16.11. EncodeURLArgs XSLT Extension Function

import java.util.BitSet;
public class URLEncoder {
 // See http://www.ietf.org/rfc/rfc2396.txt
 private static final String list = " <>#%&\\/?{}[]|^`\"";
 private static BitSet escList = new BitSet(256);
 // Return a string with rfc2396 URL encoding done on it
 public static String EncodeURLArgs(String s) {
 if (s == null || s.equals("")) {
 return s;
 }
 else {
 StringBuffer b = new StringBuffer();
 int len = s.length();
 for (int z = 0; z < len; z++) {
 char c = s.charAt(z);
 if (escList.get(c)) {
 b.append("%"+Integer.toHexString((int)c).toUpperCase());
 }
 else {
 b.append(c);
 }
 }
 return b.toString();
 }
 }
 static {
 escList = new BitSet(256);
 int len = list.length();
 for (int z = 0; z < len; z++) {
 escList.set(list.charAt(z));
 }

 }
}

This allows your XSLT stylesheets to perform the URL encoding on any string
value like this:

<!--
 | Use the URLEncoder class' EncodeURLArgs method.
 | NOTE: The URLEncode class is not defined in a package, so its
 | "fully package qualified classname" is just URLEncoder.
 +-->
<xsl:stylesheet version="1.0" exclude-result-prefixes="url"
 xmlns:xsl ="http://www.w3.org/1999/XSL/Transform"
 xmlns:url
="http://www.oracle.com/XSL/Transform/java/URLEncoder">
 <xsl:template match="SomePattern">
 <xsl:variable name="urlVariable" select="SomeExpression"/>
 <!-- Copy the URLEncoded value of the $urlVariable to the result
tree -->
 <xsl:value-of select="url:EncodeURLArgs($urlVariable)"/>
 <!-- Copy the URLEncoded value of any XPath expression to the result
tree -->
 <xsl:value-of select="url:EncodeURLArgs(AnyExpression)"/>
 </xsl:template>
</xsl:stylesheet>

If you need to make your XSLT stylesheets portable across different vendors'
XSLT implementations, using Java extension functions can present a problem
since each vendor uses a different namespace scheme for specifying Java classes.
One way to write a stylesheet that works with any XSLT processor that supports
extension functions in Java is to build your stylesheet to include namespace
prefixes for all the different namespace URIs that you need to reference, and

then use the XSLT function named function-available() to test whether a

given function in one of the namespaces is available before using it.

The stylesheet in Example 16.12 uses the URLEncoder class's EncodeURLArgs()

method as a Java extension function in a way that will work with Oracle XSLT,
Saxon 5.3, and James Clark's XT processor.

Example 16.12. Designing for XSLT Processor Portability

<!--

 | PortableURLEncoderTest.xsl: Shows how to use Java extension
functions
 | in a way that can work across different vendor's XSLT implementations
 +-->

<xsl:stylesheet version="1.0" exclude-result-prefixes="xtUrl
oracleUrl saxonUrl"
 xmlns:xsl ="http://www.w3.org/1999/XSL/Transform"
 xmlns:xtUrl ="http://www.jclark.com/xt/java/URLEncoder"
 xmlns:oracleUrl
="http://www.oracle.com/XSL/Transform/java/URLEncoder"
 xmlns:saxonUrl ="http://anythinghere/URLEncoder">
 <xsl:output method="text"/>
 <xsl:template match="/">
 <xsl:variable
name="urlBase">http://foo.com/SomeService</xsl:variable>
 <xsl:variable name="urlArgs" select="'company=at & t /
mobilecom'"/>
 <xsl:variable name="quotedUrlArgs">
 <!-- Invoking the xsl:call-template inside -->
 <xsl:call-template name="escapeURLArgs">
 <xsl:with-param name="text" select="$urlArgs"/>
 </xsl:call-template>
 </xsl:variable>
 <!-- Output the URL as the concatentation of
urlBase+"?"+quotedUrlArgs -->
 <xsl:value-of select="concat($urlBase,'?',$quotedUrlArgs)"/>
 </xsl:template>
 <xsl:template name="escapeURLArgs">
 <xsl:param name="text"/>
 <xsl:choose>
 <!-- If xtUrl:EncodeURLArgs is available, then invoke it... -->
 <xsl:when test="function-available('xtUrl:EncodeURLArgs')">
 <xsl:value-of select="xtUrl:EncodeURLArgs($text)"/>
 </xsl:when>
 <!-- If saxonUrl:EncodeURLArgs is available, then invoke it...
-->
 <xsl:when test="function-available('saxonUrl:EncodeURLArgs')">
 <xsl:value-of select="saxonUrl:EncodeURLArgs($text)"/>
 </xsl:when>
 <!-- If oracleUrl:EncodeURLArgs is available, then invoke it...
-->
 <xsl:when
test="function-available('oracleUrl:EncodeURLArgs')">

 <xsl:value-of select="oracleUrl:EncodeURLArgs($text)"/>
 </xsl:when>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

This example stylesheet selects a string value for a urlBase variable of:

http://foo.com/SomeService

and a string value for a urlArgs variable of:

company=at & t / mobilcom

which contains some spaces, an ampersand, and a slash. To test this example
transformation, you can use any XML file as the source and try the following:

• With James Clark's xt XSLT 1.0 processor:

$ xt anyfile.xml PortableURLEncoderTest.xsl

• With Michael Kay's Saxon XSLT 1.0 processor:

$ saxon anyfile.xml PortableURLEncoderTest.xsl

• With the Oracle XSLT 1.0 Processor:

$ oraxsl anyfile.xml PortableURLEncoderTest.xsl

All three processors produce the following identical output:

http://foo.com/SomeService?company=at%20%26%20t%20%2F%20mobilecom

We can write a stylesheet that refers to extension functions in several different
namespaces (only one of which we're expecting to be usable by the current
processor at transformation time) because an XSLT 1.0-compliant processor
signals errors only if you actually try to use the function. By wrapping the

extension function in a named template that uses <xsl:choose> and

function-available() to selectively invoke the correct function, we can avoid

the situation of ever invoking a function that is not available.

16.3.4 Debugging Your XSLT Java Extension Functions

You will certainly need to debug your XSLT Java extension functions to make sure
they are working correctly. Using JDeveloper 3.1, you have two choices for how
to do this, both straightforward.

If you are using XSLT in combination with XSQL Pages, you can follow the steps
we outlined earlier for debugging XSQL page action handlers. If you set
breakpoints in the Java code for your own XSLT extension functions, the
debugger will stop at your breakpoint when your function is invoked by the XSLT
processor.

If you want to debug from the command line, you can use JDeveloper 3.1 remote
debugging support to debug the command-line Oracle XSLT processor. In order

to remotely debug the oraxsl command-line utility, do the following:

• For the simplest possible experience, make sure you run the oraxsl

command-line utility using the Java 1.2 VM supplied with JDeveloper 3.1.
This VM natively supports remote debugging on Windows NT, where you'll
be using JDeveloper 3.1. If you've installed JDeveloper 3.1 in the
C:\jdev31 directory, for example, the complete path to the Java VM is
C:\jdev31\java1.2\bin\java.exe.

• Run the oraxsl command-line utility using the remote debugging

argument to the Java VM. If you are trying to test the transformation of
source.xml by the style.xsl stylesheet that makes use of your extension
functions, the exact command will be:

java -XXdebug oracle.xml.parser.v2.oraxsl source.xml style.xsl

If you run this command with the JDeveloper 3.1 Java VM, you will
immediately see the following message on the console:

*** Port is 4000 ***
*** Waiting for debugger connection. ***

At this point, the oraxsl program is halted and will not proceed to execute

until you attach the JDeveloper 3.1 debugger to it.

• In your JDeveloper 3.1 project where the source code for your Java XSLT
extension functions resides, make sure that your project is set up for

remote debugging. To check this setting, select Project Project
Properties from the main menu, click the Run/Debug tab, and set the
Debug As pop-up list to "Remote Debugging".

• Set your desired breakpoints in your extension function source code.
• Click the Debug icon in the toolbar.

• When the Remote Debugging dialog appears, enter localhost for the

machine name and 4000 for the port, then click Attach.

When the debugger attaches to the oraxsl process, program execution begins,

and you'll hit your breakpoints as soon as the XSLT processor invokes your
extension functions.

Chapter 17. XSLT-Powered Portals and

Applications

In this last chapter, we'll work our way through all of the important capabilities of XSLT in the

context of building some interesting Oracle XML applications. By the end of this chapter, I predict

you will be an incurable XSLT fanatic as its amazing flexibility transforms you into a more

productive developer.

17.1 XSLT-Powered Web Store

In this section, we'll build a simple site for a web store that offers the basic functionality illustrated

in Figure 17.1.

Figure 17.1. Page map of the Everything.com web site

Visitors to the site will be able to see featured items on the home page and can click the name of

one of our "shops" to see a home page specific to that shop. They can search the site for a product,

and whenever a product appears, they can click a link to see other products by the same

manufacturer.

17.1.1 Turning HTML Mockup into an XSLT stylesheet

All product information needs to be displayed consistently across the web store. Our web design

team has provided us with an HTML mockup, shown in Figure 17.2, of how each product should

look on the site. The HTML file for the mockup is shown in Example 17.1.

Figure 17.2. Mockup of product display for our web store

Example 17.1. Source for HTML Mockup of Product

Information

<html>

 <body>

 <center>

 <table border="0">

 <tr>

 <td valign="top">

 Java in a Nutshell : A Desktop Quick Reference by David Flanagan

Other products by O'Reilly

 <table border="0"><tr>

 <td></td>

 <td valign="middle">

 List Price:<strike>29.95</strike>

 Our Price: 20.97

 You Save: 8.98

 </td>

 </tr></table>

 </td>

 </tr>

 </table>

 </center>

 </body>

</html>

We'll use Dave Raggett's Tidy tool (described in Chapter 6) to convert the web designer's HTML

source code into an indented, well-formed XML file that will evolve into an XSLT stylesheet that

produces the same look and feel. Run Tidy as follows:

tidy -asxml -indent ProductMockup.html > Product.xsl

The tidy command produces a well-formed XML document in the Product.xsl file, shown in

Example 17.2, which we can use as a starting point for the XSLT transformation.

Example 17.2. Tidied HTML Mockup in XML

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta name="generator" content="HTML Tidy, see www.w3.org" />

 <title>

 </title>

 </head>

 <body>

 <center>

 <table border="0">

 <tr>

 <td valign="top">

 Java in a Nutshell : A Desktop Quick Reference

 by David Flanagan

 Other products by O'Reilly

 <table border="0">

 <tr>

 <td>

 </td>

 <td valign="middle">

 List Price:<strike>29.95</strike>

 Our Price:

 20.97

 You Save: 8.98

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </center>

 </body>

</html>

We can easily turn this tidied-up HTML into an XSLT stylesheet that uses a single root template.

We just need to wrap the entire content of the document by:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- For best results with HTML, best not to introduce any extra whitespace -->

 <xsl:output method="html" indent="no"/>

 <xsl:template match="/">

 <!-- Tidied-up HTML document goes here -->

 </xsl:template>

</xsl:stylesheet>

We don't need the <!DOCTYPE> and/or <META> for our purposes, so we just delete it. At this point

we have a valid, functional XSLT stylesheet that will output the static HTML mockup. In order to

turn the static template into a page that dynamically formats production information from our

database, we need to perform two basic steps:

• Build an XSQL page to assemble the dynamic XML data page with all necessary production

information

• Replace the static sample information in the XSLT stylesheet with XSLT actions to plug our

dynamic XML into the template HTML format.

First things first; we'll start by building the XSQL page.

17.1.2 Building an XSQL Page to Assemble Data

Figure 17.3 illustrates our database schema related to products on the web store.

Figure 17.3. Database tables involved in the web store

We create the following Store.xsql page to query the product information from the item, author,

maker, and shop tables, using an outer join for the optional author information. Note that we've

planned ahead and already associated the Product.xsl stylesheet we're building to format

products for the Web.

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="Product.xsl"?>

<xsql:query max-rows="1" sid="1" connection="xmlbook"

xmlns:xsql="urn:oracle-xsql">

 SELECT description,

 author_name,

 maker_name,

 maker.id AS maker_id,

 shop_name,

 list_price,

 price,

 list_price - price AS yousave,

 sku

 FROM item, author, maker, shop

 WHERE item.author_id = author.id (+)

 AND item.maker_id = maker.id

 AND item.shop_id = shop.id

 AND shop.id = {@sid}

</xsql:query>

Since we'll just be testing the page initially, we add the following two additional attributes on the

<xsql:query> action element:

max-rows="1"

Limits the product rows retrieved to a single row

sid="1"

Produces a default value for the "shop id" parameter sid in case none is specified in the

request

Requesting the Shop.xsql page through our browser, or using the xsql command-line utility, we

see that this produces the following raw XML datagram:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <DESCRIPTION>Manifest Destiny</DESCRIPTION>

 <AUTHOR_NAME>Daisy Dines</AUTHOR_NAME>

 <MAKER_NAME>Fly Rite</MAKER_NAME>

 <MAKER_ID>3</MAKER_ID>

 <SHOP_NAME>Outdoors</SHOP_NAME>

 <LIST_PRICE>13.95</LIST_PRICE>

 <PRICE>11.16</PRICE>

 <YOUSAVE>2.79</YOUSAVE>

 <SKU>0140060898</SKU>

 </ROW>

</ROWSET>

With the basic data in place, we turn our attention to evolving the tidied-up HTML mockup, which

is now an XSLT stylesheet, into a dynamic data display.

17.1.3 Plugging Dynamic Data into the Stylesheet

We want to design the stylesheet to handle any number of rows of products that might be

produced by the query over the product information. For each <ROW> element in the <ROWSET>, we

want to create an HTML table row (<tr>) containing the product formatted in the standard way.

So we introduce an <xsl:for-each> element to wrap the repeating HTML table row, with a

select="ROWSET/ROW" pattern to select all rows in the dynamic XSQL data page. The contents of

the <xsl:for-each> element will be instantiated in the resulting page for each ROWSET/ROW node

selected.

Inside the <xsl:for-each> loop, the selected <ROW> element is the current node, so any XPath

expressions needed to refer to data in the row can use relative patterns. In particular, we do the

following, using relative XPath expressions:

1. Replace the static product description:
2. Java in a Nutshell : A Desktop Quick Reference

by David Flanagan

with the dynamic expression:

<xsl:value-of select="DESCRIPTION"/>

by <xsl:value-of select="AUTHOR_NAME"/>

3. Replace the static text and hyperlink href value in:

Other products by O'Reilly

with:

Other products by

 <xsl:value-of select="MAKER_NAME"/>

using an attribute value template {MAKER_ID} to substitute the current row's MAKER_ID

into the href attribute value. This will be the id parameter passed to the Maker.xsql page

we'll build later showing all products for a given maker ID.

4. Replace the static src attribute's URL:

with:

5. Replace the static price information:
6. List Price:<strike>29.95</strike>

7. Our Price: 20.97

You Save: 8.98

with:

List Price:<strike>

 <xsl:value-of select="LIST_PRICE"/>

 </strike>

Our Price:

 <xsl:value-of select="PRICE"/>

You Save: <xsl:value-of select="YOUSAVE"/>

The resulting XSLT stylesheet is shown in Example 17.3.

Example 17.3. Stylesheet to Format Web Store Product

Information

<!-- Product.xsl: Format Web Store product information -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- For best results with HTML, best not to introduce extra whitespace -->

 <xsl:output method="html" indent="no"/>

 <xsl:template match="/">

 <html>

 <body>

 <center>

 <table border="0">

 <xsl:for-each select="ROWSET/ROW">

 <tr>

 <td valign="top">

 <xsl:value-of select="DESCRIPTION"/>

 by <xsl:value-of select="AUTHOR_NAME"/>

 Other products by

 <xsl:value-of select="MAKER_NAME"/>

 <table border="0">

 <tr>

 <td>

 </td>

 <td valign="middle">

 List Price:<strike>

 <xsl:value-of select="LIST_PRICE"/>

 </strike>

 Our Price:

 <xsl:value-of select="PRICE"/>

 You Save: <xsl:value-of select="YOUSAVE"/>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </center>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Requesting the Store.xsql page in our browser with the URL:

http://server/Store.xsql

uses the default store ID of 1, retrieves the first product row, and transforms it for display,

producing the output shown in Figure 17.4.

Figure 17.4. HTML output of product from the Outdoors shop

This looks just like what the web designers wanted.

17.1.4 Formatting Numbers and Conditional Formatting

If we request the Store.xsql page in our browser, passing a value of 4 for the sid parameter to

test out an example product in our Toys shop:

http://server/Store.xsql?sid=4

we get the result shown in Figure 17.5.

Figure 17.5. Same stylesheet formatting product from the

Toys shop

We immediately notice a few problems:

• The word "by" appears all alone after the product description because toys don't have

authors recorded in our database.

• The "List Price" and "You Save" sections come up blank since we apparently don't record

a list_price for toys.

• The $6.00 price for the Cymbal Clapping Monkey formats as 6 instead of 6.00

Let's temporarily turn off the stylesheet processing by adding an xml-stylesheet=none to the

end of the URL:

http://server/Store.xsql?sid=4&xml-stylesheet=none

This allows us to see the underlying raw dynamic data page that the XSLT stylesheet is seeing

during the transformation:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <DESCRIPTION>Cymbal Clapping Monkey</DESCRIPTION>

 <MAKER_NAME>Circus Fun</MAKER_NAME>

 <MAKER_ID>1</MAKER_ID>

 <SHOP_NAME>Toys</SHOP_NAME>

 <PRICE>6</PRICE>

 <SKU>B00000IWIT</SKU>

 </ROW>

</ROWSET>

We see that the value 6 is being selected from the database as is, so we'll change our query to

format the numbers the way we want them. This will fix one problem:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="Product.xsl"?>

<xsql:query max-rows="1" sid="1" connection="xmlbook"

xmlns:xsql="urn:oracle-xsql">

 SELECT description,

 author_name,

 maker_name,

 maker.id as maker_id,

 shop_name,

 TO_CHAR(list_price,'999999.00') AS list_price,

 TO_CHAR(price,'999999.00') AS price,

 TO_CHAR(list_price - price,'999999.00') AS yousave,

 sku

 FROM item, author, maker, shop

 WHERE item.author_id = author.id (+)

 AND item.maker_id = maker.id

 AND item.shop_id = shop.id

 AND shop.id = {@sid}

</xsql:query>

The other two problems indicate a need to conditionally format information. We want to display

the author name if there is one and handle the "List Price" and the corresponding "You Save"

sections similarly. We can use the <xsl:if> action to wrap portions of the stylesheet template

that need to be conditionally included. The <xsl:if> element has a required test="expression"

attribute that indicates an XPath expression to be evaluated. If the expression tests true, then

the content of the <xsl:if> is instantiated in the result tree. Otherwise, it is left out.

While any XPath expression is valid to include in an <xsl:if> element's test attribute, one of the

most common expressions used is a pattern to match an element or attribute. If the pattern

matches at least one node, the test evaluates to true. If no matches are selected by the pattern,

the test evaluates to false. For example, to test whether an <AUTHOR_NAME> child element exists

for the current node, you can use:

<xsl:if test="AUTHOR_NAME">

This returns true if an <AUTHOR_NAME> child element exists and false otherwise. If you need to

check that an element exists and that it has a non-empty value, you can use a test like:

<xsl:if test="AUTHOR_NAME != ''">

We wrap the display of <AUTHOR_NAME>, <LIST_PRICE>, and <YOUSAVE> elements with

appropriate <xsl:if> tests to produce the Product.xsl stylesheet in Example 17.4.

Example 17.4. Stylesheet to Correctly Format All Web Store

Products

<!-- Product.xsl: Format Web Store product information -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- For best results with HTML, best not to introduce extra whitespace -->

 <xsl:output method="html" indent="no"/>

 <xsl:template match="/">

 <html>

 <body>

 <center>

 <table border="0">

 <xsl:for-each select="ROWSET/ROW">

 <tr>

 <td valign="top">

 <xsl:value-of select="DESCRIPTION"/>

 <xsl:if test="AUTHOR_NAME">

 by <xsl:value-of select="AUTHOR_NAME"/>

 </xsl:if>

 Other products by

 <xsl:value-of select="MAKER_NAME"/>

 <table border="0">

 <tr>

 <td>

 </td>

 <td valign="middle">

 <xsl:if test="LIST_PRICE">

 List Price:<strike>

 <xsl:value-of select="LIST_PRICE"/>

 </strike>

 </xsl:if>

 Our Price:

 <xsl:value-of select="PRICE"/>

 <xsl:if test="LIST_PRICE">

 You Save: <xsl:value-of select="YOUSAVE"/>

 </xsl:if>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </center>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Refreshing the browser page, we see in Figure 17.6 that this now properly handles the missing

author and list price.

Figure 17.6. Formatting price and handling missing author

and list price

Going back to our numerical formatting, when using XSLT to format database query results, there

are two strategies for formatting numbers:

• Use the database TO_CHAR() function in your SELECT statement to format the number

using SQL format masks.

• Use the XSLT format-number() function.

The first strategy is easier if you're already familiar with the SQL TO_CHAR() function and its

format mask language. The latter is better if you need to work with the numerical value of an

element within the stylesheet for calculations. For example, if your query includes

TO_CHAR(SAL,'$9,999.00') AS SALARY in its SELECT list, the corresponding

<SALARY>$2,450.00</SALARY> will work fine if you are simply including its value verbatim into

the transformed result. However, if your stylesheet needs to test if the expression SALARY > 4500

is true, or needs to use the value of <SALARY> in a calculated expression, having a <SALARY>

value from the database that includes a dollar sign and commas will cause problems.

The XSLT format-number() function takes arguments for the number and the format mask, but

it uses the format masks supported by the java.text.DecimalFormat class in the JDK. While

other pattern characters are supported, the four key pattern characters of immediate interest

are:

0

A digit

A digit, zero shows as absent

.

Placeholder for a decimal separator

,

Placeholder for a group separator

Any character, such as a dollar sign, can appear at the start or the end of a format mask. To

format our <LIST_PRICE> element using format-number() we would use the syntax:

<xsl:value-of select="format-number(LIST_PRICE,'0.00')"/>

17.1.5 Handling Raw HTML/XML from Database Columns

For some products in the Electronics shop, vendors supply us with a short product blurb in HTML

that highlights the key features of the product. An example blurb looks like this:

 AM/FM and shortwave world-time travel clock radio

 11-band travel radio (AM, FM, SW 1-9)

 LED tuning indicator

 Built-in alarm with snooze button

 Compact design and protective lid

We can easily add the BLURB column to the SELECT list in our Store.xsql page, and add another

conditional section in our stylesheet:

<xsl:if test="BLURB">

 <u>Features</u>

 <xsl:value-of select="BLURB"/>

</xsl:if>

However, if we attempt to request Store.xsql on an item in the Electronics shop with a URL like

this:

http://server/Store.xsql?sid=3

we'll see a "Features" section in the browser like that shown in Figure 17.7.

Figure 17.7. Display of HTML markup escaped by XSLT

processor

Yikes! This occurs because an XSLT processor is required to escape all illegal characters like angle

brackets and ampersands when they occur in text values, so the browser displays the literal angle

bracket characters and ampersands as text. We want these literal characters to appear verbatim

and unescaped in the output of the transform so the browser will interpret them as HTML tags and

not display them as literal angle brackets. For these cases, XSLT supplies the optional

disable-output-escaping="yes" attribute on <xsl:value-of> or <xsl:text>. This instructs

the processor to disregard the normal escaping mechanism and allows the literal HTML or XML

markup to pass through verbatim to the result document. So if we rewrite our BLURB section of

the stylesheet to look like this:

<xsl:if test="BLURB">

 <u>Features</u>

 <xsl:value-of disable-output-escaping="yes" select="BLURB"/>

</xsl:if>

then the products in our Electronics shop will now display correctly, as shown in Figure 17.8.

Figure 17.8. Correctly displaying HTML-based product blurb

Serving raw HTML fragments out of database columns directly
into web pages can be very useful when you control and trust
the content. However, if you are serving information from the
database that end users might have entered, there are
potential security risks in serving this unverified HTML markup
back into the browser. The risks a developer must be aware of
are documented at
http://www.cert.org/advisories/CA-2000-02.html. Although
such occurrences are pretty rare, forewarned is forearmed.

Now that we've established the basic product formatting, we need to build these four web site

pages:

• Featured Items page

• Search Results page

• Items by Maker page

• Shop Home page

We'll build the four XSQL pages shown in Figure 17.9, leaving StoreTop.xsql for later.

Figure 17.9. Map of XSQL pages to implement the web store

Basically, these pages differ only in the WHERE clauses of their queries. The query in the

FeaturedItems.xsql page needs to look like this:

SELECT description,

 author_name,

 maker_name,

 maker.id AS maker_id,

 shop_name,

 blurb,

 TO_CHAR(list_price,'999999.00') AS list_price,

 TO_CHAR(price,'999999.00') AS price,

 TO_CHAR(list_price - price,'999999.00') AS yousave,

 sku

 FROM item, author, maker, shop

 WHERE item.author_id = author.id (+)

 AND item.maker_id = maker.id

 AND item.shop_id = shop.id

 AND item.id IN (SELECT itemid

 FROM featured_items

 WHERE sysdate BETWEEN start_date AND end_date)

 ORDER BY description

This queries products that appear in our featured_items table where the current date falls

between the start_date and the end_date of the featured period for the item. The query in the

SearchResults.xsql page looks about the same, but has the following WHERE clause:

WHERE item.author_id = author.id (+)

 AND item.maker_id = maker.id

 AND item.shop_id = shop.id

 AND UPPER(item.description) LIKE UPPER('%{@find}%')

The same goes for the Maker.xsql page, which shows additional products from the same maker as

another product. Its WHERE clause looks like this:

WHERE item.author_id = author.id (+)

 AND item.maker_id = maker.id

 AND item.shop_id = shop.id

 AND maker.id = {@id}

For the ShopHomePage.xsql, we'll use a CURSOR expression to retrieve in a single query the

name of the shop, given the shop ID that will be passed in as a parameter as well as the nested

set of available products:

SELECT shop_name,

 CURSOR(SELECT description,

 author_name,

 maker_name,

 maker.id AS maker_id,

 shop_name,

 blurb,

 TO_CHAR(list_price,'999999.00') AS list_price,

 TO_CHAR(price,'999999.00') AS price,

 TO_CHAR(list_price - price,'999999.00') AS yousave,

 sku

 FROM item, author, maker

 WHERE item.author_id = author.id (+)

 AND item.maker_id = maker.id

 AND item.shop_id = shop.id

 ORDER BY shop_name, maker_name

) AS items

 FROM shop

 WHERE id = {@id}

We could have just selected the shop name and product information in the same flat query, but

then we would have ended up with the shop name in every row. XSLT 1.0 does not provide

facilities for grouping information containing repeating values to factor out unique groups, so we

leverage the database to handle it.

17.1.6 Factoring Reusable Transformation Routines

Finally, we attack the XSLT stylesheets for the four key product pages. All of these pages will be

using different queries to display products. We can take advantage of XSLT named templates to

factor the product display part of the template we created earlier into a subroutine to be

leveraged by multiple stylesheets. After adding another conditional section to avoid displaying

"Other products by..." on a page that does not include a MAKER_ID, we end up with the named

displayProduct template in Example 17.5.

Example 17.5. Named Template to Display Web Store

Products

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template name="displayProduct">

 <xsl:value-of select="DESCRIPTION"/>

 <xsl:if test="AUTHOR_NAME">

 by <xsl:value-of select="AUTHOR_NAME"/>

 </xsl:if>

 <xsl:if test="MAKER_ID">

 <xsl:text>Other products by </xsl:text>

 <xsl:value-of select="MAKER_NAME"/>

 </xsl:if>

 <table border="0">

 <tr>

 <td></td>

 <td valign="middle">

 <xsl:if test="LIST_PRICE">

 <xsl:text>List Price:</xsl:text>

 <strike>

 <xsl:value-of select="LIST_PRICE"/>

 </strike>

 </xsl:if>

 <xsl:text>Our Price: </xsl:text>

 <xsl:value-of select="PRICE"/>

 <xsl:if test="LIST_PRICE">

 <xsl:text>You Save: </xsl:text>

 <xsl:value-of select="YOUSAVE"/>

 </xsl:if>

 </td>

 </tr>

 </table>

 <xsl:if test="BLURB">

 <u><xsl:text>Features</xsl:text></u>

 <xsl:value-of disable-output-escaping="yes" select="BLURB"/>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

Now the stylesheets for our XSQL pages can invoke displayProduct as a named template to

make sure they are all formatting products in a uniform way. Example 17.6 shows the source for

the FeaturedItems.xsl stylesheet, which includes DisplayProduct.xsl, then uses

<xsl:call-template> to invoke the displayProduct template inside its <xsl:for-each> loop

to format the current <ROW> of product information.

Example 17.6. Calling Reusable Formatting with Named

Templates

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Include the stylesheet containing the "displayProducts" template -->

 <xsl:include href="DisplayProduct.xsl"/>

 <!-- Set the output to not indent so no extra whitespace is introduced -->

 <xsl:output method="html" indent="no"/>

 <xsl:template match="/">

 <html>

 <body>

 <center>

 <h2>Welcome! These Items are featured today...</h2>

 <table border="0">

 <xsl:for-each select="ROWSET/ROW">

 <tr>

 <td valign="top">

 <xsl:call-template name="displayProduct"/>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </center>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

The stylesheets for the other three pages look nearly identical, so these are left as an exercise for

the reader.

To build the title frame for the site, we can encapsulate the structure of the store in an XSQL page

containing just static XML elements, as shown in StoreTop.xsql. Each store and the shops it

contains can be represented by <store> and <shop> elements:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="StoreTop.xsl"?>

<store>

 <shop name="Outdoors" id="1"/>

 <shop name="Electronics" id="3"/>

 <shop name="Books" id="2"/>

 <shop name="Toys" id="4"/>

</store>

The simple-form XSLT stylesheet in Example 17.7 transforms the store structure into a

nice-looking banner with a search box and hyperlinks to each particular shop in our store.

Example 17.7. Simple-Form Stylesheet to Handle Web Store

Home Page

<!-- StoreTop.xsl: format the main homepage of the Web Store -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- For best results with HTML, best not to introduce extra whitespace -->

 <xsl:output method="html" indent="no"/>

 <xsl:template match="/">

 <html>

 <head><link rel="stylesheet" type="text/css" href="Store.css" /></head>

 <body>

 <form target="main" action="SearchResults.xsql" method="post">

 <center>

 <table border="0">

 <tr>

 <td>

 </td>

 <td>

 <table>

 <tr>

 <td>

 <xsl:text>Search the store:</xsl:text>

 <input type="text" name="find"/>

 </td>

 </tr>

 <tr>

 <td>

 <xsl:for-each select="store/shop">

 <xsl:value-of select="@name"/>

 </xsl:for-each>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 </center>

 </form>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

By tying the StoreTop.xsql and the FeaturedItems.xsql pages into an HTML frameset with a little

Store.html document like this:

<html>

<head>

<title>XML Book XSQL Sample Site</title>

</head>

 <frameset border="no" rows="90,*">

 <frame frameborder=no noresize name="top" src="StoreTop.xsql">

 <frame frameborder=no name="main" src="FeaturedItems.xsql">

 </frameset>

</html>

we end up with the clean, simple site in Figure 17.10 that shows products in a uniform way across

the whole site.

Figure 17.10. Everything.com home page

17.2 Building a Personalized News Portal

In this section, we'll build our second application—a dynamic, database-driven news portal that

derives its content from user preference information.

17.2.1 News Category Paging Example

Web-based applications frequently present information to the user in pages. Just consider some

sites you might be familiar with. If you perform a search at Amazon.com, WilliamsSonoma.com,

or Google.com, you will see your search results a page at a time with a little paging widget that

shows you where you are. As Figure 17.11 illustrates, each site has a slightly different look to its

paging widget, but each one offers the same functionality.

Figure 17.11. Example paging widgets

All of these sites present the results of querying large, relational databases. However, to keep the

amount of information on any given page manageable and to keep your response time fast, they

all present the results incrementally in pages. A naive technique for scrolling through database

query results like this is to open a database cursor, fetch ten records, and keep the cursor open

so when the user clicks on the "next page" icon you can fetch ten more pages. However, this

technique has many drawbacks:

• Generally, database cursors can only be scrolled forward, so offering a facility to go back

to the previous page would be tricky.

• Scrolling backwards or maintaining a current record position in a cursor requires keeping

the database cursor open across web page requests. This means you must dedicate a

database connection to every single visitor to your site. "Holy

maximum-number-of-sessions-exceeded, Batman!" Twenty thousand users querying for

web sites, books, or pots and pans would need 20,000 database connections to keep each

of their cursors open. And what if users never click on the "next page" button before

zooming off to another site to check their stocks? In this case, when do you close the

cursor?

It's clear that we need a technique to deliver the query results in a stateless way, so a user can

come in, browse some results, and leave without dedicating a database connection to the results

and without having to keep track of when to close the results. The stateless paging technique is

actually quite simple once you are willing to believe that requerying data you've already queried

is not in violation of some database user's moral code.

The trick works like this. Say you have a database query which produces a list of 114 books from

your database, like this:

SELECT title, description, price, sku, imageurl

 FROM big_table_of_products

 WHERE author like '%THEROUX%'

Here's how we can orchestrate the stateless paging through the results:

1. Rather than retrieving all of the rows in the result to determine how many total rows we've

found, we instead leverage our powerful database to do it for us with a second query like

this one:
2. SELECT COUNT(sku)

3. FROM big_table_of_products

 WHERE author like '%THEROUX%'

If you're querying and counting columns that are indexed in the database, the answer to

this count query can be determined very, very quickly.

4. If we are displaying the first page of results, say with ten rows per page, we fetch just ten

rows from the original query, show them to the user, and close the cursor.

5. Later, if and when we're asked to display page number 2, we use the total number of rows

per page to calculate how many rows to skip over, and re-execute the same query we did

before. This time, to show rows 11-20 we:

a. Skip 10 rows by fetching them and throwing them away

b. Fetch the 10 rows for 11-20 and present them to the user

c. Close the cursor

At first, this skip rows technique sounds slow, but remember that it's the job of the Oracle

database engine to keep the most recently accessed data in its buffer caches so that frequently

accessed information is accessible super-quickly. Our seemingly inefficient skip-and-query

technique actually performs much better than the alternative strategy of leaving lots of database

cursors open.

Stateless Paging

Stateless paging through query results can be made even more efficient
if your query results are ordered by a column value that makes each row
distinct. For example, consider a list of employees whose last name is
like `%JONES%' that is sorted by user ID. If you remember the value of

userid that was at the bottom of the current page of results—say

`abjones'—you can use Oracle8i 's powerful top N query feature to get

the next page of results without requerying rows you've already seen. It
merely requires adjusting the WHERE clause of the query like this:

SELECT userid, firstname, lastname, phone
 FROM (SELECT userid, firstname, lastname, phone
 FROM all_emps
 WHERE lastname like '%JONES%'
 /* This was the orig query critera */
 AND userid > 'abjones'

 /* Return matches beyond 'abjones' */
 ORDER BY userid
 /* Order the inner query by userid */
)
 WHERE ROWNUM <= 10 /* Get the "top-10", i.e. first 10, rows
*/

This optimizes the "next page" query and avoids the need to query and
skip rows, but makes it difficult to support randomly jumping to page n of
m. You can combine the skip-and-query technique with this to achieve a
hybrid technique, however.

To implement stateless paging in XSQL Pages-based applications, we can take advantage of the

skip-rows="n" and max-rows="m" attributes on <xsql:query> or

<xsql:ref-cursor-function> to adopt the skip-and-query technique. However, since it's clear

from the three examples above that the look of the page navigation display can vary from use to

use, it's best if we try to abstract the raw information required for paging and separate it from the

presentation. We'll include the raw paging information in our XSQL page and then use an XSLT

template to flexibly format it in any look we want.

Given the number of rows per page as an input parameter, the following basic paging information

is required to produce a display like those shown previously:

• The total number of rows retrieved by the query

• The total number of pages that this translates into

• The current page number

• If applicable, the previous page number

• If applicable, the next page number

To make the mechanism generic, we also need to add:

• The URL of the current page

• The list of URL arguments to pass to the current page

We're going to use a custom XSQL action handler to take care of all these details for us, so that

given a simple action in our XSQL page:

<xsql:action handler="Paging" rows-per-page="10" url-params="author title">

 <!-- SQL Statement to Use for Calculating the Total Rows -->

</xsql:action>

we will automatically find a <paging> information fragment in our data page that will look like

this:

<paging>

 <total-rows>114</total-rows>

 <total-pages>12</total-pages>

 <current-page>3</current-page>

 <next-page>4</next-page>

 <prev-page>2</prev-page>

 <target-page>BookstoreSearch.xsql</target-page>

 <target-args>author=theroux&title=sea</target-args>

</paging>

Given this paging information in our XSQL data page, we can use an XSLT template like the

following to control the appearance:

<xsl:template match="paging">

 <!-- Elements to govern the visual "look" of the paging display -->

</xsl:template>

Example 17.8 shows the code for our custom Paging action handler. When invoked by the XSQL

page processor in response to encountering an <xsql:action> element in the current page, this

handler:

1. Retrieves the text of the SQL statement to use as a total row count query by calling
getActionElementContent()

2. Calculates the total number of rows by passing this query to the

firstColumnOfFirstRow() method

3. Gets the value of the rows-per-page attribute on the action element using the

getAttributeAllowingParam() method

4. Calls a private method to determine the name of the current page

5. Calculates the total number of pages as well as the next page and previous page numbers

based on the value of the current page, which is reflected by the request parameter

named p

6. Constructs the <paging> element and subelements and adds them to the action handler

result root

7. Sets the page-private parameters named paging-skip and paging-max to be used by an

<xsql:query> or <xsql:ref-cursor-function> element later in the same XSQL page to

control the appropriate numbers of records to skip to retrieve the records for the current

page number

Example 17.8. Custom XSQL Action Handler Simplifies

Stateless Paging

import oracle.xml.xsql.*;

import oracle.xml.parser.v2.*;

import org.w3c.dom.*;

import java.net.*;

import java.util.StringTokenizer;

import java.sql.SQLException;

public class Paging extends XSQLActionHandlerImpl {

 private static final String PAGE_PARAM_NAME = "p";

 private static final String ROWSPERPAGE = "rows-per-page";

 private static final String TARGETPAGEARGS = "url-params";

 public void handleAction(Node root) throws SQLException {

 XSQLPageRequest req = getPageRequest();

 Element actElt = getActionElement();

 // Get the count query from the action element content

 String query = getActionElementContent();

 // Get the number of rows per page, defaulting to 10

 long pageSize = longVal(getAttributeAllowingParam(ROWSPERPAGE,actElt),10);

 long totalRows = longVal(firstColumnOfFirstRow(root,query),0);

 long curPage = longVal(variableValue(PAGE_PARAM_NAME,actElt),1);

 // Get the name of the current page to use as the target

 String pageName = curPageName(req);

 // Get any URL parameter names that need to be echoed into paging URLs

 String pageArgs = getAttributeAllowingParam(TARGETPAGEARGS,actElt);

 // Calculate the total number of pages

 long totalPages = totalRows / pageSize;

 long fract = totalRows % pageSize;

 if (fract > 0) totalPages++;

 // Make sure current page is between 1 and totalPages

 if (curPage < 1) curPage = 1;if (curPage > totalPages) curPage = totalPages;

 // Create the <paging> fragment to add to the "data page"

 Document d = actElt.getOwnerDocument();

 Element e = d.createElement("paging");

 root.appendChild(e);

 addResultElement(e,"total-rows",Long.toString(totalRows));

 addResultElement(e,"total-pages",Long.toString(totalPages));

 addResultElement(e,"current-page",Long.toString(curPage));

 if (curPage < totalPages)

 addResultElement(e,"next-page",Long.toString(curPage+1));

 if (curPage > 1)

 addResultElement(e,"prev-page",Long.toString(curPage-1));

 addResultElement(e,"target-page",pageName);

 if (pageArgs != null && !pageArgs.equals(""))

 addResultElement(e,"target-args",expandedUrlParams(pageArgs,actElt));

 // Set to page-level parameters that the <xsql:query> can use

 req.setPageParam("paging-skip",Long.toString((curPage-1)*pageSize));

 req.setPageParam("paging-max",Long.toString(pageSize));

 }

 // Get the name of the current page from the current page's URI

 private String curPageName(XSQLPageRequest req) {

 String thisPage = req.getSourceDocumentURI();;

 int pos = thisPage.lastIndexOf('/');

 if (pos >=0) thisPage = thisPage.substring(pos+1);

 pos = thisPage.indexOf('?');

 if (pos >=0) thisPage = thisPage.substring(0,pos-1);

 return thisPage;

 }

 // Convert String to long, with a default in case it is blank, null, or not a number

 private long longVal(String longstr, long def) {

 long val = def;

 try {

 if (longstr != null && !longstr.equals(""))

 val = Long.parseLong(longstr);

 }

 catch (NumberFormatException nfe) {}

 return val;

 }

 private String expandedUrlParams(String paramNameList,Element actElt) {

 // Allow comma-separated or space-separated name list

 paramNameList = paramNameList.replace(',',' ');

 StringTokenizer st = new StringTokenizer(paramNameList);

 StringBuffer paramString = new StringBuffer();

 int tokens = 0;

 while (st.hasMoreTokens()) {

 String paramName = st.nextToken();

 String paramValue = variableValue(paramName,actElt);

 if (++tokens > 1) {

 paramString.append("&");

 }

 paramString.append(paramName)

 .append("=")

 .append(paramValue);

 }

 return paramString.toString();

 }

}

An XSQL page that makes use of the custom Paging action handler should use it at the top of the

page. Subsequent <xsql:query> or <xsql:ref-cursor-function> actions retrieve rows that

belong on the current page by setting their respective max-rows and skip-rows attributes to the

values of the page-private parameters as follows:

skip-rows="{@paging-skip}"

max-rows="{@paging-max}"

The following NewsCategorySimple.xsql example shows how these parameters are used:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="NewsCategorySimple.xsl"?>

<page id="1" connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:action handler="Paging" rows-per-page="6" url-params="id">

 SELECT count(id)

 FROM site_newsstory

 WHERE category = {@id}

 ORDER BY TIMESTAMP DESC

 </xsql:action>

 <xsql:query skip-rows="{@paging-skip}" max-rows="{@paging-max}">

 SELECT title as "Title",

 TO_CHAR(timestamp,'Mon DD') as "Date"

 FROM latestnews

 WHERE category = {@id}

 ORDER BY TIMESTAMP DESC

 </xsql:query>

</page>

This renders as shown in Figure 17.12.

Figure 17.12. News stories with a paging display

If we hover over the Next link, we see that it is:

http://server/NewsCategorySimple.xsql?p=2&id=1

which links to the same XSQL page but passes a p=2 parameter to request "page 2" of the query

results. id=1 is the current value of the news story category ID that needs to be passed to the

page in order to query stories from the right category. This id parameter appears in the URL

because we included its name in the url_params attribute in the Paging action handler. If we

click on the Next link to go to page 2, and look at its raw data page by tacking on an extra

xml-stylesheet=none parameter to the URL, we'll see the data page in Figure 17.13.

Figure 17.13. Raw data page for news stories with paging

information

Querying page 2 with its normal set of arguments shows that we get the second page of news

stories and a paging display, as shown in Figure 17.14, that correctly reflects "Page 2 of 4" with

both Previous and Next links.

Figure 17.14. Preview and next links appear when

appropriate

How is this magic happening? As with all XML/XSL-based solutions, the answer is that the magic

is cleanly separated into data magic and presentation magic. XSQL pages and our custom Paging

action handler do the data side of the paging magic, which involves:

• Setting up the <paging> fragment in the data page, based on the rows-per-page="6"

attribute and the "row count query" included in the <xsql:action> element

• Querying the "window" of rows for the current page by using the

skip-rows="{@paging-skip}" and max-rows="{@paging-max}" attributes on the

<xsql:query> action element

The look and feel of the page is handled by the following simple stylesheet:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:include href="UtilPaging.xsl"/>

 <xsl:include href="TableBaseWithCSS.xsl"/>

 <xsl:template match="/">

 <html>

 <head>

 <link rel="stylesheet" type="text/css" href="Forum.css"/>

 <title>News By Category</title>

 </head>

 <body bgcolor="#FFFFFF">

 <center>

 <!-- Transform the ROWSET of query results first -->

 <xsl:apply-templates select="page/ROWSET"/>

 <!-- Then transform the <paging> fragment to render "Page N of M" -->

 <xsl:apply-templates select="page/paging"/>

 </center>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Since we're not overriding any templates we're leveraging from other library stylesheets, we can

use <xsl:include> to include the templates as if they were part of this one. We're including the

templates from our TableBaseWithCSS.xsl stylesheet in Chapter 7, to display the queried rows of

data as a table with column headings, and we're including the UtilPaging.xsl stylesheet in

Example 17.9 to handle the presentation of the paging display. Since we used a CSS stylesheet

to separate font and color information from the TableBaseWithCSS.xsl transformation, it's easy to

use a different Forum.css stylesheet here to give the page a new font and color scheme.

Note that the root template controls the order in which the data and paging information is

displayed by explicitly using:

<!-- Transform the ROWSET of query results first -->

<xsl:apply-templates select="page/ROWSET"/>

<!-- Then transform the <paging> fragment to render "Page N of M" -->

<xsl:apply-templates select="page/paging"/>

If we look closely at Example 17.9, we see that the template matching the <paging> element is

itself factored into a set of <xsl:call-template>s to further modularize the way that each part

of the paging information is displayed. This lets us override the entire paging display later by

importing UtilPaging.xsl and providing a new template for <paging>. We alternatively can just

override the way that the Previous and Next links are rendered by leaving the existing paging

template in place and overriding the previousLink and nextLink named templates. We might do

this, for example, to use fancy previous and next page icon buttons like the earlier Amazon.com

example instead of the default Next and Previous HTML links.

XSLT supports both <xsl:include> and <xsl:import> for

reusing existing stylesheets in other stylesheets that you build.

Use <xsl:include> if you want to add all the templates from

another stylesheet logically into your current one. Use

<xsl:import> to include other templates, and set all the

templates in the current stylesheet to be considered as more
important than the included ones. A rule of thumb is that if you
are overriding templates from another stylesheet, use

<xsl:import>; otherwise, use <xsl:include>. Both

<xsl:include> and <xsl:import> can only be used as

top-level elements, that is, as immediate children of the

<xsl:stylesheet> element.

Example 17.9. Reusable XSLT Templates to Format Paging

Display

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!--

 | UtilPaging.xsl: Transform <paging> structural info into HTML

 | presentation for "Page N of M" and Next/Prev Links

 +-->

 <xsl:template match="paging">

 <xsl:call-template name="previousLink"/>

 <xsl:text> </xsl:text>

 <xsl:call-template name="currentPageIndicator"/>

 <xsl:text> </xsl:text>

 <xsl:call-template name="nextLink"/>

 <xsl:text> - </xsl:text>

 <xsl:call-template name="totalRowsIndicator"/>

 </xsl:template>

 <!-- Display current page indicator "Page N of M" -->

 <xsl:template name="currentPageIndicator">

 <xsl:text>Page </xsl:text>

 <xsl:value-of select="current-page"/>

 <xsl:text> of </xsl:text>

 <xsl:value-of select="total-pages"/>

 </xsl:template>

 <!-- Display total rows -->

 <xsl:template name="totalRowsIndicator">

 <xsl:text>Total </xsl:text>

 <xsl:value-of select="total-rows"/>

 </xsl:template>

 <!-- Display hyperlink to previous page -->

 <xsl:template name="previousLink">

 <xsl:param name="label">Previous</xsl:param>

 <xsl:call-template name="pagelink">

 <xsl:with-param name="pagenum" select="prev-page"/>

 <xsl:with-param name="label" select="$label"/>

 </xsl:call-template>

 </xsl:template>

 <!-- Display hyperlink to next page -->

 <xsl:template name="nextLink">

 <xsl:param name="label">Next</xsl:param>

 <xsl:call-template name="pagelink">

 <xsl:with-param name="pagenum" select="next-page"/>

 <xsl:with-param name="label" select="$label"/>

 </xsl:call-template>

 </xsl:template>

 <!-- Generate correct hyperlink to page 'pagenum' including URL params -->

 <xsl:template name="pagelink">

 <xsl:param name="pagenum"/>

 <xsl:param name="label"/>

 <xsl:if test="$pagenum">

 <a> <!-- This lonesome-looking <a> is an HTML anchor tag -->

 <xsl:attribute name="href">

 <xsl:value-of select="target-page"/>

 <xsl:text>?p=</xsl:text>

 <xsl:value-of select="$pagenum"/>

 <xsl:if test="target-args">

 <xsl:text disable-output-escaping="yes">&</xsl:text>

 <xsl:value-of select="target-args"/>

 </xsl:if>

 </xsl:attribute>

 <xsl:value-of select="$label"/>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

So we now have:

• A generic facility for adding stateless paging to any XSQL page

• A library stylesheet to handle formatting the "Page N of M " display

We'll put both of these to good use in several of the following examples, as we build our simple

news story display into a full-fledged, database-driven information portal.

17.2.2 Building Reusable HTML Widgets

Let's learn some cool XSLT tricks to embellish the simple list of news stories presented in Example

17.12. Our web designers have given us an HTML mockup of how they want the news stories on

our portal site to look, and have provided us a CSS stylesheet with all their chosen font/color

settings to be used across the site. The mockup of the news display is shown in Figure 17.15.

Figure 17.15. HTML mockup for portal news display

The designers tell us "rounded boxes are in!" and inform us that everything on the portal site

should be displayed using cool-looking rounded boxes with the title and content inside the box.

They have taken the time to figure out the HTML layout and the rounded-corner GIF images

required to render the rounded box, so we don't have to figure out that part. Since we're going to

need this "TitledBox" widget in many places on our site, our first thought should be to design a

reusable XSLT template to represent the box. So, let's do it.

We take the HTML mockup source code and run it through the Tidy utility to turn it into

well-formed XML, and we add the necessary <xsl:stylesheet> around it. We want the TitledBox

widget to be callable from any place we need it, so we make it a named template. We want to be

able to pass the title and the box contents to the widget so we can use it to display the rounded

box with any title and any content we need inside the box.

Here we can make use of an XSLT feature we haven't used yet: template parameters. In Chapter

9, we used top-level stylesheet parameters, but both match="pattern" templates and named

templates can define template-scoped parameters as well. Parameters are given a name and

optionally a default value when they are declared at the top of the template, using the following

syntax:

<xsl:template name="SomeTemplate">

 <!-- "title" parameter has no default value -->

 <xsl:param name="title"/>

 <!--

 | "list-of-rows" parameter defaults to list of ROW element children of

 | the current node, using the XPath expression ROW

 +-->

 <xsl:param name="list-of-rows" select="ROW"/>

 <!-- "rowname" parameter defaults to the string 'ROW' (note extra quotes!)

 <xsl:param name="rowname" select="'ROW'"/>

 <!-- "otherrowname" parameter defaults to the string 'ROW' as well

 <xsl:param name="rowname">ROW</xsl:param>

 <!-- "content" parameter defaults to a tree of literal result nodes -->

 <xsl:param name="content">

 <i>Click Me</i>

 </xsl:param>

 <!-- Rest of Template content goes here -->

</xsl:template>

A parameter can have any of the supported types XPath expressions can return—String, Number,

Boolean, and NodeSet—or it can be a ResultTreeFragment of literal nodes. Using parameters,

we can make the title of our Titled Box, as well as its content, be completely parameterized, so we

can reuse the same template to do a cool rounded-corner box with a title anywhere throughout

our site.

Our TitledBox.xsl stylesheet ends up looking like Example 17.10.

Example 17.10. Named Template for a Titled Box with

Rounded Corners

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template name="TitledBox">

 <xsl:param name="Title"/>

 <xsl:param name="Contents"/>

 <table width="100%" cellspacing="0" cellpadding="0" border="0">

 <tr>

 <td width="1%" valign="top" align="left" bgcolor="#CCCC99">

 </td>

 <th nowrap="" width="98%" align="left" valign="center" bgcolor="#CCCC99">

 <!-- is numerical character entity for Non-Breaking Space -->

 <xsl:text> </xsl:text>

 <!-- Put whatever is passed as the Title parameter here -->

 <xsl:copy-of select="$Title"/>

 </th>

 <td width="1%" align="right" valign="TOP" bgcolor="#CCCC99">

 <xsl:text> </xsl:text>

 </td>

 <td width="1%" valign="top" align="right" bgcolor="#CCCC99">

 </td>

 </tr>

 <tr>

 <td width="1%" align="right" valign="TOP" bgcolor="#F7F7E7">

 <xsl:text> </xsl:text>

 </td>

 <td nowrap="" bgcolor="#F7F7E7" colspan="3">

 <!-- Put whatever is passed as the Contents parameter here -->

 <xsl:copy-of select="$Contents"/>

 </td>

 </tr>

 <tr>

 <td bgcolor="#F7F7E7" width="1%" align="LEFT" valign="BOTTOM">

 </td>

 <td colspan="2" bgcolor="#F7F7E7" height="1" width="98%">

 </td>

 <td bgcolor="#F7F7E7" width="1%" align="right" valign="BOTTOM">

 </td>

 </tr>

 </table>

 </xsl:template>

</xsl:stylesheet>

The template defines the two parameters Title and Contents at the top, and right in the middle

of the HTML table that contains the layout and images to achieve the rounded corner effect for the

box, we see:

<!-- Put whatever is passed as the Title parameter here -->

<xsl:copy-of select="$Title"/>

where the title is plugged in and:

<!-- Put whatever is passed as the Contents parameter here -->

<xsl:copy-of select="$Contents"/>

In addition to the new use of parameters here, we're using a new XSLT action called

<xsl:copy-of> instead of the familiar <xsl:value-of>. The <xsl:copy-of> preserves any tree

structure that the result of its select="expression" attribute might contain by copying that

node-set result verbatim into the result tree. In contrast, <xsl:value-of> converts the result of

its select="expression" attribute into a flat string.

To better understand this difference, imagine that the value of the Contents parameter is a

ResultTreeFragment containing the elements for an HTML bulleted list:

 One

 Two

The action:

<xsl:copy-of select="$Contents"/>

copies the element and all its children to the result tree, producing a bulleted list in the final

HTML page. In contrast, the action:

<xsl:value-of select="$Contents"/>

just copies the text OneTwo to the result tree, since the value of an element is defined by the

concatenation in document order of all of its text node descendants.

Having a result tree fragment containing HTML nodes is
different from having a single text element containing the "tags
and text" for HTML, as we saw earlier in this chapter with our
web store product blurb. In the web store case, we had a text
chunk with tags in it that we needed to insert verbatim in the
result tree so that the browser would ultimately interpret the

angle brackets in the HTML text blurb as tags. In the result

tree fragment case here, the processor is working with a tree of
nodes and not just a text chunk containing tags. This explains
why in the web store example our:

<xsl:value-of disable-output-escaping="yes"
select="BLURB"/>

copies a single text node containing angle brackets and writes

the angle brackets verbatim to the output, while:

<xsl:value-of select="$Contents"/>

flattens the result tree fragment into the string OneTwo by

concatenating all of the text nodes in the tree fragment.

With our TitledBox.xsl stylesheet in place, we can begin creating our news portal. We start by

recalling the tables that sit underneath our news portal. We organize our news stories into

content categories, so we have a site_newscategory table.

CREATE TABLE site_newscategory(

 id NUMBER,

 name VARCHAR2(80),

 CONSTRAINT site_newscatpk PRIMARY KEY (id)

);

and a detail table site_newsstory that holds the information for each story in each category:

CREATE TABLE site_newsstory(

 id NUMBER,

 title VARCHAR2(100) NOT NULL ,

 url VARCHAR2(2000) NOT NULL ,

 category NUMBER,

 description VARCHAR2(700),

 timestamp DATE,

 source VARCHAR2(80),

 CONSTRAINT site_newsstorypk PRIMARY KEY (id),

 CONSTRAINT story_in_category FOREIGN KEY (category) REFERENCES site_newscategory

);

Since we're always interested in the latest news, and since in Oracle8i views can now contain

ORDER BY clauses, we simplify our lives by creating the simple latestnews view that sorts the

news in descending order by the timestamp of when it was created:

CREATE OR REPLACE VIEW latestnews as

 SELECT category,id,title,url,description,timestamp,source

 FROM site_newsstory

 ORDER BY timestamp desc;

We create a NewsCategory.xsql page to materialize the XML data content for the news story

display based on our earlier tables. Note that we're reusing our custom Paging action handler

since our designers indicated that they want the user to be able to page through the news stories.

The query inside the <xsql:action> for the Paging handler is a row count query that calculates

the total number of stories in the news story category whose category ID is passed in the id

parameter. It uses the same FROM and WHERE clauses as the query in the second <xsl:query>

action that queries the news stories for the current page. The <xsql:query> in the middle of the

page looks up the news category name based on the ID that's passed in, and includes the single

<categoryname> element in the data page by suppressing the rowset-element and row-element

and aliasing the name column to the quoted name "categoryname". The stylesheet can then refer

to the name of the current news category using the XPath expression /page/categoryname:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="NewsCategoryBox.xsl"?>

<page id="1" connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:action handler="Paging" rows-per-page="6" url-params="id">

 SELECT count(id)

 FROM site_newsstory

 WHERE category = {@id}

 ORDER BY TIMESTAMP DESC

 </xsql:action>

 <xsql:query rowset-element="" row-element="">

 SELECT name as "categoryname"

 FROM site_newscategory

 WHERE id = {@id}

 </xsql:query>

 <xsql:query skip-rows="{@paging-skip}" max-rows="{@paging-max}">

 SELECT title,url,description,TO_CHAR(timestamp,'Mon DD') as timestamp

 FROM latestnews

 WHERE category = {@id}

 ORDER BY TIMESTAMP DESC

 </xsql:query>

</page>

The last step is to give a look and feel to the raw XML information in the XSQL data page by

providing the NewsCategoryBox.xsl stylesheet in Example 17.11. It includes the UtilPaging.xsl

library stylesheet to get the "Page N of M " formatting automatically and our new TitledBox.xsl

stylesheet for the reusable box widget.

Example 17.11. Stylesheet to Format Detailed List of News

Stories

<?xml version="1.0"?>

<!-- NewsCategoryBox.xsl: Format detailed news story list for a category -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="html" indent="no"/>

 <xsl:include href="UtilPaging.xsl"/>

 <xsl:include href="TitledBox.xsl"/>

 <xsl:variable name="i">images/</xsl:variable>

 <xsl:template match="/">

 <html>

 <head>

 <link rel="stylesheet" type="text/css" href="Forum.css"/>

 <title>News By Category</title>

 </head>

 <body bgcolor="#FFFFFF">

 <center>

 <table border="0" width="600">

 <tr>

 <td width="600">

 <table border="0" width="100%" cellspacing="0" cellpadding="0">

 <tr>

 <td colspan="2" align="right" style="font-size:7pt">

 <xsl:apply-templates select="page/paging"/>

 </td>

 </tr>

 </table>

 <xsl:call-template name="TitledBox">

 <xsl:with-param name="Title">

 <xsl:value-of select="page/categoryname"/>

 <xsl:text> News in Detail</xsl:text>

 </xsl:with-param>

 <xsl:with-param name="Contents">

 <table border="0" width="100%">

 <xsl:for-each select="page/ROWSET/ROW">

 <tr>

 <td width="3%" valign="top">

 .

 </td>

 <td width="97%">

 <xsl:value-of select="TITLE"/>

 <xsl:text> (</xsl:text>

 <xsl:value-of select="TIMESTAMP"/>

 <xsl:text>)</xsl:text>

 <xsl:value-of select="DESCRIPTION"/>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 </xsl:with-param>

 </xsl:call-template>

 </td>

 </tr>

 </table>

 </center>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Notice several things about the NewsCategoryBox.xsl stylesheet:

• Its root template controls exactly where on the page the paging template will include its

"Page N of M" display by simply putting:

<xsl:apply-templates select="page/paging"/>

at a strategic spot among other literal HTML elements.

• It invokes the TitledBox named template using <xsl:call-template> and nests inside

the <xsl:call-template> element two <xsl:with-param> actions to pass the

appropriate values for the Title and the Contents parameters.

• The value of the Title parameter is passed by embedding:

• <xsl:value-of select="page/categoryname"/>

<xsl:text> News in Detail</xsl:text>

inside the <xsl:with-param> element for name="Title". Similarly an entire dynamically

constructed <table> whose contents are created using <xsl:for-each> is passed as the

value of the Contents parameter.

• As a final touch of class, the NewsCategoryBox.xsl stylesheet defines a stylesheet-level

variable using <xsl:variable> as the prefix on any image URLs that are created in the

page. This way, if we move our images around, we can change the value of the "i"

variable to a new value, and all image URLs constructed in the page change accordingly.

Remember that variables can be included at the top level of the stylesheet, or within any

template and they are scoped to the part of the stylesheet in which they are defined. They

behave identically to parameters, except that their values cannot be set from outside.

Finally, we browse our NewsCategory.xsql page to check out our work. The results appear in

Figure 17.16.

Figure 17.16. Browsing the live news from the XML news

category

Since our XSQL page is parameterized, we can rebrowse the URL:

http://server/NewsCategory.xsql?id=2

to see the news from another category if we want, and the automatic stateless paging through

the stories works for using Next and Previous to move through the stories in that category too.

Pretty darn cool.

17.2.3 Creating a Personalized News Portal

Next, let's build a personalized news portal to offer individual users a list of the news categories

they are interested in, as well as a personalized list of stock quotes. To manage the preferences

for each user, we'll use a simple schema like the one shown in Figure 17.17.

Figure 17.17. Schema for storing user preferences

We can create these tables with the following SQL DDL statements:

CREATE TABLE user_prefs (

 userid VARCHAR2(80),

 headlines NUMBER,

 CONSTRAINT user_prefs_pk PRIMARY KEY (userid)

);

CREATE TABLE user_stocks(

 userid VARCHAR(80),

 ticker VARCHAR(6),

CONSTRAINT stocks_for_user FOREIGN KEY (userid) REFERENCES user_prefs

);

CREATE TABLE user_news_categories(

 userid VARCHAR(80),

 category NUMBER,

CONSTRAINT categories_for_user FOREIGN KEY (userid) REFERENCES user_prefs

);

Every user who visits the site will be able to sign up for a free account, and we'll track that user's

user ID with a cookie named forumuser, but we need a pseudo-user named DEFAULT so we can

have some default news categories and stocks to display in case a user has not signed in yet. We

insert a row for this DEFAULT user in the user_prefs table, and some corresponding default

preferences for the user in the user_stocks and user_news_categories tables, like this:

INSERT INTO user_prefs VALUES ('DEFAULT', /* Number of Headlines */ 5);

INSERT INTO user_stocks VALUES ('DEFAULT','ORCL');

INSERT INTO user_stocks VALUES ('DEFAULT','MSFT');

INSERT INTO user_news_categories VALUES ('DEFAULT',1);

INSERT INTO user_news_categories VALUES ('DEFAULT',2);

INSERT INTO user_news_categories VALUES ('DEFAULT',3);

Our latest stock quotes live in a table called latest_quotes that is populated automatically using a

DBMS_JOB procedure. The database job executes the RefreshAllLatestQuotes stored procedure

in Example 17.12.

Example 17.12. Procedure to Refresh Prices of All Stocks

CREATE OR REPLACE PROCEDURE RefreshAllLatestQuotes IS

 -- Refresh quotes from Yahoo! Quotes for each distinct

 -- ticker symbol in the latest_quotes table.

 n NUMBER := 0;

 tickercount NUMBER;

 curstr VARCHAR2(80);

BEGIN

 SELECT COUNT(DISTINCT ticker) INTO tickercount FROM latest_quotes;

 FOR i IN (SELECT DISTINCT ticker FROM latest_quotes) LOOP

 n := n + 1;

 IF curstr IS NOT NULL THEN

 curstr := curstr ||','|| i.ticker;

 ELSE

 curstr := i.ticker;

 END IF;

 -- Use YahooQuotes.StoreLatestQuotesFor to retrieve

 -- live YahooQuotes in XML and store them in the

 -- LATEST_QUOTES table. Do it in batches of 10.

 IF n mod 10 = 0 OR n = tickercount THEN

 YahooQuotes.StoreLatestQuotesFor(curstr);

 COMMIT;

 curstr := NULL;

 END IF;

 END LOOP;

END;

This leverages the YahooQuotes.StoreLatestQuotesFor

procedure we created in Chapter 6 to retrieve the quotes in
batches of ten from the live Yahoo! Quotes server.

We need to build an XSQL page that queries the requested number of news stories from each

category the user has indicated in his or her preferences, and queries the table of 20-minute

delayed stock quotes to show the latest prices for the stocks the current user is tracking. Our

News.xsql page looks like Example 17.13.

Example 17.13. XSQL Page Driving Data Behind the News

Portal

<?xml version="1.0"?>

<!-- News.xsql: Data page driving the news portal -->

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:query rowset-element="STOCKS">

 SELECT ticker,to_char(price,'999.99') as price

 FROM latest_quotes

 WHERE trunc(day) = (select max(trunc(day)) FROM latest_quotes)

 AND ticker IN (SELECT ticker

 FROM user_stocks

 WHERE userid = NVL('{@forumuser}','DEFAULT'))

 ORDER BY ticker

 </xsql:query>

 <xsql:query><![CDATA[

 SELECT cat.id,

 cat.name,

 CURSOR(SELECT title,url,description

 FROM latestnews

 WHERE category = cat.id

 AND ROWNUM <= (SELECT headlines

 FROM user_prefs

 WHERE userid = NVL('{@forumuser}','DEFAULT'))

) AS stories

 FROM site_newscategory cat

 WHERE cat.id IN (SELECT category

 FROM user_news_categories

 WHERE userid = NVL('{@forumuser}','DEFAULT'))

]]>

 </xsql:query>

</page>

Notice that we're using the SQL expression:

NVL('{@forumuser}','DEFAULT')

for the name of the user ID when querying the user_prefs table. This way, if the value of the

forumuser cookie is not set, the query will execute and get the preferences for the user named

DEFAULT as a fallback. We're using our now-familiar CURSOR expression to select the nested

detail news stories for each master news category. In the nested CURSOR's SELECT statement,

we use the clause:

WHERE category = cat.id /* Get the news stories for the current category */

 /* and retrieve the top 'headlines' number of stories based on user_prefs */

 AND ROWNUM <= (SELECT headlines

 FROM user_prefs

 WHERE userid = NVL('{@forumuser}','DEFAULT'))

Since the latestnews view is ordered, the query engine notices this and uses the ROWNUM criteria

to efficiently limit the number of rows returned to the "top N " rows in that ordered set. In this

case, the N for the top N query is itself determined dynamically by selecting the headlines

column from the user_prefs table for the current user. Also notice that the WHERE clause in the

outer query over the site_newscategory table uses a IN clause, with a subselect to retrieve only

the categories indicated by the current user. The resulting raw XSQL data page appears in

Example 17.14 for the DEFAULT user.

Example 17.14. Raw Output of the News.xsql Portal Page

<?xml version = '1.0' encoding = 'UTF-8'?>

<page>

 <STOCKS>

 <ROW num="1"><TICKER>MSFT</TICKER><PRICE>69.75</PRICE></ROW>

 <ROW num="2"><TICKER>ORCL</TICKER><PRICE>79.94</PRICE></ROW>

 </STOCKS>

 <ROWSET>

 <ROW num="1">

 <ID>1</ID>

 <NAME>XML</NAME>

 <STORIES>

 <STORIES_ROW num="1">

 <TITLE>IBM Switches to Support SOAP</TITLE>

 <URL>http://news.cnet.com/news/0-1003-200-1770721.html</URL>

 <DESCRIPTION>After criticizing a Web technology created by rival

 Microsoft, IBM has changed its mind.</DESCRIPTION>

 </STORIES_ROW>

 <!-- 4 other STORIES_ROW clipped for brevity -->

 </STORIES>

 </ROW>

 <ROW num="2">

 <ID>2</ID>

 <NAME>XSLT</NAME>

 <STORIES>

 <STORIES_ROW num="1">

 <TITLE>SAXON 5.3 Released</TITLE>

 <URL>http://xmlhack.com/read.php?item=427</URL>

 <DESCRIPTION>Mike Kay has announced version 5.3 of his Saxon XSLT

 processor, which delivers significant performance advantages</DESCRIPTION>

 </STORIES_ROW>

 <!-- 4 other STORIES_ROW clipped for brevity -->

 </STORIES>

 </ROW>

 <ROW num="3">

 <ID>3</ID>

 <NAME>B2B</NAME>

 <STORIES>

 <STORIES_ROW num="1">

 <TITLE>Microsoft Banks on the Internet with BizTalk</TITLE>

<URL>http://www.infoworld.com/articles/hn/xml/00/02/14/000214hnwap.xml</URL>

 <DESCRIPTION>Later in 2000 Microsoft will deliver the second generation

 of its BizTalk tools as well as the BizTalk Server.</DESCRIPTION>

 </STORIES_ROW>

 <!-- 4 other STORIES_ROW clipped for brevity -->

 </STORIES>

 </ROW>

 </ROWSET>

</page>

Now we can create the XSLT templates for formatting the news boxes and the stock quotes on the

portal home page reusing our TitledBox widget from the previous section. For formatting the

news stories in the page/ROWSET/ROW section of our data page, we create NewsBoxes.xsl in

Example 17.15.

Example 17.15. Stylesheet to Format News Headlines as

Titled Boxes

<!-- NewsBoxes.xsl: Format news headlines as TitledBoxes -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:include href="TitledBox.xsl"/>

 <xsl:template name="NewsBoxes">

 <xsl:if test="not(page/ROWSET/ROW)">

 <xsl:text>You have not selected any news categories...</xsl:text>

 </xsl:if>

 <xsl:for-each select="page/ROWSET/ROW">

 <xsl:call-template name="TitledBox">

 <xsl:with-param name="Title">

 <!-- Title is the category name with link to details -->

 <xsl:value-of select="NAME"/>

 </xsl:with-param>

 <xsl:with-param name="Contents">

 <!-- Contents is a list of News Stories -->

 <xsl:for-each select="STORIES/STORIES_ROW">

 <xsl:value-of select="TITLE"/>

 </xsl:for-each>

 </xsl:with-param>

 </xsl:call-template>

 <xsl:if test="position() != last()">

 </xsl:if>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

This creates a NewsBoxes named template that first uses an <xsl:if> to conditionally print a

message in case there are no matching page/ROWSET/ROW elements. Then, it invokes the

TitledBox named template, passing an appropriate Title:

<!-- Title is the category name with link to details -->

 <xsl:value-of select="NAME"/>

that provides the category name as a hyperlink to the NewsCategory.xsql page we created above,

and an appropriate Contents. Here the contents are the formatted list of news stories as a

bulleted HTML list. Using attribute value templates, we're constructing HTML hyperlinks with:

 <xsl:value-of select="TITLE"/>

So each item in the bulleted list will be a hyperlink to the actual story, displaying the story's TITLE

in the list and its DESCRIPTION in the fly-over help. Notice that we're using the

test="position() != last()" in an <xsl:if> to conditionally add a
 tag after each news

story unless it's the last story in the list. The position() function returns the current position in

the list of <STORIES_ROW> nodes, and the last() function returns the position number of the last

node in the list.

For formatting the stock quotes in the page/STOCKS/ROW section of the data page, we create a

similar StockQuotes.xsl stylesheet, shown in Example 17.16, with a StockQuotes named

template. It, too, reuses our TitledBox template, sets its Title parameter appropriately and fills

its Contents parameter with either a message saying "No stocks selected" or a table of ticker

symbols and stock prices.

Example 17.16. Stylesheet to Format Stock Quotes as Titled

Boxes

<!-- StockQuotes.xsl: Format stock quotes using TitledBoxes -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:include href="TitledBox.xsl"/>

 <xsl:template name="StockQuotes">

 <xsl:call-template name="TitledBox">

 <xsl:with-param name="Title">

 <!-- Static title of a bolded "Stock Quotes" -->

 Stock Quotes

 </xsl:with-param>

 <xsl:with-param name="Contents">

 <!-- Table of stock quotes is the contents -->

 <table>

 <xsl:if test="not(page/STOCKS/ROW)">

 <tr><td colspan="2">No stocks selected</td></tr>

 </xsl:if>

 <xsl:for-each select="page/STOCKS/ROW">

 <tr>

 <td><xsl:value-of select="TICKER"/></td>

 <td align="right"><xsl:value-of select="PRICE"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </xsl:with-param>

 </xsl:call-template>

 </xsl:template>

</xsl:stylesheet>

We could put both the StockQuotes and the NewsBoxes named

templates in the same stylesheet if we wanted to. However,
keeping them separate allows us later to import or include just
the templates we need.

To glue the portal home page together, we need a stylesheet like News.xsl shown in Example

17.17, with a root template that stitches together these modular pieces in the appropriate spot on

the page.

Example 17.17. Stylesheet to Format the News Portal

<?xml version="1.0"?>

<!-- News.xsl: Format the news portal page -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="html" indent="no"/>

 <xsl:include href="StockQuotes.xsl"/>

 <xsl:include href="NewsBoxes.xsl"/>

 <xsl:template match="/">

 <html>

 <head><link rel="stylesheet" type="text/css" href="Forum.css" /></head>

 <body class="page">

 <center>

 <table border="0" width="70%">

 <tr>

 <td valign="top" width="140">

 <xsl:call-template name="StockQuotes"/>

 </td>

 <td width="400">

 <xsl:call-template name="NewsBoxes"/>

 </td>

 </tr>

 </table>

 </center>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Then we add the following at the top of the News.xsql portal page to use the new stylesheet:

<?xml-stylesheet type="text/xsl" href="News.xsql"?>

Now when we browse the http://server/News.xsql, we see the assembled and styled portal page

for the default user, as shown in Figure 17.18.

Figure 17.18. Personalized news portal page exploits SQL,

XML, and XSLT

All the boxes look uniform, and the contents are fully driven off database-based news story

contents and user preferences. We see five news stories in each category, since that was the

default number of headings to display for the DEFAULT user. Clicking on the dynamically

generated headings for a news category, we link to the NewsCategory.xsql page we created in the

previous section to drill down into the details of the stories in the category and to allow us to page

through them at our stateless leisure.

To add a quick Login box to the site, we create a LoginBox template that uses TitledBox again,

as shown in the following code.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:include href="TitledBox.xsl"/>

 <xsl:template name="LoginBox">

 <xsl:call-template name="TitledBox">

 <xsl:with-param name="Title">

 <!-- Static title of a bolded "Login" -->

 Login

 </xsl:with-param>

 <xsl:with-param name="Contents">

 <!-- Form goes inside the contents -->

 <form method="post" action="News.xsql">

 <input size="13" type="text" name="youremail"/>

 </form>

 </xsl:with-param>

 </xsl:call-template>

 </xsl:template>

</xsl:stylesheet>

Then we add the following three additional XSQL action elements to the top of our News.xsql

page:

<xsql:set-cookie>

Sets the forumuser cookie to the value of the youremail parameter submitted from the

Login form

<xsql:set-page-param>

Creates a page-level parameter named forumuser

<xsql:include-param>

Includes the name of the forumuser cookie in the data page so the stylesheet can access

it

Once we do this, we end up with the modified News.xsql page in Example 17.18.

Example 17.18. Modified News.xsql file that Handles the

forumuser Cookie

<?xml version="1.0"?>

<!-- News.xsql: Data page driving the news portal -->

<?xml-stylesheet type="text/xsl" href="News.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:set-cookie name="forumuser" value="{@youremail}"

 ignore-empty-value="yes" only-if-unset="yes"/>

 <xsql:set-page-param name="forumuser" value="{@youremail}"

 ignore-empty-value="yes"/>

 <xsql:include-param name="forumuser"/>

 <xsql:query rowset-element="STOCKS">

 SELECT ticker,to_char(price,'999.99') as price

 FROM latest_quotes

 WHERE trunc(day) = (SELECT MAX(TRUNC(day)) FROM latest_quotes)

 AND ticker IN (SELECT ticker

 FROM user_stocks

 WHERE userid = NVL('{@forumuser}','DEFAULT'))

 order by ticker

 </xsql:query>

 <xsql:query><![CDATA[

 SELECT cat.id,

 cat.name,

 CURSOR(SELECT title,url,description

 FROM latestnews

 WHERE category = cat.id

 AND ROWNUM <= (SELECT headlines

 FROM user_prefs

 WHERE userid = NVL('{@forumuser}','DEFAULT'))

) AS stories

 FROM site_newscategory cat

 WHERE cat.id IN (SELECT category

 FROM user_news_categories

 WHERE userid = NVL('{@forumuser}','DEFAULT'))

]]>

 </xsql:query>

</page>

Finally, we update our News.xsl stylesheet as shown in Example 17.19 to contain a few <xsl:if>

actions to conditionally invoke the LoginBox template if the user has not yet logged in, as well as

conditionally show a link to the Prefs.xsql page we'll create later in the chapter to edit the user's

preferences if he is logged in.

Example 17.19. Stylesheet to Format the News Portal Page

<?xml version="1.0"?>

<!-- News.xsl: Format the news portal page -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="html" indent="no"/>

 <xsl:include href="StockQuotes.xsl"/>

 <xsl:include href="LoginBox.xsl"/>

 <xsl:include href="NewsBoxes.xsl"/>

 <xsl:template match="/">

 <html>

 <head><link rel="stylesheet" type="text/css" href="Forum.css" /></head>

 <body class="page">

 <center>

 <table border="0"width="70%">

 <tr>

 <td valign="top" width="140">

 <xsl:call-template name="StockQuotes"/>

 <!-- Show LoginBox if the forumuser in page is blank -->

 <xsl:if test="/page/forumuser = ''">

 <xsl:call-template name="LoginBox"/>

 </xsl:if>

 </td>

 <td width="400">

 <xsl:call-template name="NewsBoxes"/>

 </td>

 </tr>

 </table>

 <!-- Show preferences link if forumuser in page is not blank -->

 <xsl:if test="/page/forumuser != ''">

 <xsl:text>Preferences for </xsl:text>

 <xsl:value-of select="/page/forumuser"/>

 </xsl:if>

 </center>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Requesting the News.xsql page again now shows a Login box, as illustrated in Figure 17.19.

Figure 17.19. Portal page with additional user login box

If we cheat for a moment and use the database directly to insert a user ID and some user

preferences for a new user like smuench:

INSERT INTO user_prefs VALUES ('smuench',/* Number of Headlines */ 4);

INSERT INTO user_stocks VALUES ('smuench','HLTH');

INSERT INTO user_stocks VALUES ('smuench','WEBM');

INSERT INTO user_stocks VALUES ('smuench','ORCL');

INSERT INTO user_stocks VALUES ('smuench','INTC');

INSERT INTO user_stocks VALUES ('smuench','AAPL');

INSERT INTO user_news_categories VALUES ('smuench',2);

INSERT INTO user_news_categories VALUES ('smuench',1);

and then try to log in by typing smuench in the Login box and pressing Enter, we'll see the portal

snap immediately to show what's in Figure 17.20. It has my stocks and the categories of news I

want to see, with the number of headings that my preferences indicate.

Figure 17.20. Customer portal home page for user smuench

In the next section, we'll see how to use XSLT to built HTML forms in a generic way, allowing us

to create a form through which users can edit their preferences.

17.2.4 Separating Structure and Style of Forms

In order to allow users to edit their preferences, we could create an HTML form by hand. However,

since this won't be the only form we'll be creating in this chapter, let's step back and see if we can

apply XSLT to handle HTML form creation based on some structural information we can include in

our XSQL data page.

An HTML form is just a set of items. We'd like to be able to describe the set of items in a more

abstract way that allows us to say what kinds of items are in the form and what data should be

displayed in the items. The kinds of items that will come in handy for the tasks we'll be doing are

illustrated in Figure 17.21.

Figure 17.21. Basic data-bound HTML controls

We want to be able to represent a form like the example above in an abstract way, then build an

XSLT template to transform the form definition into a working set of HTML form tags. We need the

contents of the Text and TextArea to come from any source, and the contents of the CheckBoxList

and List to come from any query. So we invent an XML vocabulary on the fly to represent this

dataform and we include a set of static XML elements to use for testing our ideas. Since XSQL

pages can contain static elements just as easily as dynamic content, nothing stops us from

creating a DataFormExample.xsql page, as shown in Example 17.20, that consists for the

moment entirely of static element and attribute content.

Example 17.20. XSQL Page Builds Example Form Structure

<?xml version="1.0"?>

<!-- DataFormExample.xsql: Example page with abstract form stucture def'n -->

<page>

 <dataform target="News.xsql" submit="SubmitButtonTitle">

 <item type="text" name="nameOfTextControl" label="Text">

 This that and the other

 </item>

 <item type="checkboxlist" name="nameOfCheckBoxList" label="CheckBoxList">

 <ROWSET>

 <ROW><VALUE>4</VALUE><DISPLAY>This</DISPLAY></ROW>

 <ROW><VALUE>5</VALUE><DISPLAY>That</DISPLAY><SELECTED>Y</SELECTED></ROW>

 <ROW><VALUE>6</VALUE><DISPLAY>The Other</DISPLAY></ROW>

 </ROWSET>

 </item>

 <item type="list" name="nameOfList" label="List">

 <default>Y</default>

 <ROWSET>

 <ROW><VALUE>X</VALUE><DISPLAY>This</DISPLAY></ROW>

 <ROW><VALUE>Y</VALUE><DISPLAY>That</DISPLAY></ROW>

 <ROW><VALUE>Z</VALUE><DISPLAY>The Other</DISPLAY></ROW>

 </ROWSET>

 </item>

 <item type="textarea" name="nameOfTextArea" size="40" label="TextArea">

 This that and the other This that and the other This that and the other

 This that and the other This that and the other This that and the other

 </item>

 </dataform>

</page>

We use the most obvious names that come to mind to represent the abstract structural details of

our HTML form. For the text and textarea types of items, we use the text content of the <item>

element to be the current value of the item. For the checkboxlist and <listitem>s, we use an

embedded <ROWSET> to represent the choices in the list and their respective display text.

We can then create an XSLT template to handle the entire <dataform> and its contents as shown

in Example 17.21. Whenever the template matches a <dataform> element, it produces a working

HTML form based on the structural information in the form's <item>s and the data that needs to

be bound to the form. If we use this standard approach to build all forms on our site, then making

global changes to how forms work or what they look like happens in a single place.

Here's what's going on in the UtilDataForm.xsl stylesheet. The dataform template:

1. Creates an HTML <form> element with an action based on the target attribute of the

<dataform> element using the attribute value template {@target}.

2. Processes all the item[@type='hidden'] nodes, using an <xsl:for-each> loop to create

an HTML <input> element with type='hidden' for each one.

3. Processes all item[@type!='hidden'] nodes, and using an <xsl:choose> action, creates

the appropriate HTML control for each dataform/item based on dataform/item/@type.

4. For the text and textarea item types, uses XPath's normalize-space() function on the

current node to strip whitespace from the front and back of the text value contained within

the dataform/item element and replace any sequences of multiple whitespace characters

with a single space.

5. For the checkboxlist and list types, uses a nested <xsl:for-each> to process the

ROWSET/ROW creating the list of items, each with an appropriate value and display text;

just outside the <xsl:for-each> in both cases, it uses <xsl:variable> based on the

current node so it can reference the value of the variable inside the for-each loop using

$varname.

6. By combining <xsl:if> with a nested <xsl:attribute>, it conditionally creates a

selected attribute on the <option> element for the list, or conditionally creates a

checked attribute on the <input> element for a checkbox, (if the element is checked).

Example 17.21. Transforming an Abstract Form Description

into HTML

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!--

 | UtilDataForm.xsl: Transform <dataform> structural info

 | into a data-bound HTML Form

 +-->

 <xsl:template match="dataform">

 <center>

 <form method="POST" action="{@target}">

 <xsl:for-each select="item[@type='hidden']">

 <input type="hidden" name="{@name}" value="{normalize-space(.)}"/>

 </xsl:for-each>

 <table>

 <xsl:for-each select="item[@type != 'hidden']">

 <tr>

 <th align="right"><xsl:value-of select="@label"/></th>

 <td>

 <xsl:choose>

 <xsl:when test="@type='text'">

 <input type="text" name="{@name}"

 value="{normalize-space(.)}">

 <xsl:if test="@size">

 <xsl:attribute name="size">

 <xsl:value-of select="@size"/>

 </xsl:attribute>

 </xsl:if>

 </input>

 </xsl:when>

 <xsl:when test="@type='textarea'">

 <textarea class="code" rows="5" name="{@name}">

 <xsl:if test="@size">

 <xsl:attribute name="cols">

 <xsl:value-of select="@size"/>

 </xsl:attribute>

 </xsl:if>

 <xsl:value-of select="normalize-space(.)"/>

 </textarea>

 </xsl:when>

 <xsl:when test="@type='list'">

 <xsl:variable name="default" select="default"/>

 <select name="{@name}">

 <xsl:for-each select="ROWSET/ROW">

 <option value="{VALUE}">

 <xsl:if test="VALUE=$default">

 <xsl:attribute name="selected"/>

 </xsl:if>

 <xsl:value-of select="DISPLAY"/>

 </option>

 </xsl:for-each>

 </select>

 </xsl:when>

 <xsl:when test="@type='checkboxlist'">

 <xsl:variable name="name" select="@name"/>

 <xsl:for-each select="ROWSET/ROW">

 <input type="checkbox" name="{$name}" value="{VALUE}">

 <xsl:if test="SELECTED='Y'">

 <xsl:attribute name="checked"/>

 </xsl:if>

 </input>

 <xsl:value-of select="DISPLAY"/>

 </xsl:for-each>

 </xsl:when>

 </xsl:choose>

 </td>

 </tr>

 </xsl:for-each>

 </table>

 <input type="submit" value="{@submit}"/>

 </form>

 </center>

 </xsl:template>

</xsl:stylesheet>

To test out our new form creation capability, we create a quick FormTest.xsl stylesheet that

includes UtilDataForm.xsl and defines a root template to create the shell of an HTML form around

it before using <xsl:apply-templates> with a select="page/dataform" to match the included

dataform template:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:include href="UtilDataForm.xsl"/>

 <xsl:template match="/">

 <html>

 <head><link rel="stylesheet" type="text/css" href="Forum.css"/></head>

 <body><xsl:apply-templates select="page/dataform"/></body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Then we add:

<?xml-stylesheet type="text/xsl" href="FormTest.xsl"?>

to the top of DataFormExample.xsql to associate our stylesheet with it, and request the page in

the browser. We see precisely the HTML form illustrated in Figure 17.21. Let's immediately use

our new HTML form support to build a page for the user to edit preferences. We create the

Prefs.xsql shown in Example 17.22.

Example 17.22. XSQL Page to Create/Edit User Preferences

<?xml version="1.0"?>

<!-- Prefs.xsql: Create form for displaying/editing user preferences -->

<?xml-stylesheet type="text/xsl" href="Prefs.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <dataform target="News.xsql" submit="Save Preferences">

 <item type="hidden" name="userid">

 <xsql:include-param name="forumuser"/>

 </item>

 <item type="checkboxlist" name="categories" label="News Categories">

 <xsql:query>

 SELECT nc.id AS VALUE,

 nc.name AS DISPLAY,

 DECODE(uc.category,NULL,'N','Y') as SELECTED

 FROM site_newscategory nc,

 user_news_categories uc

 WHERE NVL('{@forumuser}','DEFAULT') = uc.userid (+)

 AND nc.id = uc.category (+)

 order by name

 </xsql:query>

 </item>

 <item type="list" name="headlines" label="Headlines Per Category">

 <xsql:query rowset-element="" row-element="">

 SELECT headlines as "default"

 FROM user_prefs

 WHERE userid = NVL('{@forumuser}','DEFAULT')

 </xsql:query>

 <ROWSET>

 <ROW><VALUE>4</VALUE><DISPLAY>4</DISPLAY></ROW>

 <ROW><VALUE>5</VALUE><DISPLAY>5</DISPLAY></ROW>

 <ROW><VALUE>6</VALUE><DISPLAY>6</DISPLAY></ROW>

 </ROWSET>

 </item>

 <item type="textarea" name="stocks" size="40" label="Stocks">

 <xsql:query>

 SELECT ticker||' ' as ticker

 FROM user_stocks

 WHERE userid = NVL('{@forumuser}','DEFAULT')

 </xsql:query>

 </item>

 </dataform>

</page>

The page has a <dataform> element with <item>s of the following types:

hidden

This item is for the userid parameter. It gets its value from the text content of the

element created in the data page with <xsql:include-param>.

checkboxlist

This item displays the set of all available news categories with the current ones checked.

It gets its data from the ROWSET produced by the <xsql:query>. This is a clever query

using outer joins to return the list of available news categories with a letter Y or N in the

selected column depending on whether the current user has selected that category in their

preferences. The SQL result looks like this:

VALUE DISPLAY SELECTED

----- ---------- --------

 3 B2B N

 5 Business N

 4 Extra N

 1 XML Y

 2 XSLT Y

list

This item displays the choices for the number of headlines to display. It gets its data from

a static <ROWSET> element in the page, since the choices are fixed.

textarea

This item lists the stock ticker symbols. It gets its value by producing a <ROWSET> of

<ROW>s of <TICKER> elements for the current user's stocks. Note that each value has a

space appended at the end. This way, when the dataform XSLT template asks for the value

of the content of the item element, it will get the concatenated value of all text nodes with

spaces between the ticker symbols.

The stylesheet associated to Prefs.xsql is the following simple Prefs.xsl, which uses

<xsl:apply-templates> to cause the page/dataform to be transformed:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:import href="UtilDataForm.xsl"/>

 <xsl:template match="/">

 <html>

 <head><link rel="stylesheet" type="text/css" href="Forum.css" />

 </head>

 <body class="page">

 <xsl:apply-templates select="page/dataform"/>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Now when we log in to the portal and click on the "Preferences for smuench" link at the bottom of

the page, we see the result of our work: an HTML form dynamically populated with our current

preferences from the database, shown in Figure 17.22.

Figure 17.22. User preferences form populated with dynamic

data

Note that the values displayed in the form reflect the rows we inserted earlier for user ID smuench.

What happens when we click on the Save Preferences button? We need the News.xsql home page

to handle the posted preferences and update the database with any changes. We'll deal with that

in the next section.

17.2.5 Updating User Preferences

When the user posts Prefs.xsql 's HTML form, the XSQL page processor detects that the MIME

type is that of a posted HTML form and materializes an XML document like this:

<request>

 <parameters>

 <stocks>WEBM ORCL INTC HLTH AAPL</stocks>

 <headlines>4</headlines>

 <userid>smuench</userid>

 <row><!-- Repeated parameters are row-ified to make processing easier -->

 <categories>1</categories>

 </row>

 <row>

 <categories>2</categories>

 </row>

 </parameters>

 <session>

 <wtgbid>c15k9ixg</wtgbid>

 </session>

 <cookies>

 <forumuser>smuench</forumuser>

 </cookies>

</request>

This makes all of the posted form parameters available to the <xsql:insert-request> action's

transform stylesheet for conversion into canonical format for the target table. Here we have

information that goes into the user_prefs table, like the number of headlines, information that

goes into user_news_categories, like the selected categories, and information that goes into

user_stocks. Can we insert it into all three tables simultaneously? Sure. The solution involves

creating:

• A view with a structure that is convenient to accept all of the information

• An INSTEAD OF INSERT trigger on the view to programmatically handle the inserted

information correctly

We can create a view with a convenient structure like this:

CREATE OR REPLACE VIEW user_prefs_view AS

SELECT userid, headlines,

 RPAD('x',200) as stocks,

 RPAD('x',100) as categories

 FROM user_prefs;

This selects the userid and headlines count from user_prefs, adds a VARCHAR2(200) column in

the view by selecting the RPAD('x',200) expression, and adds a VARCHAR2(100) column in a

similar way. Since we're only going to use this view for inserts, we don't really care that a SELECT

statement against the view would return 300 letter x's as part of the result. This is just a way to

get the database to expect up to 200 characters for the stocks column in the view and up to 100

characters for the categories. We're going to insert the stocks information as a single string

containing the space-separated ticker symbols the user has entered in the preferences form.

We'll do the same for the category IDs of any selected categories in the form.

Transforming the materialized request document for insertion according to this strategy is easy.

First we use the utility we developed in Chapter 14, to create a skeleton insert transform for the

user_prefs_insert view using the XSQL command-line utility (note that all arguments must be

on one line, separated by spaces):

xsql GenerateInsertTransform.xsql InsertUserPrefs.xsl table=user_prefs_insert

This creates the skeleton transformation in the InsertUserPrefs.xsl file, as shown in Example

17.23.

Example 17.23. Skeleton Insert Transform for

user_prefs_view

<?xml version = '1.0' encoding = 'UTF-8'?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Transform XXXX into canonical ROWSET for user_prefs_view -->

 <xsl:template match="/">

 <ROWSET>

 <!-- XPath for repeating source rows -->

 <xsl:for-each select="page/ROWSET/ROW">

 <ROW>

 <USERID>

 <xsl:value-of select="USERID"/>

 </USERID>

 <HEADLINES>

 <xsl:value-of select="HEADLINES"/>

 </HEADLINES>

 <STOCKS>

 <xsl:value-of select="STOCKS"/>

 </STOCKS>

 <CATEGORIES>

 <xsl:value-of select="CATEGORIES"/>

 </CATEGORIES>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 </xsl:template>

</xsl:stylesheet>

We edit the skeleton transformation to fill in the appropriate request/parameters pattern in

<xsl:for-each>, and change the skeleton patterns to the real names userid, stocks, and

headlines, in lowercase. For the value of the <CATEGORIES> element, we use a nested

<xsl:for-each> to loop over all selected categories that have been posted and produce a string

that is the value of each <category> separated by a space. Finally, we surround the outer

<xsl:for-each> with an <xsl:if> to test that a user ID exists (recall that it was a hidden field

in the HTML preferences form). If no userid is posted along with the form, then no <ROW>

elements are created, so no rows are inserted into user_prefs_view. The final

InsertUserPrefs.xsl stylesheet appears in Example 17.24.

Example 17.24. Final Version of the InsertUserPrefs.xsl

Stylesheet

<?xml version = '1.0' encoding = 'UTF-8'?>

<!-- InsertUserPref.xsl: Insert transform for user_prefs_view -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

 <ROWSET>

 <xsl:if test="request/parameters/userid">

 <xsl:for-each select="request/parameters">

 <ROW>

 <USERID>

 <xsl:value-of select="userid"/>

 </USERID>

 <STOCKS>

 <xsl:value-of select="stocks"/>

 </STOCKS>

 <HEADLINES>

 <xsl:value-of select="headlines"/>

 </HEADLINES>

 <CATEGORIES>

 <xsl:for-each select="row/categories">

 <xsl:value-of select="."/>

 <xsl:if test="position() != last()">

 <xsl:text> </xsl:text>

 </xsl:if>

 </xsl:for-each>

 </CATEGORIES>

 </ROW>

 </xsl:for-each>

 </xsl:if>

 </ROWSET>

 </xsl:template>

</xsl:stylesheet>

We add the following XSQL action element to the top of our News.xsql page to handle the posted

preferences form:

<xsql:insert-request table="user_prefs_view" transform="InsertUserPrefs.xsl"/>

This uses the stylesheet we just created to transform the posted form information and insert it

into the user_prefs_view. If the page is requested normally, instead of being the target of a

posted HTML form, this action is a no-op. As the very final step, we write the INSTEAD OF INSERT

trigger in Example 17.25. The user_prefs_view performs the actual insertions and updates into

the preferences tables underneath the covers.

Example 17.25. INSTEAD OF INSERT Trigger Handles User

Preferences

CREATE TRIGGER user_prefs_ins INSTEAD OF INSERT ON user_prefs_view FOR EACH ROW

DECLARE

 debugct NUMBER;

 stockList VARCHAR2(200) := :new.stocks;

 catList VARCHAR2(200) := :new.categories;

 curItem VARCHAR2(80);

 x NUMBER;

 temp VARCHAR2(1);

 userExists BOOLEAN;

 CURSOR c_userExists(c_userid VARCHAR2) IS SELECT 'x' FROM user_prefs

 WHERE userid = c_userid;

BEGIN

 OPEN c_userExists(:new.userid);

 FETCH c_userExists INTO temp;

 userExists := c_userExists%FOUND;

 CLOSE c_userExists;

 IF userExists THEN -- Update existing user

 UPDATE user_prefs SET headlines = :new.headlines

 WHERE userid = :new.userid;

 ELSE -- Insert a new user

 INSERT INTO user_prefs(userid,headlines)VALUES(:new.userid,:new.headlines);

 END IF;

 -- Handle Stocks

 DELETE FROM user_stocks WHERE userid = :new.userid;

 WHILE (stockList IS NOT NULL) LOOP

 x := INSTR(stockList,' ');

 IF x > 0 THEN

 curItem := SUBSTR(stockList,1,x-1); stockList := SUBSTR(stockList,x+1);

 ELSE

 curItem := stockList; stockList := NULL;

 END IF;

 INSERT INTO user_stocks(userid,ticker) VALUES(:new.userid,curItem);

 END LOOP;

 -- Handle Categories

 DELETE FROM user_news_categories WHERE userid = :new.userid;

 WHILE (catList IS NOT NULL) LOOP

 x := INSTR(catList,' ');

 IF x > 0 THEN

 curItem := SUBSTR(catList,1,x-1); catList := SUBSTR(catList,x+1);

 ELSE

 curItem := catList; catList := NULL;

 END IF;

 INSERT INTO user_news_categories(userid,category)VALUES(:new.userid,curItem);

 END LOOP;

END;

We're processing a space-separated list of categories and
stocks here to simplify the HTML side of the equation. This way,
a user just types in quotes as they do on Yahoo!, and the details
of parsing the list are handled in the server.

This PL/SQL trigger first uses a cursor to detect if the :new.userid being inserted already exists

in our user_prefs table. If so, it updates the existing user's headlines preference in user_prefs;

otherwise, it inserts a new row in user_prefs for the :new.userid with the correct headings

selection. Then, in two different WHILE loops, it processes the space-separated stock tickers and

news categories. It inserts them into the user_stocks and user_news_categories tables correctly

after having first deleted all existing rows in those tables for the current user.

Now is the moment of truth. We exit our browser to clear our existing cookie and restart it. We

browse our portal site's URL again at http://server/News.xsql and see the opening content for the

DEFAULT user from Figure 17.19. We type a new user name like jcox into the Login box and see

what appears in Figure 17.23.

Figure 17.23. Personalized portal page for first-time user

We cross our fingers and click on the preferences link. We get a blank preferences form and click

the B2B and XSLT categories, select six headlines per category, and enter the ticker symbols for

our favorite stocks as shown in Figure 17.24.

Figure 17.24. Editing preferences for a first-time user

We click Save Preferences and instantly see our preferences reflected in the content, as Figure

17.25 shows.

Figure 17.25. Customized portal page for user jcox

If we go to another browser, browse the News.xsql page, log in as jcox, click on preferences,

change our selected categories, alter the ticker symbols, and click, we have successfully edited

our existing preferences. If we click on a heading from the portal page, we're brought to the

NewsCategory.xsql page we built earlier to browse statelessly through all the news stories in that

category. The whole site looks consistent, is completely database-driven, and gains all of its

power from the combination of XSQL pages and XSLT stylesheets.

17.3 Online Discussion Forum

Now we're going to shift into high gear and implement an online discussion forum application.

17.3.1 Building an Online Discussion Forum

Online discussion forums are a popular way to post questions on various topics and have peers

answer your questions. Figure 17.26 illustrates the basic page map of the discussion application.

Figure 17.26. Page map for an online discussion forum

Users start by looking at a list of discussion forums organized around interesting areas like Java,

XML, Oracle8i, etc. From there, they can drill into a particular forum to see what topics users are

discussing; they can get an overview of all active topics across all the forums; or they can search

for a particular word or phrase and browse through the results. While in a particular forum, users

can browse the topics as well as drill in to see what replies have been posted for any topic. In

addition, if a user logs in by providing a user ID, they can post new topics and post replies to

existing topics.

We'll use this example to illustrate the maximum separation of data from presentation, and the

maximum abstraction of our web pages' structure from their appearance. Let's start with the

database part of the application. We can keep track of the forums, forum topics, topic postings

and replies, and forum users with a straightforward database schema like the one shown in Figure

17.27.

Figure 17.27. Database schema for discussion forum

application

First we create the forum_user table to store our users:

CREATE TABLE forum_user(

 userid VARCHAR2(10),

 email VARCHAR2(80),

 CONSTRAINT forum_user_pk PRIMARY KEY (userid)

);

Next, we create the forum table for storing the forums themselves:

CREATE TABLE forum(

 id NUMBER,

 created DATE,

 name VARCHAR2(80),

 CONSTRAINT forum_pk PRIMARY KEY (id)

);

To have the database automatically manage the assignment of a unique id for each new forum

from a sequence, as well as handle the assignment of the created date, we create a BEFORE

INSERT trigger on the forum table like this:

CREATE OR REPLACE TRIGGER forum_id_trig

BEFORE INSERT ON forum FOR EACH ROW

BEGIN

 SELECT forumid.nextval,sysdate

 INTO :new.id,:new.created

 FROM dual;

END;

To store the topics in each forum, we create the forum_topic table with a similar BEFORE INSERT

trigger to handle id and created assignment:

CREATE TABLE forum_topic(

 id NUMBER,

 forumid NUMBER,

 created DATE,

 title VARCHAR2(80) NOT NULL,

 userid VARCHAR2(80),

 postings NUMBER,

 lastpost DATE,

 CONSTRAINT forum_topic_pk PRIMARY KEY (id),

 CONSTRAINT topic_in_forum FOREIGN KEY (forumid) REFERENCES forum

);

CREATE OR REPLACE TRIGGER forum_topicid_trig

BEFORE INSERT ON forum_topic FOR EACH ROW

BEGIN

 SELECT forumid.nextval,sysdate,0

 INTO :new.id,:new.created,:new.postings

 FROM dual;

END;

Since users always want to see the number of postings for a topic as well as the date of the last

posting on a topic we have introduced columns in the forum_topic table to record the total

number of postings and the date of the lastpost so that we can avoid requerying this

information over and over.

Finally, we create the forum_topic_posting table:

CREATE TABLE forum_topic_posting(

 id NUMBER,

 topicid NUMBER,

 userid VARCHAR2(30) NOT NULL,

 posted DATE,

 posting VARCHAR2(4000) NOT NULL,

 CONSTRAINT forum_topic_posting_pk PRIMARY KEY (id),

 CONSTRAINT posting_for_topic FOREIGN KEY (topicid) REFERENCES forum_topic

);

The BEFORE INSERT trigger on forum_topic_posting handles the ID and posted date assignment

as we did earlier, but it also updates the values of postings and lastpost in the forum_topic

table by adding one to the postings count and updating the lastpost to reflect the current

SYSDATE:

CREATE OR REPLACE TRIGGER forum_topic_postingid_trig

BEFORE INSERT ON forum_topic_posting FOR EACH ROW

DECLARE

 topicid NUMBER;

 topicpostdate DATE := SYSDATE;

BEGIN

 SELECT forumid.nextval,topicpostdate

 INTO :new.id,:new.posted

 FROM dual;

 UPDATE forum_topic

 SET postings = postings + 1,

 lastpost = topicpostdate

 WHERE id = :new.topicid;

END;

The last data problem relates to posting a new topic. When a user starts a new topic by asking the

initial question, we want to record a row in the forum_topic table and insert the user's question as

the first posting related to that new topic in the forum_topic_posting table. As we did earlier in the

chapter, to simplify a case like this, we create a database view for inserting a new topic:

CREATE OR REPLACE VIEW forum_new_topic AS

SELECT t.forumid, t.title, t.userid, p.posting

 FROM forum_topic t,

 forum_topic_posting p

WHERE t.id = p.topicid;

and an INSTEAD OF INSERT trigger that lets us programmatically insert the one logical new topic

row into the two physical underlying tables:

CREATE OR REPLACE TRIGGER forum_new_topic_ins

INSTEAD OF INSERT ON forum_new_topic FOR EACH ROW

DECLARE

 newTopicId NUMBER;

BEGIN

 INSERT INTO forum_topic(forumid,userid,title)

 VALUES (:new.forumid,:new.userid, :new.title)

 RETURNING id INTO newTopicId;

 INSERT INTO forum_topic_posting(topicid,userid,posting)

 VALUES (newTopicId,:new.userid,:new.posting);

END;

This completes the database setup for the application. All the information we need to track is

nicely factored into its own table and we've offloaded as much of the data maintenance work as

possible onto database triggers, keeping the rest of the application much simpler.

17.3.2 Completely Abstracting Page Structure

Our web designers have gotten even more creative for this discussion forum application, and as

a result of extensive usability testing, have concluded that users want our site to:

• Provide a trail of context information on each page to show users where they are and

where they've come from. User interface designers call this trail "breadcrumbs."

• Present all available actions a user can perform on the current page in a consistent way.

• Present lists of information in a consistent way throughout the site.

• Allow the user to browse information in small pages, avoiding the need to scroll in the

browser.

To implement these requirements, every page on the discussion forum site needs to have the

same four structural elements:

• A list of "breadcrumbs"

• A list of "actions"

• The data content of the page

• The paging information for browsing forward/backward through the data

So the abstract information structure of each page on the site, which we'll represent in XML, will

look like this:

<page>

 <breadcrumbs>

 <!-- Some breadcrumb context information here -->

 </breadcrumbs>

 <actions>

 <!-- Some actions information here -->

 </actions>

 <data>

 <!-- Some ROWSET of data here -->

 </data>

 <paging>

 <!-- Some paging information here -->

 </paging>

</page>

Figure 17.28 is the mockup our web designers have provided to show how they want these four

consistent structural elements to be rendered for the browser. The graphical elements are:

Breadcrumbs bar

This bar at the top of the page indicates the current page in the site hierarchy. Previous

pages are shown as hyperlinks the user can click to follow the breadcrumb trail back to the

home page of the site.

Actions bar

This bar, which appears just below the breadcrumbs bar, is a simple list of hyperlinks

indicating the actions the user can perform from this page.

Data area

This area presents tabular information in an HTML table with column headings and rows

that alternate in color.

Paging area

This area indicates what page the user is seeing and presents links to navigate forward

and backward through the data.

Figure 17.28. Visual mockup for consistent page display

Our basic implementation strategy will proceed as follows:

• We will religiously separate data from presentation. The data required for the structure of

each page will be represented by an Oracle XSQL page, and the look of the page will be

handled by an XSLT stylesheet.

• We will fully modularize our XSLT presentation strategy. We'll begin with a template for

our abstract <page> structure, and proceed to implement templates to handle each logical

substructure of a page, like <breadcrumbs>, <actions>, <data>, and <paging>.

The structure of every page is the same; we endeavor to handle the look and feel of the entire site

using a single stylesheet, ForumStyle.xsl. It provides a root template that sets up the <html>

page, creates a <head> section with a common <title>, handles the <link> to the standard

Forum.css stylesheet used by every page on the site for font and color information, creates the

HTML page <body> element, and processes all children of the root using

<xsl:apply-templates>:

<!-- ForumStyle.xsl: Main stylesheet for the entire discussion forum site -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:include href="ForumPageStructure.xsl"/>

 <!-- Single Root Template for Entire Discussion Forum Site -->

 <xsl:template match="/">

 <html>

 <head>

 <title>XML Book Discussion Forum</title>

 <link rel="stylesheet" type="text/css" href="Forum.css"/>

 </head>

 <body><xsl:apply-templates/></body>

 </html>

 </xsl:template>

</xsl:stylesheet>

Even before creating the actual stylesheets, we know that every page will be transformed by

transforming its contained breadcrumbs, actions, data, and paging sections, in that order. So we

can already create the ForumPageStructure.xsl stylesheet with the template for page:

<!-- ForumPageStructure.xsl: Transform the Abstract Structure of a <page> -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:include href="UtilBreadcrumbs.xsl"/>

 <xsl:include href="UtilActions.xsl"/>

 <xsl:include href="UtilData.xsl"/>

 <xsl:include href="UtilPaging.xsl"/>

 <xsl:template match="page">

 <xsl:apply-templates select="breadcrumbs"/>

 <xsl:apply-templates select="actions"/>

 <xsl:apply-templates select="data"/>

 <xsl:apply-templates select="paging"/>

 </xsl:template>

</xsl:stylesheet>

This specifies that whenever a <page> is matched, it will be transformed by applying XSLT

templates to process the <breadcrumbs>, <actions>, <data>, and <paging> child structures of

the page. We explicitly use four different <xsl:apply-templates> so that the structural

elements will be processed in this order, regardless of the order in which they appear in the XSQL

page.

Notice, too, that we've foreshadowed the creation of a utility stylesheet to handle each structural

part. We'll call these stylesheets UtilBreadcrumbs.xsl, UtilActions.xsl, UtilData.xsl, and

UtilPaging.xsl. We'll be reusing the UtilPaging.xsl library we built earlier in the chapter, so we only

have to implement three new main templates to handle our site. In order to iteratively develop

the application, we'll create empty stylesheet files for UtilBreadcrumbs.xsl, UtilActions.xsl, and

UtilData.xsl that look like this:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Todo: Add some templates! -->

</xsl:stylesheet>

Let's start at the top of our page map and implement the home page for displaying all the

discussion forums. Example 17.26 shows the XSQL page source code for the home page.

Example 17.26. Dynamically Populating Abstract Page

Content

<?xml version="1.0"?>

<!-- Forums.xsql: Home Page Showing All Discussion Forums -->

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:action handler="Paging" rows-per-page="5">

 SELECT COUNT(id) FROM forum

 </xsql:action>

 <breadcrumbs/>

 <actions>

 <link page="TodaysActiveTopics.xsql" label="Active Topics Today"/>

 <link page="Search.xsql" label="Search"/>

 </actions>

 <data>

 <xsql:query skip-rows="{@paging-skip}" max-rows="{@paging-max}">

 SELECT f.id as h_id,

 f.name as "Forum",

 to_char(max(t.lastpost),'dd Mon yyyy hh24:mi') AS "Last_Post",

 sum(t.postings) AS "Posts"

 FROM forum f,

 forum_topic t

 WHERE t.forumid = f.id

 GROUP BY f.id,f.name

 ORDER BY name

 </xsql:query>

 </data>

</page>

Studying this example, we notice the following:

• We're using the custom Paging action handler we built earlier to create the <paging>

section of the data page for us. The query contained in the content of the <xsql:action>

tag is the count query, which counts the total number of forums.

• The <breadcrumbs> section for the home page is empty, since it's the home page.

• The <actions> section contains two <link> elements defining the pages we can visit.

• The <data> section contains an <xsql:query> action element to create the nested

<ROWSET> of information for the page. The query selects the necessary columns from the

forum table.

Requesting this XSQL page produces a raw XML output in Example 17.27 as the data page.

Example 17.27. Raw Data Page for the Forums.xsql Page

<?xml version = '1.0'?>

<!-- Forums.xsql: Home Page Showing All Discussion Forums -->

<page>

 <paging>

 <total-rows>4</total-rows>

 <total-pages>1</total-pages>

 <current-page>1</current-page>

 <target-page>Forums.xsql</target-page>

 </paging>

 <breadcrumbs/>

 <actions>

 <link page="TodaysActiveTopics.xsql" label="Active Topics Today"/>

 <link page="Search.xsql" label="Search"/>

 </actions>

 <data>

 <ROWSET>

 <ROW num="1">

 <H_ID>3</H_ID>

 <Forum>Business Components for Java</Forum>

 <Last_Post>07 May 2000 23:38</Last_Post>

 <Posts>4</Posts>

 </ROW>

 <!-- etc. -->

 <ROW num="4">

 <H_ID>1</H_ID>

 <Forum>XML</Forum>

 <Last_Post>07 May 2000 22:47</Last_Post>

 <Posts>12</Posts>

 </ROW>

 </ROWSET>

 </data>

</page>

If we add an <?xml-stylesheet?> instruction to the top of Forums.xsql like this:

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

then request the Forums.xsql page again in the browser, we'll see an initial jumble of text like

what's shown in Figure 17.29.

Figure 17.29. Alphabet soup when no templates match data

page content

Since the UtilBreadcrumbs.xsl, UtilActions.xsl, and UtilData.xsl stylesheets are initially empty,

the only template that is alive is our paging template in UtilPaging.xsl. You can see at the bottom

of the jumble in Figure 17.29 the phrase "Page 1 of 1 - Total 4", which the paging template

contributes to the final output. The rest of the text is produced by the built-in templates we

learned about in Chapter 7 that—in the absence of specific templates that match—recurse to child

elements and copy text to the output. The page is certainly not very attractive yet, but we're

about to change that.

17.3.3 Modularizing the Site Look and Feel

Let's start by formatting the <ROWSET> of information in the data section. To handle this, we build

a template to match data in the UtilData.xsl stylesheet, shown in Example 17.28. It is a slight

variation on the TableBaseWithCSS.xsl stylesheet we built in Chapter 7.

Example 17.28. Formatting ROWSET Data in Tables

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!--

 | UtilData.xsl: Transform <data> structural info into HTML table.

 | Elements in ROWSET/ROW whose name begins with the

 | prefix 'H_' will be hidden from display in the output.

 +-->

 <xsl:template match="ROWSET">

 <center>

 <table border="0" cellpadding="4">

 <tr>

 <!-- If there are no ROWs in the ROWSET, print a message -->

 <xsl:if test="not(ROW)"><td>No Matches</td></xsl:if>

 <!--

 | Process child elements of the first ROW whose names do NOT start

 | with 'H_'. This lets user hide column by aliasing it to H_NAME

 +-->

 <xsl:apply-templates select="ROW[1]/*[not(starts-with(name(.),'H_'))]"

 mode="columnHeaders"/>

 </tr>

 <xsl:apply-templates/>

 </table>

 </center>

 </xsl:template>

 <!--

 | Match ROW and create an HTML <tr> table row. Alternate colors by using

 | attribute value template to toggle between CSS class name r0 and r1.

 +-->

 <xsl:template match="ROW">

 <tr class="r{position() mod 2}">

 <!-- Select all children of ROW whose names do not start with 'H_' -->

 <xsl:apply-templates select="*[not(starts-with(name(.),'H_'))]"/>

 </tr>

 </xsl:template>

 <!-- Match ROW child element -->

 <xsl:template match="ROW/*">

 <td valign="top"><xsl:apply-templates/></td>

 </xsl:template>

 <!-- Match ROW child element and generate column heading -->

 <xsl:template match="ROW/*" mode="columnHeaders">

 <th align="left">

 <!-- Beautify Element Names "This_That" or "This-That" to "This That" -->

 <xsl:value-of select="translate(name(.),'_-',' ')"/>

 </th>

 </xsl:template>

</xsl:stylesheet>

We have templates for ROWSET, ROW, ROW/* (child element of a ROW), and ROW/* (child element of

a ROW in columnHeaders mode).

We've embellished our previous attempt at a generic ROWSET-to-table stylesheet from Chapter 7

by enabling the hiding of columns/elements in the rowset by aliasing their column names to begin

with the prefix H_. We've also added an <xsl:if> to print out a "No Matches" message if there are

no rows to format, and used the XPath translate() function to turn element names like

This_That or This-That into the more appropriate column title of "This That".

Now when we refresh our Forums.xsql page in the browser, we see what appears in Figure 17.30.

Figure 17.30. Table of discussion forums with paging display

If you make edits to XSLT stylesheets that are included or
imported by the stylesheet associated to your XSQL page, you
won't see the effects of your edits unless you rerun your XSQL
page in the JDeveloper IDE or touch the timestamp on the .xsl
file associated with your page. The Oracle XSQL page processor
caches XSLT stylesheets being used by XSQL pages and
automatically replaces stylesheets in the cache when it notices
that the file timestamp has changed on disk. However, if your

XSQL page uses an XSLT stylesheet that <xsl:include>s or

<xsl:import>s other stylesheets, the XSQL page processor

cannot keep track of these include/import dependencies.

Notice that in the query we aliased the ID column from the forum table to the column named H_ID.

Since its name began with H_ , the ROWSET-to-table templates in UtilData.xsl leave it out of the

output display. The <data> and the <paging> sections are working correctly now, so let's move

on. Working our way up the page, we'll do the <actions> section next. We create a template

matching actions in our UtilActions.xsl stylesheet in Example 17.29.

Example 17.29. Library Stylesheet to Handle Formatting of

Actions Bar

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!--

 | UtilActions.xsl: Transform <actions> structural info

 | into HTML "action bar" presentations.

 +-->

 <xsl:template match="actions">

 <xsl:variable name="LoginPage" select="'Login.xsql'"/>

 <!-- User is logged in if forumuser cookie is present -->

 <xsl:variable name="LoggedIn"

 select="boolean(/page/request/cookies/forumuser)"/>

 <center>

 <xsl:for-each select="link">

 <a>

 <xsl:attribute name="href">

 <xsl:choose>

 <xsl:when test="@login='yes' and not($LoggedIn)">

 <xsl:value-of select="$LoginPage"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="@page"/>

 <xsl:if test="*">?</xsl:if>

 <xsl:for-each select="*">

 <xsl:value-of select="name(.)"/>

 <xsl:text>=</xsl:text>

 <xsl:value-of select="."/>

 <xsl:if test="position() != last()">

 <xsl:text>&</xsl:text>

 </xsl:if>

 </xsl:for-each>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:attribute>

 <xsl:if test="@login='yes' and not($LoggedIn)">Login to </xsl:if>

 <xsl:value-of select="@label"/>

 </xsl:for-each>

 </center>

 <hr/>

 </xsl:template>

</xsl:stylesheet>

To show a different technique here, we're using a single actions template with nested

<xsl:for-each> loops. We're planning ahead for actions that might require a user login by using

an <xsl:variable> named LoggedIn. This variable tests whether a cookie named forumuser has

been set by testing for the presence of /page/request/cookies/forumuser. XSQL pages with

actions requiring a login will need to:

• Use an <xsql:include-request-params> to include all the request parameters into their

data page for access by the stylesheet

• Use a login=yes attribute on their <link> element inside the <actions> section

The <xsl:otherwise> clause of <xsl:choose> allows the XSQL page designer to include

elements reflecting URL parameters needed for a given action. In our discussion forum

application, the parameter will typically be a topic ID, a forum ID, and so on, but we've written the

stylesheet in a generic way to run over all child elements of actions/link using xsl:for.each

and formulate a valid URL string with an initial question mark (?) and subsequent ampersands (&)

separating parameter names. Notice that the entire <xsl:choose> is inside an <xsl:attribute>

that adds an href attribute with a dynamic attribute value to the <a> element. The value for the

href attribute is determined conditionally with the <xsl:choose>.

Refreshing our Forums.xsql page now produces a display with actions formatted into a simple

action bar as shown in Figure 17.31.

Figure 17.31. Discussion forum display with appropriate

action bar

The last step is the <breadcrumbs>. Our breadcrumbs template appears in Example 17.30 in the

UtilBreadcrumbs.xsl library stylesheet.

Example 17.30. Library Stylesheet to Handle Formatting of

Breadcrumbs

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!--

 | UtilBreadCrumbs.xsl: Transform <breadcrumbs> structural info

 | into HTML breadcrumbs presentation.

 +-->

 <xsl:template match="breadcrumbs">

 <center>

 <xsl:choose>

 <xsl:when test=".//forumname">

 <!--

 | Even though we're only expecting one row, this redefines the current

 | node so that XPath's inside can use shorter relative paths

 +-->

 Forums

 <xsl:text> > </xsl:text>

 <xsl:choose>

 <xsl:when test=".//topicname">

 <a>

 <xsl:attribute name="href">

 <xsl:choose>

 <xsl:when test="..//forumname/@url">

 <xsl:value-of select=".//forumname/@url"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>ForumTopics.xsql?id=</xsl:text>

 <xsl:value-of select=".//forumid"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:attribute>

 <xsl:value-of select=".//forumname"/>

 <xsl:text> > </xsl:text>

 <xsl:value-of select=".//topicname"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select=".//forumname"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

 <xsl:otherwise>

 <xsl:text>Forums</xsl:text>

 </xsl:otherwise>

 </xsl:choose>

 </center>

 <hr/>

 </xsl:template>

</xsl:stylesheet>

Our breadcrumbs need to look like this:

Forums

For the home page

Forums > XML

When the user has drilled down to check out a forum named "XML"

Forums > XML > How do I parse a string?

When the user has drilled down in a forum to check out a particular topic

Our strategy for the breadcrumbs template is based on this three-level idea and uses nested

<xsl:choose> elements that test for the presence of a forumname and a topicname to infer what

breadcrumbs to display. For each level above the current level, we render the names as

hyperlinks to let the user navigate back up to the pages they came from. With this final key

template in place, our basic rendering for the entire site is done. Refreshing the Forums.xsql page

again shows the fruits of our work, displaying the "Forums" root breadcrumb title at the top of the

page.

All four key structural elements are in and working. However, the home page is not quite

complete. The paging information should be centered like the rest of the elements on the page,

and the forum name should be a hyperlink to the ForumTopics.xsql page that will show the topics

for the given forum.

17.3.4 Overriding Formatting for Certain Columns

Centering the paging information requires us to tweak our ForumPageStructure.xsl stylesheet.

Let's change:

<xsl:template match="page">

 <xsl:apply-templates select="breadcrumbs"/>

 <xsl:apply-templates select="actions"/>

 <xsl:apply-templates select="data"/>

 <xsl:apply-templates select="paging"/>

</xsl:template>

to be the following:

<xsl:template match="page">

 <xsl:apply-templates select="breadcrumbs"/>

 <xsl:apply-templates select="actions"/>

 <xsl:apply-templates select="data"/>

 <xsl:if test="paging">

 <hr/>

 <center><xsl:apply-templates select="paging"/></center>

 </xsl:if>

</xsl:template>

then we can conditionally add a horizontal rule (<hr/>) and center the paging information if the

page has a <paging> element present. Then to make forums appear as hyperlinks, we just need

to add a template that matches ROW/Forum —that is, <Forum> elements when they occur as

children of a <ROW>—and format the information as a hyperlink instead of the default plain text

display. Since we will end up needing a few column-level overrides, let's create a

ColumnOverrides.xsl stylesheet to contain them. We'll provide templates for ROW/Forum as well

as ROW/Topic while we're at it:

<!-- ColumnOverrides.xsl : handle one-off formatting of special cases -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!-- Anywhere a topic appears in a <ROW>, link to drill-down -->

 <xsl:template match="ROW/Topic">

 <td>

 <xsl:apply-templates/>

 </td>

 </xsl:template>

 <!-- Anywhere a Forum appears in a <ROW>, link to drill-down -->

 <xsl:template match="ROW/Forum">

 <td>

 <xsl:apply-templates/>

 </td>

 </xsl:template>

</xsl:stylesheet>

The ROW/Forum template overrides the basic ROW/* template in UtilData.xsl to format <Forum>

elements that occur in a <ROW> specially. Even though the templates for ROW are designed to skip

over elements like H_ID to leave them out of the display, our XPath expressions can still access

their data. For example, the attribute value template for the <href> attribute on the <a> anchor

tag is using id={../H_ID}. This effectively plugs in the value of the current forum's ID for the id

parameter in the URL. The ../H_ID refers to the element that is the H_ID child element of the

parent ".." of the current <Forum> or <Topic> element.

We make sure to use <xsl:import> instead of just <xsl:include> to import the

ColumnOverrides.xsl stylesheet into the ForumPageStructure.xsl. This will ensure that the

imported ROW/Forum and ROW/Topic templates have higher precedence than the imported ROW/*.

Since we want the templates in ColumnOverrides.xsl to take precedence over the base templates

in UtilData.xsl, and since XSLT mandates that any <xsl:import> elements must appear at the

top of the stylesheet before any other XSLT actions, we've changed UtilData.xsl to be imported

instead of included and we've moved both of the <xsl:import> statements to the top of the list,

in the appropriate order:

<!-- ForumPageStructure.xsl: Transform the Abstract Structure of a <page> -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:import href="UtilPaging.xsl"/>

 <xsl:import href="ColumnOverrides.xsl"/>

 <xsl:include href="UtilBreadcrumbs.xsl"/>

 <xsl:include href="UtilActions.xsl"/>

 <xsl:include href="UtilData.xsl"/>

Refreshing our Forums.xsql page in the browser, we see what's shown in Figure 17.32. The

forums are now hyperlinks to the drill-down page we'll create next.

Figure 17.32. Forum titles show as hyperlinks, paging control

is centered

We've now basically done all the hard work to set up the abstract page structure and get an

example page styled according to our web designer's specifications. Creating additional pages

simply involves coming up with the XSQL page to represent the structure and data for new pages,

and possibly introducing additional column-level overrides if we have to do one-off processing.

Figure 17.33 illustrates all the pages we will build. One down, seven to go.

Figure 17.33. Map of XSQL pages to implement discussion

forum

To create the drill-down ForumTopics.xsql page, we throw together the XSQL page describing its

breadcrumbs, actions, data, and paging, and we're done. Example 17.31 shows these four

structural parts in a single XSQL data page template.

Example 17.31. XSQL Page to Display List of Topics for a

Forum

<?xml version="1.0"?>

<!-- ForumTopics.xsql: Show list of topics for a forum -->

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <!-- Include request params so Actions can check for forumuser cookie -->

 <xsql:include-request-params/>

 <xsql:action handler="Paging" rows-per-page="5" url-params="id">

 SELECT COUNT(t.id) AS "total"

 FROM forum_topic t

 WHERE forumid = {@id}

 </xsql:action>

 <breadcrumbs>

 <xsql:query>

 SELECT name AS "forumname", id AS "forumid"

 FROM forum

 WHERE id = {@id}

 </xsql:query>

 </breadcrumbs>

 <actions>

 <link page="EnterForumTopic.xsql" label="Enter a New Topic" login="yes">

 <xsql:include-param name="id"/>

 </link>

 <link page="Search.xsql" label="Search">

 <xsql:include-param name="id"/>

 </link>

 </actions>

 <data>

 <xsql:query max-rows="{@paging-max}" skip-rows="{@paging-skip}">

 SELECT t.id AS h_id,

 t.title AS "Topic",

 t.userid AS "Started_By",

 postings-1 AS "Replies",

 to_char(lastpost,'dd Mon YYYY, hh24:mi') as "Last_Post"

 FROM forum_topic t

 WHERE forumid = {@id}

 ORDER BY 5 desc

 </xsql:query>

 </data>

</page>

Note a few interesting things about this page:

• It uses <xsql:include-request-params> because one of its actions requires a login.

Recall that the actions template needs to check for the presence of a cookie in the

request to detect if the user is logged in.

• The count query inside the <xsql:action> handler that creates the paging section uses

the {@id} to count just the topics in the current forum whose id is passed in the URL.

• The forumname and forumid for the breadcrumbs are queried from the database since

only the forumid is passed into the page.

• Like every page on our site, it refers to the standard ForumStyle.xsl stylesheet.

Now if we click on the "XML" forum name from the Forums.xsql page to drill-down to a list of its

topics, we see our new ForumTopics.xsql page in action as shown in Figure 17.34.

Figure 17.34. Drill-down display of topics for a selected forum

As expected, the breadcrumbs properly reflect where we are in the site; the action bar indicates

the actions we can perform; the data is formatted in a consistent tabular format; and the paging

display is functional. The column override template for ROW/Topic that we created earlier is

already doing its job of formatting the Topic as a hyperlink to the next-level drill-down page:

TopicPostings.xsql. Note that since we haven't set our forumuser cookie yet, the action bar

displays the "Enter a New Topic" link as "Login to Enter a New Topic" with a hyperlink to the

Login.xsql page as expected.

The TopicPostings.xsql page appears in Example 17.32.

Example 17.32. XSQL Page to Display List of Postings for a

Topic

<?xml version="1.0"?>

<!-- TopicPostings.xsql: Show list of postings for a given topic -->

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <!-- Include request params so Actions can check for forumuser cookie -->

 <xsql:include-request-params/>

 <breadcrumbs>

 <xsql:query>

 SELECT t.forumid as "forumid", f.name AS "forumname",

 t.id as "topicid", t.title AS "topicname"

 FROM forum_topic t, forum f

 WHERE t.id = {@id}

 AND f.id = t.forumid

 </xsql:query>

 </breadcrumbs>

 <actions>

 <link page="EnterForumTopicReply.xsql" label="Post a New Reply" login="yes">

 <xsql:include-param name="id"/>

 </link>

 </actions>

 <data>

 <xsql:query>

 SELECT id as h_id,

 userid AS "Posted_By",

 posting AS "Posting",

 TO_CHAR(posted,'dd Mon yyyy, hh24:mi') AS "H_Posted_On"

 FROM forum_topic_posting

 WHERE topicid = {@id}

 ORDER BY posted

 </xsql:query>

 </data>

</page>

This page does not need a paging section since we want the user to be able to read all the

sequential postings in a single page. Again, the breadcrumbs are selected from the database, but

this time we're getting information on both the forumname and the topicname, based on the

topicid passed into the page.

17.3.5 Using Recursive Named Templates

Clicking from the ForumTopics.xsql page on a particular topic name's hyperlink now brings us to

a list of all the postings for that topic as illustrated in Figure 17.35.

Figure 17.35. Display of all postings for a particular topic

This looks exactly like what we want; however, the text of the posting is a little jumbled for the

Java code example I posted. It would be nice to format the text in a monospaced font and

preserve the spacing and carriage returns so that a posted code example could be understood by

others reading the postings. It's not as easy as simply formatting the text as an HTML <pre> tag,

since preformatted text and table cells don't get along so nicely in HTML. The solution involves

replacing carriage returns in the text of the posting with an HTML
 tag so that a line break is

reflected without using the <pre> mode. Preserving indentation is a little tricky too since, in

general, whitespace in HTML is generally not treated as relevant, except in the <pre> sections

that we cannot use here. So, we create the following named template subroutines:

br-replace

Replaces carriage return with

sp-replace

Replaces consecutive spaces with non-breaking spaces

The br-replace and sp-replace named templates in Example 17.33 illustrate a general

technique that will likely come in handy for future applications: recursive named templates. We

need to use this more elaborate technique for generalized text substitution since the XPath

translate() function we saw in UtilData.xsl only allows one character x to be substituted by

another character y. If we study the br-replace template, we see that it accepts a parameter

named text. This will contain the text passed in by the invoking template for which carriage

returns need to be substituted by
 tags.

Example 17.33. Library Stylesheet of Text-Formatting

Routines

<!-- UtilTest.xsl: Common text formatting routines -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <!-- Replace new lines with html
 tags -->

 <xsl:template name="br-replace">

 <xsl:param name="text"/>

 <xsl:variable name="cr" select="'
'"/>

 <xsl:choose>

 <!-- If the value of the $text parameter contains a carriage return... -->

 <xsl:when test="contains($text,$cr)">

 <!-- Return the substring of $text before the carriage return -->

 <xsl:value-of select="substring-before($text,$cr)"/>

 <!-- And construct a
 element -->

 <!--

 | Then invoke this same br-replace template again, passing the

 | substring *after* the carriage return as the new "$text" to

 | consider for replacement

 +-->

 <xsl:call-template name="br-replace">

 <xsl:with-param name="text" select="substring-after($text,$cr)"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$text"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

 <!-- Replace two consecutive spaces w/ 2 non-breaking spaces -->

 <xsl:template name="sp-replace">

 <xsl:param name="text"/>

 <xsl:variable name="sp"><xsl:text> </xsl:text></xsl:variable>

 <xsl:choose>

 <xsl:when test="contains($text,$sp)">

 <xsl:value-of select="substring-before($text,$sp)"/>

 <xsl:text> </xsl:text>

 <xsl:call-template name="sp-replace">

 <xsl:with-param name="text" select="substring-after($text,$sp)"/>

 </xsl:call-template>

 </xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="$text"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

For convenience, the template selects a literal carriage return character represented by the

numerical character entity
 into a cr variable. This variable is used in the <xsl:choose>

element's clause:

<xsl:when test="contains($text,$cr)">

which uses the XPath contains() function to see if the value of the $text parameter contains

the value of the $cr parameter, that is, if $text contains a carriage return. If it contains a

carriage return, we select the value of the substring of $text located before the carriage return

using substring-before($text,$cr). We then create a literal
 element, followed by a

recursive invocation of the br-replace template, passing substring-after($text,$cr) to see

if the remainder of the string has any further carriage returns. In the template's

<xsl:otherwise> clause, which will be executed when $text contains no carriage returns, we

simply return the value of $text. If br-replace has been called recursively, this ends the

recursion. The sp-replace template is identical to br-replace except that it replaces the

occurrence of two consecutive space characters with two consecutive non-breaking space

characters represented by .

We apply these by adding a third column override template now for the ROW/Posting pattern in

our ColumnOverrides.xsl stylesheet, like this:

<!-- Anywhere a Posting appears in a <ROW>, Format it as Code -->

 <xsl:template match="ROW/Posting">

 <td>

 <xsl:text>Posted </xsl:text>

 <xsl:value-of select="../H_Posted_On"/>

 <hr/>

 <xsl:call-template name="br-replace">

 <xsl:with-param name="text">

 <xsl:call-template name="sp-replace">

 <xsl:with-param name="text" select="."/>

 </xsl:call-template>

 </xsl:with-param>

 </xsl:call-template>

 </td>

 </xsl:template>

posting will now show up with its carriage returns and spaces replaced by HTML-savvy

equivalents, allowing our posting to be displayed in a monospaced font without having to use a

<pre> element. Now we touch the timestamp on our main ForumStyle.xsl stylesheet to cause the

XSQL page processor to reload it along with all the stylesheets it includes or imports. We'll

immediately see the difference in the display of our posting when refreshing the TopicPosting.xsql

page as shown in Figure 17.36.

Figure 17.36. User text in postings with nicely wrapped,

monospaced font

That looks a lot better! Next, we can knock off the TodaysActiveTopics.xsql page by coming up

with the right couple of queries in the underlying XSQL page. The page for

TodaysActiveTopics.xsql is shown in Example 17.34.

Example 17.34. XSQL Page to Display Discussion Topics Active

Today

<?xml version="1.0"?>

<!-- TodaysActiveTopics.xsql: Listing of topics active today -->

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:action handler="Paging" rows-per-page="5">

 SELECT count(t.id) AS "total"

 FROM forum_topic t,

 forum f

 WHERE t.forumid = f.id

 AND t.lastpost BETWEEN TRUNC(SYSDATE) AND TRUNC(SYSDATE+1)

 </xsql:action>

 <breadcrumbs>

 <forumname>Active Topics Today</forumname>

 </breadcrumbs>

 <data>

 <xsql:query skip-rows="{@paging-skip}" max-rows="{@paging-max}">

 SELECT t.id AS h_id,

 t.title AS "Topic",

 f.name AS "Forum"

 FROM forum_topic t,

 forum f

 WHERE t.forumid = f.id

 AND t.lastpost BETWEEN TRUNC(SYSDATE) AND TRUNC(SYSDATE+1)

 ORDER BY t.lastpost desc

 </xsql:query>

 </data>

</page>

Clicking on the Active Topics Today link from the Forums.xsql home page now shows us the list of

all topics across all forums that have been updated today as illustrated in Figure 17.37.

Figure 17.37. List of all active discussion topics across all

forums

17.3.6 Reusing Templates to Generate Forms

We need to build a few HTML forms based on the tasks for:

• Logging into the forum by providing a username

• Entering a new topic in a forum

• Posting a new reply to an existing forum topic

• Searching the forums

Since we designed the UtilDataForm.xsl stylesheet earlier in this chapter with templates to format

HTML forms based on a structural description, we can reuse it here. The abstract structure of our

page can be enhanced to allow an optional <dataform> section. By including the UtilDataForm.xsl

stylesheet in our ForumPageStructure.xsl and adding one additional xsl:apply-templates with

a select="dataform", like this:

<!-- ForumPageStructure.xsl: Transform the Abstract Structure of a <page> -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:import href="UtilData.xsl"/>

 <xsl:import href="ColumnOverrides.xsl"/>

 <xsl:include href="UtilBreadcrumbs.xsl"/>

 <xsl:include href="UtilActions.xsl"/>

 <xsl:include href="UtilDataForm.xsl"/>

 <xsl:include href="UtilPaging.xsl"/>

 <xsl:template match="page">

 <xsl:apply-templates select="breadcrumbs"/>

 <xsl:apply-templates select="actions"/>

 <xsl:apply-templates select="dataform"/>

 <xsl:apply-templates select="data"/>

 <xsl:if test="paging">

 <hr/>

 <center><xsl:apply-templates select="paging"/></center>

 </xsl:if>

 </xsl:template>

</xsl:stylesheet>

all of the HTML forms will be rendered automatically across the whole site.

The Login.xsql form requires a very simple form structure, so its XSQL page looks like this:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page xmlns:xsql="urn:oracle-xsql">

 <breadcrumbs>

 <forumname>Login</forumname>

 </breadcrumbs>

 <dataform target="Forums.xsql" submit="Login">

 <item type="text" name="userid" label="Your Email"/>

 </dataform>

</page>

With this in place, clicking on a link in the action bar like "Login to Enter a New Topic" brings us

to a login page like the one shown in Figure 17.38.

Figure 17.38. Simple login form

Notice that the target attribute indicates that the HTML form submission will be handled by our

home page, Forums.xsql. We need to add one additional XSQL action element to the top of the

Forums.xsql page to receive the userid parameter and set the forumuser cookie with its value:

<!-- Added to the top of the Forums.xsql page to set forumuser cookie -->

<xsql:set-cookie name="forumuser" value="{@userid}"

 ignore-empty-value="yes" only-if-unset="yes"/>

Now submitting the login page will set the cookie and show the user the list of discussion forums

again. At that point they will now see action links like "Enter a New Topic" and "Post a New Reply"

instead of the links asking them to log in.

Example 17.35 shows the EnterForumTopic.xsql page to create the form used for entering a new

topic in a forum.

Example 17.35. XSQL Page to Enter a New Topic in a Forum

<?xml version="1.0"?>

<!-- EnterForumTopic.xsql: Form to enter a new topic in a forum -->

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <breadcrumbs>

 <xsql:query>

 SELECT name as "forumname", id AS "forumid",

 'Enter a New Topic' AS "topicname"

 FROM forum

 WHERE id = {@id}

 </xsql:query>

 </breadcrumbs>

 <dataform target="ForumTopics.xsql" submit="Create Your New Topic">

 <item type="hidden" name="id">

 <xsql:include-param name="id"/>

 </item>

 <item type="text" name="userid" label="Your Email">

 <xsql:include-param name="forumuser"/>

 </item>

 <item type="text" name="title" size="60" label="Topic Subject"/>

 <item type="textarea" name="posting" size="60" label="Your Message"/>

 </dataform>

</page>

This defines a dataform with a hidden item, a text item, and a textarea. We indicate that the

HTML form should be posted to the ForumTopics.xsql page, and add the following extra XSQL

action element to the top of ForumTopics.xsql to handle the posted HTML form and insert it into

the forum_new_topic view.

<!-- Added to the top of the ForumTopics.xsql page to handle new posted topic -->

<xsql:insert-request table="forum_new_topic" transform="InsertPostedTopic.xsl"/>

When users are just browsing the ForumTopics.xsql page, this action element is a no-op.

We need an insert transformation to transform the XML document representing the posted HTML

form into the appropriate ROWSET structure for the forum_new_topic table. We can generate a

skeleton for this automatically by again using our GenerateInsertTransform.xsql page with the

XSQL command-line utility:

xsql GenerateInsertTransform.xsql

 InsertPostedTopic.xsl

 table=forum_new_topic

Making a few strategic edits to the skeleton, we fill in the /request/parameters pattern as the

main loop and fill in the appropriate relative patterns to plug in the right information for the

<FORUMID>, <TITLE>, <USERID>, and <POSTING> elements, as shown in Example 17.36.

Example 17.36. Insert Transform for the forum_new_topic

Table

<!-- Created by GenerateInsertTransform.xsl -->

<!-- InsertPostedTopic.xsl: Insert transform for forum_new_topic table -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Transform /request/parameters into ROWSET for forum_new_topic -->

 <xsl:template match="/">

 <ROWSET>

 <!-- XPath for repeating source rows -->

 <xsl:for-each select="/request/parameters">

 <ROW>

 <FORUMID>

 <xsl:value-of select="id"/>

 </FORUMID>

 <TITLE>

 <xsl:value-of select="title"/>

 </TITLE>

 <USERID>

 <xsl:value-of select="userid"/>

 </USERID>

 <POSTING>

 <xsl:value-of select="posting"/>

 </POSTING>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 </xsl:template>

</xsl:stylesheet>

Now we can click on "Enter a New Topic" and we'll see our EnterForumTopic.xsql HTML form

appear. It appears in Figure 17.39.

Figure 17.39. Form to enter a new discussion topic

The current userid from the forumuser cookie was selected in the XSQL data page as the content

of the dataform/item element for "Your Email," so this value defaults automatically. Submitting

the form now inserts the new posting and shows it at the top of the list of postings for the forum.

The database trigger we created on the forum_new_topic view silently does its job of inserting a

row into the forum_topic table and a row into the forum_topic_posting table. The database

trigger on forum_topic_posting automatically adjusts the number of postings and the lastpost

date for the forum.

The form to enter a reply to a posting should display a form, as well as the history of current

replies on the topic so the user formulating a reply can consult the trail of previous users'

thoughts. If we include both a <dataform> section and a <data> section in the XSQL page for

EnterForumTopicReply.xsql, our overarching ForumPageStructure.xsl stylesheet with its page

template will cause all the ingredients to fall perfectly into place. The EnterForumTopicReply.xsql

page appears in Example 17.37.

Example 17.37. XSQL Page to Post a Reply to a Forum Topic

<?xml version="1.0"?>

<!-- EnterForumTopicReply.xsql: Form to post a reply on a topic -->

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <breadcrumbs>

 <xsql:include-xsql href="ForumTopicLookup.xsql"/>

 </breadcrumbs>

 <dataform target="TopicPostings.xsql" submit="Post Your Reply">

 <item type="hidden" name="id">

 <xsql:include-param name="id"/>

 </item>

 <item type="text" name="userid" label="Your Email">

 <xsql:include-param name="forumuser"/>

 </item>

 <item type="textarea" name="posting" size="60" label="Reply"/>

 </dataform>

 <data>

 <xsql:include-xsql href="TopicPostingsQuery.xsql"/>

 </data>

</page>

We need to make changes to TopicPostings.xsql similar to what we did for the previous example

to handle the posted HTML form and insert it into the forum_topic_posting table. So we add an

<xsql:insert-request> to the top of TopicPostings.xsql:

<!-- Added to the top of the TopicPostings.xsql page

 to handle new posted topic -->

<xsql:insert-request table="forum_topic_posting"

 transform="InsertPostedReply.xsl"/>

Again employing our handy utility to create the skeleton insert transformation for the

forum_topic_posting table, we execute the command:

xsql GenerateInsertTransform.xsql InsertPostedReply.xsl table=forum_topic_posting

and edit the skeleton stylesheet to produce the InsertPostedReply.xsl transformation in Example

17.38.

Example 17.38. Insert Transform for the forum_topic_posting

Table

<!-- Created by GenerateInsertTransform.xsl -->

<!-- InsertPostedReply.xsl: Insert transform for forum_topic_posting table -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <!-- Transform /request/parameters into ROWSET for forum_topic_posting -->

 <xsl:template match="/">

 <ROWSET>

 <!-- XPath for repeating source rows -->

 <xsl:for-each select="page/ROWSET/ROW">

 <ROW>

<!-- Don't need this one because insert trigger handles its assignment

 <ID>

 <xsl:value-of select="ID"/>

 </ID>

-->

 <TOPICID>

 <xsl:value-of select="id"/>

 </TOPICID>

 <USERID>

 <xsl:value-of select="userid"/>

 </USERID>

<!-- Don't need this one because insert trigger handles its assignment

 <POSTED>

 <xsl:value-of select="POSTED"/>

 </POSTED>

-->

 <POSTING>

 <xsl:value-of select="posting"/>

 </POSTING>

 </ROW>

 </xsl:for-each>

 </ROWSET>

 </xsl:template>

</xsl:stylesheet>

Note that since our table's BEFORE INSERT trigger will automatically assign the ID and POSTED

columns, we can comment them out of the insert transformation template or remove these

sections completely.

We're ready now to try replying to a posting. Clicking on the "Post a New Reply" link from the

TopicPostings.xsql page, we'll see our new form, as shown in Figure 17.40.

Figure 17.40. Form to let user post a reply on a discussion

topic

Notice that our dataform structure from the underlying XSQL page was transformed into the

HTML form as desired, and the data section containing the query to produce the list of current

postings in date order is formatted by the data template. Since the query produces a

ROW/Posting element, the ROW/Posting template we created in our ColumnOverrides.xsl

stylesheet formats the Posting as HTML-friendly code listings, just as it did on the

TopicPostings.xsql page.

We're nearly done. The last feature to build is sitewide searching.

17.3.7 Dynamic Queries Using Ref Cursors

We create a Search.xsql page in Example 17.39 to display the search form. It uses several

list-style items instead of just text and textarea like the earlier forms.

Example 17.39. XSQL Page to Drive the Forum Search Criteria

Form

<?xml version="1.0"?>

<!-- Search.xsql: Forum search criteria form -->

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <breadcrumbs>

 <forumname>Search</forumname>

 </breadcrumbs>

 <dataform target="ForumSearchResults.xsql" submit="Search">

 <xsql:set-page-param name="default" value="{@id}"/>

 <item type="text" name="searchFor" size="30" label="Search For"/>

 <item type="list" name="searchIn" label="In">

 <ROWSET>

 <ROW><VALUE>E</VALUE><DISPLAY>Entire Message</DISPLAY></ROW>

 <ROW><VALUE>S</VALUE><DISPLAY>Subject Only</DISPLAY></ROW>

 </ROWSET>

 </item>

 <item type="list" name="forum" label="In Forum">

 <xsql:include-param name="default"/>

 <xsql:query>

 SELECT id AS value, name AS display

 FROM forum

 UNION ALL

 SELECT -1, 'All Forums'

 FROM dual

 ORDER BY 1

 </xsql:query>

 </item>

 <item type="list" name="daysAgo" label="By Date">

 <ROWSET>

 <ROW><VALUE>0</VALUE><DISPLAY>Any Date</DISPLAY></ROW>

 <ROW><VALUE>-1</VALUE><DISPLAY>Since Yesterday</DISPLAY></ROW>

 <ROW><VALUE>-7</VALUE><DISPLAY>In Past Week</DISPLAY></ROW>

 <ROW><VALUE>-14</VALUE><DISPLAY>In Past Two Weeks</DISPLAY></ROW>

 <ROW><VALUE>-21</VALUE><DISPLAY>In Past Three Weeks</DISPLAY></ROW>

 </ROWSET>

 </item>

 </dataform>

</page>

Two of the dataform/items use a static set of nested <ROWSET> and <ROW> elements to furnish the

data for the list "In" and "By Date" lists on the form. We do this because there's no sense in

querying the data if it will always be static. On the other hand, the dataform/items for the "In

Forum" list produces a list of forums by leveraging an <xsql:query> with the forum ID passed in

as a parameter since new forums might be added at any time. In case no item ID is passed into

the Search.xsql page, the query also includes a UNION ALL with the statement:

SELECT -1, 'All Forums' FROM dual

to include that as a default choice in the list.

When clicking the search action from within a forum, the forum ID is passed as a parameter to the

search.xsql page, and the default behavior is to search for text only within the current forum. If

the user clicks on "SEARCH from the Forum list," no ID is passed, so the "All Forums" entry we

added becomes the default instead.

Our Search.xsql form then will look like Figure 17.41.

Figure 17.41. Form allowing user to search the discussion

forum

The Search.xsql page targets the ForumSearchResults.xsql page so that the search form

parameters can be used to query the database and present the search results. What query do we

include in the ForumSearchResults.xsql page? The query will need to look different depending on

what combination of search form parameters the user has set. As we learned in Chapter 15,

<xsql:ref-cursor-function> handles all the dynamic aspects inside a stored package function

that programmatically determines the query statement, executes that dynamic query, and

returns a cursor to the XSQL page to render the results as XML.

Since we want to be able to page through query results, we need to pass the various parameters

that affect the query to the stored package function, and have it return us both the actual rows

retrieved by the dynamic query and a count we can use as the count query of our Paging action

handler. Example 17.40 shows the ForumSearch package that gets the job done.

Example 17.40. Package to Handle Dynamic Discussion Forum

Site Search

CREATE OR REPLACE PACKAGE ForumSearch IS

 TYPE ref_cursor IS REF CURSOR;

 FUNCTION Find(forumid NUMBER := -1,

 daysAgo NUMBER := 0,

 searchIn VARCHAR2 := 'S',

 searchFor VARCHAR2 := NULL) RETURN ref_cursor;

 FUNCTION Hits(forumid NUMBER := -1,

 daysAgo NUMBER := 0,

 searchIn VARCHAR2 := 'S',

 searchFor VARCHAR2 := NULL) RETURN NUMBER;

END;

CREATE OR REPLACE PACKAGE BODY ForumSearch IS

 FUNCTION Query(forumid NUMBER := -1,

 daysAgo NUMBER := 0,

 searchIn VARCHAR2 := 'S',

 searchFor VARCHAR2 := NULL) RETURN VARCHAR2 IS

 query VARCHAR2(2000);

 noCriteriaSupplied BOOLEAN := LTRIM(RTRIM(searchFor)) IS NULL;

 searchEntireMessage BOOLEAN := UPPER(searchIn)='E';

 restrictToForum BOOLEAN := forumid > 0;

 restrictByDate BOOLEAN := daysAgo < 0;

 BEGIN

 query :=

 'SELECT distinct

 t.id AS h_id,

 t.title AS "Topic",

 t.userid AS "Started_By",

 t.postings-1 AS "Replies",

 to_char(t.lastpost,''dd Mon YYYY, hh24:mi'') AS "Last_Post",

 f.name AS "Forum_Name"

 FROM forum_topic t,

 forum_topic_posting p,

 forum f

 WHERE t.id = p.topicid

 AND t.forumid = f.id';

 IF searchEntireMessage THEN

 query := query ||' AND (CONTAINS(p.posting, '''||searchFor||''')>0 '||

 ' OR UPPER(t.title) LIKE UPPER(''%'||searchFor||'%''))';

 ELSE

 query := query || ' AND UPPER(t.title) LIKE UPPER(''%'||searchFor||'%'')';

 END IF;

 IF restrictToForum THEN

 query := query ||' AND t.forumid = '||forumid;

 END IF;

 IF restrictByDate THEN

 query := query ||' AND p.posted > SYSDATE + '||daysAgo;

 END IF;

 IF noCriteriaSupplied THEN

 query := query ||' AND 1=2';

 END IF;

 RETURN query;

 END;

 FUNCTION Hits(forumid NUMBER := -1,

 daysAgo NUMBER := 0,

 searchIn VARCHAR2 := 'S',

 searchFor VARCHAR2 := NULL) RETURN NUMBER IS

 the_cursor ref_cursor;

 the_count NUMBER := 0;

 BEGIN

 OPEN the_cursor FOR 'select count(1) from ('||

 Query(forumid,daysAgo,searchIn,searchFor)||

 ')';

 FETCH the_cursor INTO the_count;

 CLOSE the_cursor;

 RETURN the_count;

 END;

 FUNCTION Find(forumid NUMBER := -1,

 daysAgo NUMBER := 0,

 searchIn VARCHAR2 := 'S',

 searchFor VARCHAR2 := NULL) RETURN ref_cursor IS

 the_cursor ref_cursor;

 my_sal NUMBER := 1;

 BEGIN

 OPEN the_cursor FOR Query(forumid,daysAgo,searchIn,searchFor)||

 ' order by 5 desc';

 RETURN the_cursor;

 END;

END;

The package-private Query() function figures out the SQL statement based on all the

parameters passed in. Notice that if the user has indicated a search not just in the topic title, but

in the message body as well, the Query() function appends a WHERE clause using an interMedia

CONTAINS query to do a text search through the postings.

The public Find() function returns the ref cursor of query results returned by the dynamically

determined query, while the public Hits() function returns the count of the number of rows

retrieved by the dynamically determined query.

With all the heavy lifting being done behind the scenes by this database package, the XSQL page

in Example 17.41 looks pretty simple.

Example 17.41. XSQL Page to Drive Discussion Forum Search

Results

<?xml version="1.0"?>

<!-- ForumSearchResults.xsql: Paging display of search 'hits' -->

<?xml-stylesheet type="text/xsl" href="ForumStyle.xsl"?>

<page connection="xmlbook" xmlns:xsql="urn:oracle-xsql">

 <xsql:action handler="Paging" rows-per-page="5"

 url-params="forum daysAgo searchIn searchFor">

 SELECT ForumSearch.Hits({@forum}+0,

 {@daysAgo}+0,

 NVL('{@searchIn}','S') ,

 '{@searchFor}') AS hits

 from dual

 </xsql:action>

 <breadcrumbs>

 <forumname url="Search.xsql">Search</forumname>

 <topicname>Results</topicname>

 </breadcrumbs>

 <data>

 <xsql:ref-cursor-function skip-rows="{@paging-skip}"

 max-rows="{@paging-max}">

 ForumSearch.Find(forumid => {@forum}+0 ,

 daysAgo => {@daysAgo}+0 ,

 searchIn => NVL('{@searchIn}','S') ,

 searchFor => '{@searchFor}')

 </xsql:ref-cursor-function>

 </data>

</page>

The paging handler's count query selects the value of the ForumSearch.Hits() function from

dual to determine the total row count, and the <xsql:ref-cursor-function> action element

includes the stored package function name with arguments. In order to elegantly handle the case

in which no parameter value is passed in, we're using a combination of adding zero to number

arguments and the NVL() function for string arguments.

We create the functional index to allow us to quickly search the topic headings in a

case-insensitive way:

CREATE INDEX forum_topic_title_idx ON forum_topic(UPPER(title));

and create an interMedia index using the autosectioner we learned about in Chapter 13, to enable

searching on text or XML elements that might be contained in the posting document body:

CREATE INDEX forum_topic_posting_idx ON forum_topic_posting(posting)

INDEXTYPE IS ctxsys.contextPARAMETERS ('section group ctxsys.auto_section_group');

With that, we're done. We can now click on the Search action link on any page where it appears,

enter search criteria using the Search.xsql form, and then browse the results of the dynamically

determined query in a way that's totally consistent with every other page in the site. Figure 17.42

illustrates browsing the search results.

Figure 17.42. Browsing results from a cross-forum search

We've come a long way in a short time. We've directly experienced several examples now of

separating data from presentation and pragmatically implementing it using a combination of

Oracle XSQL Pages to handle the assembly of the data page and XSLT stylesheets to handle the

modular presentation for anything from one page to an entire web site.

17.3.8 Unifying Our News Portal and Discussion Forum

As a final fun project, let's tie together the news portal and the discussion forum we've built with

an XSLT-driven tab-page system. Just as we did earlier for the abstract structure of pages, we use

a Site.xsql page, shown in Example 17.42, to reflect the structure of our site:

Example 17.42. XSQL Page to Drive Tab Set

<?xml version="1.0"?>

<!-- Site.xsql: Provide tabset structure for home page -->

<?xml-stylesheet type="text/xsl" href="tab.xsl"?>

<site elt="query" xmlns:xsql="urn:oracle-xsql">

 <!--

 | Pass the values of current "tab" parameter (if passed in explicitly),

 | the "lasttab" cookie (if set), and the name of this page to the

 | XSLT stylesheet that renders the tab bar.

 +-->

 <xsql:set-stylesheet-param name="thispage" value="site.xsql"/>

 <xsql:set-stylesheet-param name="tab" value="{@tab}" ignore-empty-value="yes"/>

 <xsql:set-stylesheet-param name="lasttab" value="{@lasttab}"

 ignore-empty-value="yes"/>

 <!-- Remember the last tab clicked in an HTTP Cookie -->

 <xsql:set-cookie name="lasttab" value="{@tab}" ignore-empty-value="yes"/>

 <!-- This is static XML that provides the tab structure -->

 <tabs>

 <tab id="News" name="News"/>

 <tab id="Forums" name="Forums"/>

 </tabs>

</site>

We're using some <xsql:set-stylesheet-param> elements to pass a few tab-related

parameters to the Tab.xsl stylesheet in Example 17.43 so the stylesheet can know the currently

selected tab. The Site.xsql page also uses <xsql:set-cookie> to keep track of the latest tab

chosen by the user. Tab.xsl contains templates to match the site element as well as named

templates that match the selected and unselected tabs. Although our site will only have the

"News" and "Forums" tabs above, you can easily add more tabs by changing the structural

information in the site/tabs section of your data page.

Example 17.43. Stylesheet to Render a Set of HTML Tabs for a

Frameset

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="html" indent="no"/>

 <xsl:param name="tab"/> <!-- Allow setting tab externally -->

 <xsl:param name="lasttab"/>

 <xsl:param name="thispage"/>

 <xsl:variable name="i" select="'images/'"/> <!-- Prefix for Image URLs -->

 <xsl:variable name="cur"> <!-- Determine the current tab -->

 <xsl:choose>

 <xsl:when test="$tab"><xsl:value-of select="$tab"/></xsl:when>

 <xsl:when test="$lasttab"><xsl:value-of select="$lasttab"/></xsl:when>

 <xsl:otherwise>

 <xsl:value-of select="/site/tabs/tab[1]/@id"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:variable>

 <xsl:template match="/"> <!-- ROOT Template -->

 <html>

 <head>

 <link rel="stylesheet" type="text/css" href="site.css"/>

 </head>

 <body bdgcolor="#FFFFFF" leftmargin="0" topmargin="0">

 <xsl:apply-templates/>

 </body>

 </html>

 </xsl:template>

 <!-- Template matching the <site> structure in the XSQL page -->

 <xsl:template match="site">

 <table width="100%" cellpadding="0" cellspacing="0" border="0">

 <tr>

 <td align="LEFT" rowspan="2">

 </td>

 </tr>

 <tr>

 <td width="98%"> </td>

 <td valign="bottom" align="right">

 <table border="0" cellpadding="0" cellspacing="0">

 <tr>

 <td align="right">

 <xsl:apply-templates select="tabs/tab"/>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 </table>

 <table width="100%" cellpadding="0" cellspacing="0" border="0">

 <tr>

 <td align="right" valign="top" bgcolor="white" height="21" width="100%">

 </td>

 </tr>

 </table>

 </xsl:template>

 <xsl:template match="tab"> <!-- Match a regular tab -->

 <td bgcolor="#B6B687" width="1%" align="LEFT" valign="TOP"><img

 src="{$i}tab_open.gif" height="21" width="13" border="0" /></td>

 <td width="1%" bgcolor="#B6B687">

 <a target="contents" href="{@id}.xsql"

 onclick="location.href='site.xsql?tab={@id}'">

 <xsl:value-of select="@name"/>

 </td>

 <td bgcolor="#B6B687" width="1%" align="RIGHT" valign="TOP">

 </td>

 </xsl:template>

 <xsl:template match="tab[@id=$cur]" priority="10"><!-- Match selected tab -->

 <td bgcolor="#336699" width="1%" align="LEFT" valign="TOP">

 </td>

 <td width="1%" bgcolor="#336699">

 <xsl:value-of select="@name"/>

 </td>

 <td bgcolor="#336699" width="1%" align="RIGHT" valign="TOP">

 </td>

 </xsl:template>

</xsl:stylesheet>

And finally, a little index.html page ties the tabs frame and defaults the News.xsql page to be the

default content in the main section of the page:

<html>

 <head>

 <title>XML Book XSQL Sample Site</title>

 </head>

 <frameset border="no" rows="90,*">

 <frame frameborder=no noresize name="tabs" src="site.xsql">

 <frame frameborder=no name="contents" src="News.xsql">

 </frameset>

</html>

Figure 17.43 illustrates what the user now sees when logged into the site, with the additional tabs

in place. The news portal page is the initial tab displayed.

Figure 17.43. Final news portal and discussion application

with tabs

Clicking on the Forums tab causes Forums.xsql to be requested in the main content frame,

producing our discussion forum home page on that tab.

And with this final touch of grace, our journey is complete.

In conclusion, we've demonstrated:

• The speed, functionality, and reliability of the Oracle database

• The power of XML as a universal standard for data exchange

• The flexibility of XSLT to transform data into any format required

These factors give us a real leg up in the race to build the next great web application. Throughout

this book, we've learned how the powerful features of XML, XSLT, and Oracle8i—in combination

with Oracle XML technologies like the XML Parser, XSLT processor, XML SQL Utility, and XSQL

Pages—allow us to:

• Extract data from a database in XML format

• Search and transform XML data using XSLT and XPath

• Send and receive XML datagrams over the Web

• Store datagrams of any shape and size in the database

• Search efficiently through millions of XML documents

• Assemble XML information and transform it for delivery in any needed format

Now, excited by the opportunities that XML and the Oracle XML technologies enable, all that's left

to do is to "go forth and transform!"

Part IV: Appendixes

This part of the book contains the following reference appendixes:

Appendix A, explains the source code for the PL/SQL helper packages we built in Chapter 3: xml,

xmldoc, xpath, xslt, and http.

Appendix B, describes how to install the XSQL Servlet that you can use with any servlet engine

(Apache JServ, JRun, etc.).

Appendix C, graphically summarizes the relationships between key XML concepts and the family

of XML-related standards that support them.

Appendix D, provides cheat sheets on XML, XSLT, and XPath syntax.

Appendix A. XML Helper Packages

This appendix includes the PL/SQL package implementations for the XML helper packages we

used back in Chapter 5:

• xml

• xmldoc

• xpath

• xslt

• http

This appendix also contains instructions on how to install these packages in your Oracle8i

database.

A.1 Installing the XML Helper Packages

To install all of the XML helper packages we used in Chapter 5, follow these steps:

1. Change directory to the ./examples/appa directory, which contains the files for this

appendix.

2. Connect as SYS using SQL*Plus and run the install_sys_helper_packages.sql:

sqlplus sys/change_on_install @install_sys_helper_packages.sql

3. Compile PropertyHelper.java and use loadjava to load it into the database as SYS:
4. javac PropertyHelper.java

loadjava -verbose -resolve -user sys/change_on_install PropertyHelper.class

5. Connect as XMLBOOK using SQL*Plus and run the install_helper_packages.sql script:

sqlplus xmlbook/xmlbook @install_helper_packages.sql:

A.2 Source Code for the XML Helper Packages

The xml, xmldoc, xpath, and xslt packages depend on having the Oracle XML Parser for PL/SQL

installed. (See Chapter 5 for installation details). In addition, since the Oracle XML Parser for

PL/SQL wraps the Oracle XML Parser for Java, one of the following must be true before you can

successfully compile and run these packages:

• You must have already:

o Installed the Oracle XML Parser for Java in your schema

o Installed the Oracle XML Parser for PL/SQL packages in your schema, and

o Been granted the JAVAUSERPRIV privilege to execute Java code inside Oracle8i

• Alternatively, you must have been granted EXECUTE permission on the Oracle XML Parser

for PL/SQL packages installed in another schema.

A.2.1 The xml Package

The xml package provides key functionality for parsing XML documents from VARCHAR2, CLOB,

BFILE, and URL sources. It uses the Oracle XML Parser for PL/SQL's xmlparser package. To use

these routines, perform these steps:

1. Call one of the xml.parse functions to parse your XML document

2. Work with the returned xmldom.DOMDocument

3. Call xml.freeDocument(yourDoc) to free the memory used by the parsed representation

of your XML document

It is safe to cache the instances of xmldom.DOMDocument in PL/SQL package-level variables for

parsed XML documents you need to use over and over during the same database session, but

remember that the memory they occupy is not freed until you explicitly call xml.freeDocument.

Note that if you need to parse an XML document from a URL outside a firewall, or parse any XML

document with external references (external entities or DTD, for example) based on URLs outside

a firewall, you must call:

xml.setHttpProxy('proxyServerName');

once in your current database session before using the parse functions. The various parse

functions handle both creating and freeing the xmlparser.parser object used to create the

in-memory DOM tree representation of your parsed XML file.

Here is the source code for the xml package:

CREATE OR REPLACE PACKAGE xml AS

 -- Set HTTP proxy server in case you reference documents

 -- or DTDs outside a corporate firewall

 PROCEDURE setHttpProxy(machinename VARCHAR2,

 port VARCHAR2 := '80');

 -- Parse and return an XML document

 FUNCTION parse(xml VARCHAR2) RETURN xmldom.DOMDocument;

 FUNCTION parse(xml CLOB) RETURN xmldom.DOMDocument;

 FUNCTION parse(xml BFILE) RETURN xmldom.DOMDocument;

 -- Parse and return an XML Document by URL

 FUNCTION parseURL(url VARCHAR2) RETURN xmldom.DOMDocument;

 -- Free the memory used by an XML document

 PROCEDURE freeDocument(doc xmldom.DOMDocument);

END;

CREATE OR REPLACE PACKAGE BODY xml AS

 parse_error EXCEPTION;

 PRAGMA EXCEPTION_INIT(parse_error,-20100);

 http_proxy_host VARCHAR2(200);

 http_proxy_port VARCHAR2(5) := '80';

 PROCEDURE setHttpProxy(machinename VARCHAR2, port VARCHAR2 := '80') IS

 BEGIN

 http_proxy_host := machinename;

 http_proxy_port := port;

 END;

 -- Set HTTP Proxy for Java programs in the current session.

 PROCEDURE setProxy IS

 BEGIN

 IF http_proxy_host IS NOT NULL THEN

 http_util.setProxy(http_proxy_host,http_proxy_port);

 END IF;

 END;

 --

 -- Parse functions parse an XML document and return a handle to

 -- the in-memory DOM Document representation of the parsed XML.

 -- Call freeDocument() when you're done using the document returned

 -- by the function.

 --

 FUNCTION parse(xml VARCHAR2) RETURN xmldom.DOMDocument IS

 retDoc xmldom.DOMDocument;

 parser xmlparser.Parser;

 BEGIN

 IF xml IS NULL THEN RETURN NULL; END IF;

 setProxy;

 parser := xmlparser.newParser;

 xmlparser.parseBuffer(parser,xml);

 retDoc := xmlparser.getDocument(parser);

 xmlparser.freeParser(parser);

 RETURN retDoc;

 EXCEPTION

 WHEN parse_error THEN

 xmlparser.freeParser(parser);

 RETURN retdoc;

 END;

 FUNCTION parse(xml BFILE) RETURN xmldom.DOMDocument IS

 retDoc xmldom.DOMDocument;

 parser xmlparser.Parser;

 b BFILE := xml;

 c CLOB;

 BEGIN

 IF xml IS NULL THEN RETURN NULL; END IF;

 setProxy;

 parser := xmlparser.newParser;

 dbms_lob.createtemporary(c,cache=>FALSE);

 dbms_lob.fileOpen(b);

 dbms_lob.loadFromFile(dest_lob => c,

 src_lob => b,

 amount => dbms_lob.getLength(b));

 dbms_lob.fileClose(b);

 xmlparser.parseCLOB(parser,c);

 retDoc := xmlparser.getDocument(parser);

 dbms_lob.freetemporary(c);

 xmlparser.freeParser(parser);

 RETURN retDoc;

 EXCEPTION

 WHEN parse_error THEN

 dbms_lob.freetemporary(c);

 xmlparser.freeParser(parser);

 RETURN retdoc;

 END;

 FUNCTION parse(xml CLOB) RETURN xmldom.DOMDocument IS

 retDoc xmldom.DOMDocument;

 parser xmlparser.Parser;

 BEGIN

 IF xml IS NULL THEN RETURN NULL; END IF;

 setProxy;

 parser := xmlparser.newParser;

 xmlparser.parseCLOB(parser,xml);

 retDoc := xmlparser.getDocument(parser);

 xmlparser.freeParser(parser);

 RETURN retDoc;

 EXCEPTION

 WHEN parse_error THEN

 xmlparser.freeParser(parser);

 RETURN retdoc;

 END;

 FUNCTION parseURL(url VARCHAR2) RETURN xmldom.DOMDocument IS

 xmldoc xmldom.DOMDocument;

 BEGIN

 IF url IS NULL THEN RETURN NULL; END IF;

 setProxy;

 RETURN xmlparser.parse(url);

 END;

 -- Free the Java objects associated with an in-memory DOM tree

 PROCEDURE freeDocument(doc xmldom.DOMDocument) IS

 BEGIN

 xmldom.freeDocument(doc);

 END;

END;

A.2.2 The xmldoc Package

The xmldoc package provides three key functions for saving well-formed XML documents to, and

retrieving them from, an xml_documents table. A database trigger on the xml_documents table

manages a timestamp column indicating the last time a new XML document was saved in the

table. Each XML document is saved as a CLOB and is accessed by a document name that serves

as the primary key for the document. For convenience, you can retrieve an existing document in

the table by using:

xmldoc.get()

Retrieves an XML document

xmldoc.getAsText()

Retrieves a string

xmldoc.getAsClob()

Retrieves a CLOB

The xmldoc.save method uses the xml helper package described in the previous section to

xml.parse the document being saved, checking it for XML well-formedness in the process. Any

well-formedness errors prevent the document from being saved. If the document is well-formed,

the code uses the xmldom.writeToClob method to save the XML document in the

xml_documents table's xmldoc CLOB column.

If the documents you are saving contain external references to URLs outside your corporate

firewall, you'll need to call xml.setHttpProxy once in your current database session before using

the xmldoc routines.

Here is the source code for the xmldoc package:

CREATE OR REPLACE PACKAGE xmldoc AS

 -- Save an XML document (parsing it first if necessary) into the

 -- xml_documents table with a given document name.

 PROCEDURE save(name VARCHAR2,

 xmldoc VARCHAR2,

 docommit BOOLEAN := TRUE);

 PROCEDURE save(name VARCHAR2,

 xmldoc CLOB,

 docommit BOOLEAN := TRUE);

 PROCEDURE save(name VARCHAR2,

 xmldoc BFILE,

 docommit BOOLEAN := TRUE);

 PROCEDURE save(name VARCHAR2,

 xmldoc xmldom.DOMDocument,

 docommit BOOLEAN:=TRUE);

 -- Get an XML document by name from the xml_documents table

 FUNCTION get(name VARCHAR2) RETURN xmldom.DOMDocument;

 -- Get an XML document as a CLOB by name from the xml_documents table

 FUNCTION getAsCLOB(name VARCHAR2) RETURN CLOB;

 -- Get an XML document as a VARCHAR2 by name from the xml_documents table

 FUNCTION getAsText(name VARCHAR2) RETURN VARCHAR2;

 -- Remove an XML document by name from the xml_documents table

 PROCEDURE remove(name VARCHAR2, docommit BOOLEAN := TRUE);

 -- Test if a named document exists in the xml_documents table

 FUNCTION docExists(name VARCHAR2) RETURN BOOLEAN;

END;

CREATE OR REPLACE PACKAGE BODY xmldoc AS

 FUNCTION get(name VARCHAR2, createNew BOOLEAN) RETURN CLOB IS

 c CLOB;

 create_new_clob EXCEPTION;

 BEGIN

 IF createNew THEN

 remove(name);

 RAISE create_new_clob;

 END IF;

 SELECT xmldoc INTO c FROM xml_documents WHERE docname = name;

 RETURN c;

 EXCEPTION

 WHEN NO_DATA_FOUND OR create_new_clob THEN

 IF createNew THEN

 INSERT INTO xml_documents(docname,xmldoc)

 VALUES(name,empty_clob())

 RETURNING xmldoc INTO c;

 RETURN c;

 ELSE

 RETURN NULL;

 END IF;

 END;

 FUNCTION getAsCLOB(name VARCHAR2) RETURN CLOB IS

 BEGIN

 RETURN get(name,FALSE);

 END;

 FUNCTION getAsText(name VARCHAR2) RETURN VARCHAR2 IS

 BEGIN

 RETURN dbms_lob.substr(getAsCLOB(name));

 END;

 FUNCTION get(name VARCHAR2) RETURN xmldom.DOMDocument IS

 BEGIN

 RETURN xml.parse(getAsCLOB(name));

 END;

 PROCEDURE save(name VARCHAR2,xmldoc VARCHAR2,docommit BOOLEAN:=TRUE) IS

 c CLOB := get(name, createNew=>TRUE);

 doc xmldom.DOMDocument;

 BEGIN

 doc := xml.parse(xmldoc);

 xmldom.writeToClob(doc,c);

 xml.freeDocument(doc);

 IF docommit THEN commit; END IF;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(doc); RAISE;

 END;

 PROCEDURE save(name VARCHAR2,xmldoc CLOB,docommit BOOLEAN:=TRUE) IS

 c CLOB := get(name, createNew=>TRUE);

 doc xmldom.DOMDocument;

 BEGIN

 doc := xml.parse(xmldoc);

 xmldom.writeToClob(doc,c);

 xml.freeDocument(doc);

 IF docommit THEN commit; END IF;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(doc); RAISE;

 END;

 PROCEDURE save(name VARCHAR2,xmldoc BFILE,docommit BOOLEAN:=TRUE) IS

 c CLOB := get(name, createNew=>TRUE);

 doc xmldom.DOMDocument;

 BEGIN

 doc := xml.parse(xmldoc);

 xmldom.writeToClob(doc,c);

 xml.freeDocument(doc);

 IF docommit THEN commit; END IF;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(doc); RAISE;

 END;

 PROCEDURE save(name VARCHAR2,xmldoc xmldom.DOMDocument,docommit BOOLEAN:=TRUE) IS

 c CLOB := get(name, createNew=>TRUE);

 BEGIN

 xmldom.writeToClob(xmldoc,c);

 IF docommit THEN commit; END IF;

 END;

 PROCEDURE remove(name VARCHAR2,docommit BOOLEAN := TRUE) IS

 c CLOB := get(name, createNew=>FALSE);

 BEGIN

 DELETE FROM xml_documents WHERE docname = name;

 IF docommit THEN commit; END IF;

 END;

 FUNCTION docExists(name VARCHAR2) RETURN BOOLEAN IS

 BEGIN

 RETURN getAsCLOB(name) IS NOT NULL;

 END;

END;

A.2.3 The xpath Package

The xpath package provides four key functions used to exploit XPath expressions on in-memory

XML documents:

xpath.valueOf()

Retrieves the value of an XPath expression

xpath.extract()

Extracts the XML markup of nodes matching an XPath expression

xpath.test()

Tests if an XPath expression is true with respect to a node

xpath.selectNodes()

Selects a list of nodes matching an XPath expression

Here is the source code for the xpath package:

CREATE OR REPLACE PACKAGE xpath AS

 -- Return the value of an XPath expression, optionally normalizing whitespace

 FUNCTION valueOf(doc xmldom.DOMDocument,

 xpath VARCHAR2,

 normalize BOOLEAN:=FALSE) RETURN VARCHAR2;

 FUNCTION valueOf(node xmldom.DOMNode,

 xpath VARCHAR2,

 normalize BOOLEAN:=FALSE) RETURN VARCHAR2;

 FUNCTION valueOf(doc VARCHAR2,

 xpath VARCHAR2,

 normalize BOOLEAN := FALSE) RETURN VARCHAR2;

 FUNCTION valueOf(doc CLOB,

 xpath VARCHAR2,

 normalize BOOLEAN := FALSE) RETURN VARCHAR2;

 -- Test whether an XPath predicate is true

 FUNCTION test(doc xmldom.DOMDocument,xpath VARCHAR2) RETURN BOOLEAN;

 FUNCTION test(node xmldom.DOMNode, xpath VARCHAR2) RETURN BOOLEAN;

 FUNCTION test(doc VARCHAR2, xpath VARCHAR2) RETURN BOOLEAN;

 FUNCTION test(doc CLOB, xpath VARCHAR2) RETURN BOOLEAN;

 -- Extract an XML fragment for set of nodes matching an XPath pattern

 -- optionally normalizing whitespace (default is to normalize it)

 FUNCTION extract(doc xmldom.DOMDocument,

 xpath VARCHAR2:='/',

 normalize BOOLEAN:=TRUE) RETURN VARCHAR2;

 FUNCTION extract(doc VARCHAR2,

 xpath VARCHAR2 := '/',

 normalize BOOLEAN := TRUE) RETURN VARCHAR2;

 FUNCTION extract(doc CLOB,

 xpath VARCHAR2 := '/',

 normalize BOOLEAN := TRUE) RETURN VARCHAR2;

 -- Select a list of nodes matching an XPath pattern

 -- Note: DOMNodeList returned has a zero-based index

 FUNCTION selectNodes(doc xmldom.DOMDocument,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

 FUNCTION selectNodes(node xmldom.DOMNode,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

 FUNCTION selectNodes(doc VARCHAR2,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

 FUNCTION selectNodes(doc CLOB,

 xpath VARCHAR2) RETURN xmldom.DOMNodeList;

END;

CREATE OR REPLACE PACKAGE BODY xpath AS

 -- "Casts" a DOMDocument as a DOMNode

 FUNCTION toNode(doc xmldom.DOMDocument) RETURN xmldom.DOMNode IS

 BEGIN RETURN xmldom.makeNode(doc); END;

 --

 -- Removes extraneous whitespace from a string.

 -- Translates CR, LF, and TAB to spaces, then leaves only a single

 -- space between characters.

 --

 FUNCTION normalizeWS(v VARCHAR2)

 RETURN VARCHAR2 IS

 result VARCHAR2(32767);

 BEGIN

 result := RTRIM(LTRIM(TRANSLATE(v,CHR(13)||CHR(8)||CHR(10),' ')));

 WHILE (INSTR(result,' ') > 0) LOOP

 result := REPLACE(result,' ',' ');

 END LOOP;

 RETURN result;

 END;

 --

 -- Selects nodes matching an XPath expression and returns the string

 -- consisting of the XML serialization of each matching node in

 -- document order. Passing an XPath of '/' matches the single root node

 -- and so the entire document is serialized to XML markup. If the

 -- normalizeWhitespace is set to TRUE (the default) then the string

 -- is stripped of extraneous whitespace before being returned.

 --

 FUNCTION selectAndPrint(doc xmldom.DOMDocument,xpath VARCHAR2,

 normalizeWhitespace BOOLEAN := TRUE)

 RETURN VARCHAR2 IS

 retval VARCHAR2(32767);

 result VARCHAR2(32767);

 curNode xmldom.DOMNode;

 nodeType NATURAL;

 matches xmldom.DOMNodeList;

 BEGIN

 IF xpath = '/' THEN

 xmldom.writeToBuffer(doc,retval);

 ELSE

 matches := xslprocessor.selectNodes(toNode(doc),xpath);

 FOR i IN 1..xmldom.getLength(matches) LOOP

 curNode := xmldom.item(matches,i-1);

 xmldom.writeToBuffer(curNode,result);

 nodeType := xmldom.getNodeType(curNode);

 IF nodeType NOT IN (xmldom.TEXT_NODE,xmldom.CDATA_SECTION_NODE) THEN

 retval := retval||RTRIM(RTRIM(result,CHR(10)),CHR(13));

 ELSE

 retval := retval||result;

 END IF;

 END LOOP;

 END IF;

 IF normalizeWhitespace THEN

 RETURN normalizeWS(retval);

 ELSE

 RETURN retval;

 END IF;

 END;

 --

 -- The "extract" functions parse the inbound document if necessary

 -- and use selectAndPrint to extract the XML markup for the nodes

 -- matching the XPath expression passed in. If the normalize parameter

 -- is TRUE, extraneous whitespace is removed.

 --

 FUNCTION extract(doc xmldom.DOMDocument,xpath VARCHAR2:='/',

 normalize BOOLEAN:=TRUE)

 RETURN VARCHAR2 IS

 BEGIN

 IF xmldom.isNull(doc) OR xpath IS NULL THEN RETURN NULL; END IF;

 RETURN selectAndPrint(doc,xpath,normalize);

 END;

 FUNCTION extract(doc VARCHAR2,xpath VARCHAR2 := '/', normalize BOOLEAN:=TRUE)

 RETURN VARCHAR2 IS

 xmldoc xmldom.DOMDocument;

 retval VARCHAR2(32767);

 BEGIN

 IF doc IS NULL OR xpath IS NULL THEN RETURN NULL; END IF;

 xmldoc := xml.parse(doc);

 retval := selectAndPrint(xmldoc,xpath,normalize);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION extract(doc CLOB,xpath VARCHAR2 := '/',normalize BOOLEAN:=TRUE)

 RETURN VARCHAR2 IS

 xmldoc xmldom.DOMDocument;

 retval VARCHAR2(32767);

 BEGIN

 IF doc IS NULL OR xpath IS NULL THEN RETURN NULL; END IF;

 xmldoc := xml.parse(doc);

 retval := selectAndPrint(xmldoc,xpath,normalize);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 --

 -- The "valueOf" functions parse the inbound document if necessary

 -- and use xslprocessor.valueOf to return the value of the matching

 -- expression. The semantics of valueOf are the same as <xsl:value-of>.

 -- The XPath expression is interpreted with respect to the root

 -- element of the document, unless valueOf(node,...) is used in

 -- which case the expression is interpreted with respect to the

 -- current node.

 --

 FUNCTION valueOf(node xmldom.DOMNode, xpath VARCHAR2,normalize BOOLEAN:=FALSE)

 RETURN VARCHAR2 IS

 BEGIN

 IF xmldom.IsNull(node) OR xpath IS NULL THEN RETURN NULL; END IF;

 IF normalize THEN

 RETURN normalizeWS(xslprocessor.valueOf(node,xpath));

 ELSE

 RETURN xslprocessor.valueOf(node,xpath);

 END IF;

 END;

 FUNCTION valueOf(doc xmldom.DOMDocument,xpath VARCHAR2,normalize BOOLEAN:=FALSE)

 RETURN VARCHAR2 IS

 BEGIN

 IF xmldom.IsNull(doc) OR xpath IS NULL THEN RETURN NULL; END IF;

 RETURN valueOf(toNode(doc),xpath,normalize);

 END;

 FUNCTION valueOf(doc VARCHAR2,xpath VARCHAR2,normalize BOOLEAN:=FALSE)

 RETURN VARCHAR2 IS

 xmldoc xmldom.DOMDocument;

 retval VARCHAR2(32767);

 BEGIN

 IF doc IS NULL OR xpath IS NULL THEN RETURN NULL; END IF;

 xmldoc := xml.parse(doc);

 retval := valueOf(xmldoc,xpath,normalize);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION valueOf(doc CLOB,xpath VARCHAR2,normalize BOOLEAN:=FALSE)

 RETURN VARCHAR2 IS

 xmldoc xmldom.DOMDocument;

 retval VARCHAR2(32767);

 BEGIN

 IF doc IS NULL OR xpath IS NULL THEN RETURN NULL; END IF;

 xmldoc := xml.parse(doc);

 retval := valueOf(xmldoc,xpath,normalize);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 --

 -- The "selectNodes" functions parse the inbound document if necessary

 -- and use xslprocessor.selectNodes to return a DOM NodeList of

 -- nodes matching the XPath expression. To iterate over the node list

 -- define "curNode" to be of type xmldom.DOMNode and write a loop like:

 --

 -- FOR n IN 1..xmldom.getLength(yourNodeList) LOOP

 -- curNode := xmldom.item(yourNodeList, n - 1);

 -- :

 -- END LOOP;

 --

 FUNCTION selectNodes(node xmldom.DOMNode,xpath VARCHAR2)

 RETURN xmldom.DOMNodeList IS

 BEGIN

 RETURN xslprocessor.selectNodes(node,xpath);

 END;

 FUNCTION selectNodes(doc xmldom.DOMDocument,xpath VARCHAR2)

 RETURN xmldom.DOMNodeList IS

 BEGIN

 RETURN selectNodes(toNode(doc),xpath);

 END;

 FUNCTION selectNodes(doc VARCHAR2, xpath VARCHAR2)

 RETURN xmldom.DOMNodeList IS

 xmldoc xmldom.DOMDocument;

 retlist xmldom.DOMNodeList;

 BEGIN

 xmldoc := xml.parse(doc);

 retlist := xslprocessor.selectNodes(toNode(xmldoc),xpath);

 xml.freeDocument(xmldoc);

 RETURN retlist;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION selectNodes(doc CLOB, xpath VARCHAR2)

 RETURN xmldom.DOMNodeList IS

 xmldoc xmldom.DOMDocument;

 retlist xmldom.DOMNodeList;

 BEGIN

 xmldoc := xml.parse(doc);

 retlist := xslprocessor.selectNodes(toNode(xmldoc),xpath);

 xml.freeDocument(xmldoc);

 RETURN retlist;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 --

 -- The "test" functions parse the inbound document if necessary

 -- and use selectNodes to see if the XPath predicate is true

 -- with respect to the current node.

 --

 FUNCTION test(doc xmldom.DOMDocument,xpath VARCHAR2) RETURN BOOLEAN IS

 BEGIN

 RETURN xmldom.getLength(selectNodes(doc,'/self::node()['||xpath||']')) > 0;

 END;

 FUNCTION test(node xmldom.DOMNode,xpath VARCHAR2) RETURN BOOLEAN IS

 BEGIN

 RETURN xmldom.getLength(selectNodes(node,'./self::node()['||xpath||']')) > 0;

 END;

 FUNCTION test(doc VARCHAR2, xpath VARCHAR2) RETURN BOOLEAN IS

 xmldoc xmldom.DOMDocument;

 retval BOOLEAN;

 BEGIN

 xmldoc := xml.parse(doc);

 retval := test(xmldoc,xpath);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION test(doc CLOB, xpath VARCHAR2) RETURN BOOLEAN IS

 xmldoc xmldom.DOMDocument;

 retval BOOLEAN;

 BEGIN

 xmldoc := xml.parse(doc);

 retval := test(xmldoc,xpath);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

END;

A.2.4 The xslt Package

The xslt package provides five key functions related to XSLT transformations on in-memory XML

documents:

xslt.stylesheet()

Creates a new stylesheet object

xslt.transform()

Transforms an XML document to a string

xslt.transformToDOM()

Transforms an XML document to a DOM

xslt.params()

Constructs a parameter list for a transformation

xslt.freeStylesheet()

Frees a stylesheet when you're done using it

It is safe to cache instances of xslprocessor.stylesheets in PL/SQL package-level variables for

stylesheets that you plan to use over and over during the same database session, but remember

that the memory they occupy is not freed until you explicitly call xslt.freeStylesheet.

Here is the source code for the xslt package:

CREATE OR REPLACE PACKAGE xslt AS

 TYPE name_value IS RECORD(NAME VARCHAR2(40), VALUE VARCHAR2(200));

 TYPE paramlist IS TABLE OF name_value INDEX BY BINARY_INTEGER;

 none paramlist;

 -- Return an XSLT stylesheet based on XML document of the stylesheet source

 FUNCTION stylesheet(doc xmldom.DOMDocument) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheet(doc VARCHAR2) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheet(doc CLOB) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheet(doc BFILE) RETURN xslprocessor.Stylesheet;

 FUNCTION stylesheetFromURL(url VARCHAR2) RETURN xslprocessor.Stylesheet;

 -- Transform an XML Document with an XSLT stylesheet, returning a String

 FUNCTION transform(source xmldom.DOMDocument,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2;

 FUNCTION transform(source VARCHAR2,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2;

 FUNCTION transform(source CLOB,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2;

 -- Transform an XML Document with an XSLT stylesheet, returning an XML doc

 FUNCTION transformToDOM(source xmldom.DOMDocument,

 style xslprocessor.Stylesheet,

 params paramlist := none)

 RETURN xmldom.DOMDocument;

 FUNCTION transformToDOM(source VARCHAR2,

 style xslprocessor.Stylesheet,

 params paramlist := none)

 RETURN xmldom.DOMDocument;

 FUNCTION transformToDOM(source CLOB,

 style xslprocessor.Stylesheet,

 params paramlist := none)

 RETURN xmldom.DOMDocument;

 -- Return a paramlist to be used for a transformation

 FUNCTION params(n1 VARCHAR2, v1 VARCHAR2,

 n2 VARCHAR2:=NULL,v2 VARCHAR2:=NULL,

 n3 VARCHAR2:=NULL,v3 VARCHAR2:=NULL,

 n4 VARCHAR2:=NULL,v4 VARCHAR2:=NULL,

 n5 VARCHAR2:=NULL,v5 VARCHAR2:=NULL) RETURN paramlist;

 -- Release the memory used by a stylesheet

 PROCEDURE freeStylesheet(style xslprocessor.Stylesheet);

END;

CREATE OR REPLACE PACKAGE BODY xslt AS

 --

 -- Reset the parameters on the stylesheet and then set the new

 -- parameter values based on the parameters in the paramlist.

 --

 PROCEDURE setParams(style xslprocessor.Stylesheet, params paramlist) IS

 BEGIN

 IF params.exists(1) THEN

 xslprocessor.resetParams(style);

 FOR i IN 1..params.COUNT LOOP

 IF params(i).name IS NOT NULL AND params(i).value IS NOT NULL THEN

 xslprocessor.setParam(style,params(i).name,'"'||params(i).value||'"');

 END IF;

 END LOOP;

 END IF;

 END;

 --

 -- The "stylesheet" functions create a new stylesheet object from

 -- an XML source. Remember to call freeStylesheet() when you're done

 -- using the stylesheet.

 --

 FUNCTION stylesheet(doc xmldom.DOMDocument) RETURN xslprocessor.Stylesheet IS

 BEGIN

 return xslprocessor.newStylesheet(doc,NULL);

 END;

 FUNCTION stylesheet(doc VARCHAR2) RETURN xslprocessor.Stylesheet IS

 xmldoc xmldom.DOMDocument;

 newsheet xslprocessor.Stylesheet;

 BEGIN

 xmldoc := xml.parse(doc);

 newsheet := xslprocessor.newStylesheet(xmldoc,NULL);

 xml.freeDocument(xmldoc);

 RETURN newsheet;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION stylesheetFromURL(url VARCHAR2) RETURN xslprocessor.Stylesheet IS

 BEGIN

 return xslprocessor.newStylesheet(url,url);

 END;

 FUNCTION stylesheet(doc CLOB) RETURN xslprocessor.Stylesheet IS

 xmldoc xmldom.DOMDocument;

 newsheet xslprocessor.Stylesheet;

 BEGIN

 xmldoc := xml.parse(doc);

 newsheet := xslprocessor.newStylesheet(xmldoc,NULL);

 xml.freeDocument(xmldoc);

 RETURN newsheet;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION stylesheet(doc BFILE) RETURN xslprocessor.Stylesheet IS

 xmldoc xmldom.DOMDocument;

 newsheet xslprocessor.Stylesheet;

 BEGIN

 xmldoc := xml.parse(doc);

 newsheet := xslprocessor.newStylesheet(xmldoc,NULL);

 xml.freeDocument(xmldoc);

 RETURN newsheet;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 --

 -- The "transform" functions carry out the transformation described

 -- by the XSLT stylesheet object passed-in on the XML document source

 -- The resulting target document is returned as a String.

 --

 FUNCTION transform(source xmldom.DOMDocument,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2 IS

 engine xslprocessor.Processor := xslprocessor.newProcessor;

 out VARCHAR2(32767);

 BEGIN

 setParams(style,params);

 xslprocessor.processXSL(engine,style,source,out);

 xslprocessor.freeProcessor(engine);

 RETURN out;

 EXCEPTION

 WHEN OTHERS THEN xslprocessor.freeProcessor(engine); RAISE;

 END;

 FUNCTION transform(source VARCHAR2,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2 IS

 xmldoc xmldom.DOMDocument;

 retval VARCHAR2(32767);

 BEGIN

 xmldoc := xml.parse(source);

 retval := transform(xmldoc,style,params);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION transform(source CLOB,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN VARCHAR2 IS

 xmldoc xmldom.DOMDocument;

 retval VARCHAR2(32767);

 BEGIN

 xmldoc := xml.parse(source);

 retval := transform(xmldoc,style,params);

 xml.freeDocument(xmldoc);

 RETURN retval;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 --

 -- The "transformToDOM" functions carry out the transformation

 -- described by the XSLT stylesheet object passed-in on the XML

 -- document source. The resulting target document is returned as an

 -- in-memory XML Document for further processing. Using this function

 -- you can "chain" stylesheets together by making the result of one

 -- transformation be the source of the next.

 --

 FUNCTION transformToDOM(source xmldom.DOMDocument,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN xmldom.DOMDocument IS

 engine xslprocessor.Processor := xslprocessor.newProcessor;

 root xmldom.DOMNode := xmldom.makeNode(xmldom.newDOMDocument);

 result xmldom.DOMNode;

 BEGIN

 setParams(style,params);

 result := xmldom.makeNode(xslprocessor.processXSL(engine,style,source));

 RETURN xmldom.makeDocument(xmldom.appendChild(root,result));

 xslprocessor.freeProcessor(engine);

 EXCEPTION

 WHEN OTHERS THEN xslprocessor.freeProcessor(engine); RAISE;

 END;

 FUNCTION transformToDOM(source VARCHAR2,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN xmldom.DOMDocument IS

 xmldoc xmldom.DOMDocument;

 retdoc xmldom.DOMDocument;

 BEGIN

 xmldoc := xml.parse(source);

 retdoc := transformToDOM(xmldoc,style,params);

 xml.freeDocument(xmldoc);

 RETURN retdoc;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 FUNCTION transformToDOM(source CLOB,

 style xslprocessor.Stylesheet,

 params paramlist := none) RETURN xmldom.DOMDocument IS

 xmldoc xmldom.DOMDocument;

 retdoc xmldom.DOMDocument;

 BEGIN

 xmldoc := xml.parse(source);

 retdoc := transformToDOM(xmldoc,style,params);

 xml.freeDocument(xmldoc);

 RETURN retdoc;

 EXCEPTION

 WHEN OTHERS THEN xml.freeDocument(xmldoc); RAISE;

 END;

 --

 -- Construct a paramlist object based on one or more pairs

 -- of 'name','value' parameters.

 --

 FUNCTION params(n1 VARCHAR2, v1 VARCHAR2,

 n2 VARCHAR2:=NULL,v2 VARCHAR2:=NULL,

 n3 VARCHAR2:=NULL,v3 VARCHAR2:=NULL,

 n4 VARCHAR2:=NULL,v4 VARCHAR2:=NULL,

 n5 VARCHAR2:=NULL,v5 VARCHAR2:=NULL) RETURN paramlist IS

 p_list paramlist;

 BEGIN

 p_list(1).name := n1; p_list(1).value := v1;

 p_list(2).name := n2; p_list(2).value := v2;

 p_list(3).name := n2; p_list(3).value := v2;

 p_list(4).name := n2; p_list(4).value := v2;

 p_list(5).name := n2; p_list(5).value := v2;

 RETURN p_list;

 END;

 PROCEDURE freeStylesheet(style xslprocessor.Stylesheet) IS

 BEGIN

 xslprocessor.freeStylesheet(style);

 END;

END;

A.2.5 The http Package

The http package provides support for generic HTTP POST and GET requests on top of the

lower-level TCP/IP support found in the UTL_TCP package that ships with Oracle8i. It differs in two

key ways from the UTL_HTTP package that also ships with Oracle8i:

http

Handles both GET and POST requests, while UTL_HTTP does only GETs

UTL_HTTP

Supports a get_pieces function to return larger responses, while the http package

assumes that the return is less than 32K

In Chapter 5, we built an xml_http package that uses the http package as part of its

implementation to send and receive XML documents over the Web.

Here is the source code for the http package:

CREATE OR REPLACE PACKAGE http AS

 -- HTTP POST a document to url and return response

 PROCEDURE post(doc VARCHAR2,

 content_type VARCHAR2,

 url VARCHAR2,

 resp OUT VARCHAR2,

 resp_content_type OUT VARCHAR2,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80);

 -- HTTP GET resource at URL and return response as an XML document

 PROCEDURE get(url VARCHAR2,

 resp OUT VARCHAR2,

 resp_content_type OUT VARCHAR2,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80);

END;

CREATE OR REPLACE PACKAGE BODY http AS

 -- Write data to a TCP/IP connection

 PROCEDURE write(c IN OUT NOCOPY utl_tcp.connection,value VARCHAR2 := NULL) IS

 b PLS_INTEGER; -- Number of bytes written

 BEGIN

 b := utl_tcp.write_line(c,value);

 END;

 -- Write an HTTP Header to a TCP/IP connection

 PROCEDURE write_header(c IN OUT NOCOPY utl_tcp.connection,

 name VARCHAR2,value VARCHAR2) IS

 BEGIN

 write(c,name || ': ' || value);

 END;

 --

 -- Given an HTTP-based URL, parse the domain, port number, and

 -- path name of the request.

 --

 PROCEDURE setHostPortPath(url VARCHAR2,proxyServer VARCHAR2,

 proxyPort NUMBER, host OUT VARCHAR2,

 port IN OUT NUMBER, path OUT VARCHAR2)

 IS

 temp VARCHAR2(400);

 slash NUMBER;

 colon NUMBER;

 BEGIN

 IF proxyServer IS NOT NULL THEN

 --

 -- If a proxy server is set, then TCPconnection is to the

 -- proxy server and the path is the full URL to the actual page

 --

 host := proxyServer;

 port := proxyPort;

 path := url;

 ELSE

 --

 -- If no proxy server is set, then TCP connection is directly to

 -- the host/port specified in the URL.

 --

 temp := SUBSTR(url,INSTR(url,'http://')+7);

 slash := INSTR(temp,'/');

 IF slash > 0 THEN

 host := SUBSTR(temp,1,slash-1);

 path := SUBSTR(temp,slash);

 ELSE

 host := temp;

 path := '/';

 END IF;

 colon := INSTR(host,':');

 IF colon > 0 THEN

 port := TO_NUMBER(SUBSTR(host,colon+1));

 host := SUBSTR(host,1,colon-1);

 END IF;

 END IF;

 END;

 --

 -- Read the response back from a TCP/IP connection, checking for

 -- an HTTP 200 OK success header and taking notice of the

 -- Content-Type: header that might be sent by the server.

 --

 PROCEDURE get_response_from(c IN OUT NOCOPY utl_tcp.connection,

 resp OUT VARCHAR2,

 content_type OUT VARCHAR2) IS

 line VARCHAR2(32767);

 firstLine BOOLEAN := TRUE;

 header BOOLEAN := TRUE;

 success BOOLEAN := TRUE;

 BEGIN

 WHILE (success) LOOP

 line := utl_tcp.get_line(c);

 IF firstLine THEN

 IF line NOT LIKE '%HTTP%200%OK%' THEN

 success := FALSE;

 END IF;

 firstLine := FALSE;

 ELSE

 IF HEADER THEN

 IF line = utl_tcp.CRLF THEN

 HEADER := FALSE;

 ELSE

 IF UPPER(line) LIKE 'CONTENT-TYPE:%' THEN

 content_type :=

RTRIM(RTRIM(RTRIM(LTRIM(SUBSTR(line,14))),CHR(10)),CHR(13));

 END IF;

 END IF;

 ELSE

 resp := resp || line;

 END IF;

 END IF;

 END LOOP;

 EXCEPTION

 WHEN utl_tcp.end_of_input THEN

 NULL; -- end of input

 END;

 --

 -- Perform an HTTP POST request to the specified URL with the

 -- specified 'doc' content in the request body. Return the response

 -- as a String.

 --

 PROCEDURE post(doc VARCHAR2,

 content_type VARCHAR2,

 url VARCHAR2,

 resp OUT VARCHAR2,

 resp_content_type OUT VARCHAR2,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80) IS

 port NUMBER := 80;

 host VARCHAR2(400);

 path VARCHAR2(400);

 line VARCHAR2(32767);

 firstLine BOOLEAN := TRUE;

 header BOOLEAN := TRUE;

 success BOOLEAN := TRUE;

 c utl_tcp.connection;

 BEGIN

 setHostPortPath(url,proxyServer,proxyPort,host,port,path);

 c := utl_tcp.open_connection(host, port);

 write(c,'POST '||path||' HTTP/1.0');

 write_header(c,'Content-Type',content_type);

 write_header(c,'Content-Length',LENGTH(doc));

 write(c);

 write(c,doc);

 utl_tcp.flush(c);

 get_response_from(c,resp,resp_content_type);

 utl_tcp.close_connection(c);

 EXCEPTION

 WHEN OTHERS THEN utl_tcp.close_connection(c); RAISE;

 END;

 --

 -- Perform an HTTP GET request to the specified URL and return the

 -- response as a String.

 --

 PROCEDURE get(url VARCHAR2,

 resp OUT VARCHAR2,

 resp_content_type OUT VARCHAR2,

 proxyServer VARCHAR2 := NULL,

 proxyPort NUMBER := 80) IS

 port NUMBER := 80;

 host VARCHAR2(400);

 path VARCHAR2(400);

 msg VARCHAR2(32767);

 c utl_tcp.connection;

 BEGIN

 setHostPortPath(url,proxyServer,proxyPort,host,port,path);

 c := utl_tcp.open_connection(host, port);

 write(c,'GET '||path||' HTTP/1.0');

 write(c);

 utl_tcp.flush(c);

 get_response_from(c,resp,resp_content_type);

 utl_tcp.close_connection(c);

 EXCEPTION

 WHEN OTHERS THEN utl_tcp.close_connection(c); RAISE;

 END;

END;

Appendix B. Installing the Oracle XSQL Servlet

This appendix describes how to install the Oracle XSQL Servlet. This servlet can be used with any

servlet engine that supports mapping file extensions to a servlet class.

Installing the XSQL Servlet requires just two key steps:

1. Ensure that the following five archives are added properly to your servlet engine's

CLASSPATH:

o oraclexsql.jar

o oraclexmlsql.jar

o xmlparserv2.jar

o classes111.zip
o <directory containing XSQL Config.xml file>

2. Map the .xsql file extension to the oracle.xml.xsql.XSQLServlet servlet class.

Any requests made to your web server with the .xsql file extension will then be processed by the

XSQL Servlet. Note that the .xsql file extension is purely a convention. You can map any file

extension (or several different extensions) to the Servlet class without problems.

B.1 Supported Configurations

The XSQL Servlet is designed to run on any Java virtual machine, using any JDBC driver, against

any database. It has been tested against the most popular configurations. In this section, we

document the supported configurations.

B.1.1 Supported Java JDK Versions

XSQL Pages and the XSQL Servlet have been tested using:

• JDK 1.1.8

• JDK 1.2.2

Numerous users have reported problems using XSQL Pages and
the XSQL Servlet with JDK 1.1.7, which suffers problems in its
character set conversion routines for UTF-8 that make it
unusable for processing XSQL Pages.

B.1.2 Supported Servlet Engines

This XSQL Servlet has been tested with the following servlet engines:

• Oracle Internet Application Server 1.0

• Allaire JRun 2.3.3

• Apache 1.3.9 with JServ 1.0 and 1.1

• Apache 1.3.9 with Tomcat 3.1 Servlet Engine

• Apache Tomcat 3.1 Web Server + Servlet Engine

• Caucho Resin 1.1

• NewAtlanta ServletExec 2.2 for IIS/PWS 4.0

• Oracle8i Lite Web-to-go Server

• Oracle Servlet Engine in Oracle8i 8.1.7

• Sun JavaServer™ Web Development Kit (JSWDK) 1.0.1 Web Server

B.1.3 Supported JSP Implementations

JavaServer Pages can use <jsp:forward> and/or <jsp:include> to collaborate with XSQL Pages

as part of an application. The following JSP platforms have been tested:

• Apache 1.3.9 with Tomcat 3.1 Servlet Engine

• Apache Tomcat 3.1 Web Server + Tomcat 3.1 Servlet Engine

• Caucho Resin 1.1 (with built-in JSP 1.0 support)

• NewAtlanta ServletExec 2.2 for IIS/PWS 4.0 (built-in JSP 1.0 support)

• Oracle8i Lite Web-to-go Server with Oracle JSP 1.0

• Oracle Servlet Engine in Oracle8i 8.1.7 with Oracle JSP 1.0

• Any servlet engine with Servlet API 2.1+ and Oracle JSP 1.0

In general, JSP should work with any servlet engine supporting the Servlet 2.1 Specification or

higher, and the Oracle JSP 1.0 reference implementation or functional equivalent from another

vendor.

B.1.4 JDBC Drivers and Databases

The Oracle XSQL page processor has been designed to exploit the maximum set of features

against the Oracle JDBC drivers, but gracefully degrade to work against any database with a

reasonable JDBC driver. While numerous users have reported successfully using XSQL Pages with

many other JDBC drivers, the following drivers have been tested:

• Oracle8i 8.1.5 driver for JDBC 1.x

• Oracle8i 8.1.6 driver for JDBC 1.x

• Oracle8i Lite 4.0 driver for JDBC 1.x

• Oracle8i 8.1.6 driver for JDBC 2.0

At this time, the <xsql:insert-param> and

<xsql:insert-request> action elements depend on the Oracle

JDBC driver because they depend on the Oracle XML SQL Utility
for Java which, at present exhibits this restriction. A future
release of Oracle XML SQL will remove this current restriction.

If you are using the Oracle 8i 8.1.6 driver for JDBC 2.0 (see
http://technet.oracle.com/tech/java/sqlj_jdbc/ in
classes12.zip) you must download and use the corresponding
Oracle XML SQL Utility for JDBC 2.0 (see
http://technet.oracle.com/tech/xml/oracle_xsu/ in XSU12.zip)
from the Oracle Technology Network.

B.2 Prerequisites

Oracle XSQL Pages depends upon:

• Oracle XML Parser V2 Release 2.0.2.7

• Oracle XML SQL Utility for Java

• A web server that supports Java servlets

• A JDBC driver, like Oracle JDBC or Oracle8i Lite JDBC

For your convenience, all of these dependent libraries are included with the XSQL Servlet

distribution, and all are included with JDeveloper 3.1 on the accompanying CD-ROM.

B.3 Downloading and Installing the XSQL Servlet

This section describes in detail how to obtain and install the XSQL Servlet.

B.3.1 Obtaining the XSQL Servlet Software from the Oracle

Technology Network (OTN)

You can download the XSQL Servlet distribution by following these steps:

1. Visit http://technet.oracle.com/tech/xml/xsql_servlet/.

2. Click on the Software icon at the top of the page.

3. Log in with your OTN username and password; registration is free if you do not already

have an account.

4. Select whether you want the Windows NT or Unix download; both contain the same files.

5. Acknowledge the licensing agreement and download the survey.

6. Click on xsqlservlet_v1_0_0_0.tar.gz or xsqlservlet_v1_0_0_0.zip. Note that if a later

version is available, the filenames will reflect the later version number.

B.3.2 Extracting the Files in the Distribution

To extract the contents of the XSQL Servlet distribution, do the following:

1. Choose a directory under which you would like the .\xsql directory and subdirectories to go

(e.g., C:\).

2. Change directory to C:\, then extract the downloaded XSQL archive file. For example, on

Unix:

tar xvfz xsqlservlet_v1_0_0_0.tar.gz

or on Windows:

pkzip25 -extract -directories xsqlservlet_v1_0_0_0.zip

using the pkzip25 (see http://www.pkware.com/shareware/pkzip_cli.html)

command-line tool or the WinZip (see http://www.winzip.com) visual archive extraction

tool.

3. If you use Windows and will be using the Web-to-go server, start with the next section. If

you use Unix or if you use Windows with a different web server (not Web-to-go), skip

ahead to Section B.3.4.

B.3.3 Starting the Web-to-Go Server (Windows Only)

The XSQL Servlet comes bundled with the Oracle Web-to-go server, which is pre-configured to

use XSQL Pages. The Web-to-go server is a single-user server that supports the Servlet 2.1 API

and is used for mobile application deployment and for development. This is a great way to try

XSQL Pages out on your Windows machine before delving into the details of configuring another

servlet engine to run XSQL Pages.

The Web-to-go web server is part of Oracle's development and
deployment platform for mobile applications. For more
information on Web-to-go, please visit
http://www.oracle.com/mobile.

Windows users can get started quickly with XSQL Pages by:

• Running the xsql-wtg.bat script in the .\xsql directory

• Browsing the URL http://localhost:7070/xsql/index.html

If you get an error when you start this script, edit the xsql-wtg.bat file to properly set the two

environment variables JAVA and XSQL_HOME to appropriate values for your machine:

REM --

REM Set the 'JAVA' variable equal to the full path

REM of your Java executable.

REM --

set JAVA=J:\java1.2\jre\bin\java.exe

set XSQL_HOME=C:\xsql

REM --

REM Set the 'XSQL_HOME' variable equal to the full

REM path of where you install the XSQL Servlet

REM distribution.

REM --

If you install XSQL into a directory other than C:\xsql (for example, on another drive like D:\xsql),

you will also need to edit the ./xsql/wtg/lib/webtogo.ora file to change the value of the ROOT_DIR

parameter as follows.

Change:

[FILESYSTEM]

TYPE=OS

ROOT_DIR=C:\

to:

[FILESYSTEM]

TYPE=OS

ROOT_DIR=D:\

Then repeat the previous two steps.

If you get an error connecting to the database when you try the demos, you'll need to go on to the

next section, then try the previous steps again after setting up your database connection

information correctly in the XSQLConfig.xml file.

B.3.4 Setting Up the Database Connection Definitions for Your

Environment

The demos that accompany the XSQL Servlet download are set up to use the SCOTT schema on

a database on your local machine (i.e., the machine where the web server is running). If you are

running a local database and have a SCOTT account whose password is TIGER, then you are all set.

Otherwise, you need to edit the .\xsql\lib\XSQLConfig.xml file to correspond to the appropriate

username, password, dburl, and driver values for the demo connection:

<?xml version="1.0" ?>

<XSQLConfig>

 :

 <connectiondefs>

 <connection name="demo">

 <username>scott</username>

 <password>tiger</password>

 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>

 <driver>oracle.jdbc.driver.OracleDriver</driver>

 </connection>

 <connection name="lite">

 <username>system</username>

 <password>manager</password>

 <dburl>jdbc:Polite:POlite</dburl>

 <driver>oracle.lite.poljdbc.POLJDBCDriver</driver>

 </connection>

 </connectiondefs>

 :

</XSQLConfig>

B.3.5 Setting Up Your Servlet Engine to Run XSQL Pages

Unix users and any user wanting to install the XSQL Servlet on other web servers should follow

these instructions, depending on the web server being used. There are three basic steps:

1. Include the list of XSQL Java archives as well as the directory where XSQLConfig.xml

resides (by default ./xsql/lib) in the server CLASSPATH. For security reasons, make sure

the directory where you place your XSQL Config.xml file is not browsable from your web

server.

For convenience, the xsqlservlet_v1_0_0_0.tar.gz and
xsqlservlet_v1_0_0_0.zip distributions include the .jar files for
the Oracle XML Parser for Java (v2), the Oracle XML SQL Utility
for Java, and the Oracle 8.1.6 JDBC driver in the .\lib
subdirectory, along with Oracle XSQL Pages' own .jar archive.

2. Map the .xsql file extension to the oracle.xml.xsql.XSQLServlet servlet class.

3. Map a virtual directory /xsql to the directory where you extracted the XSQL files (to access

the online help and demos).

B.3.5.1 Allaire JRun 2.3.3

1. Set up the server CLASSPATH correctly for the XSQL Servlet. This is done by starting the

JRun Administrator, clicking on the General tab, and clicking on the Java subtab, as shown

in Figure B.1.

Append the list of .jar files and the directory that need to be in the server CLASSPATH for

the XSQL Servlet to the existing value in the Java CLASSPATH field. Assuming that you

installed into C:\, the list looks like this:

C:\xsql\lib\xmlparserv2.jar;

C:\xsql\lib\oraclexmlsql.jar;

C:\xsql\lib\classes111.zip;

C:\xsql\lib\oraclexsql.jar;

C:\xsql\lib

Figure B.1. Setting the JRun Servlet engine CLASSPATH

2. Map the .xsql file extension to the XSQL Servlet. To do this, select the Services tab in the

JRun Administrator and select the appropriate "JRun servlet engine for XXX " entry for the

servlet engine that corresponds to the web server you are using. In Figure B.2, we'll show

how to configure the servlet engine for the (built-in) JRun Web Server (JWS).

Then click the Service Config button. On the Service Config screen (see Figure B.3), select

the Mappings tab. Click the Add button and make an entry for the *.xsql extension,

indicating oracle.xml.xsql.XSQLServlet as the servlet to be invoked shown in Figure

B.3. Then click Save to save the changes, and Close to dismiss the dialog.

Figure B.2. Select appropriate service to configure for

mapping the xsql extension

Figure B.3. Mapping the *.xsql extension to the XSQLServlet

class

3. Map an /xsql/ virtual directory. In this step, we want to map the virtual path /xsql/ to

C:\xsql\ (or wherever you installed the XSQL Servlet files). If you are using JRun together

with another web server like Apache, IIS, or others, the virtual directory mapping needs

to be done using the web server configuration file or utility. If you are using the JRun Web

Server, then you can configure this virtual path mapping from the JRun Administrator. To

do this, select the "jws" service and click on Service Config, as shown in Figure B.4.

Click on the Path Settings tab on the Service Config dialog, and click the Add button, as

shown in Figure B.5.

Make an entry for a virtual path of /xsql/ (trailing slash important!) that maps to a real

path of C:\xsql\ (trailing slash important!), or the appropriate directory into which you

installed the XSQL Servlet files. Click Save to save the changes, then Close to dismiss the

dialog.

Figure B.4. Selecting the JRun web server service to configure

path settings

Figure B.5. Adding an /xsql/ virtual path for the XSQL demos

Restart the JRun server and browse the URL:

http://localhost:8000/xsql/index.html

B.3.5.2 Apache JServ 1.0 or 1.1

1. Set up the server CLASSPATH correctly for the XSQL Servlet. This is done by editing the

JServ configuration file jserv.properties. Assuming that you installed the XSQL Servlet

files into C:\, you need to add the following entries:
2. # Oracle XSQL Servlet

3. wrapper.classpath=C:\xsql\lib\oraclexsql.jar

4. # Oracle JDBC (8.1.6)

5. wrapper.classpath=C:\xsql\lib\classes111.zip

6. # Oracle XML Parser V2 (with XSLT Engine)

7. wrapper.classpath=C:\xsql\lib\xmlparserv2.jar

8. # Oracle XML SQL Components for Java

9. wrapper.classpath=C:\xsql\lib\oraclexmlsql.jar

10. # XSQLConfig.xml File location

wrapper.classpath=C:\xsql\lib

11. Map the .xsql file extension to the XSQL Servlet. To do this, you need to edit the JServ

configuration file jserv.conf (in JServ 1.0, this was named mod_jserv.conf on some

platforms). Add the following line:
12. # Executes a servlet passing filename with proper extension in PATH_TRANSLATED

13. # property of servlet request.

14. # Syntax: ApJServAction [extension] [servlet-uri]

15. # Defaults: NONE

16.

ApJServAction .xsql /servlets/oracle.xml.xsql.XSQLServlet

17. Map an /xsql/ virtual directory. In this step, we want to map the virtual path /xsql/ to

C:\xsql\ (or wherever you installed the XSQL Servlet files). To do this, you need to edit the

Apache configuration file httpd.conf, adding the following line:

Alias /xsql/ "C:/xsql/"

Restart the Apache server and browse the URL:

http://localhost/xsql/index.html

B.3.5.3 Jakarta Tomcat 3.1

1. Set up the server CLASSPATH correctly for the XSQL Servlet. This is done by editing the

Tomcat startup script named tomcat.bat in ./jakarta-tomcat/bin and adding five lines to

append the appropriate entries onto the system CLASSPATH before the Tomcat server is

started, as shown in Figure B.6.

Figure B.6. Setting up the necessary CLASSPATH by modifying

tomcat.bat

2. Map the .xsql file extension to the XSQL Servlet. Tomcat supports creating any number of

configuration contexts to better organize the web applications your site needs to support.

Each context is mapped to a virtual directory path, and has its own separate servlet

configuration information. The XSQL Servlet comes with a preconfigured context file to

make XSQL Servlet setup easier.

By default, Tomcat 3.1 Beta 1 comes preconfigured with the following contexts (defined

by <Context> entries in the ./jakarta-tomcat/conf/server.xml file):

o The root context

o /examples

o /test

o /admin

We could install the XSQL Servlet into one of these contexts, but for simplicity we'll create

a new context just for the XSQL Servlet that maps to the directory where you installed the

XSQL Servlet distribution.

Edit the ./jakarta-tomcat/conf/server.xml file to add the following <Context> entry with a

path="/xsql", as shown in Figure B.7.

Note that the docBase="C:/xsql" points to the physical directory where you installed the

XSQL Servlet distribution. Since the XSQL Servlet distribution already ships with

a ./xsql/WEB-INF directory containing the required web.xml file with the <servlet> and

<servlet-mapping> entries to enable the XSQL Servlet class to be mapped to the .xsql

extension, this is the only step needed.

Figure B.7. Adding a context for the xsql root directory

To add the XSQL Servlet to an existing context, add the servlet
and servlet-mapping entries you find
in ./xsql/WEB-INF/web.xml into the web.xml file for the context
in question.

3. Map an /xsql/ virtual directory. This has already been achieved by creating the /xsql

context.

Restart the Tomcat server and browse the URL:

http://localhost:8080/xsql/index.html

B.3.5.4 ServletExec 2.2

1. Set up the Server CLASSPATH correctly for the XSQL Servlet. This is done by browsing the

URL http://localhost/servlet/admin after starting the IIS Server, and clicking the "VM

Settings" link under "Advanced" in the sidebar, as shown in Figure B.8.

Add the four archives and one directory as shown in the figure, by adding them one at a

time and clicking the Submit button after each new entry.

Figure B.8. Adding Java archives to the ServletExec

CLASSPATH

2. Map the .xsql file extension to the XSQL Servlet. Click on Configure under the "Servlets"

heading in the sidebar to browse the form where you register servlets. Enter a Servlet

Name of oraclexsql and a Servlet Class of oracle.xml.xsql.XSQLServlet into the

blank form at the top and click Submit. This is shown in Figure B.9.

Click on Aliases under "Servlets" in the sidebar. Add an entry as shown in Figure B.10

mapping *.xsql to the servlet "nickname" oraclexsql just defined.

Figure B.9. Defining a named servlet entry for the

XSQLServlet class

Figure B.10. Associating the *.xsql extension with the

XSQLServlet servlet by name

3. Map an /xsql/ virtual directory. Use the IIS Admin console to create an /xsql virtual

directory and map it to C:\xsql as shown in Figure B.11.

Figure B.11. Creating the /xsql/ virtual directory for the

Personal Web Manager

Restart the IIS server and browse the URL:

http://localhost/xsql/index.html

B.3.6 Setting Up the Demo Data

To set up the data for the demos do the following:

1. Change directory to the .\xsql\demo directory on your machine.

2. In this directory, run SQLPLUS. Connect to your database as CTXSYS/CTXSYS (the

schema owner for InterMedia Text packages) and issue the command:

GRANT EXECUTE ON CTX_DDL TO SCOTT;

3. Connect to your database as SYSTEM/MANAGER and issue the command:

GRANT QUERY REWRITE TO SCOTT;

This allows SCOTT to create a functional index that one of the demos uses to perform

case-insensitive queries on descriptions of airports.

4. Connect to your database as SCOTT/TIGER.

5. Run the script install.sql in the ./xsql/demo directory. This script will, in turn, run all the

SQL scripts for all of the demos.

6. Change directory to the doyouxml subdirectory, and run the following command:

imp scott/tiger file=doyouxml.dmp

to import some sample data for the "Do You XML? Site" demo.

Appendix C. Conceptual Map to the XML Family

Figure C.1 is a complete conceptual map showing how all of the key XML-related
standards discussed in this book fit together.

Figure C.1. Conceptual map to the XML family

Appendix D. Quick References

This appendix includes compact quick references for XSLT, XPath, and XML.
Mulberry Technologies has been distributing these quickrefs for several years,
and I use them often. I'm grateful to Mulberry for allowing us to include them in
this book. The latest versions are available online at
http://www.mulberrytech.com/quickref/.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from

distribution channels. Distinctive covers complement our distinctive approach to technical topics,

breathing personality and life into potentially dry subjects.

The animal on the cover of Building Oracle XML Applications is a peacock butterfly (Inachis io),

whose name derives from the prominent blue and black eyespots found on each upper wing. Like

the similar markings on peacock feathers, these eyespots contain iridescent areas, which

enhance the peacock butterfly's already brilliant coloration. When startled, the peacock butterfly

rubs its wings together and spreads them wide, threatening intruders with their vivid patterns,

which strongly resemble an owl's visage when seen upside-down.

The peacock butterfly is widespread throughout England, Ireland, and Eurasia, but only vagrant

specimens appear in North America. After mating in early spring, female butterflies lay batches of

eggs on the underside of leaves of the stinging nettle plant, which provides food for the

developing larvae. The new generation of adults takes flight in July, then hibernates over the

winter to emerge again in spring, surviving a total of up to eleven months.

Adult butterflies have distinctive red-brown upper wings with bright yellow, blue, black, and white

patterning, which span a width of about two inches. When a peacock butterfly folds its wings, the

underside is revealed to be dark charcoal in color, allowing the butterfly to blend into the

surrounding shrubs during hibernation. Peacock butterflies belong to the large family of

Nymphalidae, or brush-footed butterflies, so called because their foremost pair of legs is too

small for grasping or locomotion and is useful only for cleaning.

Although the peacock butterfly possesses a rare, tropical beauty, the caterpillars draw

sustenance from the common stinging nettle, which flourishes both in rural fields and in urban

lots, while adult butterflies feast on nectar from the butterfly bush, lilac, and other plants.

Peacock butterflies may abound wherever these hardy plants take root, from English nature

preserves, to abandoned Welsh mines, to far-flung Siberian settlements.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby

produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Madeleine Newell was the production editor and copyeditor for Building Oracle XML Applications.

Mary Sheehan and Nancy Kotary provided quality control. Kimo Carter, Nancy Williams, and Molly

Shangraw provided production assistance. Brenda Miller wrote the index.

David Futato designed the interior layout based on a series design by Nancy Priest. Mike Sierra

implemented the design in FrameMaker 5.5.6. The text and heading fonts are ITC Garamond

Light and Garamond Book. The illustrations that appear in the book were produced by Robert

Romano using Macromedia FreeHand 8 and Adobe Photoshop 5. This colophon was written by

Madeleine Newell.

This book was authored in XML using the DocBook DTD and the SoftQuad XMetal 1.0 XML editor.

Drafts of the entire book were transformed directly from the XML source to HTML format using the

DocBook XSLT stylesheets and the Oracle XSLT processor.

