
Effective awk Programming

,TITLE.24009 Page 1 Tuesday, October 9, 2001 1:55 AM

,TITLE.24009 Page 2 Tuesday, October 9, 2001 1:55 AM

Effective awk Programming
Third Edition

Arnold Robbins

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.24009 Page 3 Tuesday, October 9, 2001 1:55 AM

Effective awk Programming, Third Edition
by Arnold Robbins

Copyright © 1989, 1991, 1992, 1993, 1996–2001 Free Software Foundation, Inc. All rights
reserved.

Printed in the United States of America.

Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
Phone: (617) 542-5942, Fax: (617) 542-2652, Email: gnu@gnu.org, URL: http://www.gnu.org.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

This is Edition 3 of Effective awk Programming: A User’s Guide for GNU awk, for the 3.1.0
(or later) version of the GNU implementation of awk.

Editor: Chuck Toporek

Production Editor: Jeffrey Holcomb

Cover Designer: Hanna Dyer

Printing History:

March 1996: First Edition (published by Specialized Systems Consult-
ants, Inc. and the Free Software Foundation, Inc. as Effec-
tive AWK Programming: A User’s Guide for GNU AWK)

February 1997: Second Edition (published by Specialized Systems Consul-
tants, Inc. and the Free Software Foundation, Inc. as Effec-
tive AWK Programming: A User’s Guide)

May 2001: Third Edition (published by O’Reilly & Associates, Inc.)

Cover design, trade dress, Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
logo are registered trademarks of O’Reilly & Associates, Inc. The association between the image
of a great auk and the topic of awk programming is a trademark of O’Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps. While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Permission is granted to copy, distribute, and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being “GNU General Public License,” the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see below).
A copy of the license is included in the section entitled “GNU Free Documentation License.”

a. “A GNU Manual.”

b. “You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.”

ISBN: 0-596-00070-7

[M]

,COPYRIGHT.23885 Page 1 Tuesday, October 9, 2001 1:55 AM

To Miriam, for making me complete.

To Chana, for the joy you bring us.

To Rivka, for the exponential increase.

To Nachum, for the added dimension.

To Malka, for the new beginning.

9 October 2001 01:44

9 October 2001 01:44

Ta ble of Contents

Fore word .. xiii

Preface .. xv

I. The awk Language and gawk ... 1

1. Getting Star ted with awk ... 3
How to Run awk Programs .. 4

Datafiles for the Examples ... 10

Some Simple Examples .. 11

An Example with Two Rules ... 13

A Mor e Complex Example ... 14

awk Statements Versus Lines ... 15

Other Features of awk ... 17

When to Use awk ... 17

2. Regular Expressions ... 19
How to Use Regular Expressions .. 19

Escape Sequences .. 21

Regular Expression Operators ... 23

Using Character Lists .. 26

gawk-Specific Regexp Operators ... 28

Case Sensitivity in Matching .. 29

How Much Text Matches? .. 31

Using Dynamic Regexps .. 31

vii

9 October 2001 01:45

viii Table of Contents

3. Reading Input Files .. 33
How Input Is Split into Records .. 33

Examining Fields .. 36

Non-constant Field Numbers ... 38

Changing the Contents of a Field .. 39

Specifying How Fields Are Separated ... 41

Reading Fixed-Width Data ... 46

Multiple-Line Records ... 48

Explicit Input with getline ... 51

4. Printing Output ... 58
The print Statement .. 58

Examples of print Statements .. 59

Output Separators ... 60

Contr olling Numeric Output with print ... 61

Using printf Statements for Fancier Printing ... 62

Redir ecting Output of print and printf ... 68

Special Filenames in gawk ... 70

Closing Input and Output Redirections .. 74

5. Expressions .. 78
Constant Expressions ... 79

Using Regular Expression Constants ... 81

Variables .. 82

Conversion of Strings and Numbers .. 84

Arithmetic Operators .. 85

String Concatenation .. 87

Assignment Expressions ... 88

Incr ement and Decrement Operators .. 92

True and False in awk .. 93

Variable Typing and Comparison Expressions ... 94

Boolean Expressions .. 97

Conditional Expressions ... 99

Function Calls ... 99

Operator Precedence (How Operators Nest) ... 101

9 October 2001 01:45

Ta ble of Contents ix

6. Patter ns, Actions, and Var iables ... 103
Patter n Elements ... 103

Using Shell Variables in Programs ... 109

Actions .. 110

Contr ol Statements in Actions .. 111

Built-in Variables .. 120

7. Arra ys in awk .. 129
Intr oduction to Arrays .. 130

Referring to an Array Element ... 132

Assigning Array Elements .. 133

Basic Array Example .. 133

Scanning All Elements of an Array .. 134

The delete Statement .. 135

Using Numbers to Subscript Arrays .. 136

Using Uninitialized Variables as Subscripts ... 137

Multidimensional Arrays .. 138

Scanning Multidimensional Arrays .. 139

Sorting Array Values and Indices with gawk .. 140

8. Functions ... 142
Built-in Functions ... 142

User-Defined Functions ... 166

9. Internationalization with gawk .. 174
Inter nationalization and Localization .. 174

GNU gettext .. 175

Inter nationalizing awk Programs ... 177

Translating awk Programs ... 179

A Simple Internationalization Example ... 182

gawk Can Speak Your Language ... 183

10. Advanced Features of gawk ... 185
Allowing Nondecimal Input Data .. 185

Two-Way Communications with Another Process 186

Using gawk for Network Programming .. 188

Using gawk with BSD Portals .. 189

Pr ofiling Your awk Programs ... 190

9 October 2001 01:45

x Table of Contents

11. Running awk and gawk .. 194
Invoking awk .. 194

Command-Line Options ... 195

Other Command-Line Arguments .. 200

The AWKPATH Envir onment Variable ... 201

Obsolete Options and/or Features .. 202

Known Bugs in gawk .. 203

II . Using awk and gawk ... 205

12. A Librar y of awk Functions ... 207
Naming Library Function Global Variables ... 208

General Programming .. 210

Datafile Management ... 218

Pr ocessing Command-Line Options .. 222

Reading the User Database .. 228

Reading the Group Database .. 232

13. Practical awk Prog rams .. 237
Running the Example Programs .. 237

Reinventing Wheels for Fun and Profit ... 238

A Grab Bag of awk Programs .. 259

14. Internetworking with gawk ... 281
Networking with gawk .. 281

Some Applications and Techniques .. 305

Related Links .. 323

III . Appendixes .. 325

A. The Evolution of the awk Language ... 327

B. Installing ga wk ... 337

C. Implementation Notes .. 350

9 October 2001 01:45

Ta ble of Contents xi

D. Basic Prog ramming Concepts ... 367

E. GNU General Public License .. 374

F. GNU Free Documentation License .. 382

Glossar y .. 391

Index .. 403

9 October 2001 01:45

9 October 2001 01:45

Fore word

Ar nold Robbins and I are good friends. We wer e intr oduced 11 years ago by cir-
cumstances — and our favorite programming language, awk. The circumstances
started a couple of years earlier. I was working at a new job and noticed an
unplugged Unix computer sitting in the corner. No one knew how to use it, and
neither did I. However, a couple of days later it was running, and I was root and
the one-and-only user. That day, I began the transition from statistician to Unix
pr ogrammer.

On one of many trips to the library or bookstore in search of books on Unix, I
found the gray awk book, a.k.a. Aho, Kernighan, and Weinberger, The AWK Pro-
gramming Language (Addison Wesley, 1988). awk ’s simple programming
paradigm — find a patter n in the input and then perfor m an action—often reduced
complex or tedious data manipulations to few lines of code. I was excited to try
my hand at programming in awk.

Alas, the awk on my computer was a limited version of the language described in
the awk book. I discovered that my computer had ‘‘old awk ’’ and the awk book
described ‘‘new awk.’’ I learned that this was typical; the old version refused to
step aside or relinquish its name. If a system had a new awk , it was invariably
called nawk , and few systems had it. The best way to get a new awk was to ftp
the source code for gawk fr om prep.ai.mit.edu. gawk was a version of new awk
written by David Trueman and Arnold, and available under the GNU General Pub-
lic License.

(Incidentally, it’s no longer difficult to find a new awk. gawk ships with Linux, and
you can download binaries or source code for almost any system; my wife uses
gawk on her VMS box.)

xiii

9 October 2001 01:44

xiv Foreword

My Unix system started out unplugged from the wall; it certainly was not plugged
into a network. So, oblivious to the existence of gawk and the Unix community in
general, and desiring a new awk , I wrote my own, called mawk. Befor e I was fin-
ished I knew about gawk , but it was too late to stop, so I eventually posted to a
comp.sources newsgr oup.

A few days after my posting, I got a friendly email from Arnold introducing him-
self. He suggested we share designs and algorithms and attached a draft of the
POSIX standard so that I could update mawk to support language extensions
added after publication of the awk book.

Frankly, if our roles had been reversed, I would not have been so open and we
pr obably would have never met. I’m glad we did meet. He is an awk expert’s awk
expert and a genuinely nice person. Arnold contributes significant amounts of his
expertise and time to the Free Software Foundation.

This book is the gawk refer ence manual, but at its core it is a book about awk
pr ogramming that will appeal to a wide audience. It is a definitive refer ence to the
awk language as defined by the 1987 Bell Labs release and codified in the 1992
POSIX Utilities standard.

On the other hand, the novice awk pr ogrammer can study a wealth of practical
pr ograms that emphasize the power of awk ’s basic idioms: data driven control-
flow, pattern matching with regular expressions, and associative arrays. Those
looking for something new can try out gawk ’s interface to network protocols via
special /inet files.

The programs in this book make clear that an awk pr ogram is typically much
smaller and faster to develop than a counterpart written in C. Consequently, there
is often a payoff to prototyping an algorithm or design in awk to get it running
quickly and expose problems early. Often, the interpreted perfor mance is ade-
quate and the awk pr ototype becomes the product.

The new pgawk (pr ofiling gawk) produces program execution counts. I recently
experimented with an algorithm that for n lines of input exhibited ∼ Cn2 per for-
mance, while theory predicted ∼ Cn log n behavior. A few minutes of poring over
the awkpr of.out pr ofile pinpointed the problem to a single line of code. pgawk is a
welcome addition to my programmer’s toolbox.

Ar nold has distilled over a decade of experience writing and using awk pr ograms,
and developing gawk , into this book. If you use awk or want to learn how, then
read this book.

Michael Brennan
Author of mawk

9 October 2001 01:44

Preface

Several kinds of tasks occur repeatedly when working with text files. You might
want to extract certain lines and discard the rest. Or you may need to make
changes wherever certain patterns appear, but leave the rest of the file alone. Writ-
ing single-use programs for these tasks in languages such as C, C++, or Pascal is
time-consuming and inconvenient. Such jobs are often easier with awk. The awk
utility interprets a special-purpose programming language that makes it easy to
handle simple data-refor matting jobs.

The GNU implementation of awk is called gawk ; it is fully compatible with the
System V Release 4 version of awk. gawk is also compatible with the POSIX speci-
fication of the awk language. This means that all properly written awk pr ograms
should work with gawk. Thus, we usually don’t distinguish between gawk and
other awk implementations.

Using awk allows you to:

• Manage small, personal databases

• Generate reports

• Validate data

• Produce indexes and perfor m other document preparation tasks

• Experiment with algorithms that you can adapt later to other computer lan-
guages

xv

9 October 2001 01:40

xvi Preface

In addition, gawk pr ovides facilities that make it easy to:

• Extract bits and pieces of data for processing

• Sort data

• Per form simple network communications

This book teaches you about the awk language and how you can use it effectively.
You should already be familiar with basic system commands, such as cat and ls,*

as well as basic shell facilities, such as input/output (I/O) redir ection and pipes.

Implementations of the awk language are available for many differ ent computing
envir onments. This book, while describing the awk language in general, also
describes the particular implementation of awk called gawk (which stands for
“GNU awk”). gawk runs on a broad range of Unix systems, ranging from 80386
PC-based computers up through large-scale systems, such as Crays. gawk has also
been ported to Mac OS X, MS-DOS, Microsoft Windows (all versions) and OS/2
PCs, Atari and Amiga microcomputers, BeOS, Tandem D20, and VMS.

Histor y of awk and gawk
The name awk comes from the initials of its designers: Alfred V. Aho, Peter J.
Weinberger, and Brian W. Ker nighan. The original version of awk was written in
1977 at AT&T Bell Laboratories. In 1985, a new version made the programming
language more power ful, intr oducing user-defined functions, multiple input
str eams, and computed regular expressions. This new version became widely
available with Unix System V Release 3.1 (SVR3.1). The version in SVR4 added
some new features and cleaned up the behavior in some of the “dark corners” of
the language. The specification for awk in the POSIX Command Language and
Utilities standard further clarified the language. Both the gawk designers and the
original Bell Laboratories awk designers provided feedback for the POSIX specifi-
cation.

Paul Rubin wrote the GNU implementation, gawk, in 1986. Jay Fenlason com-
pleted it, with advice from Richard Stallman. John Woods contributed parts of the
code as well. In 1988 and 1989, David Trueman, with help from me, thoroughly
reworked gawk for compatibility with the newer awk. Circa 1995, I became the
primary maintainer. Curr ent development focuses on bug fixes, perfor mance
impr ovements, standards compliance, and occasionally, new features.

* These commands are available on POSIX-compliant systems, as well as on traditional Unix-based
systems. If you are using some other operating system, you still need to be familiar with the ideas of
I/O redir ection and pipes.

9 October 2001 01:40

In May of 1997, Jürgen Kahrs felt the need for network access from awk, and with
a little help from me, set about adding features to do this for gawk. At that time,
he also wrote the bulk of TCP/IP Internetworking with gawk (a separate document,
available as part of the gawk distribution). Chapter 14, Inter networking with gawk,
is condensed from that document. His code finally became part of the main gawk
distribution with gawk Version 3.1.

See Appendix A, The Evolution of the awk Language, for a complete list of those
who made important contributions to gawk.

A Rose by Any Other Name
The awk language has evolved over the years. Full details are provided in
Appendix A. The language described in this book is often referr ed to as “new
awk ” (nawk).

Because of this, many systems have multiple versions of awk. Some systems have
an awk utility that implements the original version of the awk language and a
nawk utility for the new version.* Others have an oawk version for the “old awk ”
language and plain awk for the new one. Still others only have one version, which
is usually the new one.†

All in all, this makes it difficult for you to know which version of awk you should
run when writing your programs. The best advice I can give here is to check your
local documentation. Look for awk, oawk, and nawk, as well as for gawk. It is
likely that you already have some version of new awk on your system, which is
what you should use when running your programs. (Of course, if you’re reading
this book, chances are good that you have gawk !)

Thr oughout this book, whenever we refer to a language feature that should be
available in any complete implementation of POSIX awk, we simply use the term
awk. When referring to a feature that is specific to the GNU implementation, we
use the term gawk.

Using This Book
The term awk refers to a particular program as well as to the language you use to
tell this program what to do. When we need to be careful, we call the language
“the awk language,” and the program “the awk utility.” This book explains both
the awk language and how to run the awk utility. The term awk program refers to
a program written by you in the awk pr ogramming language.

* Of particular note is Sun’s Solaris, where /usr/bin/awk is, sadly, still the original version. Use
/usr/xpg4/bin/awk to get a POSIX-compliant version of awk on Solaris.

† Often, these systems use gawk for their awk implementation!

Preface xvii

9 October 2001 01:40

xviii Preface

Primarily, this book explains the features of awk, as defined in the POSIX stan-
dard. It does so in the context of the gawk implementation. While doing so, it also
attempts to describe important differ ences between gawk and other awk
implementations.* Finally, any gawk featur es that are not in the POSIX standard for
awk ar e noted.

This book has the difficult task of being both a tutorial and a refer ence. If you are
a novice, feel free to skip over details that seem too complex. You should also
ignor e the many cross-r efer ences; they are for the expert user and for the online
info version of the document.

Ther e ar e sidebars scattered throughout the book. They add a more complete
explanation of points that are relevant, but not likely to be of interest on first read-
ing. All appear in the index, under the heading “advanced features.”

Most of the time, the examples use complete awk pr ograms. In some of the more
advanced sections, only the part of the awk pr ogram that illustrates the concept
curr ently being described is shown.

While this book is aimed principally at people who have not been exposed to
awk, ther e is a lot of information here that even the awk expert should find useful.
In particular, the description of POSIX awk and the example programs in Chapter
12, A Library of awk Functions, and in Chapter 13, Practical awk Programs, should
be of interest.

Chapter 1, Getting Started with awk, provides the essentials you need to know to
begin using awk.

Chapter 2, Regular Expressions, intr oduces regular expressions in general, and in
particular the flavors supported by POSIX awk and gawk.

Chapter 3, Reading Input Files, describes how awk reads your data. It introduces
the concepts of records and fields, as well as the getline command. I/O redir ec-
tion is first described here.

Chapter 4, Printing Output, describes how awk pr ograms can produce output with
print and printf.

Chapter 5, Expr essions, describes expressions, which are the basic building blocks
for getting most things done in a program.

Chapter 6, Patter ns, Actions, and Variables, describes how to write patterns for
matching records, actions for doing something when a record is matched, and the
built-in variables awk and gawk use.

* All such differ ences appear in the index under the entry “differ ences in awk and gawk.”

9 October 2001 01:40

Chapter 7, Arrays in awk, covers awk ’s one-and-only data structure: associative
arrays. Deleting array elements and whole arrays is also described, as well as sort-
ing arrays in gawk.

Chapter 8, Functions, describes the built-in functions awk and gawk pr ovide, as
well as how to define your own functions.

Chapter 9, Inter nationalization with gawk, describes special features in gawk for
translating program messages into differ ent languages at runtime.

Chapter 10, Advanced Features of gawk, describes a number of gawk-specific
advanced features. Of particular note are the abilities to have two-way communi-
cations with another process, perfor m TCP/IP networking, and profile your awk
pr ograms.

Chapter 11, Running awk and gawk, describes how to run gawk, the meaning of
its command-line options, and how it finds awk pr ogram source files.

Chapter 12, A Library of awk Functions, and Chapter 13, Practical awk Programs,
pr ovide many sample awk pr ograms. Reading them allows you to see awk solving
real problems.

Chapter 14, Inter networking with gawk, provides an in-depth discussion and
examples of how to use gawk for Internet programming.

Appendix A, The Evolution of the awk Language, describes how the awk language
has evolved since first release to present. It also describes how gawk has acquired
featur es over time.

Appendix B, Installing gawk, describes how to get gawk, how to compile it under
Unix, and how to compile and use it on differ ent PC operating systems. It also
describes how to report bugs in gawk and where to get three other freely available
implementations of awk.

Appendix C, Implementation Notes, describes how to disable gawk ’s extensions,
as well as how to contribute new code to gawk, how to write extension libraries,
and some possible future dir ections for gawk development.

Appendix D, Basic Programming Concepts, provides some very cursory back-
gr ound material for those who are completely unfamiliar with computer program-
ming. Also centralized there is a discussion of some of the issues surrounding
floating-point numbers.

Appendix E, GNU General Public License, and Appendix F, GNU Free Documenta-
tion License, present the licenses that cover the gawk source code and this book,
respectively.

Preface xix

9 October 2001 01:40

xx Preface

The Glossary defines most, if not all, the significant terms used throughout the
book. If you find terms that you aren’t familiar with, try looking them up here.

Typog raphical Conventions
The following typographical conventions are used in this book:

Italic
Used to show generic arguments and options; these should be replaced with
user-supplied values. Italic is also used to highlight comments in examples. In
the text, italic indicates commands, filenames, options, and the first occur-
rences of important terms.

Constant width

Used for code examples, inline code fragments, and variable and function
names.

Constant width italic

Used in syntax summaries and examples to show replaceable text; this text
should be replaced with user-supplied values. It is also used in the text for the
names of control keys.

Constant width bold

Used in code examples to show commands or other text that the user should
type literally.

$, >
The $ indicates the standard shell’s primary prompt. The > indicates the shell’s
secondary prompt, which is printed when a command is not yet complete.

[] Surr ound optional elements in a description of syntax. (The brackets them-
selves should never be typed.)

When you see the owl icon, you know the text beside it is a note.

On the other hand, when you see the turkey icon, you know the
text beside it is a warning.

9 October 2001 01:40

Dark Cor ners
Until the POSIX standard (and The Gawk Manual), many features of awk wer e
either poorly documented or not documented at all. Descriptions of such features
(often called “dark corners”) are noted in this book with “(d.c.)”. They also appear
in the index under the heading “dark corner.”

Any coverage of dark corners is, by definition, something that is incomplete.

The GNU Project and This Book
The Free Software Foundation (FSF) is a nonprofit organization dedicated to the
pr oduction and distribution of freely distributable software. It was founded by
Richard M. Stallman, the author of the original Emacs editor. GNU Emacs is the
most widely used version of Emacs today.

The GNU* Pr oject is an ongoing effort on the part of the Free Software Foundation
to create a complete, freely distributable, POSIX-compliant computing environ-
ment. The FSF uses the “GNU General Public License” (GPL) to ensure that their
softwar e’s source code is always available to the end user. A copy of the GPL is
included in this book for your refer ence (see Appendix E). The GPL applies to the
C language source code for gawk. To find out more about the FSF and the GNU
Pr oject online, see the GNU Project’s home page at http://www.gnu.or g. This book
may also be read from their documentation web site at http://www.gnu.or g /
manual/gawk /.

Until the GNU operating system is more fully developed, you should consider
using GNU/Linux, a freely distributable, Unix-like operating system for Intel 80386,
DEC Alpha, Sun SPARC, IBM S/390, and other systems.† Ther e ar e many books on
GNU/Linux. One that is freely available is Linux Installation and Getting Started
by Matt Welsh (Specialized Systems Consultants). Another good book is Lear ning
Debian GNU/Linux by Bill McCarty (O’Reilly). Many GNU/Linux distributions are
often available in computer stores or bundled on CD-ROMs with books about
Linux. (There are thr ee other freely available, Unix-like operating systems for
80386 and other systems: NetBSD, FreeBSD, and OpenBSD. All are based on the
4.4-Lite Berkeley Software Distribution, and they use recent versions of gawk for
their versions of awk.)

The book you are reading is actually free — at least, the information in it is free to
anyone. The machine-readable source code for the book comes with gawk ; any-
one may take this book to a copying machine and make as many copies as they
like. (Take a moment to check the Free Documentation License in Appendix F.)

* GNU stands for “GNU’s not Unix.”

† The terminology “GNU/Linux” is explained in the Glossary.

Preface xxi

9 October 2001 01:40

xxii Preface

Although you could just print it out yourself, bound books are much easier to read
and use. Furthermor e, part of the proceeds from sales of this book go back to the
FSF to help fund development of more free softwar e. In keeping with the GNU
Fr ee Documentation License, O’Reilly & Associates is making the DocBook version
of this book available on their web site (http://www.or eilly.com/catalog /
awkpr og3). They also contributed significant editorial resources to the book,
which were folded into the Texinfo version distributed with gawk.

The book itself has gone through a number of previous editions. Paul Rubin wrote
the very first draft of The GAWK Manual; it was around 40 pages in size. Diane
Close and Richard Stallman improved it, yielding a version that was around 90
pages long and barely described the original, “old” version of awk.

I started working with that version in the fall of 1988. As work on it progr essed,
the FSF published several preliminary versions (numbered 0.x). In 1996, Edition
1.0 was released with gawk 3.0.0. SSC published the first two editions of Ef fective
awk Programming, and the FSF published the same two editions under the title
The GNU Awk User’s Guide.

This edition maintains the basic structure of Edition 1.0, but with significant addi-
tional material, reflecting the host of new features in gawk Version 3.1. Of particu-
lar note is the section “Sorting Array Values and Indices with gawk” in Chapter 7,
as well as the section “Bit-Manipulation Functions of gawk” in Chapter 8, all of
Chapter 9 and Chapter 10, and the section “Adding New Built-in Functions to
gawk” in Appendix C.

Ef fective awk Programming will undoubtedly continue to evolve. An electronic
version comes with the gawk distribution from the FSF. If you find an error in this
book, please report it! See the section “Reporting Problems and Bugs” in Appendix
B for information on submitting problem reports electronically, or write to me in
car e of the publisher.

How to Contr ibute
As the maintainer of GNU awk, I am starting a collection of publicly available awk
pr ograms. For more infor mation, see ftp://ftp.fr eefriends.org /ar nold/Awkstuf f. If
you have written an interesting awk pr ogram, or have written a gawk extension
that you would like to share with the rest of the world, please contact me
(ar nold@gnu.org). Making things available on the Internet helps keep the gawk
distribution down to manageable size.

9 October 2001 01:40

Acknowledgments
The initial draft of The GAWK Manual had the following acknowledgments:

Many people need to be thanked for their assistance in producing this manual. Jay
Fenlason contributed many ideas and sample programs. Richard Mlynarik and
Robert Chassell gave helpful comments on drafts of this manual. The paper A Sup-
plemental Document for awk, by John W. Pierce of the Chemistry Department at
UC San Diego, pinpointed several issues relevant both to awk implementation and
to this manual, that would otherwise have escaped us.

I would like to acknowledge Richard M. Stallman, for his vision of a better world
and for his courage in founding the FSF and starting the GNU Project.

The following people (in alphabetical order) provided helpful comments on vari-
ous versions of this book, up to and including this edition. Rick Adams, Nelson
H.F. Beebe, Karl Berry, Dr. Michael Brennan, Rich Burridge, Claire Cloutier, Diane
Close, Scott Deifik, Christopher (“Topher”) Eliot, Jeffr ey Friedl, Dr. Darr el Hanker-
son, Michal Jaegermann, Dr. Richard J. LeBlanc, Michael Lijewski, Pat Rankin,
Miriam Robbins, Mary Sheehan, and Chuck Topor ek.

Robert J. Chassell provided much valuable advice on the use of Texinfo. Karl
Berry helped significantly with the TEX part of Texinfo.

I would like to thank Marshall and Elaine Hartholz of Seattle and Dr. Bert and Rita
Schr eiber of Detroit for large amounts of quiet vacation time in their homes, which
allowed me to make significant progr ess on this book and on gawk itself.

Phil Hughes of SSC contributed in a very important way by loaning me his laptop
GNU/Linux system, not once, but twice, which allowed me to do a lot of work
while away from home. I would also like to thank Phil for publishing the first two
editions of this book, and for getting me started as a technical author.

David Trueman deserves special credit; he has done a yeoman job of evolving
gawk so that it perfor ms well and without bugs. Although he is no longer involved
with gawk, working with him on this project was a significant pleasure.

The intrepid members of the GNITS mailing list, and most notably Ulrich Drepper,
pr ovided invaluable help and feedback for the design of the internationalization
featur es.

Nelson Beebe, Martin Brown, Scott Deifik, Darrel Hankerson, Michal Jaegermann,
Jürgen Kahrs, Pat Rankin, Kai Uwe Rommel, and Eli Zaretskii (in alphabetical
order) are long-time members of the gawk “crack portability team.” Without their
hard work and help, gawk would not be nearly the fine program it is today. It has
been and continues to be a pleasure working with this team of fine people.

Preface xxiii

9 October 2001 01:40

xxiv Preface

David and I would like to thank Brian Kernighan of Bell Laboratories for invalu-
able assistance during the testing and debugging of gawk, and for help in clarify-
ing numerous points about the language. We could not have done nearly as good
a job on either gawk or its documentation without his help.

Michael Brennan, author of mawk, contributed the Foreword, for which I thank
him. Perhaps one of the most rewarding aspects of my long-term work with gawk
has been the friendships it has brought me, both with Michael and with Brian
Ker nighan.

A special thanks to Chuck Topor ek of O’Reilly & Associates for thoroughly editing
this book and shepherding the project through its various stages.

I must thank my wonderful wife, Miriam, for her patience through the many ver-
sions of this project, for her proofr eading, and for sharing me with the computer. I
would like to thank my parents for their love, and for the grace with which they
raised and educated me. Finally, I also must acknowledge my gratitude to G-d, for
the many opportunities He has sent my way, as well as for the gifts He has given
me with which to take advantage of those opportunities.

Ar nold Robbins
Nof Ayalon

ISRAEL
March, 2001

9 October 2001 01:40

I
The awk Language and

ga wk

Part I describes the awk language and gawk pr ogram in detail. It starts with the
basics and continues through all of the features of awk and gawk. This part con-
tains the following chapters:

• Chapter 1, Getting Started with awk

• Chapter 2, Regular Expressions

• Chapter 3, Reading Input Files

• Chapter 4, Printing Output

• Chapter 5, Expr essions

• Chapter 6, Patter ns, Actions, and Variables

• Chapter 7, Arrays in awk

• Chapter 8, Functions

• Chapter 9, Inter nationalization with gawk

• Chapter 10, Advanced Features of gawk

• Chapter 11, Running awk and gawk

9 October 2001 01:44

9 October 2001 01:44

1
Getting Started

with awk

In this chapter:
• How to Run awk

Prog rams
• Datafiles for the

Examples
• Some Simple

Examples
• An Example with

Tw o Rules
• A More Complex

Example
• awk Statements

Versus Lines
• Other Features of

awk
• When to Use awk

The basic function of awk is to search files for lines (or other units of text) that
contain certain patterns. When a line matches one of the patterns, awk per forms
specified actions on that line. awk keeps processing input lines in this way until it
reaches the end of the input files.

Pr ograms in awk ar e dif ferent from programs in most other languages, because
awk pr ograms ar e data-driven; that is, you describe the data you want to work
with and then what to do when you find it. Most other languages are pr ocedural;
you have to describe, in great detail, every step the program is to take. When
working with procedural languages, it is usually much harder to clearly describe
the data your program will process. For this reason, awk pr ograms ar e often
refr eshingly easy to read and write.

When you run awk, you specify an awk program that tells awk what to do. The
pr ogram consists of a series of rules. (It may also contain function definitions, an
advanced feature that we will ignore for now. See the section “User-Defined Func-
tions” in Chapter 8, Functions.) Each rule specifies one pattern to search for and
one action to perfor m upon finding the pattern.

Syntactically, a rule consists of a pattern followed by an action. The action is
enclosed in curly braces to separate it from the pattern. Newlines usually separate
rules. Therefor e, an awk pr ogram looks like this:

pattern { action }
pattern { action }
...

3

9 October 2001 01:40

4 Chapter 1: Getting Started with awk

How to Run awk Prog rams
Ther e ar e several ways to run an awk pr ogram. If the program is short, it is easiest
to include it in the command that runs awk, like this:

awk ’program’ input-file1 input-file2 ...

When the program is long, it is usually more convenient to put it in a file and run
it with a command like this:

awk -f program-file input-file1 input-file2 ...

This section discusses both mechanisms, along with several variations of each.

One-Shot Throw away awk Prog rams
Once you are familiar with awk, you will often type in simple programs the
moment you want to use them. Then you can write the program as the first argu-
ment of the awk command, like this:

awk ’program’ input-file1 input-file2 ...

wher e pr ogram consists of a series of patter ns and actions, as described earlier.

This command format instructs the shell, or command interpreter, to start awk and
use the pr ogram to process records in the input file(s). There are single quotes
ar ound pr ogram so the shell won’t interpret any awk characters as special shell
characters. The quotes also cause the shell to treat all of pr ogram as a single argu-
ment for awk, and allow pr ogram to be more than one line long.

This format is also useful for running short or medium-sized awk pr ograms fr om
shell scripts, because it avoids the need for a separate file for the awk pr ogram. A
self-contained shell script is more reliable because there are no other files to mis-
place.

The section “Some Simple Examples” later in this chapter presents several short,
self-contained programs.

Running awk Without Input Files
You can also run awk without any input files. If you type the following command
line:

awk ’program’

awk applies the pr ogram to the standar d input, which usually means whatever
you type on the terminal. This continues until you indicate end-of-file by typing
Ctrl-d. (On other operating systems, the end-of-file character may be differ ent. For
example, on OS/2 and MS-DOS, it is Ctrl-z.)

9 October 2001 01:40

As an example, the following program prints a friendly piece of advice (from
Douglas Adams’s The Hitchhiker’s Guide to the Galaxy), to keep you from worry-
ing about the complexities of computer programming (BEGIN is a feature we
haven’t discussed yet):

$ awk "BEGIN { print \"Don’t Panic!\" }"
Don’t Panic!

This program does not read any input. The \ befor e each of the inner double
quotes is necessary because of the shell’s quoting rules—in particular because it
mixes both single quotes and double quotes.*

This next simple awk pr ogram emulates the cat utility; it copies whatever you type
on the keyboard to its standard output (why this works is explained shortly):

$ awk ’{ print }’
Now is the time for all good men
Now is the time for all good men
to come to the aid of their country.
to come to the aid of their country.
Four score and seven years ago, ...
Four score and seven years ago, ...
What, me worry?
What, me worry?
Ctrl-d

Running Long Prog rams
Sometimes your awk pr ograms can be very long. In this case, it is more conve-
nient to put the program into a separate file. In order to tell awk to use that file for
its program, you type:

awk -f source-file input-file1 input-file2 ...

The –f instructs the awk utility to get the awk pr ogram fr om the file sour ce-file.
Any filename can be used for sour ce-file. For example, you could put the program:

BEGIN { print "Don’t Panic!" }

into the file advice. Then this command:

awk -f advice

does the same thing as this one:

awk "BEGIN { print \"Don’t Panic!\" }"

* Although we generally recommend the use of single quotes around the program text, double quotes
ar e needed here in order to put the single quote into the message.

How to Run awk Prog rams 5

9 October 2001 01:40

6 Chapter 1: Getting Started with awk

This was explained earlier (see the previous section “Running awk Without Input
Files).” Note that you don’t usually need single quotes around the filename that
you specify with –f, because most filenames don’t contain any of the shell’s special
characters. Notice that in advice, the awk pr ogram did not have single quotes
ar ound it. The quotes are only needed for programs that are provided on the awk
command line.

If you want to identify your awk pr ogram files clearly as such, you can add the
extension .awk to the filename. This doesn’t affect the execution of the awk pr o-
gram but it does make “housekeeping” easier.

Executable awk Prog rams
Once you have learned awk, you may want to write self-contained awk scripts,
using the #! script mechanism. You can do this on many Unix systems* as well as
on the GNU system. For example, you could update the file advice to look like
this:

#! /bin/awk -f

BEGIN { print "Don’t Panic!" }

After making this file executable (with the chmod utility), simply type advice at the
shell and the system arranges to run awk † as if you had typed awk -f advice:

$ chmod +x advice
$ advice
Don’t Panic!

Self-contained awk scripts are useful when you want to write a program that users
can invoke without their having to know that the program is written in awk.

Comments in awk Prog rams
A comment is some text that is included in a program for the sake of human read-
ers; it is not really an executable part of the program. Comments can explain what
the program does and how it works. Nearly all programming languages have pro-
visions for comments, as programs are typically hard to understand without them.

* The #! mechanism works on Linux systems, systems derived from the 4.4-Lite Berkeley Software Dis-
tribution, and most commercial Unix systems.

† The line beginning with #! lists the full filename of an interpreter to run and an optional initial com-
mand-line argument to pass to that interpreter. The operating system then runs the interpreter with
the given argument and the full argument list of the executed program. The first argument in the list
is the full filename of the awk pr ogram. The rest of the argument list contains either options to awk,
or datafiles, or both.

9 October 2001 01:40

Portability Issues with #!
Some systems limit the length of the interpreter name to 32 characters.
Often, this can be dealt with by using a symbolic link.

You should not put more than one argument on the #! line after the path to
awk. It does not work. The operating system treats the rest of the line as a
single argument and passes it to awk. Doing this leads to confusing behav-
ior — most likely a usage diagnostic of some sort from awk.

Finally, the value of ARGV[0] (see the section “Built-in Variables” in Chapter 6,
Patter ns, Actions, and Variables) varies depending upon your operating sys-
tem. Some systems put awk ther e, some put the full pathname of awk (such
as /bin/awk), and some put the name of your script (advice). Don’t rely on
the value of ARGV[0] to provide your script name.

In the awk language, a comment starts with the sharp sign character (#) and con-
tinues to the end of the line. The # does not have to be the first character on the
line. The awk language ignores the rest of a line following a sharp sign. For exam-
ple, we could have put the following into advice :

This program prints a nice friendly message. It helps
keep novice users from being afraid of the computer.
BEGIN { print "Don’t Panic!" }

You can put comment lines into keyboard-composed throwaway awk pr ograms,
but this usually isn’t very useful; the purpose of a comment is to help you or
another person understand the program when reading it at a later time.

Shell-Quoting Issues
For short to medium length awk pr ograms, it is most convenient to enter the pro-
gram on the awk command line. This is best done by enclosing the entire program
in single quotes. This is true whether you are entering the program interactively at
the shell prompt or writing it as part of a larger shell script:

awk ’program text’ input-file1 input-file2 ...

Once you are working with the shell, it is helpful to have a basic knowledge of
shell-quoting rules. The following rules apply only to POSIX-compliant, Bourne-
style shells (such as bash, the GNU Bourne-again shell). If you use csh, you’r e on
your own:

How to Run awk Prog rams 7

9 October 2001 01:40

8 Chapter 1: Getting Started with awk

As mentioned in the section “One-Shot Throwaway awk Programs”
earlier in this chapter, you can enclose small- to medium-sized pro-
grams in single quotes, in order to keep your shell scripts self-con-
tained. When doing so, don’t put an apostrophe (i.e., a single quote)
into a comment (or anywhere else in your program). The shell inter-
pr ets the quote as the closing quote for the entire program. As a
result, usually the shell prints a message about mismatched quotes,
and if awk actually runs, it will probably print strange messages
about syntax errors. For example, look at the following:

$ awk ’{ print "hello" } # let’s be cute’
>

The shell sees that the first two quotes match, and that a new quoted
object begins at the end of the command line. It therefor e pr ompts
with the secondary prompt, waiting for more input. With Unix awk,
closing the quoted string produces this result:

$ awk ’{ print "hello" } # let’s be cute’
> ’
awk: can’t open file be
source line number 1

Putting a backslash before the single quote in let’s wouldn’t help,
since backslashes are not special inside single quotes. The next sec-
tion describes the shell’s quoting rules.

• Quoted items can be concatenated with nonquoted items as well as with other
quoted items. The shell turns everything into one argument for the command.

• Preceding any single character with a backslash (\) quotes that character. The
shell removes the backslash and passes the quoted character on to the com-
mand.

• Single quotes protect everything between the opening and closing quotes. The
shell does no interpretation of the quoted text, passing it on verbatim to the
command. It is impossible to embed a single quote inside single-quoted text.
Refer back to the section “Comments in awk Programs” earlier in this chapter
for an example of what happens if you try.

• Double quotes protect most things between the opening and closing quotes.
The shell does at least variable and command substitution on the quoted text.
Dif ferent shells may do additional kinds of processing on double-quoted text.
Since certain characters within double-quoted text are processed by the shell,
they must be escaped within the text. Of note are the characters $, ‘, \, and ",
all of which must be preceded by a backslash within double-quoted text if
they are to be passed on literally to the program. (The leading backslash is

9 October 2001 01:40

stripped first.) Thus, the example seen previously in the section “Running
awk Without Input Files” is applicable:

$ awk "BEGIN { print \"Don’t Panic!\" }"
Don’t Panic!

Note that the single quote is not special within double quotes.

• Null strings are removed when they occur as part of a non-null command-line
argument, while explicit nonnull objects are kept. For example, to specify that
the field separator FS should be set to the null string, use:

awk -F "" ’program’ files # correct

Don’t use this:

awk -F"" ’program’ files # wrong!

In the second case, awk will attempt to use the text of the program as the
value of FS, and the first filename as the text of the program! This results in
syntax errors at best, and confusing behavior at worst.

Mixing single and double quotes is difficult. You have to resort to shell quoting
tricks, like this:

$ awk ’BEGIN { print "Here is a single quote <’"’"’>" }’
Here is a single quote <’>

This program consists of three concatenated quoted strings. The first and the third
ar e single-quoted, the second is double-quoted.

This can be “simplified” to:

$ awk ’BEGIN { print "Here is a single quote <’\’’>" }’
Here is a single quote <’>

Judge for yourself which of these two is the more readable.

Another option is to use double quotes, escaping the embedded, awk-level double
quotes:

$ awk "BEGIN { print \"Here is a single quote <’>\" }"
Here is a single quote <’>

This option is also painful, because double quotes, backslashes, and dollar signs
ar e very common in awk pr ograms.

If you really need both single and double quotes in your awk pr ogram, it is proba-
bly best to move it into a separate file, where the shell won’t be part of the pic-
tur e, and you can say what you mean.

How to Run awk Prog rams 9

9 October 2001 01:40

10 Chapter 1: Getting Started with awk

Datafiles for the Examples
Many of the examples in this book take their input from two sample datafiles. The
first, BBS-list, repr esents a list of computer bulletin-board systems together with
infor mation about those systems. The second datafile, called inventory-shipped,
contains information about monthly shipments. In both files, each line is consid-
er ed to be one recor d.

In the datafile BBS-list, each record contains the name of a computer bulletin
board, its phone number, the board’s baud rate(s), and a code for the number of
hours it is operational. An A in the last column means the board operates 24 hours
a day. A B in the last column means the board operates only on evening and
weekend hours. A C means the board operates only on weekends:

aardvark 555-5553 1200/300 B
alpo-net 555-3412 2400/1200/300 A
barfly 555-7685 1200/300 A
bites 555-1675 2400/1200/300 A
camelot 555-0542 300 C
core 555-2912 1200/300 C
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sdace 555-3430 2400/1200/300 A
sabafoo 555-2127 1200/300 C

The datafile inventory-shipped repr esents infor mation about shipments during the
year. Each record contains the month, the number of green crates shipped, the
number of red boxes shipped, the number of orange bags shipped, and the num-
ber of blue packages shipped, respectively. There are 16 entries, covering the 12
months of last year and the first 4 months of the current year:

Jan 13 25 15 115
Feb 15 32 24 226
Mar 15 24 34 228
Apr 31 52 63 420
May 16 34 29 208
Jun 31 42 75 492
Jul 24 34 67 436
Aug 15 34 47 316
Sep 13 55 37 277
Oct 29 54 68 525
Nov 20 87 82 577
Dec 17 35 61 401

Jan 21 36 64 620
Feb 26 58 80 652
Mar 24 75 70 495
Apr 21 70 74 514

9 October 2001 01:40

Some Simple Examples
The following command runs a simple awk pr ogram that searches the input file
BBS-list for the character string foo (a grouping of characters is usually called a
string; the term string is based on similar usage in English, such as “a string of
pearls,” or “a string of cars in a train”):

awk ’/foo/ { print $0 }’ BBS-list

When lines containing foo ar e found, they are printed because print $0 means
print the current line. (Just print by itself means the same thing, so we could have
written that instead.)

You will notice that slashes (/) surr ound the string foo in the awk pr ogram. The
slashes indicate that foo is the pattern to search for. This type of pattern is called a
regular expression, which is covered in more detail later (see Chapter 2, Regular
Expr essions). The pattern is allowed to match parts of words. There are single
quotes around the awk pr ogram so that the shell won’t interpret any of it as spe-
cial shell characters.

Her e is what this program prints:

$ awk ’/foo/ { print $0 }’ BBS-list
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sabafoo 555-2127 1200/300 C

In an awk rule, either the pattern or the action can be omitted, but not both. If the
patter n is omitted, then the action is perfor med for every input line. If the action is
omitted, the default action is to print all lines that match the pattern.

Thus, we could leave out the action (the print statement and the curly braces) in
the previous example and the result would be the same: all lines matching the pat-
ter n foo ar e printed. By comparison, omitting the print statement but retaining the
curly braces makes an empty action that does nothing (i.e., no lines are printed).

Many practical awk pr ograms ar e just a line or two. Following is a collection of
useful, short programs to get you started. Some of these programs contain con-
structs that haven’t been covered yet. (The description of the program will give
you a good idea of what is going on, but please read the rest of the book to
become an awk expert!) Most of the examples use a datafile named data. This is
just a placeholder; if you use these programs yourself, substitute your own file-
names for data. For future refer ence, note that there is often more than one way
to do things in awk. At some point, you may want to look back at these examples
and see if you can come up with differ ent ways to do the same things shown
her e:

Some Simple Examples 11

9 October 2001 01:40

12 Chapter 1: Getting Started with awk

• Print the length of the longest input line:

awk ’{ if (length($0) > max) max = length($0) }
END { print max }’ data

• Print every line that is longer than 80 characters:

awk ’length($0) > 80’ data

The sole rule has a relational expression as its pattern and it has no action—
so the default action, printing the record, is used.

• Print the length of the longest line in data:

expand data | awk ’{ if (x < length()) x = length() }
END { print "maximum line length is " x }’

The input is processed by the expand utility to change tabs into spaces, so the
widths compared are actually the right-margin columns.

• Print every line that has at least one field:

awk ’NF > 0’ data

This is an easy way to delete blank lines from a file (or rather, to create a new
file similar to the old file but from which the blank lines have been removed).

• Print seven random numbers from 0 to 100, inclusive:

awk ’BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }’

• Print the total number of bytes used by files:

ls -l files | awk ’{ x += $5 } ; END { print "total bytes: " x }’

• Print the total number of kilobytes used by files:

ls -l files | awk ’{ x += $5 }
END { print "total K-bytes: " (x + 1023)/1024 }’

• Print a sorted list of the login names of all users:

awk -F: ’{ print $1 }’ /etc/passwd | sort

• Count the lines in a file:

awk ’END { print NR }’ data

• Print the even-numbered lines in the datafile:

awk ’NR % 2 == 0’ data

If you use the expression NR % 2 == 1 instead, the program would print the
odd-number ed lines.

9 October 2001 01:40

An Example with Two Rules
The awk utility reads the input files one line at a time. For each line, awk tries the
patter ns of each of the rules. If several patterns match, then several actions are run
in the order in which they appear in the awk pr ogram. If no patterns match, then
no actions are run.

After processing all the rules that match the line (and perhaps there are none),
awk reads the next line. (However, see the section “The next Statement” and also
see the section “Using gawk’s nextfile Statement” in Chapter 6). This continues
until the program reaches the end of the file. For example, the following awk pr o-
gram contains two rules:

/12/ { print $0 }
/21/ { print $0 }

The first rule has the string 12 as the pattern and print $0 as the action. The sec-
ond rule has the string 21 as the pattern and also has print $0 as the action. Each
rule’s action is enclosed in its own pair of braces.

This program prints every line that contains the string 12 or the string 21. If a line
contains both strings, it is printed twice, once by each rule.

This is what happens if we run this program on our two sample datafiles, BBS-list
and inventory-shipped:

$ awk ’/12/ { print $0 }
> /21/ { print $0 }’ BBS-list inventory-shipped
aardvark 555-5553 1200/300 B
alpo-net 555-3412 2400/1200/300 A
barfly 555-7685 1200/300 A
bites 555-1675 2400/1200/300 A
core 555-2912 1200/300 C
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sdace 555-3430 2400/1200/300 A
sabafoo 555-2127 1200/300 C
sabafoo 555-2127 1200/300 C
Jan 21 36 64 620
Apr 21 70 74 514

Note how the line beginning with sabafoo in BBS-list was printed twice, once for
each rule.

An Example with Two Rules 13

9 October 2001 01:40

14 Chapter 1: Getting Started with awk

A More Complex Example
Now that we’ve mastered some simple tasks, let’s look at what typical awk pr o-
grams do. This example shows how awk can be used to summarize, select, and
rearrange the output of another utility. It uses features that haven’t been covered
yet, so don’t worry if you don’t understand all the details:

ls -l | awk ’$6 == "Nov" { sum += $5 }
END { print sum }’

This command prints the total number of bytes in all the files in the current direc-
tory that were last modified in November (of any year).* The ls -l part of this
example is a system command that gives you a listing of the files in a directory,
including each file’s size and the date the file was last modified. Its output looks
like this:

-rw-r--r-- 1 arnold user 1933 Nov 7 13:05 Makefile
-rw-r--r-- 1 arnold user 10809 Nov 7 13:03 awk.h
-rw-r--r-- 1 arnold user 983 Apr 13 12:14 awk.tab.h
-rw-r--r-- 1 arnold user 31869 Jun 15 12:20 awk.y
-rw-r--r-- 1 arnold user 22414 Nov 7 13:03 awk1.c
-rw-r--r-- 1 arnold user 37455 Nov 7 13:03 awk2.c
-rw-r--r-- 1 arnold user 27511 Dec 9 13:07 awk3.c
-rw-r--r-- 1 arnold user 7989 Nov 7 13:03 awk4.c

The first field contains read-write permissions, the second field contains the num-
ber of links to the file, and the third field identifies the owner of the file. The
fourth field identifies the group of the file. The fifth field contains the size of the
file in bytes. The sixth, seventh, and eighth fields contain the month, day, and
time, respectively, that the file was last modified. Finally, the ninth field contains
the name of the file.†

The $6 == “Nov" in our awk pr ogram is an expression that tests whether the sixth
field of the output from ls -l matches the string Nov. Each time a line has the
string Nov for its sixth field, the action sum += $5 is perfor med. This adds the fifth
field (the file’s size) to the variable sum. As a result, when awk has finished reading
all the input lines, sum is the total of the sizes of the files whose lines matched the
patter n. (This works because awk variables are automatically initialized to zero.)

After the last line of output from ls has been processed, the END rule executes and
prints the value of sum. In this example, the value of sum is 140963.

* In the C shell (csh), you need to type a semicolon and then a backslash at the end of the first line;
see the section “awk Statements Versus Lines” later in this chapter for an explanation. In a POSIX-
compliant shell, such as the Bourne shell or bash, you can type the example as shown. If the com-
mand echo $path pr oduces an empty output line, you are most likely using a POSIX-compliant
shell. Otherwise, you are probably using the C shell or a shell derived from it.

† On some very old systems, you may need to use ls -lg to get this output.

9 October 2001 01:40

These more advanced awk techniques are cover ed in later sections (see the sec-
tion “Actions” in Chapter 6). Before you can move on to more advanced awk pr o-
gramming, you have to know how awk interpr ets your input and displays your
output. By manipulating fields and using print statements, you can produce some
very useful and impressive-looking reports.

awk Statements Ver sus Lines
Most often, each line in an awk pr ogram is a separate statement or separate rule,
like this:

awk ’/12/ { print $0 }
/21/ { print $0 }’ BBS-list inventory-shipped

However, gawk ignor es newlines after any of the following symbols and key-
words:

, { ? : || && do else

A newline at any other point is considered the end of the statement.*

If you would like to split a single statement into two lines at a point where a new-
line would terminate it, you can continue it by ending the first line with a back-
slash character (\). The backslash must be the final character on the line in order
to be recognized as a continuation character. A backslash is allowed anywhere in
the statement, even in the middle of a string or regular expression. For example:

awk ’/This regular expression is too long, so continue it\
on the next line/ { print $1 }’

We have generally not used backslash continuation in the sample programs in this
book. In gawk, ther e is no limit on the length of a line, so backslash continuation
is never strictly necessary; it just makes programs more readable. For this same
reason, as well as for clarity, we have kept most statements short in the sample
pr ograms pr esented thr oughout the book. Backslash continuation is most useful
when your awk pr ogram is in a separate source file instead of entered from the
command line. You should also note that many awk implementations are mor e
particular about where you may use backslash continuation. For example, they
may not allow you to split a string constant using backslash continuation. Thus, for
maximum portability of your awk pr ograms, it is best not to split your lines in the
middle of a regular expression or a string.

* The ? and : referr ed to here is the three-operand conditional expression described in the section
“Conditional Expressions” in Chapter 5, Expr essions. Splitting lines after ? and : is a minor gawk
extension; if ––posix is specified (see the section “Command-Line Options” in Chapter 11, Running
awk and gawk), then this extension is disabled.

awk Statements Ver sus Lines 15

9 October 2001 01:40

16 Chapter 1: Getting Started with awk

Backslash continuation does not work as described with the C shell. It
works for awk pr ograms in files and for one-shot programs, pro-
vided you are using a POSIX-compliant shell, such as the Unix
Bour ne shell or bash. But the C shell behaves differ ently! Ther e, you
must use two backslashes in a row, followed by a newline. Note
also that when using the C shell, every newline in your awk pr ogram
must be escaped with a backslash. To illustrate:

% awk ’BEGIN { \
? print \\
? "hello, world" \
? }’
hello, world

Her e, the % and ? ar e the C shell’s primary and secondary prompts,
analogous to the standard shell’s $ and >.

Compar e the previous example to how it is done with a POSIX-
compliant shell:

$ awk ’BEGIN {
> print \
> "hello, world"
> }’
hello, world

awk is a line-oriented language. Each rule’s action has to begin on the same line
as the pattern. To have the pattern and action on separate lines, you must use
backslash continuation; there is no other option.

Another thing to keep in mind is that backslash continuation and comments do
not mix. As soon as awk sees the # that starts a comment, it ignores everything on
the rest of the line. For example:

$ gawk ’BEGIN { print "dont panic" # a friendly \
> BEGIN rule
> }’
gawk: cmd. line:2: BEGIN rule
gawk: cmd. line:2: ˆ parse error

In this case, it looks like the backslash would continue the comment onto the next
line. However, the backslash-newline combination is never even noticed because
it is “hidden” inside the comment. Thus, the BEGIN is noted as a syntax error.

9 October 2001 01:40

When awk statements within one rule are short, you might want to put more than
one of them on a line. This is accomplished by separating the statements with a
semicolon (;). This also applies to the rules themselves. Thus, the program shown
at the start of this section could also be written this way:

/12/ { print $0 } ; /21/ { print $0 }

The requir ement that states that rules on the same line must be sepa-
rated with a semicolon was not in the original awk language; it was
added for consistency with the treatment of statements within an
action.

Other Features of awk
The awk language provides a number of predefined, or built-in, variables that
your programs can use to get information from awk. Ther e ar e other variables
your program can set as well to control how awk pr ocesses your data.

In addition, awk pr ovides a number of built-in functions for doing common com-
putational and string-related operations. gawk pr ovides built-in functions for work-
ing with timestamps, perfor ming bit manipulation, and for runtime string
translation.

As we develop our presentation of the awk language, we introduce most of the
variables and many of the functions. They are defined systematically in the section
“Built-in Variables” in Chapter 6 and the section “Built-in Functions” in Chapter 8.

When to Use awk
Now that you’ve seen some of what awk can do, you might wonder how awk
could be useful for you. By using utility programs, advanced patterns, field separa-
tors, arithmetic statements, and other selection criteria, you can produce much
mor e complex output. The awk language is very useful for producing reports from
large amounts of raw data, such as summarizing information from the output of
other utility programs like ls. (See the section “A More Complex Example” earlier
in this chapter.)

Pr ograms written with awk ar e usually much smaller than they would be in other
languages. This makes awk pr ograms easy to compose and use. Often, awk pr o-
grams can be quickly composed at your terminal, used once, and thrown away.
Because awk pr ograms ar e interpr eted, you can avoid the (usually lengthy) compi-
lation part of the typical edit-compile-test-debug cycle of software development.

When to Use awk 17

9 October 2001 01:40

18 Chapter 1: Getting Started with awk

Complex programs have been written in awk, including a complete retargetable
assembler for eight-bit micropr ocessors (see the Glossary” for more infor mation),
and a microcode assembler for a special-purpose Prolog computer. However,
awk ’s capabilities are strained by tasks of such complexity.

If you find yourself writing awk scripts of more than, say, a few hundred lines,
you might consider using a differ ent pr ogramming language. Emacs Lisp is a good
choice if you need sophisticated string or pattern matching capabilities. The shell
is also good at string and pattern matching; in addition, it allows powerful use of
the system utilities. More conventional languages, such as C, C++, and Java, offer
better facilities for system programming and for managing the complexity of large
pr ograms. Pr ograms in these languages may requir e mor e lines of source code
than the equivalent awk pr ograms, but they are easier to maintain and usually run
mor e ef ficiently.

9 October 2001 01:40

2
Regular Expressions

In this chapter:
• How to Use Regular

Expressions
• Escape Sequences
• Regular Expression

Operator s
• Using Character Lists
• gawk-Specific Regexp

Operator s
• Case Sensitivity in

Matching
• How Much Text

Matches?
• Using Dynamic

Regexps

A regular expression, or regexp, is a way of describing a set of strings. Because
regular expressions are such a fundamental part of awk pr ogramming, their format
and use deserve a separate chapter.

A regular expression enclosed in slashes (/) is an awk patter n that matches every
input record whose text belongs to that set. The simplest regular expression is a
sequence of letters, numbers, or both. Such a regexp matches any string that con-
tains that sequence. Thus, the regexp foo matches any string containing foo.
Ther efor e, the pattern /foo/ matches any input record containing the three charac-
ters foo anywher e in the record. Other kinds of regexps let you specify more com-
plicated classes of strings.

Initially, the examples in this chapter are simple. As we explain more about how
regular expressions work, we will present more complicated instances.

How to Use Regular Expressions
A regular expression can be used as a pattern by enclosing it in slashes. Then the
regular expression is tested against the entire text of each record. (Normally, it
only needs to match some part of the text in order to succeed.) For example, the
following prints the second field of each record that contains the string foo any-
wher e in it:

19

9 October 2001 01:40

20 Chapter 2: Regular Expressions

$ awk ’/foo/ { print $2 }’ BBS-list
555-1234
555-6699
555-6480
555-2127

Regular expressions can also be used in matching expressions. These expressions
allow you to specify the string to match against; it need not be the entire curr ent
input record. The two operators ˜ and !˜ per form regular expression comparisons.
Expr essions using these operators can be used as patterns, or in if, while, for,
and do statements. (See the section “Control Statements in Actions” in Chapter 6,
Patter ns, Actions, and Variables.) For example:

exp ˜ /regexp/

is true if the expression exp (taken as a string) matches regexp. The following
example matches, or selects, all input records with the uppercase letter J some-
wher e in the first field:

$ awk ’$1 ˜ /J/’ inventory-shipped
Jan 13 25 15 115
Jun 31 42 75 492
Jul 24 34 67 436
Jan 21 36 64 620

So does this:

awk ’{ if ($1 ˜ /J/) print }’ inventory-shipped

This next example is true if the expression exp (taken as a character string) does
not match regexp:

exp !˜ /regexp/

The following example matches, or selects, all input records whose first field does
not contain the uppercase letter J:

$ awk ’$1 !˜ /J/’ inventory-shipped
Feb 15 32 24 226
Mar 15 24 34 228
Apr 31 52 63 420
May 16 34 29 208
...

When a regexp is enclosed in slashes, such as /foo/, we call it a regexp constant,
much like 5.27 is a numeric constant and "foo" is a string constant.

9 October 2001 01:40

Escape Sequences
Some characters cannot be included literally in string constants ("foo") or regexp
constants (/foo/). Instead, they should be repr esented with escape sequences,
which are character sequences beginning with a backslash (\). One use of an
escape sequence is to include a double-quote character in a string constant.
Because a plain double quote ends the string, you must use \" to repr esent an
actual double-quote character as a part of the string. For example:

$ awk ’BEGIN { print "He said \"hi!\" to her." }’
He said "hi!" to her.

The backslash character itself is another character that cannot be included nor-
mally; you must write \\ to put one backslash in the string or regexp. Thus, the
string whose contents are the two characters " and \ must be written "\"\\".

Backslash also repr esents unprintable characters such as tab or newline. While
ther e is nothing to stop you from entering most unprintable characters directly in a
string constant or regexp constant, they may look ugly.

The following list describes all the escape sequences used in awk and what they
repr esent. Unless noted otherwise, all these escape sequences apply to both string
constants and regexp constants:

\\ A literal backslash, \.

\a The “alert” character, Ctrl-g, ASCII code 7 (BEL). (This usually makes some
sort of audible noise.)

\b Backspace, Ctrl-h, ASCII code 8 (BS).

\f For mfeed, Ctrl-l, ASCII code 12 (FF).

\n Newline, Ctrl-j, ASCII code 10 (LF).

\r Carriage retur n, Ctrl-m, ASCII code 13 (CR).

\t Horizontal tab, Ctrl-i, ASCII code 9 (HT).

\v Vertical tab, Ctrl-k, ASCII code 11 (VT).

\nnn

The octal value nnn, wher e nnn stands for 1 to 3 digits between 0 and 7. For
example, the code for the ASCII ESC (escape) character is \033.

\xhh...

The hexadecimal value hh, wher e hh stands for a sequence of hexadecimal
digits (0–9, and either A–F or a–f). Like the same construct in ISO C, the
escape sequence continues until the first nonhexadecimal digit is seen. How-
ever, using more than two hexadecimal digits produces undefined results.
(The \x escape sequence is not allowed in POSIX awk.)

Escape Sequences 21

9 October 2001 01:40

22 Chapter 2: Regular Expressions

\/ A literal slash (necessary for regexp constants only). This expression is used
when you want to write a regexp constant that contains a slash. Because the
regexp is delimited by slashes, you need to escape the slash that is part of the
patter n, in order to tell awk to keep processing the rest of the regexp.

\" A literal double quote (necessary for string constants only). This expression is
used when you want to write a string constant that contains a double quote.
Because the string is delimited by double quotes, you need to escape the
quote that is part of the string, in order to tell awk to keep processing the rest
of the string.

In gawk , a number of additional two-character sequences that begin with a back-
slash have special meaning in regexps. See the section “gawk-Specific Regexp
Operators” later in this chapter.

In a regexp, a backslash before any character that is not in the previous list and
not listed in the section “gawk-Specific Regexp Operators” later in this chapter
means that the next character should be taken literally, even if it would normally
be a regexp operator. For example, /a\+b/ matches the three characters a+b.

For complete portability, do not use a backslash before any character not shown
in the previous list.

Backslash Before Regular Character s
If you place a backslash in a string constant before something that is not one
of the characters previously listed, POSIX awk purposely leaves what hap-
pens as undefined. There are two choices:

Strip the backslash out
This is what Unix awk and gawk both do. For example, "a\qc" is the
same as "aqc". (Because this is such an easy bug both to introduce and
to miss, gawk war ns you about it.) Consider FS = "[\t]+\|[\t]+" to
use vertical bars surrounded by whitespace as the field separator. Ther e
should be two backslashes in the string FS = "[\t]+\\|[\t]+".

Leave the backslash alone
Some other awk implementations do this. In such implementations, typ-
ing "a\qc" is the same as typing "a\\qc".

9 October 2001 01:40

Escape Sequences for Metacharacter s
Suppose you use an octal or hexadecimal escape to repr esent a regexp
metacharacter. (See the section “Regular Expression Operators” later in this
chapter.) Does awk tr eat the character as a literal character or as a regexp
operator?

Historically, such characters were taken literally. (d.c.) However, the POSIX
standard indicates that they should be treated as real metacharacters, which
is what gawk does. In compatibility mode (see the section “Command-Line
Options” in Chapter 11, Running awk and gawk), gawk tr eats the characters
repr esented by octal and hexadecimal escape sequences literally when used
in regexp constants. Thus, /a\52b/ is equivalent to /a*b/.

Regular Expression Operator s
You can combine regular expressions with special characters, called regular
expr ession operators or metacharacters, to incr ease the power and versatility of
regular expressions.

The escape sequences described in the previous section “Escape Sequences” are
valid inside a regexp. They are intr oduced by a \ and are recognized and con-
verted into corresponding real characters as the first step in processing regexps.

Her e is a list of metacharacters. All characters that are not escape sequences and
that are not listed here stand for themselves:

\ This is used to suppress the special meaning of a character when matching.
For example, \$ matches the character $.

ˆ This matches the beginning of a string. For example, ˆ@chapter matches
@chapter at the beginning of a string and can be used to identify chapter
beginnings in Texinfo source files. The ˆ is known as an anchor, because it
anchors the pattern to match only at the beginning of the string.

It is important to realize that ˆ does not match the beginning of a line embed-
ded in a string. The condition is not true in the following example:

if ("line1\nLINE 2" ˜ /ˆL/) ...

$ This is similar to ˆ, but it matches only at the end of a string. For example, p$
matches a record that ends with a p. The $ is an anchor and does not match
the end of a line embedded in a string. The condition is not true as follows:

if ("line1\nLINE 2" ˜ /1$/) ...

Regular Expression Operator s 23

9 October 2001 01:40

24 Chapter 2: Regular Expressions

. (A period, or “dot.”) This matches any single character, including the newline
character. For example, .P matches any single character followed by a P in a
string. Using concatenation, we can make a regular expression such as U.A,
which matches any three-character sequence that begins with U and ends with
A.

In strict POSIX mode (see the section “Command-Line Options” in Chapter
11), the dot does not match the NUL character, which is a character with all
bits equal to zero. Otherwise, NUL is just another character. Other versions of
awk may not be able to match the NUL character.

[...]

This is called a character list.* It matches any one of the characters that are
enclosed in the square brackets. For example, [MVX] matches any one of the
characters M, V, or X in a string. A full discussion of what can be inside the
squar e brackets of a character list is given in the section “Using Character
Lists” later in this chapter.

[ˆ ...]

This is a complemented character list. The first character after the [must be a
ˆ. It matches any characters except those in the square brackets. For example,
[ˆawk] matches any character that is not an a, w, or k.

| This is the alter nation operator and it is used to specify alternatives. The | has
the lowest precedence of all the regular expression operators. For example,
ˆP|[[:digit:]] matches any string that matches either ˆP or [[:digit:]]. This
means it matches any string that starts with P or contains a digit.

The alternation applies to the largest possible regexps on either side.

(...)

Par entheses ar e used for grouping in regular expressions, as in arithmetic.
They can be used to concatenate regular expressions containing the alterna-
tion operator, |. For example, @(samp|code)\{[ˆ}]+\} matches both
@code{foo} and @samp{bar}.

* This symbol means that the preceding regular expression should be repeated
as many times as necessary to find a match. For example, ph* applies the *

symbol to the preceding h and looks for matches of one p followed by any
number of hs. This also matches just p if no hs are present.

The * repeats the smallest possible preceding expression. (Use parentheses if
you want to repeat a larger expression.) It finds as many repetitions as possi-
ble. For example, awk ’/\(c[ad][ad]*r x\)/ { print }’ sample prints every

* In other literature, you may see a character list referr ed to as either a character set, a character class,
or a bracket expression.

9 October 2001 01:40

record in sample containing a string of the form (car x), (cdr x), (cadr x),
and so on. Notice the escaping of the parentheses by preceding them with
backslashes.

+ This symbol is similar to *, except that the preceding expression must be
matched at least once. This means that wh+y would match why and whhy, but
not wy, wher eas wh*y would match all three of these strings. The following is
a simpler way of writing the last * example:

awk ’/\(c[ad]+r x\)/ { print }’ sample

? This symbol is similar to *, except that the preceding expression can be
matched either once or not at all. For example, fe?d matches fed and fd, but
nothing else.

{n}, {n,}, {n,m}
One or two numbers inside braces denote an interval expression. If ther e is
one number in the braces, the preceding regexp is repeated n times. If ther e
ar e two numbers separated by a comma, the preceding regexp is repeated n
to m times. If there is one number followed by a comma, then the preceding
regexp is repeated at least n times:

wh{3}y

Matches whhhy, but not why or whhhhy.

wh{3,5}y

Matches whhhy, whhhhy, or whhhhhy, only.

wh{2,}y

Matches whhy or whhhy, and so on.

Interval expressions were not traditionally available in awk. They were added
as part of the POSIX standard to make awk and egr ep consistent with each
other.

However, because old programs may use { and } in regexp constants, by
default gawk does not match interval expressions in regexps. If either ––posix
or ––re–interval ar e specified (see the section “Command-Line Options” in
Chapter 11), then interval expressions are allowed in regexps.

For new programs that use { and } in regexp constants, it is good practice to
always escape them with a backslash. Then the regexp constants are valid and
work the way you want them to, using any version of awk.*

In regular expressions, the *, +, and ? operators, as well as the braces { and },
have the highest precedence, followed by concatenation, and finally by |. As in
arithmetic, parentheses can change how operators are grouped.

* Use two backslashes if you’re using a string constant with a regexp operator or function.

Regular Expression Operator s 25

9 October 2001 01:40

26 Chapter 2: Regular Expressions

In POSIX awk and gawk , the *, +, and ? operators stand for themselves when
ther e is nothing in the regexp that precedes them. For example, /+/ matches a lit-
eral plus sign. However, many other versions of awk tr eat such a usage as a syntax
err or.

If gawk is in compatibility mode (see the section “Command-Line Options” in
Chapter 11), POSIX character classes and interval expressions are not available in
regular expressions.

Using Character Lists
Within a character list, a range expression consists of two characters separated by a
hyphen. It matches any single character that sorts between the two characters,
using the locale’s collating sequence and character set. For example, in the default
C locale, [a-dx-z] is equivalent to [abcdxyz]. Many locales sort characters in dic-
tionary order, and in these locales, [a-dx-z] is typically not equivalent to
[abcdxyz]; instead it might be equivalent to [aBbCcDdxXyYz], for example. To
obtain the traditional interpretation of bracket expressions, you can use the C
locale by setting the LC_ALL environment variable to the value C.

To include one of the characters \,], -, or ˆ in a character list, put a \ in front of
it. For example:

[d\]]

matches either d or].

This treatment of \ in character lists is compatible with other awk implementations
and is also mandated by POSIX. The regular expressions in awk ar e a superset of
the POSIX specification for Extended Regular Expressions (EREs). POSIX EREs are
based on the regular expressions accepted by the traditional egr ep utility.

Character classes ar e a new feature intr oduced in the POSIX standard. A character
class is a special notation for describing lists of characters that have a specific
attribute, but the actual characters can vary from country to country and/or from
character set to character set. For example, the notion of what is an alphabetic
character differs between the United States and France.

A character class is only valid in a regexp inside the brackets of a character list.
Character classes consist of [:, a keyword denoting the class, and :]. Table 2-1
lists the character classes defined by the POSIX standard.

9 October 2001 01:40

Table 2-1. POSIX Character Classes

Class Meaning

[:alnum:] Alphanumeric characters.

[:alpha:] Alphabetic characters.

[:blank:] Space and tab characters.

[:cntrl:] Contr ol characters.

[:digit:] Numeric characters.

[:graph:] Characters that are both printable and visible. (A space is printable but not
visible, whereas an a is both.)

[:lower:] Lowercase alphabetic characters.

[:print:] Printable characters (characters that are not control characters).

[:punct:] Punctuation characters (characters that are not letters, digits, control
characters, or space characters).

[:space:] Space characters (such as space, tab, and formfeed, to name a few).

[:upper:] Uppercase alphabetic characters.

[:xdigit:] Characters that are hexadecimal digits.

For example, before the POSIX standard, you had to write /[A-Za-z0-9]/ to match
alphanumeric characters. If your character set had other alphabetic characters in it,
this would not match them, and if your character set collated differ ently fr om
ASCII, this might not even match the ASCII alphanumeric characters. With the
POSIX character classes, you can write /[[:alnum:]]/ to match the alphabetic and
numeric characters in your character set.

Two additional special sequences can appear in character lists. These apply to
non-ASCII character sets, which can have single symbols (called collating ele-
ments) that are repr esented with more than one character. They can also have sev-
eral characters equivalent for collating, or sorting, purposes. (For example, in
Fr ench, a plain “e” and a grave-accented “è” are equivalent.) These sequences are:

Collating symbols
Multicharacter collating elements enclosed between [. and .]. For example, if
ch is a collating element, then [[.ch.]] is a regexp that matches this collating
element, whereas [ch] is a regexp that matches either c or h.

Equivalence classes
Locale-specific names for lists of characters that are equal. The name is
enclosed between [= and =]. For example, the name e might be used to repr e-
sent all of “e,” “è,” and “é.” In this case, [[=e=]] is a regexp that matches any
of e, é, or è.

These features are very valuable in non-English-speaking locales.

Using Character Lists 27

9 October 2001 01:40

28 Chapter 2: Regular Expressions

The library functions that gawk uses for regular expression matching
curr ently recognize only POSIX character classes; they do not recog-
nize collating symbols or equivalence classes.

ga wk-Specific Regexp Operator s
GNU software that deals with regular expressions provides a number of additional
regexp operators. These operators are described in this section and are specific to
gawk ; they are not available in other awk implementations. Most of the additional
operators deal with word matching. For our purposes, a wor d is a sequence of
one or more letters, digits, or underscores (_):

\w Matches any word-constituent character—that is, it matches any letter, digit, or
underscor e. Think of it as short-hand for [[:alnum:]_].

\W Matches any character that is not word-constituent. Think of it as shorthand
for [ˆ[:alnum:]_].

\< Matches the empty string at the beginning of a word. For example, /\<away/
matches away but not stowaway.

\> Matches the empty string at the end of a word. For example, /stow\>/

matches stow but not stowaway.

\y Matches the empty string at either the beginning or the end of a word (i.e., the
word boundary). For example, \yballs?\y matches either ball or balls, as a
separate word.

\B Matches the empty string that occurs between two word-constituent charac-
ters. For example, /\Brat\B/ matches crate but it does not match dirty rat.
\B is essentially the opposite of \y.

Ther e ar e two other operators that work on buffers. In Emacs, a buf fer is, natu-
rally, an Emacs buffer. For other programs, gawk ’s regexp library routines consider
the entire string to match as the buffer. The operators are:

\‘ Matches the empty string at the beginning of a buffer (string).

\’ Matches the empty string at the end of a buffer (string).

Because ˆ and $ always work in terms of the beginning and end of strings, these
operators don’t add any new capabilities for awk. They are provided for compati-
bility with other GNU software.

9 October 2001 01:40

In other GNU software, the word-boundary operator is \b. However, that conflicts
with the awk language’s definition of \b as backspace, so gawk uses a differ ent
letter. An alter native method would have been to requir e two backslashes in the
GNU operators, but this was deemed too confusing. The current method of using
\y for the GNU \b appears to be the lesser of two evils.

The various command-line options (see the section “Command-Line Options” in
Chapter 11) control how gawk interpr ets characters in regexps:

No options
In the default case, gawk pr ovides all the facilities of POSIX regexps and the
pr eviously described GNU regexp operators. However, interval expressions
ar e not supported.

--posix

Only POSIX regexps are supported; the GNU operators are not special (e.g.,
\w matches a literal w). Interval expressions are allowed.

--traditional

Traditional Unix awk regexps are matched. The GNU operators are not spe-
cial, interval expressions are not available, nor are the POSIX character classes
([[:alnum:]], etc.). Characters described by octal and hexadecimal escape
sequences are treated literally, even if they repr esent regexp metacharacters.

--re-interval

Allow interval expressions in regexps, even if ––traditional has been
pr ovided.

Case Sensitivity in Matching
Case is normally significant in regular expressions, both when matching ordinary
characters (i.e., not metacharacters) and inside character sets. Thus, a w in a regular
expr ession matches only a lowercase w and not an uppercase W.

The simplest way to do a case-independent match is to use a character list—for
example, [Ww]. However, this can be cumbersome if you need to use it often, and
it can make the regular expressions harder to read. There are two alternatives that
you might prefer.

One way to perfor m a case-insensitive match at a particular point in the program
is to convert the data to a single case, using the tolower or toupper built-in string
functions (which we haven’t discussed yet; see the section “String-Manipulation
Functions” in Chapter 8, Functions). For example:

tolower($1) ˜ /foo/ { ... }

Case Sensitivity in Matching 29

9 October 2001 01:40

30 Chapter 2: Regular Expressions

converts the first field to lowercase before matching against it. This works in any
POSIX-compliant awk.

Another method, specific to gawk , is to set the variable IGNORECASE to a nonzero
value (see the section “Built-in Variables” in Chapter 6). When IGNORECASE is not
zer o, all regexp and string operations ignore case. Changing the value of IGNORE-
CASE dynamically controls the case-sensitivity of the program as it runs. Case is sig-
nificant by default because IGNORECASE (like most variables) is initialized to zero:

x = "aB"
if (x ˜ /ab/) ... # this test will fail

IGNORECASE = 1
if (x ˜ /ab/) ... # now it will succeed

In general, you cannot use IGNORECASE to make certain rules case-insensitive and
other rules case-sensitive, because there is no straightforward way to set IGNORE-
CASE just for the pattern of a particular rule.* To do this, use either character lists or
tolower. However, one thing you can do with IGNORECASE only is dynamically turn
case-sensitivity on or off for all the rules at once.

IGNORECASE can be set on the command line or in a BEGIN rule (see the section
“Other Command-Line Arguments” in Chapter 11; also see the section “Startup and
cleanup actions” in Chapter 6). Setting IGNORECASE fr om the command line is a way
to make a program case-insensitive without having to edit it.

Prior to gawk 3.0, the value of IGNORECASE af fected regexp operations only. It did
not affect string comparison with ==, !=, and so on. Beginning with Version 3.0,
both regexp and string comparison operations are also affected by IGNORECASE.

Beginning with gawk 3.0, the equivalences between upper- and lowercase charac-
ters are based on the ISO-8859-1 (ISO Latin-1) character set. This character set is a
superset of the traditional 128 ASCII characters, which also provides a number of
characters suitable for use with European languages.

The value of IGNORECASE has no effect if gawk is in compatibility mode (see the
section “Command-Line Options” in Chapter 11). Case is always significant in com-
patibility mode.

* Experienced C and C++ programmers will note that it is possible, using something like IGNORECASE =
1 && /foObAr/ { ... } and IGNORECASE = 0 || /foobar/ { ... }. However, this is somewhat
obscur e and we don’t recommend it.

9 October 2001 01:40

How Much Text Matches?
Consider the following:

echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’

This example uses the sub function (which we haven’t discussed yet; see the sec-
tion “String-Manipulation Functions” in Chapter 8) to make a change to the input
record. Here, the regexp /a+/ indicates “one or more a characters,” and the
replacement text is <A>.

The input contains four a characters. awk (and POSIX) regular expressions always
match the leftmost, longest sequence of input characters that can match. Thus, all
four a characters are replaced with <A> in this example:

$ echo aaaabcd | awk ’{ sub(/a+/, "<A>"); print }’
<A>bcd

For simple match/no-match tests, this is not so important. But when doing text
matching and substitutions with the match, sub, gsub, and gensub functions, it is
very important. Understanding this principle is also important for regexp-based
record and field splitting (see the section “How Input Is Split into Records” and the
section “Specifying How Fields Are Separated” in Chapter 3, Reading Input Files).

Using Dynamic Regexps
The righthand side of a ˜ or !˜ operator need not be a regexp constant (i.e., a
string of characters between slashes). It may be any expression. The expression is
evaluated and converted to a string if necessary; the contents of the string are used
as the regexp. A regexp that is computed in this way is called a dynamic regexp :

BEGIN { digits_regexp = "[[:digit:]]+" }
$0 ˜ digits_regexp { print }

This sets digits_regexp to a regexp that describes one or more digits, and tests
whether the input record matches this regexp.

When using the ˜ and !˜ operators, there is a dif ference between a regexp con-
stant enclosed in slashes and a string constant enclosed in double quotes. If you
ar e going to use a string constant, you have to understand that the string is, in
essence, scanned twice : the first time when awk reads your program, and the sec-
ond time when it goes to match the string on the lefthand side of the operator
with the pattern on the right. This is true of any string-valued expression (such as
digits_regexp, shown previously), not just string constants.

What differ ence does it make if the string is scanned twice? The answer has to do
with escape sequences, and particularly with backslashes. To get a backslash into
a regular expression inside a string, you have to type two backslashes.

Using Dynamic Regexps 31

9 October 2001 01:40

32 Chapter 2: Regular Expressions

For example, /*/ is a regexp constant for a literal *. Only one backslash is
needed. To do the same thing with a string, you have to type "*". The first
backslash escapes the second one so that the string actually contains the two char-
acters \ and *.

Given that you can use both regexp and string constants to describe regular
expr essions, which should you use? The answer is “regexp constants,” for several
reasons:

• String constants are mor e complicated to write and more dif ficult to read.
Using regexp constants makes your programs less error-pr one. Not under-
standing the differ ence between the two kinds of constants is a common
source of errors.

• It is mor e ef ficient to use regexp constants. awk can note that you have sup-
plied a regexp and store it inter nally in a form that makes pattern matching
mor e ef ficient. When using a string constant, awk must first convert the string
into this internal form and then perfor m the pattern matching.

• Using regexp constants is better form; it shows clearly that you intend a reg-
exp match.

Using \n in Character Lists of Dynamic Regexps
Some commercial versions of awk do not allow the newline character to be
used inside a character list for a dynamic regexp:

$ awk ’$0 ˜ "[\t\n]"’
awk: newline in character class [
]...
source line number 1
context is

>>> <<<

But a newline in a regexp constant works with no problem:

$ awk ’$0 ˜ /[\t\n]/’
here is a sample line
here is a sample line
Control-d

gawk does not have this problem, and it isn’t likely to occur often in prac-
tice, but it’s worth noting for future refer ence.

9 October 2001 01:40

3
Reading Input Files

In this chapter:
• How Input Is Split

into Records
• Examining Fields
• Non-constant Field

Number s
• Chang ing the

Contents of a Field
• Specifying How Fields

Are Separated
• Reading Fixed-Width

Data
• Multiple-Line Records
• Explicit Input with

getline

In the typical awk pr ogram, all input is read either from the standard input (by
default, this is the keyboard, but often it is a pipe from another command) or from
files whose names you specify on the awk command line. If you specify input
files, awk reads them in order, processing all the data from one before going on to
the next. The name of the current input file can be found in the built-in variable
FILENAME (see the section “Built-in Variables” in Chapter 6, Patter ns, Actions, and
Variables).

The input is read in units called recor ds, and is processed by the rules of your pro-
gram one record at a time. By default, each record is one line. Each record is auto-
matically split into chunks called fields. This makes it more convenient for
pr ograms to work on the parts of a record.

On rare occasions, you may need to use the getline command. The getline com-
mand is valuable, both because it can do explicit input from any number of files,
and because the files used with it do not have to be named on the awk command
line (see the section “Explicit Input with getline” later in this chapter).

How Input Is Split into Records
The awk utility divides the input for your awk pr ogram into records and fields.
awk keeps track of the number of records that have been read from the current
input file. This value is stored in a built-in variable called FNR. It is reset to zero
when a new file is started. Another built-in variable, NR, is the total number of
input records read so far from all datafiles. It starts at zero, but is never automati-
cally reset to zero.

33

9 October 2001 01:41

34 Chapter 3: Reading Input Files

Records are separated by a character called the recor d separator. By default, the
record separator is the newline character. This is why records are, by default, sin-
gle lines. A differ ent character can be used for the record separator by assigning
the character to the built-in variable RS.

Like any other variable, the value of RS can be changed in the awk pr ogram with
the assignment operator, = (see the section “Assignment Expressions” in Chapter 5,
Expr essions). The new record-separator character should be enclosed in quotation
marks, which indicate a string constant. Often the right time to do this is at the
beginning of execution, before any input is processed, so that the very first record
is read with the proper separator. To do this, use the special BEGIN patter n (see the
section “The BEGIN and END Special Patterns” in Chapter 6). For example:

awk ’BEGIN { RS = "/" }
{ print $0 }’ BBS-list

changes the value of RS to "/", befor e reading any input. This is a string whose
first character is a slash; as a result, records are separated by slashes. Then the
input file is read, and the second rule in the awk pr ogram (the action with no pat-
ter n) prints each record. Because each print statement adds a newline at the end
of its output, this awk pr ogram copies the input with each slash changed to a
newline. Here are the results of running the program on BBS-list:

$ awk ’BEGIN { RS = "/" }
> { print $0 }’ BBS-list
aardvark 555-5553 1200
300 B
alpo-net 555-3412 2400
1200
300 A
barfly 555-7685 1200
300 A
bites 555-1675 2400
1200
300 A
camelot 555-0542 300 C
core 555-2912 1200
300 C
fooey 555-1234 2400
1200
300 B
foot 555-6699 1200
300 B
macfoo 555-6480 1200
300 A
sdace 555-3430 2400
1200
300 A
sabafoo 555-2127 1200
300 C

$

9 October 2001 01:41

Note that the entry for the camelot BBS is not split. In the original datafile (see the
section “Datafiles for the Examples” in Chapter 1, Getting Started with awk), the
line looks like this:

camelot 555-0542 300 C

It has one baud rate only, so there are no slashes in the record, unlike the others
that have two or more baud rates. In fact, this record is treated as part of the
record for the core BBS; the newline separating them in the output is the original
newline in the datafile, not the one added by awk when it printed the record!

Another way to change the record separator is on the command line, using the
variable-assignment feature (see the section “Other Command-Line Arguments” in
Chapter 11, Running awk and gawk):

awk ’{ print $0 }’ RS="/" BBS-list

This sets RS to / befor e pr ocessing BBS-list.

Using an unusual character such as / for the record separator produces correct
behavior in the vast majority of cases. However, the following (extreme) pipeline
prints a surprising 1:

$ echo | awk ’BEGIN { RS = "a" } ; { print NF }’
1

Ther e is one field, consisting of a newline. The value of the built-in variable NF is
the number of fields in the current record.

Reaching the end of an input file terminates the current input record, even if the
last character in the file is not the character in RS. (d.c.)

The empty string "" (a string without any characters) has a special meaning as the
value of RS. It means that records are separated by one or more blank lines and
nothing else. See the section “Multiple-Line Records” later in this chapter for more
details.

If you change the value of RS in the middle of an awk run, the new value is used
to delimit subsequent records, but the record currently being processed, as well as
records already processed, are not affected.

After the end of the record has been determined, gawk sets the variable RT to the
text in the input that matched RS. When using gawk, the value of RS is not limited
to a one-character string. It can be any regular expression (see Chapter 2, Regular
Expr essions). In general, each record ends at the next string that matches the regu-
lar expression; the next record starts at the end of the matching string. This gen-
eral rule is actually at work in the usual case, where RS contains just a newline: a

How Input Is Split into Records 35

9 October 2001 01:41

36 Chapter 3: Reading Input Files

record ends at the beginning of the next matching string (the next newline in the
input), and the following record starts just after the end of this string (at the first
character of the following line). The newline, because it matches RS, is not part of
either record.

When RS is a single character, RT contains the same single character. However,
when RS is a regular expression, RT contains the actual input text that matched the
regular expression.

The following example illustrates both of these features. It sets RS equal to a regu-
lar expression that matches either a newline or a series of one or more uppercase
letters with optional leading and/or trailing whitespace:

$ echo record 1 AAAA record 2 BBBB record 3 |
> gawk ’BEGIN { RS = "\n|(*[[:upper:]]+ *)" }
> { print "Record =", $0, "and RT =", RT }’
Record = record 1 and RT = AAAA
Record = record 2 and RT = BBBB
Record = record 3 and RT =

$

The final line of output has an extra blank line. This is because the value of RT is a
newline, and the print statement supplies its own terminating newline. See the
section “A Simple Stream Editor” in Chapter 13, Practical awk Programs, for a
mor e useful example of RS as a regexp and RT.

The use of RS as a regular expression and the RT variable are gawk extensions;
they are not available in compatibility mode (see the section “Command-Line
Options” in Chapter 11). In compatibility mode, only the first character of the
value of RS is used to determine the end of the record.

Examining Fields
When awk reads an input record, the record is automatically parsed or separated
by the interpreter into chunks called fields. By default, fields are separated by
whitespace, like words in a line. Whitespace in awk means any string of one or
mor e spaces, tabs, or newlines;* other characters, such as formfeed, vertical tab,
etc. that are consider ed whitespace by other languages, are not consider ed white-
space by awk.

The purpose of fields is to make it more convenient for you to refer to these
pieces of the record. You don’t have to use them—you can operate on the whole
record if you want—but fields are what make simple awk pr ograms so powerful.

* In POSIX awk, newlines are not considered whitespace for separating fields.

9 October 2001 01:41

RS = “\0” Is Not Por table
Ther e ar e times when you might want to treat an entire datafile as a single
record. The only way to make this happen is to give RS a value that you
know doesn’t occur in the input file. This is hard to do in a general way,
such that a program always works for arbitrary input files.

You might think that for text files, the NUL character, which consists of a
character with all bits equal to zero, is a good value to use for RS in this case:

BEGIN { RS = "\0" } # whole file becomes one record?

gawk in fact accepts this, and uses the NUL character for the record separa-
tor. However, this usage is not portable to other awk implementations.

All other awk implementations* stor e strings internally as C-style strings. C
strings use the NUL character as the string terminator. In effect, this means
that RS = "\0" is the same as RS = "". (d.c.)

The best way to treat a whole file as a single record is to simply read the file
in, one record at a time, concatenating each record onto the end of the pre-
vious ones.

A dollar-sign ($) is used to refer to a field in an awk pr ogram, followed by the
number of the field you want. Thus, $1 refers to the first field, $2 to the second,
and so on. (Unlike the Unix shells, the field numbers are not limited to single dig-
its. $127 is the one hundred twenty-seventh field in the record.) For example, sup-
pose the following is a line of input:

This seems like a pretty nice example.

Her e the first field, or $1, is This, the second field, or $2, is seems, and so on. Note
that the last field, $7, is example.. Because there is no space between the e and the
., the period is considered part of the seventh field.

NF is a built-in variable whose value is the number of fields in the current record.
awk automatically updates the value of NF each time it reads a record. No matter
how many fields there are, the last field in a record can be repr esented by $NF. So,
$NF is the same as $7, which is example.. If you try to refer ence a field beyond the
last one (such as $8 when the record has only seven fields), you get the empty
string. (If used in a numeric operation, you get zero.)

* At least that we know about.

Examining Fields 37

9 October 2001 01:41

38 Chapter 3: Reading Input Files

The use of $0, which looks like a refer ence to the “zero-th” field, is a special case:
it repr esents the whole input record when you are not interested in specific fields.
Her e ar e some more examples:

$ awk ’$1 ˜ /foo/ { print $0 }’ BBS-list
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sabafoo 555-2127 1200/300 C

This example prints each record in the file BBS-list whose first field contains the
string foo. The operator ˜ is called a matching operator (see the section “How to
Use Regular Expressions” in Chapter 2); it tests whether a string (here, the field $1)
matches a given regular expression.

By contrast, the following example looks for foo in the entire recor d and prints the
first field and the last field for each matching input record:

$ awk ’/foo/ { print $1, $NF }’ BBS-list
fooey B
foot B
macfoo A
sabafoo C

Non-constant Field Numbers
The number of a field does not need to be a constant. Any expression in the awk
language can be used after a $ to refer to a field. The value of the expression
specifies the field number. If the value is a string, rather than a number, it is con-
verted to a number. Consider this example:

awk ’{ print $NR }’

Recall that NR is the number of records read so far: one in the first record, two in
the second, etc. So this example prints the first field of the first record, the second
field of the second record, and so on. For the twentieth record, field number 20 is
printed; most likely, the record has fewer than 20 fields, so this prints a blank line.
Her e is another example of using expressions as field numbers:

awk ’{ print $(2*2) }’ BBS-list

awk evaluates the expression (2*2) and uses its value as the number of the field
to print. The * sign repr esents multiplication, so the expression 2*2 evaluates to
four. The parentheses are used so that the multiplication is done before the $

operation; they are necessary whenever there is a binary operator in the field-
number expression. This example, then, prints the hours of operation (the fourth
field) for every line of the file BBS-list. (All of the awk operators are listed, in
order of decreasing precedence, in the section “Operator Precedence (How
Operators Nest)” in Chapter 5.)

9 October 2001 01:41

If the field number you compute is zero, you get the entire record. Thus, $(2-2)
has the same value as $0. Negative field numbers are not allowed; trying to refer-
ence one usually terminates the program. (The POSIX standard does not define
what happens when you refer ence a negative field number. gawk notices this and
ter minates your program. Other awk implementations may behave differ ently.)

As mentioned earlier in the section “Examining Fields,” awk stor es the current
record’s number of fields in the built-in variable NF (also see the section “Built-in
Variables” in Chapter 6). The expression $NF is not a special feature—it is the
dir ect consequence of evaluating NF and using its value as a field number.

Chang ing the Contents of a Field
The contents of a field, as seen by awk, can be changed within an awk pr ogram;
this changes what awk perceives as the current input record. (The actual input is
untouched; awk never modifies the input file.) Consider the following example
and its output:

$ awk ’{ nboxes = $3 ; $3 = $3 - 10
> print nboxes, $3 }’ inventory-shipped
13 3
15 5
15 5
...

The program first saves the original value of field three in the variable nboxes. The
- sign repr esents subtraction, so this program reassigns field three, $3, as the origi-
nal value of field three minus ten: $3 - 10. (See the section “Arithmetic Operators”
in Chapter 5.) Then it prints the original and new values for field three. (Someone
in the warehouse made a consistent mistake while inventorying the red boxes.)

For this to work, the text in field $2 must make sense as a number; the string of
characters must be converted to a number for the computer to do arithmetic on it.
The number resulting from the subtraction is converted back to a string of charac-
ters that then becomes field three. See the section “Conversion of Strings and
Numbers” in Chapter 5.

When the value of a field is changed (as perceived by awk), the text of the input
record is recalculated to contain the new field where the old one was. In other
words, $0 changes to reflect the altered field. Thus, this program prints a copy of
the input file, with 10 subtracted from the second field of each line:

$ awk ’{ $2 = $2 - 10; print $0 }’ inventory-shipped
Jan 3 25 15 115
Feb 5 32 24 226
Mar 5 24 34 228
...

Chang ing the Contents of a Field 39

9 October 2001 01:41

40 Chapter 3: Reading Input Files

It is also possible to also assign contents to fields that are out of range. For exam-
ple:

$ awk ’{ $6 = ($5 + $4 + $3 + $2)
> print $6 }’ inventory-shipped
168
297
301
...

We’ve just created $6, whose value is the sum of fields $2, $3, $4, and $5. The +

sign repr esents addition. For the file inventory-shipped, $6 repr esents the total
number of parcels shipped for a particular month.

Cr eating a new field changes awk ’s internal copy of the current input record,
which is the value of $0. Thus, if you do print $0 after adding a field, the record
printed includes the new field, with the appropriate number of field separators
between it and the previously existing fields.

This recomputation affects and is affected by NF (the number of fields; see the sec-
tion “Examining Fields” earlier in this chapter). It is also affected by a feature that
has not been discussed yet: the output field separator, OFS, used to separate the
fields (see the section “Output Separators” in Chapter 4, Printing Output). For
example, the value of NF is set to the number of the highest field you create.

Note, however, that merely refer encing an out-of-range field does not change the
value of either $0 or NF. Refer encing an out-of-range field only produces an empty
string. For example:

if ($(NF+1) != "")
print "can’t happen"

else
print "everything is normal"

should print everything is normal, because NF+1 is certain to be out of range.
(See the section “The if-else Statement” in Chapter 6 for more infor mation about
awk ’s if-else statements. See the section “Variable Typing and Comparison
Expr essions” in Chapter 5 for more infor mation about the != operator.)

It is important to note that making an assignment to an existing field changes the
value of $0 but does not change the value of NF, even when you assign the empty
string to a field. For example:

$ echo a b c d | awk ’{ OFS = ":"; $2 = ""
> print $0; print NF }’
a::c:d
4

9 October 2001 01:41

The field is still there; it just has an empty value, denoted by the two colons
between a and c. This example shows what happens if you create a new field:

$ echo a b c d | awk ’{ OFS = ":"; $2 = ""; $6 = "new"
> print $0; print NF }’
a::c:d::new
6

The intervening field, $5, is created with an empty value (indicated by the second
pair of adjacent colons), and NF is updated with the value six.

Decr ementing NF thr ows away the values of the fields after the new value of NF
and recomputes $0. (d.c.) Here is an example:

$ echo a b c d e f | awk ’{ print "NF =", NF;
> NF = 3; print $0 }’
NF = 6
a b c

Some versions of awk don’t rebuild $0 when NF is decremented.
Caveat emptor.

Specifying How Fields Are Separated
The field separator, which is either a single character or a regular expression, con-
tr ols the way awk splits an input record into fields. awk scans the input record for
character sequences that match the separator; the fields themselves are the text
between the matches.

In the examples that follow, we use the small box () to repr esent spaces in the
output. If the field separator is oo, then the following line:

moo goo gai pan

is split into three fields: m, g, and gai pan. Note the leading spaces in the values
of the second and third fields.

The field separator is repr esented by the built-in variable FS. Shell programmers
take note: awk does not use the name IFS that is used by the POSIX-compliant
shells (such as the Unix Bourne shell, sh, or bash).

The value of FS can be changed in the awk pr ogram with the assignment operator,
= (see the section “Assignment Expressions” in Chapter 5). Often the right time to
do this is at the beginning of execution before any input has been processed, so

Specifying How Fields Are Separated 41

9 October 2001 01:41

42 Chapter 3: Reading Input Files

that the very first record is read with the proper separator. To do this, use the spe-
cial BEGIN patter n (see the section “The BEGIN and END Special Patterns” in Chap-
ter 6). For example, here we set the value of FS to the string ",":

awk ’BEGIN { FS = "," } ; { print $2 }’

Given the input line:

John Q. Smith, 29 Oak St., Walamazoo, MI 42139

this awk pr ogram extracts and prints the string 29 Oak St..

Sometimes the input data contains separator characters that don’t separate fields
the way you thought they would. For instance, the person’s name in the example
we just used might have a title or suffix attached, such as:

John Q. Smith, LXIX, 29 Oak St., Walamazoo, MI 42139

The same program would extract LXIX, instead of 29 Oak St.. If you were
expecting the program to print the address, you would be surprised. The moral is
to choose your data layout and separator characters carefully to prevent such
pr oblems. (If the data is not in a form that is easy to process, perhaps you can
massage it first with a separate awk pr ogram.)

Fields are nor mally separated by whitespace sequences (spaces, tabs, and new-
lines), not by single spaces. Two spaces in a row do not delimit an empty field.
The default value of the field separator FS is a string containing a single space,
" ". If awk interpr eted this value in the usual way, each space character would
separate fields, so two spaces in a row would make an empty field between them.
The reason this does not happen is that a single space as the value of FS is a spe-
cial case—it is taken to specify the default manner of delimiting fields.

If FS is any other single character, such as ",", then each occurrence of that char-
acter separates two fields. Two consecutive occurrences delimit an empty field. If
the character occurs at the beginning or the end of the line, that too delimits an
empty field. The space character is the only single character that does not follow
these rules.

Using Regular Expressions to Separate Fields
The previous section discussed the use of single characters or simple strings as the
value of FS. Mor e generally, the value of FS may be a string containing any regular
expr ession. In this case, each match in the record for the regular expression sepa-
rates fields. For example, the assignment:

FS = ", \t"

9 October 2001 01:41

makes every area of an input line that consists of a comma followed by a space
and a tab into a field separator.

For a less trivial example of a regular expression, try using single spaces to sepa-
rate fields the way single commas are used. FS can be set to "[]" (left bracket,
space, right bracket). This regular expression matches a single space and nothing
else (see Chapter 2).

Ther e is an important differ ence between the two cases of FS = " " (a single
space) and FS = "[\t\n]+" (a regular expression matching one or more spaces,
tabs, or newlines). For both values of FS, fields are separated by runs (multiple
adjacent occurrences) of spaces, tabs, and/or newlines. However, when the value
of FS is " ", awk first strips leading and trailing whitespace from the record and
then decides where the fields are. For example, the following pipeline prints b:

$ echo ’ a b c d ’ | awk ’{ print $2 }’
b

However, this pipeline prints a (note the extra spaces around each letter):

$ echo ’ a b c d ’ | awk ’BEGIN { FS = "[\t\n]+" }
> { print $2 }’
a

In this case, the first field is null or empty.

The stripping of leading and trailing whitespace also comes into play whenever $0
is recomputed. For instance, study this pipeline:

$ echo ’ a b c d’ | awk ’{ print; $2 = $2; print }’
a b c d

a b c d

The first print statement prints the record as it was read, with leading whitespace
intact. The assignment to $2 rebuilds $0 by concatenating $1 thr ough $NF together,
separated by the value of OFS. Because the leading whitespace was ignored when
finding $1, it is not part of the new $0. Finally, the last print statement prints the
new $0.

Making Each Character a Separate Field
Ther e ar e times when you may want to examine each character of a record sepa-
rately. This can be done in gawk by simply assigning the null string ("") to FS. In
this case, each individual character in the record becomes a separate field. For
example:

$ echo a b | gawk ’BEGIN { FS = "" }
> {

Specifying How Fields Are Separated 43

9 October 2001 01:41

44 Chapter 3: Reading Input Files

> for (i = 1; i <= NF; i = i + 1)
> print "Field", i, "is", $i
> }’
Field 1 is a
Field 2 is
Field 3 is b

Traditionally, the behavior of FS equal to "" was not defined. In this case, most
versions of Unix awk simply treat the entire record as only having one field. (d.c.)
In compatibility mode (see the section “Command-Line Options” in Chapter 11), if
FS is the null string, then gawk also behaves this way.

Setting FS from the Command Line
FS can be set on the command line. Use the –F option to do so. For example:

awk -F, ’program’ input-files

sets FS to the , character. Notice that the option uses an uppercase –F instead of a
lowercase –f, which specifies a file containing an awk pr ogram. Case is significant
in command-line options: the –F and –f options have nothing to do with each
other. You can use both options at the same time to set the FS variable and get an
awk pr ogram fr om a file.

The value used for the argument to –F is processed in exactly the same way as
assignments to the built-in variable FS. Any special characters in the field separator
must be escaped appropriately. For example, to use a \ as the field separator on
the command line, you would have to type:

same as FS = "\\"
awk -F\\\\ ’...’ files ...

Because \ is used for quoting in the shell, awk sees -F\\. Then awk pr ocesses the
\\ for escape characters (see the section “Escape Sequences” in Chapter 2), finally
yielding a single \ to use for the field separator.

As a special case, in compatibility mode (see the section “Command-Line Options”
in Chapter 11) if the argument to –F is t, then FS is set to the tab character. If you
type -F\t at the shell, without any quotes, the \ gets deleted, so awk figur es that
you really want your fields to be separated with tabs and not ts. Use -v FS="t" or
-F"[t]" on the command line if you really do want to separate your fields with ts.

For example, let’s use an awk pr ogram file called baud.awk that contains the pat-
ter n /300/ and the action print $1:

/300/ { print $1 }

Let’s also set FS to be the - character and run the program on the file BBS-list. The
following command prints a list of the names of the bulletin boards that operate at
300 baud and the first three digits of their phone numbers:

9 October 2001 01:41

$ awk -F- -f baud.awk BBS-list
aardvark 555
alpo
barfly 555
bites 555
camelot 555
core 555
fooey 555
foot 555
macfoo 555
sdace 555
sabafoo 555

Note the second line of output. The second line in the original file looked like
this:

alpo-net 555-3412 2400/1200/300 A

The - as part of the system’s name was used as the field separator, instead of the -

in the phone number that was originally intended. This demonstrates why you
have to be careful in choosing your field and record separators.

Perhaps the most common use of a single character as the field separator occurs
when processing the Unix system password file. On many Unix systems, each user
has a separate entry in the system password file, one line per user. The informa-
tion in these lines is separated by colons. The first field is the user’s logon name
and the second is the user’s (encrypted or shadow) password. A password file
entry might look like this:

arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/bash

The following program searches the system password file and prints the entries for
users who have no password:

awk -F: ’$2 == ""’ /etc/passwd

Field-Splitting Summary
The following list summarizes how fields are split, based on the value of FS (==
means “is equal to”):

FS == " "

Fields are separated by runs of whitespace. Leading and trailing whitespace
ar e ignor ed. This is the default.

FS == any other single character

Fields are separated by each occurrence of the character. Multiple successive
occurr ences delimit empty fields, as do leading and trailing occurrences. The
character can even be a regexp metacharacter; it does not need to be escaped.

Specifying How Fields Are Separated 45

9 October 2001 01:41

46 Chapter 3: Reading Input Files

FS == regexp

Fields are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty fields.

FS == ""

Each individual character in the record becomes a separate field. (This is a
gawk extension; it is not specified by the POSIX standard.)

Chang ing FS Does Not Affect the Fields
According to the POSIX standard, awk is supposed to behave as if each
record is split into fields at the time it is read. In particular, this means that if
you change the value of FS after a record is read, the value of the fields (i.e.,
how they were split) should reflect the old value of FS, not the new one.

However, many implementations of awk do not work this way. Instead, they
defer splitting the fields until a field is actually refer enced. The fields are split
using the curr ent value of FS! (d.c.) This behavior can be difficult to diag-
nose. The following example illustrates the differ ence between the two
methods (the sed * command prints just the first line of /etc/passwd):

sed 1q /etc/passwd | awk ’{ FS = ":" ; print $1 }’

which usually prints:

root

on an incorrect implementation of awk, while gawk prints something like:

root:nSijPlPhZZwgE:0:0:Root:/:

Reading Fixed-Width Data
This section discusses an advanced feature of gawk. If you are a novice awk user,
you might want to skip it on the first reading.

gawk Version 2.13 introduced a facility for dealing with fixed-width fields with no
distinctive field separator. For example, data of this nature arises in the input for
old Fortran programs where numbers are run together, or in the output of pro-
grams that did not anticipate the use of their output as input for other programs.

An example of the latter is a table where all the columns are lined up by the use
of a variable number of spaces and empty fields are just spaces. Clearly, awk ’s

* The sed utility is a “stream editor.” Its behavior is also defined by the POSIX standard.

9 October 2001 01:41

nor mal field splitting based on FS does not work well in this case. Although a
portable awk pr ogram can use a series of substr calls on $0 (see the section
“String-Manipulation Functions” in Chapter 8, Functions), this is awkward and
inef ficient for a large number of fields.

The splitting of an input record into fixed-width fields is specified by assigning a
string containing space-separated numbers to the built-in variable FIELDWIDTHS.
Each number specifies the width of the field, including columns between fields. If
you want to ignore the columns between fields, you can specify the width as a
separate field that is subsequently ignored. It is a fatal error to supply a field width
that is not a positive number. The following data is the output of the Unix w util-
ity. It is useful to illustrate the use of FIELDWIDTHS:

10:06pm up 21 days, 14:04, 23 users
User tty login idle JCPU PCPU what
hzuo ttyV0 8:58pm 9 5 vi p24.tex
hzang ttyV3 6:37pm 50 -csh
eklye ttyV5 9:53pm 7 1 em thes.tex
dportein ttyV6 8:17pm 1:47 -csh
gierd ttyD3 10:00pm 1 elm
dave ttyD4 9:47pm 4 4 w
brent ttyp0 26Jun91 4:46 26:46 4:41 bash
dave ttyq4 26Jun9115days 46 46 wnewmail

The following program takes the above input, converts the idle time to number of
seconds, and prints out the first two fields and the calculated idle time:

This program uses a number of awk featur es that haven’t been intro-
duced yet.

BEGIN { FIELDWIDTHS = "9 6 10 6 7 7 35" }
NR > 2 {

idle = $4
sub(/ˆ */, "", idle) # strip leading spaces
if (idle == "")

idle = 0
if (idle ˜ /:/) {

split(idle, t, ":")
idle = t[1] * 60 + t[2]

}
if (idle ˜ /days/)

idle *= 24 * 60 * 60

print $1, $2, idle
}

Reading Fixed-Width Data 47

9 October 2001 01:41

48 Chapter 3: Reading Input Files

Running the program on the data produces the following results:

hzuo ttyV0 0
hzang ttyV3 50
eklye ttyV5 0
dportein ttyV6 107
gierd ttyD3 1
dave ttyD4 0
brent ttyp0 286
dave ttyq4 1296000

Another (possibly more practical) example of fixed-width input data is the input
fr om a deck of balloting cards. In some parts of the United States, voters mark
their choices by punching holes in computer cards. These cards are then pro-
cessed to count the votes for any particular candidate or on any particular issue.
Because a voter may choose not to vote on some issue, any column on the card
may be empty. An awk pr ogram for processing such data could use the FIELD-

WIDTHS featur e to simplify reading the data. (Of course, getting gawk to run on a
system with card readers is another story!)

Assigning a value to FS causes gawk to use FS for field splitting again. Use FS = FS

to make this happen, without having to know the current value of FS. In order to
tell which kind of field splitting is in effect, use PROCINFO["FS"] (see the section
“Built-in Variables That Convey Information” in Chapter 6). The value is "FS" if
regular field splitting is being used, or it is "FIELDWIDTHS" if fixed-width field split-
ting is being used:

if (PROCINFO["FS"] == "FS")
regular field splitting ...

else
fixed-width field splitting ...

This information is useful when writing a function that needs to temporarily
change FS or FIELDWIDTHS, read some records, and then restor e the original set-
tings (see the section “Reading the User Database” in Chapter 12, A Library of awk
Functions, for an example of such a function).

Multiple-Line Records
In some databases, a single line cannot conveniently hold all the information in
one entry. In such cases, you can use multiline records. The first step in doing this
is to choose your data format.

One technique is to use an unusual character or string to separate records. For
example, you could use the formfeed character (written \f in awk, as in C) to sep-
arate them, making each record a page of the file. To do this, just set the variable
RS to "\f" (a string containing the formfeed character). Any other character could
equally well be used, as long as it won’t be part of the data in a record.

9 October 2001 01:41

Another technique is to have blank lines separate records. By a special dispensa-
tion, an empty string as the value of RS indicates that records are separated by one
or more blank lines. When RS is set to the empty string, each record always ends
at the first blank line encountered. The next record doesn’t start until the first non-
blank line that follows. No matter how many blank lines appear in a row, they all
act as one record separator. (Blank lines must be completely empty; lines that con-
tain only whitespace do not count.)

You can achieve the same effect as RS = "" by assigning the string "\n\n+" to RS.
This regexp matches the newline at the end of the record and one or more blank
lines after the record. In addition, a regular expression always matches the longest
possible sequence when there is a choice (see the section “How Much Text
Matches?” in Chapter 2). So the next record doesn’t start until the first nonblank
line that follows—no matter how many blank lines appear in a row, they are con-
sider ed one record separator.

Ther e is an important differ ence between RS = "" and RS = "\n\n+". In the first
case, leading newlines in the input datafile are ignor ed, and if a file ends without
extra blank lines after the last record, the final newline is removed from the
record. In the second case, this special processing is not done. (d.c.)

Now that the input is separated into records, the second step is to separate the
fields in the record. One way to do this is to divide each of the lines into fields in
the normal manner. This happens by default as the result of a special feature.
When RS is set to the empty string, the newline character always acts as a field
separator. This is in addition to whatever field separations result from FS.

The original motivation for this special exception was probably to provide useful
behavior in the default case (i.e., FS is equal to " "). This feature can be a problem
if you really don’t want the newline character to separate fields, because there is
no way to prevent it. However, you can work around this by using the split func-
tion to break up the record manually (see the section “String-Manipulation Func-
tions” in Chapter 8).

Another way to separate fields is to put each field on a separate line: to do this,
just set the variable FS to the string "\n". (This simple regular expression matches
a single newline.) A practical example of a datafile organized this way might be a
mailing list, where each entry is separated by blank lines. Consider a mailing list in
a file named addr esses, which looks like this:

Jane Doe
123 Main Street
Anywhere, SE 12345-6789

Multiple-Line Records 49

9 October 2001 01:41

50 Chapter 3: Reading Input Files

John Smith
456 Tree-lined Avenue
Smallville, MW 98765-4321
...

A simple program to process this file is as follows:

addrs.awk --- simple mailing list program

Records are separated by blank lines.
Each line is one field.
BEGIN { RS = "" ; FS = "\n" }

{
print "Name is:", $1
print "Address is:", $2
print "City and State are:", $3
print ""

}

Running the program produces the following output:

$ awk -f addrs.awk addresses
Name is: Jane Doe
Address is: 123 Main Street
City and State are: Anywhere, SE 12345-6789

Name is: John Smith
Address is: 456 Tree-lined Avenue
City and State are: Smallville, MW 98765-4321

...

See the section “Printing Mailing Labels” in Chapter 13 for a more realistic program
that deals with address lists. The following list summarizes how records are split,
based on the value of RS:

RS == "\n"

Records are separated by the newline character (\n). In effect, every line in
the datafile is a separate record, including blank lines. This is the default.

RS == any single character

Records are separated by each occurrence of the character. Multiple succes-
sive occurrences delimit empty records.

RS == ""

Records are separated by runs of blank lines. The newline character always
serves as a field separator, in addition to whatever value FS may have. Leading
and trailing newlines in a file are ignor ed.

9 October 2001 01:41

RS == regexp

Records are separated by occurrences of characters that match regexp. Leading
and trailing matches of regexp delimit empty records. (This is a gawk exten-
sion it is not specified by the POSIX standard.)

In all cases, gawk sets RT to the input text that matched the value specified by RS.

Explicit Input with getline
So far we have been getting our input data from awk ’s main input stream — either
the standard input (usually your terminal, sometimes the output from another pro-
gram) or from the files specified on the command line. The awk language has a
special built-in command called getline that can be used to read input under your
explicit control.

The getline command is used in several differ ent ways and should not be used
by beginners. The examples that follow the explanation of the getline command
include material that has not been covered yet. Therefor e, come back and study
the getline command after you have reviewed the rest of this book and have a
good knowledge of how awk works.

The getline command retur ns one if it finds a record and zero if it encounters the
end of the file. If there is some error in getting a record, such as a file that cannot
be opened, then getline retur ns −1. In this case, gawk sets the variable ERRNO to a
string describing the error that occurred.

In the following examples, command stands for a string value that repr esents a shell
command.

Using getline with No Arguments
The getline command can be used without arguments to read input from the cur-
rent input file. All it does in this case is read the next input record and split it up
into fields. This is useful if you’ve finished processing the current record, but want
to do some special processing on the next record right now. For example:

{
if ((t = index($0, "/*")) != 0) {

value of ‘tmp’ will be "" if t is 1
tmp = substr($0, 1, t - 1)
u = index(substr($0, t + 2), "*/")
while (u == 0) {

if (getline <= 0) {
m = "unexpected EOF or error"
m = (m ": " ERRNO)
print m > "/dev/stderr"
exit

Explicit Input with getline 51

9 October 2001 01:41

52 Chapter 3: Reading Input Files

}
t = -1
u = index($0, "*/")

}
substr expression will be "" if */
occurred at end of line
$0 = tmp substr($0, u + 2)

}
print $0

}

This awk pr ogram deletes all C-style comments (/* ... */) from the input. By
replacing the print $0 with other statements, you could perfor m mor e compli-
cated processing on the decommented input, such as searching for matches of a
regular expression. (This program has a subtle problem — it does not work if one
comment ends and another begins on the same line.)

This form of the getline command sets NF, NR, FNR, and the value of $0.

The new value of $0 is used to test the patterns of any subsequent
rules. The original value of $0 that triggered the rule that executed
getline is lost. By contrast, the next statement reads a new record
but immediately begins processing it normally, starting with the first
rule in the program. See the section “The next Statement” in Chapter
6.

Using getline into a Var iable
You can use getline var to read the next record from awk ’s input into the vari-
able var. No other processing is done. For example, suppose the next line is a
comment or a special string, and you want to read it without triggering any rules.
This form of getline allows you to read that line and store it in a variable so that
the main read-a-line-and-check-each-rule loop of awk never sees it. The following
example swaps every two lines of input:

{
if ((getline tmp) > 0) {

print tmp
print $0

} else
print $0

}

9 October 2001 01:41

It takes the following list:

wan
tew
free
phore

and produces these results:

tew
wan
phore
free

The getline command used in this way sets only the variables NR and FNR (and of
course, var). The record is not split into fields, so the values of the fields (includ-
ing $0) and the value of NF do not change.

Using getline from a File
Use getline < file to read the next record from file. Her e file is a string-valued
expr ession that specifies the filename. < file is called a redir ection because it
dir ects input to come from a differ ent place. For example, the following program
reads its input record from the file secondary.input when it encounters a first field
with a value equal to 10 in the current input file:

{
if ($1 == 10) {

getline < "secondary.input"
print

} else
print

}

Because the main input stream is not used, the values of NR and FNR ar e not
changed. However, the record it reads is split into fields in the normal manner, so
the values of $0 and the other fields are changed, resulting in a new value of NF.

According to POSIX, getline < expression is ambiguous if expr ession contains
unpar enthesized operators other than $; for example, getline < dir "/" file is
ambiguous because the concatenation operator is not parenthesized. You should
write it as getline < (dir "/" file) if you want your program to be portable to
other awk implementations. (It happens that gawk gets it right, but you should not
rely on this. Parentheses make it easier to read.)

Explicit Input with getline 53

9 October 2001 01:41

54 Chapter 3: Reading Input Files

Using getline into a Var iable from a File
Use getline var < file to read input from the file file, and put it in the variable
var. As above, file is a string-valued expression that specifies the file from which
to read.

In this version of getline, none of the built-in variables are changed and the
record is not split into fields. The only variable changed is var. For example, the
following program copies all the input files to the output, except for records that
say @include filename. Such a record is replaced by the contents of the file
filename :

{
if (NF == 2 && $1 == "@include") {

while ((getline line < $2) > 0)
print line

close($2)
} else

print
}

Note here how the name of the extra input file is not built into the program; it is
taken directly from the data, specifically from the second field on the @include

line.

The close function is called to ensure that if two identical @include lines appear in
the input, the entire specified file is included twice. See the section “Closing Input
and Output Redirections” in Chapter 4.

One deficiency of this program is that it does not process nested @include state-
ments (i.e., @include statements in included files) the way a true macro prepr oces-
sor would. See the section “An Easy Way to Use Library Functions” in Chapter 13
for a program that does handle nested @include statements.

Using getline from a Pipe
The output of a command can also be piped into getline, using command | get-

line. In this case, the string command is run as a shell command and its output is
piped into awk to be used as input. This form of getline reads one record at a
time from the pipe. For example, the following program copies its input to its out-
put, except for lines that begin with @execute, which are replaced by the output
pr oduced by running the rest of the line as a shell command:

{
if ($1 == "@execute") {

tmp = substr($0, 10)
while ((tmp | getline) > 0)

print

9 October 2001 01:41

close(tmp)
} else

print
}

The close function is called to ensure that if two identical @execute lines appear in
the input, the command is run for each one. See the section “Closing Input and
Output Redirections” in Chapter 4. Given the input:

foo
bar
baz
@execute who
bletch

the program might produce:

foo
bar
baz
arnold ttyv0 Jul 13 14:22
miriam ttyp0 Jul 13 14:23 (murphy:0)
bill ttyp1 Jul 13 14:23 (murphy:0)
bletch

Notice that this program ran the command who and printed the previous result. (If
you try this program yourself, you will of course get differ ent results, depending
upon who is logged in on your system.)

This variation of getline splits the record into fields, sets the value of NF, and
recomputes the value of $0. The values of NR and FNR ar e not changed.

According to POSIX, expression | getline is ambiguous if expr ession contains
unpar enthesized operators other than $—for example, "echo " "date" | getline

is ambiguous because the concatenation operator is not parenthesized. You should
write it as ("echo " "date") | getline if you want your program to be portable to
other awk implementations.

Using getline into a Var iable from a Pipe
When you use command | getline var, the output of command is sent through a
pipe to getline and into the variable var. For example, the following program
reads the current date and time into the variable current_time, using the date util-
ity, and then prints it:

BEGIN {
"date" | getline current_time
close("date")
print "Report printed on " current_time

}

Explicit Input with getline 55

9 October 2001 01:41

56 Chapter 3: Reading Input Files

In this version of getline, none of the built-in variables are changed and the
record is not split into fields.

Using getline from a Coprocess
Input into getline fr om a pipe is a one-way operation. The command that is
started with command | getline only sends data to your awk pr ogram.

On occasion, you might want to send data to another program for processing and
then read the results back. gawk allows you start a copr ocess, with which two-way
communications are possible. This is done with the |& operator. Typically, you
write data to the coprocess first and then read results back, as shown in the fol-
lowing:

print "some query" |& "db_server"
"db_server" |& getline

which sends a query to db_server and then reads the results.

The values of NR and FNR ar e not changed, because the main input stream is not
used. However, the record is split into fields in the normal manner, thus changing
the values of $0, of the other fields, and of NF.

Copr ocesses ar e an advanced feature. They are discussed here only because this is
the section on getline. See the section “Two-Way Communications
with Another Process” in Chapter 10, Advanced Features of gawk, wher e copr o-
cesses are discussed in more detail.

Using getline into a Var iable from a Coprocess
When you use command |& getline var, the output from the coprocess command
is sent through a two-way pipe to getline and into the variable var.

In this version of getline, none of the built-in variables are changed and the
record is not split into fields. The only variable changed is var.

Points to Remember About getline
Her e ar e some miscellaneous points about getline that you should bear in mind:

• When getline changes the value of $0 and NF, awk does not automatically
jump to the start of the program and start testing the new record against every
patter n. However, the new record is tested against any subsequent rules.

• Many awk implementations limit the number of pipelines that an awk pr ogram
may have open to just one. In gawk, ther e is no such limit. You can open as
many pipelines (and coprocesses) as the underlying operating system permits.

9 October 2001 01:41

• An inter esting side effect occurs if you use getline without a redir ection
inside a BEGIN rule. Because an unredir ected getline reads from the com-
mand-line datafiles, the first getline command causes awk to set the value of
FILENAME. Nor mally, FILENAME does not have a value inside BEGIN rules,
because you have not yet started to process the command-line datafiles. (d.c.)
(See the section “The BEGIN and END Special Patterns” in Chapter 6; also see
the section “Built-in Variables That Convey Information” in Chapter 6.)

Summar y of getline Var iants
Table 3-1 summarizes the eight variants of getline, listing which built-in variables
ar e set by each one.

Table 3-1. getline Variants and What They Set

Variant Effect

getline Sets $0, NF, FNR, and NR

getline var Sets var, FNR, and NR

getline < file Sets $0 and NF

getline var < file Sets var

command | getline Sets $0 and NF

command | getline var Sets var

command |& getline Sets $0 and NFa

command |& getline var Sets var a

a This is a gawk extension.

Explicit Input with getline 57

9 October 2001 01:41

4
Pr inting Output

In this chapter:
• The print Statement
• Examples of print

Statements
• Output Separator s
• Controlling Numeric

Output with print
• Using printf

Statements for
Fancier Printing

• Redirecting Output of
pr int and printf

• Special Filenames in
ga wk

• Closing Input and
Output Redirections

One of the most common programming actions is to print, or output, some or all
of the input. Use the print statement for simple output, and the printf statement
for fancier formatting. The print statement is not limited when computing which
values to print. However, with two exceptions, you cannot specify how to print
them — how many columns, whether to use exponential notation or not, and so
on. (For the exceptions, see the section “Output Separators” and the section “Con-
tr olling Numeric Output with print” later in this chapter.) For printing with specifi-
cations, you need the printf statement (see the section “Using printf Statements
for Fancier Printing” later in this chapter).

Besides basic and formatted printing, this chapter also covers I/O redir ections to
files and pipes, introduces the special filenames that gawk pr ocesses inter nally,
and discusses the close built-in function.

The print Statement
The print statement is used to produce output with simple, standardized format-
ting. Specify only the strings or numbers to print, in a list separated by commas.
They are output, separated by single spaces, followed by a newline. The statement
looks like this:

print item1, item2, ...

The entire list of items may be optionally enclosed in parentheses. The paren-
theses are necessary if any of the item expressions uses the > relational operator;

58

9 October 2001 01:41

otherwise, it could be confused with a redir ection (see the section “Redirecting
Output of print and printf ” later in this chapter).

The items to print can be constant strings or numbers, fields of the current record
(such as $1), variables, or any awk expr ession. Numeric values are converted to
strings and then printed.

The simple statement print with no items is equivalent to print $0: it prints the
entir e curr ent record. To print a blank line, use print "", wher e "" is the empty
string. To print a fixed piece of text, use a string constant, such as "Don’t Panic",
as one item. If you forget to use the double-quote characters, your text is taken as
an awk expr ession, and you will probably get an error. Keep in mind that a space
is printed between any two items.

Examples of print Statements
Each print statement makes at least one line of output. However, it isn’t limited to
only one line. If an item value is a string that contains a newline, the newline is
output along with the rest of the string. A single print statement can make any
number of lines this way.

The following is an example of printing a string that contains embedded newlines
(the \n is an escape sequence, used to repr esent the newline character; see the
section “Escape Sequences” in Chapter 2, Regular Expressions):

$ awk ’BEGIN { print "line one\nline two\nline three" }’
line one
line two
line three

The next example, which is run on the inventory-shipped file, prints the first two
fields of each input record, with a space between them:

$ awk ’{ print $1, $2 }’ inventory-shipped
Jan 13
Feb 15
Mar 15
...

A common mistake in using the print statement is to omit the comma between
two items. This often has the effect of making the items run together in the output,
with no space. The reason for this is that juxtaposing two string expressions in
awk means to concatenate them. Here is the same program, without the comma:

$ awk ’{ print $1 $2 }’ inventory-shipped
Jan13
Feb15
Mar15
...

Examples of print Statements 59

9 October 2001 01:41

60 Chapter 4: Printing Output

To someone unfamiliar with the inventory-shipped file, neither example’s output
makes much sense. A heading line at the beginning would make it clearer. Let’s
add some headings to our table of months ($1) and green crates shipped ($2). We
do this using the BEGIN patter n (see the section “The BEGIN and END Special Pat-
ter ns” in Chapter 6, Patter ns, Actions, and Variables) so that the headings are only
printed once:

awk ’BEGIN { print "Month Crates"
print "----- ------" }

{ print $1, $2 }’ inventory-shipped

When run, the program prints the following:

Month Crates
----- ------
Jan 13
Feb 15
Mar 15
...

The only problem, however, is that the headings and the table data don’t line up!
We can fix this by printing some spaces between the two fields:

awk ’BEGIN { print "Month Crates"
print "----- ------" }

{ print $1, " ", $2 }’ inventory-shipped

Lining up columns this way can get pretty complicated when there are many
columns to fix. Counting spaces for two or three columns is simple, but any more
than this can take up a lot of time. This is why the printf statement was created
(see the section “Using printf Statements for Fancier Printing” later in this chapter);
one of its specialties is lining up columns of data.

You can continue either a print or printf statement simply by
putting a newline after any comma (see the section “awk Statements
Versus Lines” in Chapter 1, Getting Started with awk).

Output Separator s
As mentioned previously, a print statement contains a list of items separated by
commas. In the output, the items are nor mally separated by single spaces. How-
ever, this doesn’t need to be the case; a single space is only the default. Any string
of characters may be used as the output field separator by setting the built-in vari-
able OFS. The initial value of this variable is the string " "—that is, a single space.

9 October 2001 01:41

The output from an entire print statement is called an output recor d. Each print

statement outputs one output record, and then outputs a string called the output
recor d separator (or ORS). The initial value of ORS is the string "\n"; i.e., a newline
character. Thus, each print statement normally makes a separate line.

In order to change how output fields and records are separated, assign new values
to the variables OFS and ORS. The usual place to do this is in the BEGIN rule (see
the section “The BEGIN and END Special Patterns” in Chapter 6), so that it hap-
pens before any input is processed. It can also be done with assignments on the
command line, before the names of the input files, or using the –v command-line
option (see the section “Command-Line Options” in Chapter 11, Running awk and
gawk). The following example prints the first and second fields of each input
record, separated by a semicolon, with a blank line added after each newline:

$ awk ’BEGIN { OFS = ";"; ORS = "\n\n" }
> { print $1, $2 }’ BBS-list
aardvark;555-5553

alpo-net;555-3412

barfly;555-7685
...

If the value of ORS does not contain a newline, the program’s output is run
together on a single line.

Controlling Numeric Output with print
When the print statement is used to print numeric values, awk inter nally converts
the number to a string of characters and prints that string. awk uses the sprintf

function to do this conversion (see the section “String-Manipulation Functions” in
Chapter 8, Functions). For now, it suffices to say that the sprintf function accepts
a for mat specification that tells it how to format numbers (or strings), and that
ther e ar e a number of differ ent ways in which numbers can be formatted. The dif-
fer ent for mat specifications are discussed more fully in the section “Format-Contr ol
Letters” later in this chapter.

The built-in variable OFMT contains the default format specification that print uses
with sprintf when it wants to convert a number to a string for printing. The
default value of OFMT is "%.6g". The way print prints numbers can be changed by
supplying differ ent for mat specifications as the value of OFMT, as shown in the fol-
lowing example:

$ awk ’BEGIN {
> OFMT = "%.0f" # print numbers as integers (rounds)
> print 17.23, 17.54 }’
17 18

Controlling Numeric Output with print 61

9 October 2001 01:41

62 Chapter 4: Printing Output

According to the POSIX standard, awk ’s behavior is undefined if OFMT contains
anything but a floating-point conversion specification. (d.c.)

Using printf Statements
for Fancier Printing
For more precise control over the output format than what is normally provided
by print, use printf. printf can be used to specify the width to use for each
item, as well as various formatting choices for numbers (such as what output base
to use, whether to print an exponent, whether to print a sign, and how many dig-
its to print after the decimal point). This is done by supplying a string, called the
for mat string, that controls how and where to print the other arguments.

Introduction to the printf Statement
A simple printf statement looks like this:

printf format, item1, item2, ...

The entire list of arguments may optionally be enclosed in parentheses. The paren-
theses are necessary if any of the item expressions use the > relational operator;
otherwise, it can be confused with a redir ection (see the section “Redirecting Out-
put of print and printf ” later in this chapter).

The differ ence between printf and print is the for mat argument. This is an
expr ession whose value is taken as a string; it specifies how to output each of the
other arguments. It is called the for mat string.

The format string is very similar to that in the ISO C library function printf. Most
of for mat is text to output verbatim. Scattered among this text are for mat speci-
fiers—one per item. Each format specifier says to output the next item in the argu-
ment list at that place in the format.

The printf statement does not automatically append a newline to its output. It
outputs only what the format string specifies. So if a newline is needed, you must
include one in the format string. The output separator variables OFS and ORS have
no effect on printf statements. For example:

$ awk ’BEGIN {
> ORS = "\nOUCH!\n"; OFS = "+"
> msg = "Dont Panic!"
> printf "%s\n", msg
> }’
Dont Panic!

Her e, neither the + nor the OUCH! appear when the message is printed.

9 October 2001 01:41

Format-Control Letters
A for mat specifier starts with the character % and ends with a for mat-control
letter—it tells the printf statement how to output one item. The format-contr ol
letter specifies what kind of value to print. The rest of the format specifier is made
up of optional modifiers that control how to print the value, such as the field
width. Here is a list of the format-contr ol letters:

%c This prints a number as an ASCII character; thus, printf "%c", 65 outputs the
letter A. (The output for a string value is the first character of the string.)

%d, %i
These are equivalent; they both print a decimal integer. (The %i specification
is for compatibility with ISO C.)

%e, %E
These print a number in scientific (exponential) notation; for example:

printf "%4.3e\n", 1950

prints 1.950e+03, with a total of four significant figures, three of which follow
the decimal point. (The 4.3 repr esents two modifiers, discussed in the next
section.) %E uses E instead of e in the output.

%f This prints a number in floating-point notation. For example:

printf "%4.3f", 1950

prints 1950.000, with a total of four significant figures, three of which follow
the decimal point. (The 4.3 repr esents two modifiers, discussed in the next
section.)

%g, %G
These print a number in either scientific notation or in floating-point notation,
whichever uses fewer characters; if the result is printed in scientific notation,
%G uses E instead of e.

%o This prints an unsigned octal integer.

%s This prints a string.

%u This prints an unsigned decimal integer. (This format is of marginal use,
because all numbers in awk ar e floating-point; it is provided primarily for
compatibility with C.)

%x, %X
These print an unsigned hexadecimal integer; %X uses the letters A thr ough F

instead of a thr ough f.

Using printf Statements for Fancier Printing 63

9 October 2001 01:41

64 Chapter 4: Printing Output

%% This isn’t a format-contr ol letter, but it does have meaning—the sequence %%

outputs one %; it does not consume an argument and it ignores any modifiers.

When using the integer format-contr ol letters for values that are out-
side the range of a C long integer, gawk switches to the %g for mat
specifier. Other versions of awk may print invalid values or do some-
thing else entirely. (d.c.)

Modifier s for printf For mats
A for mat specification can also include modifiers that can control how much of the
item’s value is printed, as well as how much space it gets. The modifiers come
between the % and the format-contr ol letter. We will use the small box “ ” in the
following examples to repr esent spaces in the output. Here are the possible modi-
fiers, in the order in which they may appear:

N$ An integer constant followed by a $ is a positional specifier. Nor mally, for mat
specifications are applied to arguments in the order given in the format string.
With a positional specifier, the format specification is applied to a specific
argument, instead of what would be the next argument in the list. Positional
specifiers begin counting with one. Thus:

printf "%s %s\n", "don’t", "panic"
printf "%2$s %1$s\n", "panic", "don’t"

prints the famous friendly message twice.

At first glance, this feature doesn’t seem to be of much use. It is in fact a gawk
extension, intended for use in translating messages at runtime. See the section
“Rearranging printf Arguments” in Chapter 9, Inter nationalization with gawk,
which describes how and why to use positional specifiers. For now, we will
not use them.

- The minus sign, used before the width modifier (see later in this list), says to
left-justify the argument within its specified width. Normally, the argument is
printed right-justified in the specified width. Thus:

printf "%-4s", "foo"

prints foo .

space
For numeric conversions, prefix positive values with a space and negative
values with a minus sign.

9 October 2001 01:41

+ The plus sign, used before the width modifier (see later in this list), says to
always supply a sign for numeric conversions, even if the data to format is
positive. The + overrides the space modifier.

Use an “alternate form” for certain control letters. For %o, supply a leading
zer o. For %x and %X, supply a leading 0x or 0X for a nonzero result. For %e, %E,
and %f, the result always contains a decimal point. For %g and %G, trailing
zer os ar e not removed from the result.

0 A leading 0 (zer o) acts as a flag that indicates that output should be padded
with zeros instead of spaces. This applies even to non-numeric output formats.
(d.c.) This flag only has an effect when the field width is wider than the value
to print.

width
width is a number specifying the desired minimum width of a field. Inserting
any number between the % sign and the format-contr ol character forces the
field to expand to this width. The default way to do this is to pad with spaces
on the left. For example:

printf "%4s", "foo"

prints foo.

The value of width is a minimum width, not a maximum. If the item value
requir es mor e than width characters, it can be as wide as necessary. Thus, the
following:

printf "%4s", "foobar"

prints foobar.

Pr eceding the width with a minus sign causes the output to be padded with
spaces on the right, instead of on the left.

.pr ec
A period followed by an integer constant specifies the precision to use when
printing. The meaning of the precision varies by control letter:

%e, %E, %f
Number of digits to the right of the decimal point.

%g, %G
Maximum number of significant digits.

Using printf Statements for Fancier Printing 65

9 October 2001 01:41

66 Chapter 4: Printing Output

%d, %i, %o, %u, %x, %X
Minimum number of digits to print.

%s Maximum number of characters from the string that should print.

Thus, the following:

printf "%.4s", "foobar"

prints foob.

The C library printf’s dynamic width and pr ec capability (for example, "%*.*s") is
supported. Instead of supplying explicit width and/or pr ec values in the format
string, they are passed in the argument list. For example:

w = 5
p = 3
s = "abcdefg"
printf "%*.*s\n", w, p, s

is exactly equivalent to:

s = "abcdefg"
printf "%5.3s\n", s

Both programs output abc. Earlier versions of awk did not support this capabil-
ity. If you must use such a version, you may simulate this feature by using con-
catenation to build up the format string, like so:

w = 5
p = 3
s = "abcdefg"
printf "%" w "." p "s\n", s

This is not particularly easy to read but it does work.

C programmers may be used to supplying additional l, L, and h modifiers in
printf for mat strings. These are not valid in awk. Most awk implementations
silently ignore these modifiers. If ––lint is provided on the command line (see the
section “Command-Line Options” in Chapter 11), gawk war ns about their use. If
––posix is supplied, their use is a fatal error.

Examples Using printf
The following is a simple example of how to use printf to make an aligned table:

awk ’{ printf "%-10s %s\n", $1, $2 }’ BBS-list

This command prints the names of the bulletin boards ($1) in the file BBS-list as a
string of 10 characters that are left-justified. It also prints the phone numbers ($2)
next on the line. This produces an aligned two-column table of names and phone
numbers, as shown here:

9 October 2001 01:41

$ awk ’{ printf "%-10s %s\n", $1, $2 }’ BBS-list
aardvark 555-5553
alpo-net 555-3412
barfly 555-7685
bites 555-1675
camelot 555-0542
core 555-2912
fooey 555-1234
foot 555-6699
macfoo 555-6480
sdace 555-3430
sabafoo 555-2127

In this case, the phone numbers had to be printed as strings because the numbers
ar e separated by a dash. Printing the phone numbers as numbers would have pro-
duced just the first three digits: 555. This would have been pretty confusing.

It wasn’t necessary to specify a width for the phone numbers because they are last
on their lines. They don’t need to have spaces after them.

The table could be made to look even nicer by adding headings to the tops of the
columns. This is done using the BEGIN patter n (see the section “The BEGIN and
END Special Patterns” in Chapter 6) so that the headers are only printed once, at
the beginning of the awk pr ogram:

awk ’BEGIN { print "Name Number"
print "---- ------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

The above example mixed print and printf statements in the same program.
Using just printf statements can produce the same results:

awk ’BEGIN { printf "%-10s %s\n", "Name", "Number"
printf "%-10s %s\n", "----", "------" }

{ printf "%-10s %s\n", $1, $2 }’ BBS-list

Printing each column heading with the same format specification used for the col-
umn elements ensures that the headings are aligned just like the columns.

The fact that the same format specification is used three times can be emphasized
by storing it in a variable, like this:

awk ’BEGIN { format = "%-10s %s\n"
printf format, "Name", "Number"
printf format, "----", "------" }

{ printf format, $1, $2 }’ BBS-list

At this point, it would be a worthwhile exercise to use the printf statement to line
up the headings and table data for the inventory-shipped example that was cov-
er ed earlier in the section on the print statement (see the section “The print State-
ment” earlier in this chapter).

Using printf Statements for Fancier Printing 67

9 October 2001 01:41

68 Chapter 4: Printing Output

Redirecting Output of print and printf
So far, the output from print and printf has gone to the standard output, usually
the terminal. Both print and printf can also send their output to other places.
This is called redir ection.

A redir ection appears after the print or printf statement. Redirections in awk ar e
written just like redir ections in shell commands, except that they are written inside
the awk pr ogram.

Ther e ar e four forms of output redir ection: output to a file, output appended to a
file, output through a pipe to another command, and output to a coprocess. They
ar e all shown for the print statement, but they work identically for printf:

print items > output-file

This type of redir ection prints the items into the output file named output-file.
The filename output-file can be any expression. Its value is changed to a string
and then used as a filename (see Chapter 5, Expr essions).

When this type of redir ection is used, the output-file is erased before the first
output is written to it. Subsequent writes to the same output-file do not erase
output-file, but append to it. (This is differ ent fr om how you use redir ections
in shell scripts.) If output-file does not exist, it is created. For example, here is
how an awk pr ogram can write a list of BBS names to one file named name-
list, and a list of phone numbers to another file named phone-list:

$ awk ’{ print $2 > "phone-list"
> print $1 > "name-list" }’ BBS-list
$ cat phone-list
555-5553
555-3412
...
$ cat name-list
aardvark
alpo-net
...

Each output file contains one name or number per line.

print items >> output-file

This type of redir ection prints the items into the pre-existing output file named
output-file. The differ ence between this and the single-> redir ection is that the
old contents (if any) of output-file ar e not erased. Instead, the awk output is
appended to the file. If output-file does not exist, then it is created.

print items | command

It is also possible to send output to a program through a pipe instead of into a
file. This type of redir ection opens a pipe to command and writes the values
of items thr ough this pipe to a process created to execute command.

9 October 2001 01:41

The redir ection argument command is actually an awk expr ession. Its value is
converted to a string whose contents give the shell command to be run. For
example, the following produces two files, one unsorted list of BBS names,
and one list sorted in reverse alphabetical order:

awk ’{ print $1 > "names.unsorted"
command = "sort -r > names.sorted"
print $1 | command }’ BBS-list

The unsorted list is written with an ordinary redir ection, while the sorted list is
written by piping through the sort utility.

The next example uses redir ection to mail a message to the mailing list bug-
system. This might be useful when trouble is encountered in an awk script run
periodically for system maintenance:

report = "mail bug-system"
print "Awk script failed:", $0 | report
m = ("at record number " FNR " of " FILENAME)
print m | report
close(report)

The message is built using string concatenation and saved in the variable m. It’s
then sent down the pipeline to the mail pr ogram. (The parentheses group the
items to concatenate—see the section “String Concatenation” in Chapter 5.)

The close function is called here because it’s a good idea to close the pipe as
soon as all the intended output has been sent to it. See the section “Closing
Input and Output Redirections” later in this chapter for more infor mation.

This example also illustrates the use of a variable to repr esent a file or com-
mand—it is not necessary to always use a string constant. Using a variable is
generally a good idea, because awk requir es that the string value be spelled
identically every time.

print items |& command

This type of redir ection prints the items to the input of command. The differ-
ence between this and the single-| redir ection is that the output from com-
mand can be read with getline. Thus command is a coprocess, which works
together with, but subsidiary to, the awk pr ogram.

This feature is a gawk extension, and is not available in POSIX awk. See the
section “Two-Way Communications with Another Process” in Chapter 10,
Advanced Features of gawk, for a more complete discussion.

Redir ecting output using >, >>, |, or |& asks the system to open a file, pipe, or
copr ocess only if the particular file or command you specify has not already been
written to by your program or if it has been closed since it was last written to.

Redirecting Output of print and printf 69

9 October 2001 01:41

70 Chapter 4: Printing Output

It is a common error to use > redir ection for the first print to a file, and then to
use >> for subsequent output:

clear the file
print "Don’t panic" > "guide.txt"
...
append
print "Avoid improbability generators" >> "guide.txt"

This is indeed how redir ections must be used from the shell. But in awk, it isn’t
necessary. In this kind of case, a program should use > for all the print state-
ments, since the output file is only opened once.

As mentioned earlier (see the section “Points to Remember About getline” in Chap-
ter 3, Reading Input Files), many awk implementations limit the number of
pipelines that an awk pr ogram may have open to just one! In gawk, ther e is no
such limit. gawk allows a program to open as many pipelines as the underlying
operating system permits.

Piping into sh
A particularly powerful way to use redir ection is to build command lines and
pipe them into the shell, sh. For example, suppose you have a list of files
br ought over from a system where all the filenames are stor ed in uppercase,
and you wish to rename them to have names in all lowercase. The following
pr ogram is both simple and efficient:

{ printf("mv %s %s\n", $0, tolower($0)) | "sh" }

END { close("sh") }

The tolower function retur ns its argument string with all uppercase charac-
ters converted to lowercase (see the section “String-Manipulation Functions”
in Chapter 8). The program builds up a list of command lines, using the mv
utility to rename the files. It then sends the list to the shell for execution.

Special Filenames in gawk
gawk pr ovides a number of special filenames that it interprets internally. These
filenames provide access to standard file descriptors, process-r elated infor mation,
and TCP/IP networking.

9 October 2001 01:41

Special Files for Standard Descr iptors
Running programs conventionally have three input and output streams already
available to them for reading and writing. These are known as the standar d input,
standar d output, and standar d err or output. These streams are, by default, con-
nected to your terminal, but they are often redir ected with the shell, via the <, <<,
>, >>, >&, and | operators. Standard error is typically used for writing error mes-
sages; the reason there are two separate streams, standard output and standard
err or, is so that they can be redir ected separately.

In other implementations of awk, the only way to write an error message to stan-
dard error in an awk pr ogram is as follows:

print "Serious error detected!" | "cat 1>&2"

This works by opening a pipeline to a shell command that can access the standard
err or str eam that it inherits from the awk pr ocess. This is far from elegant, and it is
also inefficient, because it requir es a separate process. So people writing awk pr o-
grams often don’t do this. Instead, they send the error messages to the terminal,
like this:

print "Serious error detected!" > "/dev/tty"

This usually has the same effect but not always: although the standard error stream
is usually the terminal, it can be redir ected; when that happens, writing to the ter-
minal is not correct. In fact, if awk is run from a background job, it may not have
a ter minal at all. Then opening /dev/tty fails.

gawk pr ovides special filenames for accessing the three standard streams, as well
as any other inherited open files. If the filename matches one of these special
names when gawk redir ects input or output, then it directly uses the stream that
the filename stands for. These special filenames work for all operating systems that
gawk has been ported to, not just those that are POSIX-compliant:

/dev/stdin
The standard input (file descriptor 0).

/dev/stdout
The standard output (file descriptor 1).

/dev/stderr
The standard error output (file descriptor 2).

/dev/fd/N
The file associated with file descriptor N. Such a file must be opened by the
pr ogram initiating the awk execution (typically the shell). Unless special pains
ar e taken in the shell from which gawk is invoked, only descriptors 0, 1, and 2
ar e available.

Special Filenames in gawk 71

9 October 2001 01:41

72 Chapter 4: Printing Output

The filenames /dev/stdin, /dev/stdout, and /dev/stderr ar e aliases for /dev/fd/0,
/dev/fd/1, and /dev/fd/2, respectively. However, they are mor e self-explanatory.
The proper way to write an error message in a gawk pr ogram is to use /dev/stderr,
like this:

print "Serious error detected!" > "/dev/stderr"

Note the use of quotes around the filename. Like any other redir ection, the value
must be a string. It is a common error to omit the quotes, which leads to confus-
ing results.

Special Files for Process-Related Infor mation
gawk also provides special filenames that give access to information about the run-
ning gawk pr ocess. Each of these “files” provides a single record of information.
To read them more than once, they must first be closed with the close function
(see the section “Closing Input and Output Redirections” later in this chapter). The
filenames are:

/dev/pid
Reading this file retur ns the process ID of the current process, in decimal
for m, ter minated with a newline.

/dev/ppid
Reading this file retur ns the parent process ID of the current process, in deci-
mal form, terminated with a newline.

/dev/pgrpid
Reading this file retur ns the process group ID of the current process, in deci-
mal form, terminated with a newline.

/dev/user
Reading this file retur ns a single record terminated with a newline. The fields
ar e separated with spaces. The fields repr esent the following information:

$1 The retur n value of the getuid system call (the real user ID number).

$2 The retur n value of the geteuid system call (the effective user ID number).

$3 The retur n value of the getgid system call (the real group ID number).

$4 The retur n value of the getegid system call (the effective group ID
number).

If there are any additional fields, they are the group IDs retur ned by the get-

groups system call. (Multiple groups may not be supported on all systems.)

9 October 2001 01:41

These special filenames may be used on the command line as datafiles, as well as
for I/O redir ections within an awk pr ogram. They may not be used as source files
with the –f option.

The special files that provide process-r elated infor mation ar e now
consider ed obsolete and will disappear entirely in the next release of
gawk. gawk prints a warning message every time you use one of
these files. To obtain process-r elated infor mation, use the PROCINFO
array. See section “Built-in Variables That Convey Information” in
Chapter 6.

Special Files for Network Communications
Starting with Version 3.1 of gawk, awk pr ograms can open a two-way TCP/IP con-
nection, acting as either a client or a server. This is done using a special filename
of the form:

/inet/protocol/local-port/remote-host/remote-port

The pr otocol is one of tcp, udp, or raw, and the other fields repr esent the other
essential pieces of information for making a networking connection. These file-
names are used with the |& operator for communicating with a coprocess (see the
section “Two-Way Communications with Another Process” in Chapter 10). This is
an advanced feature, mentioned here only for completeness. See Chapter 14,
Inter networking with gawk, for an in-depth discussion with many examples.

Special Filename Caveats
Her e is a list of things to bear in mind when using the special filenames that gawk
pr ovides:

• Recognition of these special filenames is disabled if gawk is in compatibility
mode (see the section “Command-Line Options” in Chapter 11).

• As mentioned earlier, the special files that provide process-r elated infor mation
ar e now considered obsolete and will disappear entirely in the next release of
gawk. gawk prints a warning message every time you use one of these files.
To obtain process-r elated infor mation, use the PROCINFO array. See the section
“Built-in Variables” in Chapter 6.

Special Filenames in gawk 73

9 October 2001 01:41

74 Chapter 4: Printing Output

• Starting with Version 3.1, gawk always interpr ets these special filenames.* For
example, using /dev/fd/4 for output actually writes on file descriptor 4, and
not on a new file descriptor that is dup’ed from file descriptor 4. Most of the
time this does not matter; however, it is important to not close any of the files
related to file descriptors 0, 1, and 2. Doing so results in unpredictable behav-
ior.

Closing Input and Output Redirections
If the same filename or the same shell command is used with getline mor e than
once during the execution of an awk pr ogram (see the section “Explicit Input with
getline” in Chapter 3), the file is opened (or the command is executed) the first
time only. At that time, the first record of input is read from that file or command.
The next time the same file or command is used with getline, another record is
read from it, and so on.

Similarly, when a file or pipe is opened for output, the filename or command asso-
ciated with it is remember ed by awk, and subsequent writes to the same file or
command are appended to the previous writes. The file or pipe stays open until
awk exits.

This implies that special steps are necessary in order to read the same file again
fr om the beginning, or to rerun a shell command (rather than reading more output
fr om the same command). The close function makes these things possible:

close(filename)

or:

close(command)

The argument filename or command can be any expression. Its value must exactly
match the string that was used to open the file or start the command (spaces and
other “irrelevant” characters included). For example, if you open a pipe with this:

"sort -r names" | getline foo

then you must close it with this:

close("sort -r names")

* Older versions of gawk would interpret these names internally only if the system did not actually
have a a /dev/fd dir ectory or any of the other special files listed earlier. Usually this didn’t make a dif-
fer ence, but sometimes it did; thus, it was decided to make gawk ’s behavior consistent on all sys-
tems and to have it always interpret the special filenames itself.

9 October 2001 01:41

Once this function call is executed, the next getline fr om that file or command, or
the next print or printf to that file or command, reopens the file or reruns the
command. Because the expression that you use to close a file or pipeline must
exactly match the expression used to open the file or run the command, it is good
practice to use a variable to store the filename or command. The previous exam-
ple becomes the following:

sortcom = "sort -r names"
sortcom | getline foo
...
close(sortcom)

This helps avoid hard-to-find typographical errors in your awk pr ograms. Her e ar e
some of the reasons for closing an output file:

• To write a file and read it back later on in the same awk pr ogram. Close the
file after writing it, then begin reading it with getline.

• To write numerous files, successively, in the same awk pr ogram. If the files
ar en’t closed, eventually awk may exceed a system limit on the number of
open files in one process. It is best to close each one when the program has
finished writing it.

• To make a command finish. When output is redir ected thr ough a pipe, the
command reading the pipe normally continues to try to read input as long as
the pipe is open. Often this means the command cannot really do its work
until the pipe is closed. For example, if output is redir ected to the mail pr o-
gram, the message is not actually sent until the pipe is closed.

• To run the same program a second time, with the same arguments. This is not
the same thing as giving more input to the first run! For example, suppose a
pr ogram pipes output to the mail pr ogram. If it outputs several lines redi-
rected to this pipe without closing it, they make a single message of several
lines. By contrast, if the program closes the pipe after each line of output, then
each line makes a separate message.

If you use more files than the system allows you to have open, gawk attempts to
multiplex the available open files among your datafiles. gawk ’s ability to do this
depends upon the facilities of your operating system, so it may not always work. It
is therefor e both good practice and good portability advice to always use close on
your files when you are done with them. In fact, if you are using a lot of pipes, it
is essential that you close commands when done. For example, consider some-
thing like this:

Closing Input and Output Redirections 75

9 October 2001 01:41

76 Chapter 4: Printing Output

{
...
command = ("grep " $1 " /some/file | my_prog -q " $3)
while ((command | getline) > 0) {

process output of command
}
need close(command) here

}

Using close’s Retur n Value
In many versions of Unix awk, the close function is actually a statement. It is
a syntax error to try and use the retur n value from close: (d.c.)

command = "..."
command | getline info
retval = close(command) # syntax error in most Unix awks

gawk tr eats close as a function. The retur n value is −1 if the argument
names something that was never opened with a redir ection, or if there is a
system problem closing the file or process. In these cases, gawk sets the
built-in variable ERRNO to a string describing the problem.

In gawk, when closing a pipe or coprocess, the retur n value is the exit status
of the command. Otherwise, it is the retur n value from the system’s close or
fclose C functions when closing input or output files, respectively. This
value is zero if the close succeeds, or −1 if it fails.

The retur n value for closing a pipeline is particularly useful. It allows you to
get the output from a command as well as its exit status.

For POSIX-compliant systems, if the exit status is a number above 128, then
the program was terminated by a signal. Subtract 128 to get the signal
number:

exit_val = close(command)
if (exit_val > 128)

print command, "died with signal", exit_val - 128
else

print command, "exited with code", exit_val

Curr ently, in gawk, this only works for commands piping into getline. For
commands piped into from print or printf, the retur n value from close is
that of the library’s pclose function.

This example creates a new pipeline based on data in each record. Without the
call to close indicated in the comment, awk cr eates child processes to run the
commands, until it eventually runs out of file descriptors for more pipelines.

9 October 2001 01:41

Even though each command has finished (as indicated by the end-of-file retur n
status from getline), the child process is not terminated;* mor e importantly, the
file descriptor for the pipe is not closed and released until close is called or awk
exits.

close will silently do nothing if given an argument that does not repr esent a file,
pipe or coprocess that was opened with a redir ection.

When using the |& operator to communicate with a coprocess, it is occasionally
useful to be able to close one end of the two-way pipe without closing the other.
This is done by supplying a second argument to close. As in any other call to
close, the first argument is the name of the command or special file used to start
the coprocess. The second argument should be a string, with either of the values
"to" or "from". Case does not matter. As this is an advanced feature, a more com-
plete discussion is delayed until the section “Two-Way Communications
with Another Process” in Chapter 10, which discusses it in more detail and gives
an example.

* The technical terminology is rather morbid. The finished child is called a “zombie,” and cleaning up
after it is referr ed to as “reaping.”

Closing Input and Output Redirections 77

9 October 2001 01:41

5
Expressions

In this chapter:
• Constant Expressions
• Using Regular

Expression Constants
• Var iables
• Conversion of Strings

and Numbers
• Arithmetic Operator s
• Str ing Concatenation
• Assignment

Expressions
• Increment and

Decrement Operator s
• True and False in

awk
• Var iable Typing and

Compar ison
Expressions

• Boolean Expressions
• Conditional

Expressions
• Function Calls
• Operator Precedence

(How Operator s Nest)

Expr essions ar e the basic building blocks of awk patter ns and actions. An expres-
sion evaluates to a value that you can print, test, or pass to a function. Addition-
ally, an expression can assign a new value to a variable or a field by using an
assignment operator.

An expression can serve as a pattern or action statement on its own. Most other
kinds of statements contain one or more expr essions that specify the data on
which to operate. As in other languages, expressions in awk include variables,
array refer ences, constants, and function calls, as well as combinations of these
with various operators.

78

9 October 2001 01:41

Constant Expressions
The simplest type of expression is the constant, which always has the same value.
Ther e ar e thr ee types of constants: numeric, string, and regular expression.

Each is used in the appropriate context when you need a data value that isn’t
going to change. Numeric constants can have differ ent for ms, but are stor ed iden-
tically internally.

Numer ic and String Constants
A numeric constant stands for a number. This number can be an integer, a deci-
mal fraction, or a number in scientific (exponential) notation.* Her e ar e some
examples of numeric constants that all have the same value:

105
1.05e+2
1050e-1

A string constant consists of a sequence of characters enclosed in double-quotation
marks. For example:

"parrot"

repr esents the string whose contents are parrot. Strings in gawk can be of any
length, and they can contain any of the possible eight-bit ASCII characters includ-
ing ASCII NUL (character code zero). Other awk implementations may have diffi-
culty with some character codes.

Octal and Hexadecimal Numbers
In awk, all numbers are in decimal; i.e., base 10. Many other programming lan-
guages allow you to specify numbers in other bases, often octal (base 8) and hex-
adecimal (base 16). In octal, the numbers go 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, etc.
Just as 11, in decimal, is 1 times 10 plus 1, so 11, in octal, is 1 times 8 plus 1. This
equals 9 in decimal. In hexadecimal, there are 16 digits. Since the everyday deci-
mal number system only has 10 digits (0–9), the letters a thr ough f ar e used to
repr esent the rest. (Case in the letters is usually irrelevant; hexadecimal a and A

have the same value.) Thus, 11, in hexadecimal, is 1 times 16 plus 1, which equals
17 in decimal.

Just by looking at plain 11, you can’t tell what base it’s in. So, in C, C++, and other
languages derived from C, there is a special notation to help signify the base.

* The internal repr esentation of all numbers, including integers, uses double-precision floating-point
numbers. On most modern systems, these are in IEEE 754 standard format.

Constant Expressions 79

9 October 2001 01:41

80 Chapter 5: Expressions

Octal numbers start with a leading 0, and hexadecimal numbers start with a lead-
ing 0x or 0X:

11 Decimal value 11.
011 Octal 11, decimal value 9.
0x11 Hexadecimal 11, decimal value 17.

This example shows the differ ence:

$ gawk ’BEGIN { printf "%d, %d, %d\n", 011, 11, 0x11 }’
9, 11, 17

Being able to use octal and hexadecimal constants in your programs is most useful
when working with data that cannot be repr esented conveniently as characters or
as regular numbers, such as binary data of various sorts.

gawk allows the use of octal and hexadecimal constants in your program text.
However, such numbers in the input data are not treated differ ently; doing so by
default would break old programs. (If you really need to do this, use the
––non–decimal–data command-line option; see the section “Allowing Nondecimal
Input Data” in Chapter 10, Advanced Features of gawk.) If you have octal or hex-
adecimal data, you can use the strtonum function (see the section “String-Manipu-
lation Functions” in Chapter 8, Functions) to convert the data into a number. Most
of the time, you will want to use octal or hexadecimal constants when working
with the built-in bit manipulation functions; see the section “Bit-Manipulation
Functions of gawk” in Chapter 8 for more infor mation.

Unlike some early C implementations, 8 and 9 ar e not valid in octal constants; e.g.,
gawk tr eats 018 as decimal 18:

$ gawk ’BEGIN { print "021 is", 021 ; print 018 }’
021 is 17
18

Octal and hexadecimal source code constants are a gawk extension. If gawk is in
compatibility mode (see the section “Command-Line Options” in Chapter 11, Run-
ning awk and gawk), they are not available.

Regular Expression Constants
A regexp constant is a regular expression description enclosed in slashes, such as
/ˆbeginning and end$/. Most regexps used in awk pr ograms ar e constant, but the
˜ and !˜ matching operators can also match computed or “dynamic” regexps
(which are just ordinary strings or variables that contain a regexp).

9 October 2001 01:41

A Constant’s Base Does Not Affect Its Value
Once a numeric constant has been converted internally into a number, gawk
no longer remembers what the original form of the constant was; the internal
value is always used. This has particular consequences for conversion of
numbers to strings:

$ gawk ’BEGIN { printf "0x11 is <%s>\n", 0x11 }’
0x11 is <17>

Using Regular Expression Constants
When used on the righthand side of the ˜ or !˜ operators, a regexp constant
mer ely stands for the regexp that is to be matched. However, regexp constants
(such as /foo/) may be used like simple expressions. When a regexp constant
appears by itself, it has the same meaning as if it appeared in a pattern, i.e., ($0 ˜
/foo/). (d.c.) See the section “Expressions as Patterns” in Chapter 6, Patter ns,
Actions, and Variables. This means that the following two code segments:

if ($0 ˜ /barfly/ || $0 ˜ /camelot/)
print "found"

and:

if (/barfly/ || /camelot/)
print "found"

ar e exactly equivalent. One rather bizarre consequence of this rule is that the fol-
lowing Boolean expression is valid, but does not do what the user probably
intended:

note that /foo/ is on the left of the ˜
if (/foo/ ˜ $1) print "found foo"

This code is “obviously” testing $1 for a match against the regexp /foo/. But in
fact, the expression /foo/ ˜ $1 actually means ($0 ˜ /foo/) ˜ $1. In other words,
first match the input record against the regexp /foo/. The result is either zero or
one, depending upon the success or failure of the match. That result is then
matched against the first field in the record. Because it is unlikely that you would
ever really want to make this kind of test, gawk issues a warning when it sees this
construct in a program. Another consequence of this rule is that the assignment
statement:

matches = /foo/

Using Regular Expression Constants 81

9 October 2001 01:41

82 Chapter 5: Expressions

assigns either zero or one to the variable matches, depending upon the contents of
the current input record. This feature of the language has never been well docu-
mented until the POSIX specification.

Constant regular expressions are also used as the first argument for the gensub,
sub, and gsub functions, and as the second argument of the match function (see the
section “String-Manipulation Functions” in Chapter 8). Modern implementations of
awk, including gawk, allow the third argument of split to be a regexp constant,
but some older implementations do not. (d.c.) This can lead to confusion when
attempting to use regexp constants as arguments to user-defined functions (see the
section “User-Defined Functions” in Chapter 8). For example:

function mysub(pat, repl, str, global)
{

if (global)
gsub(pat, repl, str)

else
sub(pat, repl, str)

return str
}

{
...
text = "hi! hi yourself!"
mysub(/hi/, "howdy", text, 1)
...

}

In this example, the programmer wants to pass a regexp constant to the user-
defined function mysub, which in turn passes it on to either sub or gsub. However,
what really happens is that the pat parameter is either one or zero, depending
upon whether or not $0 matches /hi/. gawk issues a warning when it sees a reg-
exp constant used as a parameter to a user-defined function, since passing a truth
value in this way is probably not what was intended.

Variables
Variables are ways of storing values at one point in your program for use later in
another part of your program. They can be manipulated entirely within the pro-
gram text, and they can also be assigned values on the awk command line.

Using Var iables in a Prog ram
Variables let you give names to values and refer to them later. Variables have
alr eady been used in many of the examples. The name of a variable must be a
sequence of letters, digits, or underscores, and it may not begin with a digit. Case
is significant in variable names; a and A ar e distinct variables.

9 October 2001 01:41

A variable name is a valid expression by itself; it repr esents the variable’s current
value. Variables are given new values with assignment operators, incr ement opera-
tors, and decr ement operators. See the section “Assignment Expressions” later in
this chapter.

A few variables have special built-in meanings, such as FS (the field separator),
and NF (the number of fields in the current input record). See the section “Built-in
Variables” in Chapter 6 for a list of the built-in variables. These built-in variables
can be used and assigned just like all other variables, but their values are also
used or changed automatically by awk. All built-in variables’ names are entir ely
uppercase.

Variables in awk can be assigned either numeric or string values. The kind of
value a variable holds can change over the life of a program. By default, variables
ar e initialized to the empty string, which is zero if converted to a number. Ther e is
no need to “initialize” each variable explicitly in awk, which is what you would do
in C and in most other traditional languages.

Assigning Var iables on the Command Line
Any awk variable can be set by including a variable assignment among the argu-
ments on the command line when awk is invoked (see the section “Other Com-
mand-Line Arguments” in Chapter 11). Such an assignment has the following form:

variable=text

With it, a variable is set either at the beginning of the awk run or in between input
files. When the assignment is preceded with the –v option, as in the following:

-v variable=text

the variable is set at the very beginning, even before the BEGIN rules are run. The
–v option and its assignment must precede all the filename arguments, as well as
the program text. (See the section “Command-Line Options” in Chapter 11 for
mor e infor mation about the –v option.) Otherwise, the variable assignment is per-
for med at a time determined by its position among the input file arguments — after
the processing of the preceding input file argument. For example:

awk ’{ print $n }’ n=4 inventory-shipped n=2 BBS-list

prints the value of field number n for all input records. Before the first file is read,
the command line sets the variable n equal to four. This causes the fourth field to
be printed in lines from the file inventory-shipped. After the first file has finished,
but before the second file is started, n is set to two, so that the second field is
printed in lines from BBS-list :

Variables 83

9 October 2001 01:41

84 Chapter 5: Expressions

$ awk ’{ print $n }’ n=4 inventory-shipped n=2 BBS-list
15
24
...
555-5553
555-3412
...

Command-line arguments are made available for explicit examination by the awk
pr ogram in the ARGV array (see the section “Using ARGC and ARGV” in Chapter 6).
awk pr ocesses the values of command-line assignments for escape sequences (see
the section “Escape Sequences” in Chapter 2, Regular Expressions). (d.c.)

Conversion of Strings and Numbers
Strings are converted to numbers and numbers are converted to strings, if the con-
text of the awk pr ogram demands it. For example, if the value of either foo or bar
in the expression foo + bar happens to be a string, it is converted to a number
befor e the addition is perfor med. If numeric values appear in string concatenation,
they are converted to strings. Consider the following:

two = 2; three = 3
print (two three) + 4

This prints the (numeric) value 27. The numeric values of the variables two and
three ar e converted to strings and concatenated together. The resulting string is
converted back to the number 23, to which 4 is then added.

If, for some reason, you need to force a number to be converted to a string, con-
catenate the empty string, "", with that number. To force a string to be converted
to a number, add zero to that string. A string is converted to a number by inter-
pr eting any numeric prefix of the string as numerals: "2.5" converts to 2.5, "1e3"
converts to 1000, and "25fix" has a numeric value of 25. Strings that can’t be
interpr eted as valid numbers convert to zero.

The exact manner in which numbers are converted into strings is controlled by the
awk built-in variable CONVFMT (see the section “Built-in Variables” in Chapter 6).
Numbers are converted using the sprintf function with CONVFMT as the format
specifier (see the section “String-Manipulation Functions” in Chapter 8).

CONVFMT’s default value is "%.6g", which prints a value with at least six significant
digits. For some applications, you might want to change it to specify more preci-
sion. On most modern machines, 17 digits is enough to capture a floating-point
number’s value exactly, most of the time.*

* Pathological cases can requir e up to 752 digits (!), but we doubt that you need to worry about this.

9 October 2001 01:41

Strange results can occur if you set CONVFMT to a string that doesn’t tell sprintf
how to format floating-point numbers in a useful way. For example, if you forget
the % in the format, awk converts all numbers to the same constant string. As a
special case, if a number is an integer, then the result of converting it to a string is
always an integer, no matter what the value of CONVFMT may be. Given the follow-
ing code fragment:

CONVFMT = "%2.2f"
a = 12
b = a ""

b has the value "12", not "12.00". (d.c.)

Prior to the POSIX standard, awk used the value of OFMT for converting numbers to
strings. OFMT specifies the output format to use when printing numbers with print.
CONVFMT was introduced in order to separate the semantics of conversion from the
semantics of printing. Both CONVFMT and OFMT have the same default value: "%.6g".
In the vast majority of cases, old awk pr ograms do not change their behavior.
However, these semantics for OFMT ar e something to keep in mind if you must port
your new style program to older implementations of awk. We recommend that
instead of changing your programs, just port gawk itself. See the section “The print
Statement” in Chapter 4, Printing Output, for more infor mation on the print state-
ment.

Ar ithmetic Operator s
The awk language uses the common arithmetic operators when evaluating expres-
sions. All of these arithmetic operators follow normal precedence rules and work
as you would expect them to.

The following example uses a file named grades, which contains a list of student
names as well as three test scores per student (it’s a small class):

Pat 100 97 58
Sandy 84 72 93
Chris 72 92 89

This programs takes the file grades and prints the average of the scores:

$ awk ’{ sum = $2 + $3 + $4 ; avg = sum / 3
> print $1, avg }’ grades
Pat 85
Sandy 83
Chris 84.3333

Ar ithmetic Operator s 85

9 October 2001 01:41

86 Chapter 5: Expressions

The following list provides the arithmetic operators in awk, in order from the high-
est precedence to the lowest:

- x Negation.

+ x Unary plus; the expression is converted to a number.

x ˆ y

x ** y

Exponentiation; x raised to the y power. 2 ˆ 3 has the value eight; the charac-
ter sequence ** is equivalent to ˆ.

x * y

Multiplication.

x / y

Division; because all numbers in awk ar e floating-point numbers, the result is
not rounded to an integer—3 / 4 has the value 0.75. (It is a common mistake,
especially for C programmers, to forget that all numbers in awk ar e floating-
point, and that division of integer-looking constants produces a real number,
not an integer.)

x % y

Remainder; further discussion is provided in the text, just after this list.

x + y

Addition.

x - y

Subtraction.

Unary plus and minus have the same precedence, the multiplication operators all
have the same precedence, and addition and subtraction have the same prece-
dence.

When computing the remainder of x % y, the quotient is rounded toward zero to
an integer and multiplied by y. This result is subtracted from x ; this operation is
sometimes known as “trunc-mod.” The following relation always holds:

b * int(a / b) + (a % b) == a

One possibly undesirable effect of this definition of remainder is that x % y is neg-
ative if x is negative. Thus:

-17 % 8 = -1

In other awk implementations, the signedness of the remainder may be machine-
dependent.

9 October 2001 01:41

The POSIX standard only specifies the use of ˆ for exponentiation.
For maximum portability, do not use the ** operator.

Str ing Concatenation
Ther e is only one string operation: concatenation. It does not have a specific oper-
ator to repr esent it. Instead, concatenation is perfor med by writing expressions
next to one another, with no operator. For example:

$ awk ’{ print "Field number one: " $1 }’ BBS-list
Field number one: aardvark
Field number one: alpo-net
...

Without the space in the string constant after the :, the line runs together. For
example:

$ awk ’{ print "Field number one:" $1 }’ BBS-list
Field number one:aardvark
Field number one:alpo-net
...

Because string concatenation does not have an explicit operator, it is often neces-
sary to insure that it happens at the right time by using parentheses to enclose the
items to concatenate. For example, the following code fragment does not concate-
nate file and name as you might expect:

file = "file"
name = "name"
print "something meaningful" > file name

It is necessary to use the following:

print "something meaningful" > (file name)

Par entheses should be used around concatenation in all but the most common
contexts, such as on the righthand side of =. Be car eful about the kinds of expres-
sions used in string concatenation. In particular, the order of evaluation of expres-
sions used for concatenation is undefined in the awk language. Consider this
example:

BEGIN {
a = "don’t"
print (a " " (a = "panic"))

}

Str ing Concatenation 87

9 October 2001 01:41

88 Chapter 5: Expressions

It is not defined whether the assignment to a happens before or after the value of
a is retrieved for producing the concatenated value. The result could be either
don’t panic, or panic panic. The precedence of concatenation, when mixed with
other operators, is often counter-intuitive. Consider this example:

$ awk ’BEGIN { print -12 " " -24 }’
-12-24

This “obviously” is concatenating −12, a space, and −24. But where did the space
disappear to? The answer lies in the combination of operator precedences and
awk ’s automatic conversion rules. To get the desired result, write the program in
the following manner:

$ awk ’BEGIN { print -12 " " (-24) }’
-12 -24

This forces awk to treat the - on the -24 as unary. Otherwise, it’s parsed as fol-
lows:

-12 (" " - 24)
→ -12 (0 - 24)
→ -12 (-24)
→ -12-24

As mentioned earlier, when doing concatenation, par enthesize. Otherwise, you’re
never quite sure what you’ll get.

Assignment Expressions
An assignment is an expression that stores a (usually differ ent) value into a vari-
able. For example, let’s assign the value one to the variable z:

z = 1

After this expression is executed, the variable z has the value one. Whatever old
value z had before the assignment is forgotten.

Assignments can also store string values. For example, the following stores the
value "this food is good" in the variable message:

thing = "food"
predicate = "good"
message = "this " thing " is " predicate

This also illustrates string concatenation. The = sign is called an assignment opera-
tor. It is the simplest assignment operator because the value of the righthand
operand is stored unchanged. Most operators (addition, concatenation, and so on)
have no effect except to compute a value. If the value isn’t used, there’s no reason

9 October 2001 01:41

to use the operator. An assignment operator is differ ent; it does produce a value,
but even if you ignore it, the assignment still makes itself felt through the alter-
ation of the variable. We call this a side effect.

The lefthand operand of an assignment need not be a variable (see the section
“Variables” earlier in this chapter); it can also be a field (see the section “Changing
the Contents of a Field in Chapter 3, Reading Input Files) or an array element (see
Chapter 7, Arrays in awk). These are all called lvalues, which means they can
appear on the lefthand side of an assignment operator. The righthand operand
may be any expression; it produces the new value that the assignment stores in
the specified variable, field, or array element. (Such values are called rvalues.)

It is important to note that variables do not have permanent types. A variable’s
type is simply the type of whatever value it happens to hold at the moment. In the
following program fragment, the variable foo has a numeric value at first, and a
string value later on:

foo = 1
print foo
foo = "bar"
print foo

When the second assignment gives foo a string value, the fact that it previously
had a numeric value is forgotten.

String values that do not begin with a digit have a numeric value of zero. After
executing the following code, the value of foo is five:

foo = "a string"
foo = foo + 5

Using a variable as a number and then later as a string can be con-
fusing and is poor programming style. The previous two examples
illustrate how awk works, not how you should write your pr ograms!

An assignment is an expression, so it has a value—the same value that is assigned.
Thus, z = 1 is an expression with the value one. One consequence of this is that
you can write multiple assignments together, such as:

x = y = z = 5

This example stores the value five in all three variables (x, y, and z). It does so
because the value of z = 5, which is five, is stored into y and then the value of y =

z = 5, which is five, is stored into x.

Assignment Expressions 89

9 October 2001 01:41

90 Chapter 5: Expressions

Assignments may be used anywhere an expr ession is called for. For example, it is
valid to write x != (y = 1) to set y to one, and then test whether x equals one.
But this style tends to make programs hard to read; such nesting of assignments
should be avoided, except perhaps in a one-shot program.

Aside from =, ther e ar e several other assignment operators that do arithmetic with
the old value of the variable. For example, the operator += computes a new value
by adding the righthand value to the old value of the variable. Thus, the following
assignment adds five to the value of foo:

foo += 5

This is equivalent to the following:

foo = foo + 5

Use whichever makes the meaning of your program clearer.

Ther e ar e situations where using += (or any assignment operator) is not the same
as simply repeating the lefthand operand in the righthand expression. For exam-
ple:

Thanks to Pat Rankin for this example
BEGIN {

foo[rand()] += 5
for (x in foo)

print x, foo[x]

bar[rand()] = bar[rand()] + 5
for (x in bar)

print x, bar[x]
}

The indices of bar ar e practically guaranteed to be differ ent, because rand retur ns
dif ferent values each time it is called. (Arrays and the rand function haven’t been
cover ed yet. See Chapter 7 and the section “Numeric Functions” in Chapter 8 for
mor e infor mation.) This example illustrates an important fact about assignment
operators: the lefthand expression is only evaluated once. It is up to the imple-
mentation as to which expression is evaluated first, the lefthand or the righthand.
Consider this example:

i = 1
a[i += 2] = i + 1

The value of a[3] could be either two or four.

Table 5-1 lists the arithmetic assignment operators. In each case, the righthand
operand is an expression whose value is converted to a number.

9 October 2001 01:41

Table 5-1. Arithmetic Assignment Operators

Operator Effect

lvalue += increment Adds incr ement to the value of lvalue.

lvalue -= decrement Subtracts decr ement fr om the value of lvalue.

lvalue *= coefficient Multiplies the value of lvalue by coef ficient.

lvalue /= divisor Divides the value of lvalue by divisor.

lvalue %= modulus Sets lvalue to its remainder by modulus.

lvalue ˆ= power Raises lvalue to the power power.

lvalue **= power Raises lvalue to the power power.

Only the ˆ= operator is specified by POSIX. For maximum portabil-
ity, do not use the **= operator.

Syntactic Ambiguities Between /=
and Regular Expressions

Ther e is a syntactic ambiguity between the /= assignment operator and reg-
exp constants whose first character is an =. (d.c.) This is most notable in
commercial awk versions. For example:

$ awk /==/ /dev/null
awk: syntax error at source line 1
context is

>>> /= <<<
awk: bailing out at source line 1

A workar ound is:

awk ’/[=]=/’ /dev/null

gawk does not have this problem, nor do the other freely available versions
described in the section “Other Freely Available awk Implementations” in
Appendix B, Installing gawk.

Assignment Expressions 91

9 October 2001 01:41

92 Chapter 5: Expressions

Increment and Decrement Operator s
Incr ement and decr ement operators incr ease or decrease the value of a variable by
one. An assignment operator can do the same thing, so the increment operators
add no power to the awk language; however, they are convenient abbreviations
for very common operations.

The operator used for adding one is written ++. It can be used to increment a vari-
able either before or after taking its value. To pre-incr ement a variable v, write ++v.
This adds one to the value of v—that new value is also the value of the expres-
sion. (The assignment expression v += 1 is completely equivalent.) Writing the ++

after the variable specifies post-increment. This increments the variable value just
the same; the differ ence is that the value of the increment expression itself is the
variable’s old value. Thus, if foo has the value four, then the expression foo++ has
the value four, but it changes the value of foo to five. In other words, the operator
retur ns the old value of the variable, but with the side effect of incrementing it.

The post-increment foo++ is nearly the same as writing (foo += 1) - 1. It is not
per fectly equivalent because all numbers in awk ar e floating-point — in floating-
point, foo + 1 - 1 does not necessarily equal foo. But the differ ence is minute as
long as you stick to numbers that are fairly small (less than 1012).

Fields and array elements are incr emented just like variables. (Use $(i++) when
you want to do a field refer ence and a variable increment at the same time. The
par entheses ar e necessary because of the precedence of the field refer ence opera-
tor $.)

The decrement operator -- works just like ++, except that it subtracts one instead
of adding it. As with ++, it can be used before the lvalue to pre-decr ement or after
it to post-decrement. Following is a summary of increment and decrement expres-
sions:

++lvalue

This expression increments lvalue, and the new value becomes the value of
the expression.

lvalue++

This expression increments lvalue, but the value of the expression is the old
value of lvalue.

--lvalue

This expression is like ++lvalue, but instead of adding, it subtracts. It decre-
ments lvalue and delivers the value that is the result.

9 October 2001 01:41

lvalue--

This expression is like lvalue++, but instead of adding, it subtracts. It decre-
ments lvalue. The value of the expression is the old value of lvalue.

Operator Evaluation Order
What happens for something like the following?

b = 6
print b += b++

Or something even stranger?

b = 6
b += ++b + b++
print b

In other words, when do the various side effects prescribed by the postfix
operators (b++) take effect? When side effects happen is implementation
defined. In other words, it is up to the particular version of awk. The result
for the first example may be 12 or 13, and for the second, it may be 22 or 23.

In short, doing things like this is not recommended and definitely not any-
thing that you can rely upon for portability. You should avoid such things in
your own programs.

Tr ue and False in awk
Many programming languages have a special repr esentation for the concepts of
“true” and “false.” Such languages usually use the special constants true and
false, or perhaps their uppercase equivalents. However, awk is differ ent. It bor-
rows a very simple concept of true and false from C. In awk, any nonzero numeric
value or any nonempty string value is true. Any other value (zero or the null string
"") is false. The following program prints "A strange truth value" thr ee times:

BEGIN {
if (3.1415927)

print "A strange truth value"
if ("Four Score And Seven Years Ago")

print "A strange truth value"
if (j = 57)

print "A strange truth value"
}

Ther e is a surprising consequence of the “nonzero or non-null” rule: the string
constant "0" is actually true, because it is non-null. (d.c.)

Tr ue and False in awk 93

9 October 2001 01:41

94 Chapter 5: Expressions

Variable Typing and Comparison
Expressions
Unlike other programming languages, awk variables do not have a fixed type.
Instead, they can be either a number or a string, depending upon the value that is
assigned to them.

The 1992 POSIX standard introduced the concept of a numeric string, which is
simply a string that looks like a number—for example, " +2". This concept is used
for determining the type of a variable. The type of the variable is important
because the types of two variables determine how they are compar ed. In gawk,
variable typing follows these rules:

• A numeric constant or the result of a numeric operation has the numeric
attribute.

• A string constant or the result of a string operation has the string attribute.

• Fields, getline input, FILENAME, ARGV elements, ENVIRON elements, and the ele-
ments of an array created by split that are numeric strings have the str num
attribute. Otherwise, they have the string attribute. Uninitialized variables also
have the str num attribute.

• Attributes propagate across assignments but are not changed by any use.

The last rule is particularly important. In the following program, a has numeric
type, even though it is later used in a string operation:

BEGIN {
a = 12.345
b = a " is a cute number"
print b

}

When two operands are compar ed, either string comparison or numeric compari-
son may be used. This depends upon the attributes of the operands, according to
the following symmetric matrix:

STRING NUMERIC STRNUM

STRING string string string
NUMERIC string numeric numeric
STRNUM string numeric numeric

The basic idea is that user input that looks numeric—and only user input—should
be treated as numeric, even though it is actually made of characters and is there-
for e also a string. Thus, for example, the string constant " +3.14" is a string, even
though it looks numeric, and is never tr eated as number for comparison purposes.

9 October 2001 01:41

In short, when one operand is a “pure” string, such as a string constant, then a
string comparison is perfor med. Otherwise, a numeric comparison is perfor med.*

Comparison expressions compar e strings or numbers for relationships such as
equality. They are written using relational operators, which are a superset of those
in C. Table 5-2 describes them.

Table 5-2. Relational Operators

Expression Result

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x > y True if x is greater than y.

x >= y True if x is greater than or equal to y.

x == y True if x is equal to y.

x != y True if x is not equal to y.

x ˜ y True if the string x matches the regexp denoted by y.

x !˜ y True if the string x does not match the regexp denoted by y.

subscript in array True if the array array has an element with the subscript subscript.

Comparison expressions have the value one if true and zero if false. When com-
paring operands of mixed types, numeric operands are converted to strings using
the value of CONVFMT (see the section “Conversion of Strings and Numbers” earlier
in this chapter).

Strings are compar ed by comparing the first character of each, then the second
character of each, and so on. Thus, "10" is less than "9". If ther e ar e two strings
wher e one is a prefix of the other, the shorter string is less than the longer one.
Thus, "abc" is less than "abcd".

It is very easy to accidentally mistype the == operator and leave off one of the =

characters. The result is still valid awk code, but the program does not do what is
intended:

if (a = b) # oops! should be a == b
...

else
...

Unless b happens to be zero or the null string, the if part of the test always suc-
ceeds. Because the operators are so similar, this kind of error is very difficult to
spot when scanning the source code.

* The POSIX standard is under revision. The revised standard’s rules for typing and comparison are
the same as just described for gawk.

Variable Typing and Comparison Expressions 95

9 October 2001 01:41

96 Chapter 5: Expressions

The following list illustrates the kind of comparison gawk per forms, as well as
what the result of the comparison is:

1.5 <= 2.0

Numeric comparison (true)

"abc" >= "xyz"

String comparison (false)

1.5 != " +2"

String comparison (true)

"1e2" < "3"

String comparison (true)

a = 2; b = "2"

a == b

String comparison (true)

a = 2; b = " +2"

a == b

String comparison (false)

In the next example:

$ echo 1e2 3 | awk ’{ print ($1 < $2) ? "true" : "false" }’
false

the result is false because both $1 and $2 ar e user input. They are numeric
strings — therefor e both have the str num attribute, dictating a numeric comparison.
The purpose of the comparison rules and the use of numeric strings is to attempt
to produce the behavior that is “least surprising,” while still “doing the right thing.”
String comparisons and regular expression comparisons are very differ ent. For
example:

x == "foo"

has the value one, or is true if the variable x is precisely foo. By contrast:

x ˜ /foo/

has the value one if x contains foo, such as "Oh, what a fool am I!".

The righthand operand of the ˜ and !˜ operators may be either a regexp constant
(/.../) or an ordinary expression. In the latter case, the value of the expression as
a string is used as a dynamic regexp (see the section “How to Use Regular Expres-
sions” and the section “Using Dynamic Regexps” in Chapter 2).

9 October 2001 01:41

In modern implementations of awk, a constant regular expression in slashes by
itself is also an expression. The regexp /regexp/ is an abbreviation for the follow-
ing comparison expression:

$0 ˜ /regexp/

One special place where /foo/ is not an abbreviation for $0 ˜ /foo/ is when it is
the righthand operand of ˜ or !˜. See the section “Using Regular Expression Con-
stants” earlier in this chapter, wher e this is discussed in more detail.

Boolean Expressions
A Boolean expression is a combination of comparison expressions or matching
expr essions, using the Boolean operators “or” (||), “and” (&&), and “not” (!), along
with parentheses to control nesting. The truth value of the Boolean expression is
computed by combining the truth values of the component expressions. Boolean
expr essions ar e also referr ed to as logical expressions. The terms are equivalent.

Boolean expressions can be used wherever comparison and matching expressions
can be used. They can be used in if, while, do, and for statements (see the sec-
tion “Control Statements in Actions” in Chapter 6). They have numeric values (one
if true, zero if false) that come into play if the result of the Boolean expression is
stor ed in a variable or used in arithmetic.

In addition, every Boolean expression is also a valid pattern, so you can use one
as a pattern to contr ol the execution of rules. The Boolean operators are:

boolean1 && boolean2

True if both boolean1 and boolean2 ar e true. For example, the following state-
ment prints the current input record if it contains both 2400 and foo:

if ($0 ˜ /2400/ && $0 ˜ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is true. This can
make a differ ence when boolean2 contains expressions that have side effects.
In the case of $0 ˜ /foo/ && ($2 == bar++), the variable bar is not incre-
mented if there is no substring foo in the record.

boolean1 || boolean2

True if at least one of boolean1 or boolean2 is true. For example, the follow-
ing statement prints all records in the input that contain either 2400 or foo or
both:

if ($0 ˜ /2400/ || $0 ˜ /foo/) print

The subexpression boolean2 is evaluated only if boolean1 is false. This can
make a differ ence when boolean2 contains expressions that have side effects.

Boolean Expressions 97

9 October 2001 01:41

98 Chapter 5: Expressions

! boolean
True if boolean is false. For example, the following program prints no home! in
the unusual event that the HOME environment variable is not defined:

BEGIN { if (! ("HOME" in ENVIRON))
print "no home!" }

(The in operator is described in the section “Referring to an Array Element” in
Chapter 7.)

The && and || operators are called short-cir cuit operators because of the way they
work. Evaluation of the full expression is “short-circuited” if the result can be
deter mined part way through its evaluation.

Statements that use && or || can be continued simply by putting a newline after
them. But you cannot put a newline in front of either of these operators without
using backslash continuation (see the section “awk Statements Versus Lines” in
Chapter 1, Getting Started with awk).

The actual value of an expression using the ! operator is either one or zero,
depending upon the truth value of the expression it is applied to. The ! operator
is often useful for changing the sense of a flag variable from false to true and back
again. For example, the following program is one way to print lines in between
special bracketing lines:

$1 == "START" { interested = ! interested; next }
interested == 1 { print }
$1 == "END" { interested = ! interested; next }

The variable interested, as with all awk variables, starts out initialized to zero,
which is also false. When a line is seen whose first field is START, the value of
interested is toggled to true, using !. The next rule prints lines as long as inter-
ested is true. When a line is seen whose first field is END, interested is toggled
back to false.

The next statement is discussed in the section “The next Statement”
in Chapter 6. next tells awk to skip the rest of the rules, get the next
record, and start processing the rules over again at the top. The rea-
son it’s there is to avoid printing the bracketing START and END lines.

9 October 2001 01:41

Conditional Expressions
A conditional expression is a special kind of expression that has three operands. It
allows you to use one expression’s value to select one of two other expressions.
The conditional expression is the same as in the C language, as shown here:

selector ? if-true-exp : if-false-exp

Ther e ar e thr ee subexpr essions. The first, selector, is always computed first. If it is
“true” (not zero or not null), then if-true-exp is computed next and its value
becomes the value of the whole expression. Otherwise, if-false-exp is computed
next and its value becomes the value of the whole expression. For example, the
following expression produces the absolute value of x:

x >= 0 ? x : -x

Each time the conditional expression is computed, only one of if-true-exp and
if-false-exp is used; the other is ignored. This is important when the expressions
have side effects. For example, this conditional expression examines element i of
either array a or array b, and increments i:

x == y ? a[i++] : b[i++]

This is guaranteed to increment i exactly once, because each time only one of the
two increment expressions is executed and the other is not. See Chapter 7 for
mor e infor mation about arrays.

As a minor gawk extension, a statement that uses ?: can be continued simply by
putting a newline after either character. However, putting a newline in front of
either character does not work without using backslash continuation (see the sec-
tion “awk Statements Versus Lines” in Chapter 1). If ––posix is specified (see the
section “Command-Line Options” in Chapter 11), then this extension is disabled.

Function Calls
A function is a name for a particular calculation. This enables you to ask for it by
name at any point in the program. For example, the function sqrt computes the
squar e root of a number.

A fixed set of functions are built-in, which means they are available in every awk
pr ogram. The sqrt function is one of these. See the section “Built-in Functions” in
Chapter 8 for a list of built-in functions and their descriptions. In addition, you can
define functions for use in your program. See the section “User-Defined Functions”
in Chapter 8 for instructions on how to do this.

The way to use a function is with a function call expr ession, which consists of the
function name followed immediately by a list of ar guments in parentheses. The

Function Calls 99

9 October 2001 01:41

100 Chapter 5: Expressions

arguments are expr essions that provide the raw materials for the function’s calcula-
tions. When there is mor e than one argument, they are separated by commas. If
ther e ar e no arguments, just write () after the function name. The following exam-
ples show function calls with and without arguments:

sqrt(xˆ2 + yˆ2) # one argument
atan2(y, x) # two arguments
rand() # no arguments

Do not put any space between the function name and the open
par enthesis! A user-defined function name looks just like the name
of a variable—a space would make the expression look like con-
catenation of a variable with an expression inside parentheses.

With built-in functions, space before the parenthesis is harmless, but it is best not
to get into the habit of using space to avoid mistakes with user-defined functions.
Each function expects a particular number of arguments. For example, the sqrt

function must be called with a single argument, the number of which to take the
squar e root:

sqrt(argument)

Some of the built-in functions have one or more optional arguments. If those argu-
ments are not supplied, the functions use a reasonable default value. See the sec-
tion “Built-in Functions” in Chapter 8 for full details. If arguments are omitted in
calls to user-defined functions, then those arguments are treated as local variables
and initialized to the empty string (see the section “User-Defined Functions” in
Chapter 8).

Like every other expression, the function call has a value, which is computed by
the function based on the arguments you give it. In this example, the value of
sqrt(argument) is the square root of ar gument. A function can also have side
ef fects, such as assigning values to certain variables or doing I/O. The following
pr ogram reads numbers, one number per line, and prints the square root of each
one:

$ awk ’{ print "The square root of", $1, "is", sqrt($1) }’
1
The square root of 1 is 1
3
The square root of 3 is 1.73205
5
The square root of 5 is 2.23607
Ctrl-d

9 October 2001 01:41

Operator Precedence (How
Operator s Nest)
Operator precedence deter mines how operators are grouped when differ ent opera-
tors appear close by in one expression. For example, * has higher precedence
than +; thus, a + b * c means to multiply b and c, and then add a to the product
(i.e., a + (b * c)).

The normal precedence of the operators can be overruled by using parentheses.
Think of the precedence rules as saying where the parentheses are assumed to be.
In fact, it is wise to always use parentheses whenever there is an unusual combi-
nation of operators, because other people who read the program may not remem-
ber what the precedence is in this case. Even experienced programmers
occasionally forget the exact rules, which leads to mistakes. Explicit parentheses
help prevent any such mistakes.

When operators of equal precedence are used together, the leftmost operator
gr oups first, except for the assignment, conditional, and exponentiation operators,
which group in the opposite order. Thus, a - b + c gr oups as (a - b) + c and a

= b = c gr oups as a = (b = c).

The precedence of prefix unary operators does not matter as long as only unary
operators are involved, because there is only one way to interpret them: innermost
first. Thus, $++i means $(++i) and ++$x means ++($x). However, when another
operator follows the operand, then the precedence of the unary operators can
matter. $xˆ2 means ($x)ˆ2, but -xˆ2 means -(xˆ2), because - has lower prece-
dence than ˆ, wher eas $ has higher precedence. This list presents awk ’s operators,
in order of highest to lowest precedence:

(...)

Gr ouping.

$ Field.

++ --

Incr ement, decr ement.

ˆ **

Exponentiation. These operators group right to left.

+ - !

Unary plus, minus, logical “not.”

* / %

Multiplication, division, modulus.

Operator Precedence (How Operator s Nest) 101

9 October 2001 01:41

102 Chapter 5: Expressions

+ -

Addition, subtraction.

String Concatenation
No special symbol is used to indicate concatenation. The operands are simply
written side by side (see the earlier section “String Concatenation”).

< <= == !=

> >= >> | |&

Relational and redir ection. The relational operators and the redir ections have
the same precedence level. Characters such as > serve both as relationals and
as redir ections; the context distinguishes between the two meanings.

Note that the I/O redir ection operators in print and printf statements belong
to the statement level, not to expressions. The redir ection does not produce
an expression that could be the operand of another operator. As a result, it
does not make sense to use a redir ection operator near another operator of
lower precedence without parentheses. Such combinations (for example,
print foo > a ? b : c), result in syntax errors. The correct way to write this
statement is print foo > (a ? b : c).

˜ !˜

Matching, nonmatching.

in Array membership.

&& Logical “and.”

|| Logical “or.”

?: Conditional. This operator groups right to left.

= += -= *=

/= %= ˆ= **=

Assignment. These operators group right to left.

The |&, **, and **= operators are not specified by POSIX. For maxi-
mum portability, do not use them.

9 October 2001 01:41

6
Patter ns, Actions,

and Var iables

In this chapter:
• Patter n Elements
• Using Shell Var iables

in Prog rams
• Actions
• Control Statements in

Actions
• Built-in Var iables

As you have already seen, each awk statement consists of a pattern with an associ-
ated action. This chapter describes how you build patterns and actions, what kinds
of things you can do within actions, and awk ’s built-in variables.

The pattern-action rules and the statements available for use within actions form
the core of awk pr ogramming. In a sense, everything covered in this text up to
her e has been the foundation that programs are built on top of. Now it’s time to
start building something useful.

Patter n Elements
Patter ns in awk contr ol the execution of rules—a rule is executed when its pattern
matches the current input record. The following is a summary of the types of awk
patter n types:

/regular expression/

A regular expression. It matches when the text of the input record fits the reg-
ular expression. (See Chapter 2, Regular Expressions.)

expression

A single expression. It matches when its value is nonzero (if a number) or
non-null (if a string). (See the section “Expressions as Patterns” later in this
chapter.)

pat1, pat2

A pair of patterns separated by a comma, specifying a range of records. The
range includes both the initial record that matches pat1 and the final record
that matches pat2. (See the section “Specifying Record Ranges with Patterns”
later in this chapter.)

103

9 October 2001 01:42

104 Chapter 6: Patter ns, Actions, and Var iables

BEGIN

END

Special patterns for you to supply startup or cleanup actions for your awk pr o-
gram. (See the section “The BEGIN and END Special Patterns” later in this
chapter.)

empty
The empty pattern matches every input record. (See the section “The Empty
Patter n” later in this chapter.)

Regular Expressions as Patter ns
Regular expressions are one of the first kinds of patterns presented in this book.
This kind of pattern is simply a regexp constant in the pattern part of a rule. Its
meaning is $0 ˜ /pattern/. The pattern matches when the input record matches
the regexp. For example:

/foo|bar|baz/ { buzzwords++ }
END { print buzzwords, "buzzwords seen" }

Expressions as Patter ns
Any awk expr ession is valid as an awk patter n. The pattern matches if the expres-
sion’s value is nonzero (if a number) or non-null (if a string). The expression is
reevaluated each time the rule is tested against a new input record. If the expres-
sion uses fields such as $1, the value depends directly on the new input record’s
text; otherwise, it depends on only what has happened so far in the execution of
the awk pr ogram.

Comparison expressions, using the comparison operators described in the section
“Variable Typing and Comparison Expressions” in Chapter 5, Expr essions, are a
very common kind of pattern. Regexp matching and nonmatching are also very
common expressions. The left operand of the ˜ and !˜ operators is a string. The
right operand is either a constant regular expression enclosed in slashes (/reg-
exp/), or any expression whose string value is used as a dynamic regular expres-
sion (see the section “Using Dynamic Regexps” in Chapter 2). The following
example prints the second field of each input record whose first field is precisely
foo:

$ awk ’$1 == "foo" { print $2 }’ BBS-list

(Ther e is no output, because there is no BBS site with the exact name foo.) Con-
trast this with the following regular expression match, which accepts any record
with a first field that contains foo:

9 October 2001 01:42

$ awk ’$1 ˜ /foo/ { print $2 }’ BBS-list
555-1234
555-6699
555-6480
555-2127

A regexp constant as a pattern is also a special case of an expression pattern. The
expr ession /foo/ has the value one if foo appears in the current input record.
Thus, as a pattern, /foo/ matches any record containing foo.

Boolean expressions are also commonly used as patterns. Whether the pattern
matches an input record depends on whether its subexpressions match. For exam-
ple, the following command prints all the records in BBS-list that contain both
2400 and foo:

$ awk ’/2400/ && /foo/’ BBS-list
fooey 555-1234 2400/1200/300 B

The following command prints all records in BBS-list that contain either 2400 or
foo (or both, of course):

$ awk ’/2400/ || /foo/’ BBS-list
alpo-net 555-3412 2400/1200/300 A
bites 555-1675 2400/1200/300 A
fooey 555-1234 2400/1200/300 B
foot 555-6699 1200/300 B
macfoo 555-6480 1200/300 A
sdace 555-3430 2400/1200/300 A
sabafoo 555-2127 1200/300 C

The following command prints all records in BBS-list that do not contain the string
foo:

$ awk ’! /foo/’ BBS-list
aardvark 555-5553 1200/300 B
alpo-net 555-3412 2400/1200/300 A
barfly 555-7685 1200/300 A
bites 555-1675 2400/1200/300 A
camelot 555-0542 300 C
core 555-2912 1200/300 C
sdace 555-3430 2400/1200/300 A

The subexpressions of a Boolean operator in a pattern can be constant regular
expr essions, comparisons, or any other awk expr essions. Range patterns are not
expr essions, so they cannot appear inside Boolean patterns. Likewise, the special
patter ns BEGIN and END, which never match any input record, are not expressions
and cannot appear inside Boolean patterns.

Patter n Elements 105

9 October 2001 01:42

106 Chapter 6: Patter ns, Actions, and Var iables

Specifying Record Ranges with Patter ns
A range pattern is made of two patterns separated by a comma, in the form beg-
pat, endpat. It is used to match ranges of consecutive input records. The first pat-
ter n, begpat, contr ols wher e the range begins, while endpat contr ols wher e the
patter n ends. For example, the following:

awk ’$1 == "on", $1 == "off"’ myfile

prints every record in myfile between on/off pairs, inclusive.

A range pattern starts out by matching begpat against every input record. When a
record matches begpat, the range pattern is tur ned on and the range pattern
matches this record as well. As long as the range pattern stays turned on, it auto-
matically matches every input record read. The range pattern also matches endpat
against every input record; when this succeeds, the range pattern is tur ned of f
again for the following record. Then the range pattern goes back to checking beg-
pat against each record.

The record that turns on the range pattern and the one that turns it off both match
the range pattern. If you don’t want to operate on these records, you can write if

statements in the rule’s action to distinguish them from the records you are inter-
ested in.

It is possible for a pattern to be tur ned on and off by the same record. If the
record satisfies both conditions, then the action is executed for just that record. For
example, suppose there is text between two identical markers (e.g., the % symbol),
each on its own line, that should be ignored. A first attempt would be to combine
a range pattern that describes the delimited text with the next statement (not dis-
cussed yet, see the section “The next Statement” later in this chapter). This causes
awk to skip any further processing of the current record and start over again with
the next input record. Such a program looks like this:

/ˆ%$/,/ˆ%$/ { next }
{ print }

This program fails because the range pattern is both turned on and turned off by
the first line, which just has a % on it. To accomplish this task, write the program in
the following manner, using a flag:

/ˆ%$/ { skip = ! skip; next }
skip == 1 { next } # skip lines with ‘skip’ set

In a range pattern, the comma (,) has the lowest precedence of all the operators
(i.e., it is evaluated last). Thus, the following program attempts to combine a range
patter n with another, simpler test:

echo Yes | awk ’/1/,/2/ || /Yes/’

9 October 2001 01:42

The intent of this program is (/1/,/2/) || /Yes/. However, awk interpr ets this as
/1/, (/2/ || /Yes/). This cannot be changed or worked around; range patterns
do not combine with other patterns:

$ echo yes | gawk ’(/1/,/2/) || /Yes/’
gawk: cmd. line:1: (/1/,/2/) || /Yes/
gawk: cmd. line:1: ˆ parse error
gawk: cmd. line:2: (/1/,/2/) || /Yes/
gawk: cmd. line:2: ˆ unexpected newline

The BEGIN and END Special Patter ns
All the patterns described so far are for matching input records. The BEGIN and END

special patterns are dif ferent. They supply startup and cleanup actions for awk
pr ograms. BEGIN and END rules must have actions; there is no default action for
these rules because there is no curr ent record when they run. BEGIN and END rules
ar e often referr ed to as “BEGIN and END blocks” by long-time awk pr ogrammers.

Star tup and cleanup actions

A BEGIN rule is executed once only, before the first input record is read. Likewise,
an END rule is executed once only, after all the input is read. For example:

$ awk ’
> BEGIN { print "Analysis of \"foo\"" }
> /foo/ { ++n }
> END { print "\"foo\" appears", n, "times." }’ BBS-list
Analysis of "foo"
"foo" appears 4 times.

This program finds the number of records in the input file BBS-list that contain the
string foo. The BEGIN rule prints a title for the report. There is no need to use the
BEGIN rule to initialize the counter n to zero, since awk does this automatically (see
the section “Variables” in Chapter 5). The second rule increments the variable n

every time a record containing the pattern foo is read. The END rule prints the
value of n at the end of the run.

The special patterns BEGIN and END cannot be used in ranges or with Boolean
operators (indeed, they cannot be used with any operators). An awk pr ogram may
have multiple BEGIN and/or END rules. They are executed in the order in which
they appear: all the BEGIN rules at startup and all the END rules at termination.
BEGIN and END rules may be intermixed with other rules. This feature was added in
the 1987 version of awk and is included in the POSIX standard. The original
(1978) version of awk requir ed that the BEGIN rule was at the beginning of the pro-
gram, and that the END rule was at the end, and only allowed one of each. This is
no longer requir ed, but it is a good idea to follow this template in terms of pro-
gram organization and readability.

Patter n Elements 107

9 October 2001 01:42

108 Chapter 6: Patter ns, Actions, and Var iables

Multiple BEGIN and END rules are useful for writing library functions, because each
library file can have its own BEGIN and/or END rule to do its own initialization
and/or cleanup. The order in which library functions are named on the command-
line controls the order in which their BEGIN and END rules are executed. Therefor e,
you have to be careful when writing such rules in library files so that the order in
which they are executed doesn’t matter. See the section “Command-Line Options”
in Chapter 11, Running awk and gawk, for more infor mation on using library
functions. See Chapter 12, A Library of awk Functions, for a number of useful
library functions.

If an awk pr ogram has only a BEGIN rule and no other rules, then the program
exits after the BEGIN rule is run.* However, if an END rule exists, then the input is
read, even if there are no other rules in the program. This is necessary in case the
END rule checks the FNR and NR variables.

Input/Output from BEGIN and END rules

Ther e ar e several (sometimes subtle) points to remember when doing I/O from a
BEGIN or END rule. The first has to do with the value of $0 in a BEGIN rule. Because
BEGIN rules are executed before any input is read, there simply is no input record,
and therefor e no fields, when executing BEGIN rules. References to $0 and the
fields yield a null string or zero, depending upon the context. One way to give $0

a real value is to execute a getline command without a variable (see the section
“Explicit Input with getline” in Chapter 3, Reading Input Files). Another way is
simply to assign a value to $0.

The second point is similar to the first but from the other direction. Traditionally,
due largely to implementation issues, $0 and NF wer e undefined inside an END rule.
The POSIX standard specifies that NF is available in an END rule. It contains the
number of fields from the last input record. Most probably due to an oversight, the
standard does not say that $0 is also preserved, although logically one would think
that it should be. In fact, gawk does preserve the value of $0 for use in END rules.
Be aware, however, that Unix awk, and possibly other implementations, do not.

The third point follows from the first two. The meaning of print inside a BEGIN or
END rule is the same as always: print $0. If $0 is the null string, then this prints an
empty line. Many long time awk pr ogrammers use an unadorned print in BEGIN

and END rules, to mean print "", relying on $0 being null. Although one might
generally get away with this in BEGIN rules, it is a very bad idea in END rules, at
least in gawk. It is also poor style, since if an empty line is needed in the output,
the program should print one explicitly.

* The original version of awk used to keep reading and ignoring input until the end of the file was
seen.

9 October 2001 01:42

Finally, the next and nextfile statements are not allowed in a BEGIN rule, because
the implicit read-a-r ecord-and-match-against-the-rules loop has not started yet.
Similarly, those statements are not valid in an END rule, since all the input has been
read. (See the section “The next Statement” and section “Using gawk’s nextfile
Statement” later in this chapter.)

The Empty Patter n
An empty (i.e., nonexistent) pattern is consider ed to match every input record. For
example, the program:

awk ’{ print $1 }’ BBS-list

prints the first field of every record.

Using Shell Var iables in Prog rams
awk pr ograms ar e often used as components in larger programs written in shell.
For example, it is very common to use a shell variable to hold a pattern that the
awk pr ogram searches for. Ther e ar e two ways to get the value of the shell vari-
able into the body of the awk pr ogram.

The most common method is to use shell quoting to substitute the variable’s value
into the program inside the script. For example, in the following program:

echo -n "Enter search pattern: "
read pattern
awk "/$pattern/ "’{ nmatches++ }

END { print nmatches, "found" }’ /path/to/data

the awk pr ogram consists of two pieces of quoted text that are concatenated
together to form the program. The first part is double-quoted, which allows substi-
tution of the pattern variable inside the quotes. The second part is single-quoted.

Variable substitution via quoting works, but can be potentially messy. It requir es a
good understanding of the shell’s quoting rules (see the section “Shell-Quoting
Issues” in Chapter 1, Getting Started with awk), and it’s often difficult to correctly
match up the quotes when reading the program.

A better method is to use awk ’s variable assignment feature (see the section
“Assigning Variables on the Command Line” in Chapter 5) to assign the shell vari-
able’s value to an awk variable’s value. Then use dynamic regexps to match the
patter n (see the section “Using Dynamic Regexps” in Chapter 2). The following
shows how to redo the previous example using this technique:

echo -n "Enter search pattern: "
read pattern
awk -v pat="$pattern" ’$0 ˜ pat { nmatches++ }

END { print nmatches, "found" }’ /path/to/data

Using Shell Var iables in Prog rams 109

9 October 2001 01:42

110 Chapter 6: Patter ns, Actions, and Var iables

Now, the awk pr ogram is just one single-quoted string. The assignment -v

pat="$pattern" still requir es double quotes, in case there is whitespace in the
value of $pattern. The awk variable pat could be named pattern too, but that
would be more confusing. Using a variable also provides more flexibility, since the
variable can be used anywhere inside the program — for printing, as an array sub-
script, or for any other use—without requiring the quoting tricks at every point in
the program.

Actions
An awk pr ogram or script consists of a series of rules and function definitions
interspersed. (Functions are described later. See the section “User-Defined Func-
tions” in Chapter 8, Functions.) A rule contains a pattern and an action, either of
which (but not both) may be omitted. The purpose of the action is to tell awk
what to do once a match for the pattern is found. Thus, in outline, an awk pr o-
gram generally looks like this:

[pattern] [{ action }]
[pattern] [{ action }]
...
function name(args) { ... }
...

An action consists of one or more awk statements, enclosed in curly braces ({ }).
Each statement specifies one thing to do. The statements are separated by new-
lines or semicolons. The curly braces around an action must be used even if the
action contains only one statement, or if it contains no statements at all. However,
if you omit the action entirely, omit the curly braces as well. An omitted action is
equivalent to { print $0 }:

/foo/ { } # match foo, do nothing -- empty action
/foo/ # match foo, print the recor d -- omitted action

The following types of statements are supported in awk :

Expr essions
Call functions or assign values to variables (see Chapter 5). Executing this
kind of statement simply computes the value of the expression. This is useful
when the expression has side effects (see the section “Assignment Expres-
sions” in Chapter 5).

Contr ol statements
Specify the control flow of awk pr ograms. The awk language gives you C-like
constructs (if, for, while, and do) as well as a few special ones (see the sec-
tion “Control Statements in Actions” later in this chapter).

9 October 2001 01:42

Compound statements
Consist of one or more statements enclosed in curly braces. A compound
statement is used in order to put several statements together in the body of an
if, while, do, or for statement.

Input statements
Use the getline command (see the section “Explicit Input with getline” in
Chapter 3). Also supplied in awk ar e the next statement (see the section “The
next Statement” later in this chapter) and the nextfile statement (see the sec-
tion “Using gawk’s nextfile Statement” later in this chapter).

Output statements
Such as print and printf. See Chapter 4, Printing Output.

Deletion statements
For deleting array elements. See the section “The delete Statement” in Chapter
7, Arrays in awk.

Control Statements in Actions
Contr ol statements, such as if, while, and so on, control the flow of execution in
awk pr ograms. Most of the control statements in awk ar e patter ned on similar
statements in C.

All the control statements start with special keywords, such as if and while, to dis-
tinguish them from simple expressions. Many control statements contain other
statements. For example, the if statement contains another statement that may or
may not be executed. The contained statement is called the body. To include more
than one statement in the body, group them into a single compound statement
with curly braces, separating them with newlines or semicolons.

The if-else Statement
The if-else statement is awk ’s decision-making statement. It looks like this:

if (condition) then-body [else else-body]

The condition is an expression that controls what the rest of the statement does. If
the condition is true, then-body is executed; otherwise, else-body is executed. The
else part of the statement is optional. The condition is considered false if its value
is zero or the null string; otherwise, the condition is true. Refer to the following:

if (x % 2 == 0)
print "x is even"

else
print "x is odd"

Control Statements in Actions 111

9 October 2001 01:42

112 Chapter 6: Patter ns, Actions, and Var iables

In this example, if the expression x % 2 == 0 is true (that is, if the value of x is
evenly divisible by two), then the first print statement is executed; otherwise, the
second print statement is executed. If the else keyword appears on the same line
as then-body and then-body is not a compound statement (i.e., not surrounded by
curly braces), then a semicolon must separate then-body fr om the else. To illus-
trate this, the previous example can be rewritten as:

if (x % 2 == 0) print "x is even"; else
print "x is odd"

If the ; is left out, awk can’t interpret the statement and it produces a syntax error.
Don’t actually write programs this way, because a human reader might fail to see
the else if it is not the first thing on its line.

The while Statement
In programming, a loop is a part of a program that can be executed two or more
times in succession. The while statement is the simplest looping statement in awk.
It repeatedly executes a statement as long as a condition is true. For example:

while (condition)
body

body is a statement called the body of the loop, and condition is an expression
that controls how long the loop keeps running. The first thing the while statement
does is test the condition. If the condition is true, it executes the statement body.
After body has been executed, condition is tested again, and if it is still true, body
is executed again. This process repeats until the condition is no longer true. If the
condition is initially false, the body of the loop is never executed and awk contin-
ues with the statement following the loop. This example prints the first three fields
of each record, one per line:

awk ’{ i = 1
while (i <= 3) {

print $i
i++

}
}’ inventory-shipped

The body of this loop is a compound statement enclosed in braces, containing two
statements. The loop works in the following manner: first, the value of i is set to
one. Then, the while statement tests whether i is less than or equal to three. This
is true when i equals one, so the i-th field is printed. Then the i++ incr ements the
value of i and the loop repeats. The loop terminates when i reaches four.

9 October 2001 01:42

A newline is not requir ed between the condition and the body; however using
one makes the program clearer unless the body is a compound statement or else
is very simple. The newline after the open-brace that begins the compound state-
ment is not requir ed either, but the program is harder to read without it.

The do-while Statement
The do loop is a variation of the while looping statement. The do loop executes
the body once and then repeats the body as long as the condition is true. It looks
like this:

do
body

while (condition)

Even if the condition is false at the start, the body is executed at least once (and
only once, unless executing body makes condition true). Contrast this with the
corr esponding while statement:

while (condition)
body

This statement does not execute body even once if the condition is false to begin
with. The following is an example of a do statement:

{ i = 1
do {

print $0
i++

} while (i <= 10)
}

This program prints each input record 10 times. However, it isn’t a very realistic
example, since in this case an ordinary while would do just as well. This situation
reflects actual experience; only occasionally is there a real use for a do statement.

The for Statement
The for statement makes it more convenient to count iterations of a loop. The
general form of the for statement looks like this:

for (initialization; condition; increment)
body

The initialization, condition, and incr ement parts are arbitrary awk expr essions,
and body stands for any awk statement.

Control Statements in Actions 113

9 October 2001 01:42

114 Chapter 6: Patter ns, Actions, and Var iables

The for statement starts by executing initialization. Then, as long as the condition
is true, it repeatedly executes body and then incr ement. Typically, initialization
sets a variable to either zero or one, incr ement adds one to it, and condition com-
par es it against the desired number of iterations. For example:

awk ’{ for (i = 1; i <= 3; i++)
print $i

}’ inventory-shipped

This prints the first three fields of each input record, with one field per line.

It isn’t possible to set more than one variable in the initialization part without
using a multiple assignment statement such as x = y = 0. This makes sense only if
all the initial values are equal. (But it is possible to initialize additional variables by
writing their assignments as separate statements preceding the for loop.)

The same is true of the incr ement part. Incrementing additional variables requir es
separate statements at the end of the loop. The C compound expression, using C’s
comma operator, is useful in this context but it is not supported in awk.

Most often, incr ement is an increment expression, as in the previous example. But
this is not requir ed; it can be any expression whatsoever. For example, the follow-
ing statement prints all the powers of two between 1 and 100:

for (i = 1; i <= 100; i *= 2)
print i

If there is nothing to be done, any of the three expressions in the parentheses fol-
lowing the for keyword may be omitted. Thus, for (; x > 0;) is equivalent to
while (x > 0). If the condition is omitted, it is treated as true, effectively yielding
an infinite loop (i.e., a loop that never terminates).

In most cases, a for loop is an abbreviation for a while loop, as shown here:

initialization
while (condition) {

body
increment

}

The only exception is when the continue statement (see the section “The continue
Statement” later in this chapter) is used inside the loop. Changing a for statement
to a while statement in this way can change the effect of the continue statement
inside the loop.

The awk language has a for statement in addition to a while statement because a
for loop is often both less work to type and more natural to think of. Counting
the number of iterations is very common in loops. It can be easier to think of this
counting as part of looping rather than as something to do inside the loop.

9 October 2001 01:42

The break Statement
The break statement jumps out of the innermost for, while, or do loop that
encloses it. The following example finds the smallest divisor of any integer, and
also identifies prime numbers:

find smallest divisor of num
{

num = $1
for (div = 2; div*div <= num; div++)

if (num % div == 0)
break

if (num % div == 0)
printf "Smallest divisor of %d is %d\n", num, div

else
printf "%d is prime\n", num

}

When the remainder is zero in the first if statement, awk immediately br eaks out
of the containing for loop. This means that awk pr oceeds immediately to the
statement following the loop and continues processing. (This is very differ ent fr om
the exit statement, which stops the entire awk pr ogram. See the section “The exit
Statement” later in this chapter.)

Th following program illustrates how the condition of a for or while statement
could be replaced with a break inside an if:

find smallest divisor of num
{

num = $1
for (div = 2; ; div++) {

if (num % div == 0) {
printf "Smallest divisor of %d is %d\n", num, div
break

}
if (div*div > num) {

printf "%d is prime\n", num
break

}
}

}

The break statement has no meaning when used outside the body of a loop. How-
ever, although it was never documented, historical implementations of awk tr eated
the break statement outside of a loop as if it were a next statement (see the sec-
tion “The next Statement” later in this chapter). Recent versions of Unix awk no
longer allow this usage. gawk supports this use of break only if ––traditional has
been specified on the command line (see the section “Command-Line Options” in
Chapter 11). Otherwise, it is treated as an error, since the POSIX standard specifies
that break should only be used inside the body of a loop. (d.c.)

Control Statements in Actions 115

9 October 2001 01:42

116 Chapter 6: Patter ns, Actions, and Var iables

The continue Statement
As with break, the continue statement is used only inside for, while, and do loops.
It skips over the rest of the loop body, causing the next cycle around the loop to
begin immediately. Contrast this with break, which jumps out of the loop alto-
gether.

The continue statement in a for loop directs awk to skip the rest of the body of
the loop and resume execution with the increment-expr ession of the for state-
ment. The following program illustrates this fact:

BEGIN {
for (x = 0; x <= 20; x++) {

if (x == 5)
continue

printf "%d ", x
}
print ""

}

This program prints all the numbers from 0 to 20—except for 5, for which the
printf is skipped. Because the increment x++ is not skipped, x does not remain
stuck at 5. Contrast the for loop from the previous example with the following
while loop:

BEGIN {
x = 0
while (x <= 20) {

if (x == 5)
continue

printf "%d ", x
x++

}
print ""

}

This program loops forever once x reaches 5.

The continue statement has no meaning when used outside the body of a loop.
Historical versions of awk tr eated a continue statement outside a loop the same
way they treated a break statement outside a loop: as if it were a next statement.
Recent versions of Unix awk no longer work this way, and gawk allows it only if
––traditional is specified on the command line (see the section “Command-Line
Options” in Chapter 11). Just like the break statement, the POSIX standard speci-
fies that continue should only be used inside the body of a loop. (d.c.)

9 October 2001 01:42

The next Statement
The next statement forces awk to immediately stop processing the current record
and go on to the next record. This means that no further rules are executed for the
curr ent record, and the rest of the current rule’s action isn’t executed.

Contrast this with the effect of the getline function (see the section “Explicit Input
with getline” in Chapter 3). That also causes awk to read the next record immedi-
ately, but it does not alter the flow of control in any way (i.e., the rest of the cur-
rent action executes with a new input record).

At the highest level, awk pr ogram execution is a loop that reads an input record
and then tests each rule’s pattern against it. If you think of this loop as a for state-
ment whose body contains the rules, then the next statement is analogous to a
continue statement. It skips to the end of the body of this implicit loop and exe-
cutes the increment (which reads another record).

For example, suppose an awk pr ogram works only on records with four fields,
and it shouldn’t fail when given bad input. To avoid complicating the rest of the
pr ogram, write a “weed out” rule near the beginning, in the following manner:

NF != 4 {
err = sprintf("%s:%d: skipped: NF != 4\n", FILENAME, FNR)
print err > "/dev/stderr"
next

}

Because of the next statement, the program’s subsequent rules won’t see the bad
record. The error message is redir ected to the standard error output stream, as
err or messages should be. For more detail see the section “Special Filenames in
gawk” in Chapter 4.

According to the POSIX standard, the behavior is undefined if the next statement
is used in a BEGIN or END rule. gawk tr eats it as a syntax error. Although POSIX per-
mits it, some other awk implementations don’t allow the next statement inside
function bodies (see the section “User-Defined Functions” in Chapter 8). Just as
with any other next statement, a next statement inside a function body reads the
next record and starts processing it with the first rule in the program. If the next

statement causes the end of the input to be reached, then the code in any END

rules is executed. See the section “The BEGIN and END Special Patterns” earlier in
this chapter.

Using gawk’s nextfile Statement
gawk pr ovides the nextfile statement, which is similar to the next statement.
However, instead of abandoning processing of the current record, the nextfile

statement instructs gawk to stop processing the current datafile.

Control Statements in Actions 117

9 October 2001 01:42

118 Chapter 6: Patter ns, Actions, and Var iables

The nextfile statement is a gawk extension. In most other awk implementations,
or if gawk is in compatibility mode (see the section “Command-Line Options” in
Chapter 11), nextfile is not special.

Upon execution of the nextfile statement, FILENAME is updated to the name of the
next datafile listed on the command line, FNR is reset to one, ARGIND is incre-
mented, and processing starts over with the first rule in the program. (ARGIND
hasn’t been introduced yet. See the section “Built-in Variables” later in this chap-
ter.) If the nextfile statement causes the end of the input to be reached, then the
code in any END rules is executed. See the section “The BEGIN and END Special
Patter ns” earlier in this chapter.

The nextfile statement is useful when there are many datafiles to process but it
isn’t necessary to process every record in every file. Normally, in order to move on
to the next datafile, a program has to continue scanning the unwanted records.
The nextfile statement accomplishes this much more efficiently.

While one might think that close(FILENAME) would accomplish the same as
nextfile, this isn’t true. close is reserved for closing files, pipes, and coprocesses
that are opened with redir ections. It is not related to the main processing that awk
does with the files listed in ARGV.

If it’s necessary to use an awk version that doesn’t support nextfile, see the sec-
tion “Implementing nextfile as a Function” in Chapter 12 for a user-defined func-
tion that simulates the nextfile statement.

The current version of the Bell Laboratories awk (see the section “Other Freely
Available awk Implementations” in Appendix B, Installing gawk) also supports
nextfile. However, it doesn’t allow the nextfile statement inside function bodies
(see the section “User-Defined Functions” in Chapter 8). gawk does; a nextfile

inside a function body reads the next record and starts processing it with the first
rule in the program, just as any other nextfile statement.

Versions of gawk prior to 3.0 used two words (next file) for the
nextfile statement. In Version 3.0, this was changed to one word,
because the treatment of file was inconsistent. When it appeared
after next, file was a keyword; otherwise, it was a regular identi-
fier. The old usage is no longer accepted; next file generates a
syntax error.

9 October 2001 01:42

The exit Statement
The exit statement causes awk to immediately stop executing the current rule and
to stop processing input; any remaining input is ignored. The exit statement is
written as follows:

exit [return code]

When an exit statement is executed from a BEGIN rule, the program stops process-
ing everything immediately. No input records are read. However, if an END rule is
pr esent, as part of executing the exit statement, the END rule is executed (see the
section “The BEGIN and END Special Patterns” earlier in this chapter). If exit is
used as part of an END rule, it causes the program to stop immediately.

An exit statement that is not part of a BEGIN or END rule stops the execution of any
further automatic rules for the current record, skips reading any remaining input
records, and executes the END rule if there is one.

In such a case, if you don’t want the END rule to do its job, set a variable to
nonzer o befor e the exit statement and check that variable in the END rule. See the
section “Assertions” in Chapter 12 for an example that does this.

If an argument is supplied to exit, its value is used as the exit status code for the
awk pr ocess. If no argument is supplied, exit retur ns status zero (success). In the
case where an argument is supplied to a first exit statement, and then exit is
called a second time from an END rule with no argument, awk uses the previously
supplied exit value. (d.c.)

For example, suppose an error condition occurs that is difficult or impossible to
handle. Conventionally, programs report this by exiting with a nonzero status. An
awk pr ogram can do this using an exit statement with a nonzero argument, as
shown in the following example:

BEGIN {
if (("date" | getline date_now) <= 0) {

print "Can’t get system date" > "/dev/stderr"
exit 1

}
print "current date is", date_now
close("date")

}

Control Statements in Actions 119

9 October 2001 01:42

120 Chapter 6: Patter ns, Actions, and Var iables

Built-in Var iables
Most awk variables are available to use for your own purposes; they never change
unless your program assigns values to them, and they never affect anything unless
your program examines them. However, a few variables in awk have special built-
in meanings. awk examines some of these automatically, so that they enable you
to tell awk how to do certain things. Others are set automatically by awk, so that
they carry information from the internal workings of awk to your program.

This section documents all the built-in variables of gawk, most of which are also
documented in the chapters describing their areas of activity.

Built-in Var iables That Control awk
The following is an alphabetical list of variables that you can change to control
how awk does certain things. The variables that are specific to gawk ar e marked
with a pound sign (#):

BINMODE #

On non-POSIX systems, this variable specifies use of binary mode for all I/O.
Numeric values of one, two, or three specify that input files, output files, or all
files, respectively, should use binary I/O. Alternatively, string values of "r" or
"w" specify that input files and output files, respectively, should use binary
I/O. A string value of "rw" or "wr" indicates that all files should use binary
I/O. Any other string value is equivalent to "rw", but gawk generates a warn-
ing message. BINMODE is described in more detail in the section “Using gawk
on PC Operating Systems” in Appendix B.

This variable is a gawk extension. In other awk implementations (except
mawk, see the section “Other Freely Available awk Implementations” in
Appendix B), or if gawk is in compatibility mode (see the section “Command-
Line Options” in Chapter 11), it is not special.

CONVFMT

This string controls conversion of numbers to strings (see the section “Conver-
sion of Strings and Numbers” in Chapter 5). It works by being passed, in
ef fect, as the first argument to the sprintf function (see the section “String-
Manipulation Functions” in Chapter 8). Its default value is "%.6g". CONVFMT
was introduced by the POSIX standard.

FIELDWIDTHS #

This is a space-separated list of columns that tells gawk how to split input with
fixed columnar boundaries. Assigning a value to FIELDWIDTHS overrides the use
of FS for field splitting. See the section “Reading Fixed-Width Data” in Chapter
3 for more infor mation.

9 October 2001 01:42

If gawk is in compatibility mode (see the section “Command-Line Options” in
Chapter 11), then FIELDWIDTHS has no special meaning, and field-splitting
operations occur based exclusively on the value of FS.

FS

This is the input field separator (see the section “Specifying How Fields Are
Separated” in Chapter 3). The value is a single-character string or a multi-
character regular expression that matches the separations between fields in an
input record. If the value is the null string (""), then each character in the
record becomes a separate field. (This behavior is a gawk extension. POSIX
awk does not specify the behavior when FS is the null string.)

The default value is " ", a string consisting of a single space. As a special
exception, this value means that any sequence of spaces, tabs, and/or new-
lines is a single separator.* It also causes spaces, tabs, and newlines at the
beginning and end of a record to be ignored.

You can set the value of FS on the command line using the –F option:

awk -F, ’program’ input-files

If gawk is using FIELDWIDTHS for field splitting, assigning a value to FS causes
gawk to retur n to the normal, FS-based field splitting. An easy way to do this
is to simply say FS = FS, perhaps with an explanatory comment.

IGNORECASE #

If IGNORECASE is nonzero or non-null, then all string comparisons and all regu-
lar expression matching are case independent. Thus, regexp matching with ˜

and !˜, as well as the gensub, gsub, index, match, split, and sub functions,
record termination with RS, and field splitting with FS, all ignore case when
doing their particular regexp operations. However, the value of IGNORECASE

does not af fect array subscripting. See the section “Case Sensitivity in Match-
ing” in Chapter 2.

If gawk is in compatibility mode (see the section “Command-Line Options” in
Chapter 11), then IGNORECASE has no special meaning. Thus, string and regexp
operations are always case-sensitive.

LINT #

When this variable is true (nonzero or non-null), gawk behaves as if the ––lint
command-line option is in effect. (see the section “Command-Line Options” in
Chapter 11). With a value of "fatal", lint warnings become fatal errors. Any
other true value prints nonfatal warnings. Assigning a false value to LINT tur ns
of f the lint warnings.

* In POSIX awk, newline does not count as whitespace.

Built-in Var iables 121

9 October 2001 01:42

122 Chapter 6: Patter ns, Actions, and Var iables

This variable is a gawk extension. It is not special in other awk implementa-
tions. Unlike the other special variables, changing LINT does affect the produc-
tion of lint warnings, even if gawk is in compatibility mode. Much as the
––lint and ––traditional options independently control differ ent aspects of
gawk ’s behavior, the control of lint warnings during program execution is
independent of the flavor of awk being executed.

OFMT

This string controls conversion of numbers to strings (see the section “Conver-
sion of Strings and Numbers” in Chapter 5) for printing with the print state-
ment. It works by being passed as the first argument to the sprintf function
(see the section “String-Manipulation Functions” in Chapter 8). Its default
value is "%.6g". Earlier versions of awk also used OFMT to specify the format
for converting numbers to strings in general expressions; this is now done by
CONVFMT.

OFS

This is the output field separator (see the section “Output Separators” in Chap-
ter 4). It is output between the fields printed by a print statement. Its default
value is " ", a string consisting of a single space.

ORS

This is the output record separator. It is output at the end of every print state-
ment. Its default value is "\n", the newline character. (See the section “Output
Separators” in Chapter 4.)

RS

This is awk ’s input record separator. Its default value is a string containing a
single newline character, which means that an input record consists of a single
line of text. It can also be the null string, in which case records are separated
by runs of blank lines. If it is a regexp, records are separated by matches of
the regexp in the input text. (See the section “How Input Is Split into Records”
in Chapter 3.)

The ability for RS to be a regular expression is a gawk extension. In most other
awk implementations, or if gawk is in compatibility mode (see the section
“Command-Line Options” in Chapter 11), just the first character of RS’s value is
used.

SUBSEP

This is the subscript separator. It has the default value of "\034" and is used to
separate the parts of the indices of a multidimensional array. Thus, the expres-
sion foo["A", "B"] really accesses foo["A\034B"] (see the section “Multidi-
mensional Arrays” in Chapter 7).

9 October 2001 01:42

TEXTDOMAIN #

This variable is used for internationalization of programs at the awk level. It
sets the default text domain for specially marked string constants in the source
text, as well as for the dcgettext and bindtextdomain functions (see Chapter 9,
Inter nationalization with gawk). The default value of TEXTDOMAIN is "mes-

sages".

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see the section “Command-Line Options” in Chapter
11), it is not special.

Built-in Var iables That Conve y Infor mation
The following is an alphabetical list of variables that awk sets automatically on cer-
tain occasions in order to provide information to your program. The variables that
ar e specific to gawk ar e marked with a pound sign (#):

ARGC, ARGV
The command-line arguments available to awk pr ograms ar e stor ed in an array
called ARGV. ARGC is the number of command-line arguments present. See the
section “Other Command-Line Arguments” in Chapter 11. Unlike most awk
arrays, ARGV is indexed from 0 to ARGC − 1. In the following example:

$ awk ’BEGIN {
> for (i = 0; i < ARGC; i++)
> print ARGV[i]
> }’ inventory-shipped BBS-list
awk
inventory-shipped
BBS-list

ARGV[0] contains "awk", ARGV[1] contains "inventory-shipped", and ARGV[2]

contains "BBS-list". The value of ARGC is three, one more than the index of
the last element in ARGV, because the elements are number ed fr om zer o.

The names ARGC and ARGV, as well as the convention of indexing the array
fr om 0 to ARGC − 1, are derived from the C language’s method of accessing
command-line arguments.

The value of ARGV[0] can vary from system to system. Also, you should note
that the program text is not included in ARGV, nor are any of awk ’s command-
line options. See the section “Using ARGC and ARGV” later in this chapter for
infor mation about how awk uses these variables.

ARGIND #

The index in ARGV of the current file being processed. Every time gawk opens
a new datafile for processing, it sets ARGIND to the index in ARGV of the file-
name. When gawk is processing the input files, FILENAME == ARGV[ARGIND] is
always true.

Built-in Var iables 123

9 October 2001 01:42

124 Chapter 6: Patter ns, Actions, and Var iables

This variable is useful in file processing; it allows you to tell how far along
you are in the list of datafiles as well as to distinguish between successive
instances of the same filename on the command line.

While you can change the value of ARGIND within your awk pr ogram, gawk
automatically sets it to a new value when the next file is opened.

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see the section “Command-Line Options” in Chapter
11), it is not special.

ENVIRON

An associative array that contains the values of the environment. The array
indices are the environment variable names; the elements are the values of the
particular environment variables. For example, ENVIRON["HOME"] might be
/home/ar nold. Changing this array does not affect the environment passed on
to any programs that awk may spawn via redir ection or the system function.

Some operating systems may not have environment variables. On such sys-
tems, the ENVIRON array is empty (except for ENVIRON["AWKPATH"]; see the sec-
tion “The AWKPATH Envir onment Variable” in Chapter 11).

ERRNO #

If a system error occurs during a redir ection for getline, during a read for
getline, or during a close operation, then ERRNO contains a string describing
the error.

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see the section “Command-Line Options” in Chapter
11), it is not special.

FILENAME

The name of the file that awk is currently reading. When no datafiles are listed
on the command line, awk reads from the standard input and FILENAME is set
to "-". FILENAME is changed each time a new file is read (see Chapter 3).
Inside a BEGIN rule, the value of FILENAME is "", since there are no input files
being processed yet.* (d.c.) Note, though, that using getline (see the section
“Explicit Input with getline” in Chapter 3) inside a BEGIN rule can give FILE-

NAME a value.

FNR

The current record number in the current file. FNR is incremented each time a
new record is read (see the section “Explicit Input with getline” in Chapter 3).
It is reinitialized to zero each time a new input file is started.

* Some early implementations of Unix awk initialized FILENAME to "-", even if there wer e datafiles to
be processed. This behavior was incorrect and should not be relied upon in your programs.

9 October 2001 01:42

NF

The number of fields in the current input record. NF is set each time a new
record is read, when a new field is created or when $0 changes (see the sec-
tion “Examining Fields” in Chapter 3).

NR

The number of input records awk has processed since the beginning of the
pr ogram’s execution (see the section “How Input Is Split into Records” in
Chapter 3). NR is incremented each time a new record is read.

PROCINFO #

The elements of this array provide access to information about the running
awk pr ogram. The following elements (listed alphabetically) are guaranteed to
be available:

PROCINFO["egid"]

The value of the getegid system call.

PROCINFO["euid"]

The value of the geteuid system call.

PROCINFO["FS"]

This is "FS" if field splitting with FS is in effect, or it is "FIELDWIDTHS" if
field splitting with FIELDWIDTHS is in effect.

PROCINFO["gid"]

The value of the getgid system call.

PROCINFO["pgrpid"]

The process group ID of the current process.

PROCINFO["pid"]

The process ID of the current process.

PROCINFO["ppid"]

The parent process ID of the current process.

PROCINFO["uid"]

The value of the getuid system call.

On some systems, there may be elements in the array, "group1" thr ough
"groupN" for some N. N is the number of supplementary groups that the pro-
cess has. Use the in operator to test for these elements (see the section “Refer-
ring to an Array Element” in Chapter 7).

This array is a gawk extension. In other awk implementations, or if gawk is in
compatibility mode (see the section “Command-Line Options” in Chapter 11),
it is not special.

Built-in Var iables 125

9 October 2001 01:42

126 Chapter 6: Patter ns, Actions, and Var iables

RLENGTH

The length of the substring matched by the match function (see the section
“String-Manipulation Functions” in Chapter 8). RLENGTH is set by invoking the
match function. Its value is the length of the matched string, or −1 if no match
is found.

RSTART

The start index in characters of the substring that is matched by the match

function (see the section “String-Manipulation Functions” in Chapter 8).
RSTART is set by invoking the match function. Its value is the position of the
string where the matched substring starts, or zero if no match was found.

RT #

This is set each time a record is read. It contains the input text that matched
the text denoted by RS, the record separator.

This variable is a gawk extension. In other awk implementations, or if gawk is
in compatibility mode (see the section “Command-Line Options” in Chapter
11), it is not special.

Chang ing NR and FNR
awk incr ements NR and FNR each time it reads a record, instead of setting
them to the absolute value of the number of records read. This means that a
pr ogram can change these variables and their new values are incr emented
for each record. (d.c.) This is demonstrated in the following example:

$ echo ’1
> 2
> 3
> 4’ | awk ’NR == 2 { NR = 17 }
> { print NR }’
1
17
18
19

Befor e FNR was added to the awk language (see the section “Major Changes
Between V7 and SVR3.1” in Appendix A, The Evolution of the awk Lan-
guage), many awk pr ograms used this feature to track the number of records
in a file by resetting NR to zero when FILENAME changed.

9 October 2001 01:42

Using ARGC and ARGV
The previous section “Built-in Variables That Convey Information” presented the
following program describing the information contained in ARGC and ARGV:

$ awk ’BEGIN {
> for (i = 0; i < ARGC; i++)
> print ARGV[i]
> }’ inventory-shipped BBS-list
awk
inventory-shipped
BBS-list

In this example, ARGV[0] contains awk, ARGV[1] contains inventory-shipped, and
ARGV[2] contains BBS-list. Notice that the awk pr ogram is not entered in ARGV.
The other special command-line options, with their arguments, are also not
enter ed. This includes variable assignments done with the –v option (see the sec-
tion “Command-Line Options” in Chapter 11). Normal variable assignments on the
command line ar e tr eated as arguments and do show up in the ARGV array:

$ cat showargs.awk
BEGIN {

printf "A=%d, B=%d\n", A, B
for (i = 0; i < ARGC; i++)

printf "\tARGV[%d] = %s\n", i, ARGV[i]
}
END { printf "A=%d, B=%d\n", A, B }
$ awk -v A=1 -f showargs.awk B=2 /dev/null
A=1, B=0

ARGV[0] = awk
ARGV[1] = B=2
ARGV[2] = /dev/null

A=1, B=2

A program can alter ARGC and the elements of ARGV. Each time awk reaches the
end of an input file, it uses the next element of ARGV as the name of the next input
file. By storing a differ ent string there, a program can change which files are read.
Use - to repr esent the standard input. Storing additional elements and increment-
ing ARGC causes additional files to be read.

If the value of ARGC is decreased, that eliminates input files from the end of the list.
By recording the old value of ARGC elsewher e, a program can treat the eliminated
arguments as something other than filenames.

To eliminate a file from the middle of the list, store the null string ("") into ARGV in
place of the file’s name. As a special feature, awk ignor es filenames that have been
replaced with the null string. Another option is to use the delete statement to
remove elements from ARGV (see the section “The delete Statement” in Chapter 7).

Built-in Var iables 127

9 October 2001 01:42

128 Chapter 6: Patter ns, Actions, and Var iables

All of these actions are typically done in the BEGIN rule, before actual processing
of the input begins. See the section “Splitting a Large File into Pieces” and the sec-
tion “Duplicating Output into Multiple Files” in Chapter 13, Practical awk Pro-
grams, for examples of each way of removing elements from ARGV. The following
fragment processes ARGV in order to examine, and then remove, command-line
options:

BEGIN {
for (i = 1; i < ARGC; i++) {

if (ARGV[i] == "-v")
verbose = 1

else if (ARGV[i] == "-d")
debug = 1

else if (ARGV[i] ˜ /ˆ-?/) {
e = sprintf("%s: unrecognized option -- %c",

ARGV[0], substr(ARGV[i], 1, ,1))
print e > "/dev/stderr"

} else
break

delete ARGV[i]
}

}

To actually get the options into the awk pr ogram, end the awk options with ––
and then supply the awk pr ogram’s options, in the following manner:

awk -f myprog -- -v -d file1 file2 ...

This is not necessary in gawk. Unless ––posix has been specified, gawk silently
puts any unrecognized options into ARGV for the awk pr ogram to deal with. As
soon as it sees an unknown option, gawk stops looking for other options that it
might otherwise recognize. The previous example with gawk would be:

gawk -f myprog -d -v file1 file2 ...

Because –d is not a valid gawk option, it and the following –v ar e passed on to
the awk pr ogram.

9 October 2001 01:42

7
Ar rays in awk

In this chapter:
• Introduction to

Ar rays
• Refer r ing to an Arra y

Element
• Assigning Arra y

Elements
• Basic Arra y Example
• Scanning All

Elements of an Arra y
• The delete Statement
• Using Numbers to

Subscr ipt Ar rays
• Using Uninitialized

Variables as
Subscr ipts

• Multidimensional
Ar rays

• Scanning
Multidimensional
Ar rays

• Sor ting Ar ray Values
and Indices with
ga wk

An array is a table of values called elements. The elements of an array are distin-
guished by their indices. Indices may be either numbers or strings.

This chapter describes how arrays work in awk, how to use array elements, how
to scan through every element in an array, and how to remove array elements. It
also describes how awk simulates multidimensional arrays, as well as some of the
less obvious points about array usage. The chapter finishes with a discussion of
gawk ’s facility for sorting an array based on its indices.

awk maintains a single set of names that may be used for naming variables, arrays,
and functions (see the section “User-Defined Functions” in Chapter 8, Functions).
Thus, you cannot have a variable and an array with the same name in the same
awk pr ogram.

129

9 October 2001 01:42

130 Chapter 7: Arra ys in awk

Introduction to Arra ys
The awk language provides one-dimensional arrays for storing groups of related
strings or numbers. Every awk array must have a name. Array names have the
same syntax as variable names; any valid variable name would also be a valid
array name. But one name cannot be used in both ways (as an array and as a vari-
able) in the same awk pr ogram.

Arrays in awk super ficially resemble arrays in other programming languages, but
ther e ar e fundamental differ ences. In awk, it isn’t necessary to specify the size of
an array before starting to use it. Additionally, any number or string in awk, not
just consecutive integers, may be used as an array index.

In most other languages, arrays must be declar ed befor e use, including a specifica-
tion of how many elements or components they contain. In such languages, the
declaration causes a contiguous block of memory to be allocated for that many
elements. Usually, an index in the array must be a positive integer. For example,
the index zero specifies the first element in the array, which is actually stored at
the beginning of the block of memory. Index one specifies the second element,
which is stored in memory right after the first element, and so on. It is impossible
to add more elements to the array, because it has room only for as many elements
as given in the declaration. (Some languages allow arbitrary starting and ending
indices — e.g., 15 .. 27—but the size of the array is still fixed when the array is
declar ed.)

A contiguous array of four elements might look like Figure 7-1 conceptually, if the
element values are 8, "foo", "", and 30.

8 "foo" " " 30

0 1 2 3

Value

Index

Figur e 7-1. Array indexing

Only the values are stor ed; the indices are implicit from the order of the values.
Her e, 8 is the value at index zero, because 8 appears in the position with zero ele-
ments before it.

Arrays in awk ar e dif ferent — they ar e associative. This means that each array is a
collection of pairs: an index and its corresponding array element value:

9 October 2001 01:42

Index Value

3 30
2 "foo"

0 8
2 ""

The pairs are shown in jumbled order because their order is irrelevant.

One advantage of associative arrays is that new pairs can be added at any time.
For example, suppose a tenth element is added to the array whose value is "num-
ber ten". The result is:

Index Value

10 "number ten"

3 30
1 "foo"

0 8
2 ""

Now the array is sparse, which just means some indices are missing. It has ele-
ments 0–3 and 10, but doesn’t have elements 4, 5, 6, 7, 8, or 9.

Another consequence of associative arrays is that the indices don’t have to be pos-
itive integers. Any number, or even a string, can be an index. For example, the fol-
lowing is an array that translates words from English to French:

Index Value

"dog" "chien"

"cat" "chat"

"one" "un"

1 "un"

Her e we decided to translate the number one in both spelled-out and numeric
for m—thus illustrating that a single array can have both numbers and strings as
indices. In fact, array subscripts are always strings; this is discussed in more detail
in the section “Using Numbers to Subscript Arrays” later in this chapter. Her e, the
number 1 isn’t double-quoted, since awk automatically converts it to a string.

The value of IGNORECASE has no effect upon array subscripting. The identical string
value used to store an array element must be used to retrieve it. When awk cr eates
an array (e.g., with the split built-in function), that array’s indices are consecutive
integers starting at one. (See the section “String-Manipulation Functions” in Chap-
ter 8.)

Introduction to Arra ys 131

9 October 2001 01:42

132 Chapter 7: Arra ys in awk

awk ’s arrays are efficient — the time to access an element is independent of the
number of elements in the array.

Refer r ing to an Arra y Element
The principal way to use an array is to refer to one of its elements. An array refer-
ence is an expression as follows:

array[index]

Her e, array is the name of an array. The expression index is the index of the
desir ed element of the array.

The value of the array refer ence is the current value of that array element. For
example, foo[4.3] is an expression for the element of array foo at index 4.3.

A refer ence to an array element that has no recorded value yields a value of "",
the null string. This includes elements that have not been assigned any value as
well as elements that have been deleted (see the section “The delete Statement”
later in this chapter). Such a refer ence automatically creates that array element,
with the null string as its value. (In some cases, this is unfortunate, because it
might waste memory inside awk.)

To deter mine whether an element exists in an array at a certain index, use the fol-
lowing expression:

index in array

This expression tests whether the particular index exists, without the side effect of
cr eating that element if it is not present. The expression has the value one (true) if
array [index] exists and zero (false) if it does not exist. For example, this statement
tests whether the array frequencies contains the index 2:

if (2 in frequencies)
print "Subscript 2 is present."

Note that this is not a test of whether the array frequencies contains an element
whose value is two. There is no way to do that except to scan all the elements.
Also, this does not cr eate frequencies[2], while the following (incorrect) alterna-
tive does:

if (frequencies[2] != "")
print "Subscript 2 is present."

9 October 2001 01:42

Assigning Arra y Elements
Array elements can be assigned values just like awk variables:

array[subscript] = value

array is the name of an array. The expression subscript is the index of the element
of the array that is assigned a value. The expression value is the value to assign to
that element of the array.

Basic Arra y Example
The following program takes a list of lines, each beginning with a line number,
and prints them out in order of line number. The line numbers are not in order
when they are first read — instead they are scrambled. This program sorts the lines
by making an array using the line numbers as subscripts. The program then prints
out the lines in sorted order of their numbers. It is a very simple program and gets
confused upon encountering repeated numbers, gaps, or lines that don’t begin
with a number:

{
if ($1 > max)

max = $1
arr[$1] = $0

}

END {
for (x = 1; x <= max; x++)

print arr[x]
}

The first rule keeps track of the largest line number seen so far; it also stores each
line into the array arr, at an index that is the line’s number. The second rule runs
after all the input has been read, to print out all the lines. When this program is
run with the following input:

5 I am the Five man
2 Who are you? The new number two!
4 . . . And four on the floor
1 Who is number one?
3 I three you.

Its output is:

1 Who is number one?
2 Who are you? The new number two!
3 I three you.
4 . . . And four on the floor
5 I am the Five man

Basic Arra y Example 133

9 October 2001 01:42

134 Chapter 7: Arra ys in awk

If a line number is repeated, the last line with a given number overrides the oth-
ers. Gaps in the line numbers can be handled with an easy improvement to the
pr ogram’s END rule, as follows:

END {
for (x = 1; x <= max; x++)

if (x in arr)
print arr[x]

}

Scanning All Elements of an Arra y
In programs that use arrays, it is often necessary to use a loop that executes once
for each element of an array. In other languages, where arrays are contiguous and
indices are limited to positive integers, this is easy: all the valid indices can be
found by counting from the lowest index up to the highest. This technique won’t
do the job in awk, because any number or string can be an array index. So awk
has a special kind of for statement for scanning an array:

for (var in array)
body

This loop executes body once for each index in array that the program has previ-
ously used, with the variable var set to that index.

The following program uses this form of the for statement. The first rule scans the
input records and notes which words appear (at least once) in the input, by stor-
ing a one into the array used with the word as index. The second rule scans the
elements of used to find all the distinct words that appear in the input. It prints
each word that is more than 10 characters long and also prints the number of such
words. See the section “String-Manipulation Functions” in Chapter 8 for more
infor mation on the built-in function length:

Record a 1 for each word that is used at least once
{

for (i = 1; i <= NF; i++)
used[$i] = 1

}

Find number of distinct words more than 10 characters long
END {

for (x in used)
if (length(x) > 10) {

++num_long_words
print x

}
print num_long_words, "words longer than 10 characters"

}

9 October 2001 01:42

See the section “Generating Word-Usage Counts” in Chapter 13, Practical awk Pro-
grams, for a more detailed example of this type.

The order in which elements of the array are accessed by this statement is deter-
mined by the internal arrangement of the array elements within awk and cannot
be controlled or changed. This can lead to problems if new elements are added to
array by statements in the loop body; it is not predictable whether the for loop
will reach them. Similarly, changing var inside the loop may produce strange
results. It is best to avoid such things.

The delete Statement
To remove an individual element of an array, use the delete statement:

delete array[index]

Once an array element has been deleted, any value the element once had is no
longer available. It is as if the element had never been referr ed to or had been
given a value. The following is an example of deleting elements in an array:

for (i in frequencies)
delete frequencies[i]

This example removes all the elements from the array frequencies. Once an ele-
ment is deleted, a subsequent for statement to scan the array does not report that
element and the in operator to check for the presence of that element retur ns zer o
(i.e., false):

delete foo[4]
if (4 in foo)

print "This will never be printed"

It is important to note that deleting an element is not the same as assigning it a
null value (the empty string, ""). For example:

foo[4] = ""
if (4 in foo)

print "This is printed, even though foo[4] is empty"

It is not an error to delete an element that does not exist. If ––lint is provided on
the command line (see the section “Command-Line Options” in Chapter 11, Run-
ning awk and gawk), gawk issues a warning message when an element that is not
in the array is deleted.

The delete Statement 135

9 October 2001 01:42

136 Chapter 7: Arra ys in awk

All the elements of an array may be deleted with a single statement by leaving off
the subscript in the delete statement, as follows:

delete array

This ability is a gawk extension; it is not available in compatibility mode (see the
section “Command-Line Options” in Chapter 11).

Using this version of the delete statement is about three times more efficient than
the equivalent loop that deletes each element one at a time.

The following statement provides a portable but nonobvious way to clear out an
array:*

split("", array)

The split function (see the section “String-Manipulation Functions” in Chapter 8)
clears out the target array first. This call asks it to split apart the null string.
Because there is no data to split out, the function simply clears the array and then
retur ns.

Deleting an array does not change its type; you cannot delete an
array and then use the array’s name as a scalar (i.e., a regular vari-
able). For example, the following does not work:

a[1] = 3; delete a; a = 3

Using Numbers to Subscr ipt Ar rays
An important aspect about arrays to remember is that array subscripts are always
strings. When a numeric value is used as a subscript, it is converted to a string
value before being used for subscripting (see the section “Conversion of Strings
and Numbers” in Chapter 5, Expr essions). This means that the value of the built-in
variable CONVFMT can affect how your program accesses elements of an array. For
example:

xyz = 12.153
data[xyz] = 1
CONVFMT = "%2.2f"
if (xyz in data)

printf "%s is in data\n", xyz
else

printf "%s is not in data\n", xyz

* Thanks to Michael Brennan for pointing this out.

9 October 2001 01:42

This prints 12.15 is not in data. The first statement gives xyz a numeric value.
Assigning to data[xyz] subscripts data with the string value "12.153" (using the
default conversion value of CONVFMT, "%.6g"). Thus, the array element
data["12.153"] is assigned the value one. The program then changes the value of
CONVFMT. The test (xyz in data) generates a new string value from xyz—this time
"12.15"—because the value of CONVFMT only allows two significant digits. This test
fails, since "12.15" is a differ ent string from "12.153".

According to the rules for conversions (see the section “Conversion of Strings and
Numbers” in Chapter 5), integer values are always converted to strings as integers,
no matter what the value of CONVFMT may happen to be. So the usual case of the
following works:

for (i = 1; i <= maxsub; i++)
do something with array[i]

The “integer values always convert to strings as integers” rule has an additional
consequence for array indexing. Octal and hexadecimal constants (see the section
“Octal and Hexadecimal Numbers” in Chapter 5) are converted internally into
numbers, and their original form is forgotten. This means, for example, that
array[17], array[021], and array[0x11] all refer to the same element!

As with many things in awk, the majority of the time things work as one would
expect them to. But it is useful to have a precise knowledge of the actual rules
which sometimes can have a subtle effect on your programs.

Using Uninitialized Var iables
as Subscripts
Suppose it’s necessary to write a program to print the input data in reverse order.
A reasonable attempt to do so (with some test data) might look like this:

$ echo ’line 1
> line 2
> line 3’ | awk ’{ l[lines] = $0; ++lines }
> END {
> for (i = lines-1; i >= 0; --i)
> print l[i]
> }’
line 3
line 2

Unfortunately, the very first line of input data did not come out in the output!

At first glance, this program should have worked. The variable lines is uninitial-
ized, and uninitialized variables have the numeric value zero. So, awk should have
printed the value of l[0].

Using Uninitialized Var iables as Subscripts 137

9 October 2001 01:42

138 Chapter 7: Arra ys in awk

The issue here is that subscripts for awk arrays are always strings. Uninitialized
variables, when used as strings, have the value "", not zero. Thus, line 1 ends up
stor ed in l[""]. The following version of the program works correctly:

{ l[lines++] = $0 }
END {

for (i = lines - 1; i >= 0; --i)
print l[i]

}

Her e, the ++ forces lines to be numeric, thus making the “old value” numeric
zer o. This is then converted to "0" as the array subscript.

Even though it is somewhat unusual, the null string ("") is a valid array subscript.
(d.c.) gawk war ns about the use of the null string as a subscript if ––lint is pro-
vided on the command line (see the section “Command-Line Options” in Chapter
11).

Multidimensional Arra ys
A multidimensional array is an array in which an element is identified by a
sequence of indices instead of a single index. For example, a two-dimensional
array requir es two indices. The usual way (in most languages, including awk) to
refer to an element of a two-dimensional array named grid is with grid[x,y].

Multidimensional arrays are supported in awk thr ough concatenation of indices
into one string. awk converts the indices into strings (see the section “Conversion
of Strings and Numbers” in Chapter 5) and concatenates them together, with a sep-
arator between them. This creates a single string that describes the values of the
separate indices. The combined string is used as a single index into an ordinary,
one-dimensional array. The separator used is the value of the built-in variable SUB-

SEP.

For example, suppose we evaluate the expression foo[5,12] = "value" when the
value of SUBSEP is "@". The numbers 5 and 12 are converted to strings and con-
catenated with an @ between them, yielding "5@12"; thus, the array element
foo["5@12"] is set to "value".

Once the element’s value is stored, awk has no record of whether it was stored
with a single index or a sequence of indices. The two expressions foo[5,12] and
foo[5 SUBSEP 12] ar e always equivalent.

The default value of SUBSEP is the string "\034", which contains a nonprinting
character that is unlikely to appear in an awk pr ogram or in most input data. The
usefulness of choosing an unlikely character comes from the fact that index values
that contain a string matching SUBSEP can lead to combined strings that are
ambiguous. Suppose that SUBSEP is "@"; then foo["a@b", "c"] and foo["a",

9 October 2001 01:42

"b@c"] ar e indistinguishable because both are actually stored as foo["a@b@c"].

To test whether a particular index sequence exists in a multidimensional array, use
the same operator (in) that is used for single dimensional arrays. Write the whole
sequence of indices in parentheses, separated by commas, as the left operand:

(subscript1, subscript2, ...) in array

The following example treats its input as a two-dimensional array of fields; it
rotates this array 90 degrees clockwise and prints the result. It assumes that all
lines have the same number of elements:

{
if (max_nf < NF)

max_nf = NF
max_nr = NR
for (x = 1; x <= NF; x++)

vector[x, NR] = $x
}

END {
for (x = 1; x <= max_nf; x++) {

for (y = max_nr; y >= 1; --y)
printf("%s ", vector[x, y])

printf("\n")
}

}

When given the input:

1 2 3 4 5 6
2 3 4 5 6 1
3 4 5 6 1 2
4 5 6 1 2 3

the program produces the following output:

4 3 2 1
5 4 3 2
6 5 4 3
1 6 5 4
2 1 6 5
3 2 1 6

Scanning Multidimensional Arra ys
Ther e is no special for statement for scanning a “multidimensional” array. There
cannot be one because, in truth, there are no multidimensional arrays or ele-
ments — there is only a multidimensional way of accessing an array.

However, if your program has an array that is always accessed as multidimen-
sional, you can get the effect of scanning it by combining the scanning for

Scanning Multidimensional Arra ys 139

9 October 2001 01:42

140 Chapter 7: Arra ys in awk

statement (see the section “Scanning All Elements of an Array” earlier in this chap-
ter) with the built-in split function (see the section “String-Manipulation Func-
tions” in Chapter 8). It works in the following manner:

for (combined in array) {
split(combined, separate, SUBSEP)
...

}

This sets the variable combined to each concatenated combined index in the array,
and splits it into the individual indices by breaking it apart where the value of SUB-
SEP appears. The individual indices then become the elements of the array sepa-

rate.

Thus, if a value is previously stored in array[1, "foo"]; then an element with
index "1\034foo" exists in array. (Recall that the default value of SUBSEP is the
character with code 034.) Sooner or later, the for statement finds that index and
does an iteration with the variable combined set to "1\034foo". Then the split

function is called as follows:

split("1\034foo", separate, "\034")

The result is to set separate[1] to "1" and separate[2] to "foo". Presto! The origi-
nal sequence of separate indices is recover ed.

Sor ting Ar ray Values and Indices
with gawk
The order in which an array is scanned with a for (i in array) loop is essentially
arbitrary. In most awk implementations, sorting an array requir es writing a sort

function. While this can be educational for exploring differ ent sorting algorithms,
usually that’s not the point of the program. gawk pr ovides the built-in asort func-
tion (see the section “String-Manipulation Functions” in Chapter 8) that sorts an
array. For example:

populate the array data
n = asort(data)
for (i = 1; i <= n; i++)

do something with data[i]

After the call to asort, the array data is indexed from 1 to some number n, the
total number of elements in data. (This count is asort’s retur n value.) data[1] ≤
data[2] ≤ data[3], and so on. The comparison of array elements is done using
gawk ’s usual comparison rules (see the section “Variable Typing and Comparison
Expr essions” in Chapter 5).

9 October 2001 01:42

An important side effect of calling asort is that the array’s original indices are
irr evocably lost. As this isn’t always desirable, asort accepts a second argument:

populate the array source
n = asort(source, dest)
for (i = 1; i <= n; i++)

do something with dest[i]

In this case, gawk copies the source array into the dest array and then sorts dest,
destr oying its indices. However, the source array is not affected.

Often, what’s needed is to sort on the values of the indices instead of the values of
the elements. To do this, use a helper array to hold the sorted index values, and
then access the original array’s elements. It works in the following way:

populate the array data
copy indices
j = 1
for (i in data) {

ind[j] = i # index value becomes element value
j++

}
n = asort(ind) # index values are now sorted
for (i = 1; i <= n; i++)

do something with data[ind[i]]

Sorting the array by replacing the indices provides maximal flexibility. To traverse
the elements in decreasing order, use a loop that goes from n down to 1, either
over the elements or over the indices.

Copying array indices and elements isn’t expensive in terms of memory. Internally,
gawk maintains refer ence counts to data. For example, when asort copies the first
array to the second one, there is only one copy of the original array elements’
data, even though both arrays use the values. Similarly, when copying the indices
fr om data to ind, ther e is only one copy of the actual index strings.

As with array subscripts, the value of IGNORECASE does not affect array sorting.

Sor ting Ar ray Values and Indices with gawk 141

9 October 2001 01:42

8
Functions

In this chapter:
• Built-in Functions
• User-Defined

Functions

This chapter describes awk ’s built-in functions, which fall into three categories:
numeric, string, and I/O. gawk pr ovides additional groups of functions to work
with values that repr esent time, do bit manipulation, and internationalize and
localize programs.

Besides the built-in functions, awk has provisions for writing new functions that
the rest of a program can use. The second half of this chapter describes these
user-defined functions.

Built-in Functions
Built-in functions are always available for your awk pr ogram to call. This section
defines all the built-in functions in awk ; some of these are mentioned in other sec-
tions but are summarized here for your convenience.

Calling Built-in Functions
To call one of awk ’s built-in functions, write the name of the function followed by
arguments in parentheses. For example, atan2(y + z, 1) is a call to the function
atan2 and has two arguments.

Whitespace is ignored between the built-in function name and the open paren-
thesis, and it is good practice to avoid using whitespace there. User-defined func-
tions do not permit whitespace in this way, and it is easier to avoid mistakes by
following a simple convention that always works—no whitespace after a function
name.

142

9 October 2001 01:42

Each built-in function accepts a certain number of arguments. In some cases, argu-
ments can be omitted. The defaults for omitted arguments vary from function to
function and are described under the individual functions. In some awk imple-
mentations, extra arguments given to built-in functions are ignor ed. However, in
gawk, it is a fatal error to give extra arguments to a built-in function.

When a function is called, expressions that create the function’s actual parameters
ar e evaluated completely before the call is perfor med. For example, in the follow-
ing code fragment:

i = 4
j = sqrt(i++)

the variable i is incremented to the value 5 before sqrt is called with a value of 4
for its actual parameter. The order of evaluation of the expressions used for the
function’s parameters is undefined. Thus, avoid writing programs that assume that
parameters are evaluated from left to right or from right to left. For example:

i = 5
j = atan2(i++, i *= 2)

If the order of evaluation is left to right, then i first becomes 6, and then 12, and
atan2 is called with the two arguments 6 and 12. But if the order of evaluation is
right to left, i first becomes 10, then 11, and atan2 is called with the two argu-
ments 11 and 10.

Numer ic Functions
The following list describes all of the built-in functions that work with numbers.
Optional parameters are enclosed in square brackets ([]):

int(x)

This retur ns the nearest integer to x, located between x and zero and trun-
cated toward zero.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is −3, and int(-3) is −3 as
well.

sqrt(x)

This retur ns the positive square root of x. gawk reports an error if x is nega-
tive. Thus, sqrt(4) is 2.

exp(x)

This retur ns the exponential of x (ex) or reports an error if x is out of range.
The range of values x can have depends on your machine’s floating-point
repr esentation.

Built-in Functions 143

9 October 2001 01:42

144 Chapter 8: Functions

log(x)

This retur ns the natural logarithm of x, if x is positive; otherwise, it reports an
err or.

sin(x)

This retur ns the sine of x, with x in radians.

cos(x)

This retur ns the cosine of x, with x in radians.

atan2(y, x)
This retur ns the arctangent of y / x in radians.

rand()

This retur ns a random number. The values of rand ar e unifor mly distributed
between zero and one. The value is never zero and never one.*

Often random integers are needed instead. Following is a user-defined func-
tion that can be used to obtain a random non-negative integer less than n:

function randint(n) {
return int(n * rand())

}

The multiplication produces a random number greater than zero and less than
n. Using int, this result is made into an integer between zero and n − 1, inclu-
sive.

The following example uses a similar function to produce random integers
between one and n. This program prints a new random number for each
input record:

Function to roll a simulated die.
function roll(n) { return 1 + int(rand() * n) }

Roll 3 six-sided dice and
print total number of points.
{

printf("%d points\n",
roll(6)+roll(6)+roll(6))

}

* The C version of rand is known to produce fairly poor sequences of random numbers. However,
nothing requir es that an awk implementation use the C rand to implement the awk version of rand.
In fact, gawk uses the BSD random function, which is considerably better than rand, to produce ran-
dom numbers.

9 October 2001 01:42

In most awk implementations, including gawk, rand starts generating
numbers from the same starting number, or seed, each time you run
awk. Thus, a program generates the same results each time you run
it. The numbers are random within one awk run but predictable
fr om run to run. This is convenient for debugging, but if you want a
pr ogram to do differ ent things each time it is used, you must change
the seed to a value that is differ ent in each run. To do this, use
srand.

srand([x])
The function srand sets the starting point, or seed, for generating random
numbers to the value x.

Each seed value leads to a particular sequence of random numbers.* Thus, if
the seed is set to the same value a second time, the same sequence of random
numbers is produced again.

Dif ferent awk implementations use differ ent random-number generators inter-
nally. Don’t expect the same awk pr ogram to produce the same series of ran-
dom numbers when executed by differ ent versions of awk.

If the argument x is omitted, as in srand(), then the current date and time of
day are used for a seed. This is the way to get random numbers that are truly
unpr edictable.

The retur n value of srand is the previous seed. This makes it easy to keep
track of the seeds in case you need to consistently repr oduce sequences of
random numbers.

Str ing-Manipulation Functions
The functions in this section look at or change the text of one or more strings.
Optional parameters are enclosed in square brackets ([]). Those functions that are
specific to gawk ar e marked with a pound sign (#):

asort(source [, dest]) #

asort is a gawk-specific extension, retur ning the number of elements in the
array sour ce. The contents of sour ce ar e sorted using gawk ’s normal rules for
comparing values, and the indices of the sorted values of sour ce ar e replaced
with sequential integers starting with one. If the optional array dest is speci-

* Computer-generated random numbers really are not truly random. They are technically known as
“pseudorandom.” This means that while the numbers in a sequence appear to be random, you can
in fact generate the same sequence of random numbers over and over again.

Built-in Functions 145

9 October 2001 01:42

146 Chapter 8: Functions

fied, then sour ce is duplicated into dest. dest is then sorted, leaving the indices
of sour ce unchanged. For example, if the contents of a ar e as follows:

a["last"] = "de"
a["first"] = "sac"
a["middle"] = "cul"

A call to asort:

asort(a)

results in the following contents of a:

a[1] = "cul"
a[2] = "de"
a[3] = "sac"

The asort function is described in more detail in the section “Sorting Array
Values and Indices with gawk” in Chapter 7, Arrays in awk. asort is a gawk
extension; it is not available in compatibility mode (see the section “Com-
mand-Line Options” in Chapter 11, Running awk and gawk).

index(in, find)
This searches the string in for the first occurrence of the string find, and
retur ns the position in characters at which that occurrence begins in the string
in. Consider the following example:

$ awk ’BEGIN { print index("peanut", "an") }’
3

If find is not found, index retur ns zer o. (Remember that string indices in awk
start at one.)

length([string])
This retur ns the number of characters in string. If string is a number, the
length of the digit string repr esenting that number is retur ned. For example,
length("abcde") is 5. By contrast, length(15 * 35) works out to 3. In this
example, 15 * 35 = 525, and 525 is then converted to the string "525", which
has three characters.

If no argument is supplied, length retur ns the length of $0.

In older versions of awk, the length function could be called with-
out any parentheses. Doing so is marked as “deprecated” in the
POSIX standard. This means that while a program can do this, it is a
featur e that can eventually be removed from a future version of the
standard. Therefor e, for programs to be maximally portable, always
supply the parentheses.

9 October 2001 01:42

match(string, regexp [, array])
The match function searches string for the longest, leftmost substring matched
by the regular expression, regexp. It retur ns the character position, or index, at
which that substring begins (one, if it starts at the beginning of string). If no
match is found, it retur ns zer o.

The order of the first two arguments is backwards from most other string func-
tions that work with regular expressions, such as sub and gsub. It might help
to remember that for match, the order is the same as for the ˜ operator: string
˜ regexp.

The match function sets the built-in variable RSTART to the index. It also sets
the built-in variable RLENGTH to the length in characters of the matched sub-
string. If no match is found, RSTART is set to zero, and RLENGTH to −1.

For example:

{
if ($1 == "FIND")

regex = $2
else {

where = match($0, regex)
if (where != 0)

print "Match of", regex, "found at",
where, "in", $0

}
}

This program looks for lines that match the regular expression stored in the
variable regex. This regular expression can be changed. If the first word on a
line is FIND, regex is changed to be the second word on that line. Therefor e, if
given:

FIND ru+n
My program runs
but not very quickly
FIND Melvin
JF+KM
This line is property of Reality Engineering Co.
Melvin was here.

awk prints:

Match of ru+n found at 12 in My program runs
Match of Melvin found at 1 in Melvin was here.

If array is present, it is cleared, and then the 0th element of array is set to the
entir e portion of string matched by regexp. If regexp contains parentheses, the
integer-indexed elements of array ar e set to contain the portion of string
matching the corresponding parenthesized subexpression. For example:

Built-in Functions 147

9 October 2001 01:42

148 Chapter 8: Functions

$ echo foooobazbarrrrr |
> gawk ’{ match($0, /(fo+).+(ba*r)/, arr)
> print arr[1], arr[2] }’
foooo barrrrr

The array argument to match is a gawk extension. In compatibility mode (see
the section “Command-Line Options” in Chapter 11), using a third argument is
a fatal error.

split(string, array [, fieldsep])
This function divides string into pieces separated by fieldsep and stores the
pieces in array. The first piece is stored in array[1], the second piece in
array[2], and so forth. The string value of the third argument, fieldsep, is a
regexp describing where to split string (much as FS can be a regexp describ-
ing where to split input records). If fieldsep is omitted, the value of FS is used.
split retur ns the number of elements created. If string does not match field-
sep, array is empty and split retur ns zer o.

The split function splits strings into pieces in a manner similar to the way
input lines are split into fields. For example:

split("cul-de-sac", a, "-")

splits the string cul-de-sac into three fields using - as the separator. It sets the
contents of the array a as follows:

a[1] = "cul"
a[2] = "de"
a[3] = "sac"

The value retur ned by this call to split is three.

As with input field-splitting, when the value of fieldsep is " ", leading and
trailing whitespace is ignored, and the elements are separated by runs of
whitespace. Also as with input field-splitting, if fieldsep is the null string, each
individual character in the string is split into its own array element. (This is a
gawk-specific extension.)

Moder n implementations of awk, including gawk, allow the third argument to
be a regexp constant (/abc/) as well as a string. (d.c.) The POSIX standard
allows this as well.

Befor e splitting the string, split deletes any previously existing elements in
the array array. If string does not match fieldsep at all, array has one element
only. The value of that element is the original string.

9 October 2001 01:42

sprintf(format, expression1, ...)

This retur ns (without printing) the string that printf would have printed out
with the same arguments (see the section “Using printf Statements for Fancier
Printing” in Chapter 4, Printing Output). For example:

pival = sprintf("pi = %.2f (approx.)", 22/7)

assigns the string "pi = 3.14 (approx.)" to the variable pival.

strtonum(str) #

Examines str and retur ns its numeric value. If str begins with a leading 0,
strtonum assumes that str is an octal number. If str begins with a leading 0x or
0X, strtonum assumes that str is a hexadecimal number. For example:

$ echo 0x11 | gawk ’{ printf "%d\n", strtonum($1) }’
17

Using the strtonum function is not the same as adding zero to a string value;
the automatic coercion of strings to numbers works only for decimal data, not
for octal or hexadecimal.*

strtonum is a gawk extension; it is not available in compatibility mode (see the
section “Command-Line Options” in Chapter 11).

sub(regexp, replacement [, target])
The sub function alters the value of tar get. It searches this value, which is
tr eated as a string, for the leftmost, longest substring matched by the regular
expr ession regexp. Then the entire string is changed by replacing the matched
text with replacement. The modified string becomes the new value of tar get.

This function is peculiar because tar get is not simply used to compute a value,
and not just any expression will do—it must be a variable, field, or array ele-
ment so that sub can store a modified value there. If this argument is omitted,
then the default is to use and alter $0. For example:

str = "water, water, everywhere"
sub(/at/, "ith", str)

sets str to "wither, water, everywhere", by replacing the leftmost longest
occurr ence of at with ith.

The sub function retur ns the number of substitutions made (either one or
zer o).

* Unless you use the ––non–decimal–data option, which isn’t recommended. See the section “Allow-
ing Nondecimal Input Data” in Chapter 10, Advanced Features of gawk, for more infor mation.

Built-in Functions 149

9 October 2001 01:42

150 Chapter 8: Functions

If the special character & appears in replacement, it stands for the precise sub-
string that was matched by regexp. (If the regexp can match more than one
string, then this precise substring may vary.) For example:

{ sub(/candidate/, "& and his wife"); print }

changes the first occurrence of candidate to candidate and his wife on each
input line. Here is another example:

$ awk ’BEGIN {
> str = "daabaaa"
> sub(/a+/, "C&C", str)
> print str
> }’
dCaaCbaaa

This shows how & can repr esent a nonconstant string and also illustrates the
“leftmost, longest” rule in regexp matching (see the section “How Much Text
Matches?” in Chapter 2, Regular Expressions).

The effect of this special character (&) can be turned off by putting a backslash
befor e it in the string. As usual, to insert one backslash in the string, you must
write two backslashes. Therefor e, write \\& in a string constant to include a lit-
eral & in the replacement. For example, the following shows how to replace
the first | on each line with an &:

{ sub(/\|/, "\\&"); print }

As mentioned, the third argument to sub must be a variable, field or array ref-
er ence. Some versions of awk allow the third argument to be an expression
that is not an lvalue. In such a case, sub still searches for the pattern and
retur ns zer o or one, but the result of the substitution (if any) is thrown away
because there is no place to put it. Such versions of awk accept expressions
such as the following:

sub(/USA/, "United States", "the USA and Canada")

For historical compatibility, gawk accepts erroneous code, such as in the pre-
vious example. However, using any other nonchangeable object as the third
parameter causes a fatal error and your program will not run.

Finally, if the regexp is not a regexp constant, it is converted into a string, and
then the value of that string is treated as the regexp to match.

gsub(regexp, replacement [, target])
This is similar to the sub function, except gsub replaces all of the longest, left-
most, nonoverlapping matching substrings it can find. The g in gsub stands for
“global,” which means replace everywhere. For example:

9 October 2001 01:42

{ gsub(/Britain/, "United Kingdom"); print }

replaces all occurrences of the string Britain with United Kingdom for all input
records.

The gsub function retur ns the number of substitutions made. If the variable to
search and alter (tar get) is omitted, then the entire input record ($0) is used.
As in sub, the characters & and \ ar e special, and the third argument must be
assignable.

gensub(regexp, replacement, how [, target]) #

gensub is a general substitution function. Like sub and gsub, it searches the
target string tar get for matches of the regular expression regexp. Unlike sub

and gsub, the modified string is retur ned as the result of the function and the
original target string is not changed. If how is a string beginning with g or G,
then it replaces all matches of regexp with replacement. Otherwise, how is
tr eated as a number that indicates which match of regexp to replace. If no tar-
get is supplied, $0 is used.

gensub pr ovides an additional feature that is not available in sub or gsub: the
ability to specify components of a regexp in the replacement text. This is done
by using parentheses in the regexp to mark the components and then specify-
ing \N in the replacement text, where N is a digit from 1 to 9. For example:

$ gawk ’
> BEGIN {
> a = "abc def"
> b = gensub(/(.+) (.+)/, "\\2 \\1", "g", a)
> print b
> }’
def abc

As with sub, you must type two backslashes in order to get one into the string.
In the replacement text, the sequence \0 repr esents the entire matched text, as
does the character &.

The following example shows how you can use the third argument to control
which match of the regexp should be changed:

$ echo a b c a b c |
> gawk ’{ print gensub(/a/, "AA", 2) }’
a b c AA b c

In this case, $0 is used as the default target string. gensub retur ns the new
string as its result, which is passed directly to print for printing.

If the how argument is a string that does not begin with g or G, or if it is a
number that is less than or equal to zero, only one substitution is perfor med.
If how is zero, gawk issues a warning message.

Built-in Functions 151

9 October 2001 01:42

152 Chapter 8: Functions

If regexp does not match tar get, gensub’s retur n value is the original
unchanged value of tar get.

gensub is a gawk extension; it is not available in compatibility mode (see the
section “Command-Line Options” in Chapter 11).

substr(string, start [, length])
This retur ns a length-character-long substring of string, starting at character
number start. The first character of a string is character number one.* For
example, substr("washington", 5, 3) retur ns "ing".

If length is not present, this function retur ns the whole suffix of string that
begins at character number start. For example, substr("washington", 5)

retur ns "ington". The whole suffix is also retur ned if length is greater than the
number of characters remaining in the string, counting from character start.

The string retur ned by substr cannot be assigned. Thus, it is a mistake to
attempt to change a portion of a string, as shown in the following example:

string = "abcdef"
try to get "abCDEf", won’t work
substr(string, 3, 3) = "CDE"

It is also a mistake to use substr as the third argument of sub or gsub:

gsub(/xyz/, "pdq", substr($0, 5, 20)) # WRONG

(Some commercial versions of awk do in fact let you use substr this way, but
doing so is not portable.)

If you need to replace bits and pieces of a string, combine substr with string
concatenation, in the following manner:

string = "abcdef"
...
string = substr(string, 1, 2) "CDE" substr(string, 6)

tolower(string)

This retur ns a copy of string, with each uppercase character in the string
replaced with its corresponding lowercase character. Nonalphabetic characters
ar e left unchanged. For example, tolower("MiXeD cAsE 123") retur ns "mixed

case 123".

toupper(string)

This retur ns a copy of string, with each lowercase character in the string
replaced with its corresponding uppercase character. Nonalphabetic characters
ar e left unchanged. For example, toupper("MiXeD cAsE 123") retur ns "MIXED

CASE 123".

* This is differ ent fr om C and C++, in which the first character is number zero.

9 October 2001 01:42

More about \ and & with sub, gsub, and gensub

When using sub, gsub, or gensub, and trying to get literal backslashes and amper-
sands into the replacement text, you need to remember that there are several lev-
els of escape processing going on.

First, there is the lexical level, which is when awk reads your program and builds
an internal copy of it that can be executed. Then there is the runtime level, which
is when awk actually scans the replacement string to determine what to generate.

At both levels, awk looks for a defined set of characters that can come after a
backslash. At the lexical level, it looks for the escape sequences listed in the sec-
tion “Escape Sequences” in Chapter 2. Thus, for every \ that awk pr ocesses at the
runtime level, type two backslashes at the lexical level. When a character that is
not valid for an escape sequence follows the \, Unix awk and gawk both simply
remove the initial \ and put the next character into the string. Thus, for example,
"a\qb" is treated as "aqb".

At the runtime level, the various functions handle sequences of \ and & dif ferently.
The situation is (sadly) somewhat complex. Historically, the sub and gsub functions
tr eated the two character sequence \& specially; this sequence was replaced in the
generated text with a single &. Any other \ within the replacement string that did
not precede an & was passed through unchanged. This is illustrated in Table 8-1.

Table 8-1. Historical Escape Sequence Processing for sub and gsub

You type sub sees sub generates

\& & The matched text

\\& \& A literal &

\\\& \& A literal &

\\\\& \\& A literal \&

\\\\\& \\& A literal \&

\\\\\\& \\\& A literal \\&

\\q \q A literal \q

Table 8-1 shows both the lexical-level processing, where an odd number of back-
slashes becomes an even number at the runtime level, as well as the runtime pro-
cessing done by sub. (For the sake of simplicity, the rest of the following tables
only show the case of even numbers of backslashes entered at the lexical level.)

The problem with the historical approach is that there is no way to get a literal \
followed by the matched text.

The 1992 POSIX standard attempted to fix this problem. The standard says that sub
and gsub look for either a \ or an & after the \. If either one follows a \, that

Built-in Functions 153

9 October 2001 01:42

154 Chapter 8: Functions

character is output literally. The interpretation of \ and & then becomes as shown
in Table 8-2.

Table 8-2. 1992 POSIX Rules for sub and gsub Escape Sequence Processing

You type sub sees sub generates

& & The matched text

\\& \& A literal &

\\\\& \\& A literal \, then the matched text

\\\\\\& \\\& A literal \&

This appears to solve the problem. Unfortunately, the phrasing of the standard is
unusual. It says, in effect, that \ tur ns of f the special meaning of any following
character, but for anything other than \ and &, such special meaning is undefined.
This wording leads to two problems:

• Backslashes must now be doubled in the replacement string, breaking histori-
cal awk pr ograms.

• To make sure that an awk pr ogram is portable, every character in the replace-
ment string must be preceded with a backslash.*

The POSIX standard is under revision. Because of the problems just listed, pro-
posed text for the revised standard reverts to rules that correspond more closely to
the original existing practice. The proposed rules have special cases that make it
possible to produce a \ pr eceding the matched text:

In a nutshell, at the runtime level, there are now three special sequences of char-
acters (\\\&, \\&, and \&) wher eas historically there was only one. However, as in
the historical case, any \ that is not part of one of these three sequences is not
special and appears in the output literally.

gawk 3.0 and 3.1 follow these proposed POSIX rules for sub and gsub. Whether
these proposed rules will actually become codified into the standard is unknown
at this point. Subsequent gawk releases will track the standard and implement
whatever the final version specifies; this book will be updated as well.†

The rules for gensub ar e considerably simpler. At the runtime level, whenever
gawk sees a \, if the following character is a digit, then the text that matched the
corr esponding par enthesized subexpr ession is placed in the generated output.
Otherwise, no matter what character follows the \, it appears in the generated text
and the \ does not, as shown in Table 8-3.

* This consequence was certainly unintended.

† As this book went to press, we learned that the POSIX standard will not use these rules. However, it
was too late to change gawk for the 3.1 release. gawk behaves as described here.

9 October 2001 01:42

Table 8-3. Escape Sequence Processing for gensub

You type gensub sees gensub generates

& & The matched text

\\& \& A literal &

\\\\ \\ A literal \

\\\\& \\& A literal \, then the matched text

\\\\\\& \\\& A literal \&

\\q \q A literal q

Because of the complexity of the lexical and runtime level processing and the spe-
cial cases for sub and gsub, we recommend the use of gawk and gensub when you
have to do substitutions.

Matching the Null String
In awk, the * operator can match the null string. This is particularly impor-
tant for the sub, gsub, and gensub functions. For example:

$ echo abc | awk ’{ gsub(/m*/, "X"); print }’
XaXbXcX

Although this makes a certain amount of sense, it can be surprising.

Input/Output Functions
The following functions relate to input/output (I/O). Optional parameters are
enclosed in square brackets ([]):

close(filename [, how])
Close the file filename for input or output. Alternatively, the argument may be
a shell command that was used for creating a coprocess, or for redir ecting to
or from a pipe; then the coprocess or pipe is closed. See the section “Closing
Input and Output Redirections” in Chapter 4 for more infor mation.

When closing a coprocess, it is occasionally useful to first close one end of the
two-way pipe and then to close the other. This is done by providing a second
argument to close. This second argument should be one of the two string val-
ues "to" or "from", indicating which end of the pipe to close. Case in the
string does not matter. See the section “Two-Way Communications
with Another Process” in Chapter 10, which discusses this feature in mor e
detail and gives an example.

Built-in Functions 155

9 October 2001 01:42

156 Chapter 8: Functions

fflush([filename])
Flush any buffer ed output associated with filename, which is either a file
opened for writing or a shell command for redir ecting output to a pipe or
copr ocess.

Many utility programs buf fer their output; i.e., they save information to write
to a disk file or terminal in memory until there is enough for it to be worth-
while to send the data to the output device. This is often more efficient than
writing every little bit of information as soon as it is ready. However, some-
times it is necessary to force a program to flush its buffers; that is, write the
infor mation to its destination, even if a buffer is not full. This is the purpose
of the fflush function —gawk also buffers its output and the fflush function
forces gawk to flush its buffers.

fflush was added to the Bell Laboratories research version of awk in 1994; it
is not part of the POSIX standard and is not available if ––posix has been
specified on the command line (see the section “Command-Line Options” in
Chapter 11).

gawk extends the fflush function in two ways. The first is to allow no argu-
ment at all. In this case, the buffer for the standard output is flushed. The sec-
ond is to allow the null string ("") as the argument. In this case, the buffers for
all open output files and pipes are flushed.

fflush retur ns zer o if the buffer is successfully flushed; otherwise, it retur ns
−1. In the case where all buffers are flushed, the retur n value is zero only if all
buf fers wer e flushed successfully. Otherwise, it is −1, and gawk war ns about
the problem filename.

gawk also issues a warning message if you attempt to flush a file or pipe that
was opened for reading (such as with getline), or if filename is not an open
file, pipe, or coprocess. In such a case, fflush retur ns −1, as well.

system(command)

Executes operating-system commands and then retur n to the awk pr ogram.
The system function executes the command given by the string command. It
retur ns the status retur ned by the command that was executed as its value.

For example, if the following fragment of code is put in your awk pr ogram:

END {
system("date | mail -s ’awk run done’ root")

}

the system administrator is sent mail when the awk pr ogram finishes process-
ing input and begins its end-of-input processing.

9 October 2001 01:42

Note that redir ecting print or printf into a pipe is often enough to accom-
plish your task. If you need to run many commands, it is more efficient to
simply print them down a pipeline to the shell:

while (more stuff to do)
print command | "/bin/sh"

close("/bin/sh")

However, if your awk pr ogram is interactive, system is useful for cranking up
large self-contained programs, such as a shell or an editor. Some operating
systems cannot implement the system function. system causes a fatal error if it
is not supported.

Interactive Ver sus Noninteractive Buffering
As a side point, buffering issues can be even more confusing, depending
upon whether your program is interactive, i.e., communicating with a user
sitting at a keyboard.*

Interactive programs generally line buffer their output; i.e., they write out
every line. Noninteractive programs wait until they have a full buffer, which
may be many lines of output. Here is an example of the differ ence:

$ awk ’{ print $1 + $2 }’
1 1
2
2 3
5
Ctrl-d

Each line of output is printed immediately. Compare that behavior with this
example:

$ awk ’{ print $1 + $2 }’ | cat
1 1
2 3
Ctrl-d
2
5

Her e, no output is printed until after the Ctrl-d is typed, because it is all
buf fered and sent down the pipe to cat in one shot.

* A program is interactive if the standard output is connected to a terminal device.

Built-in Functions 157

9 October 2001 01:42

158 Chapter 8: Functions

Controlling Output Buffering with system
The fflush function provides explicit control over output buffering for indi-
vidual files and pipes. However, its use is not portable to many other awk
implementations. An alternative method to flush output buffers is to call sys-
tem with a null string as its argument:

system("") # flush output

gawk tr eats this use of the system function as a special case and is smart
enough not to run a shell (or other command interpreter) with the empty
command. Therefor e, with gawk, this idiom is not only useful, it is also effi-
cient. While this method should work with other awk implementations, it
does not necessarily avoid starting an unnecessary shell. (Other implementa-
tions may only flush the buffer associated with the standard output and not
necessarily all buffer ed output.)

If you think about what a programmer expects, it makes sense that system
should flush any pending output. The following program:

BEGIN {
print "first print"
system("echo system echo")
print "second print"

}

must print:

first print
system echo
second print

and not:

system echo
first print
second print

If awk did not flush its buffers before calling system, you would see the latter
(undesirable) output.

Using gawk’s Timestamp Functions
awk pr ograms ar e commonly used to process log files containing timestamp infor-
mation, indicating when a particular log record was written. Many programs log
their timestamp in the form retur ned by the time system call, which is the number
of seconds since a particular epoch. On POSIX-compliant systems, it is the number
of seconds since 1970-01-01 00:00:00 UTC, not counting leap seconds.* All known
POSIX-compliant systems support timestamps from 0 through 231 − 1, which is

* See the Glossary, especially the entries “Epoch” and “UTC.”

9 October 2001 01:42

suf ficient to repr esent times through 2038-01-19 03:14:07 UTC. Many systems sup-
port a wider range of timestamps, including negative timestamps that repr esent
times before the epoch.

In order to make it easier to process such log files and to produce useful reports,
gawk pr ovides the following functions for working with timestamps. They are
gawk extensions; they are not specified in the POSIX standard, nor are they in any
other known version of awk.* Optional parameters are enclosed in square brackets
([]):

systime()

This function retur ns the current time as the number of seconds since the sys-
tem epoch. On POSIX systems, this is the number of seconds since 1970-01-01
00:00:00 UTC, not counting leap seconds. It may be a differ ent number on
other systems.

mktime(datespec)

This function turns datespec into a timestamp in the same form as is retur ned
by systime. It is similar to the function of the same name in ISO C. The argu-
ment, datespec, is a string of the form "YYYY MM DD HH MM SS [DST]". The
string consists of six or seven numbers repr esenting, respectively, the full year
including century, the month from 1 to 12, the day of the month from 1 to 31,
the hour of the day from 0 to 23, the minute from 0 to 59, the second from 0
to 60,† and an optional daylight-savings flag.

The values of these numbers need not be within the ranges specified; for
example, an hour of −1 means 1 hour before midnight. The origin-zero Grego-
rian calendar is assumed, with year 0 preceding year 1 and year −1 preceding
year 0. The time is assumed to be in the local timezone. If the daylight-sav-
ings flag is positive, the time is assumed to be daylight savings time; if zero,
the time is assumed to be standard time; and if negative (the default), mktime
attempts to determine whether daylight savings time is in effect for the speci-
fied time.

If datespec does not contain enough elements or if the resulting time is out of
range, mktime retur ns −1.

strftime([format [, timestamp]])
This function retur ns a string. It is similar to the function of the same name in
ISO C. The time specified by timestamp is used to produce a string, based on
the contents of the for mat string. The timestamp is in the same format as the

* The GNU date utility can also do many of the things described here. Its use may be preferable for
simple time-related operations in shell scripts.

† Occasionally there are minutes in a year with a leap second, which is why the seconds can go up to
60.

Built-in Functions 159

9 October 2001 01:42

160 Chapter 8: Functions

value retur ned by the systime function. If no timestamp argument is supplied,
gawk uses the current time of day as the timestamp. If no for mat argument is
supplied, strftime uses "%a %b %d %H:%M:%S %Z %Y". This format string pro-
duces output that is (almost) equivalent to that of the date utility. (Versions of
gawk prior to 3.0 requir e the for mat argument.)

The systime function allows you to compare a timestamp from a log file with the
curr ent time of day. In particular, it is easy to determine how long ago a particular
record was logged. It also allows you to produce log records using the “seconds
since the epoch” format.

The mktime function allows you to convert a textual repr esentation of a date and
time into a timestamp. This makes it easy to do before/after comparisons of dates
and times, particularly when dealing with date and time data coming from an
exter nal source, such as a log file.

The strftime function allows you to easily turn a timestamp into human-readable
infor mation. It is similar in nature to the sprintf function (see the section “String-
Manipulation Functions” earlier in this chapter), in that it copies nonformat specifi-
cation characters verbatim to the retur ned string, while substituting date and time
values for format specifications in the for mat string.

strftime is guaranteed by the 1999 ISO C standard* to support the following date
for mat specifications:

%a The locale’s abbreviated weekday name.

%A The locale’s full weekday name.

%b The locale’s abbreviated month name.

%B The locale’s full month name.

%c The locale’s “appropriate” date and time repr esentation. (This is %A %B %d %T

%Y in the "C" locale.)

%C The century. This is the year divided by 100 and truncated to the next lower
integer.

%d The day of the month as a decimal number (01–31).

%D Equivalent to specifying %m/%d/%y.

%e The day of the month, padded with a space if it is only one digit.

* As this is a recent standard, not every system’s strftime necessarily supports all of the conversions
listed here.

9 October 2001 01:42

%F Equivalent to specifying %Y-%m-%d. This is the ISO 8601 date format.

%g The year modulo 100 of the ISO week number, as a decimal number (00–99).
For example, January 1, 1993 is in week 53 of 1992. Thus, the year of its ISO
week number is 1992, even though its year is 1993. Similarly, December 31,
1973 is in week 1 of 1974. Thus, the year of its ISO week number is 1974,
even though its year is 1973.

%G The full year of the ISO week number, as a decimal number.

%h Equivalent to %b.

%H The hour (24-hour clock) as a decimal number (00–23).

%I The hour (12-hour clock) as a decimal number (01–12).

%j The day of the year as a decimal number (001–366).

%m The month as a decimal number (01–12).

%M The minute as a decimal number (00–59).

%n A newline character (ASCII LF).

%p The locale’s equivalent of the AM/PM designations associated with a 12-hour
clock.

%r The locale’s 12-hour clock time. (This is %I:%M:%S %p in the "C" locale.)

%R Equivalent to specifying %H:%M.

%S The second as a decimal number (00–60).

%t A tab character.

%T Equivalent to specifying %H:%M:%S.

%u The weekday as a decimal number (1–7). Monday is day one.

%U The week number of the year (the first Sunday as the first day of week one)
as a decimal number (00–53).

%V The week number of the year (the first Monday as the first day of week one)
as a decimal number (01–53). The method for determining the week number
is as specified by ISO 8601. (To wit: if the week containing January 1 has four
or more days in the new year, then it is week one; otherwise, it is week 53 of
the previous year and the next week is week one.)

%w The weekday as a decimal number (0–6). Sunday is day zero.

%W The week number of the year (the first Monday as the first day of week one)
as a decimal number (00–53).

Built-in Functions 161

9 October 2001 01:42

162 Chapter 8: Functions

%x The locale’s “appropriate” date repr esentation. (This is %A %B %d %Y in the "C"

locale.)

%X The locale’s “appropriate” time repr esentation. (This is %T in the "C" locale.)

%y The year modulo 100 as a decimal number (00–99).

%Y The full year as a decimal number (e.g., 1995).

%z The time zone offset in a +HHMM format (e.g., the format necessary to pro-
duce RFC 822/RFC 1036 date headers).

%Z The time zone name or abbreviation; no characters if no time zone is deter-
minable.

%Ec %EC %Ex %EX %Ey %EY %Od %Oe %OH

%OI %Om %OM %OS %Ou %OU %OV %Ow %OW %Oy

“Alter nate repr esentations” for the specifications that use only the second letter
(%c, %C, and so on).* (These facilitate compliance with the POSIX date utility.)

%% A literal %.

If a conversion specifier is not one of the above, the behavior is undefined.†

Infor mally, a locale is the geographic place in which a program is meant to run.
For example, a common way to abbreviate the date September 4, 1991 in the
United States is “9/4/91.” In many countries in Europe, however, it is abbr eviated
“4.9.91.” Thus, the %x specification in a "US" locale might produce 9/4/91, while in
a "EUROPE" locale, it might produce 4.9.91. The ISO C standard defines a default
"C" locale, which is an environment that is typical of what most C programmers
ar e used to.

A public-domain C version of strftime is supplied with gawk for systems that are
not yet fully standards-compliant. It supports all of the just listed format specifica-
tions. If that version is used to compile gawk (see Appendix B, Installing gawk),
then the following additional format specifications are available:

%k The hour (24-hour clock) as a decimal number (0–23). Single-digit numbers
ar e padded with a space.

%l The hour (12-hour clock) as a decimal number (1–12). Single-digit numbers
ar e padded with a space.

* If you don’t understand any of this, don’t worry about it; these facilities are meant to make it easier
to “internationalize” programs. Other internationalization features are described in Chapter 9, Inter-
nationalization with gawk.

† This is because ISO C leaves the behavior of the C version of strftime undefined and gawk uses the
system’s version of strftime if it’s there. Typically, the conversion specifier either does not appear in
the retur ned string or appears literally.

9 October 2001 01:42

%N The “Emperor/Era” name. Equivalent to %C.

%o The “Emperor/Era” year. Equivalent to %y.

%s The time as a decimal timestamp in seconds since the epoch.

%v The date in VMS format (e.g., 20-JUN-1991).

Additionally, the alternate repr esentations ar e recognized but their normal repr e-
sentations are used.

This example is an awk implementation of the POSIX date utility. Normally, the
date utility prints the current date and time of day in a well-known format. How-
ever, if you provide an argument to it that begins with a +, date copies nonformat
specifier characters to the standard output and interprets the current time accord-
ing to the format specifiers in the string. For example:

$ date ’+Today is %A, %B %d, %Y.’
Today is Thursday, September 14, 2000.

Her e is the gawk version of the date utility. It has a shell “wrapper” to handle the
–u option, which requir es that date run as if the time zone is set to UTC:

#! /bin/sh
#
date --- approximate the P1003.2 ’date’ command

case $1 in
-u) TZ=UTC0 # use UTC

export TZ
shift ;;

esac

gawk ’BEGIN {
format = "%a %b %d %H:%M:%S %Z %Y"
exitval = 0

if (ARGC > 2)
exitval = 1

else if (ARGC == 2) {
format = ARGV[1]
if (format ˜ /ˆ\+/)

format = substr(format, 2) # remove leading +
}
print strftime(format)
exit exitval

}’ "$@"

Built-in Functions 163

9 October 2001 01:42

164 Chapter 8: Functions

Bit-Manipulation Functions of gawk
Many languages provide the ability to perfor m bitwise operations on two integer
numbers. In other words, the operation is perfor med on each successive pair of
bits in the operands. Three common operations are bitwise AND, OR, and XOR.
The operations are described in Table 8-4.

Table 8-4. Bitwise Operations

Bit Operator

AND OR XOR

Operands 0 1 0 1 0 1

0 0 0 0 1 0 1

1 0 1 1 1 1 0

As you can see, the result of an AND operation is 1 only when both bits are 1. The
result of an OR operation is 1 if either bit is 1. The result of an XOR operation is 1
if either bit is 1, but not both. The next operation is the complement ; the comple-
ment of 1 is 0 and the complement of 0 is 1. Thus, this operation “flips” all the bits
of a given value.

Finally, two other common operations are to shift the bits left or right. For exam-
ple, if you have a bit string 10111001 and you shift it right by three bits, you end
up with 00010111.* If you start over again with 10111001 and shift it left by three
bits, you end up with 11001000. gawk pr ovides built-in functions that implement
the bitwise operations just described. They are:

and(v1, v2)
Retur ns the bitwise AND of the values provided by v1 and v2.

or(v1, v2)
Retur ns the bitwise OR of the values provided by v1 and v2.

xor(v1, v2)
Retur ns the bitwise XOR of the values provided by v1 and v2.

compl(val)

Retur ns the bitwise complement of val.

* This example shows that 0’s come in on the left side. For gawk, this is always true, but in some lan-
guages, it’s possible to have the left side fill with 1’s. Caveat emptor.

9 October 2001 01:42

lshift(val, count)
Retur ns the value of val, shifted left by count bits.

rshift(val, count)

Retur ns the value of val, shifted right by count bits.

For all of these functions, first the double-precision floating-point value is con-
verted to a C unsigned long, then the bitwise operation is perfor med and then the
result is converted back into a C double. (If you don’t understand this paragraph,
don’t worry about it.)

Her e is a user-defined function (see the section “User-Defined Functions” later in
this chapter) that illustrates the use of these functions:

bits2str --- turn a byte into readable 1’s and 0’s

function bits2str(bits, data, mask)
{

if (bits == 0)
return "0"

mask = 1
for (; bits != 0; bits = rshift(bits, 1))

data = (and(bits, mask) ? "1" : "0") data

while ((length(data) % 8) != 0)
data = "0" data

return data
}

BEGIN {
printf "123 = %s\n", bits2str(123)
printf "0123 = %s\n", bits2str(0123)
printf "0x99 = %s\n", bits2str(0x99)
comp = compl(0x99)
printf "compl(0x99) = %#x = %s\n", comp, bits2str(comp)
shift = lshift(0x99, 2)
printf "lshift(0x99, 2) = %#x = %s\n", shift, bits2str(shift)
shift = rshift(0x99, 2)
printf "rshift(0x99, 2) = %#x = %s\n", shift, bits2str(shift)

}

This program produces the following output when run:

$ gawk -f testbits.awk
123 = 01111011
0123 = 01010011
0x99 = 10011001
compl(0x99) = 0xffffff66 = 11111111111111111111111101100110
lshift(0x99, 2) = 0x264 = 0000001001100100
rshift(0x99, 2) = 0x26 = 00100110

Built-in Functions 165

9 October 2001 01:42

166 Chapter 8: Functions

The bits2str function turns a binary number into a string. The number 1 repr e-
sents a binary value where the rightmost bit is set to 1. Using this mask, the func-
tion repeatedly checks the rightmost bit. ANDing the mask with the value indicates
whether the rightmost bit is 1 or not. If so, a "1" is concatenated onto the front of
the string. Otherwise, a "0" is added. The value is then shifted right by one bit and
the loop continues until there are no mor e 1 bits.

If the initial value is zero it retur ns a simple "0". Otherwise, at the end, it pads the
value with zeros to repr esent multiples of 8-bit quantities. This is typical in mod-
er n computers.

The main code in the BEGIN rule shows the differ ence between the decimal and
octal values for the same numbers (see the section “Octal and Hexadecimal Num-
bers” in Chapter 5, Expr essions), and then demonstrates the results of the compl,
lshift, and rshift functions.

Using gawk’s Str ing-Translation Functions
gawk pr ovides facilities for internationalizing awk pr ograms. These include the
functions described in the following list. The descriptions here are purposely brief.
See Chapter 9 for the full story. Optional parameters are enclosed in square brack-
ets ([]):

dcgettext(string [, domain [, category]])
This function retur ns the translation of string in text domain domain for locale
category category. The default value for domain is the current value of
TEXTDOMAIN. The default value for category is "LC_MESSAGES".

bindtextdomain(directory [, domain])
This function allows you to specify the directory in which gawk will look for
message translation files, in case they will not or cannot be placed in the
“standard” locations (e.g., during testing). It retur ns the directory in which
domain is “bound.”

The default domain is the value of TEXTDOMAIN. If dir ectory is the null string
(""), then bindtextdomain retur ns the current binding for the given domain.

User-Defined Functions
Complicated awk pr ograms can often be simplified by defining your own func-
tions. User-defined functions can be called just like built-in ones (see the section
“Function Calls” in Chapter 5), but it is up to you to define them, i.e., to tell awk
what they should do.

9 October 2001 01:42

Function Definition Syntax
Definitions of functions can appear anywhere between the rules of an awk pr o-
gram. Thus, the general form of an awk pr ogram is extended to include sequences
of rules and user-defined function definitions. There is no need to put the defini-
tion of a function before all uses of the function. This is because awk reads the
entir e pr ogram befor e starting to execute any of it.

The definition of a function named name looks like this:

function name(parameter-list)
{

body-of-function
}

name is the name of the function to define. A valid function name is like a valid
variable name: a sequence of letters, digits, and underscores that doesn’t start with
a digit. Within a single awk pr ogram, any particular name can only be used as a
variable, array, or function.

parameter-list is a list of the function’s arguments and local variable names, sepa-
rated by commas. When the function is called, the argument names are used to
hold the argument values given in the call. The local variables are initialized to the
empty string. A function cannot have two parameters with the same name, nor
may it have a parameter with the same name as the function itself.

The body-of-function consists of awk statements. It is the most important part of
the definition, because it says what the function should actually do. The argument
names exist to give the body a way to talk about the arguments; local variables
exist to give the body places to keep temporary values.

Argument names are not distinguished syntactically from local variable names.
Instead, the number of arguments supplied when the function is called determines
how many argument variables there are. Thus, if three argument values are given,
the first three names in parameter-list ar e arguments and the rest are local vari-
ables.

It follows that if the number of arguments is not the same in all calls to the func-
tion, some of the names in parameter-list may be arguments on some occasions
and local variables on others. Another way to think of this is that omitted argu-
ments default to the null string.

Usually when you write a function, you know how many names you intend to use
for arguments and how many you intend to use as local variables. It is conven-
tional to place some extra space between the arguments and the local variables, in
order to document how your function is supposed to be used.

User-Defined Functions 167

9 October 2001 01:42

168 Chapter 8: Functions

During execution of the function body, the arguments and local variable values
hide, or shadow, any variables of the same names used in the rest of the program.
The shadowed variables are not accessible in the function definition, because
ther e is no way to name them while their names have been taken away for the
local variables. All other variables used in the awk pr ogram can be refer enced or
set normally in the function’s body.

The arguments and local variables last only as long as the function body is execut-
ing. Once the body finishes, you can once again access the variables that were
shadowed while the function was running.

The function body can contain expressions that call functions. They can even call
this function, either directly or by way of another function. When this happens, we
say the function is recursive. The act of a function calling itself is called recursion.

In many awk implementations, including gawk, the keyword function may be
abbr eviated func. However, POSIX only specifies the use of the keyword function.
This actually has some practical implications. If gawk is in POSIX-compatibility
mode (see the section “Command-Line Options” in Chapter 11), then the following
statement does not define a function:

func foo() { a = sqrt($1) ; print a }

Instead it defines a rule that, for each record, concatenates the value of the vari-
able func with the retur n value of the function foo. If the resulting string is non-
null, the action is executed. This is probably not what is desired. (awk accepts this
input as syntactically valid, because functions may be used before they are defined
in awk pr ograms.)

To ensur e that your awk pr ograms ar e portable, always use the keyword function

when defining a function.

Function Definition Examples
Her e is an example of a user-defined function, called myprint, that takes a number
and prints it in a specific format:

function myprint(num)
{

printf "%6.3g\n", num
}

To illustrate, here is an awk rule that uses our myprint function:

$3 > 0 { myprint($3) }

9 October 2001 01:42

This program prints, in our special format, all the third fields that contain a posi-
tive number in our input. Therefor e, when given the following:

1.2 3.4 5.6 7.8
9.10 11.12 -13.14 15.16
17.18 19.20 21.22 23.24

this program, using our function to format the results, prints:

5.6
21.2

This function deletes all the elements in an array:

function delarray(a, i)
{

for (i in a)
delete a[i]

}

When working with arrays, it is often necessary to delete all the elements in an
array and start over with a new list of elements (see the section “The delete State-
ment” in Chapter 7). Instead of having to repeat this loop everywhere that you
need to clear out an array, your program can just call delarray. (This guarantees
portability. The use of delete array to delete the contents of an entire array is a
nonstandard extension.)

The following is an example of a recursive function. It takes a string as an input
parameter and retur ns the string in backwards order. Recursive functions must
always have a test that stops the recursion. In this case, the recursion terminates
when the starting position is zero, i.e., when there are no mor e characters left in
the string:

function rev(str, start)
{

if (start == 0)
return ""

return (substr(str, start, 1) rev(str, start - 1))
}

If this function is in a file named rev.awk, it can be tested this way:

$ echo "Don’t Panic!" |
> gawk --source ’{ print rev($0, length($0)) }’ -f rev.awk
!cinaP t’noD

The C ctime function takes a timestamp and retur ns it in a string, formatted in a
well-known fashion. The following example uses the built-in strftime function
(see the section “Using gawk’s Timestamp Functions” earlier in this chapter) to
cr eate an awk version of ctime:

User-Defined Functions 169

9 October 2001 01:42

170 Chapter 8: Functions

ctime.awk
#
awk version of C ctime(3) function

function ctime(ts, format)
{

format = "%a %b %d %H:%M:%S %Z %Y"
if (ts == 0)

ts = systime() # use current time as default
return strftime(format, ts)

}

Calling User-Defined Functions
Calling a function means causing the function to run and do its job. A function
call is an expression and its value is the value retur ned by the function.

A function call consists of the function name followed by the arguments in paren-
theses. awk expr essions ar e what you write in the call for the arguments. Each
time the call is executed, these expressions are evaluated, and the values are the
actual arguments. For example, here is a call to foo with three arguments (the first
being a string concatenation):

foo(x y, "lose", 4 * z)

Whitespace characters (spaces and tabs) are not allowed between
the function name and the open-parenthesis of the argument list. If
you write whitespace by mistake, awk might think that you mean to
concatenate a variable with an expression in parentheses. However,
it notices that you used a function name and not a variable name,
and reports an error.

When a function is called, it is given a copy of the values of its arguments. This is
known as call by value. The caller may use a variable as the expression for the
argument, but the called function does not know this—it only knows what value
the argument had. For example, if you write the following code:

foo = "bar"
z = myfunc(foo)

then you should not think of the argument to myfunc as being “the variable foo.”
Instead, think of the argument as the string value "bar". If the function myfunc

alters the values of its local variables, this has no effect on any other variables.
Thus, if myfunc does this:

9 October 2001 01:42

function myfunc(str)
{

print str
str = "zzz"
print str

}

to change its first argument variable str, it does not change the value of foo in the
caller. The role of foo in calling myfunc ended when its value ("bar") was com-
puted. If str also exists outside of myfunc, the function body cannot alter this outer
value, because it is shadowed during the execution of myfunc and cannot be seen
or changed from there.

However, when arrays are the parameters to functions, they are not copied.
Instead, the array itself is made available for direct manipulation by the function.
This is usually called call by refer ence. Changes made to an array parameter inside
the body of a function ar e visible outside that function.

Changing an array parameter inside a function can be very danger-
ous if you do not watch what you are doing. For example:

function changeit(array, ind, nvalue)
{

array[ind] = nvalue
}

BEGIN {
a[1] = 1; a[2] = 2; a[3] = 3
changeit(a, 2, "two")
printf "a[1] = %s, a[2] = %s, a[3] = %s\n",

a[1], a[2], a[3]
}

prints a[1] = 1, a[2] = two, a[3] = 3, because changeit stor es
"two" in the second element of a.

Some awk implementations allow you to call a function that has not been defined.
They only report a problem at runtime when the program actually tries to call the
function. For example:

BEGIN {
if (0)

foo()
else

bar()
}
function bar() { ... }
note that ‘foo’ is not defined

User-Defined Functions 171

9 October 2001 01:42

172 Chapter 8: Functions

Because the if statement will never be true, it is not really a problem that foo has
not been defined. Usually, though, it is a problem if a program calls an undefined
function.

If ––lint is specified (see the section “Command-Line Options” in Chapter 11),
gawk reports calls to undefined functions.

Some awk implementations generate a runtime error if you use the next statement
(see the section “The next Statement” in Chapter 6, Patter ns, Actions, and Vari-
ables) inside a user-defined function. gawk does not have this limitation.

The retur n Statement
The body of a user-defined function can contain a return statement. This state-
ment retur ns contr ol to the calling part of the awk pr ogram. It can also be used to
retur n a value for use in the rest of the awk pr ogram. It looks like this:

return [expression]

The expr ession part is optional. If it is omitted, then the retur ned value is unde-
fined, and therefor e, unpr edictable.

A return statement with no value expression is assumed at the end of every
function definition. So if control reaches the end of the function body, then the
function retur ns an unpredictable value. awk does not war n you if you use the
retur n value of such a function.

Sometimes, you want to write a function for what it does, not for what it retur ns.
Such a function corresponds to a void function in C or to a procedure in Pascal.
Thus, it may be appropriate to not retur n any value; simply bear in mind that if
you use the retur n value of such a function, you do so at your own risk.

The following is an example of a user-defined function that retur ns a value for the
largest number among the elements of an array:

function maxelt(vec, i, ret)
{

for (i in vec) {
if (ret == "" || vec[i] > ret)

ret = vec[i]
}
return ret

}

You call maxelt with one argument, which is an array name. The local variables i
and ret ar e not intended to be arguments; while there is nothing to stop you from
passing several arguments to maxelt, the results would be strange. The extra space
befor e i in the function parameter list indicates that i and ret ar e not supposd to
be arguments. You should follow this convention when defining functions.

9 October 2001 01:42

The following program uses the maxelt function. It loads an array, calls maxelt,
and then reports the maximum number in that array:

function maxelt(vec, i, ret)
{

for (i in vec) {
if (ret == "" || vec[i] > ret)

ret = vec[i]
}
return ret

}

Load all fields of each record into nums.
{

for(i = 1; i <= NF; i++)
nums[NR, i] = $i

}

END {
print maxelt(nums)

}

Given the following input:

1 5 23 8 16
44 3 5 2 8 26
256 291 1396 2962 100
-6 467 998 1101
99385 11 0 225

the program reports (predictably) that 99385 is the largest number in the array.

Functions and Their Effects on Var iable Typing
awk is a very fluid language. It is possible that awk can’t tell if an identifier repr e-
sents a regular variable or an array until runtime. Here is an annotated sample pro-
gram:

function foo(a)
{

a[1] = 1 # parameter is an array
}

BEGIN {
b = 1
foo(b) # invalid: fatal type mismatch

foo(x) # x uninitialized, becomes an array dynamically
x = 1 # now not allowed, runtime error

}

Usually, such things aren’t a big issue, but it’s worth being aware of them.

User-Defined Functions 173

9 October 2001 01:42

9
Inter nationalization
with gawk

In this chapter:
• Inter nationalization

and Localization
• GNU gettext
• Inter nationalizing

awk Programs
• Translating awk

Prog rams
• A Simple

Inter nationalization
Example

• gawk Can Speak
Your Language

Once upon a time, computer makers wrote software that worked only in English.
Eventually, hardware and software vendors noticed that if their systems worked in
the native languages of non-English-speaking countries, they were able to sell
mor e systems. As a result, internationalization and localization of programs and
softwar e systems became a common practice.

Until recently, the ability to provide internationalization was largely restricted to
pr ograms written in C and C++. This chapter describes the underlying library gawk
uses for internationalization, as well as how gawk makes internationalization fea-
tur es available at the awk pr ogram level. Having internationalization available at
the awk level gives software developers additional flexibility—they are no longer
requir ed to write in C when internationalization is a requir ement.

Inter nationalization and Localization
Inter nationalization means writing (or modifying) a program once, in such a way
that it can use multiple languages without requiring further source-code changes.
Localization means providing the data necessary for an internationalized program
to work in a particular language. Most typically, these terms refer to features such
as the language used for printing error messages, the language used to read
responses, and information related to how numerical and monetary values are
printed and read.

174

9 October 2001 01:42

GNU gettext
The facilities in GNU gettext focus on messages; strings printed by a program,
either directly or via formatting with printf or sprintf.*

When using GNU gettext, each application has its own text domain. This is a
unique name, such as kpilot or gawk, that identifies the application. A complete
application may have multiple components—programs written in C or C++, as
well as scripts written in sh or awk. All of the components use the same text
domain.

To make the discussion concrete, assume we’re writing an application named
guide. Inter nationalization consists of the following steps, in this order:

1. The pr ogrammer goes through the source for all of guide ’s components and
marks each string that is a candidate for translation. For example, "‘-F’:

option required" is a good candidate for translation. A table with strings of
option names is not (e.g., gawk ’s ––pr ofile option should remain the same, no
matter what the local language).

2. The pr ogrammer indicates the application’s text domain ("guide") to the get-

text library, by calling the textdomain function.

3. Messages fr om the application are extracted from the source code and col-
lected into a portable object file (guide.po), which lists the strings and their
translations. The translations are initially empty. The original (usually English)
messages serve as the key for lookup of the translations.

4. For each language with a translator, guide.po is copied and translations are
cr eated and shipped with the application.

5. Each language’s .po file is converted into a binary message object (.mo) file. A
message object file contains the original messages and their translations in a
binary format that allows fast lookup of translations at runtime.

6. When guide is built and installed, the binary translation files are installed in a
standard place.

7. For testing and development, it is possible to tell gettext to use .mo files in a
dif ferent directory than the standard one by using the bindtextdomain func-
tion.

8. At runtime, guide looks up each string via a call to gettext. The retur ned
string is the translated string if available, or the original string if not.

* For some operating systems, the gawk port doesn’t support GNU gettext. This applies most notably
to the PC operating systems. As such, these features are not available if you are using one of those
operating systems. Sorry.

GNU gettext 175

9 October 2001 01:42

176 Chapter 9: Internationalization with gawk

9. If necessary, it is possible to access messages from a differ ent text domain
than the one belonging to the application, without having to switch the appli-
cation’s default text domain back and forth.

In C (or C++), the string marking and dynamic translation lookup are accom-
plished by wrapping each string in a call to gettext:

printf(gettext("Don’t Panic!\n"));

The tools that extract messages from source code pull out all strings enclosed in
calls to gettext.

The GNU gettext developers, recognizing that typing gettext over and over again
is both painful and ugly to look at, use the macro _ (an underscore) to make
things easier:

/* In the standard header file: */
#define _(str) gettext(str)

/* In the program text: */
printf(_("Don’t Panic!\n"));

This reduces the typing overhead to just three extra characters per string and is
considerably easier to read as well. There are locale categories for differ ent types
of locale-related information. The defined locale categories that gettext knows
about are:

LC_MESSAGES

Text messages. This is the default category for gettext operations, but it is
possible to supply a differ ent one explicitly, if necessary. (It is almost never
necessary to supply a differ ent category.)

LC_COLLATE

Text-collation information; i.e., how differ ent characters and/or groups of
characters sort in a given language.

LC_CTYPE

Character-type information (alphabetic, digit, upper- or lowercase, and so on).
This information is accessed via the POSIX character classes in regular expres-
sions, such as /[[:alnum:]]/ (see the section “Regular Expression Operators”
in Chapter 2, Regular Expressions).

LC_MONETARY

Monetary information, such as the currency symbol, and whether the symbol
goes before or after a number.

9 October 2001 01:42

LC_NUMERIC

Numeric information, such as which characters to use for the decimal point
and the thousands separator.*

LC_RESPONSE

Response information, such as how “yes” and “no” appear in the local lan-
guage, and possibly other information as well.

LC_TIME

Time- and date-related information, such as 12- or 24-hour clock, month
printed before or after day in a date, local month abbreviations, and so on.

LC_ALL

All of the above. (Not too useful in the context of gettext.)

Inter nationalizing awk Programs
gawk pr ovides the following variables and functions for internationalization:

TEXTDOMAIN

This variable indicates the application’s text domain. For compatibility with
GNU gettext, the default value is "messages".

_"your message here"

String constants marked with a leading underscore are candidates for transla-
tion at runtime. String constants without a leading underscore are not trans-
lated.

dcgettext(string [, domain [, category]])

This built-in function retur ns the translation of string in text domain domain
for locale category category. The default value for domain is the current value
of TEXTDOMAIN. The default value for category is "LC_MESSAGES".

If you supply a value for category, it must be a string equal to one of the
known locale categories described in the previous section. You must also sup-
ply a text domain. Use TEXTDOMAIN if you want to use the current domain.

The order of arguments to the awk version of the dcgettext func-
tion is purposely differ ent fr om the order for the C version. The awk
version’s order was chosen to be simple and to allow for reasonable
awk-style default arguments.

* Americans use a comma every three decimal places and a period for the decimal point, while many
Eur opeans do exactly the opposite: 1,234.56 versus 1.234,56.

Inter nationalizing awk Programs 177

9 October 2001 01:42

178 Chapter 9: Internationalization with gawk

bindtextdomain(directory [, domain])
This built-in function allows you to specify the directory in which gettext

looks for .mo files, in case they will not or cannot be placed in the standard
locations (e.g., during testing). It retur ns the directory in which domain is
“bound.”

The default domain is the value of TEXTDOMAIN. If dir ectory is the null string
(""), then bindtextdomain retur ns the current binding for the given domain.

To use these facilities in your awk pr ogram, follow the steps outlined in the previ-
ous section, like so:

1. Set the variable TEXTDOMAIN to the text domain of your program. This is best
done in a BEGIN rule (see the section “The BEGIN and END Special Patterns”
in Chapter 6, Patter ns, Actions, and Variables), or it can also be done via the
–v command-line option (see the section “Command-Line Options” in Chapter
11, Running awk and gawk):

BEGIN {
TEXTDOMAIN = "guide"
...

}

2. Mark all translatable strings with a leading underscore (_) character. It must
be adjacent to the opening quote of the string. For example:

print _"hello, world"
x = _"you goofed"
printf(_"Number of users is %d\n", nusers)

3. If you are creating strings dynamically, you can still translate them, using the
dcgettext built-in function:

message = nusers " users logged in"
message = dcgettext(message, "adminprog")
print message

Her e, the call to dcgettext supplies a differ ent text domain ("adminprog") in
which to find the message, but it uses the default "LC_MESSAGES" category.

4. During development, you might want to put the .mo file in a private directory
for testing. This is done with the bindtextdomain built-in function:

BEGIN {
TEXTDOMAIN = "guide" # our text domain
if (Testing) {

where to find our files
bindtextdomain("testdir")
joe is in charge of adminprog
bindtextdomain("../joe/testdir", "adminprog")

}
...

}

9 October 2001 01:42

See the section “A Simple Internationalization Example” later in this chapter for an
example program showing the steps to create and use translations from awk.

Tr anslating awk Prog rams
Once a program’s translatable strings have been marked, they must be extracted to
cr eate the initial .po file. As part of translation, it is often helpful to rearrange the
order in which arguments to printf ar e output.

gawk ’s ––gen–po command-line option extracts the messages and is discussed
next. After that, printf’s ability to rearrange the order for printf arguments at run-
time is covered.

Extracting Marked Str ings
Once your awk pr ogram is working, and all the strings have been marked and
you’ve set (and perhaps bound) the text domain, it is time to produce translations.
First, use the ––gen–po command-line option to create the initial .po file:

$ gawk --gen-po -f guide.awk > guide.po

When run with ––gen–po, gawk does not execute your program. Instead, it parses
it as usual and prints all marked strings to standard output in the format of a GNU
gettext Portable Object file. Also included in the output are any constant strings
that appear as the first argument to dcgettext.* See the section “A Simple Interna-
tionalization Example” later in this chapter for the full list of steps to go through to
cr eate and test translations for guide.

Rear rang ing pr intf Arguments
For mat strings for printf and sprintf (see the section “Using printf Statements for
Fancier Printing” in Chapter 4, Printing Output) present a special problem for
translation. Consider the following:†

printf(_"String ‘%s’ has %d characters\n", string, length(string)))

A possible German translation for this might be:

"%d Zeichen lang ist die Zeichenkette ‘%s’\n"

The problem should be obvious: the order of the format specifications is differ ent
fr om the original! Even though gettext can retur n the translated string at runtime,
it cannot change the argument order in the call to printf.

* Eventually, the xgettext utility that comes with GNU gettext will be taught to automatically run gawk
--gen-po for .awk files, freeing the translator from having to do it manually.

† This example is borrowed from the GNU gettext manual.

Tr anslating awk Prog rams 179

9 October 2001 01:42

180 Chapter 9: Internationalization with gawk

To solve this problem, printf for mat specificiers may have an additional optional
element, which we call a positional specifier. For example:

"%2$d Zeichen lang ist die Zeichenkette ‘%1$s’\n"

Her e, the positional specifier consists of an integer count, which indicates which
argument to use, and a $. Counts are one-based, and the format string itself is not
included. Thus, in the following example, string is the first argument and
length(string) is the second:

$ gawk ’BEGIN {
> string = "Dont Panic"
> printf _"%2$d characters live in \"%1$s\"\n",
> string, length(string)
> }’
10 characters live in "Dont Panic"

If present, positional specifiers come first in the format specification, before the
flags, the field width, and/or the precision.

Positional specifiers can be used with the dynamic field width and precision capa-
bility:

$ gawk ’BEGIN {
> printf("%*.*s\n", 10, 20, "hello")
> printf("%3$*2$.*1$s\n", 20, 10, "hello")
> }’
hello
hello

When using * with a positional specifier, the * comes first, then the
integer position, and then the $. This is somewhat counterintuitive.

gawk does not allow you to mix regular format specifiers and those with posi-
tional specifiers in the same string:

$ gawk ’BEGIN { printf _"%d %3$s\n", 1, 2, "hi" }’
gawk: cmd. line:1: fatal: must use ‘count$’ on all formats or none

Ther e ar e some pathological cases that gawk may fail to diagnose. In
such cases, the output may not be what you expect. It’s still a bad
idea to try mixing them, even if gawk doesn’t detect it.

9 October 2001 01:42

Although positional specifiers can be used directly in awk pr ograms, their primary
purpose is to help in producing correct translations of format strings into lan-
guages differ ent fr om the one in which the program is first written.

awk Por tability Issues
gawk ’s internationalization features were purposely chosen to have as little impact
as possible on the portability of awk pr ograms that use them to other versions of
awk. Consider this program:

BEGIN {
TEXTDOMAIN = "guide"
if (Test_Guide) # set with -v

bindtextdomain("/test/guide/messages")
print _"don’t panic!"

}

As written, it won’t work on other versions of awk. However, it is actually almost
portable, requiring very little change:

• Assignments to TEXTDOMAIN won’t have any effect, since TEXTDOMAIN is not spe-
cial in other awk implementations.

• Non-GNU versions of awk tr eat marked strings as the concatenation of a vari-
able named _ with the string following it.* Typically, the variable _ has the
null string ("") as its value, leaving the original string constant as the result.

• By defining “dummy” functions to replace dcgettext and bindtextdomain, the
awk pr ogram can be made to run, but all the messages are output in the origi-
nal language. For example:

function bindtextdomain(dir, domain)
{

return dir
}

function dcgettext(string, domain, category)
{

return string
}

• The use of positional specifications in printf or sprintf is not portable. To
support gettext at the C level, many systems’ C versions of sprintf do sup-
port positional specifiers. But it works only if enough arguments are supplied
in the function call. Many versions of awk pass printf for mats and arguments
unchanged to the underlying C library version of sprintf, but only one format
and argument at a time. What happens if a positional specification is used is

* This is good fodder for an “Obfuscated awk” contest.

Tr anslating awk Prog rams 181

9 October 2001 01:42

182 Chapter 9: Internationalization with gawk

anybody’s guess. However, since the positional specifications are primarily for
use in translated for mat strings, and since non-GNU awk s never retrieve the
translated string, this should not be a problem in practice.

A Simple Internationalization Example
Now let’s look at a step-by-step example of how to internationalize and localize a
simple awk pr ogram, using guide.awk as our original source:

BEGIN {
TEXTDOMAIN = "guide"
bindtextdomain(".") # for testing
print _"Don’t Panic"
print _"The Answer Is", 42
print "Pardon me, Zaphod who?"

}

Run gawk --gen-po to create the .po file:

$ gawk --gen-po -f guide.awk > guide.po

This produces:

#: guide.awk:4
msgid "Don’t Panic"
msgstr ""

#: guide.awk:5
msgid "The Answer Is"
msgstr ""

This original portable object file is saved and reused for each language into which
the application is translated. The msgid is the original string and the msgstr is the
translation.

Strings not marked with a leading underscore do not appear in the
guide.po file.

Next, the messages must be translated. Here is a translation to a hypothetical
dialect of English, called “Mellow”:*

$ cp guide.po guide-mellow.po
Add translations to guide-mellow.po ...

* Perhaps it would be better if it were called “Hippy.” Ah, well.

9 October 2001 01:42

Following are the translations:

#: guide.awk:4
msgid "Don’t Panic"
msgstr "Hey man, relax!"

#: guide.awk:5
msgid "The Answer Is"
msgstr "Like, the scoop is"

The next step is to make the directory to hold the binary message object file and
then to create the guide.mo file. The directory layout shown here is standard for
GNU gettext on GNU/Linux systems. Other versions of gettext may use a differ-
ent layout:

$ mkdir en_US en_US/LC_MESSAGES

The msgfmt utility does the conversion from human-readable .po file to machine-
readable .mo file. By default, msgfmt cr eates a file named messages. This file must
be renamed and placed in the proper directory so that gawk can find it:

$ msgfmt guide-mellow.po
$ mv messages en_US/LC_MESSAGES/guide.mo

Finally, we run the program to test it:

$ gawk -f guide.awk
Hey man, relax!
Like, the scoop is 42
Pardon me, Zaphod who?

If the two replacement functions for dcgettext and bindtextdomain (see the sec-
tion “awk Portability Issues” earlier in this chapter) are in a file named libintl.awk,
then we can run guide.awk unchanged as follows:

$ gawk --posix -f guide.awk -f libintl.awk
Don’t Panic
The Answer Is 42
Pardon me, Zaphod who?

ga wk Can Speak Your Language
As of Version 3.1, gawk itself has been internationalized using the GNU gettext

package. (GNU gettext is described in complete detail in GNU gettext tools.) As of
this writing, the latest version of GNU gettext is Version 0.10.37 (ftp://gnudist.
gnu.or g/gnu/gettext/gettext-0.10.37.tar.gz).

If a translation of gawk ’s messages exists, then gawk pr oduces usage messages,
war nings, and fatal errors in the local language.

ga wk Can Speak Your Language 183

9 October 2001 01:42

184 Chapter 9: Internationalization with gawk

On systems that do not use Version 2 (or later) of the GNU C library, you should
configur e gawk with the ––with–included–gettext option before compiling and
installing it. See the section “Additional Configuration Options” in Appendix B,
Installing gawk, for more infor mation.

9 October 2001 01:42

10
Advanced Features

of gawk

In this chapter:
• Allowing Nondecimal

Input Data
• Two-Way

Communications
with Another Process

• Using gawk for
Network
Prog ramming

• Using gawk with BSD
Portals

• Profiling Your awk
Prog rams

This chapter discusses advanced features in gawk. It’s a bit of a “grab bag” of
items that are otherwise unrelated to each other. First, a command-line option
allows gawk to recognize nondecimal numbers in input data, not just in awk pr o-
grams. Next, two-way I/O, discussed briefly in earlier parts of this book, is
described in full detail, along with the basics of TCP/IP networking and BSD por-
tal files. Finally, gawk can pr ofile an awk pr ogram, making it possible to tune it for
per formance.

The section “Adding New Built-in Functions to gawk” in Appendix C, Implementa-
tion Notes, discusses the ability to dynamically add new built-in functions to gawk.
As this feature is still immature and likely to change, its description is relegated to
an appendix.

Allowing Nondecimal Input Data
If you run gawk with the ––non –decimal–data option, you can have nondecimal
constants in your input data:

$ echo 0123 123 0x123 |
> gawk --non-decimal-data ’{ printf "%d, %d, %d\n", $1, $2, $3 }’
83, 123, 291

For this feature to work, write your program so that gawk tr eats your data as
numeric:

$ echo 0123 123 0x123 | gawk ’{ print $1, $2, $3 }’
0123 123 0x123

185

9 October 2001 01:43

186 Chapter 10: Advanced Features of gawk

The print statement treats its expressions as strings. Although the fields can act as
numbers when necessary, they are still strings, so print does not try to treat them
numerically. You may need to add zero to a field to force it to be treated as a
number. For example:

$ echo 0123 123 0x123 | gawk --non-decimal-data ’
> { print $1, $2, $3
> print $1 + 0, $2 + 0, $3 + 0 }’
0123 123 0x123
83 123 291

Because it is common to have decimal data with leading zeros, and because using
it could lead to surprising results, the default is to leave this facility disabled. If
you want it, you must explicitly request it.

Use of this option is not recommended. It can break old programs
very badly. Instead, use the strtonum function to convert your data
(see the section “Octal and Hexadecimal Numbers” in Chapter 5,
Expr essions). This makes your programs easier to write and easier to
read, and leads to less surprising results.

Tw o-Way Communications
with Another Process
It is often useful to be able to send data to a separate program for processing and
then read the result. This can always be done with temporary files:

write the data for processing
tempfile = ("/tmp/mydata." PROCINFO["pid"])
while (not done with data)

print data | ("subprogram > " tempfile)
close("subprogram > " tempfile)

read the results, remove tempfile when done
while ((getline newdata < tempfile) > 0)

process newdata appropriately
close(tempfile)
system("rm " tempfile)

This works, but not elegantly.

9 October 2001 01:43

Starting with Version 3.1 of gawk, it is possible to open a two-way pipe to another
pr ocess. The second process is termed a copr ocess, since it runs in parallel with
gawk. The two-way connection is created using the new |& operator (borrowed
fr om the Korn shell, ksh):*

do {
print data |& "subprogram"
"subprogram" |& getline results

} while (data left to process)
close("subprogram")

The first time an I/O operation is executed using the |& operator, gawk cr eates a
two-way pipeline to a child process that runs the other program. Output created
with print or printf is written to the program’s standard input, and output from
the program’s standard output can be read by the gawk pr ogram using getline. As
is the case with processes started by |, the subprogram can be any program, or
pipeline of programs, that can be started by the shell.

Ther e ar e some cautionary items to be aware of:

• As the code inside gawk curr ently stands, the coprocess’s standard error goes
to the same place that the parent gawk ’s standard error goes. It is not possible
to read the child’s standard error separately.

• I/O buffering may be a problem. gawk automatically flushes all output down
the pipe to the child process. However, if the coprocess does not flush its out-
put, gawk may hang when doing a getline in order to read the coprocess’s
results. This could lead to a situation known as deadlock, wher e each process
is waiting for the other one to do something.

It is possible to close just one end of the two-way pipe to a coprocess, by supply-
ing a second argument to the close function of either "to" or "from" (see the sec-
tion “Closing Input and Output Redirections” in Chapter 4, Printing Output). These
strings tell gawk to close the end of the pipe that sends data to the process or the
end that reads from it, respectively.

This is particularly necessary in order to use the system sort utility as part of a
copr ocess; sort must read all of its input data before it can produce any output.
The sort pr ogram does not receive an end-of-file indication until gawk closes the
write end of the pipe.

* This is very differ ent fr om the same operator in the C shell, csh.

Tw o-Way Communications with Another Process 187

9 October 2001 01:43

188 Chapter 10: Advanced Features of gawk

When you have finished writing data to the sort utility, you can close the "to" end
of the pipe, and then start reading sorted data via getline. For example:

BEGIN {
command = "LC_ALL=C sort"
n = split("abcdefghijklmnopqrstuvwxyz", a, "")

for (i = n; i > 0; i--)
print a[i] |& command

close(command, "to")

while ((command |& getline line) > 0)
print "got", line

close(command)
}

This program writes the letters of the alphabet in reverse order, one per line,
down the two-way pipe to sort. It then closes the write end of the pipe, so that
sort receives an end-of-file indication. This causes sort to sort the data and write
the sorted data back to the gawk pr ogram. Once all of the data has been read,
gawk ter minates the coprocess and exits.

As a side note, the assignment LC_ALL=C in the sort command ensures traditional
Unix (ASCII) sorting from sort.

Using gawk for Network Programming
In addition to being able to open a two-way pipeline to a coprocess on the same
system (see the section “Two-Way Communications with Another Process” earlier
in this chapter), it is possible to make a two-way connection to another process on
another system across an IP networking connection.

You can think of this as just a very long two-way pipeline to a coprocess. The way
gawk decides that you want to use TCP/IP networking is by recognizing special
filenames that begin with /inet/.

The full syntax of the special filename is /inet/pr otocol/local-port/remote-host/
remote-port. The components are:

pr otocol
The protocol to use over IP. This must be either tcp, udp, or raw, for a TCP,
UDP, or raw IP connection, respectively. The use of TCP is recommended for
most applications.

9 October 2001 01:43

The use of raw sockets is not currently supported in Version 3.1 of
gawk.

local-port
The local TCP or UDP port number to use. Use a port number of 0 when you
want the system to pick a port. This is what you should do when writing a
TCP or UDP client. You may also use a well-known service name, such as
smtp or http, in which case gawk attempts to determine the predefined port
number using the C getservbyname function.

remote-host
The IP address or fully-qualified domain name of the Internet host to which
you want to connect.

remote-port
The TCP or UDP port number to use on the given remote-host. Again, use 0 if
you don’t care, or else a well-known service name.

Consider the following very simple example:

BEGIN {
Service = "/inet/tcp/0/localhost/daytime"
Service |& getline
print $0
close(Service)

}

This program reads the current date and time from the local system’s TCP daytime

server. It then prints the results and closes the connection.

Because this topic is extensive, the use of gawk for TCP/IP programming is docu-
mented separately. See Chapter 14, Inter networking with gawk, for a much more
complete introduction and discussion, as well as extensive examples.

Using gawk with BSD Por tals
Similar to the /inet special files, if gawk is configured with the ––enable –portals
option (see the section “Compiling gawk for Unix” in Appendix B, Installing
gawk), gawk tr eats files whose pathnames begin with /p as 4.4 BSD-style portals.

When used with the |& operator, gawk opens the file for two-way communica-
tions. The operating system’s portal mechanism then manages creating the process
associated with the portal and the corresponding communications with the portal’s
pr ocess.

Using gawk with BSD Por tals 189

9 October 2001 01:43

190 Chapter 10: Advanced Features of gawk

Profiling Your awk Prog rams
Beginning with Version 3.1 of gawk, you may produce execution traces of your
awk pr ograms. This is done with a specially compiled version of gawk, called
pgawk (“pr ofiling gawk”).

pgawk is identical in every way to gawk, except that when it has finished running,
it creates a profile of your program in a file named awkpr of.out. Because it is pro-
filing, it also executes up to 45% slower than gawk nor mally does.

As shown in the following example, the ––pr ofile option can be used to change
the name of the file where pgawk will write the profile:

$ pgawk --profile=myprog.prof -f myprog.awk data1 data2

In the above example, pgawk places the profile in mypr og.pr of instead of in
awkpr of.out.

Regular gawk also accepts this option. When called with just ––pr ofile, gawk
“pr etty prints” the program into awkpr of.out, without any execution counts. You
may supply an option to ––pr ofile to change the filename. Here is a sample ses-
sion showing a simple awk pr ogram, its input data, and the results from running
pgawk. First, the awk pr ogram:

BEGIN { print "First BEGIN rule" }

END { print "First END rule" }

/foo/ {
print "matched /foo/, gosh"
for (i = 1; i <= 3; i++)

sing()
}

{
if (/foo/)

print "if is true"
else

print "else is true"
}

BEGIN { print "Second BEGIN rule" }

END { print "Second END rule" }

function sing(dummy)
{

print "I gotta be me!"
}

9 October 2001 01:43

Following is the input data:

foo
bar
baz
foo
junk

Her e is the awkpr of.out that results from running pgawk on this program and data
(this example also illustrates that awk pr ogrammers sometimes have to work late):

gawk profile, created Sun Aug 13 00:00:15 2000

BEGIN block(s)

BEGIN {
1 print "First BEGIN rule"
1 print "Second BEGIN rule"

}

Rule(s)

5 /foo/ { # 2
2 print "matched /foo/, gosh"
6 for (i = 1; i <= 3; i++) {
6 sing()

}
}

5 {
5 if (/foo/) { # 2
2 print "if is true"
3 } else {
3 print "else is true"

}
}

END block(s)

END {
1 print "First END rule"
1 print "Second END rule"

}

Functions, listed alphabetically

6 function sing(dummy)
{

6 print "I gotta be me!"
}

Profiling Your awk Prog rams 191

9 October 2001 01:43

192 Chapter 10: Advanced Features of gawk

This example illustrates many of the basic rules for profiling output. The rules are
as follows:

• The program is printed in the order BEGIN rule, pattern/action rules, END rule
and functions, listed alphabetically. Multiple BEGIN and END rules are merged
together.

• Patter n-action rules have two counts. The first count, to the left of the rule,
shows how many times the rule’s pattern was tested. The second count, to the
right of the rule’s opening left brace in a comment, shows how many times
the rule’s action was executed. The differ ence between the two indicates how
many times the rule’s pattern evaluated to false.

• Similarly, the count for an if-else statement shows how many times the con-
dition was tested. To the right of the opening left brace for the if’s body is a
count showing how many times the condition was true. The count for the
else indicates how many times the test failed.

• The count for a loop header (such as for or while) shows how many times
the loop test was executed. (Because of this, you can’t just look at the count
on the first statement in a rule to determine how many times the rule was exe-
cuted. If the first statement is a loop, the count is misleading.)

• For user-defined functions, the count next to the function keyword indicates
how many times the function was called. The counts next to the statements in
the body show how many times those statements were executed.

• The layout uses “K&R” style with tabs. Braces are used everywhere, even
when the body of an if, else, or loop is only a single statement.

• Par entheses ar e used only where needed, as indicated by the structure of the
pr ogram and the precedence rules. For example, (3 + 5) * 4 means add three
plus five, then multiply the total by four. However, 3 + 5 * 4 has no parenthe-
ses, and means 3 + (5 * 4).

• All string concatenations are par enthesized too. (This could be made a bit
smarter.)

• Par entheses ar e used around the arguments to print and printf only when
the print or printf statement is followed by a redir ection. Similarly, if the tar-
get of a redir ection isn’t a scalar, it gets parenthesized.

• pgawk supplies leading comments in front of the BEGIN and END rules, the pat-
ter n/action rules, and the functions.

The profiled version of your program may not look exactly like what you typed
when you wrote it. This is because pgawk cr eates the profiled version by “pretty
printing” its internal repr esentation of the program. The advantage to this is that

9 October 2001 01:43

pgawk can produce a standard repr esentation. The disadvantage is that all source-
code comments are lost, as are the distinctions among multiple BEGIN and END

rules. Also, things such as:

/foo/

come out as:

/foo/ {
print $0

}

which is correct, but possibly surprising.

Besides creating profiles when a program has completed, pgawk can produce a
pr ofile while it is running. This is useful if your awk pr ogram goes into an infinite
loop and you want to see what has been executed. To use this feature, run pgawk
in the background:

$ pgawk -f myprog &
[1] 13992

The shell prints a job number and process ID number; in this case, 13992. Use the
kill command to send the USR1 signal to pgawk :

$ kill -USR1 13992

As usual, the profiled version of the program is written to awkpr of.out, or to a dif-
fer ent file if you use the ––pr ofile option.

Along with the regular profile, as shown earlier, the profile includes a trace of any
active functions:

Function Call Stack:

3. baz
2. bar
1. foo
-- main --

You may send pgawk the USR1 signal as many times as you like. Each time, the
pr ofile and function call trace are appended to the output profile file.

If you use the HUP signal instead of the USR1 signal, pgawk pr oduces the profile
and the function call trace and then exits.

Profiling Your awk Prog rams 193

9 October 2001 01:43

11
Running awk
and gawk

In this chapter:
• Invoking awk
• Command-Line

Options
• Other Command-Line

Arguments
• The AWKPATH

Environment
Variable

• Obsolete Options
and/or Features

• Known Bugs in gawk

This chapter covers how to run awk , both POSIX-standard and gawk-specific
command-line options, and what awk and gawk do with non-option arguments. It
then proceeds to cover how gawk searches for source files, obsolete options
and/or features, and known bugs in gawk. This chapter rounds out the discussion
of awk as a program and as a language.

While a number of the options and features described here wer e discussed in
passing earlier in the book, this chapter provides the full details.

Invoking awk
Ther e ar e two ways to run awk—with an explicit program or with one or more
pr ogram files. Here are templates for both of them; items enclosed in [...] in these
templates are optional:

awk [options] -f progfile [--] file ...
awk [options] [--] ’program’ file ...

Besides traditional one-letter POSIX-style options, gawk also supports GNU long
options.

It is possible to invoke awk with an empty program:

awk ’’ datafile1 datafile2

Doing so makes little sense, though; awk exits silently when given an empty pro-
gram. If ––lint has been specified on the command line, gawk issues a warning
that the program is empty.

194

9 October 2001 01:43

Command-Line Options
Options begin with a dash and consist of a single character. GNU-style long
options consist of two dashes and a keyword. The keyword can be abbreviated, as
long as the abbreviation allows the option to be uniquely identified. If the option
takes an argument, then the keyword is either immediately followed by an equals
sign (=) and the argument’s value, or the keyword and the argument’s value are
separated by whitespace. If a particular option with a value is given more than
once, it is the last value that counts.

Each long option for gawk has a corresponding POSIX-style option. The long and
short options are interchangeable in all contexts. The options and their meanings
ar e as follows:

-F fs

--field-separator fs

Sets the FS variable to fs (see the section “Specifying How Fields Are Sepa-
rated” in Chapter 3, Reading Input Files).

-f source-file

--file source-file

Indicates that the awk pr ogram is to be found in sour ce-file instead of in the
first non-option argument.

-v var=val

--assign var=val

Sets the variable var to the value val before execution of the program begins.
Such variable values are available inside the BEGIN rule (see the section “Other
Command-Line Arguments” later in this chapter).

The –v option can only set one variable, but it can be used more than once,
setting another variable each time, like this: awk -v foo=1 -v bar=2

Using –v to set the values of the built-in variables may lead to sur-
prising results. awk will reset the values of those variables as it
needs to, possibly ignoring any predefined value you may have
given.

-mf N

-mr N

Sets various memory limits to the value N. The f flag sets the maximum num-
ber of fields and the r flag sets the maximum record size. These two flags and
the –m option are from the Bell Laboratories research version of Unix awk.
They are provided for compatibility but otherwise ignored by gawk, since

Command-Line Options 195

9 October 2001 01:43

196 Chapter 11: Running awk and gawk

gawk has no predefined limits. (The Bell Laboratories awk no longer needs
these options; it continues to accept them to avoid breaking old programs.)

-W gawk-opt

Following the POSIX standard, implementation-specific options are supplied
as arguments to the –W option. These options also have corresponding GNU-
style long options. Note that the long options may be abbreviated, as long as
the abbreviations remain unique. The full list of gawk-specific options is pro-
vided next.

-- Signals the end of the command-line options. The following arguments are not
tr eated as options even if they begin with -. This interpretation of –– follows
the POSIX argument parsing conventions.

This is useful if you have filenames that start with -, or in shell scripts, if you
have filenames that will be specified by the user that could start with -.

The previous list described options mandated by the POSIX standard, as well as
options available in the Bell Laboratories version of awk. The following list
describes gawk-specific options:

-W compat, -W traditional, --compat, --traditional
Specifies compatibility mode, in which the GNU extensions to the awk lan-
guage are disabled, so that gawk behaves just like the Bell Laboratories
research version of Unix awk. ––traditional is the preferr ed for m of this
option. See the section “Extensions in gawk Not in POSIX awk” in Appendix
A, The Evolution of the awk Language, which summarizes the extensions. Also
see the section “Downward Compatibility and Debugging” in Appendix C,
Implementation Notes.

-W copyright

--copyright

Print the short version of the General Public License and then exit.

-W copyleft

--copyleft

Just like ––copyright.

-W dump-variables[=file]

--dump-variables[=file]

Prints a sorted list of global variables, their types, and final values to file. If no
file is provided, gawk prints this list to the file named awkvars.out in the cur-
rent directory.

9 October 2001 01:43

Having a list of all global variables is a good way to look for typographical
err ors in your programs. You would also use this option if you have a large
pr ogram with a lot of functions, and you want to be sure that your functions
don’t inadvertently use global variables that you meant to be local. (This is a
particularly easy mistake to make with simple variable names like i, j, etc.)

-W gen-po

--gen-po

Analyzes the source program and generates a GNU gettext Portable Object
file on standard output for all string constants that have been marked for trans-
lation. See Chapter 9, Inter nationalization with gawk, for information about
this option.

-W help, -W usage, --help, --usage
Prints a “usage” message summarizing the short and long style options that
gawk accepts and then exits.

-W lint[=fatal]

--lint[=fatal]

Warn about constructs that are dubious or nonportable to other awk imple-
mentations. Some warnings are issued when gawk first reads your program.
Others are issued at runtime, as your program executes. With an optional
argument of fatal, lint warnings become fatal errors. This may be drastic, but
its use will certainly encourage the development of cleaner awk pr ograms.

-W lint-old

--lint-old

Warns about constructs that are not available in the original version of awk
fr om Version 7 Unix (see the section “Major Changes Between V7 and
SVR3.1” in Appendix A).

-W non-decimal-data

--non-decimal-data

Enable automatic interpretation of octal and hexadecimal values in input data
(see the section “Allowing Nondecimal Input Data” in Chapter 10, Advanced
Featur es of gawk).

This option can severely break old programs. Use with care.

Command-Line Options 197

9 October 2001 01:43

198 Chapter 11: Running awk and gawk

-W posix

--posix

Operates in strict POSIX mode. This disables all gawk extensions (just like
––traditional) and adds the following additional restrictions:

• \x escape sequences are not recognized (see the section “Escape
Sequences” in Chapter 2, Regular Expressions).

• Newlines do not act as whitespace to separate fields when FS is equal to a
single space (see the section “Examining Fields” in Chapter 3).

• Newlines are not allowed after ? or : (see the section “Conditional Expres-
sions” in Chapter 5, Expr essions).

• The synonym func for the keyword function is not recognized (see the
section “Function Definition Syntax” in Chapter 8, Functions).

• The ** and **= operators cannot be used in place of ˆ and ˆ= (see the
section “Arithmetic Operators” in Chapter 5, and also see the section
“Assignment Expressions” in Chapter 5).

• Specifying -Ft on the command line does not set the value of FS to be a
single tab character (see the section “Specifying How Fields Are Sepa-
rated” in Chapter 3).

• The fflush built-in function is not supported (see the section “Input/Out-
put Functions” in Chapter 8).

If you supply both ––traditional and ––posix on the command line, ––posix
takes precedence. gawk also issues a warning if both options are supplied.

-W profile[=file]

--profile[=file]

Enable profiling of awk pr ograms (see the section “Profiling Your awk Pro-
grams” in Chapter 10). By default, profiles are created in a file named
awkpr of.out. The optional file argument allows you to specify a differ ent file-
name for the profile file.

When run with gawk, the profile is just a “pretty printed” version of the pro-
gram. When run with pgawk, the profile contains execution counts for each
statement in the program in the left margin, and function call counts for each
function.

-W re-interval

--re-interval

Allow interval expressions (see the section “Regular Expression Operators” in
Chapter 2) in regexps. Because interval expressions were traditionally not
available in awk, gawk does not provide them by default. This prevents old
awk pr ograms fr om br eaking.

9 October 2001 01:43

-W source program-text

--source program-text

Allows you to mix source code in files with source code that you enter on the
command line. Program source code is taken from the pr ogram-text. This is
particularly useful when you have library functions that you want to use from
your command-line programs (see the section “The AWKPATH Envir onment
Variable” later in this chapter).

-W version

--version

Prints version information for this particular copy of gawk. This allows you to
deter mine if your copy of gawk is up to date with respect to whatever the
Fr ee Softwar e Foundation is currently distributing. It is also useful for bug
reports (see the section “Reporting Problems and Bugs” in Appendix B,
Installing gawk).

As long as program text has been supplied, any other options are flagged as
invalid with a warning message but are otherwise ignored.

In compatibility mode, as a special case, if the value of fs supplied to the –F
option is t, then FS is set to the tab character ("\t"). This is true only for ––tradi-
tional and not for ––posix (see the section “Specifying How Fields Are Separated”
in Chapter 3).

The –f option may be used more than once on the command line. If it is, awk
reads its program source from all of the named files, as if they had been concate-
nated together into one big file. This is useful for creating libraries of awk func-
tions. These functions can be written once and then retrieved from a standard
place, instead of having to be included into each individual program. (As men-
tioned in the section “Function Definition Syntax” in Chapter 8, function names
must be unique.)

Library functions can still be used, even if the program is entered at the terminal,
by specifying -f /dev/tty. After typing your program, type Ctrl-d (the end-of-file
character) to terminate it. (You may also use -f - to read program source from the
standard input but then you will not be able to also use the standard input as a
source of data.)

Because it is clumsy using the standard awk mechanisms to mix source file and
command-line awk pr ograms, gawk pr ovides the ––sour ce option. This does not
requir e you to pre-empt the standard input for your source code; it allows you to
easily mix command-line and library source code (see the section “The AWKPATH
Envir onment Variable” later in this chapter).

If no –f or ––sour ce option is specified, then gawk uses the first nonoption com-
mand-line argument as the text of the program source code.

Command-Line Options 199

9 October 2001 01:43

200 Chapter 11: Running awk and gawk

If the environment variable POSIXLY_CORRECT exists, then gawk behaves in strict
POSIX mode, exactly as if you had supplied the ––posix command-line option.
Many GNU programs look for this environment variable to turn on strict POSIX
mode. If ––lint is supplied on the command line and gawk tur ns on POSIX mode
because of POSIXLY_CORRECT, then it issues a warning message indicating that
POSIX mode is in effect. You would typically set this variable in your shell’s
startup file. For a Bourne-compatible shell (such as bash), you would add these
lines to the .pr ofile file in your home directory:

POSIXLY_CORRECT=true
export POSIXLY_CORRECT

For a csh-compatible shell, you would add this line to the .login file in your home
dir ectory:

setenv POSIXLY_CORRECT true

Having POSIXLY_CORRECT set is not recommended for daily use, but it is good
for testing the portability of your programs to other environments.

Other Command-Line Arguments
Any additional arguments on the command line are nor mally tr eated as input files
to be processed in the order specified. However, an argument that has the form
var =value, assigns the value value to the variable var—it does not specify a file at
all. (This was discussed earlier in the section “Assigning Variables on the Com-
mand Line” in Chapter 5.)

All these arguments are made available to your awk pr ogram in the ARGV array (see
the section “Built-in Variables” in Chapter 6, Patter ns, Actions, and Variables).
Command-line options and the program text (if present) are omitted from ARGV. All
other arguments, including variable assignments, are included. As each element of
ARGV is processed, gawk sets the variable ARGIND to the index in ARGV of the current
element.

The distinction between filename arguments and variable-assignment arguments is
made when awk is about to open the next input file. At that point in execution, it
checks the filename to see whether it is really a variable assignment; if so, awk
sets the variable instead of reading a file.

Ther efor e, the variables actually receive the given values after all previously speci-
fied files have been read. In particular, the values of variables assigned in this fash-
ion are not available inside a BEGIN rule (see the section “The BEGIN and END
Special Patterns” in Chapter 6), because such rules are run before awk begins
scanning the argument list.

9 October 2001 01:43

The variable values given on the command line are processed for escape
sequences (see the section “Escape Sequences” in Chapter 2).

In some earlier implementations of awk, when a variable assignment occurred
befor e any filenames, the assignment would happen befor e the BEGIN rule was
executed. awk ’s behavior was thus inconsistent; some command-line assignments
wer e available inside the BEGIN rule, while others were not. Unfortunately, some
applications came to depend upon this “feature.” When awk was changed to be
mor e consistent, the –v option was added to accommodate applications that
depended upon the old behavior.

The variable assignment feature is most useful for assigning to variables such as
RS, OFS, and ORS, which control input and output formats before scanning the
datafiles. It is also useful for controlling state if multiple passes are needed over a
datafile. For example:

awk ’pass == 1 { pass 1 stuff }
pass == 2 { pass 2 stuff }’ pass=1 mydata pass=2 mydata

Given the variable assignment feature, the –F option for setting the value of FS is
not strictly necessary. It remains for historical compatibility.

The AWKPATH Environment Var iable
In most awk implementations, you must supply a precise path name for each pro-
gram file, unless the file is in the current directory. But in gawk, if the filename
supplied to the –f option does not contain a /, then gawk searches a list of direc-
tories (called the sear ch path), one by one, looking for a file with the specified
name.

The search path is a string consisting of directory names separated by colons.
gawk gets its search path from the AWKPATH envir onment variable. If that variable
does not exist, gawk uses a default path, .:/usr/local/share/awk.* (Pr ograms writ-
ten for use by system administrators should use an AWKPATH variable that does
not include the current directory, “.”.)

The search path feature is particularly useful for building libraries of useful awk
functions. The library files can be placed in a standard directory in the default path
and then specified on the command line with a short filename. Otherwise, the full
filename would have to be typed for each file.

* Your version of gawk may use a differ ent dir ectory; it will depend upon how gawk was built and
installed. The actual directory is the value of $(datadir) generated when gawk was configured. You
pr obably don’t need to worry about this, though.

The AWKPATH Environment Var iable 201

9 October 2001 01:43

202 Chapter 11: Running awk and gawk

By using both the ––sour ce and –f options, your command-line awk pr ograms can
use facilities in awk library files (see Chapter 12, A Library of awk Functions). Path
searching is not done if gawk is in compatibility mode. This is true for both ––tra-
ditional and ––posix. See the section “Command-Line Options” earlier in this
chapter.

If you want files in the current directory to be found, you must
include the current directory in the path, either by including .
explicitly in the path or by writing a null entry in the path. (A null
entry is indicated by starting or ending the path with a colon or by
placing two colons next to each other (::).) If the current directory
is not included in the path, then files cannot be found in the current
dir ectory. This path search mechanism is identical to the shell’s.

Starting with Version 3.0, if AWKPATH is not defined in the environment, gawk
places its default search path into ENVIRON["AWKPATH"]. This makes it easy to deter-
mine the actual search path that gawk will use from within an awk pr ogram.

While you can change ENVIRON["AWKPATH"] within your awk pr ogram, this has no
ef fect on the running program’s behavior. This makes sense: the AWKPATH envi-
ronment variable is used to find the program source files. Once your program
is running, all the files have been found, and gawk no longer needs to use
AWKPATH.

Obsolete Options and/or Features
For Version 3.1 of gawk, ther e ar e no deprecated command-line options from the
pr evious version of gawk. The use of next file (two words) for nextfile was
depr ecated in gawk 3.0 but still worked. Starting with Version 3.1, the two-word
usage is no longer accepted.

The process-r elated special files described in the section “Special Files for Process-
Related Information” in Chapter 4, Printing Output, work as described, but are
now considered deprecated. gawk prints a warning message every time they are
used. (Use PROCINFO instead; see the section “Built-in Variables That Convey Infor-
mation” in Chapter 6.) They will be removed from the next release of gawk.

9 October 2001 01:43

Known Bugs in gawk
• The –F option for changing the value of FS (see the section “Command-Line

Options” earlier in this chapter) is not necessary given the command-line vari-
able assignment feature; it remains only for backward compatibility.

• Syntactically invalid single-character programs tend to overflow the parse
stack, generating a rather unhelpful message. Such programs are surprisingly
dif ficult to diagnose in the completely general case, and the effort to do so
really is not worth it.

Known Bugs in gawk 203

9 October 2001 01:43

9 October 2001 01:43

II
Using awk and gawk

Part II shows how to use awk and gawk for problem solving. There is lots of code
her e for you to read and learn from. This part contains the following chapters:

• Chapter 12, A Library of awk Functions

• Chapter 13, Practical awk Programs

• Chapter 14, Inter networking with gawk

9 October 2001 01:44

9 October 2001 01:44

12
A Librar y of

awk Functions

In this chapter:
• Naming Librar y

Function
Global Var iables

• General
Prog ramming

• Datafile Management
• Processing

Command-Line
Options

• Reading the User
Database

• Reading the Group
Database

The section “User-Defined Functions” in Chapter 8, Functions, describes how to
write your own awk functions. Writing functions is important, because it allows
you to encapsulate algorithms and program tasks in a single place. It simplifies
pr ogramming, making program development more manageable, and making pro-
grams more readable.

One valuable way to learn a new programming language is to read pr ograms in
that language. To that end, this chapter and Chapter 13, Practical awk Programs,
pr ovide a good-sized body of code for you to read, and hopefully, to learn from.

This chapter presents a library of useful awk functions. Many of the sample pro-
grams presented later in this book use these functions. The functions are pre-
sented here in a progr ession fr om simple to complex.

The section “Extracting Programs from Texinfo Source Files” in Chapter 13 pre-
sents a program that you can use to extract the source code for these example
library functions and programs from the Texinfo source for this book. (This has
alr eady been done as part of the gawk distribution.)

If you have written one or more useful, general-purpose awk functions and would
like to contribute them to the author’s collection of awk pr ograms, see the section
“How to Contribute” in the Preface for more infor mation.

The programs in this chapter and in Chapter 13 freely use features that are
gawk-specific. Rewriting these programs for differ ent implementations of awk is
pr etty straightforward.

207

9 October 2001 01:43

208 Chapter 12: A Librar y of awk Functions

Diagnostic error messages are sent to /dev/stderr. Use | "cat 1>&2", instead of >
"/dev/stderr" if your system does not have a /dev/stderr , or if you cannot use
gawk.

A number of programs use nextfile (see the section “Using gawk’s nextfile State-
ment” in Chapter 6, Patter ns, Actions, and Variables) to skip any remaining input
in the input file. The section “Implementing nextfile as a Function” later in this
chapter shows you how to write a function that does the same thing.

Finally, some of the programs choose to ignore upper- and lowercase distinctions
in their input. They do so by assigning one to IGNORECASE. You can achieve almost
the same effect* by adding the following rule to the beginning of the program:

ignore case
{ $0 = tolower($0) }

Also, verify that all regexp and string constants used in comparisons use only low-
ercase letters.

Naming Librar y Function
Global Var iables
Due to the way the awk language evolved, variables are either global (usable by
the entire program) or local (usable just by a specific function). There is no inter-
mediate state analogous to static variables in C.

Library functions often need to have global variables that they can use to preserve
state information between calls to the function—for example, getopt’s variable
_opti (see the section “Processing Command-Line Options” later in this chapter).
Such variables are called private, since the only functions that need to use them
ar e the ones in the library.

When writing a library function, you should try to choose names for your private
variables that will not conflict with any variables used by either another library
function or a user’s main program. For example, a name like i or j is not a good
choice, because user programs often use variable names like these for their own
purposes.

The example programs shown in this chapter all start the names of their private
variables with an underscore (_). Users generally don’t use leading underscores in
their variable names, so this convention immediately decreases the chances that
the variable name will be accidentally shared with the user’s program.

* The effects are not identical. Output of the transformed record will be in all lowercase, while
IGNORECASE pr eserves the original contents of the input record.

9 October 2001 01:43

In addition, several of the library functions use a prefix that helps indicate what
function or set of functions use the variables—for example, _pw_byname in the user
database routines (see the section “Reading the User Database” later in this chap-
ter). This convention is recommended, since it even further decreases the chance
of inadvertent conflict among variable names. Note that this convention is used
equally well for variable names and for private function names as well.*

As a final note on variable naming, if a function makes global variables available
for use by a main program, it is a good convention to start that variable’s name
with a capital letter—for example, getopt’s Opterr and Optind variables (see the
section “Processing Command-Line Options” later in this chapter). The leading
capital letter indicates that it is global, while the fact that the variable name is not
all capital letters indicates that the variable is not one of awk ’s built-in variables,
such as FS.

It is also important that all variables in library functions that do not need to save
state are, in fact, declared local.† If this is not done, the variable could accidentally
be used in the user’s program, leading to bugs that are very difficult to track
down:

function lib_func(x, y, l1, l2)
{

...
use variable some_var # some_var should be local
... # but is not by oversight

}

A dif ferent convention, common in the Tcl community, is to use a single associa-
tive array to hold the values needed by the library function(s), or “package.” This
significantly decreases the number of actual global names in use. For example, the
functions described in the section “Reading the User Database” later in this chapter
might have used array elements PW_data["inited"], PW_data["total"], PW_data

["count"], and PW_data["awklib"], instead of _pw_inited, _pw_awklib, _pw_total,
and _pw_count.

The conventions presented in this section are exactly that: conventions. You are
not requir ed to write your programs this way—we mer ely recommend that you do
so.

* While all the library routines could have been rewritten to use this convention, this was not done, in
order to show how my own awk pr ogramming style has evolved and to provide some basis for this
discussion.

† gawk ’s ––dump –variables command-line option is useful for verifying this.

Naming Librar y Function Global Var iables 209

9 October 2001 01:43

210 Chapter 12: A Librar y of awk Functions

General Prog ramming
This section presents a number of functions that are of general programming use.

Implementing nextfile as a Function
The nextfile statement, presented in the section “Using gawk’s nextfile Statement”
in Chapter 6, is a gawk-specific extension—it is not available in most other imple-
mentations of awk. This section shows two versions of a nextfile function that
you can use to simulate gawk ’s nextfile statement if you cannot use gawk.

A first attempt at writing a nextfile function is as follows:

nextfile --- skip remaining records in current file
this should be read in before the "main" awk program

function nextfile() { _abandon_ = FILENAME; next }
abandon == FILENAME { next }

Because it supplies a rule that must be executed first, this file should be included
befor e the main program. This rule compares the current datafile’s name (which is
always in the FILENAME variable) to a private variable named _abandon_. If the file-
name matches, then the action part of the rule executes a next statement to go on
to the next record. (The use of _ in the variable name is a convention. It is dis-
cussed more fully in the section “Naming Library Function Global Variables” earlier
in this chapter.)

The use of the next statement effectively creates a loop that reads all the records
fr om the current datafile. The end of the file is eventually reached and a new
datafile is opened, changing the value of FILENAME. Once this happens, the com-
parison of _abandon_ to FILENAME fails, and execution continues with the first rule
of the “real” program.

The nextfile function itself simply sets the value of _abandon_ and then executes
a next statement to start the loop.

This initial version has a subtle problem. If the same datafile is listed twice on the
command line, one right after the other or even with just a variable assignment
between them, this code skips right through the file a second time, even though it
should stop when it gets to the end of the first occurrence. A second version of
nextfile that remedies this problem is shown here:

nextfile --- skip remaining records in current file
correctly handle successive occurrences of the same file
this should be read in before the "main" awk program

function nextfile() { _abandon_ = FILENAME; next }

9 October 2001 01:43

abandon == FILENAME {
if (FNR == 1)

abandon = ""
else

next
}

The nextfile function has not changed. It makes _abandon_ equal to the current
filename and then executes a next statement. The next statement reads the next
record and increments FNR so that FNR is guaranteed to have a value of at least
two. However, if nextfile is called for the last record in the file, then awk closes
the current datafile and moves on to the next one. Upon doing so, FILENAME is set
to the name of the new file and FNR is reset to one. If this next file is the same as
the previous one, _abandon_ is still equal to FILENAME. However, FNR is equal to
one, telling us that this is a new occurrence of the file and not the one we were
reading when the nextfile function was executed. In that case, _abandon_ is reset
to the empty string, so that further executions of this rule fail (until the next time
that nextfile is called).

If FNR is not one, then we are still in the original datafile and the program executes
a next statement to skip through it.

An important question to ask at this point is: given that the functionality of
nextfile can be provided with a library file, why is it built into gawk ? Adding fea-
tur es for little reason leads to larger, slower programs that are harder to maintain.
The answer is that building nextfile into gawk pr ovides significant gains in effi-
ciency. If the nextfile function is executed at the beginning of a large datafile,
awk still has to scan the entire file, splitting it up into records, just to skip over it.
The built-in nextfile can simply close the file immediately and proceed to the
next one, which saves a lot of time. This is particularly important in awk, because
awk pr ograms ar e generally I/O-bound (i.e., they spend most of their time doing
input and output, instead of perfor ming computations).

Asser tions
When writing large programs, it is often useful to know that a condition or set of
conditions is true. Before proceeding with a particular computation, you make a
statement about what you believe to be the case. Such a statement is known as an
assertion. The C language provides an <assert.h> header file and corresponding
assert macr o that the programmer can use to make assertions. If an assertion fails,
the assert macr o arranges to print a diagnostic message describing the condition
that should have been true but was not, and then it kills the program. In C, using
assert looks this:

General Prog ramming 211

9 October 2001 01:43

212 Chapter 12: A Librar y of awk Functions

#include <assert.h>

int myfunc(int a, double b)
{

assert(a <= 5 && b >= 17.1);
...

}

If the assertion fails, the program prints a message similar to this:

prog.c:5: assertion failed: a <= 5 && b >= 17.1

The C language makes it possible to turn the condition into a string for use in
printing the diagnostic message. This is not possible in awk, so this assert func-
tion also requir es a string version of the condition that is being tested. Following is
the function:

assert --- assert that a condition is true. Otherwise exit.

function assert(condition, string)
{

if (! condition) {
printf("%s:%d: assertion failed: %s\n",

FILENAME, FNR, string) > "/dev/stderr"
_assert_exit = 1
exit 1

}
}

END {
if (_assert_exit)

exit 1
}

The assert function tests the condition parameter. If it is false, it prints a message
to standard error, using the string parameter to describe the failed condition. It
then sets the variable _assert_exit to one and executes the exit statement. The
exit statement jumps to the END rule. If the END rules finds _assert_exit to be true,
it exits immediately.

The purpose of the test in the END rule is to keep any other END rules from run-
ning. When an assertion fails, the program should exit immediately. If no asser-
tions fail, then _assert_exit is still false when the END rule is run normally, and
the rest of the program’s END rules execute. For all of this to work correctly,
assert.awk must be the first source file read by awk. The function can be used in a
pr ogram in the following way:

9 October 2001 01:43

function myfunc(a, b)
{

assert(a <= 5 && b >= 17.1, "a <= 5 && b >= 17.1")
...

}

If the assertion fails, you see a message similar to the following:

mydata:1357: assertion failed: a <= 5 && b >= 17.1

Ther e is a small problem with this version of assert. An END rule is automatically
added to the program calling assert. Nor mally, if a program consists of just a
BEGIN rule, the input files and/or standard input are not read. However, now that
the program has an END rule, awk attempts to read the input datafiles or standard
input (see the section “Startup and cleanup actions” in Chapter 6), most likely
causing the program to hang as it waits for input.

Ther e is a simple workaround to this: make sure the BEGIN rule always ends with
an exit statement.

Rounding Numbers
The way printf and sprintf (see the section “Using printf Statements for Fancier
Printing” in Chapter 4, Printing Output) per form rounding often depends upon the
system’s C sprintf subr outine. On many machines, sprintf rounding is “unbi-
ased,” which means it doesn’t always round a trailing .5 up, contrary to naive
expectations. In unbiased rounding, .5 rounds to even, rather than always up, so
1.5 rounds to 2 but 4.5 rounds to 4. This means that if you are using a format that
does rounding (e.g., "%.0f"), you should check what your system does. The fol-
lowing function does traditional rounding; it might be useful if your awk ’s printf
does unbiased rounding:

round.awk --- do normal rounding

function round(x, ival, aval, fraction)
{

ival = int(x) # integer part, int() truncates

see if fractional part
if (ival == x) # no fraction

return x

General Prog ramming 213

9 October 2001 01:43

214 Chapter 12: A Librar y of awk Functions

if (x < 0) {
aval = -x # absolute value
ival = int(aval)
fraction = aval - ival
if (fraction >= .5)

return int(x) - 1 # -2.5 --> -3
else

return int(x) # -2.3 --> -2
} else {

fraction = x - ival
if (fraction >= .5)

return ival + 1
else

return ival
}

}

test harness
{ print $0, round($0) }

The Cliff Random Number Generator
The Cliff random number generator* is a very simple random number generator
that “passes the noise sphere test for randomness by showing no structure.” It is
easily programmed in less than 10 lines of awk code:

cliff_rand.awk --- generate Cliff random numbers

BEGIN { _cliff_seed = 0.1 }

function cliff_rand()
{

_cliff_seed = (100 * log(_cliff_seed)) % 1
if (_cliff_seed < 0)

_cliff_seed = - _cliff_seed
return _cliff_seed

}

This algorithm requir es an initial “seed” of 0.1. Each new value uses the current
seed as input for the calculation. If the built-in rand function (see the section
“Numeric Functions” in Chapter 8) isn’t random enough, you might try using this
function instead.

Tr anslating Between Character s and Numbers
One commercial implementation of awk supplies a built-in function, ord, which
takes a character and retur ns the numeric value for that character in the machine’s
character set. If the string passed to ord has more than one character, only the first
one is used.

* http://mathworld.wolfram.com/Clif fRandomNumberGenerator.hmtl.

9 October 2001 01:43

The inverse of this function is chr (fr om the function of the same name in Pascal),
which takes a number and retur ns the corresponding character. Both functions are
written very nicely in awk ; ther e is no real reason to build them into the awk
interpr eter:

ord.awk --- do ord and chr

Global identifiers:
ord: numerical values indexed by characters
_ord_init: function to initialize _ord_

BEGIN { _ord_init() }

function _ord_init(low, high, i, t)
{

low = sprintf("%c", 7) # BEL is ascii 7
if (low == "\a") { # regular ascii

low = 0
high = 127

} else if (sprintf("%c", 128 + 7) == "\a") {
ascii, mark parity
low = 128
high = 255

} else { # ebcdic(!)
low = 0
high = 255

}

for (i = low; i <= high; i++) {
t = sprintf("%c", i)
ord[t] = i

}
}

Some explanation of the numbers used by chr is worthwhile. The most prominent
character set in use today is ASCII. Although an 8-bit byte can hold 256 distinct
values (from 0 to 255), ASCII only defines characters that use the values from 0 to
127.* In the now distant past, at least one minicomputer manufacturer used ASCII,
but with mark parity, meaning that the leftmost bit in the byte is always 1. This
means that on those systems, characters have numeric values from 128 to 255.
Finally, large mainframe systems use the EBCDIC character set, which uses all 256
values. While there are other character sets in use on some older systems, they are
not really worth worrying about:

* ASCII has been extended in many countries to use the values from 128 to 255 for country-specific
characters. If your system uses these extensions, you can simplify _ord_init to simply loop from 0
to 255.

General Prog ramming 215

9 October 2001 01:43

216 Chapter 12: A Librar y of awk Functions

function ord(str, c)
{

only first character is of interest
c = substr(str, 1, 1)
return _ord_[c]

}

function chr(c)
{

force c to be numeric by adding 0
return sprintf("%c", c + 0)

}

test code
BEGIN \
{
for (;;) {
printf("enter a character: ")
if (getline var <= 0)
break
printf("ord(%s) = %d\n", var, ord(var))
}
}

An obvious improvement to these functions is to move the code for the _ord_init

function into the body of the BEGIN rule. It was written this way initially for ease of
development. There is a “test program” in a BEGIN rule, to test the function. It is
commented out for production use.

Merging an Arra y into a String
When doing string processing, it is often useful to be able to join all the strings in
an array into one long string. The following function, join, accomplishes this task.
It is used later in several of the application programs (see Chapter 13).

Good function design is important; this function needs to be general but it should
also have a reasonable default behavior. It is called with an array as well as the
beginning and ending indices of the elements in the array to be merged. This
assumes that the array indices are numeric — a reasonable assumption since the
array was likely created with split (see the section “String-Manipulation Func-
tions” in Chapter 8):

join.awk --- join an array into a string

function join(array, start, end, sep, result, i)
{

if (sep == "")
sep = " "

else if (sep == SUBSEP) # magic value
sep = ""

9 October 2001 01:43

result = array[start]
for (i = start + 1; i <= end; i++)

result = result sep array[i]
return result

}

An optional additional argument is the separator to use when joining the strings
back together. If the caller supplies a nonempty value, join uses it; if it is not sup-
plied, it has a null value. In this case, join uses a single blank as a default separa-
tor for the strings. If the value is equal to SUBSEP, then join joins the strings with
no separator between them. SUBSEP serves as a “magic” value to indicate that there
should be no separation between the component strings.*

Manag ing the Time of Day
The systime and strftime functions described in the section “Using gawk’s Time-
stamp Functions” in Chapter 8 provide the minimum functionality necessary for
dealing with the time of day in human readable form. While strftime is extensive,
the control formats are not necessarily easy to remember or intuitively obvious
when reading a program.

The following function, gettimeofday, populates a user-supplied array with prefor-
matted time information. It retur ns a string with the current time formatted in the
same way as the date utility:

gettimeofday.awk --- get the time of day in a usable format

Returns a string in the format of output of date(1)
Populates the array argument time with individual values:
time["second"] -- seconds (0 - 59)
time["minute"] -- minutes (0 - 59)
time["hour"] -- hours (0 - 23)
time["althour"] -- hours (0 - 12)
time["monthday"] -- day of month (1 - 31)
time["month"] -- month of year (1 - 12)
time["monthname"] -- name of the month
time["shortmonth"] -- short name of the month
time["year"] -- year modulo 100 (0 - 99)
time["fullyear"] -- full year
time["weekday"] -- day of week (Sunday = 0)
time["altweekday"] -- day of week (Monday = 0)
time["dayname"] -- name of weekday
time["shortdayname"] -- short name of weekday
time["yearday"] -- day of year (0 - 365)
time["timezone"] -- abbreviation of timezone name
time["ampm"] -- AM or PM designation
time["weeknum"] -- week number, Sunday first day
time["altweeknum"] -- week number, Monday first day

* It would be nice if awk had an assignment operator for concatenation. The lack of an explicit opera-
tor for concatenation makes string operations more dif ficult than they really need to be.

General Prog ramming 217

9 October 2001 01:43

218 Chapter 12: A Librar y of awk Functions

function gettimeofday(time, ret, now, i)
{

get time once, avoids unnecessary system calls
now = systime()

return date(1)-style output
ret = strftime("%a %b %d %H:%M:%S %Z %Y", now)

clear out target array
delete time

fill in values, force numeric values to be
numeric by adding 0
time["second"] = strftime("%S", now) + 0
time["minute"] = strftime("%M", now) + 0
time["hour"] = strftime("%H", now) + 0
time["althour"] = strftime("%I", now) + 0
time["monthday"] = strftime("%d", now) + 0
time["month"] = strftime("%m", now) + 0
time["monthname"] = strftime("%B", now)
time["shortmonth"] = strftime("%b", now)
time["year"] = strftime("%y", now) + 0
time["fullyear"] = strftime("%Y", now) + 0
time["weekday"] = strftime("%w", now) + 0
time["altweekday"] = strftime("%u", now) + 0
time["dayname"] = strftime("%A", now)
time["shortdayname"] = strftime("%a", now)
time["yearday"] = strftime("%j", now) + 0
time["timezone"] = strftime("%Z", now)
time["ampm"] = strftime("%p", now)
time["weeknum"] = strftime("%U", now) + 0
time["altweeknum"] = strftime("%W", now) + 0

return ret
}

The string indices are easier to use and read than the various formats requir ed by
strftime. The alarm pr ogram pr esented in the section “An Alarm Clock Program”
in Chapter 13 uses this function. A more general design for the gettimeofday func-
tion would have allowed the user to supply an optional timestamp value to use
instead of the current time.

Datafile Management
This section presents functions that are useful for managing command-line
datafiles.

9 October 2001 01:43

Noting Datafile Boundaries
The BEGIN and END rules are each executed exactly once at the beginning and end
of your awk pr ogram, respectively (see the section “The BEGIN and END Special
Patter ns” in Chapter 6). We (the gawk authors) once had a user who mistakenly
thought that the BEGIN rule is executed at the beginning of each datafile and the
END rule is executed at the end of each datafile. When informed that this was not
the case, the user requested that we add new special patterns to gawk, named
BEGIN_FILE and END_FILE, that would have the desired behavior. He even supplied
us the code to do so.

Adding these special patterns to gawk wasn’t necessary; the job can be done
cleanly in awk itself, as illustrated by the following library program. It arranges to
call two user-supplied functions, beginfile and endfile, at the beginning and end
of each datafile. Besides solving the problem in only nine (!) lines of code, it does
so portably ; this works with any implementation of awk :

transfile.awk
#
Give the user a hook for filename transitions
#
The user must supply functions beginfile() and endfile()
that each take the name of the file being started or
finished, respectively.

FILENAME != _oldfilename \
{

if (_oldfilename != "")
endfile(_oldfilename)

_oldfilename = FILENAME
beginfile(FILENAME)

}

END { endfile(FILENAME) }

This file must be loaded before the user’s “main” program, so that the rule it sup-
plies is executed first.

This rule relies on awk ’s FILENAME variable that automatically changes for each
new datafile. The current filename is saved in a private variable, _oldfilename. If
FILENAME does not equal _oldfilename, then a new datafile is being processed and
it is necessary to call endfile for the old file. Because endfile should only be
called if a file has been processed, the program first checks to make sure that
_oldfilename is not the null string. The program then assigns the current filename
to _oldfilename and calls beginfile for the file. Because, like all awk variables,
_oldfilename is initialized to the null string, this rule executes correctly even for
the first datafile.

Datafile Management 219

9 October 2001 01:43

220 Chapter 12: A Librar y of awk Functions

The program also supplies an END rule to do the final processing for the last file.
Because this END rule comes before any END rules supplied in the “main” program,
endfile is called first. Once again the value of multiple BEGIN and END rules should
be clear.

This version has same problem as the first version of nextfile (see the section
“Implementing nextfile as a Function” earlier in this chapter). If the same datafile
occurs twice in a row on the command line, then beginfile and endfile ar e not
executed at the end of the first pass and at the beginning of the second pass. The
following version solves the problem:

ftrans.awk --- handle data file transitions
#
user supplies beginfile() and endfile() functions

FNR == 1 {
if (_filename_ != "")

endfile(_filename_)
filename = FILENAME
beginfile(FILENAME)

}

END { endfile(_filename_) }

The section “Counting Things” in Chapter 13 shows how this library function can
be used and how it simplifies writing the main program.

Rereading the Current File
Another request for a new built-in function was for a rewind function that would
make it possible to rer ead the current file. The requesting user didn’t want to have
to use getline (see the section “Explicit Input with getline” in Chapter 3, Reading
Input Files) inside a loop.

However, as long as you are not in the END rule, it is quite easy to arrange to
immediately close the current input file and then start over with it from the top.
For lack of a better name, we’ll call it rewind:

rewind.awk --- rewind the current file and start over

function rewind(i)
{

shift remaining arguments up
for (i = ARGC; i > ARGIND; i--)

ARGV[i] = ARGV[i-1]

make sure gawk knows to keep going
ARGC++

9 October 2001 01:43

make current file next to get done
ARGV[ARGIND+1] = FILENAME

do it
nextfile

}

This code relies on the ARGIND variable (see the section “Built-in Variables That
Convey Information” in Chapter 6), which is specific to gawk. If you are not using
gawk, you can use ideas presented in the section “Noting Datafile Boundaries” ear-
lier in this chapter to either update ARGIND on your own or modify this code as
appr opriate.

The rewind function also relies on the nextfile keyword (see the section “Using
gawk’s nextfile Statement” in Chapter 6). See the section “Implementing nextfile as
a Function” earlier in this chapter for a function version of nextfile.

Checking for Readable Datafiles
Nor mally, if you give awk a datafile that isn’t readable, it stops with a fatal error.
Ther e ar e times when you might want to just ignore such files and keep going.
You can do this by prepending the following program to your awk pr ogram:

readable.awk --- library file to skip over unreadable files

BEGIN {
for (i = 1; i < ARGC; i++) {

if (ARGV[i] ˜ /ˆ[A-Za-z_][A-Za-z0-9_]*=.*/ \
|| ARGV[i] == "-")
continue # assignment or standard input

else if ((getline junk < ARGV[i]) < 0) # unreadable
delete ARGV[i]

else
close(ARGV[i])

}
}

In gawk, the getline won’t be fatal (unless ––posix is in force). Removing the ele-
ment from ARGV with delete skips the file (since it’s no longer in the list).

Tr eating Assignments as Filenames
Occasionally, you might not want awk to process command-line variable assign-
ments (see the section “Assigning Variables on the Command Line” in Chapter 5,
Expr essions). In particular, if you have filenames that contain an = character, awk
tr eats the filename as an assignment, and does not process it.

Datafile Management 221

9 October 2001 01:43

222 Chapter 12: A Librar y of awk Functions

Some users have suggested an additional command-line option for gawk to disable
command-line assignments. However, some simple programming with a library file
does the trick:

noassign.awk --- library file to avoid the need for a
special option that disables command-line assignments

function disable_assigns(argc, argv, i)
{

for (i = 1; i < argc; i++)
if (argv[i] ˜ /ˆ[A-Za-z_][A-Za-z_0-9]*=.*/)

argv[i] = ("./" argv[i])
}

BEGIN {
if (No_command_assign)

disable_assigns(ARGC, ARGV)
}

You then run your program this way:

awk -v No_command_assign=1 -f noassign.awk -f yourprog.awk *

The function works by looping through the arguments. It prepends ./ to any argu-
ment that matches the form of a variable assignment, turning that argument into a
filename.

The use of No_command_assign allows you to disable command-line assignments at
invocation time, by giving the variable a true value. When not set, it is initially
zer o (i.e., false), so the command-line arguments are left alone.

Processing Command-Line Options
Most utilities on POSIX compatible systems take options, or “switches,” on the
command line that can be used to change the way a program behaves. awk is an
example of such a program (see the section “Command-Line Options” in Chapter
11, Running awk and gawk). Often, options take ar guments ; i.e., data that the
pr ogram needs to correctly obey the command-line option. For example, awk ’s –F
option requir es a string to use as the field separator. The first occurrence on the
command line of either –– or a string that does not begin with - ends the options.

Moder n Unix systems provide a C function named getopt for processing com-
mand-line arguments. The programmer provides a string describing the one-letter
options. If an option requir es an argument, it is followed in the string with a
colon. getopt is also passed the count and values of the command-line arguments
and is called in a loop. getopt pr ocesses the command-line arguments for option

9 October 2001 01:43

letters. Each time around the loop, it retur ns a single character repr esenting the
next option letter that it finds, or ? if it finds an invalid option. When it retur ns −1,
ther e ar e no options left on the command line.

When using getopt, options that do not take arguments can be grouped together.
Further more, options that take arguments requir e that the argument is present. The
argument can immediately follow the option letter, or it can be a separate com-
mand-line argument.

Given a hypothetical program that takes three command-line options, –a, –b, and
–c, wher e –b requir es an argument, all of the following are valid ways of invoking
the program:

prog -a -b foo -c data1 data2 data3
prog -ac -bfoo -- data1 data2 data3
prog -acbfoo data1 data2 data3

Notice that when the argument is grouped with its option, the rest of the argument
is considered to be the option’s argument. In this example, –acbfoo indicates that
all of the –a, –b, and –c options were supplied, and that foo is the argument to the
–b option.

getopt pr ovides four external variables that the programmer can use:

optind

The index in the argument value array (argv) in which the first nonoption
command-line argument can be found.

optarg

The string value of the argument to an option.

opterr

Usually getopt prints an error message when it finds an invalid option. Setting
opterr to zero disables this feature. (An application might want to print its
own error message.)

optopt

The letter repr esenting the command-line option.

The following C fragment shows how getopt might process command-line argu-
ments for awk :

int
main(int argc, char *argv[])
{

...
/* print our own message */
opterr = 0;
while ((c = getopt(argc, argv, "v:f:F:W:")) != -1) {

switch (c) {

Processing Command-Line Options 223

9 October 2001 01:43

224 Chapter 12: A Librar y of awk Functions

case ’f’: /* file */
...
break;

case ’F’: /* field separator */
...
break;

case ’v’: /* variable assignment */
...
break;

case ’W’: /* extension */
...
break;

case ’?’:
default:

usage();
break;

}
}
...

}

As a side point, gawk actually uses the GNU getopt_long function to process both
nor mal and GNU-style long options (see the section “Command-Line Options” in
Chapter 11).

The abstraction provided by getopt is very useful and is quite handy in awk pr o-
grams as well. Following is an awk version of getopt. This function highlights one
of the greatest weaknesses in awk, which is that it is very poor at manipulating
single characters. Repeated calls to substr ar e necessary for accessing individual
characters (see the section “String-Manipulation Functions” in Chapter 8).*

The discussion that follows walks through the code a bit at a time:

getopt.awk --- do C library getopt(3) function in awk

External variables:
Optind -- index in ARGV of first nonoption argument
Optarg -- string value of argument to current option
Opterr -- if nonzero, print our own diagnostic
Optopt -- current option letter

Returns:
-1 at end of options
? for unrecognized option
<c> a character representing the current option

Private Data:
_opti -- index in multi-flag option, e.g., -abc

* This function was written before gawk acquir ed the ability to split strings into single characters using
"" as the separator. We have left it alone, since using substr is more portable.

9 October 2001 01:43

The function starts out with a list of the global variables it uses, what the retur n
values are, what they mean, and any global variables that are “private” to this
library function. Such documentation is essential for any program, and particularly
for library functions.

The getopt function first checks that it was indeed called with a string of options
(the options parameter). If options has a zero length, getopt immediately retur ns
−1:

function getopt(argc, argv, options, thisopt, i)
{

if (length(options) == 0) # no options given
return -1

if (argv[Optind] == "--") { # all done
Optind++
_opti = 0
return -1

} else if (argv[Optind] !˜ /ˆ-[ˆ: \t\n\f\r\v\b]/) {
_opti = 0
return -1

}

The next thing to check for is the end of the options. A –– ends the command-line
options, as does any command-line argument that does not begin with a -. Optind
is used to step through the array of command-line arguments; it retains its value
acr oss calls to getopt, because it is a global variable.

The regular expression that is used, /ˆ-[ˆ: \t\n\f\r\v\b]/, is perhaps a bit of
overkill; it checks for a - followed by anything that is not whitespace and not a
colon. If the current command-line argument does not match this pattern, it is not
an option, and it ends option processing:

if (_opti == 0)
_opti = 2

thisopt = substr(argv[Optind], _opti, 1)
Optopt = thisopt
i = index(options, thisopt)
if (i == 0) {

if (Opterr)
printf("%c -- invalid option\n",

thisopt) > "/dev/stderr"
if (_opti >= length(argv[Optind])) {

Optind++
_opti = 0

} else
_opti++

return "?"
}

Processing Command-Line Options 225

9 October 2001 01:43

226 Chapter 12: A Librar y of awk Functions

The _opti variable tracks the position in the current command-line argument
(argv[Optind]). If multiple options are grouped together with one - (e.g., –abx), it
is necessary to retur n them to the user one at a time.

If _opti is equal to zero, it is set to two, which is the index in the string of the
next character to look at (we skip the -, which is at position one). The variable
thisopt holds the character, obtained with substr. It is saved in Optopt for the
main program to use.

If thisopt is not in the options string, then it is an invalid option. If Opterr is
nonzer o, getopt prints an error message on the standard error that is similar to the
message from the C version of getopt.

Because the option is invalid, it is necessary to skip it and move on to the next
option character. If _opti is greater than or equal to the length of the current com-
mand-line argument, it is necessary to move on to the next argument, so Optind is
incr emented and _opti is reset to zero. Otherwise, Optind is left alone and _opti is
mer ely incr emented.

In any case, because the option is invalid, getopt retur ns ?. The main program can
examine Optopt if it needs to know what the invalid option letter actually is. Con-
tinuing on:

if (substr(options, i + 1, 1) == ":") {
get option argument
if (length(substr(argv[Optind], _opti + 1)) > 0)

Optarg = substr(argv[Optind], _opti + 1)
else

Optarg = argv[++Optind]
_opti = 0

} else
Optarg = ""

If the option requir es an argument, the option letter is followed by a colon in the
options string. If there are remaining characters in the current command-line argu-
ment (argv[Optind]), then the rest of that string is assigned to Optarg. Otherwise,
the next command-line argument is used (-xFOO versus -x FOO). In either case,
_opti is reset to zero, because there are no mor e characters left to examine in the
curr ent command-line argument. Continuing:

if (_opti == 0 || _opti >= length(argv[Optind])) {
Optind++
_opti = 0

} else
_opti++

return thisopt
}

9 October 2001 01:43

Finally, if _opti is either zero or greater than the length of the current command-
line argument, it means this element in argv is through being processed, so Optind

is incremented to point to the next element in argv. If neither condition is true,
then only _opti is incremented, so that the next option letter can be processed on
the next call to getopt.

The BEGIN rule initializes both Opterr and Optind to one. Opterr is set to one,
since the default behavior is for getopt to print a diagnostic message upon seeing
an invalid option. Optind is set to one, since there’s no reason to look at the pro-
gram name, which is in ARGV[0]:

BEGIN {
Opterr = 1 # default is to diagnose
Optind = 1 # skip ARGV[0]

test program
if (_getopt_test) {

while ((_go_c = getopt(ARGC, ARGV, "ab:cd")) != -1)
printf("c = <%c>, optarg = <%s>\n",

_go_c, Optarg)
printf("non-option arguments:\n")
for (; Optind < ARGC; Optind++)

printf("\tARGV[%d] = <%s>\n",
Optind, ARGV[Optind])

}
}

The rest of the BEGIN rule is a simple test program. Here is the result of two sam-
ple runs of the test program:

$ awk -f getopt.awk -v _getopt_test=1 -- -a -cbARG bax -x
c = <a>, optarg = <>
c = <c>, optarg = <>
c = , optarg = <ARG>
non-option arguments:

ARGV[3] = <bax>
ARGV[4] = <-x>

$ awk -f getopt.awk -v _getopt_test=1 -- -a -x -- xyz abc
c = <a>, optarg = <>
x -- invalid option
c = <?>, optarg = <>
non-option arguments:

ARGV[4] = <xyz>
ARGV[5] = <abc>

In both runs, the first –– ter minates the arguments to awk, so that it does not try to
interpr et the –a, etc., as its own options. Several of the sample programs presented
in Chapter 13 use getopt to process their arguments.

Processing Command-Line Options 227

9 October 2001 01:43

228 Chapter 12: A Librar y of awk Functions

Reading the User Database
The PROCINFO array (see the section “Built-in Variables” in Chapter 6) provides
access to the current user’s real and effective user and group ID numbers, and if
available, the user’s supplementary group set. However, because these are num-
bers, they do not provide very useful information to the average user. Ther e needs
to be some way to find the user information associated with the user and group
ID numbers. This section presents a suite of functions for retrieving information
fr om the user database. See the section “Reading the Group Database” later in this
chapter for a similar suite that retrieves information from the group database.

The POSIX standard does not define the file where user information is kept.
Instead, it provides the <pwd.h> header file and several C language subroutines for
obtaining user information. The primary function is getpwent, for “get password
entry.” The “password” comes from the original user database file, /etc/passwd,
which stores user information, along with the encrypted passwords (hence the
name).

While an awk pr ogram could simply read /etc/passwd dir ectly, this file may not
contain complete information about the system’s set of users.* To be sur e you are
able to produce a readable and complete version of the user database, it is neces-
sary to write a small C program that calls getpwent. getpwent is defined as retur n-
ing a pointer to a struct passwd. Each time it is called, it retur ns the next entry in
the database. When there are no mor e entries, it retur ns NULL, the null pointer.
When this happens, the C program should call endpwent to close the database. Fol-
lowing is pwcat, a C program that “cats” the password database:

/*
* pwcat.c
*
* Generate a printable version of the password database
*/

#include <stdio.h>
#include <pwd.h>

int
main(argc, argv)
int argc;
char **argv;
{

struct passwd *p;

* It is often the case that password information is stored in a network database.

9 October 2001 01:43

while ((p = getpwent()) != NULL)
printf("%s:%s:%d:%d:%s:%s:%s\n",

p->pw_name, p->pw_passwd, p->pw_uid,
p->pw_gid, p->pw_gecos, p->pw_dir, p->pw_shell);

endpwent();
exit(0);

}

If you don’t understand C, don’t worry about it. The output from pwcat is the user
database, in the traditional /etc/passwd for mat of colon-separated fields. The fields
ar e:

Login name
The user’s login name.

Encrypted password
The user’s encrypted password. This may not be available on some systems.

User-ID
The user’s numeric user ID number.

Gr oup-ID
The user’s numeric group ID number.

Full name
The user’s full name, and perhaps other information associated with the user.

Home directory
The user’s login (or “home”) directory (familiar to shell programmers as
$HOME).

Login shell
The program that is run when the user logs in. This is usually a shell, such as
bash.

A few lines repr esentative of pwcat ’s output are as follows:

$ pwcat
root:3Ov02d5VaUPB6:0:1:Operator:/:/bin/sh
nobody:*:65534:65534::/:
daemon:*:1:1::/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:
arnold:xyzzy:2076:10:Arnold Robbins:/home/arnold:/bin/sh
miriam:yxaay:112:10:Miriam Robbins:/home/miriam:/bin/sh
andy:abcca2:113:10:Andy Jacobs:/home/andy:/bin/sh
...

With that introduction, following is a group of functions for getting user informa-
tion. There are several functions here, corresponding to the C functions of the
same names:

Reading the User Database 229

9 October 2001 01:43

230 Chapter 12: A Librar y of awk Functions

passwd.awk --- access password file information

BEGIN {
tailor this to suit your system
_pw_awklib = "/usr/local/libexec/awk/"

}

function _pw_init(oldfs, oldrs, olddol0, pwcat, using_fw)
{

if (_pw_inited)
return

oldfs = FS
oldrs = RS
olddol0 = $0
using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")
FS = ":"
RS = "\n"

pwcat = _pw_awklib "pwcat"
while ((pwcat | getline) > 0) {

_pw_byname[$1] = $0
_pw_byuid[$3] = $0
_pw_bycount[++_ pw_total] = $0

}
close(pwcat)
_pw_count = 0
_pw_inited = 1
FS = oldfs
if (using_fw)

FIELDWIDTHS = FIELDWIDTHS
RS = oldrs
$0 = olddol0

}

The BEGIN rule sets a private variable to the directory where pwcat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk ; however, you might want it to be in a differ ent dir ectory on
your system.

The function _pw_init keeps three copies of the user information in three associa-
tive arrays. The arrays are indexed by username (_pw_byname), by user-id number
(_pw_byuid), and by order of occurrence (_pw_bycount). The variable _pw_inited

is used for efficiency; _pw_init needs only to be called once.

Because this function uses getline to read information from pwcat, it first saves
the values of FS, RS, and $0. It notes in the variable using_fw whether field splitting
with FIELDWIDTHS is in effect or not. Doing so is necessary, since these functions
could be called from anywhere within a user’s program, and the user may have
his own way of splitting records and fields.

9 October 2001 01:43

The using_fw variable checks PROCINFO["FS"], which is "FIELDWIDTHS" if field split-
ting is being done with FIELDWIDTHS. This makes it possible to restor e the correct
field-splitting mechanism later. The test can only be true for gawk. It is false if
using FS or on some other awk implementation.

The main part of the function uses a loop to read database lines, split the line into
fields, and then store the line into each array as necessary. When the loop is done,
_pw_init cleans up by closing the pipeline, setting _pw_inited to one, and restor-
ing FS (and FIELDWIDTHS if necessary), RS, and $0. The use of _pw_count is
explained shortly.

The getpwnam function takes a username as a string argument. If that user is in the
database, it retur ns the appropriate line. Otherwise, it retur ns the null string:

function getpwnam(name)
{

_pw_init()
if (name in _pw_byname)

return _pw_byname[name]
return ""

}

Similarly, the getpwuid function takes a user-id number argument. If that user num-
ber is in the database, it retur ns the appropriate line. Otherwise, it retur ns the null
string:

function getpwuid(uid)
{

_pw_init()
if (uid in _pw_byuid)

return _pw_byuid[uid]
return ""

}

The getpwent function simply steps through the database, one entry at a time. It
uses _pw_count to track its current position in the _pw_bycount array:

function getpwent()
{

_pw_init()
if (_pw_count < _pw_total)

return _pw_bycount[++_ pw_count]
return ""

}

Reading the User Database 231

9 October 2001 01:43

232 Chapter 12: A Librar y of awk Functions

The endpwent function resets _pw_count to zero, so that subsequent calls to getp-

went start over again:

function endpwent()
{

_pw_count = 0
}

A conscious design decision in this suite was made that requir es each subroutine
to call _pw_init to initialize the database arrays. The overhead of running a sepa-
rate process to generate the user database, and the I/O to scan it, are only
incurr ed if the user’s main program actually calls one of these functions. If this
library file is loaded along with a user’s program, but none of the routines are ever
called, then there is no extra runtime overhead. (The alternative is move the body
of _pw_init into a BEGIN rule, which always runs pwcat. This simplifies the code
but runs an extra process that may never be needed.)

In turn, calling _pw_init is not too expensive, because the _pw_inited variable
keeps the program from reading the data more than once. If you are worried
about squeezing every last cycle out of your awk pr ogram, the check of
_pw_inited could be moved out of _pw_init and duplicated in all the other func-
tions. In practice, this is not necessary, since most awk pr ograms ar e I/O-bound,
and it clutters up the code.

The id pr ogram in the section “Printing out User Information” in Chapter 13 uses
these functions.

Reading the Group Database
Much of the discussion presented in the previous section applies to the group
database as well. Although there has traditionally been a well-known file
(/etc/gr oup) in a well-known format, the POSIX standard only provides a set of C
library routines (<grp.h> and getgrent) for accessing the information. Even though
this file may exist, it likely does not have complete information. Therefor e, as with
the user database, it is necessary to have a small C program that generates the
gr oup database as its output.

gr cat, a C program that “cats” the group database, is as follows:

/*
* grcat.c
*
* Generate a printable version of the group database
*/

#include <stdio.h>
#include <grp.h>

9 October 2001 01:43

int
main(argc, argv)
int argc;
char **argv;
{

struct group *g;
int i;

while ((g = getgrent()) != NULL) {
printf("%s:%s:%d:", g->gr_name, g->gr_passwd,

g->gr_gid);
for (i = 0; g->gr_mem[i] != NULL; i++) {

printf("%s", g->gr_mem[i]);
if (g->gr_mem[i+1] != NULL)

putchar(’,’);
}
putchar(’\n’);

}
endgrent();
exit(0);

}

Each line in the group database repr esents one group. The fields are separated
with colons and repr esent the following information:

Gr oup name
The group’s name.

Gr oup passwor d
The group’s encrypted password. In practice, this field is never used; it is usu-
ally empty or set to *.

Gr oup-ID
The group’s numeric group ID number; this number is unique within the file.

Gr oup member list
A comma-separated list of usernames. These users are members of the group.
Moder n Unix systems allow users to be members of several groups simul-
taneously. If your system does, then there are elements "group1" thr ough
"groupN" in PROCINFO for those group ID numbers. (Note that PROCINFO is a
gawk extension; see the section “Built-in Variables” in Chapter 6.)

Her e is what running gr cat might produce:

$ grcat
wheel:*:0:arnold
nogroup:*:65534:
daemon:*:1:
kmem:*:2:
staff:*:10:arnold,miriam,andy
other:*:20:
...

Reading the Group Database 233

9 October 2001 01:43

234 Chapter 12: A Librar y of awk Functions

Her e ar e the functions for obtaining information from the group database. There
ar e several, modeled after the C library functions of the same names:

group.awk --- functions for dealing with the group file

BEGIN \
{

Change to suit your system
_gr_awklib = "/usr/local/libexec/awk/"

}

function _gr_init(oldfs, oldrs, olddol0, grcat, using_fw, n, a, i)
{

if (_gr_inited)
return

oldfs = FS
oldrs = RS
olddol0 = $0
using_fw = (PROCINFO["FS"] == "FIELDWIDTHS")
FS = ":"
RS = "\n"

grcat = _gr_awklib "grcat"
while ((grcat | getline) > 0) {

if ($1 in _gr_byname)
_gr_byname[$1] = _gr_byname[$1] "," $4

else
_gr_byname[$1] = $0

if ($3 in _gr_bygid)
_gr_bygid[$3] = _gr_bygid[$3] "," $4

else
_gr_bygid[$3] = $0

n = split($4, a, "[\t]*,[\t]*")
for (i = 1; i <= n; i++)

if (a[i] in _gr_groupsbyuser)
_gr_groupsbyuser[a[i]] = \

_gr_groupsbyuser[a[i]] " " $1
else

_gr_groupsbyuser[a[i]] = $1

_gr_bycount[++_gr_count] = $0
}
close(grcat)
_gr_count = 0
_gr_inited++
FS = oldfs
if (using_fw)

FIELDWIDTHS = FIELDWIDTHS
RS = oldrs
$0 = olddol0

}

9 October 2001 01:43

The BEGIN rule sets a private variable to the directory where gr cat is stored.
Because it is used to help out an awk library routine, we have chosen to put it in
/usr/local/libexec/awk . You might want it to be in a differ ent dir ectory on your sys-
tem.

These routines follow the same general outline as the user database routines (see
the section “Reading the User Database” earlier in this chapter). The _gr_inited

variable is used to ensure that the database is scanned no more than once. The
_gr_init function first saves FS, FIELDWIDTHS, RS, and $0, and then sets FS and RS

to the correct values for scanning the group information.

The group information is stored is several associative arrays. The arrays are
indexed by group name (_gr_byname), by group ID number (_gr_bygid), and by
position in the database (_gr_bycount). There is an additional array indexed by
user name (_gr_groupsbyuser), which is a space-separated list of groups to which
each user belongs.

Unlike the user database, it is possible to have multiple records in the database for
the same group. This is common when a group has a large number of members. A
pair of such entries might look like the following:

tvpeople:*:101:johnny,jay,arsenio
tvpeople:*:101:david,conan,tom,joan

For this reason, _gr_init looks to see if a group name or group ID number is
alr eady seen. If it is, then the usernames are simply concatenated onto the previ-
ous list of users. (There is actually a subtle problem with the code just presented.
Suppose that the first time there wer e no names. This code adds the names with a
leading comma. It also doesn’t check that there is a $4.)

Finally, _gr_init closes the pipeline to gr cat, restor es FS (and FIELDWIDTHS if nec-
essary), RS, and $0, initializes _gr_count to zero (it is used later), and makes
_gr_inited nonzer o.

The getgrnam function takes a group name as its argument, and if that group
exists, it is retur ned. Otherwise, getgrnam retur ns the null string:

function getgrnam(group)
{

_gr_init()
if (group in _gr_byname)

return _gr_byname[group]
return ""

}

Reading the Group Database 235

9 October 2001 01:43

236 Chapter 12: A Librar y of awk Functions

The getgrgid function is similar, it takes a numeric group ID and looks up the
infor mation associated with that group ID:

function getgrgid(gid)
{

_gr_init()
if (gid in _gr_bygid)

return _gr_bygid[gid]
return ""

}

The getgruser function does not have a C counterpart. It takes a username and
retur ns the list of groups that have the user as a member:

function getgruser(user)
{

_gr_init()
if (user in _gr_groupsbyuser)

return _gr_groupsbyuser[user]
return ""

}

The getgrent function steps through the database one entry at a time. It uses
_gr_count to track its position in the list:

function getgrent()
{

_gr_init()
if (++_gr_count in _gr_bycount)

return _gr_bycount[_gr_count]
return ""

}

The endgrent function resets _gr_count to zero so that getgrent can start over
again:

function endgrent()
{

_gr_count = 0
}

As with the user database routines, each function calls _gr_init to initialize the
arrays. Doing so only incurs the extra overhead of running gr cat if these functions
ar e used (as opposed to moving the body of _gr_init into a BEGIN rule).

Most of the work is in scanning the database and building the various associative
arrays. The functions that the user calls are themselves very simple, relying on
awk ’s associative arrays to do work.

The id pr ogram in the section “Printing out User Information” in Chapter 13 uses
these functions.

9 October 2001 01:43

13
Practical awk

Prog rams

In this chapter:
• Running the

Example Prog rams
• Reinventing Wheels

for Fun and Profit
• A Grab Bag of awk

Prog rams

Chapter 12, A Library of awk Functions, presents the idea that reading programs in
a language contributes to learning that language. This chapter continues that
theme, presenting a potpourri of awk pr ograms for your reading enjoyment. There
ar e thr ee sections. The first describes how to run the programs presented in this
chapter.

The second presents awk versions of several common POSIX utilities. These are
pr ograms that you are hopefully already familiar with, and therefor e, whose prob-
lems are understood. By reimplementing these programs in awk, you can focus on
the awk -r elated aspects of solving the programming problem.

The third is a grab bag of interesting programs. These solve a number of differ ent
data-manipulation and management problems. Many of the programs are short,
which emphasizes awk ’s ability to do a lot in just a few lines of code.

Many of these programs use the library functions presented in Chapter 12.

Running the Example Prog rams
To run a given program, you would typically do something like this:

awk -f program -- options files

Her e, pr ogram is the name of the awk pr ogram (such as cut.awk), options ar e any
command-line options for the program that start with a -, and files ar e the actual
datafiles.

237

9 October 2001 01:43

238 Chapter 13: Practical awk Prog rams

If your system supports the #! executable interpreter mechanism (see the section
“Executable awk Programs” in Chapter 1, Getting Started with awk), you can
instead run your program directly:

cut.awk -c1-8 myfiles > results

If your awk is not gawk, you may instead need to use this:

cut.awk -- -c1-8 myfiles > results

Reinventing Wheels for Fun and Profit
This section presents a number of POSIX utilities that are implemented in awk.
Reinventing these programs in awk is often enjoyable, because the algorithms can
be very clearly expressed, and the code is usually very concise and simple. This is
true because awk does so much for you.

It should be noted that these programs are not necessarily intended to replace the
installed versions on your system. Instead, their purpose is to illustrate awk lan-
guage programming for “real world” tasks.

Cutting out Fields and Columns
The cut utility selects, or “cuts,” characters or fields from its standard input and
sends them to its standard output. Fields are separated by tabs by default, but you
may supply a command-line option to change the field delimiter (i.e., the field-
separator character). cut ’s definition of fields is less general than awk ’s.

A common use of cut might be to pull out just the login name of logged-on users
fr om the output of who. For example, the following pipeline generates a sorted,
unique list of the logged-on users:

who | cut -c1-8 | sort | uniq

The options for cut ar e:

-c list

Use list as the list of characters to cut out. Items within the list may be sepa-
rated by commas, and ranges of characters can be separated with dashes. The
list 1-8,15,22-35 specifies characters 1 through 8, 15, and 22 through 35.

-f list

Use list as the list of fields to cut out.

9 October 2001 01:43

-d delim

Use delim as the field-separator character instead of the tab character.

-s Suppr ess printing of lines that do not contain the field delimiter.

The awk implementation of cut uses the getopt library function (see the section
“Pr ocessing Command-Line Options” in Chapter 12) and the join library function
(see the section “Merging an Array into a String” in Chapter 12).

The program begins with a comment describing the options, the library functions
needed, and a usage function that prints out a usage message and exits. usage is
called if invalid arguments are supplied:

cut.awk --- implement cut in awk

Options:
-f list Cut fields
-d c Field delimiter character
-c list Cut characters
#
-s Suppress lines without the delimiter
#
Requires getopt and join library functions

function usage(e1, e2)
{

e1 = "usage: cut [-f list] [-d c] [-s] [files...]"
e2 = "usage: cut [-c list] [files...]"
print e1 > "/dev/stderr"
print e2 > "/dev/stderr"
exit 1

}

The variables e1 and e2 ar e used so that the function fits nicely on the page.

Next comes a BEGIN rule that parses the command-line options. It sets FS to a sin-
gle-tab character, because that is cut ’s default field separator. The output field sep-
arator is also set to be the same as the input field separator. Then getopt is used to
step through the command-line options. One of the variables by_fields or
by_chars is set to true, to indicate that processing should be done by fields or by
characters, respectively. When cutting by characters, the output field separator is
set to the null string:

BEGIN \
{

FS = "\t" # default
OFS = FS
while ((c = getopt(ARGC, ARGV, "sf:c:d:")) != -1) {

if (c == "f") {
by_fields = 1
fieldlist = Optarg

Reinventing Wheels for Fun and Profit 239

9 October 2001 01:43

240 Chapter 13: Practical awk Prog rams

} else if (c == "c") {
by_chars = 1
fieldlist = Optarg
OFS = ""

} else if (c == "d") {
if (length(Optarg) > 1) {

printf("Using first character of %s" \
" for delimiter\n", Optarg) > "/dev/stderr"

Optarg = substr(Optarg, 1, 1)
}
FS = Optarg
OFS = FS
if (FS == " ") # defeat awk semantics

FS = "[]"
} else if (c == "s")

suppress++
else

usage()
}

for (i = 1; i < Optind; i++)
ARGV[i] = ""

Special care is taken when the field delimiter is a space. Using a single space (" ")
for the value of FS is incorrect —awk would separate fields with runs of spaces,
tabs, and/or newlines, and we want them to be separated with individual spaces.
Also, note that after getopt is through, we have to clear out all the elements of
ARGV fr om 1 to Optind, so that awk does not try to process the command-line
options as filenames.

After dealing with the command-line options, the program verifies that the options
make sense. Only one or the other of –c and –f should be used, and both requir e
a field list. Then the program calls either set_fieldlist or set_charlist to pull
apart the list of fields or characters:

if (by_fields && by_chars)
usage()

if (by_fields == 0 && by_chars == 0)
by_fields = 1 # default

if (fieldlist == "") {
print "cut: needs list for -c or -f" > "/dev/stderr"
exit 1

}

if (by_fields)
set_fieldlist()

else
set_charlist()

}

9 October 2001 01:43

set_fieldlist is used to split the field list apart at the commas and into an array.
Then, for each element of the array, it looks to see if it is actually a range, and if
so, splits it apart. The range is verified to make sure the first number is smaller
than the second. Each number in the list is added to the flist array, which simply
lists the fields that will be printed. Normal field splitting is used. The program lets
awk handle the job of doing the field splitting:

function set_fieldlist(n, m, i, j, k, f, g)
{

n = split(fieldlist, f, ",")
j = 1 # index in flist
for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # a range
m = split(f[i], g, "-")
if (m != 2 || g[1] >= g[2]) {

printf("bad field list: %s\n",
f[i]) > "/dev/stderr"

exit 1
}
for (k = g[1]; k <= g[2]; k++)

flist[j++] = k
} else

flist[j++] = f[i]
}
nfields = j - 1

}

The set_charlist function is more complicated than set_fieldlist. The idea here
is to use gawk ’s FIELDWIDTHS variable (see the section “Reading Fixed-Width Data”
in Chapter 3, Reading Input Files), which describes constant-width input. When
using a character list, that is exactly what we have.

Setting up FIELDWIDTHS is more complicated than simply listing the fields that need
to be printed. We have to keep track of the fields to print and also the intervening
characters that have to be skipped. For example, suppose you wanted characters 1
thr ough 8, 15, and 22 through 35. You would use -c 1-8,15,22-35. The necessary
value for FIELDWIDTHS is "8 6 1 6 14". This yields five fields, and the fields to print
ar e $1, $3, and $5. The intermediate fields are filler, which is stuff in between the
desir ed data. flist lists the fields to print, and t tracks the complete field list,
including filler fields:

function set_charlist(field, i, j, f, g, t,
filler, last, len)

{
field = 1 # count total fields
n = split(fieldlist, f, ",")
j = 1 # index in flist
for (i = 1; i <= n; i++) {

if (index(f[i], "-") != 0) { # range
m = split(f[i], g, "-")

Reinventing Wheels for Fun and Profit 241

9 October 2001 01:43

242 Chapter 13: Practical awk Prog rams

if (m != 2 || g[1] >= g[2]) {
printf("bad character list: %s\n",

f[i]) > "/dev/stderr"
exit 1

}
len = g[2] - g[1] + 1
if (g[1] > 1) # compute length of filler

filler = g[1] - last - 1
else

filler = 0
if (filler)

t[field++] = filler
t[field++] = len # length of field
last = g[2]
flist[j++] = field - 1

} else {
if (f[i] > 1)

filler = f[i] - last - 1
else

filler = 0
if (filler)

t[field++] = filler
t[field++] = 1
last = f[i]
flist[j++] = field - 1

}
}
FIELDWIDTHS = join(t, 1, field - 1)
nfields = j - 1

}

Next is the rule that actually processes the data. If the –s option is given, then sup-

press is true. The first if statement makes sure that the input record does have the
field separator. If cut is processing fields, suppress is true, and the field separator
character is not in the record, then the record is skipped.

If the record is valid, then gawk has split the data into fields, either using the char-
acter in FS or using fixed-length fields and FIELDWIDTHS. The loop goes through the
list of fields that should be printed. The corresponding field is printed if it contains
data. If the next field also has data, then the separator character is written out
between the fields:

{
if (by_fields && suppress && index($0, FS) != 0)

next

9 October 2001 01:43

for (i = 1; i <= nfields; i++) {
if ($flist[i] != "") {

printf "%s", $flist[i]
if (i < nfields && $flist[i+1] != "")

printf "%s", OFS
}

}
print ""

}

This version of cut relies on gawk ’s FIELDWIDTHS variable to do the character-
based cutting. While it is possible in other awk implementations to use substr (see
the section “String-Manipulation Functions” in Chapter 8, Functions), it is also
extr emely painful. The FIELDWIDTHS variable supplies an elegant solution to the
pr oblem of picking the input line apart by characters.

Sear ching for Regular Expressions in Files
The egr ep utility searches files for patterns. It uses regular expressions that are
almost identical to those available in awk (see Chapter 2, Regular Expressions). It
is used in the following manner:

egrep [options] ’pattern’ files ...

The patter n is a regular expression. In typical usage, the regular expression is
quoted to prevent the shell from expanding any of the special characters as file-
name wildcards. Normally, egr ep prints the lines that matched. If multiple file-
names are provided on the command line, each output line is preceded by the
name of the file and a colon.

The options to egr ep ar e as follows:

-c Print out a count of the lines that matched the pattern, instead of the lines
themselves.

-s Be silent. No output is produced and the exit value indicates whether the pat-
ter n was matched.

-v Invert the sense of the test. egr ep prints the lines that do not match the pattern
and exits successfully if the pattern is not matched.

-i Ignor e case distinctions in both the pattern and the input data.

-l Only print (list) the names of the files that matched, not the lines that
matched.

-e pattern

Use patter n as the regexp to match. The purpose of the –e option is to allow
patter ns that start with a -.

Reinventing Wheels for Fun and Profit 243

9 October 2001 01:43

244 Chapter 13: Practical awk Prog rams

This version uses the getopt library function (see the section “Processing Com-
mand-Line Options” in Chapter 12) and the file transition library program (see the
section “Noting Datafile Boundaries” in Chapter 12).

The program begins with a descriptive comment and then a BEGIN rule that pro-
cesses the command-line arguments with getopt. The –i (ignor e case) option is
particularly easy with gawk ; we just use the IGNORECASE built-in variable (see the
section “Built-in Variables” in Chapter 6, Patter ns, Actions, and Variables):

egrep.awk --- simulate egrep in awk

Options:
-c count of lines
-s silent - use exit value
-v invert test, success if no match
-i ignore case
-l print filenames only
-e argument is pattern
#
Requires getopt and file transition library functions

BEGIN {
while ((c = getopt(ARGC, ARGV, "ce:svil")) != -1) {

if (c == "c")
count_only++

else if (c == "s")
no_print++

else if (c == "v")
invert++

else if (c == "i")
IGNORECASE = 1

else if (c == "l")
filenames_only++

else if (c == "e")
pattern = Optarg

else
usage()

}

Next comes the code that handles the egr ep -specific behavior. If no patter n is sup-
plied with –e, the first nonoption on the command line is used. The awk com-
mand-line arguments up to ARGV[Optind] ar e clear ed, so that awk won’t try to
pr ocess them as files. If no files are specified, the standard input is used, and if
multiple files are specified, we make sure to note this so that the filenames can
pr ecede the matched lines in the output:

if (pattern == "")
pattern = ARGV[Optind++]

for (i = 1; i < Optind; i++)
ARGV[i] = ""

9 October 2001 01:43

if (Optind >= ARGC) {
ARGV[1] = "-"
ARGC = 2

} else if (ARGC - Optind > 1)
do_filenames++

if (IGNORECASE)
pattern = tolower(pattern)
}

The last two lines are commented out, since they are not needed in gawk. They
should be uncommented if you have to use another version of awk.

The next set of lines should be uncommented if you are not using gawk. This rule
translates all the characters in the input line into lowercase if the –i option is
specified.* The rule is commented out since it is not necessary with gawk :

#{
if (IGNORECASE)
$0 = tolower($0)
#}

The beginfile function is called by the rule in ftrans.awk when each new file is
pr ocessed. In this case, it is very simple; all it does is initialize a variable fcount to
zer o. fcount tracks how many lines in the current file matched the pattern (naming
the parameter junk shows we know that beginfile is called with a parameter, but
that we’re not interested in its value):

function beginfile(junk)
{

fcount = 0
}

The endfile function is called after each file has been processed. It affects the out-
put only when the user wants a count of the number of lines that matched.
no_ print is true only if the exit status is desired. count_only is true if line counts
ar e desir ed. egr ep ther efor e only prints line counts if printing and counting are
enabled. The output format must be adjusted depending upon the number of files
to process. Finally, fcount is added to total, so that we know the total number of
lines that matched the pattern:

function endfile(file)
{

if (! no_print && count_only)
if (do_filenames)

print file ":" fcount
else

print fcount

* It also introduces a subtle bug; if a match happens, we output the translated line, not the original.

Reinventing Wheels for Fun and Profit 245

9 October 2001 01:43

246 Chapter 13: Practical awk Prog rams

total += fcount
}

The following rule does most of the work of matching lines. The variable matches

is true if the line matched the pattern. If the user wants lines that did not match,
the sense of matches is inverted using the ! operator. fcount is incremented with
the value of matches, which is either one or zero, depending upon a successful or
unsuccessful match. If the line does not match, the next statement just moves on
to the next record.

A number of additional tests are made, but they are only done if we are not count-
ing lines. First, if the user only wants exit status (no_print is true), then it is
enough to know that one line in this file matched, and we can skip on to the next
file with nextfile. Similarly, if we are only printing filenames, we can print the
filename, and then skip to the next file with nextfile. Finally, each line is printed,
with a leading filename and colon if necessary:

{
matches = ($0 ˜ pattern)
if (invert)

matches = ! matches

fcount += matches # 1 or 0

if (! matches)
next

if (! count_only) {
if (no_print)

nextfile

if (filenames_only) {
print FILENAME
nextfile

}

if (do_filenames)
print FILENAME ":" $0

else
print

}
}

The END rule takes care of producing the correct exit status. If there are no
matches, the exit status is one; otherwise, it is zero:

END \
{

if (total == 0)
exit 1

exit 0
}

9 October 2001 01:43

The usage function prints a usage message in case of invalid options and then
exits:

function usage(e)
{

e = "Usage: egrep [-csvil] -e pat [files ...]"
e = e "\n\tegrep [-csvil] pat [files ...]"
print e > "/dev/stderr"
exit 1

}

The variable e is used so that the function fits nicely on the printed page.

Just a note on programming style: you may have noticed that the END rule uses
backslash continuation, with the open brace on a line by itself. This is so that it
mor e closely resembles the way functions are written. Many of the examples in
this chapter use this style. You can decide for yourself if you like writing your
BEGIN and END rules this way or not.

Pr inting out User Infor mation
The id utility lists a user’s real and effective user ID numbers, real and effective
gr oup ID numbers, and the user’s group set, if any. id only prints the effective
user ID and group ID only if they are dif ferent from the real ones. If possible, id
also supplies the corresponding user and group names. The output might look like
this:

$ id
uid=2076(arnold) gid=10(staff) groups=10(staff),4(tty)

This information is part of what is provided by gawk ’s PROCINFO array (see the sec-
tion “Built-in Variables” in Chapter 6). However, the id utility provides a more
palatable output than just individual numbers.

Her e is a simple version of id written in awk. It uses the user database library
functions (see the section “Reading the User Database” in Chapter 12) and the
gr oup database library functions (see the section “Reading the Group Database” in
Chapter 12).

The program is fairly straightforward. All the work is done in the BEGIN rule. The
user and group ID numbers are obtained from PROCINFO. The code is repetitive.
The entry in the user database for the real user ID number is split into parts at
the :. The name is the first field. Similar code is used for the effective user ID
number and the group numbers:

Reinventing Wheels for Fun and Profit 247

9 October 2001 01:43

248 Chapter 13: Practical awk Prog rams

id.awk --- implement id in awk
#
Requires user and group library functions
output is:
uid=12(foo) euid=34(bar) gid=3(baz) \
egid=5(blat) groups=9(nine),2(two),1(one)

BEGIN \
{

uid = PROCINFO["uid"]
euid = PROCINFO["euid"]
gid = PROCINFO["gid"]
egid = PROCINFO["egid"]

printf("uid=%d", uid)
pw = getpwuid(uid)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}

if (euid != uid) {
printf(" euid=%d", euid)
pw = getpwuid(euid)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}
}

printf(" gid=%d", gid)
pw = getgrgid(gid)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}

if (egid != gid) {
printf(" egid=%d", egid)
pw = getgrgid(egid)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}
}

9 October 2001 01:43

for (i = 1; ("group" i) in PROCINFO; i++) {
if (i == 1)

printf(" groups=")
group = PROCINFO["group" i]
printf("%d", group)
pw = getgrgid(group)
if (pw != "") {

split(pw, a, ":")
printf("(%s)", a[1])

}
if (("group" (i+1)) in PROCINFO)

printf(",")
}

print ""
}

The test in the for loop is worth noting. Any supplementary groups in the
PROCINFO array have the indices "group1" thr ough "groupN" for some N, i.e., the
total number of supplementary groups. However, we don’t know in advance how
many of these groups there are.

This loop works by starting at one, concatenating the value with "group", and then
using in to see if that value is in the array. Eventually, i is incremented past the
last group in the array and the loop exits.

The loop is also correct if there are no supplementary groups; then the condition
is false the first time it’s tested, and the loop body never executes.

Splitting a Large File into Pieces
The split pr ogram splits large text files into smaller pieces. Usage is as follows:

split [-count] file [prefix]

By default, the output files are named xaa, xab, and so on. Each file has 1000
lines in it, with the likely exception of the last file. To change the number of lines
in each file, supply a number on the command line preceded with a minus; e.g.,
-500 for files with 500 lines in them instead of 1000. To change the name of the
output files to something like myfileaa, myfileab, and so on, supply an additional
argument that specifies the filename prefix.

Her e is a version of split in awk. It uses the ord and chr functions presented in
the section “Translating Between Characters and Numbers” in Chapter 12.

The program first sets its defaults, and then tests to make sure ther e ar e not too
many arguments. It then looks at each argument in turn. The first argument could
be a minus sign followed by a number. If it is, this happens to look like a negative
number, so it is made positive, and that is the count of lines. The data filename is
skipped over and the final argument is used as the prefix for the output filenames:

Reinventing Wheels for Fun and Profit 249

9 October 2001 01:43

250 Chapter 13: Practical awk Prog rams

split.awk --- do split in awk
#
Requires ord and chr library functions
usage: split [-num] [file] [outname]

BEGIN {
outfile = "x" # default
count = 1000
if (ARGC > 4)

usage()

i = 1
if (ARGV[i] ˜ /ˆ-[0-9]+$/) {

count = -ARGV[i]
ARGV[i] = ""
i++

}
test argv in case reading from stdin instead of file
if (i in ARGV)

i++ # skip data file name
if (i in ARGV) {

outfile = ARGV[i]
ARGV[i] = ""

}

s1 = s2 = "a"
out = (outfile s1 s2)

}

The next rule does most of the work. tcount (temporary count) tracks how many
lines have been printed to the output file so far. If it is greater than count, it is time
to close the current file and start a new one. s1 and s2 track the current suffixes
for the filename. If they are both z, the file is just too big. Otherwise, s1 moves to
the next letter in the alphabet and s2 starts over again at a:

{
if (++tcount > count) {

close(out)
if (s2 == "z") {

if (s1 == "z") {
printf("split: %s is too large to split\n",

FILENAME) > "/dev/stderr"
exit 1

}
s1 = chr(ord(s1) + 1)
s2 = "a"

} else
s2 = chr(ord(s2) + 1)

out = (outfile s1 s2)
tcount = 1

}
print > out

}

9 October 2001 01:43

The usage function simply prints an error message and exits:

function usage(e)
{

e = "usage: split [-num] [file] [outname]"
print e > "/dev/stderr"
exit 1

}

The variable e is used so that the function fits nicely on the page.

This program is a bit sloppy; it relies on awk to automatically close the last file
instead of doing it in an END rule. It also assumes that letters are contiguous in the
character set, which isn’t true for EBCDIC systems.

Duplicating Output into Multiple Files
The tee pr ogram is known as a “pipe fitting.” tee copies its standard input to its
standard output and also duplicates it to the files named on the command line. Its
usage is as follows:

tee [-a] file ...

The –a option tells tee to append to the named files, instead of truncating them
and starting over.

The BEGIN rule first makes a copy of all the command-line arguments into an array
named copy. ARGV[0] is not copied, since it is not needed. tee cannot use ARGV

dir ectly, since awk attempts to process each filename in ARGV as input data.

If the first argument is –a, then the flag variable append is set to true, and both
ARGV[1] and copy[1] ar e deleted. If ARGC is less than two, then no filenames were
supplied and tee prints a usage message and exits. Finally, awk is forced to read
the standard input by setting ARGV[1] to "-" and ARGC to two:

tee.awk --- tee in awk

BEGIN \
{

for (i = 1; i < ARGC; i++)
copy[i] = ARGV[i]

if (ARGV[1] == "-a") {
append = 1
delete ARGV[1]
delete copy[1]
ARGC--

}

Reinventing Wheels for Fun and Profit 251

9 October 2001 01:43

252 Chapter 13: Practical awk Prog rams

if (ARGC < 2) {
print "usage: tee [-a] file ..." > "/dev/stderr"
exit 1

}
ARGV[1] = "-"
ARGC = 2

}

The single rule does all the work. Since there is no patter n, it is executed for each
line of input. The body of the rule simply prints the line into each file on the com-
mand line, and then to the standard output:

{
moving the if outside the loop makes it run faster
if (append)

for (i in copy)
print >> copy[i]

else
for (i in copy)

print > copy[i]
print

}

It is also possible to write the loop this way:

for (i in copy)
if (append)

print >> copy[i]
else

print > copy[i]

This is more concise but it is also less efficient. The if is tested for each record
and for each output file. By duplicating the loop body, the if is only tested once
for each input record. If there are N input records and M output files, the first
method only executes N if statements, while the second executes N × M if state-
ments.

Finally, the END rule cleans up by closing all the output files:

END \
{

for (i in copy)
close(copy[i])

}

Pr inting Nonduplicated Lines of Text
The uniq utility reads sorted lines of data on its standard input, and by default
removes duplicate lines. In other words, it only prints unique lines—hence the
name. uniq has a number of options. The usage is as follows:

9 October 2001 01:43

uniq [-udc [-n]] [+n] [input file [output file]]

The options for uniq ar e:

-d Print only repeated lines.

-u Print only nonrepeated lines.

-c Count lines. This option overrides –d and –u. Both repeated and nonrepeated
lines are counted.

-n Skip n fields before comparing lines. The definition of fields is similar to
awk ’s default: nonwhitespace characters separated by runs of spaces and/or
tabs.

+n Skip n characters before comparing lines. Any fields specified with -n ar e
skipped first.

input file

Data is read from the input file named on the command line, instead of from
the standard input.

output file

The generated output is sent to the named output file, instead of to the stan-
dard output.

Nor mally uniq behaves as if both the –d and –u options are provided.

uniq uses the getopt library function (see the section “Processing Command-Line
Options” in Chapter 12) and the join library function (see the section “Merging an
Array into a String” in Chapter 12).

The program begins with a usage function and then a brief outline of the options
and their meanings in a comment. The BEGIN rule deals with the command-line
arguments and options. It uses a trick to get getopt to handle options of the form
-25, treating such an option as the option letter 2 with an argument of 5. If indeed
two or more digits are supplied (Optarg looks like a number), Optarg is concate-
nated with the option digit and then the result is added to zero to make it into a
number. If ther e is only one digit in the option, then Optarg is not needed. In this
case, Optind must be decremented so that getopt pr ocesses it next time. This code
is admittedly a bit tricky.

If no options are supplied, then the default is taken, to print both repeated and
nonr epeated lines. The output file, if provided, is assigned to outputfile. Early on,
outputfile is initialized to the standard output, /dev/stdout:

uniq.awk --- do uniq in awk
#
Requires getopt and join library functions

Reinventing Wheels for Fun and Profit 253

9 October 2001 01:43

254 Chapter 13: Practical awk Prog rams

function usage(e)
{

e = "Usage: uniq [-udc [-n]] [+n] [in [out]]"
print e > "/dev/stderr"
exit 1

}

-c count lines. overrides -d and -u
-d only repeated lines
-u only non-repeated lines
-n skip n fields
+n skip n characters, skip fields first

BEGIN \
{

count = 1
outputfile = "/dev/stdout"
opts = "udc0:1:2:3:4:5:6:7:8:9:"
while ((c = getopt(ARGC, ARGV, opts)) != -1) {

if (c == "u")
non_repeated_only++

else if (c == "d")
repeated_only++

else if (c == "c")
do_count++

else if (index("0123456789", c) != 0) {
getopt requires args to options
this messes us up for things like -5
if (Optarg ˜ /ˆ[0-9]+$/)

fcount = (c Optarg) + 0
else {

fcount = c + 0
Optind--

}
} else

usage()
}

if (ARGV[Optind] ˜ /ˆ\+[0-9]+$/) {
charcount = substr(ARGV[Optind], 2) + 0
Optind++

}

for (i = 1; i < Optind; i++)
ARGV[i] = ""

if (repeated_only == 0 && non_repeated_only == 0)
repeated_only = non_repeated_only = 1

if (ARGC - Optind == 2) {
outputfile = ARGV[ARGC - 1]
ARGV[ARGC - 1] = ""

}
}

9 October 2001 01:43

The following function, are_equal, compar es the current line, $0, to the previous
line, last. It handles skipping fields and characters. If no field count and no char-
acter count are specified, are_equal simply retur ns one or zero depending upon
the result of a simple string comparison of last and $0. Otherwise, things get
mor e complicated. If fields have to be skipped, each line is broken into an array
using split (see the section “String-Manipulation Functions” in Chapter 8); the
desir ed fields are then joined back into a line using join. The joined lines are
stor ed in clast and cline. If no fields are skipped, clast and cline ar e set to last

and $0, respectively. Finally, if characters are skipped, substr is used to strip off
the leading charcount characters in clast and cline. The two strings are then
compar ed and are_equal retur ns the result:

function are_equal(n, m, clast, cline, alast, aline)
{

if (fcount == 0 && charcount == 0)
return (last == $0)

if (fcount > 0) {
n = split(last, alast)
m = split($0, aline)
clast = join(alast, fcount+1, n)
cline = join(aline, fcount+1, m)

} else {
clast = last
cline = $0

}
if (charcount) {

clast = substr(clast, charcount + 1)
cline = substr(cline, charcount + 1)

}

return (clast == cline)
}

The following two rules are the body of the program. The first one is executed
only for the very first line of data. It sets last equal to $0, so that subsequent lines
of text have something to be compared to.

The second rule does the work. The variable equal is one or zero, depending
upon the results of are_equal’s comparison. If uniq is counting repeated lines, and
the lines are equal, then it increments the count variable. Otherwise, it prints the
line and resets count, since the two lines are not equal.

If uniq is not counting, and if the lines are equal, count is incremented. Nothing is
printed, since the point is to remove duplicates. Otherwise, if uniq is counting
repeated lines and more than one line is seen, or if uniq is counting nonrepeated
lines and only one line is seen, then the line is printed, and count is reset.

Reinventing Wheels for Fun and Profit 255

9 October 2001 01:43

256 Chapter 13: Practical awk Prog rams

Finally, similar logic is used in the END rule to print the final line of input data:

NR == 1 {
last = $0
next

}

{
equal = are_equal()

if (do_count) { # overrides -d and -u
if (equal)

count++
else {

printf("%4d %s\n", count, last) > outputfile
last = $0
count = 1 # reset

}
next

}

if (equal)
count++

else {
if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))
print last > outputfile

last = $0
count = 1

}
}

END {
if (do_count)

printf("%4d %s\n", count, last) > outputfile
else if ((repeated_only && count > 1) ||

(non_repeated_only && count == 1))
print last > outputfile

}

Counting Things
The wc (word count) utility counts lines, words, and characters in one or more
input files. Its usage is as follows:

wc [-lwc] [files ...]

If no files are specified on the command line, wc reads its standard input. If there
ar e multiple files, it also prints total counts for all the files. The options and their
meanings are shown in the following list:

9 October 2001 01:43

-l Count only lines.

-w Count only words. A “word” is a contiguous sequence of nonwhitespace char-
acters, separated by spaces and/or tabs. Luckily, this is the normal way awk
separates fields in its input data.

-c Count only characters.

Implementing wc in awk is particularly elegant, since awk does a lot of the work
for us; it splits lines into words (i.e., fields) and counts them, it counts lines (i.e.,
records), and it can easily tell us how long a line is.

This uses the getopt library function (see the section “Processing Command-Line
Options” in Chapter 12) and the file-transition functions (see the section “Noting
Datafile Boundaries” in Chapter 12).

This version has one notable differ ence fr om traditional versions of wc: it always
prints the counts in the order lines, words, and characters. Traditional versions
note the order of the –l, –w, and –c options on the command line, and print the
counts in that order.

The BEGIN rule does the argument processing. The variable print_total is true if
mor e than one file is named on the command line:

wc.awk --- count lines, words, characters

Options:
-l only count lines
-w only count words
-c only count characters
#
Default is to count lines, words, characters
#
Requires getopt and file transition library functions

BEGIN {
let getopt print a message about
invalid options. we ignore them
while ((c = getopt(ARGC, ARGV, "lwc")) != -1) {

if (c == "l")
do_lines = 1

else if (c == "w")
do_words = 1

else if (c == "c")
do_chars = 1

}
for (i = 1; i < Optind; i++)

ARGV[i] = ""

if no options, do all
if (! do_lines && ! do_words && ! do_chars)

do_lines = do_words = do_chars = 1

Reinventing Wheels for Fun and Profit 257

9 October 2001 01:43

258 Chapter 13: Practical awk Prog rams

print_total = (ARGC - i > 2)
}

The beginfile function is simple; it just resets the counts of lines, words, and
characters to zero, and saves the current filename in fname:

function beginfile(file)
{

chars = lines = words = 0
fname = FILENAME

}

The endfile function adds the current file’s numbers to the running totals of lines,
words, and characters.* It then prints out those numbers for the file that was just
read. It relies on beginfile to reset the numbers for the following datafile:

function endfile(file)
{

tchars += chars
tlines += lines
twords += words
if (do_lines)

printf "\t%d", lines
if (do_words)

printf "\t%d", words
if (do_chars)

printf "\t%d", chars
printf "\t%s\n", fname

}

Ther e is one rule that is executed for each line. It adds the length of the record,
plus one, to chars. Adding one plus the record length is needed because the new-
line character separating records (the value of RS) is not part of the record itself,
and thus not included in its length. Next, lines is incremented for each line read,
and words is incremented by the value of NF, which is the number of “words” on
this line:

do per line
{

chars += length($0) + 1 # get newline
lines++
words += NF

}

* wc can’t just use the value of FNR in endfile. If you examine the code in the section “Noting Datafile
Boundaries” in Chapter 12, you will see that FNR has already been reset by the time endfile is
called.

9 October 2001 01:43

Finally, the END rule simply prints the totals for all the files:

END {
if (print_total) {

if (do_lines)
printf "\t%d", tlines

if (do_words)
printf "\t%d", twords

if (do_chars)
printf "\t%d", tchars

print "\ttotal"
}

}

A Gra b Bag of awk Prog rams
This section is a large “grab bag” of miscellaneous programs. We hope you find
them both interesting and enjoyable.

Finding Duplicated Words in a Document
A common error when writing large amounts of prose is to accidentally duplicate
words. Typically you will see this in text as something like “the program does the
following...” When the text is online, often the duplicated words occur at the end
of one line and the beginning of another, making them very difficult to spot.

This program, dupwor d.awk, scans through a file one line at a time and looks for
adjacent occurrences of the same word. It also saves the last word on a line (in the
variable prev) for comparison with the first word on the next line.

The first two statements make sure that the line is all lowercase, so that, for exam-
ple, “The” and “the” compare equal to each other. The next statement replaces
nonalphanumeric and nonwhitespace characters with spaces, so that punctuation
does not affect the comparison either. The characters are replaced with spaces so
that formatting controls don’t create nonsense words (e.g., the Texinfo @code{NF}

becomes codeNF if punctuation is simply deleted). The record is then resplit into
fields, yielding just the actual words on the line, and ensuring that there are no
empty fields.

If there are no fields left after removing all the punctuation, the current record is
skipped. Otherwise, the program loops through each word, comparing it to the
pr evious one:

dupword.awk --- find duplicate words in text

A Gra b Bag of awk Prog rams 259

9 October 2001 01:43

260 Chapter 13: Practical awk Prog rams

{
$0 = tolower($0)
gsub(/[ˆ[:alnum:][:blank:]]/, " ");
$0 = $0 # re-split
if (NF == 0)

next
if ($1 == prev)

printf("%s:%d: duplicate %s\n",
FILENAME, FNR, $1)

for (i = 2; i <= NF; i++)
if ($i == $(i-1))

printf("%s:%d: duplicate %s\n",
FILENAME, FNR, $i)

prev = $NF
}

An Alarm Clock Prog ram
The following program is a simple “alarm clock” program. You give it a time of
day and an optional message. At the specified time, it prints the message on the
standard output. In addition, you can give it the number of times to repeat the
message as well as a delay between repetitions.

This program uses the gettimeofday function from the section “Managing the Time
of Day” in Chapter 12.

All the work is done in the BEGIN rule. The first part is argument checking and set-
ting of defaults: the delay, the count, and the message to print. If the user supplied
a message without the ASCII BEL character (known as the “alert” character, "\a"),
then it is added to the message. (On many systems, printing the ASCII BEL gener-
ates an audible alert. Thus when the alarm goes off, the system calls attention to
itself in case the user is not looking at the computer or terminal.) Here is the pro-
gram:

alarm.awk --- set an alarm
#
Requires gettimeofday library function

usage: alarm time ["message" [count [delay]]]

BEGIN \
{

Initial argument sanity checking
usage1 = "usage: alarm time [’message’ [count [delay]]]"
usage2 = sprintf("\t(%s) time ::= hh:mm", ARGV[1])

9 October 2001 01:43

if (ARGC < 2) {
print usage1 > "/dev/stderr"
print usage2 > "/dev/stderr"
exit 1

} else if (ARGC == 5) {
delay = ARGV[4] + 0
count = ARGV[3] + 0
message = ARGV[2]

} else if (ARGC == 4) {
count = ARGV[3] + 0
message = ARGV[2]

} else if (ARGC == 3) {
message = ARGV[2]

} else if (ARGV[1] !˜ /[0-9]?[0-9]:[0-9][0-9]/) {
print usage1 > "/dev/stderr"
print usage2 > "/dev/stderr"
exit 1

}

set defaults for once we reach the desired time
if (delay == 0)

delay = 180 # 3 minutes
if (count == 0)

count = 5
if (message == "")

message = sprintf("\aIt is now %s!\a", ARGV[1])
else if (index(message, "\a") == 0)

message = "\a" message "\a"

The next section of code turns the alarm time into hours and minutes, converts it
(if necessary) to a 24-hour clock, and then turns that time into a count of the sec-
onds since midnight. Next it turns the current time into a count of seconds since
midnight. The differ ence between the two is how long to wait before setting off
the alarm:

split up alarm time
split(ARGV[1], atime, ":")
hour = atime[1] + 0 # force numeric
minute = atime[2] + 0 # force numeric

get current broken down time
gettimeofday(now)

if time given is 12-hour hours and it’s after that
hour, e.g., ‘alarm 5:30’ at 9 a.m. means 5:30 p.m.,
then add 12 to real hour
if (hour < 12 && now["hour"] > hour)

hour += 12

set target time in seconds since midnight
target = (hour * 60 * 60) + (minute * 60)

A Gra b Bag of awk Prog rams 261

9 October 2001 01:43

262 Chapter 13: Practical awk Prog rams

get current time in seconds since midnight
current = (now["hour"] * 60 * 60) + \

(now["minute"] * 60) + now["second"]

how long to sleep for
naptime = target - current
if (naptime <= 0) {

print "time is in the past!" > "/dev/stderr"
exit 1

}

Finally, the program uses the system function (see the section “Input/Output Func-
tions” in Chapter 8) to call the sleep utility. The sleep utility simply pauses for the
given number of seconds. If the exit status is not zero, the program assumes that
sleep was interrupted and exits. If sleep exited with an OK status (zero), then the
pr ogram prints the message in a loop, again using sleep to delay for however
many seconds are necessary:

zzzzzz..... go away if interrupted
if (system(sprintf("sleep %d", naptime)) != 0)

exit 1

time to notify!
command = sprintf("sleep %d", delay)
for (i = 1; i <= count; i++) {

print message
if sleep command interrupted, go away
if (system(command) != 0)

break
}

exit 0
}

Tr ansliterating Character s
The system tr utility transliterates characters. For example, it is often used to map
uppercase letters into lowercase for further processing:

generate data | tr ’A-Z’ ’a-z’ | process data ...

tr requir es two lists of characters.* When processing the input, the first character in
the first list is replaced with the first character in the second list, the second char-
acter in the first list is replaced with the second character in the second list, and so
on. If there are mor e characters in the “from” list than in the “to” list, the last char-
acter of the “to” list is used for the remaining characters in the “from” list.

* On some older System V systems, including Solaris, tr may requir e that the lists be written as range
expr essions enclosed in square brackets ([a-z]) and quoted, to prevent the shell from attempting a
filename expansion. This is not a feature.

9 October 2001 01:43

Some time ago, a user proposed that a transliteration function should be added to
gawk. The following program was written to prove that character transliteration
could be done with a user-level function. This program is not as complete as the
system tr utility but it does most of the job.

The translate pr ogram demonstrates one of the few weaknesses of standard awk :
dealing with individual characters is very painful, requiring repeated use of the
substr, index, and gsub built-in functions (see the section “String-Manipulation
Functions” in Chapter 8).* Ther e ar e two functions. The first, stranslate, takes
thr ee arguments:

from

A list of characters from which to translate.

to

A list of characters from which to translate.

target

The string on which to do the translation

Associative arrays make the translation part fairly easy. t_ar holds the “to” charac-
ters, indexed by the “from” characters. Then a simple loop goes through from, one
character at a time. For each character in from, if the character appears in target,
gsub is used to change it to the corresponding to character.

The translate function simply calls stranslate using $0 as the target. The main
pr ogram sets two global variables, FROM and TO, from the command line, and then
changes ARGV so that awk reads from the standard input.

Finally, the processing rule simply calls translate for each record:

translate.awk --- do tr-like stuff

Bugs: does not handle things like: tr A-Z a-z, it has
to be spelled out. However, if ‘to’ is shorter than ‘from’,
the last character in ‘to’ is used for the rest of ‘from’.

function stranslate(from, to, target, lf, lt, t_ar, i, c)
{

lf = length(from)
lt = length(to)
for (i = 1; i <= lt; i++)

t_ar[substr(from, i, 1)] = substr(to, i, 1)
if (lt < lf)

for (; i <= lf; i++)
t_ar[substr(from, i, 1)] = substr(to, lt, 1)

* This program was written before gawk acquir ed the ability to split each character in a string into sep-
arate array elements.

A Gra b Bag of awk Prog rams 263

9 October 2001 01:43

264 Chapter 13: Practical awk Prog rams

for (i = 1; i <= lf; i++) {
c = substr(from, i, 1)
if (index(target, c) > 0)

gsub(c, t_ar[c], target)
}
return target

}

function translate(from, to)
{

return $0 = stranslate(from, to, $0)
}

main program
BEGIN {

if (ARGC < 3) {
print "usage: translate from to" > "/dev/stderr"
exit

}
FROM = ARGV[1]
TO = ARGV[2]
ARGC = 2
ARGV[1] = "-"

}

{
translate(FROM, TO)
print

}

While it is possible to do character transliteration in a user-level function, it is not
necessarily efficient, and we (the gawk authors) started to consider adding a built-
in function. However, shortly after writing this program, we learned that the Sys-
tem V Release 4 awk had added the toupper and tolower functions (see the sec-
tion “String-Manipulation Functions” in Chapter 8). These functions handle the vast
majority of the cases where character transliteration is necessary, and so we chose
to simply add those functions to gawk as well and then leave well enough alone.

An obvious improvement to this program would be to set up the t_ar array only
once, in a BEGIN rule. However, this assumes that the “from” and “to” lists will
never change throughout the lifetime of the program.

Pr inting Mailing Labels
This next script reads lists of names and addresses and generates mailing labels.
Each page of labels has 20 labels on it, 2 across and 10 down. The addresses are
guaranteed to be no more than 5 lines of data. Each address is separated from the
next by a blank line.

9 October 2001 01:43

The basic idea is to read 20 labels worth of data. Each line of each label is stored
in the line array. The single rule takes care of filling the line array and printing
the page when 20 labels have been read.

The BEGIN rule simply sets RS to the empty string, so that awk splits records at
blank lines (see the section “How Input Is Split into Records” in Chapter 3). It sets
MAXLINES to 100, since 100 is the maximum number of lines on the page (20 * 5 =
100).

Most of the work is done in the printpage function. The label lines are stor ed
sequentially in the line array. But they have to print horizontally; line[1] next to
line[6], line[2] next to line[7], and so on. Two loops are used to accomplish
this. The outer loop, controlled by i, steps through every 10 lines of data; this is
each row of labels. The inner loop, controlled by j, goes through the lines within
the row. As j goes from 0 to 4, i+j is the j-th line in the row, and i+j+5 is the
entry next to it. The output ends up looking something like this:

line 1 line 6
line 2 line 7
line 3 line 8
line 4 line 9
line 5 line 10
...

As a final note, an extra blank line is printed at lines 21 and 61, to keep the output
lined up on the labels. This is dependent on the particular brand of labels in use
when the program was written. You will also note that there are 2 blank lines at
the top and 2 blank lines at the bottom.

The END rule arranges to flush the final page of labels; there may not have been an
even multiple of 20 labels in the data:

labels.awk --- print mailing labels

Each label is 5 lines of data that may have blank lines.
The label sheets have 2 blank lines at the top and 2 at
the bottom.

BEGIN { RS = "" ; MAXLINES = 100 }

function printpage(i, j)
{

if (Nlines <= 0)
return

printf "\n\n" # header

A Gra b Bag of awk Prog rams 265

9 October 2001 01:43

266 Chapter 13: Practical awk Prog rams

for (i = 1; i <= Nlines; i += 10) {
if (i == 21 || i == 61)

print ""
for (j = 0; j < 5; j++) {

if (i + j > MAXLINES)
break

printf " %-41s %s\n", line[i+j], line[i+j+5]
}
print ""

}

printf "\n\n" # footer

for (i in line)
line[i] = ""

}

main rule
{

if (Count >= 20) {
printpage()
Count = 0
Nlines = 0

}
n = split($0, a, "\n")
for (i = 1; i <= n; i++)

line[++Nlines] = a[i]
for (; i <= 5; i++)

line[++Nlines] = ""
Count++

}

END \
{

printpage()
}

Generating Word-Usage Counts
The following awk pr ogram prints the number of occurrences of each word in its
input. It illustrates the associative nature of awk arrays by using strings as sub-
scripts. It also demonstrates the for index in array mechanism. Finally, it shows
how awk is used in conjunction with other utility programs to do a useful task of
some complexity with a minimum of effort. Some explanations follow the program
listing:

Print list of word frequencies
{

for (i = 1; i <= NF; i++)
freq[$i]++

}

9 October 2001 01:43

END {
for (word in freq)

printf "%s\t%d\n", word, freq[word]
}

This program has two rules. The first rule, because it has an empty pattern, is exe-
cuted for every input line. It uses awk ’s field-accessing mechanism (see the sec-
tion “Examining Fields” in Chapter 3) to pick out the individual words from the
line, and the built-in variable NF (see the section “Built-in Variables” in Chapter 6)
to know how many fields are available. For each input word, it increments an ele-
ment of the array freq to reflect that the word has been seen an additional time.

The second rule, because it has the pattern END, is not executed until the input has
been exhausted. It prints out the contents of the freq table that has been built up
inside the first action. This program has several problems that would prevent it
fr om being useful by itself on real text files:

• Words are detected using the awk convention that fields are separated just by
whitespace. Other characters in the input (except newlines) don’t have any
special meaning to awk. This means that punctuation characters count as part
of words.

• The awk language considers upper- and lowercase characters to be distinct.
Ther efor e, “bartender” and “Bartender” are not treated as the same word. This
is undesirable, since in normal text, words are capitalized if they begin sen-
tences, and a frequency analyzer should not be sensitive to capitalization.

• The output does not come out in any useful order. You’r e mor e likely to be
inter ested in which words occur most frequently or in having an alphabetized
table of how frequently each word occurs.

The way to solve these problems is to use some of awk ’s more advanced features.
First, we use tolower to remove case distinctions. Next, we use gsub to remove
punctuation characters. Finally, we use the system sort utility to process the output
of the awk script. Here is the new version of the program:

wordfreq.awk --- print list of word frequencies

{
$0 = tolower($0) # remove case distinctions
gsub(/[ˆ[:alnum:]_[:blank:]]/, "", $0) # remove punctuation
for (i = 1; i <= NF; i++)

freq[$i]++
}

END {
for (word in freq)

printf "%s\t%d\n", word, freq[word]
}

A Gra b Bag of awk Prog rams 267

9 October 2001 01:43

268 Chapter 13: Practical awk Prog rams

Assuming we have saved this program in a file named wor dfreq.awk, and that the
data is in file1, the following pipeline:

awk -f wordfreq.awk file1 | sort +1 -nr

pr oduces a table of the words appearing in file1 in order of decreasing frequency.
The awk pr ogram suitably massages the data and produces a word frequency
table, which is not ordered.

The awk script’s output is then sorted by the sort utility and printed on the termi-
nal. The options given to sort specify a sort that uses the second field of each
input line (skipping one field), that the sort keys should be treated as numeric
quantities (otherwise 15 would come before 5), and that the sorting should be
done in descending (reverse) order.

The sort could even be done from within the program, by changing the END action
to:

END {
sort = "sort +1 -nr"
for (word in freq)

printf "%s\t%d\n", word, freq[word] | sort
close(sort)

}

This way of sorting must be used on systems that do not have true pipes at the
command-line (or batch-file) level. See the general operating system documenta-
tion for more infor mation on how to use the sort pr ogram.

Removing Duplicates from Unsorted Text
The uniq pr ogram (see the section “Printing Nonduplicated Lines of Text” earlier
in this chapter) removes duplicate lines from sorted data.

Suppose, however, you need to remove duplicate lines from a datafile but that you
want to preserve the order the lines are in. A good example of this might be a
shell history file. The history file keeps a copy of all the commands you have
enter ed, and it is not unusual to repeat a command several times in a row. Occa-
sionally you might want to compact the history by removing duplicate entries. Yet
it is desirable to maintain the order of the original commands.

This simple program does the job. It uses two arrays. The data array is indexed by
the text of each line. For each line, data[$0] is incremented. If a particular line has
not been seen before, then data[$0] is zero. In this case, the text of the line is
stor ed in lines[count]. Each element of lines is a unique command, and the
indices of lines indicate the order in which those lines are encounter ed. The END

rule simply prints out the lines, in order:

9 October 2001 01:43

histsort.awk --- compact a shell history file
Thanks to Byron Rakitzis for the general idea

{
if (data[$0]++ == 0)

lines[++count] = $0
}

END {
for (i = 1; i <= count; i++)

print lines[i]
}

This program also provides a foundation for generating other useful information.
For example, using the following print statement in the END rule indicates how
often a particular command is used:

print data[lines[i]], lines[i]

This works because data[$0] is incremented each time a line is seen.

Extracting Prog rams from Texinfo Sour ce Files
Both this chapter and Chapter 12 present a large number of awk pr ograms. If you
want to experiment with these programs, it is tedious to have to type them in by
hand. Here we present a program that can extract parts of a Texinfo input file into
separate files.

This book is written in Texinfo, the GNU project’s document formatting language.*

A single Texinfo source file can be used to produce both printed and online docu-
mentation. Texinfo is fully documented in the book Texinfo — The GNU Documen-
tation Format, available from the Free Software Foundation.

For our purposes, it is enough to know three things about Texinfo input files:

• The “at” symbol (@) is special in Texinfo, much as the backslash (\) is in C or
awk. Literal @ symbols are repr esented in Texinfo source files as @@.

• Comments start with either @c or @comment. The file-extraction program works
by using special comments that start at the beginning of a line.

• Lines containing @group and @end group commands bracket example text that
should not be split across a page boundary. (Unfortunately, TEX isn’t always
smart enough to do things exactly right, and we have to give it some help.)

The following program, extract.awk, reads through a Texinfo source file and does
two things, based on the special comments. Upon seeing @c system ..., it runs a
command, by extracting the command text from the control line and passing it on

* The book was translated into DocBook XML for the O’Reilly & Associates edition.

A Gra b Bag of awk Prog rams 269

9 October 2001 01:43

270 Chapter 13: Practical awk Prog rams

to the system function (see the section “Input/Output Functions” in Chapter 8).
Upon seeing @c file filename, each subsequent line is sent to the file filename,
until @c endfile is encountered. The rules in extract.awk match either @c or @com-
ment by letting the omment part be optional. Lines containing @group and @end

group ar e simply removed. extract.awk uses the join library function (see the sec-
tion “Merging an Array into a String” in Chapter 12).

The example programs in the online Texinfo source for Ef fective awk Program-
ming (gawk.texi) have all been bracketed inside file and endfile lines. The gawk
distribution uses a copy of extract.awk to extract the sample programs and install
many of them in a standard directory where gawk can find them. The Texinfo file
looks something like this:

...
This program has a @code{BEGIN} rule,
that prints a nice message:

@example
@c file examples/messages.awk
BEGIN @{ print "Don’t panic!" @}
@c end file
@end example

It also prints some final advice:

@example
@c file examples/messages.awk
END @{ print "Always avoid bored archeologists!" @}
@c end file
@end example
...

extract.awk begins by setting IGNORECASE to one, so that mixed upper- and lower-
case letters in the directives won’t matter.

The first rule handles calling system, checking that a command is given (NF is at
least three) and also checking that the command exits with a zero-exit status, sig-
nifying OK:

extract.awk --- extract files and run programs
from texinfo files

BEGIN { IGNORECASE = 1 }

/ˆ@c(omment)?[\t]+system/ \
{

if (NF < 3) {
e = (FILENAME ":" FNR)
e = (e ": badly formed ‘system’ line")
print e > "/dev/stderr"
next

}

9 October 2001 01:43

$1 = ""
$2 = ""
stat = system($0)
if (stat != 0) {

e = (FILENAME ":" FNR)
e = (e ": warning: system returned " stat)
print e > "/dev/stderr"

}
}

The variable e is used so that the function fits nicely on the page.

The second rule handles moving data into files. It verifies that a filename is given
in the directive. If the file named is not the current file, then the current file is
closed. Keeping the current file open until a new file is encountered allows the
use of the > redir ection for printing the contents, keeping open file management
simple.

The for loop does the work. It reads lines using getline (see the section “Explicit
Input with getline” in Chapter 3). For an unexpected end of file, it calls the unex-

pected_eof function. If the line is an “endfile” line, then it breaks out of the loop.
If the line is an @group or @end group line, then it ignores it and goes on to the
next line. Similarly, comments within examples are also ignored.

Most of the work is in the following few lines. If the line has no @ symbols, the
pr ogram can print it directly. Otherwise, each leading @ must be stripped off. To
remove the @ symbols, the line is split into separate elements of the array a, using
the split function (see the section “String-Manipulation Functions” in Chapter 8).
The @ symbol is used as the separator character. Each element of a that is empty
indicates two successive @ symbols in the original line. For each two empty ele-
ments (@@ in the original file), we have to add a single @ symbol back in.

When the processing of the array is finished, join is called with the value of SUB-
SEP, to rejoin the pieces back into a single line. That line is then printed to the out-
put file:

/ˆ@c(omment)?[\t]+file/ \
{

if (NF != 3) {
e = (FILENAME ":" FNR ": badly formed ‘file’ line")
print e > "/dev/stderr"
next

}
if ($3 != curfile) {

if (curfile != "")
close(curfile)

curfile = $3
}

A Gra b Bag of awk Prog rams 271

9 October 2001 01:43

272 Chapter 13: Practical awk Prog rams

for (;;) {
if ((getline line) <= 0)

unexpected_eof()
if (line ˜ /ˆ@c(omment)?[\t]+endfile/)

break
else if (line ˜ /ˆ@(end[\t]+)?group/)

continue
else if (line ˜ /ˆ@c(omment+)?[\t]+/)

continue
if (index(line, "@") == 0) {

print line > curfile
continue

}
n = split(line, a, "@")
if a[1] == "", means leading @,
don’t add one back in.
for (i = 2; i <= n; i++) {

if (a[i] == "") { # was an @@
a[i] = "@"
if (a[i+1] == "")

i++
}

}
print join(a, 1, n, SUBSEP) > curfile

}
}

An important thing to note is the use of the > redir ection. Output done with > only
opens the file once; it stays open and subsequent output is appended to the file
(see the section “Redirecting Output of print and printf ” in Chapter 4, Printing
Output). This makes it easy to mix program text and explanatory prose for the
same sample source file (as has been done here!) without any hassle. The file is
only closed when a new data filename is encountered or at the end of the input
file.

Finally, the function unexpected_eof prints an appropriate error message and then
exits. The END rule handles the final cleanup, closing the open file:

function unexpected_eof()
{

printf("%s:%d: unexpected EOF or error\n",
FILENAME, FNR) > "/dev/stderr"

exit 1
}

END {
if (curfile)

close(curfile)
}

9 October 2001 01:43

A Simple Stream Editor
The sed utility is a str eam editor, a program that reads a stream of data, makes
changes to it, and passes it on. It is often used to make global changes to a large
file or to a stream of data generated by a pipeline of commands. While sed is a
complicated program in its own right, its most common use is to perfor m global
substitutions in the middle of a pipeline:

command1 < orig.data | sed ’s/old/new/g’ | command2 > result

Her e, s/old/new/g tells sed to look for the regexp old on each input line and glob-
ally replace it with the text new, i.e., all the occurrences on a line. This is similar to
awk ’s gsub function (see the section “String-Manipulation Functions” in Chapter 8).

The following program, awksed.awk, accepts at least two command-line argu-
ments: the pattern to look for and the text to replace it with. Any additional argu-
ments are treated as data filenames to process. If none are provided, the standard
input is used:

awksed.awk --- do s/foo/bar/g using just print
Thanks to Michael Brennan for the idea

function usage()
{

print "usage: awksed pat repl [files...]" > "/dev/stderr"
exit 1

}

BEGIN {
validate arguments
if (ARGC < 3)

usage()

RS = ARGV[1]
ORS = ARGV[2]

don’t use arguments as files
ARGV[1] = ARGV[2] = ""

}

look ma, no hands!
{

if (RT == "")
printf "%s", $0

else
print

}

The program relies on gawk ’s ability to have RS be a regexp, as well as on the set-
ting of RT to the actual text that terminates the record (see the section “How Input
Is Split into Records” in Chapter 3).

A Gra b Bag of awk Prog rams 273

9 October 2001 01:43

274 Chapter 13: Practical awk Prog rams

The idea is to have RS be the pattern to look for. gawk automatically sets $0 to the
text between matches of the pattern. This is text that we want to keep, unmodi-
fied. Then, by setting ORS to the replacement text, a simple print statement out-
puts the text we want to keep, followed by the replacement text.

Ther e is one wrinkle to this scheme, which is what to do if the last record doesn’t
end with text that matches RS. Using a print statement unconditionally prints the
replacement text, which is not correct. However, if the file did not end in text that
matches RS, RT is set to the null string. In this case, we can print $0 using printf

(see the section “Using printf Statements for Fancier Printing” in Chapter 4).

The BEGIN rule handles the setup, checking for the right number of arguments and
calling usage if there is a problem. Then it sets RS and ORS fr om the command-line
arguments and sets ARGV[1] and ARGV[2] to the null string, so that they are not
tr eated as filenames (see the section “Using ARGC and ARGV” in Chapter 6).

The usage function prints an error message and exits. Finally, the single rule han-
dles the printing scheme outlined above, using print or printf as appropriate,
depending upon the value of RT.

An Easy Way to Use Librar y Functions
Using library functions in awk can be very beneficial. It encourages code reuse
and the writing of general functions. Programs are smaller and therefor e clear er.
However, using library functions is only easy when writing awk pr ograms; it is
painful when running them, requiring multiple –f options. If gawk is unavailable,
then so too is the AWKPATH envir onment variable and the ability to put awk func-
tions into a library directory (see the section “Command-Line Options” in Chapter
11, Running awk and gawk). It would be nice to be able to write programs in the
following manner:

library functions
@include getopt.awk
@include join.awk
...

main program
BEGIN {

while ((c = getopt(ARGC, ARGV, "a:b:cde")) != -1)
...

...
}

9 October 2001 01:43

The following program, igawk.sh, provides this service. It simulates gawk ’s search-
ing of the AWKPATH variable and also allows nested includes; i.e., a file that is
included with @include can contain further @include statements. igawk makes an
ef fort to only include files once, so that nested includes don’t accidentally include
a library function twice.

igawk should behave just like gawk exter nally. This means it should accept all of
gawk ’s command-line arguments, including the ability to have multiple source files
specified via –f, and the ability to mix command-line and library source files.

The program is written using the POSIX Shell (sh) command language. It works as
follows:

1. Loop thr ough the arguments, saving anything that doesn’t repr esent awk
source code for later, when the expanded program is run.

2. For any arguments that do repr esent awk text, put the arguments into a tem-
porary file that will be expanded. Ther e ar e two cases:

a. Literal text, provided with ––sour ce or ––sour ce=. This text is just echoed
dir ectly. The echo pr ogram automatically supplies a trailing newline.

b. Source filenames, provided with –f. We use a neat trick and echo @include

filename into the temporary file. Since the file-inclusion program works
the way gawk does, this gets the text of the file included into the program
at the correct point.

3. Run an awk pr ogram (naturally) over the temporary file to expand @include

statements. The expanded program is placed in a second temporary file.

4. Run the expanded program with gawk and any other original command-line
arguments that the user supplied (such as the data filenames).

The initial part of the program turns on shell tracing if the first argument is debug.
Otherwise, a shell trap statement arranges to clean up any temporary files on pro-
gram exit or upon an interrupt.

The next part loops through all the command-line arguments. There are several
cases of interest:

-- This ends the arguments to igawk. Anything else should be passed on to the
user’s awk pr ogram without being evaluated.

-W This indicates that the next option is specific to gawk. To make argument pro-
cessing easier, the –W is appended to the front of the remaining arguments
and the loop continues. (This is an sh pr ogramming trick. Don’t worry about it
if you are not familiar with sh.)

A Gra b Bag of awk Prog rams 275

9 October 2001 01:43

276 Chapter 13: Practical awk Prog rams

-v, -F
These are saved and passed on to gawk.

-f, --file, --file=, -Wfile=
The filename is saved to the temporary file /tmp/ig.s.$$ with an @include state-
ment. The sed utility is used to remove the leading option part of the argu-
ment (e.g., ––file=).

--source, --source=, -Wsource=
The source text is echoed into /tmp/ig.s.$$.

--version, -Wversion
igawk prints its version number, runs gawk —version to get the gawk version
infor mation, and then exits.

If none of the –f, ––file, –Wfile, ––sour ce, or –Wsour ce arguments are supplied,
then the first nonoption argument should be the awk pr ogram. If there are no
command-line arguments left, igawk prints an error message and exits. Otherwise,
the first argument is echoed into /tmp/ig.s.$$. In any case, after the arguments
have been processed, /tmp/ig.s.$$ contains the complete text of the original awk
pr ogram.

The $$ in sh repr esents the current process ID number. It is often used in shell
pr ograms to generate unique temporary filenames. This allows multiple users to
run igawk without worrying that the temporary filenames will clash. The program
is as follows:

#! /bin/sh
igawk --- like gawk but do @include processing

if ["$1" = debug]
then

set -x
shift

else
cleanup on exit, hangup, interrupt, quit, termination
trap ’rm -f /tmp/ig.[se].$$’ 0 1 2 3 15

fi

while [$# -ne 0] # loop over arguments
do

case $1 in
--) shift; break;;

-W) shift
set -- -W"$@"
continue;;

-[vF]) opts="$opts $1 ’$2’"
shift;;

9 October 2001 01:43

-[vF]*) opts="$opts ’$1’" ;;

-f) echo @include "$2" >> /tmp/ig.s.$$
shift;;

-f*) f=‘echo "$1" | sed ’s/-f//’‘
echo @include "$f" >> /tmp/ig.s.$$;;

-?file=*) # -Wfile or --file
f=‘echo "$1" | sed ’s/-.file=//’‘
echo @include "$f" >> /tmp/ig.s.$$;;

-?file) # get arg, $2
echo @include "$2" >> /tmp/ig.s.$$
shift;;

-?source=*) # -Wsource or --source
t=‘echo "$1" | sed ’s/-.source=//’‘
echo "$t" >> /tmp/ig.s.$$;;

-?source) # get arg, $2
echo "$2" >> /tmp/ig.s.$$
shift;;

-?version)
echo igawk: version 1.0 1>&2
gawk --version
exit 0 ;;

-[W-]*) opts="$opts ’$1’" ;;

*) break;;
esac
shift

done

if [! -s /tmp/ig.s.$$]
then

if [-z "$1"]
then

echo igawk: no program! 1>&2
exit 1

else
echo "$1" > /tmp/ig.s.$$
shift

fi
fi

at this point, /tmp/ig.s.$$ has the program

The awk pr ogram to process @include dir ectives reads through the program, one
line at a time, using getline (see the section “Explicit Input with getline” in Chap-
ter 3). The input filenames and @include statements are managed using a stack. As
each @include is encountered, the current filename is “pushed” onto the stack and

A Gra b Bag of awk Prog rams 277

9 October 2001 01:43

278 Chapter 13: Practical awk Prog rams

the file named in the @include dir ective becomes the current filename. As each file
is finished, the stack is “popped,” and the previous input file becomes the current
input file again. The process is started by making the original file the first one on
the stack.

The pathto function does the work of finding the full path to a file. It simulates
gawk ’s behavior when searching the AWKPATH envir onment variable (see the sec-
tion “The AWKPATH Envir onment Variable” in Chapter 11). If a filename has a / in
it, no path search is done. Otherwise, the filename is concatenated with the name
of each directory in the path, and an attempt is made to open the generated file-
name. The only way to test if a file can be read in awk is to go ahead and try to
read it with getline; this is what pathto does.* If the file can be read, it is closed
and the filename is retur ned:

gawk -- ’
process @include directives

function pathto(file, i, t, junk)
{

if (index(file, "/") != 0)
return file

for (i = 1; i <= ndirs; i++) {
t = (pathlist[i] "/" file)
if ((getline junk < t) > 0) {

found it
close(t)
return t

}
}
return ""

}

The main program is contained inside one BEGIN rule. The first thing it does is set
up the pathlist array that pathto uses. After splitting the path on :, null elements
ar e replaced with ".", which repr esents the current directory:

BEGIN {
path = ENVIRON["AWKPATH"]
ndirs = split(path, pathlist, ":")
for (i = 1; i <= ndirs; i++) {

if (pathlist[i] == "")
pathlist[i] = "."

}

* On some very old versions of awk, the test getline junk < t can loop forever if the file exists but
is empty. Caveat emptor.

9 October 2001 01:43

The stack is initialized with ARGV[1], which will be /tmp/ig.s.$$. The main loop
comes next. Input lines are read in succession. Lines that do not start with
@include ar e printed verbatim. If the line does start with @include, the filename is
in $2. pathto is called to generate the full path. If it cannot, then we print an error
message and continue.

The next thing to check is if the file is included already. The processed array is
indexed by the full filename of each included file and it tracks this information for
us. If the file is seen again, a warning message is printed. Otherwise, the new file-
name is pushed onto the stack and processing continues.

Finally, when getline encounters the end of the input file, the file is closed and
the stack is popped. When stackptr is less than zero, the program is done:

stackptr = 0
input[stackptr] = ARGV[1] # ARGV[1] is first file

for (; stackptr >= 0; stackptr--) {
while ((getline < input[stackptr]) > 0) {

if (tolower($1) != "@include") {
print
continue

}
fpath = pathto($2)
if (fpath == "") {

printf("igawk:%s:%d: cannot find %s\n",
input[stackptr], FNR, $2) > "/dev/stderr"

continue
}
if (! (fpath in processed)) {

processed[fpath] = input[stackptr]
input[++stackptr] = fpath # push onto stack

} else
print $2, "included in", input[stackptr],

"already included in",
processed[fpath] > "/dev/stderr"

}
close(input[stackptr])

}
}’ /tmp/ig.s.$$ > /tmp/ig.e.$$

The last step is to call gawk with the expanded program, along with the original
options and command-line arguments that the user supplied. gawk ’s exit status is
passed back on to igawk ’s calling program:

eval gawk -f /tmp/ig.e.$$ $opts -- "$@"

exit $?

A Gra b Bag of awk Prog rams 279

9 October 2001 01:43

280 Chapter 13: Practical awk Prog rams

This version of igawk repr esents my third attempt at this program. There are thr ee
key simplifications that make the program work better:

• Using @include even for the files named with –f makes building the initial col-
lected awk pr ogram much simpler; all the @include pr ocessing can be done
once.

• Not trying to save the line read with getline when testing for the file’s accessi-
bility for use with the main program complicates things considerably.

• Using a getline loop in the BEGIN rule does it all in one place. It is not neces-
sary to call out to a separate loop for processing nested @include statements.

Also, this program illustrates that it is often worthwhile to combine sh and awk
pr ogramming together. You can usually accomplish quite a lot, without having to
resort to low-level programming in C or C++, and it is frequently easier to do cer-
tain kinds of string and argument manipulation using the shell than it is in awk.

Finally, igawk shows that it is not always necessary to add new features to a pro-
gram; they can often be layered on top. With igawk, ther e is no real reason to
build @include pr ocessing into gawk itself.

As an additional example of this, consider the idea of having two files in a direc-
tory in the search path:

default.awk
This file contains a set of default library functions, such as getopt and assert.

site.awk
This file contains library functions that are specific to a site or installation; i.e.,
locally developed functions. Having a separate file allows default.awk to
change with new gawk releases, without requiring the system administrator to
update it each time by adding the local functions.

One user suggested that gawk be modified to automatically read these files upon
startup. Instead, it would be very simple to modify igawk to do this. Since igawk
can process nested @include dir ectives, default.awk could simply contain @include

statements for the desired library functions.

9 October 2001 01:43

14
Inter networking

with gawk

In this chapter:
• Networking with

ga wk
• Some Applications

and Techniques
• Related Links

This chapter describes gawk ’s networking features in depth, including a number of
inter esting examples and the reusable core of a gawk-based web server. The chap-
ter is adapted from TCP/IP Internetworking with gawk, by Jürgen Kahrs and
Ar nold Robbins, which is a separate document distributed with gawk.

Networking with gawk
The awk pr ogramming language was originally developed as a pattern-matching
language for writing short programs to perfor m data manipulation tasks. awk ’s
str ength is the manipulation of textual data that is stored in files. It was never
meant to be used for networking purposes. To exploit its features in a networking
context, it’s necessary to use an access mode for network connections that resem-
bles the access of files as closely as possible.

awk is also meant to be a prototyping language. It is used to demonstrate feasibil-
ity and to play with features and user interfaces. This can be done with file-like
handling of network connections. gawk trades the lack of many of the advanced
featur es of the TCP/IP family of protocols for the convenience of simple connec-
tion handling. The advanced features are available when programming in C or
Perl. In fact, the network programming in this section is very similar to what is
described in books such as Inter net Pr ogramming with Python, Advanced Perl
Pr ogramming, and Web Client Programming with Perl (O’Reilly).

However, you can do the programming here without first having to learn object-
oriented ideology; underlying languages such as Tcl/Tk, Perl, Python; or all of the
libraries necessary to extend these languages before they are ready for the Inter-
net.

281

9 October 2001 01:44

282 Chapter 14: Internetworking with gawk

This section demonstrates how to use the TCP protocol. The other protocols are
much less important for most users (UDP) or even untractable (RAW).

ga wk’s Networking Mechanisms
The |& operator introduced in gawk 3.1 for use in communicating with a copr ocess
is described in the section “Two-Way Communications with Another Process” in
Chapter 10, Advanced Features of gawk. It shows how to do two-way I/O to a
separate process, sending it data with print or printf and reading data with get-

line. If you haven’t read it already, you should go back and review that material
now.

gawk transpar ently extends the two-way I/O mechanism to simple networking
thr ough the use of special filenames. When a “coprocess” that matches the special
files we are about to describe is started, gawk cr eates the appropriate network
connection, and then two-way I/O proceeds as usual.

At the C, C++, and Perl level, networking is accomplished via sockets, an Applica-
tion Programming Interface (API) originally developed at the University of Califor-
nia at Berkeley that is now used almost universally for TCP/IP networking. Socket-
level programming, while fairly straightforward, requir es paying attention to a
number of details, as well as using binary data. It is not well-suited for use from a
high-level language like awk. The special files provided in gawk hide the details
fr om the programmer, making things much simpler and easier to use.

The special filename for network access is made up of several fields, all of which
ar e mandatory:

/inet/protocol/localport/hostname/remoteport

The /inet/ field is, of course, constant when accessing the network. The localport
and remoteport fields do not have a meaning when used with /inet/raw because
“ports” only apply to TCP and UDP. So, when using /inet/raw, the port fields
always have to be 0.

The fields of the special filename

This section explains the meaning of all the other fields, as well as the range of
values and the defaults. All of the fields are mandatory. To let the system pick a
value, or if the field doesn’t apply to the protocol, specify it as 0:

9 October 2001 01:44

pr otocol
Deter mines which member of the TCP/IP family of protocols is selected to
transport the data across the network. There are thr ee possible values (always
written in lowercase): tcp, udp, and raw. The exact meaning of each is
explained later in this section.

localport
Deter mines which port on the local machine is used to communicate across
the network. It has no meaning with /inet/raw and must therefor e be 0. Appli-
cation-level clients usually use 0 to indicate they do not care which local port
is used—instead they specify a remote port to connect to. It is vital for appli-
cation-level servers to use a number differ ent fr om 0 her e because their ser-
vice has to be available at a specific publicly known port number. It is possi-
ble to use a name from /etc/services her e.

hostname
Deter mines which remote host is to be at the other end of the connection.
Application-level servers must fill this field with a 0 to indicate their being
open for all other hosts to connect to them and enforce connection level
server behavior this way. It is not possible for an application-level server to
restrict its availability to one remote host by entering a hostname here. Appli-
cation-level clients must enter a name differ ent fr om 0. The name can be
either symbolic (e.g., jpl-devvax.jpl.nasa.gov) or numeric (e.g.,
128.149.1.143).

remoteport
Deter mines which port on the remote machine is used to communicate across
the network. It has no meaning with /inet/raw and must therefor e be 0. For
/inet/tcp and /inet/udp, application-level clients must use a number other than
0 to indicate to which port on the remote machine they want to connect.
Application-level servers must not fill this field with a 0. Instead they specify a
local port to which clients connect. It is possible to use a name from /etc/ser-
vices her e.

Experts in network programming will notice that the usual client/server asymmetry
found at the level of the socket API is not visible here. This is for the sake of sim-
plicity of the high-level concept. If this asymmetry is necessary for your applica-
tion, use another language. For gawk, it is mor e important to enable users to write
a client program with a minimum of code. What happens when first accessing a
network connection is seen in the following pseudocode:

if ((name of remote host given) && (other side accepts connection)) {
rendez-vous successful; transmit with getline or print

} else {
if ((other side did not accept) && (localport == 0))

exit unsuccessful

Networking with gawk 283

9 October 2001 01:44

284 Chapter 14: Internetworking with gawk

if (TCP) {
set up a server accepting connections
this means waiting for the client on the other side to connect

} else
ready

}

The exact behavior of this algorithm depends on the values of the fields of the
special filename. When in doubt, Table 14-1 gives you the combinations of values
and their meaning. If this table is too complicated, focus on the three lines printed
in bold. All the examples in this section use only the patterns printed in bold let-
ters.

Table 14-1. /inet Special File Components

Local Host Remote
Protocol Por t Name Por t Resulting Connection-Level Behavior

tcp 0 x x Dedicated client, fails if immediately
connecting to a server on the other side fails

udp 0 x x Dedicated client

raw 0 x 0 Dedicated client, works only as root

tcp, udp x x x Client, switches to dedicated server if
necessar y

tcp, udp x 0 0 Dedicated server

raw 0 0 0 Dedicated server, works only as root

tcp, udp, raw x x 0 Invalid

tcp, udp, raw 0 0 x Invalid

tcp, udp, raw x 0 x Invalid

tcp, udp 0 0 0 Invalid

tcp, udp 0 x 0 Invalid

raw x 0 0 Invalid

raw 0 x x Invalid

raw x x x Invalid

In general, TCP is the preferr ed mechanism to use. It is the simplest protocol to
understand and to use. Use the others only if circumstances demand low-over-
head.

Compar ing protocols

This section develops a pair of programs (sender and receiver) that do nothing but
send a timestamp from one machine to another. The sender and the receiver are
implemented with each of the three protocols available and demonstrate the dif-
fer ences between them.

9 October 2001 01:44

/inet/tcp

Once again, always use TCP. (Use UDP when low overhead is a necessity, and use
RAW for network experimentation.) The first example is the sender program:

Server
BEGIN {

print strftime() |& "/inet/tcp/8888/0/0"
close("/inet/tcp/8888/0/0")

}

The receiver is very simple:

Client
BEGIN {

"/inet/tcp/0/localhost/8888" |& getline
print $0
close("/inet/tcp/0/localhost/8888")

}

TCP guarantees that the bytes arrive at the receiving end in exactly the same order
that they were sent. No byte is lost (except for broken connections), doubled, or
out of order. Some overhead is necessary to accomplish this, but this is the price
to pay for a reliable service. It does matter which side starts first. The
sender/server has to be started first, and it waits for the receiver to read a line.

/inet/udp

The server and client programs that use UDP are almost identical to their TCP
counterparts; only the pr otocol has changed. As before, it does matter which side
starts first. The receiving side blocks and waits for the sender. In this case, the
receiver/client has to be started first:

Server
BEGIN {

print strftime() |& "/inet/udp/8888/0/0"
close("/inet/udp/8888/0/0")

}

The receiver is almost identical to the TCP receiver:

Client
BEGIN {

"/inet/udp/0/localhost/8888" |& getline
print $0
close("/inet/udp/0/localhost/8888")

}

UDP cannot guarantee that the datagrams at the receiving end will arrive in
exactly the same order they were sent. Some datagrams could be lost, some dou-
bled, and some out of order. But no overhead is necessary to accomplish this. This

Networking with gawk 285

9 October 2001 01:44

286 Chapter 14: Internetworking with gawk

unr eliable behavior is good enough for tasks such as data acquisition, logging, and
even stateless services like NFS.

/inet/raw

This is an IP-level protocol. Only root is allowed to access this special file. It is
meant to be the basis for implementing and experimenting with transport-level
pr otocols.* In the most general case, the sender has to supply the encapsulating
header bytes in front of the packet and the receiver has to strip the additional
bytes from the message.

RAW receivers cannot receive packets sent with TCP or UDP because the operat-
ing system does not deliver the packets to a RAW receiver. The operating system
knows about some of the protocols on top of IP and decides on its own which
packet to deliver to which process. Therefor e, the UDP receiver must be used for
receiving UDP datagrams sent with the RAW sender. This is a dark corner, not only
of gawk, but also of TCP/IP.

For extended experimentation with protocols, look into the approach imple-
mented in a tool called SPAK. This tool reflects the hierarchical layering of proto-
cols (encapsulation) in the way data streams are piped out of one program into
the next one. It shows which protocol is based on which other (lower-level) pro-
tocol by looking at the command-line ordering of the program calls. Cleverly
thought out, SPAK is much better than gawk ’s /inet for learning the meaning of
each and every bit in the protocol headers.

The next example uses the RAW protocol to emulate the behavior of UDP. The
sender program is the same as above, but with some additional bytes that fill the
places of the UDP fields:

BEGIN {
Message = "Hello world\n"
SourcePort = 0
DestinationPort = 8888
MessageLength = length(Message)+8
RawService = "/inet/raw/0/localhost/0"
printf("%c%c%c%c%c%c%c%c%s",

SourcePort/256, SourcePort%256,
DestinationPort/256, DestinationPort%256,
MessageLength/256, MessageLength%256,
0, 0, Message) |& RawService

fflush(RawService)
close(RawService)

}

* This special file is reserved, but not otherwise currently implemented.

9 October 2001 01:44

Since this program tries to emulate the behavior of UDP, it checks if the RAW
sender is understood by the UDP receiver but not if the RAW receiver can under-
stand the UDP sender. In a real network, the RAW receiver is hardly of any use
because it gets every IP packet that comes across the network. There are usually
so many packets that gawk would be too slow for processing them. Only on a net-
work with little traffic can the IP-level receiver program be tested. Programs for
analyzing IP traffic on modem or ISDN channels should be possible.

Port numbers do not have a meaning when using /inet/raw. Their fields have to
be 0. Only TCP and UDP use ports. Receiving data from /inet/raw is difficult, not
only because of processing speed but also because data is usually binary and not
restricted to ASCII. This implies that line separation with RS does not work as
usual.

Establishing a TCP Connection
Let’s observe a network connection at work. Type in the following program and
watch the output. Within a second, it connects via TCP (/inet/tcp) to the machine it
is running on (localhost) and asks the service daytime on the machine what time
it is:

BEGIN {
"/inet/tcp/0/localhost/daytime" |& getline
print $0
close("/inet/tcp/0/localhost/daytime")

}

Even experienced awk users will find the second line strange in two respects:

• A special file is used as a shell command that pipes its output into getline.
One would rather expect to see the special file being read like any other file
(getline < "/inet/tcp/0/localhost/daytime").

• The operator |& has not been part of any awk implementation (until now). It
is actually the only extension of the awk language needed (apart from the spe-
cial files) to introduce network access.

The |& operator was introduced in gawk 3.1 in order to overcome the crucial
restriction that access to files and pipes in awk is always unidirectional. It was for-
merly impossible to use both access modes on the same file or pipe. Instead of
changing the whole concept of file access, the |& operator behaves exactly like the
usual pipe operator except for two additions:

• Nor mal shell commands connected to their gawk pr ogram with a |& pipe can
be accessed bidirectionally. The |& tur ns out to be a quite general, useful, and
natural extension of awk.

Networking with gawk 287

9 October 2001 01:44

288 Chapter 14: Internetworking with gawk

• Pipes that consist of a special filename for network connections are not exe-
cuted as shell commands. Instead, they can be read and written to, just like a
full-duplex network connection.

In the earlier example, the |& operator tells getline to read a line from the special
file /inet/tcp/0/localhost/daytime. We could also have printed a line into the special
file. But instead we just read a line with the time, printed it, and closed the con-
nection. (While we could just let gawk close the connection by finishing the pro-
gram, in this book we are pedantic and always explicitly close the connections.)

Tr oubleshooting Connection Problems
It may well be that for some reason the program shown in the previous example
does not run on your machine. When looking at possible reasons for this, you will
lear n much about typical problems that arise in network programming. First of all,
your implementation of gawk may not support network access because it is a
pr e-3.1 version or you do not have a network interface in your machine. Perhaps
your machine uses some other protocol, such as DECnet or Novell’s IPX. For the
rest of this section, we will assume you work on a Unix machine that supports
TCP/IP. If the previous example program does not run on your machine, it may
help to replace the name localhost with the name of your machine or its IP
addr ess. If it does, you could replace localhost with the name of another machine
in your vicinity—this way, the program connects to another machine. Now you
should see the date and time being printed by the program, otherwise your
machine may not support the daytime service. Try changing the service to chargen

or ftp. This way, the program connects to other services that should give you
some response. If you are curious, you should have a look at your /etc/services
file. It could look like this:

/etc/services:
#
Network services, Internet style
#
Name Number/Protcol Alternate name # Comments

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
daytime 13/tcp
daytime 13/udp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
finger 79/tcp

9 October 2001 01:44

www 80/tcp http # WorldWideWeb HTTP
www 80/udp # HyperText Transfer Protocol
pop-2 109/tcp postoffice # POP version 2
pop-2 109/udp
pop-3 110/tcp # POP version 3
pop-3 110/udp
nntp 119/tcp readnews untp # USENET News
irc 194/tcp # Internet Relay Chat
irc 194/udp
...

Her e, you find a list of services that traditional Unix machines usually support. If
your GNU/Linux machine does not do so, it may be that these services are
switched off in some startup script. Systems running some flavor of Microsoft Win-
dows usually do not support these services. Nevertheless, it is possible to do net-
working with gawk on Microsoft Windows.* The first column of the file gives the
name of the service, and the second column gives a unique number and the pro-
tocol that one can use to connect to this service. The rest of the line is treated as a
comment. You see that some services (echo) support TCP as well as UDP.

Interacting with a Network Ser vice
The next program makes use of the possibility to really interact with a network
service by printing something into the special file. It asks the so-called finger ser-
vice if a user of the machine is logged in. When testing this program, try to change
localhost to some other machine name in your local network:

BEGIN {
NetService = "/inet/tcp/0/localhost/finger"
print "name" |& NetService
while ((NetService |& getline) > 0)

print $0
close(NetService)

}

After telling the service on the machine which user to look for, the program
repeatedly reads lines that come as a reply. When no more lines are coming
(because the service has closed the connection), the program also closes the con-
nection. Try replacing "name" with your login name (or the name of someone else
logged in). For a list of all users currently logged in, replace name with an empty
string ("").

The final close command could be safely deleted from the above script, because
the operating system closes any open connection by default when a script reaches

* On Microsoft Windows, the equivalent of /etc/services resides in the file c:\windows\services.

Networking with gawk 289

9 October 2001 01:44

290 Chapter 14: Internetworking with gawk

the end of execution. In order to avoid portability problems, it is best to always
close connections explicitly. With the Linux kernel, for example, proper closing
results in flushing of buffers. Letting the close happen by default may result in dis-
carding buffers.

When looking at /etc/services you may have noticed that the daytime service is also
available with udp. In the earlier example, change tcp to udp, and change finger

to daytime. After starting the modified program, you will see the expected day and
time message. The program then hangs, because it waits for more lines coming
fr om the service. However, they never come. This behavior is a consequence of
the differ ences between TCP and UDP. When using UDP, neither party is automati-
cally informed about the other closing the connection. Continuing to experiment
this way reveals many other subtle differ ences between TCP and UDP. To avoid
such trouble, one should always remember the advice Douglas E. Comer and
David Stevens give in Volume III of their series Inter networking with TCP (page
14):

When designing client-server applications, beginners are str ongly advised to use
TCP because it provides reliable, connection-oriented communication. Programs
only use UDP if the application protocol handles reliability, the application
requir es hardwar e br oadcast or multicast, or the application cannot tolerate virtual
circuit overhead.

Setting up a Service
The preceding programs behaved as clients that connect to a server somewhere
on the Internet and request a particular service. Now we will set up such a service
to mimic the behavior of the daytime service. Such a server does not know in
advance who is going to connect to it over the network. Therefor e, we cannot
insert a name for the host to connect to in our special filename.

Start the following program in one window. Notice that the service does not have
the name daytime, but the number 8888. From looking at /etc/services, you know
that names like daytime ar e just mnemonics for predeter mined 16-bit integers.
Only the system administrator (root) could enter our new service into /etc/services
with an appropriate name. Also notice that the service name has to be entered into
a dif ferent field of the special filename because we are setting up a server, not a
client:

BEGIN {
print strftime() |& "/inet/tcp/8888/0/0"
close("/inet/tcp/8888/0/0")

}

9 October 2001 01:44

Now open another window on the same machine. Copy the client program given
as the first example (see the section “Establishing a TCP Connection” earlier in this
chapter) to a new file and edit it, changing the name daytime to 8888. Then start
the modified client. You should get a reply like this:

Sat Sep 27 19:08:16 CEST 1997

Both programs explicitly close the connection.

Now we will intentionally make a mistake to see what happens when the name
8888 (the so-called port) is already used by another service. Start the server pro-
gram in both windows. The first one works, but the second one complains that it
could not open the connection. Each port on a single machine can only be used
by one server program at a time. Now terminate the server program and change
the name 8888 to echo. After restarting it, the server program does not run any
mor e, and you know why: there is alr eady an echo service running on your
machine. But even if this isn’t true, you would not get your own echo server run-
ning on a Unix machine, because the ports with numbers smaller than 1024 (echo
is at port 7) are reserved for root. On machines running some flavor of Microsoft
Windows, there is no restriction that reserves ports 1 to 1024 for a privileged user;
hence, you can start an echo server there.

Turning this short server program into something really useful is simple. Imagine a
server that first reads a filename from the client through the network connection,
then does something with the file and sends a result back to the client. The server-
side processing could be:

BEGIN {
NetService = "/inet/tcp/8888/0/0"
NetService |& getline
CatPipe = ("cat " $1) # sets $0 and the fields
while ((CatPipe | getline) > 0)

print $0 |& NetService
close(NetService)

}

and we would have a remote copying facility. Such a server reads the name of a
file from any client that connects to it and transmits the contents of the named file
acr oss the net. The server-side processing could also be the execution of a com-
mand that is transmitted across the network. From this example, you can see how
simple it is to open up a security hole on your machine. If you allow clients to
connect to your machine and execute arbitrary commands, anyone would be free
to do rm -rf *.

Networking with gawk 291

9 October 2001 01:44

292 Chapter 14: Internetworking with gawk

Reading Email
The distribution of email is usually done by dedicated email servers that communi-
cate with your machine using special protocols. To receive email, we will use the
Post Office Protocol (POP). Sending can be done with the much older Simple Mail
Transfer Protocol (SMTP).

When you type in the following program, replace the emailhost by the name of
your local email server. Ask your administrator if the server has a POP service, and
then use its name or number in the program below. Now the program is ready to
connect to your email server, but it will not succeed in retrieving your mail
because it does not yet know your login name or password. Replace them in the
pr ogram, and it shows you the first email the server has in store:

BEGIN {
POPService = "/inet/tcp/0/emailhost/pop3"
RS = ORS = "\r\n"
print "user name" |& POPService
POPService |& getline
print "pass password" |& POPService
POPService |& getline
print "retr 1" |& POPService
POPService |& getline
if ($1 != "+OK") exit
print "quit" |& POPService
RS = "\r\n\\.\r\n"
POPService |& getline
print $0
close(POPService)

}

The record separators RS and ORS ar e redefined because the protocol (POP)
requir es CR-LF to separate lines. After identifying yourself to the email service, the
command retr 1 instructs the service to send the first of all your email messages
in line. If the service replies with something other than +OK, the program exits;
maybe there is no email. Otherwise, the program first announces that it intends to
finish reading email, and then redefines RS in order to read the entire email as
multiline input in one record. From the POP RFC, we know that the body of the
email always ends with a single line containing a single dot. The program looks
for this using RS = "\r\n\\.\r\n". When it finds this sequence in the mail mes-
sage, it quits. You can invoke this program as often as you like; it does not delete
the message it reads, but instead leaves it on the server.

9 October 2001 01:44

Reading a Web Page
Retrieving a web page from a web server is as simple as retrieving email from an
email server. We only have to use a similar, but not identical, protocol and a differ-
ent port. The name of the protocol is HyperText Transfer Protocol (HTTP) and the
port number is usually 80. As in the preceding section, ask your administrator
about the name of your local web server or proxy web server and its port number
for HTTP requests.

The following program employs a rather crude approach toward retrieving a web
page. It uses the prehistoric syntax of HTTP 0.9, which almost all web servers still
support. The most noticeable thing about it is that the program directs the request
to the local proxy server whose name you insert in the special filename (which in
tur n calls www.yahoo.com):

BEGIN {
RS = ORS = "\r\n"
HttpService = "/inet/tcp/0/proxy/80"
print "GET http://www.yahoo.com" |& HttpService
while ((HttpService |& getline) > 0)

print $0
close(HttpService)

}

Again, lines are separated by a redefined RS and ORS. The GET request that we send
to the server is the only kind of HTTP request that existed when the Web was cre-
ated in the early 1990s. HTTP calls this GET request a “method,” which tells the ser-
vice to transmit a web page (here the home page of the Yahoo! search engine).
Version 1.0 added the request methods HEAD and POST. The current version of
HTTP is 1.1,* and knows the additional request methods OPTIONS, PUT, DELETE, and
TRACE. You can fill in any valid web address, and the program prints the HTML
code of that page to your screen.

Notice the similarity between the responses of the POP and HTTP services. First,
you get a header that is terminated by an empty line, and then you get the body
of the page in HTML. The lines of the headers also have the same form as in POP.
Ther e is the name of a parameter, then a colon, and finally the value of that
parameter.

Images (.png or .gif files) can also be retrieved this way, but then you get binary
data that should be redir ected into a file. Another application is calling a CGI
(Common Gateway Interface) script on some server. CGI scripts are used when
the contents of a web page are not constant, but generated instantly at the
moment you send a request for the page. For example, to get a detailed report

* Version 1.0 of HTTP was defined in RFC 1945. HTTP 1.1 was initially specified in RFC 2068. In June
1999, RFC 2068 was made obsolete by RFC 2616, an update without any substantial changes.

Networking with gawk 293

9 October 2001 01:44

294 Chapter 14: Internetworking with gawk

about the current quotes of Motorola stock shares, call a CGI script at Yahoo! with
the following:

get = "GET http://quote.yahoo.com/q?s=MOT&d=t"
print get |& HttpService

You can also request weather reports this way.

A Primitive Web Service
Now we know enough about HTTP to set up a primitive web service that just says
"Hello, world" when someone connects to it with a browser. Compar ed to the sit-
uation in the preceding section, our program changes the role. It tries to behave
just like the server we have observed. Since we are setting up a server here, we
have to insert the port number in the localport field of the special filename. The
other two fields (hostname and remoteport) have to contain a 0 because we do not
know in advance which host will connect to our service.

In the early 1990s, all a server had to do was send an HTML document and close
the connection. Here, we adhere to the modern syntax of HTTP. The steps are as
follows:

1. Send a status line telling the web browser that everything is okay.

2. Send a line to tell the browser how many bytes follow in the body of the mes-
sage. This was not necessary earlier because both parties knew that the docu-
ment ended when the connection closed. Nowadays it is possible to stay con-
nected after the transmission of one web page. This is to avoid the network
traf fic necessary for repeatedly establishing TCP connections for requesting
several images. Thus, there is the need to tell the receiving party how many
bytes will be sent. The header is terminated as usual with an empty line.

3. Send the "Hello, world" body in HTML. The useless while loop swallows the
request of the browser. We could actually omit the loop, and on most
machines the program would still work. First, start the following program:

BEGIN {
RS = ORS = "\r\n"
HttpService = "/inet/tcp/8080/0/0"
Hello = "<HTML><HEAD>" \

"<TITLE>A Famous Greeting</TITLE></HEAD>" \
"<BODY><H1>Hello, world</H1></BODY></HTML>"

Len = length(Hello) + length(ORS)
print "HTTP/1.0 200 OK" |& HttpService
print "Content-Length: " Len ORS |& HttpService
print Hello |& HttpService
while ((HttpService |& getline) > 0)

continue
close(HttpService)

}

9 October 2001 01:44

Now, on the same machine, start your favorite browser and let it point to
http://localhost:8080 (the browser needs to know on which port our server is lis-
tening for requests). If this does not work, the browser probably tries to connect
to a proxy server that does not know your machine. If so, change the browser’s
configuration so that the browser does not try to use a proxy to connect to your
machine.

A Web Service with Interaction
Setting up a web service that allows user interaction is more dif ficult and shows us
the limits of network access in gawk. In this section, we develop a main program
(a BEGIN patter n and its action) that will become the core of event-driven execu-
tion controlled by a graphical user interface (GUI). Each HTTP event that the user
triggers by some action within the browser is received in this central procedur e.
Parameters and menu choices are extracted from this request, and an appropriate
measur e is taken according to the user’s choice. For example:

BEGIN {
if (MyHost == "") {

"uname -n" | getline MyHost
close("uname -n")

}
if (MyPort == 0) MyPort = 8080
HttpService = "/inet/tcp/" MyPort "/0/0"
MyPrefix = "http://" MyHost ":" MyPort
SetUpServer()
while ("awk" != "complex") {

RS = ORS = "\r\n" # header lines are terminated this way
Status = 200 # this means OK
Reason = "OK"
Header = TopHeader
Document = TopDoc
Footer = TopFooter
if (GETARG["Method"] == "GET") {

HandleGET()
} else if (GETARG["Method"] == "HEAD") {

not yet implemented
} else if (GETARG["Method"] != "") {

print "bad method", GETARG["Method"]
}
Prompt = Header Document Footer
print "HTTP/1.0", Status, Reason |& HttpService
print "Connection: Close" |& HttpService
print "Pragma: no-cache" |& HttpService
len = length(Prompt) + length(ORS)
print "Content-length:", len |& HttpService
print ORS Prompt |& HttpService

Networking with gawk 295

9 October 2001 01:44

296 Chapter 14: Internetworking with gawk

ignore all the header lines
while ((HttpService |& getline) > 0)

continue
close(HttpService) # stop talking to this client
HttpService |& getline # wait for new client request
print systime(), strftime(), $0 # do some logging
CGI_setup($1, $2, $3) # read request parameters

}
}

This web server presents menu choices in the form of HTML links. Therefor e, it
has to tell the browser the name of the host it is residing on. When starting the
server, the user may supply the name of the host from the command line with
gawk -v MyHost="Rumpelstilzchen". If the user does not do this, the server looks
up the name of the host it is running on for later use as a web address in HTML
documents. The same applies to the port number. These values are inserted later
into the HTML content of the web pages to refer to the home system.

Each server that is built around this core has to initialize some application-depen-
dent variables (such as the default home page) in a procedur e SetUpServer, which
is called immediately before entering the infinite loop of the server. For now, we
will write an instance that initiates a trivial interaction. With this home page, the
client user can click on two possible choices, and receive the current date either in
human-r eadable for mat or in seconds since 1970:

function SetUpServer() {
TopHeader = "<HTML><HEAD>"
TopHeader = TopHeader "<title>My name is GAWK, GNU AWK</title></HEAD>"
TopDoc = "<BODY><h2>\

Do you prefer your date human or\
POSIXed?</h2>" ORS ORS

TopFooter = "</BODY></HTML>"
}

On the first run through the main loop, the default line terminators are set and the
default home page is copied to the actual home page. Since this is the first run,
GETARG["Method"] is not initialized yet, hence the case selection over the method
does nothing. Now that the home page is initialized, the server can start communi-
cating to a client browser.

It does so by printing the HTTP header into the network connection (print ... |&
HttpService). This command blocks execution of the server script until a client
connects. If this server script is compared with the primitive one we wrote before,
you will notice two additional lines in the header. The first instructs the browser to
close the connection after each request. The second tells the browser that it should
never try to remember earlier requests that had identical web addresses (no

9 October 2001 01:44

caching). Otherwise, it could happen that the browser retrieves the time of day in
the previous example just once, and later it takes the web page from the cache,
always displaying the same time of day although time advances each second.

Having supplied the initial home page to the browser with a valid document
stor ed in the parameter Prompt, it closes the connection and waits for the next
request. When the request comes, a log line is printed that allows us to see which
request the server receives. The final step in the loop is to call the function
CGI_setup, which reads all the lines of the request (coming from the browser),
pr ocesses them, and stores the transmitted parameters in the array PARAM. The
complete text of these application-independent functions can be found in the sec-
tion “A Simple CGI Library” later in this chapter. For now, we use a simplified ver-
sion of CGI_setup:

function CGI_setup(method, uri, version, i) {
delete GETARG; delete MENU; delete PARAM
GETARG["Method"] = $1; GETARG["URI"] = $2; GETARG["Version"] = $3
i = index($2, "?")
if (i > 0) { # is there a "?" indicating a CGI request?

split(substr($2, 1, i-1), MENU, "[/:]")
split(substr($2, i+1), PARAM, "&")
for (i in PARAM) {

j = index(PARAM[i], "=")
GETARG[substr(PARAM[i], 1, j-1)] = substr(PARAM[i], j+1)

}
} else { # there is no "?", no need for splitting PARAMs

split($2, MENU, "[/:]")
}

}

At first, the function clears all variables used for global storage of request parame-
ters. The rest of the function serves the purpose of filling the global parameters
with the extracted new values. To accomplish this, the name of the requested
resource is split into parts and stored for later evaluation. If the request contains a
?, then the request has CGI variables seamlessly appended to the web address.
Everything in front of the ? is split up into menu items, and everything behind the
? is a list of variable=value pairs (separated by &) that also need splitting. This way,
CGI variables are isolated and stored. This procedur e lacks recognition of special
characters that are transmitted in coded form.* Her e, any optional request header
and body parts are ignor ed. We do not need header parameters and the request
body. However, when refining our approach or working with the POST and PUT

methods, reading the header and body becomes inevitable. Header parameters
should then be stored in a global array as well as the body.

* As defined in RFC 2068.

Networking with gawk 297

9 October 2001 01:44

298 Chapter 14: Internetworking with gawk

On each subsequent run through the main loop, one request from a browser is
received, evaluated, and answered according to the user’s choice. This can be
done by letting the value of the HTTP method guide the main loop into execution
of the procedur e HandleGET, which evaluates the user’s choice. In this case, we
have only one hierarchical level of menus, but in the general case, menus are
nested. The menu choices at each level are separated by /, just as in filenames.
Notice how simple it is to construct menus of arbitrary depth:

function HandleGET() {
if (MENU[2] == "human") {

Footer = strftime() TopFooter
} else if (MENU[2] == "POSIX") {

Footer = systime() TopFooter
}

}

The disadvantage of this approach is that our server is slow and can handle only
one request at a time. Its main advantage, however, is that the server consists of
just one gawk pr ogram. No need for installing an httpd, and no need for static sep-
arate HTML files, CGI scripts, or root privileges. This is rapid prototyping. This
pr ogram can be started on the same host that runs your browser. Then let your
br owser point to http://localhost:8080.

It is also possible to include images into the HTML pages. Most browsers support
the not very well-known .xbm for mat, which may contain only monochrome pic-
tur es but is an ASCII format. Binary images are possible but not so easy to handle.
Another way of including images is to generate them with a tool such as GNUPlot,
by calling the tool with the system function or through a pipe.

A Simple CGI Librar y

In the section “A Web Service with Interaction” earlier in this chapter, we saw the
function CGI_setup as part of the web server “core logic” framework. The code
pr esented ther e handles almost everything necessary for CGI requests. One thing it
doesn’t do is handle encoded characters in the requests. For example, an & is
encoded as a percent sign followed by the hexadecimal value: %26. These encoded
values should be decoded. Following is a simple library to perfor m these tasks.
This code is used for all web server examples used throughout the rest of this
book. If you want to use it for your own web server, stor e the source code into a
file named inetlib.awk. Then you can include these functions into your code by
placing the following statement into your program (on the first line of your script):

@include inetlib.awk

9 October 2001 01:44

But beware, this mechanism is only possible if you invoke your web server script
with igawk instead of the usual awk or gawk. Her e is the code:

CGI Library and core of a web server

Global arrays
GETARG --- arguments to CGI GET command
MENU --- menu items (path names)
PARAM --- parameters of form x=y

Optional variable MyHost contains host address
Optional variable MyPort contains port number
Needs TopHeader, TopDoc, TopFooter
Sets MyPrefix, HttpService, Status, Reason

BEGIN {
if (MyHost == "") {

"uname -n" | getline MyHost
close("uname -n")

}
if (MyPort == 0) MyPort = 8080
HttpService = "/inet/tcp/" MyPort "/0/0"
MyPrefix = "http://" MyHost ":" MyPort
SetUpServer()
while ("awk" != "complex") {

RS = ORS = "\r\n" # header lines are terminated this way
Status = 200 # this means OK
Reason = "OK"
Header = TopHeader
Document = TopDoc
Footer = TopFooter
if (GETARG["Method"] == "GET") {

HandleGET()
} else if (GETARG["Method"] == "HEAD") {

not yet implemented
} else if (GETARG["Method"] != "") {

print "bad method", GETARG["Method"]
}
Prompt = Header Document Footer
print "HTTP/1.0", Status, Reason |& HttpService
print "Connection: Close" |& HttpService
print "Pragma: no-cache" |& HttpService
len = length(Prompt) + length(ORS)
print "Content-length:", len |& HttpService
print ORS Prompt |& HttpService
ignore all the header lines
while ((HttpService |& getline) > 0)

continue
close(HttpService) # stop talking to this client
HttpService |& getline # wait for new client request
print systime(), strftime(), $0 # do some logging
CGI_setup($1, $2, $3)

}
}

Networking with gawk 299

9 October 2001 01:44

300 Chapter 14: Internetworking with gawk

function CGI_setup(method, uri, version, i)
{

delete GETARG
delete MENU
delete PARAM
GETARG["Method"] = method
GETARG["URI"] = uri
GETARG["Version"] = version

i = index(uri, "?")
if (i > 0) { # is there a "?" indicating a CGI request?

split(substr(uri, 1, i-1), MENU, "[/:]")
split(substr(uri, i+1), PARAM, "&")
for (i in PARAM) {

PARAM[i] = _CGI_decode(PARAM[i])
j = index(PARAM[i], "=")
GETARG[substr(PARAM[i], 1, j-1)] = substr(PARAM[i], j+1)

}
} else { # there is no "?", no need for splitting PARAMs

split(uri, MENU, "[/:]")
}
for (i in MENU) # decode characters in path

if (i > 4) # but not those in host name
MENU[i] = _CGI_decode(MENU[i])

}

This isolates the details in a single function, CGI_setup. Decoding of encoded char-
acters is pushed off to a helper function, _CGI_decode. The use of the leading
underscor e (_) in the function name is intended to indicate that it is an “internal”
function, although there is nothing to enforce this:

function _CGI_decode(str, hexdigs, i, pre, code1, code2, val, result)
{

hexdigs = "123456789abcdef"

i = index(str, "%")
if (i == 0) # no work to do

return str

do {
pre = substr(str, 1, i-1) # part before %xx
code1 = substr(str, i+1, 1) # first hex digit
code2 = substr(str, i+2, 1) # second hex digit
str = substr(str, i+3) # rest of string

code1 = tolower(code1)
code2 = tolower(code2)
val = index(hexdigs, code1) * 16 \

+ index(hexdigs, code2)

result = result pre sprintf("%c", val)
i = index(str, "%")

} while (i != 0)

9 October 2001 01:44

if (length(str) > 0)
result = result str

return result
}

This works by splitting the string apart around an encoded character. The two dig-
its are converted to lowercase characters and looked up in a string of hex digits.
Note that 0 is not in the string on purpose; index retur ns zer o when it’s not found,
automatically giving the correct value! Once the hexadecimal value is converted
fr om characters in a string into a numerical value, sprintf converts the value back
into a real character. The following is a simple test harness for the above func-
tions:

BEGIN {
CGI_setup("GET",

"http://www.gnu.org/cgi-bin/foo?p1=stuff&p2=stuff%26junk" \
"&percent=a %25 sign",
"1.0")

for (i in MENU)
printf "MENU[\"%s\"] = %s\n", i, MENU[i]

for (i in PARAM)
printf "PARAM[\"%s\"] = %s\n", i, PARAM[i]

for (i in GETARG)
printf "GETARG[\"%s\"] = %s\n", i, GETARG[i]

}

And this is the result when we run it:

$ gawk -f testserv.awk
MENU["4"] = www.gnu.org
MENU["5"] = cgi-bin
MENU["6"] = foo
MENU["1"] = http
MENU["2"] =
MENU["3"] =
PARAM["1"] = p1=stuff
PARAM["2"] = p2=stuff&junk
PARAM["3"] = percent=a % sign
GETARG["p1"] = stuff
GETARG["percent"] = a % sign
GETARG["p2"] = stuff&junk
GETARG["Method"] = GET
GETARG["Version"] = 1.0
GETARG["URI"] = http://www.gnu.org/cgi-bin/foo?p1=stuff&p2=stuff%26junk

&percent=a %25 sign

A Simple Web Server
In the preceding section, we built the core logic for event-driven GUIs. In this sec-
tion, we finally extend the core to a real application. No one would actually write
a commercial web server in gawk, but it is instructive to see that it is feasible in
principle.

Networking with gawk 301

9 October 2001 01:44

302 Chapter 14: Internetworking with gawk

The application is ELIZA, the famous program by Joseph Weizenbaum that mimics
the behavior of a professional psychotherapist when talking to you. Weizenbaum
would certainly object to this description, but this is part of the legend around
ELIZA. Take the site-independent core logic and append the following code:

function SetUpServer() {
SetUpEliza()
TopHeader = "<HTML><title>An HTTP-based System with GAWK</title>\
<HEAD><META HTTP-EQUIV=\"Content-Type\"\
CONTENT=\"text/html; charset=iso-8859-1\"></HEAD>\
<BODY BGCOLOR=\"#ffffff\" TEXT=\"#000000\" LINK=\"#0000ff\"\
VLINK=\"#0000ff\" ALINK=\"#0000ff\"> "

TopDoc = "\
<h2>Please choose one of the following actions:</h2>\
\
About this server\
About Eliza\
Start talking to Eliza\
"

TopFooter = "</BODY></HTML>"
}

SetUpServer is similar to the previous example, except for calling another function,
SetUpEliza. This approach can be used to implement other kinds of servers. The
only changes needed to do so are hidden in the functions SetUpServer and Han-

dleGET. Perhaps it might be necessary to implement other HTTP methods. The
igawk pr ogram that comes with gawk may be useful for this process.

When extending this example to a complete application, the first thing to do is to
implement the function SetUpServer to initialize the HTML pages and some vari-
ables. These initializations determine the way your HTML pages look (colors, titles,
menu items, etc.).

The function HandleGET is a nested case selection that decides which page the user
wants to see next. Each nesting level refers to a menu level of the GUI. Each case
implements a certain action of the menu. On the deepest level of case selection,
the handler essentially knows what the user wants and stores the answer into the
variable that holds the HTML page contents:

function HandleGET() {
A real HTTP server would treat some parts of the URI as a file name.
We take parts of the URI as menu choices and go on accordingly.
if (MENU[2] == "AboutServer") {

Document = "This is not a CGI script.\
This is an httpd, an HTML file, and a CGI script all \
in one GAWK script. It needs no separate www-server, \
no installation, and no root privileges.\
<p>To run it, do this:</p>\
 start this script with \"gawk -f httpserver.awk\",\
 and on the same host let your www browser open location\

9 October 2001 01:44

\"http://localhost:8080\"\
\<p>\ Details of HTTP come from:</p>\
Hethmon: Illustrated Guide to HTTP</p>\
RFC 2068<p>JK 14.9.1997</p>"

} else if (MENU[2] == "AboutELIZA") {
Document = "This is an implementation of the famous ELIZA\
program by Joseph Weizenbaum. It is written in GAWK and\
uses an HTML GUI."

} else if (MENU[2] == "StartELIZA") {
gsub(/\+/, " ", GETARG["YouSay"])
Here we also have to substitute coded special characters
Document = "<form method=GET>" \
"<h3>" ElizaSays(GETARG["YouSay"]) "</h3>\
<p><input type=text name=YouSay value=\"\" size=60>\

<input type=submit value=\"Tell her about it\"></p></form>"

}
}

Now we are down to the heart of ELIZA, so you can see how it works. Initially the
user does not say anything; then ELIZA resets its money counter and asks the user
to tell what comes to mind open heartedly. The subsequent answers are converted
to uppercase characters and stored for later comparison. ELIZA presents the bill
when being confronted with a sentence that contains the phrase “shut up.” Other-
wise, it looks for keywords in the sentence, conjugates the rest of the sentence,
remembers the keyword for later use, and finally selects an answer from the set of
possible answers:

function ElizaSays(YouSay) {
if (YouSay == "") {

cost = 0
answer = "HI, IM ELIZA, TELL ME YOUR PROBLEM"

} else {
q = toupper(YouSay)
gsub("’", "", q)
if (q == qold) {

answer = "PLEASE DONT REPEAT YOURSELF !"
} else {

if (index(q, "SHUT UP") > 0) {
answer = "WELL, PLEASE PAY YOUR BILL. ITS EXACTLY ... $"\

int(100*rand()+30+cost/100)
} else {

qold = q
w = "-" # no keyword recognized yet
for (i in k) { # search for keywords

if (index(q, i) > 0) {
w = i
break

}
}

Networking with gawk 303

9 October 2001 01:44

304 Chapter 14: Internetworking with gawk

if (w == "-") { # no keyword, take old subject
w = wold
subj = subjold

} else { # find subject
subj = substr(q, index(q, w) + length(w)+1)
wold = w
subjold = subj # remember keyword and subject

}
for (i in conj)

gsub(i, conj[i], q) # conjugation
from all answers to this keyword, select one randomly
answer = r[indices[int(split(k[w], indices) * rand()) + 1]]
insert subject into answer
gsub("_", subj, answer)

}
}

}
cost += length(answer) # for later payment : 1 cent per character
return answer

}

In the long but simple function SetUpEliza, you can see tables for conjugation,
keywords, and answers.* The associative array k contains indices into the array of
answers r. To choose an answer, ELIZA just picks an index randomly:

function SetUpEliza() {
srand()
wold = "-"
subjold = " "

table for conjugation
conj[" ARE "] = " AM "
conj["WERE "] = "WAS "
conj[" YOU "] = " I "
conj["YOUR "] = "MY "
conj[" IVE "] =\
conj[" I HAVE "] = " YOU HAVE "
conj[" YOUVE "] =\
conj[" YOU HAVE "] = " I HAVE "
conj[" IM "] =\
conj[" I AM "] = " YOU ARE "
conj[" YOURE "] =\
conj[" YOU ARE "] = " I AM "

table of all answers
r[1] = "DONT YOU BELIEVE THAT I CAN _"
r[2] = "PERHAPS YOU WOULD LIKE TO BE ABLE TO _ ?"
...

* The version shown here is abbr eviated. The full version comes with the gawk distribution.

9 October 2001 01:44

table for looking up answers that fit to a certain keyword
k["CAN YOU"] = "1 2 3"
k["CAN I"] = "4 5"
k["YOU ARE"] =\
k["YOURE"] = "6 7 8 9"
...

}

Some interesting remarks and details (including the original source code of ELIZA)
ar e found on Mark Humphry’s home page. Yahoo! also has a page with a collec-
tion of ELIZA-like programs. Many of them are written in Java, some of them dis-
closing the Java source code, and a few even explain how to modify the Java
source code.

Network Programming Caveats
By now it should be clear that debugging a networked application is more compli-
cated than debugging a single-process single-hosted application. The behavior of a
networked application sometimes looks noncausal because it is not repr oducible
in a strong sense. Whether a network application works or not sometimes
depends on the following:

• How crowded the underlying network is

• Whether the party at the other end is running

• The state of the party at the other end

The most difficult problems for a beginner arise from the hidden states of the
underlying network. After closing a TCP connection, it’s often necessary to wait a
short while before reopening the connection. Even more dif ficult is the establish-
ment of a connection that previously ended with a “broken pipe.” Those connec-
tions have to “time out” for a minute or so before they can reopen. Check this
with the command netstat -a, which provides a list of still “active” connections.

Some Applications and Techniques
In this section, we look at a number of self-contained scripts, with an emphasis on
concise networking. Along the way, we work towards creating building blocks
that encapsulate often needed functions of the networking world, show new tech-
niques that broaden the scope of problems that can be solved with gawk, and
explor e leading edge technology that may shape the future of networking.

We often refer to the site-independent core of the server that we built in the sec-
tion “A Simple Web Server” earlier in this chapter. When building new and nontriv-
ial servers, we always copy this building block and append new instances of the
two functions SetUpServer and HandleGET.

Some Applications and Techniques 305

9 October 2001 01:44

306 Chapter 14: Internetworking with gawk

This makes a lot of sense, since this scheme of event-driven execution provides
gawk with an interface to the most widely accepted standard for GUIs: the web
br owser. Now, gawk can rival even Tcl/Tk.

Tcl and gawk have much in common. Both are simple scripting languages that
allow us to quickly solve problems with short programs. But Tcl has Tk on top of
it, and gawk had nothing comparable up to now. While Tcl needs a large and
ever-changing library (Tk, which was bound to the X Window System until
recently), gawk needs just the networking interface and some kind of browser on
the client’s side. Besides better portability, the most important advantage of this
appr oach (embracing well-established standards such HTTP and HTML) is that we
do not need to change the language. We let others do the work of fighting over
pr otocols and standards. We can use HTML, JavaScript, VRML, or whatever else
comes along to do our work.

PANIC: An Emergenc y Web Ser ver
At first glance, the "Hello, world" example in the section “A Primitive Web Ser-
vice” earlier in this chapter, seems useless. By adding just a few lines, we can turn
it into something useful.

The PANIC program tells everyone who connects that the local site is not working.
When a web server breaks down, it makes a differ ence if customers get a strange
“network unreachable” message, or a short message telling them that the server
has a problem. In such an emergency, the hard disk and everything on it (includ-
ing the regular web service) may be unavailable. Rebooting the web server off a
diskette makes sense in this setting.

To use the PANIC program as an emergency web server, all you need are the gawk
executable and the program below on a diskette. By default, it connects to port
8080. A differ ent value may be supplied on the command line:

BEGIN {
RS = ORS = "\r\n"
if (MyPort == 0) MyPort = 8080
HttpService = "/inet/tcp/" MyPort "/0/0"
Hello = "<HTML><HEAD><TITLE>Out Of Service</TITLE>" \

"</HEAD><BODY><H1>" \
"This site is temporarily out of service." \
"</H1></BODY></HTML>"

Len = length(Hello) + length(ORS)

9 October 2001 01:44

while ("awk" != "complex") {
print "HTTP/1.0 200 OK" |& HttpService
print "Content-Length: " Len ORS |& HttpService
print Hello |& HttpService
while ((HttpService |& getline) > 0)

continue
close(HttpService)

}
}

GETURL: Retrieving Web Pages
GETURL is a versatile building block for shell scripts that need to retrieve files
fr om the Internet. It takes a web address as a command-line parameter and tries to
retrieve the contents of this address. The contents are printed to standard output,
while the header is printed to /dev/stderr. A surr ounding shell script could analyze
the contents and extract the text or the links. An ASCII browser could be written
ar ound GETURL. But more inter estingly, web robots are straightforward to write
on top of GETURL. On the Internet, you can find several programs of the same
name that do the same job. They are usually much more complex internally and at
least 10 times longer.

At first, GETURL checks if it was called with exactly one web address. Then, it
checks if the user chose to use a special proxy server whose name is handed over
in a variable. By default, it is assumed that the local machine serves as proxy.
GETURL uses the GET method by default to access the web page. By handing over
the name of a differ ent method (such as HEAD), it is possible to choose a differ ent
behavior. With the HEAD method, the user does not receive the body of the page
content, but does receive the header:

BEGIN {
if (ARGC != 2) {

print "GETURL - retrieve Web page via HTTP 1.0"
print "IN:\n the URL as a command-line parameter"
print "PARAM(S):\n -v Proxy=MyProxy"
print "OUT:\n the page content on stdout"
print " the page header on stderr"
print "JK 16.05.1997"
print "ADR 13.08.2000"
exit

}
URL = ARGV[1]; ARGV[1] = ""
if (Proxy == "") Proxy = "127.0.0.1"
if (ProxyPort == 0) ProxyPort = 80
if (Method == "") Method = "GET"
HttpService = "/inet/tcp/0/" Proxy "/" ProxyPort
ORS = RS = "\r\n\r\n"
print Method " " URL " HTTP/1.0" |& HttpService
HttpService |& getline Header
print Header > "/dev/stderr"

Some Applications and Techniques 307

9 October 2001 01:44

308 Chapter 14: Internetworking with gawk

while ((HttpService |& getline) > 0)
printf "%s", $0

close(HttpService)
}

This program can be changed as needed, but be careful with the last lines. Make
sur e transmission of binary data is not corrupted by additional line breaks. Even as
it is now, the byte sequence "\r\n\r\n" would disappear if it were contained in
binary data. Don’t get caught in a trap when trying a quick fix on this one.

REMCONF: Remote Configuration
of Embedded Systems
Today, you often find powerful processors in embedded systems. Dedicated net-
work routers and controllers for all kinds of machinery are examples of embedded
systems. Processors like the Intel 80x86 or the AMD Elan are able to run multitask-
ing operating systems, such as XINU or GNU/Linux in embedded PCs. These sys-
tems are small and usually do not have a keyboard or a display. Therefor e, it is
dif ficult to set up their configuration. There are several widespread ways to set
them up:

• DIP switches

• Read Only Memories such as EPROMs

• Serial lines or some kind of keyboard

• Network connections via telnet or SNMP

• HTTP connections with HTML GUIs

In this section, we look at a solution that uses HTTP connections to control vari-
ables of an embedded system that are stor ed in a file. Since embedded systems
have tight limits on resources like memory, it is difficult to employ advanced tech-
niques such as SNMP and HTTP servers. gawk fits in quite nicely with its single
executable which needs just a short script to start working. The following program
stor es the variables in a file, and a concurrent process in the embedded system
may read the file. The program uses the site-independent part of the simple web
server that we developed in the section “A Web Service with Interaction” earlier in
this chapter. As mentioned there, all we have to do is to write two new proce-
dur es, SetUpServer and HandleGET:

function SetUpServer() {
TopHeader = "<HTML><title>Remote Configuration</title>"
TopDoc = "<BODY>\
<h2>Please choose one of the following actions:</h2>\
\
About this server\
Read Configuration\

9 October 2001 01:44

Check Configuration\
Change Configuration\
Save Configuration\
"

TopFooter = "</BODY></HTML>"
if (ConfigFile == "") ConfigFile = "config.asc"

}

The function SetUpServer initializes the top-level HTML texts as usual. It also ini-
tializes the name of the file that contains the configuration parameters and their
values. In case the user supplies a name from the command line, that name is
used. The file is expected to contain one parameter per line, with the name of the
parameter in column one and the value in column two.

The function HandleGET reflects the structure of the menu tree as usual. The first
menu choice tells the user what this is all about. The second choice reads the con-
figuration file line by line and stores the parameters and their values. Notice that
the record separator for this file is "\n", in contrast to the record separator for
HTTP. The third menu choice builds an HTML table to show the contents of the
configuration file just read. The fourth choice does the real work of changing
parameters, and the last one just saves the configuration into a file:

function HandleGET() {
if (MENU[2] == "AboutServer") {

Document = "This is a GUI for remote configuration of an\
embedded system. It is is implemented as one GAWK script."

} else if (MENU[2] == "ReadConfig") {
RS = "\n"
while ((getline < ConfigFile) > 0)

config[$1] = $2
close(ConfigFile)
RS = "\r\n"
Document = "Configuration has been read."

} else if (MENU[2] == "CheckConfig") {
Document = "<TABLE BORDER=1 CELLPADDING=5>"
for (i in config)

Document = Document "<TR><TD>" i "</TD>" \
"<TD>" config[i] "</TD></TR>"

Document = Document "</TABLE>"
} else if (MENU[2] == "ChangeConfig") {

if ("Param" in GETARG) { # any parameter to set?
if (GETARG["Param"] in config) { # is parameter valid?

config[GETARG["Param"]] = GETARG["Value"]
Document = (GETARG["Param"] " = " GETARG["Value"] ".")

} else {
Document = "Parameter " GETARG["Param"] " is invalid."

}

Some Applications and Techniques 309

9 October 2001 01:44

310 Chapter 14: Internetworking with gawk

} else {
Document = "<FORM method=GET><h4>Change one parameter</h4>\
<TABLE BORDER CELLPADDING=5>\
<TR><TD>Parameter</TD><TD>Value</TD></TR>\
<TR><TD><input type=text name=Param value=\"\" size=20></TD>\
<TD><input type=text name=Value value=\"\" size=40></TD>\
</TR></TABLE><input type=submit value=\"Set\"></FORM>"

}
} else if (MENU[2] == "SaveConfig") {

for (i in config)
printf("%s %s\n", i, config[i]) > ConfigFile

close(ConfigFile)
Document = "Configuration has been saved."

}
}

We could also view the configuration file as a database. From this point of view,
the previous program acts like a primitive database server. Real SQL database sys-
tems also make a service available by providing a TCP port that clients can con-
nect to. But the application level protocols they use are usually proprietary and
also change from time to time. This is also true for the protocol that MiniSQL uses.

URLCHK: Look for Changed Web Pages
Most people who make heavy use of Internet resources have a large bookmark
file with pointers to interesting web sites. It is impossible to regularly check by
hand if any of these sites have changed. A program is needed to automatically
look at the headers of web pages and tell which ones have changed. URLCHK
does the comparison after using GETURL with the HEAD method to retrieve the
header.

Like GETURL, this program first checks that it is called with exactly one command-
line parameter. URLCHK also takes the same command-line variables Proxy and
ProxyPort as GETURL, because these variables are handed over to GETURL for
each URL that gets checked. The one and only parameter is the name of a file that
contains one line for each URL. In the first column, we find the URL, and the sec-
ond and third columns hold the length of the URL’s body when checked for the
two last times. Now, we follow this plan:

1. Read the URLs from the file and remember their most recent lengths.

2. Delete the contents of the file.

3. For each URL, check its new length and write it into the file.

4. If the most recent and the new length differ, tell the user.

It may seem a bit peculiar to read the URLs from a file together with their two
most recent lengths, but this approach has several advantages. You can call the
pr ogram again and again with the same file. After running the program, you can

9 October 2001 01:44

regenerate the changed URLs by extracting those lines that differ in their second
and third columns:

BEGIN {
if (ARGC != 2) {

print "URLCHK - check if URLs have changed"
print "IN:\n the file with URLs as a command-line parameter"
print " file contains URL, old length, new length"
print "PARAMS:\n -v Proxy=MyProxy -v ProxyPort=8080"
print "OUT:\n same as file with URLs"
print "JK 02.03.1998"
exit

}
URLfile = ARGV[1]; ARGV[1] = ""
if (Proxy != "") Proxy = " -v Proxy=" Proxy
if (ProxyPort != "") ProxyPort = " -v ProxyPort=" ProxyPort
while ((getline < URLfile) > 0)

Length[$1] = $3 + 0
close(URLfile) # now, URLfile is read in and can be updated
GetHeader = "gawk " Proxy ProxyPort \

" -v Method=\"HEAD\" -f geturl.awk "
for (i in Length) {

GetThisHeader = GetHeader i " 2>&1"
while ((GetThisHeader | getline) > 0)

if (toupper($0) ˜ /CONTENT-LENGTH/)
NewLength = $2 + 0

close(GetThisHeader)
print i, Length[i], NewLength > URLfile
if (Length[i] != NewLength) # report only changed URLs

print i, Length[i], NewLength
}
close(URLfile)

}

Another thing that may look strange is the way GETURL is called. Before calling
GETURL, we have to check if the proxy variables need to be passed on. If so, we
pr epar e strings that will become part of the command line later. In GetHeader, we
stor e these strings together with the longest part of the command line. Later, in the
loop over the URLs, GetHeader is appended with the URL and a redir ection opera-
tor to form the command that reads the URL’s header over the Internet. GETURL
always produces the headers over /dev/stderr. That is the reason why we need the
redir ection operator to have the header piped in.

This program is not perfect because it assumes that changing URLs results in
changed lengths, which is not necessarily true. A more advanced approach is to
look at some other header line that holds time information. But, as always when
things get a bit more complicated, this is left as an exercise to the reader.

Some Applications and Techniques 311

9 October 2001 01:44

312 Chapter 14: Internetworking with gawk

WEBGRAB: Extract Links from a Page
Sometimes it is necessary to extract links from web pages. Browsers do it, web
robots do it, and sometimes even humans do it. Since we have a tool like GETURL
at hand, we can solve this problem with some help from the Bourne shell:

BEGIN { RS = "http://[#%&\\+\\-\\./0-9\\:;\\?A-Z_a-z\\˜]*" }
RT != "" {

command = ("gawk -v Proxy=MyProxy -f geturl.awk " RT \
" > doc" NR ".html")

print command
}

Notice that the regular expression for URLs is rather crude. A precise regular
expr ession is much more complex. But this one works rather well. One problem is
that it is unable to find internal links of an HTML document. Another problem is
that ftp, telnet, news, mailto, and other kinds of links are missing in the regular
expr ession. However, it is straightforward to add them, if doing so is necessary for
other tasks.

This program reads an HTML file and prints all the HTTP links that it finds. It relies
on gawk ’s ability to use regular expressions as record separators. With RS set to a
regular expression that matches links, the second action is executed each time a
nonempty link is found. We can find the matching link itself in RT.

The action could use the system function to let another GETURL retrieve the page,
but here we use a differ ent appr oach. This simple program prints shell commands
that can be piped into sh for execution. This way it is possible to first extract the
links, wrap shell commands around them, and pipe all the shell commands into a
file. After editing the file, execution of the file retrieves exactly those files that we
really need. In case we do not want to edit, we can retrieve all the pages like this:

gawk -f geturl.awk http://www.suse.de | gawk -f webgrab.awk | sh

After this, you will find the contents of all refer enced documents in files named
doc*.html even if they do not contain HTML code. The most annoying thing is that
we always have to pass the proxy to GETURL. If you do not like to see the head-
ers of the web pages appear on the screen, you can redir ect them to /dev/null.
Watching the headers appear can be quite interesting, because it reveals interest-
ing details such as which web server the companies use. Now, it is clear how the
clever marketing people use web robots to determine the market shares of
Micr osoft and Netscape in the web server market.

Port 80 of any web server is like a small hole in a repellent firewall. After attaching
a browser to port 80, we usually catch a glimpse of the bright side of the server
(its home page). With a tool like GETURL at hand, we are able to discover some

9 October 2001 01:44

of the more concealed or even “indecent” services (i.e., lacking conformity to stan-
dards of quality). It can be exciting to see the fancy CGI scripts that lie there,
revealing the inner workings of the server, ready to be called:

• With a command such as:

gawk -f geturl.awk http://any.host.on.the.net/cgi-bin/

some servers give you a directory listing of the CGI files. Knowing the names,
you can try to call some of them and watch for useful results. Sometimes there
ar e executables in such directories (such as Perl interpreters) that you may call
remotely. If there are subdir ectories with configuration data of the web server,
this can also be quite interesting to read.

• The well-known Apache web server usually has its CGI files in the directory
/cgi-bin. Ther e you can often find the scripts test-cgi and printenv. Both tell
you some things about the current connection and the installation of the web
server. Just call:

gawk -f geturl.awk http://any.host.on.the.net/cgi-bin/test-cgi
gawk -f geturl.awk http://any.host.on.the.net/cgi-bin/printenv

• Sometimes it is even possible to retrieve system files like the web server’s log
file — possibly containing customer data—or even the file /etc/passwd. (We
don’t recommend this!)

Although this may sound funny or simply irrelevant, we are talking
about severe security holes. Try to explore your own system this
way and make sure that none of the above reveals too much infor-
mation about your system.

STATIST: Graphing a Statistical Distribution
In the HTTP server examples we’ve shown thus far, we never present an image to
the browser and its user. Presenting images is one task. Generating images that
reflect some user input and presenting these dynamically generated images is
another. In this section, we use GNUPlot for generating .png, .ps, or .gif files.*

* Due to licensing problems, the default installation of GNUPlot disables the generation of .gif files. If
your installed version does not accept set term gif, just download and install the most recent ver-
sion of GNUPlot and the GD library (http://www.Boutell.com/gd/) by Thomas Boutell. Otherwise,
you still have the chance to generate some ASCII-art-style images with GNUPlot by using set term
dumb. (We tried it and it worked.)

Some Applications and Techniques 313

9 October 2001 01:44

314 Chapter 14: Internetworking with gawk

The program we develop takes the statistical parameters of two samples and com-
putes the t-test statistics. As a result, we get the probabilities that the means and
the variances of both samples are the same. In order to let the user check plausi-
bility, the program presents an image of the distributions. The statistical computa-
tion follows Numerical Recipes in C: The Art of Scientific Computing by William H.
Pr ess, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery (Cambridge
University Press). Since gawk does not have a built-in function for the computation
of the beta function, we use the ibeta function of GNUPlot. As a side effect, we
lear n how to use GNUPlot as a sophisticated calculator. The comparison of means
is done as in tutest, paragraph 14.2, page 613, and the comparison of variances is
done as in ftest, page 611 in Numerical Recipes.

As usual, we take the site-independent code for servers and append our own func-
tions SetUpServer and HandleGET:

function SetUpServer() {
TopHeader = "<HTML><title>Statistics with GAWK</title>"
TopDoc = "<BODY>\
<h2>Please choose one of the following actions:</h2>\
\
About this server\
Enter Parameters\
"

TopFooter = "</BODY></HTML>"
GnuPlot = "gnuplot 2>&1"
m1=m2=0; v1=v2=1; n1=n2=10

}

Her e, you see the menu structure that the user sees. Later, we will see how the
pr ogram structur e of the HandleGET function reflects the menu structure. What is
missing here is the link for the image we generate. In an event-driven environ-
ment, request, generation, and delivery of images are separated.

Notice the way we initialize the GnuPlot command string for the pipe. By default,
GNUPlot outputs the generated image via standard output, as well as the results of
printed calculations via standard error. The redir ection causes standard error to be
mixed into standard output, enabling us to read results of calculations with get-

line. By initializing the statistical parameters with some meaningful defaults, we
make sure the user gets an image the first time he uses the program.

Following is the rather long function HandleGET, which implements the contents of
this service by reacting to the differ ent kinds of requests from the browser. Befor e
you start playing with this script, make sure that your browser supports JavaScript
and that it also has this option switched on. The script uses a short snippet of
JavaScript code for delayed opening of a window with an image. A more detailed
explanation follows:

9 October 2001 01:44

function HandleGET() {
if (MENU[2] == "AboutServer") {
Document = "This is a GUI for a statistical computation.\
It compares means and variances of two distributions.\
It is implemented as one GAWK script and uses GNUPLOT."

} else if (MENU[2] == "EnterParameters") {
Document = ""
if ("m1" in GETARG) { # are there parameters to compare?
Document = Document "<SCRIPT LANGUAGE=\"JavaScript\">\
setTimeout(\"window.open(\\\"" MyPrefix "/Image" systime()\
"\\\",\\\"dist\\\", \\\"status=no\\\");\", 1000); </SCRIPT>"

m1 = GETARG["m1"]; v1 = GETARG["v1"]; n1 = GETARG["n1"]
m2 = GETARG["m2"]; v2 = GETARG["v2"]; n2 = GETARG["n2"]
t = (m1-m2)/sqrt(v1/n1+v2/n2)
df = (v1/n1+v2/n2)*(v1/n1+v2/n2)/((v1/n1)*(v1/n1)/(n1-1) \

+ (v2/n2)*(v2/n2) /(n2-1))
if (v1 > v2) {
f = v1 / v2
df1 = n1 - 1
df2 = n2 - 1

} else {
f = v2 / v1
df1 = n2 - 1
df2 = n1 - 1

}
print "pt=ibeta(" df/2 ",0.5," df/(df+t*t) ")" |& GnuPlot
print "pF=2.0*ibeta(" df2/2 "," \

df1/2 "," df2/(df2+df1*f) ")" |& GnuPlot
print "print pt, pF" |& GnuPlot
RS="\n"; GnuPlot |& getline; RS="\r\n" # $1 is pt, $2 is pF
print "invsqrt2pi=1.0/sqrt(2.0*pi)" |& GnuPlot
print "nd(x)=invsqrt2pi/sd*exp(-0.5*((x-mu)/sd)**2)" |& GnuPlot
print "set term png small color" |& GnuPlot
#print "set term postscript color" |& GnuPlot
#print "set term gif medium size 320,240" |& GnuPlot
print "set yrange[-0.3:]" |& GnuPlot
print "set label ’p(m1=m2) =" $1 "’ at 0,-0.1 left" |& GnuPlot
print "set label ’p(v1=v2) =" $2 "’ at 0,-0.2 left" |& GnuPlot
print "plot mu=" m1 ",sd=" sqrt(v1) ", nd(x) title ’sample 1’,\

mu=" m2 ",sd=" sqrt(v2) ", nd(x) title ’sample 2’" |& GnuPlot
print "quit" |& GnuPlot
GnuPlot |& getline Image
while ((GnuPlot |& getline) > 0)
Image = Image RS $0

close(GnuPlot)
}

Some Applications and Techniques 315

9 October 2001 01:44

316 Chapter 14: Internetworking with gawk

Document = Document "\
<h3>Do these samples have the same Gaussian distribution?</h3>\
<FORM METHOD=GET> <TABLE BORDER CELLPADDING=5>\
<TR>\
<TD>1. Mean </TD>\
<TD><input type=text name=m1 value=" m1 " size=8></TD>\
<TD>1. Variance</TD>\
<TD><input type=text name=v1 value=" v1 " size=8></TD>\
<TD>1. Count </TD>\
<TD><input type=text name=n1 value=" n1 " size=8></TD>\
</TR><TR>\
<TD>2. Mean </TD>\
<TD><input type=text name=m2 value=" m2 " size=8></TD>\
<TD>2. Variance</TD>\
<TD><input type=text name=v2 value=" v2 " size=8></TD>\
<TD>2. Count </TD>\
<TD><input type=text name=n2 value=" n2 " size=8></TD>\
</TR> <input type=submit value=\"Compute\">\
</TABLE></FORM>
"

} else if (MENU[2] ˜ "Image") {
Reason = "OK" ORS "Content-type: image/png"
#Reason = "OK" ORS "Content-type: application/x-postscript"
#Reason = "OK" ORS "Content-type: image/gif"
Header = Footer = ""
Document = Image

}
}

As usual, we give a short description of the service in the first menu choice. The
third menu choice shows us that generation and presentation of an image are two
separate actions. While the latter takes place quite instantly in the third menu
choice, the former takes place in the much longer second choice. Image data
passes from the generating action to the presenting action via the variable Image

that contains a complete .png image, which is otherwise stored in a file. If you
pr efer .ps or .gif images over the default .png images, you may select these options
by uncommenting the appropriate lines. But remember to do so in two places:
when telling GNUPlot which kind of images to generate and when transmitting the
image at the end of the program.

Looking at the end of the program, the way we pass the Content-type to the
br owser is a bit unusual. It is appended to the OK of the first header line to make
sur e the type information becomes part of the header. The other variables that get
transmitted across the network are made empty, because in this case we do not
have an HTML document to transmit, but rather raw image data to contain in the
body.

Most of the work is done in the second menu choice. It starts with a strange
JavaScript code snippet. When first implementing this server, we used a short
"" her e. But then browsers got smarter and tried to
impr ove on speed by requesting the image and the HTML code at the same time.

9 October 2001 01:44

When doing this, the browser tries to build up a connection for the image request
while the request for the HTML text is not yet completed. The browser tries to
connect to the gawk server on port 8080 while port 8080 is still in use for transmis-
sion of the HTML text. The connection for the image cannot be built up, so the
image appears as “broken” in the browser window. We solved this problem by
telling the browser to open a separate window for the image, but only after a
delay of 1,000 milliseconds. By this time, the server should be ready for serving
the next request.

But there is one more subtlety in the JavaScript code. Each time the JavaScript
code opens a window for the image, the name of the image is appended with a
timestamp (systime). Why this constant change of name for the image? Initially,
we always named the image Image, but then the Netscape browser noticed the
name had not changed since the previous request and displayed the previous
image (caching behavior). The server core is implemented so that browsers are
told not to cache anything. Obviously HTTP requests do not always work as
expected. One way to circumvent the cache of such overly smart browsers is to
change the name of the image with each request. Those three lines of JavaScript
caused us a lot of trouble.

The rest can be broken down into two phases. At first, we check if there are statis-
tical parameters. When the program is first started, there usually are no parameters
because it enters the page coming from the top menu. Then, we only have to pre-
sent the user a form that he can use to change statistical parameters and submit
them. Subsequently, the submission of the form causes the execution of the first
phase because now ther e ar e parameters to handle.

Now that we have parameters, we know there will be an image available. There-
for e, we insert the JavaScript code here to initiate the opening of the image in a
separate window. Then, we prepar e some variables that will be passed to GNU-
Plot for calculation of the probabilities. Prior to reading the results, we must tem-
porarily change RS because GNUPlot separates lines with newlines. After
instructing GNUPlot to generate a .png (or .ps or .gif) image, we initiate the inser-
tion of some text, explaining the resulting probabilities. The final plot command
actually generates the image data. This raw binary has to be read in carefully with-
out adding, changing, or deleting a single byte. Hence the unusual initialization of
Image and completion with a while loop.

Some Applications and Techniques 317

9 October 2001 01:44

318 Chapter 14: Internetworking with gawk

When using this server, it soon becomes clear that it is far from being perfect. It
mixes source code of six scripting languages or protocols:

• GNU awk implements a server for the protocol

• HTTP, which transmits

• HTML text, which contains a short piece of

• JavaScript code opening a separate window

• A Bour ne shell script is used for piping commands into

• GNUPlot to generate the image to be opened

After all this work, the GNUPlot image opens in the JavaScript window where it
can be viewed by the user.

It is probably better not to mix up so many differ ent languages. The result is very
hard to read. Furthermor e, the statistical part of the server does not take care of
invalid input. Among others, using negative variances will cause invalid results.

MOBAGWHO: A Simple Mobile Agent
A mobile agent is a program that can be dispatched from a computer and trans-
ported to a remote server for execution. This is called migration, which means
that a process on another system is started that is independent from its originator.
Ideally, it wanders through a network while working for its creator or owner. In
places like the UMBC Agent Web, people are quite confident that (mobile) agents
ar e a softwar e engineering paradigm that enables us to significantly increase the
ef ficiency of our work. Mobile agents could become the mediators between users
and the networking world. For an unbiased view at this technology, see David
Chass, Colin Harrison, and Aaron Kershenbaum’s remarkable paper “Mobile
Agents: Are They a Good Idea?”*

When trying to migrate a process from one system to another, a server process is
needed on the receiving side. Depending on the kind of server process, several
ways of implementation come to mind. How the process is implemented depends
upon the kind of server process:

• HTTP can be used as the protocol for delivery of the migrating process. In this
case, we use a common web server as the receiving server process. A univer-
sal CGI script mediates between migrating process and web server. Each
server willing to accept migrating agents makes this universal service available.
HTTP supplies the POST method to transfer some data to a file on the web
server. When a CGI script is called remotely with the POST method to transfer

* See http://www.r esearch.ibm.com/massive/mdoag.ps.

9 October 2001 01:44

some data to a file on the web server. When a CGI script is called remotely
with the GET method, data is transmitted from the client process to the stan-
dard input of the server’s CGI script. So, to implement a mobile agent, we
must not only write the agent program to start on the client side, but also the
CGI script to receive the agent on the server side.

• The PUT method can also be used for migration. HTTP does not requir e a CGI
script for migration via PUT. However, with common web servers there is no
advantage to this solution, because web servers such as Apache requir e
explicit activation of a special PUT script.

• Agent Tcl pursues a differ ent course; it relies on a dedicated server process
with a dedicated protocol specialized for receiving mobile agents.

Our agent example abuses a common web server as a migration tool. So, it needs
a universal CGI script on the receiving side (the web server). The receiving script
is activated with a POST request when placed into a location like /httpd/cgi-
bin/PostAgent.sh. Make sure that the server system uses a version of gawk that
supports network access (Version 3.1 or later; verify with gawk --version):

#!/bin/sh
MobAg=/tmp/MobileAgent.$$
direct script to mobile agent file
cat > $MobAg
gawk -f $MobAg $MobAg > /dev/null & # execute agent concurrently
HTTP header, terminator and body
gawk ’BEGIN { print "\r\nAgent started" }’
rm $MobAg # delete script file of agent

By making its process id ($$) part of the unique filename, the script avoids con-
flicts between concurrent instances of the script. First, all lines from standard input
(the mobile agent’s source code) are copied into this unique file. Then, the agent
is started as a concurrent process and a short message reporting this fact is sent to
the submitting client. Finally, the script file of the mobile agent is removed
because it is no longer needed. Although it is a short script, there are several note-
worthy points:

Security
Ther e is none. In fact, the CGI script should never be made available on a
server that is part of the Internet because everyone would be allowed to exe-
cute arbitrary commands with it. This behavior is acceptable only when per-
for ming rapid prototyping.

Self-r efer ence
Each migrating instance of an agent is started in a way that enables it to read
its own source code from standard input and use the code for subsequent

Some Applications and Techniques 319

9 October 2001 01:44

320 Chapter 14: Internetworking with gawk

migrations. This is necessary because it needs to treat the agent’s code as data
to transmit. gawk is not the ideal language for such a job. Lisp and Tcl are
mor e suitable because they do not make a distinction between program code
and data.

Independence
After migration, the agent is not linked to its former home in any way. By
reporting Agent started, it waves “Goodbye” to its origin. The originator may
choose to terminate or not.

The originating agent itself is started just like any other command-line script, and
reports the results on standard output. By letting the name of the original host
migrate with the agent, the agent that migrates to a host far away from its origin
can report the result back home. Having arrived at the end of the journey, the
agent establishes a connection and reports the results. This is the reason for deter-
mining the name of the host with uname -n and storing it in MyOrigin for later use.
We may also set variables with the –v option from the command line. This interac-
tivity is only of importance in the context of starting a mobile agent; therefor e, this
BEGIN patter n and its action do not take part in migration:

BEGIN {
if (ARGC != 2) {

print "MOBAG - a simple mobile agent"
print "CALL:\n gawk -f mobag.awk mobag.awk"
print "IN:\n the name of this script", \

"as a command-line parameter"
print "PARAM:\n -v MyOrigin=myhost.com"
print "OUT:\n the result on stdout"
print "JK 29.03.1998 01.04.1998"
exit

}
if (MyOrigin == "") {

"uname -n" | getline MyOrigin
close("uname -n")

}
}

Since gawk cannot manipulate and transmit parts of the program directly, the
source code is read and stored in strings. Therefor e, the program scans itself for
the beginning and the ending of functions. Each line in between is appended to
the code string until the end of the function has been reached. A special case is
this part of the program itself. It is not a function. Placing a similar framework
ar ound it causes it to be treated like a function. Notice that this mechanism works
for all the functions of the source code, but it cannot guarantee that the order of
the functions is preserved during migration:

9 October 2001 01:44

#ReadMySelf
/ˆfunction / { FUNC = $2 }
/ˆEND/ || /ˆ#ReadMySelf/ { FUNC = $1 }
FUNC != "" { MOBFUN[FUNC] = MOBFUN[FUNC] RS $0 }
(FUNC != "") && (/ˆ}/ || /ˆ#EndOfMySelf/) \

{ FUNC = "" }
#EndOfMySelf

The web server code in the section “A Web Service with Interaction” earlier in this
chapter was first developed as a site-independent core. Likewise, the gawk-based
mobile agent starts with an agent-independent core, to which can be appended
application-dependent functions. What follows is the only application-independent
function needed for the mobile agent:

function migrate(Destination, MobCode, Label) {
MOBVAR["Label"] = Label
MOBVAR["Destination"] = Destination
RS = ORS = "\r\n"
HttpService = "/inet/tcp/0/" Destination
for (i in MOBFUN)

MobCode = (MobCode "\n" MOBFUN[i])
MobCode = MobCode "\n\nBEGIN {"
for (i in MOBVAR)

MobCode = (MobCode "\n MOBVAR[\"" i "\"] = \"" MOBVAR[i] "\"")
MobCode = MobCode "\n}\n"
print "POST /cgi-bin/PostAgent.sh HTTP/1.0" |& HttpService
print "Content-length:", length(MobCode) ORS |& HttpService
printf "%s", MobCode |& HttpService
while ((HttpService |& getline) > 0)

print $0
close(HttpService)

}

The migrate function prepar es the aforementioned strings containing the program
code and transmits them to a server. A consequence of this modular approach is
that the migrate function takes some parameters that aren’t needed in this applica-
tion, but that will be in future ones. Its mandatory parameter Destination holds
the name (or IP address) of the server that the agent wants as a host for its code.
The optional parameter MobCode may contain some gawk code that is inserted dur-
ing migration in front of all other code. The optional parameter Label may contain
a string that tells the agent what to do in program execution after arrival at its new
home site. One of the serious obstacles in implementing a framework for mobile
agents is that it does not suffice to migrate the code. It is also necessary to migrate
the state of execution of the agent. In contrast to Agent Tcl, this program does not
try to migrate the complete set of variables. The following conventions are used:

• Each variable in an agent program is local to the current host and does not
migrate.

Some Applications and Techniques 321

9 October 2001 01:44

322 Chapter 14: Internetworking with gawk

• The array MOBFUN shown above is an exception. It is handled by the function
migrate and does migrate with the application.

• The other exception is the array MOBVAR. Each variable that takes part in migra-
tion has to be an element of this array. migrate also takes care of this.

Now it’s clear what happens to the Label parameter of the function migrate. It is
copied into MOBVAR["Label"] and travels alongside the other data. Since traveling
takes place via HTTP, records must be separated with "\r\n" in RS and ORS as
usual. The code assembly for migration takes place in three steps:

1. Iterate over MOBFUN to collect all functions verbatim.

2. Prepar e a BEGIN patter n and put assignments to mobile variables into the
action part.

3. Transmission itself resembles GETURL: the header with the request and the
Content-length is followed by the body. In case there is any reply over the
network, it is read completely and echoed to standard output to avoid irritat-
ing the server.

The application-independent framework is now almost complete. What follows is
the END patter n that is executed when the mobile agent has finished reading its
own code. First, it checks whether it is already running on a remote host or not. In
case initialization has not yet taken place, it starts MyInit. Otherwise (later, on a
remote host), it starts MyJob:

END {
if (ARGC != 2) exit # stop when called with wrong parameters
if (MyOrigin != "") # is this the originating host?

MyInit() # if so, initialize the application
else # we are on a host with migrated data

MyJob() # so we do our job
}

All that’s left to extend the framework into a complete application is to write two
application-specific functions: MyInit and MyJob. Keep in mind that the former is
executed once on the originating host, while the latter is executed after each
migration:

function MyInit() {
MOBVAR["MyOrigin"] = MyOrigin
MOBVAR["Machines"] = "localhost/80 max/80 moritz/80 castor/80"
split(MOBVAR["Machines"], Machines) # which host is the first?
migrate(Machines[1], "", "") # go to the first host
wait for result
while (("/inet/tcp/8080/0/0" |& getline) > 0)

print $0 # print result
close("/inet/tcp/8080/0/0")

}

9 October 2001 01:44

As mentioned earlier, this agent takes the name of its origin (MyOrigin) with it.
Then, it takes the name of its first destination and goes there for further work.
Notice that this name has the port number of the web server appended to the
name of the server, because the function migrate needs it this way to create the
HttpService variable. Finally, it waits for the result to arrive. The MyJob function
runs on the remote host:

function MyJob() {
forget this host
sub(MOBVAR["Destination"], "", MOBVAR["Machines"])
MOBVAR["Result"] = MOBVAR["Result"] SUBSEP \

SUBSEP MOBVAR["Destination"] ":"
while (("who" | getline) > 0) # who is logged in?

MOBVAR["Result"] = MOBVAR["Result"] SUBSEP $0
close("who")
any more machines to visit?
if (index(MOBVAR["Machines"], "/") > 0) {

split(MOBVAR["Machines"], Machines) # which host is next?
migrate(Machines[1], "", "") # go there

} else { # no more machines
gsub(SUBSEP, "\n", MOBVAR["Result"]) # send result to origin
print MOBVAR["Result"] |& "/inet/tcp/0/" \

MOBVAR["MyOrigin"] "/8080"
close("/inet/tcp/0/" MOBVAR["MyOrigin"] "/8080")

}
}

After migrating, the first thing to do in MyJob is to delete the name of the current
host from the list of hosts to visit. Now, it is time to start the real work by append-
ing the host’s name to the result string, and reading line by line who is logged in
on this host. A very annoying circumstance is the fact that the elements of MOBVAR
cannot hold the newline character ("\n"). If they did, migration of this string did
not work because the string didn’t obey the syntax rule for a string in gawk. SUB-
SEP is used as a temporary replacement. If the list of hosts to visit holds at least
one more entry, the agent migrates to that place to go on working there. Other-
wise, we replace the SUBSEPs with a newline character in the resulting string and
report it to the originating host, whose name is stored in MOBVAR["MyOrigin"].

Related Links
This section lists the URLs for various items discussed in this chapter. They are
pr esented in the order in which they occur:

Related Links 323

9 October 2001 01:44

324 Chapter 14: Internetworking with gawk

Richard Stevens’s home page and books
http://www.kohala.com/˜rstevens

The SPAK home page
http://www.user friendly.net/linux/RPM/contrib/libc6/i386/
spak-0.6b-1.i386.html

Volume III of Internetworking with TCP, by Comer and Stevens
http://www.cs.pur due.edu/homes/dec/tcpip3s.cont.html

XBM graphics file format
http://www.wotsit.or g/download.asp?f=xbm

Mark Humphry’s ELIZA page
http://www.compapp.dcu.ie/˜humphrys/eliza.html

Yahoo! ELIZA information
http://dir.yahoo.com/Recr eation/Games/Computer_Games/Internet_Games/
Web_Games/Artificial_Intelligence

Java versions of ELIZA
http://www.tjhsst.edu/Psych/ch1/eliza.html

Java versions of ELIZA with source code
http://home.adelphia.net/˜lifeisgood/eliza/eliza.htm

ELIZA programs with explanations
http://chayden.net/chayden/eliza/Eliza.shtml

Tcl/Tk information
http://www.scriptics.com

XINU
http://willow.canberra.edu.au/˜chrisc/xinu.html

MiniSQL
http://www.hughes.com.au/library/

Numerical Recipes in C: The Art of Scientific Computing
http://www.nr.com

The UMBC Agent Web
http://www.cs.umbc.edu/agents

9 October 2001 01:44

III
Appendixes

Part III contains the appendixes (including the two licenses that cover the gawk
source code and this book, respectively) and the Glossary:

• Appendix A, The Evolution of the awk Language

• Appendix B, Installing gawk

• Appendix C, Implementation Notes

• Appendix D, Basic Programming Concepts

• Appendix E, GNU General Public License

• Appendix F, GNU Free Documentation License

• Glossary

9 October 2001 01:45

9 October 2001 01:45

A
The Evolution of the

awk Language

This book describes the GNU implementation of awk, which follows the POSIX
specification. Many long-time awk users learned awk pr ogramming with the origi-
nal awk implementation in Version 7 Unix. (This implementation was the basis for
awk in Berkeley Unix, through 4.3-Reno. Subsequent versions of Berkeley Unix,
and systems derived from 4.4BSD-Lite, use various versions of gawk for their awk.)
This chapter briefly describes the evolution of the awk language, with cross-r efer-
ences to other parts of the book where you can find more infor mation.

Major Changes Between V7 and SVR3.1
The awk language evolved considerably between the release of Version 7 Unix
(1978) and the new version that was first made generally available in System V
Release 3.1 (1987). This section summarizes the changes, with cross-r efer ences to
further details:

• The requir ement for ; to separate rules on a line (see the section “awk State-
ments Versus Lines” in Chapter 1, Getting Started with awk).

• User-defined functions and the return statement (see the section “User-
Defined Functions” in Chapter 8, Functions).

• The delete statement (see the section “The delete Statement” in Chapter 7,
Arrays in awk).

• The do-while statement (see the section “The do-while Statement” in Chapter
6, Patter ns, Actions, and Variables).

• The built-in functions atan2, cos, sin, rand, and srand (see the section
“Numeric Functions” in Chapter 8).

327

9 October 2001 01:39

328 Appendix A: The Evolution of the awk Language

• The built-in functions gsub, sub, and match (see the section “String-Manipula-
tion Functions” in Chapter 8).

• The built-in functions close and system (see the section “Input/Output Func-
tions” in Chapter 8).

• The ARGC, ARGV, FNR, RLENGTH, RSTART, and SUBSEP built-in variables (see the
section “Built-in Variables” in Chapter 6).

• The conditional expression using the ternary operator ?: (see the section
“Conditional Expressions” in Chapter 5, Expr essions).

• The exponentiation operator ˆ (see the section “Arithmetic Operators” in
Chapter 5) and its assignment operator form ˆ= (see the section “Assignment
Expr essions” in Chapter 5).

• C-compatible operator precedence, which breaks some old awk pr ograms (see
the section “Operator Precedence (How Operators Nest)” in Chapter 5).

• Regexps as the value of FS (see the section “Specifying How Fields Are Sepa-
rated” in Chapter 3, Reading Input Files) and as the third argument to the
split function (see the section “String-Manipulation Functions” in Chapter 8).

• Dynamic regexps as operands of the ˜ and !˜ operators (see the section “How
to Use Regular Expressions” in Chapter 2, Regular Expressions).

• The escape sequences \b, \f, and \r (see the section “Escape Sequences” in
Chapter 2). (Some vendors have updated their old versions of awk to recog-
nize \b, \f, and \r, but this is not something you can rely on.)

• Redir ection of input for the getline function (see the section “Explicit Input
with getline” in Chapter 3).

• Multiple BEGIN and END rules (see the section “The BEGIN and END Special
Patter ns” in Chapter 6).

• Multidimensional arrays (see the section “Multidimensional Arrays” in
Chapter 7).

Changes Between SVR3.1 and SVR4
The System V Release 4 (1989) version of Unix awk added these features (some of
which originated in gawk):

• The ENVIRON variable (see the section “Built-in Variables” in Chapter 6).

• Multiple –f options on the command line (see the section “Command-Line
Options” in Chapter 11, Running awk and gawk).

9 October 2001 01:39

• The –v option for assigning variables before program execution begins (see
the section “Command-Line Options” in Chapter 11).

• The –– option for terminating command-line options.

• The \a, \v, and \x escape sequences (see the section “Escape Sequences” in
Chapter 2).

• A defined retur n value for the srand built-in function (see the section
“Numeric Functions” in Chapter 8).

• The toupper and tolower built-in string functions for case translation (see the
section “String-Manipulation Functions” in Chapter 8).

• A cleaner specification for the %c for mat-control letter in the printf function
(see the section “Format-Contr ol Letters” in Chapter 4, Printing Output).

• The ability to dynamically pass the field width and precision ("%*.*d") in the
argument list of the printf function (see the section “Format-Contr ol Letters”
in Chapter 4).

• The use of regexp constants, such as /foo/, as expr essions, wher e they are
equivalent to using the matching operator, as in $0 ˜ /foo/ (see the section
“Using Regular Expression Constants” in Chapter 5).

• Processing of escape sequences inside command-line variable assignments
(see the section “Assigning Variables on the Command Line” in Chapter 5).

Changes Between SVR4 and POSIX awk
The POSIX Command Language and Utilities standard for awk (1992) introduced
the following changes into the language:

• The use of –W for implementation-specific options (see the section “Com-
mand-Line Options” in Chapter 11).

• The use of CONVFMT for controlling the conversion of numbers to strings (see
the section “Conversion of Strings and Numbers” in Chapter 5).

• The concept of a numeric string and tighter comparison rules to go with it
(see the section “Variable Typing and Comparison Expressions” in Chapter 5).

• Mor e complete documentation of many of the previously undocumented fea-
tur es of the language.

Changes Between SVR4 and POSIX awk 329

9 October 2001 01:39

330 Appendix A: The Evolution of the awk Language

The following common extensions are not permitted by the POSIX standard:

• \x escape sequences are not recognized (see the section “Escape Sequences”
in Chapter 2).

• Newlines do not act as whitespace to separate fields when FS is equal to a sin-
gle space (see the section “Examining Fields” in Chapter 3).

• Newlines are not allowed after ? or : (see the section “Conditional Expres-
sions” in Chapter 5).

• The synonym func for the keyword function is not recognized (see the sec-
tion “Function Definition Syntax” in Chapter 8).

• The operators ** and **= cannot be used in place of ˆ and ˆ= (see the section
“Arithmetic Operators” and section “Assignment Expressions” in Chapter 5).

• Specifying –Ft on the command line does not set the value of FS to be a single
tab character (see the section “Specifying How Fields Are Separated” in Chap-
ter 3).

• The fflush built-in function is not supported (see the section “Input/Output
Functions” in Chapter 8).

Extensions in the Bell Laborator ies awk
Brian Kernighan, one of the original designers of Unix awk, has made his version
available via his home page (see the section “Other Freely Available awk Imple-
mentations” in Appendix B, Installing gawk). This section describes extensions in
his version of awk that are not in POSIX awk :

• The -mf N and -mr N command-line options to set the maximum number of
fields and the maximum record size, respectively (see the section “Command-
Line Options” in Chapter 11). As a side note, his awk no longer needs these
options; it continues to accept them to avoid breaking old programs.

• The fflush built-in function for flushing buffer ed output (see the section
“Input/Output Functions” in Chapter 8).

• The ** and **= operators (see the section “Arithmetic Operators” and section
“Assignment Expressions” in Chapter 5).

• The use of func as an abbreviation for function (see the section “Function
Definition Syntax” in Chapter 8).

The Bell Laboratories awk also incorporates the following extensions, originally
developed for gawk :

9 October 2001 01:39

• The \x escape sequence (see the section “Escape Sequences” in Chapter 2).

• The /dev/stdin, /dev/stdout, and /dev/stderr special files (see the section “Spe-
cial Filenames in gawk” in Chapter 4).

• The ability for FS and for the third argument to split to be null strings (see
the section “Making Each Character a Separate Field” in Chapter 3).

• The nextfile statement (see the section “Using gawk’s nextfile Statement” in
Chapter 6).

• The ability to delete all of an array at once with delete array (see the section
“The delete Statement” in Chapter 7).

Extensions in gawk Not in POSIX awk
The GNU implementation, gawk, adds a large number of features. This section lists
them in the order they were added to gawk. They can all be disabled with either
the ––traditional or ––posix options (see the section “Command-Line Options” in
Chapter 11).

Version 2.10 of gawk intr oduced the following features:

• The AWKPATH envir onment variable for specifying a path search for the –f
command-line option (see the section “Command-Line Options” in Chapter
11).

• The IGNORECASE variable and its effects (see the section “Case Sensitivity in
Matching” in Chapter 2).

• The /dev/stdin, /dev/stdout, /dev/stderr, and /dev/fd/N special filenames (see
the section “Special Filenames in gawk” in Chapter 4).

Version 2.13 of gawk intr oduced the following features:

• The FIELDWIDTHS variable and its effects (see the section “Reading Fixed-Width
Data” in Chapter 3).

• The systime and strftime built-in functions for obtaining and printing times-
tamps (see the section “Using gawk’s Timestamp Functions” in Chapter 8).

• The –W lint option to provide error and portability checking for both the
source code and at runtime (see the section “Command-Line Options” in
Chapter 11).

• The –W compat option to turn off the GNU extensions (see the section “Com-
mand-Line Options” in Chapter 11).

• The –W posix option for full POSIX compliance (see the section “Command-
Line Options” in Chapter 11).

Extensions in gawk Not in POSIX awk 331

9 October 2001 01:39

332 Appendix A: The Evolution of the awk Language

Version 2.14 of gawk intr oduced the following feature:

• The next file statement for skipping to the next datafile (see the section
“Using gawk’s nextfile Statement” in Chapter 6).

Version 2.15 of gawk intr oduced the following features:

• The ARGIND variable, which tracks the movement of FILENAME thr ough ARGV

(see the section “Built-in Variables” in Chapter 6).

• The ERRNO variable, which contains the system error message when getline

retur ns −1 or close fails (see the section “Built-in Variables” in Chapter 6).

• The /dev/pid, /dev/ppid, /dev/pgrpid, and /dev/user filename interpretation (see
the section “Special Filenames in gawk” in Chapter 4).

• The ability to delete all of an array at once with delete array (see the section
“The delete Statement” in Chapter 7).

• The ability to use GNU-style long-named options that start with –– (see the
section “Command-Line Options” in Chapter 11).

• The ––sour ce option for mixing command-line and library-file source code
(see the section “Command-Line Options” in Chapter 11).

Version 3.0 of gawk intr oduced the following features:

• IGNORECASE changed, now applying to string comparison as well as regexp
operations (see the section “Case Sensitivity in Matching” in Chapter 2).

• The RT variable that contains the input text that matched RS (see the section
“How Input Is Split into Records” in Chapter 3).

• Full support for both POSIX and GNU regexps (see Chapter 2).

• The gensub function for more power ful text manipulation (see the section
“String-Manipulation Functions” in Chapter 8).

• The strftime function acquired a default time format, allowing it to be called
with no arguments (see the section “Using gawk’s Timestamp Functions” in
Chapter 8).

• The ability for FS and for the third argument to split to be null strings (see
the section “Making Each Character a Separate Field” in Chapter 3).

• The ability for RS to be a regexp (see the section “How Input Is Split into
Records” in Chapter 3).

• The next file statement became nextfile (see the section “Using gawk’s
nextfile Statement” in Chapter 6).

9 October 2001 01:39

• The ––lint–old option to warn about constructs that are not available in the
original Version 7 Unix version of awk (see the section “Major Changes
Between V7 and SVR3.1” earlier in this appendix).

• The –m option and the fflush function from the Bell Laboratories research
version of awk (see the section “Command-Line Options” in Chapter 11; also
see the section “Input/Output Functions” in Chapter 8).

• The ––re–interval option to provide interval expressions in regexps (see the
section “Regular Expression Operators” in Chapter 2).

• The ––traditional option was added as a better name for ––compat (see the
section “Command-Line Options” in Chapter 11).

• The use of GNU Autoconf to control the configuration process (see the section
“Compiling gawk for Unix” in Appendix B).

• Amiga support.

Version 3.1 of gawk intr oduced the following features:

• The BINMODE special variable for non-POSIX systems, which allows binary I/O
for input and/or output files (see the section “Using gawk on PC Operating
Systems” in Appendix B).

• The LINT special variable, which dynamically controls lint warnings (see the
section “Built-in Variables” in Chapter 6).

• The PROCINFO array for providing process-r elated infor mation (see the section
“Built-in Variables” in Chapter 6).

• The TEXTDOMAIN special variable for setting an application’s internationalization
text domain (see the section “Built-in Variables” in Chapter 6, and Chapter 9,
Inter nationalization with gawk).

• The ability to use octal and hexadecimal constants in awk pr ogram source
code (see the section “Octal and Hexadecimal Numbers” in Chapter 5).

• The |& operator for two-way I/O to a coprocess (see the section “Two-Way
Communications with Another Process” in Chapter 10, Advanced Features of
gawk).

• The /inet special files for TCP/IP networking using |& (see the section “Using
gawk for Network Programming” in Chapter 10).

• The optional second argument to close that allows closing one end of a two-
way pipe to a coprocess (see the section “Two-Way Communications
with Another Process” in Chapter 10).

• The optional third argument to the match function for capturing text-matching
subexpr essions within a regexp (see the section “String-Manipulation Func-
tions” in Chapter 8).

Extensions in gawk Not in POSIX awk 333

9 October 2001 01:39

334 Appendix A: The Evolution of the awk Language

• Positional specifiers in printf for mats for making translations easier (see the
section “Rearranging printf Arguments” in Chapter 9).

• The asort function for sorting arrays (see the section “Sorting Array Values
and Indices with gawk” in Chapter 7).

• The bindtextdomain and dcgettext functions for internationalization (see the
section “Internationalizing awk Programs” in Chapter 9).

• The extension built-in function and the ability to add new built-in functions
dynamically (see the section “Adding New Built-in Functions to gawk” in
Appendix C, Implementation Notes).

• The mktime built-in function for creating timestamps (see the section “Using
gawk’s Timestamp Functions” in Chapter 8).

• The and, or, xor, compl, lshift, rshift, and strtonum built-in functions (see
the section “Bit-Manipulation Functions of gawk” in Chapter 8).

• The support for next file as two words was removed completely (see the
section “Using gawk’s nextfile Statement” in Chapter 6).

• The ––dump–variables option to print a list of all global variables (see the sec-
tion “Command-Line Options” in Chapter 11).

• The ––gen–po command-line option and the use of a leading underscore to
mark strings that should be translated (see the section “Extracting Marked
Strings” in Chapter 9).

• The ––non–decimal–data option to allow nondecimal input data (see the sec-
tion “Allowing Nondecimal Input Data” in Chapter 10).

• The ––pr ofile option and pgawk, the profiling version of gawk, for producing
execution profiles of awk pr ograms (see the section “Profiling Your awk Pro-
grams” in Chapter 10).

• The ––enable–portals configuration option to enable special treatment of path-
names that begin with /p as BSD portals (see the section “Using gawk with
BSD Portals” in Chapter 10).

• The use of GNU Automake to help in standardizing the configuration process
(see the section “Compiling gawk for Unix” in Appendix B).

• The use of GNU gettext for gawk ’s own message output (see the section
“gawk Can Speak Your Language” in Chapter 9).

• BeOS support.

• Tandem support.

9 October 2001 01:39

• The Atari port became officially unsupported.

• The source code now uses new-style function definitions, with ansi2knr to
convert the code on systems with old compilers.

Major Contributor s to gawk
This section names the major contributors to gawk and/or this book, in approxi-
mate chronological order:

• Dr. Alfr ed V. Aho, Dr. Peter J. Weinberger, and Dr. Brian W. Ker nighan, all of
Bell Laboratories, designed and implemented Unix awk, from which gawk gets
the majority of its feature set.

• Paul Rubin did the initial design and implementation in 1986, and wrote the
first draft (around 40 pages) of this book.

• Jay Fenlason finished the initial implementation.

• Diane Close revised the first draft of this book, bringing it to around 90 pages.

• Richard Stallman helped finish the implementation and the initial draft of this
book. He is also the founder of the FSF and the GNU project.

• John Woods contributed parts of the code (mostly fixes) in the initial version
of gawk.

• In 1988, David Trueman took over primary maintenance of gawk, making it
compatible with “new” awk, and greatly improving its perfor mance.

• Pat Rankin provided the VMS port and its documentation.

• Conrad Kwok, Scott Garfinkle, and Kent Williams did the initial ports to
MS-DOS with various versions of MSC.

• Hal Peterson provided help in porting gawk to Cray systems.

• Kai Uwe Rommel provided the port to OS/2 and its documentation.

• Michal Jaegermann provided the port to Atari systems and its documentation.
He continues to provide portability checking with DEC Alpha systems, and has
done a lot of work to make sure gawk works on non-32-bit systems.

• Fred Fish provided the port to Amiga systems and its documentation.

• Scott Deifik currently maintains the MS-DOS port.

• Juan Grigera maintains the port to Win32 systems.

• Dr. Darr el Hankerson acts as coordinator for the various ports to differ ent PC
platfor ms and creates binary distributions for various PC operating systems. He
is also instrumental in keeping the documentation up to date for the various
PC platforms.

Major Contributor s to gawk 335

9 October 2001 01:39

336 Appendix A: The Evolution of the awk Language

• Christos Zoulas provided the extension built-in function for dynamically
adding new modules.

• Jürgen Kahrs contributed the initial version of the TCP/IP networking code
and documentation, and motivated the inclusion of the |& operator.

• Stephen Davies provided the port to Tandem systems and its documentation.

• Martin Brown provided the port to BeOS and its documentation.

• Arno Peters did the initial work to convert gawk to use GNU Automake and
gettext.

• Alan J. Broder provided the initial version of the asort function as well as the
code for the new optional third argument to the match function.

• Arnold Robbins has been working on gawk since 1988, at first helping David
Trueman, and as the primary maintainer since around 1994.

9 October 2001 01:39

B
Installing gawk

This appendix provides instructions for installing gawk on Unix-like systems and
on PC operating systems.* The primary developer supports GNU/Linux (and Unix),
wher eas the other ports are contributed. See the section “Reporting Problems and
Bugs” later in this chapter for the electronic mail addresses of the people who
maintain the respective ports.

The gawk Distr ibution
This section describes how to get the gawk distribution, how to extract it, and then
what is in the various files and subdirectories.

Getting the gawk Distr ibution
Ther e ar e thr ee ways to get GNU software:

• Copy it from someone else who already has it.

• Order gawk dir ectly fr om the Free Software Foundation. Software distributions
ar e available for Unix, MS-DOS, and VMS, on tape and CD-ROM. Their
addr ess is:

Fr ee Softwar e Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
Phone: (617) 542-5942
Fax (including Japan): (617) 542-2652
Email: gnu@gnu.or g
URL: http://www.gnu.or g

* See the online Texinfo or Info versions of this book for information about other operating systems.
VMS, Amiga, and BeOS have supported ports. Atari and Tandem have unsupported ports.

337

9 October 2001 01:39

338 Appendix B: Installing gawk

Ordering from the FSF directly contributes to the support of the foundation
and to the production of more free softwar e.

• Retrieve gawk by using anonymous ftp to the Internet host gnudist.gnu.org,
in the directory /gnu/gawk.

The GNU software archive is mirror ed ar ound the world. The up-to-date list of
mirr or sites is available at the main FSF web site http://www.gnu.or g/order/ftp.html.
Try to use one of the mirrors; they will be less busy, and you can usually find one
closer to your site.

Extracting the Distribution
gawk is distributed as a tar file compressed with the GNU Zip program, gzip.

Once you have the distribution (for example, gawk-3.1.0.tar.gz), use gzip to
expand the file and then use tar to extract it. You can use the following pipeline
to produce the gawk distribution:

Under System V, add ’o’ to the tar options
gzip -d -c gawk-3.1.0.tar.gz | tar -xvpf -

This creates a directory named gawk-3.1.0 in the current directory.

The distribution filename is of the form gawk-V.R.P.tar.gz. The V repr esents the
major version of gawk, the R repr esents the current release of version V, and the P
repr esents a patch level, meaning that minor bugs have been fixed in the release.
The current patch level is 0, but when retrieving distributions, you should get the
version with the highest version, release, and patch level. (Note, however, that
patch levels greater than or equal to 80 denote “beta” or nonproduction software;
you might not want to retrieve such a version unless you don’t mind experiment-
ing.) If you are not on a Unix system, you need to make other arrangements for
getting and extracting the gawk distribution. You should consult a local expert.

Contents of the gawk Distr ibution
The gawk distribution has a number of C source files, documentation files, subdi-
rectories, and files related to the configuration process (see the section “Compiling
and Installing gawk on Unix” later in this appendix), as well as several subdirecto-
ries related to differ ent non-Unix operating systems:

9 October 2001 01:39

Various .c, .y, and .h files
The actual gawk source code.

README
README_d/README.*

Descriptive files: README for gawk under Unix and the rest for the various
hardwar e and software combinations.

INSTALL
A file providing an overview of the configuration and installation process.

ChangeLog
A detailed list of source code changes as bugs are fixed or improvements
made.

NEWS
A list of changes to gawk since the last release or patch.

COPYING
The GNU General Public License.

FUTURES
A brief list of features and changes being contemplated for future releases,
with some indication of the time frame for the feature, based on its difficulty.

LIMITATIONS
A list of those factors that limit gawk ’s perfor mance. Most of these depend on
the hardware or operating system software and are not limits in gawk itself.

POSIX.STD
A description of one area in which the POSIX standard for awk is incorrect as
well as how gawk handles the problem.

doc/awkforai.txt
A short article describing why gawk is a good language for AI (Artificial Intelli-
gence) programming.

doc/README.car d, doc/ad.block, doc/awkcar d.in, doc/car dfonts, doc/colors,
doc/macr os, doc/no.colors, doc/setter.outline

The tr off source for a five-color awk refer ence card. A modern version of tr off
such as GNU tr off (gr off) is needed to produce the color version. See the file
README.car d for instructions if you have an older tr off.

doc/gawk.1
The tr off source for a manual page describing gawk. This is distributed for the
convenience of Unix users.

The gawk Distr ibution 339

9 October 2001 01:39

340 Appendix B: Installing gawk

doc/gawk.texi
The Texinfo source file for this book. It should be processed with TEX to pro-
duce a printed document, and with makeinfo to produce an Info or HTML file.

doc/gawk.info
The generated Info file for this book.

doc/gawkinet.texi
The Texinfo source file for TCP/IP Internetworking with gawk. It should be
pr ocessed with TEX to produce a printed document and with makeinfo to pro-
duce an Info or HTML file. (This document has been condensed into Chapter
14, Inter networking with gawk, for the O’Reilly & Associates edition.)

doc/gawkinet.info
The generated Info file for TCP/IP Internetworking with gawk.

doc/igawk.1
The tr off source for a manual page describing the igawk pr ogram pr esented in
the section “An Easy Way to Use Library Functions” in Chapter 13, Practical
awk Programs.

doc/Makefile.in
The input file used during the configuration process to generate the actual
Makefile for creating the documentation.

Makefile.am
*/Makefile.am

Files used by the GNU automake softwar e for generating the Makefile.in files
used by autoconf and configur e.

Makefile.in, acconfig.h, acinclude.m4, aclocal.m4, configh.in, configur e.in, config-
ur e, custom.h, missing_d/*, m4/*

These files and subdirectories are used when configuring gawk for various
Unix systems. They are explained in the section “Compiling and Installing
gawk on Unix” later in this chapter.

intl/*
po/*

The intl dir ectory pr ovides the GNU gettext library, which implements
gawk ’s internationalization features, while the po library contains message
translations.

awklib/extract.awk, awklib/Makefile.am, awklib/Makefile.in, awklib/eg/*
The awklib dir ectory contains a copy of extract.awk (see the section “Extract-
ing Programs from Texinfo Source Files” in Chapter 13), which can be used to
extract the sample programs from the Texinfo source file for this book. It also
contains a Makefile.in file, which configur e uses to generate a Makefile. Make-
file.am is used by GNU Automake to create Makefile.in. The library functions

9 October 2001 01:39

fr om Chapter 12, A Library of awk Functions, and the igawk pr ogram fr om the
section “An Easy Way to Use Library Functions” in Chapter 13, are included as
ready-to-use files in the gawk distribution. They are installed as part of the
installation process. The rest of the programs in this book are available in
appr opriate subdir ectories of awklib/eg.

unsupported/atari/*
Files needed for building gawk on an Atari ST (see the online gawk.info and
gawk.texi files in the gawk distribution for details).

unsupported/tandem/*
Files needed for building gawk on a Tandem (see the online gawk.info and
gawk.texi files in the gawk distribution for details).

posix/*
Files needed for building gawk on POSIX-compliant systems.

pc/*
Files needed for building gawk under MS-DOS, MS Windows and OS/2 (see
the section “Installation on PC Operating Systems” later in this appendix, for
details).

vms/*
Files needed for building gawk under VMS (see the online gawk.info and
gawk.texi files in the gawk distribution for details).

test/*
A test suite for gawk. You can use make check fr om the top-level gawk dir ec-
tory to run your version of gawk against the test suite. If gawk successfully
passes make check, then you can be confident of a successful port.

Compiling and Installing gawk on Unix
Usually, you can compile and install gawk by typing only two commands. How-
ever, if you use an unusual system, you may need to configure gawk for your sys-
tem yourself.

Compiling gawk for Unix
After you have extracted the gawk distribution, cd to gawk-3.1.0. Like most GNU
softwar e, gawk is configured automatically for your Unix system by running the
configur e pr ogram. This program is a Bourne shell script that is generated auto-
matically using GNU autoconf. (The autoconf softwar e is described fully in Auto-
conf — Generating Automatic Configuration Scripts, which is available from the
Fr ee Softwar e Foundation.)

Compiling and Installing gawk on Unix 341

9 October 2001 01:39

342 Appendix B: Installing gawk

To configur e gawk, simply run configur e :

sh ./configure

This produces a Makefile and config.h tailor ed to your system. The config.h file
describes various facts about your system. You might want to edit the Makefile to
change the CFLAGS variable, which controls the command-line options that are
passed to the C compiler (such as optimization levels or compiling for debugging).

Alter natively, you can add your own values for most make variables on the com-
mand line, such as CC and CFLAGS, when running configur e :

CC=cc CFLAGS=-g sh ./configure

See the file INSTALL in the gawk distribution for all the details.

After you have run configur e and possibly edited the Makefile, type:

make

Shortly thereafter, you should have an executable version of gawk. That’s all there
is to it! To verify that gawk is working properly, run make check. All of the tests
should succeed. If these steps do not work, or if any of the tests fail, check the
files in the README_d dir ectory to see if you’ve found a known problem. If the
failur e is not described there, please send in a bug report (see the section “Report-
ing Problems and Bugs” later in this appendix.)

Additional Configuration Options
Ther e ar e several additional options you may use on the configur e command line
when compiling gawk fr om scratch, including:

--enable-portals

Tr eat pathnames that begin with /p as BSD portal files when doing two-way
I/O with the |& operator (see the section “Using gawk with BSD Portals” in
Chapter 10, Advanced Features of gawk).

--with-included-gettext

Use the version of the gettext library that comes with gawk. This option
should be used on systems that do not use Version 2 (or later) of the GNU C
library. All known modern GNU/Linux systems use Glibc 2. Use this option on
any other system.

--disable-nls

Disable all message-translation facilities. This is usually not desirable, but it
may bring you some slight perfor mance impr ovement. You should also use
this option if ––with–included–gettext doesn’t work on your system.

9 October 2001 01:39

The Configuration Process
This section is of interest only if you know something about using the C language
and the Unix operating system.

The source code for gawk generally attempts to adhere to for mal standards wher-
ever possible. This means that gawk uses library routines that are specified by the
ISO C standard and by the POSIX operating system interface standard. When using
an ISO C compiler, function prototypes are used to help improve the compile-time
checking.

Many Unix systems do not support all of either the ISO or the POSIX standards.
The missing_d subdir ectory in the gawk distribution contains replacement versions
of those functions that are most likely to be missing.

The config.h file that configur e cr eates contains definitions that describe features
of the particular operating system where you are attempting to compile gawk. The
thr ee things described by this file are: what header files are available, so that they
can be correctly included, what (supposedly) standard functions are actually avail-
able in your C libraries, and various miscellaneous facts about your variant of
Unix. For example, there may not be an st_blksize element in the stat structur e.
In this case, HAVE_ST_BLKSIZE is undefined.

It is possible for your C compiler to lie to configur e. It may do so by not exiting
with an error when a library function is not available. To get around this, edit the
file custom.h. Use an #ifdef that is appropriate for your system, and either
#define any constants that configur e should have defined but didn’t, or #undef any
constants that configur e defined and should not have. custom.h is automatically
included by config.h.

It is also possible that the configur e pr ogram generated by autoconf will not work
on your system in some other fashion. If you do have a problem, the file config-
ur e.in is the input for autoconf. You may be able to change this file and generate
a new version of configur e that works on your system (see the section “Reporting
Pr oblems and Bugs” later in this appendix, for information on how to report prob-
lems in configuring gawk). The same mechanism may be used to send in updates
to configur e.in and/or custom.h.

Installation on PC Operating Systems
This section covers installation and usage of gawk on x86 machines running DOS,
any version of Windows, or OS/2. In this section, the term “Win32” refers to any of
Windows-95/98/ME/NT/2000.

The limitations of DOS (and DOS shells under Windows or OS/2) has meant that
various “DOS extenders” are often used with programs such as gawk. The varying

Installation on PC Operating Systems 343

9 October 2001 01:39

344 Appendix B: Installing gawk

capabilities of Microsoft Windows 3.1 and Win32 can add to the confusion. For an
overview of the considerations, please refer to README_d/README.pc in the dis-
tribution.

Installing a Prepared Distribution for PC Systems
If you have received a binary distribution prepar ed by the DOS maintainers, then
gawk and the necessary support files appear under the gnu dir ectory, with exe-
cutables in gnu/bin, libraries in gnu/lib/awk, and manual pages under gnu/man.
This is designed for easy installation to a /gnu dir ectory on your drive—however,
the files can be installed anywhere provided AWKPATH is set properly. Regardless
of the installation directory, the first line of igawk.cmd and igawk.bat (in gnu/bin)
may need to be edited.

The binary distribution contains a separate file describing the contents. In particu-
lar, it may include more than one version of the gawk executable. OS/2 binary dis-
tributions may have a differ ent arrangement, but installation is similar.

Compiling gawk for PC Operating Systems
gawk can be compiled for MS-DOS, Win32, and OS/2 using the GNU development
tools from DJ Delorie (DJGPP; MS-DOS only) or Eberhard Mattes (EMX; MS-DOS,
Win32 and OS/2). Microsoft Visual C/C++ can be used to build a Win32 version,
and Microsoft C/C++ can be used to build 16-bit versions for MS-DOS and OS/2.
The file README_d/README.pc in the gawk distribution contains additional notes,
and pc/Makefile contains important information on compilation options.

To build gawk, copy the files in the pc dir ectory (except for ChangeLog) to the
dir ectory with the rest of the gawk sources. The Makefile contains a configuration
section with comments and may need to be edited in order to work with your
make utility.

The Makefile contains a number of targets for building various MS-DOS, Win32,
and OS/2 versions. A list of targets is printed if the make command is given with-
out a target. As an example, to build gawk using the DJGPP tools, enter make

djgpp.

Using make to run the standard tests and to install gawk requir es additional Unix-
like tools, including sh, sed, and cp. In order to run the tests, the test/*.ok files may
need to be converted so that they have the usual DOS-style end-of-line markers.
Most of the tests work properly with Stewartson’s shell along with the companion
utilities or appropriate GNU utilities. However, some editing of test/Makefile is
requir ed. It is recommended that you copy the file pc/Makefile.tst over the file
test/Makefile as a replacement. Details can be found in README_d/README.pc
and in the file pc/Makefile.tst.

9 October 2001 01:39

Using gawk on PC Operating Systems
The OS/2 and MS-DOS versions of gawk search for program files as described in
the section “The AWKPATH Envir onment Variable” in Chapter 11, Running awk
and gawk. However, semicolons (rather than colons) separate elements in the
AWKPATH variable. If AWKPATH is not set or is empty, then the default search
path is ".;c:/lib/awk;c:/gnu/lib/awk".

An sh-like shell (as opposed to command.com under MS-DOS or cmd.exe under
OS/2) may be useful for awk pr ogramming. Ian Stewartson has written an excel-
lent shell for MS-DOS and OS/2, Daisuke Aoyama has ported GNU bash to MS-
DOS using the DJGPP tools, and several shells are available for OS/2, including
ksh. The file README_d/README.pc in the gawk distribution contains information
on these shells. Users of Stewartson’s shell on DOS should examine its documenta-
tion for handling command lines; in particular, the setting for gawk in the shell
configuration may need to be changed and the ignoretype option may also be of
inter est.

Under OS/2 and DOS, gawk (and many other text programs) silently translate end-
of-line "\r\n" to "\n" on input and "\n" to "\r\n" on output. A special BINMODE
variable allows control over these translations and is interpreted as follows:

• If BINMODE is "r", or (BINMODE & 1) is nonzero, then binary mode is set on read
(i.e., no translations on reads).

• If BINMODE is "w", or (BINMODE & 2) is nonzero, then binary mode is set on
write (i.e., no translations on writes).

• If BINMODE is "rw" or "wr", binary mode is set for both read and write (same as
(BINMODE & 3)).

• BINMODE=non-null-string is the same as BINMODE=3 (i.e., no translations on
reads or writes). However, gawk issues a warning message if the string is not
one of "rw" or "wr".

The modes for standard input and standard output are set one time only (after the
command line is read, but before processing any of the awk pr ogram). Setting
BINMODE for standard input or standard output is accomplished by using an appro-
priate -v BINMODE=N option on the command line. BINMODE is set at the time a file
or pipe is opened and cannot be changed mid-stream.

The name BINMODE was chosen to match mawk (see the section “Other Freely
Available awk Implementations” later in this appendix). Both mawk and gawk
handle BINMODE similarly; however, mawk adds a -W BINMODE=N option and an envi-
ronment variable that can set BINMODE, RS, and ORS. The files binmode[1-3].awk
(under gnu/lib/awk in some of the prepar ed distributions) have been chosen to
match mawk ’s -W BINMODE=N option. These can be changed or discarded; in

Installation on PC Operating Systems 345

9 October 2001 01:39

346 Appendix B: Installing gawk

particular, the setting of RS giving the fewest “surprises” is open to debate. mawk
uses RS = "\r\n" if binary mode is set on read, which is appropriate for files with
the DOS-style end-of-line.

To illustrate, the following examples set binary mode on writes for standard output
and other files, and set ORS as the “usual” DOS-style end-of-line:

gawk -v BINMODE=2 -v ORS="\r\n" ...

or:

gawk -v BINMODE=w -f binmode2.awk ...

These give the same result as the -W BINMODE=2 option in mawk. The following
changes the record separator to "\r\n" and sets binary mode on reads, but does
not affect the mode on standard input:

gawk -v RS="\r\n" --source "BEGIN { BINMODE = 1 }" ...

or:

gawk -f binmode1.awk ...

With proper quoting, in the first example the setting of RS can be moved into the
BEGIN rule.

Repor ting Problems and Bugs
If you have problems with gawk or think that you have found a bug, please report
it to the developers; we cannot promise to do anything but we might well want to
fix it.

Befor e reporting a bug, make sure you have actually found a real bug. Carefully
reread the documentation and see if it really says you can do what you’re trying to
do. If it’s not clear whether you should be able to do something or not, report that
too; it’s a bug in the documentation!

Befor e reporting a bug or trying to fix it yourself, try to isolate it to the smallest
possible awk pr ogram and input datafile that repr oduces the problem. Then send
us the program and datafile, some idea of what kind of Unix system you’re using,
the compiler you used to compile gawk, and the exact results gawk gave you. Also
say what you expected to occur; this helps us decide whether the problem is
really in the documentation.

Once you have a precise problem, send email to bug-gawk@gnu.or g.

Please include the version number of gawk you are using. You can get this infor-
mation with the command gawk --version. Using this address automatically sends
a carbon copy of your mail to me. If necessary, I can be reached directly at

9 October 2001 01:39

ar nold@gnu.org. The bug reporting address is preferr ed since the email list is
archived at the GNU Project. All email should be in English, since that is my native
language.

Do not try to report bugs in gawk by posting to the Usenet/Internet
newsgr oup comp.lang.awk. While the gawk developers do occa-
sionally read this newsgroup, there is no guarantee that we will see
your posting. The steps described above are the official recognized
ways for reporting bugs.

Non-bug suggestions are always welcome as well. If you have questions about
things that are unclear in the documentation or are just obscure featur es, ask me; I
will try to help you out, although I may not have the time to fix the problem. You
can send me electronic mail at the Internet address noted previously.

If you find bugs in one of the non-Unix ports of gawk, please send an electronic
mail message to the person who maintains that port. They are named in the fol-
lowing list, as well as in the README file in the gawk distribution. Information in
the README file should be considered authoritative if it conflicts with this book.

The people maintaining the non-Unix ports of gawk ar e as follows:

Amiga
Fr ed Fish, fnf@ninemoons.com.

BeOS
Martin Brown, mc@whoever.com.

MS-DOS
Scott Deifik, scottd@amgen.com, and Darrel Hankerson, hankedr@mail.
aubur n.edu.

MS-Windows
Juan Grigera, juan@biophnet.unlp.edu.ar.

OS/2
Kai Uwe Rommel, rommel@ars.de.

Tandem
Stephen Davies, scldad@sdc.com.au.

VMS
Pat Rankin, rankin@eql.caltech.edu.

If your bug is also repr oducible under Unix, please send a copy of your report to
the bug-gawk@gnu.or g email list as well.

Repor ting Problems and Bugs 347

9 October 2001 01:39

348 Appendix B: Installing gawk

Other Freely Available awk
Implementations
Ther e ar e thr ee other freely available awk implementations. This section briefly
describes where to get them:

Unix awk
Brian Kernighan has made his implementation of awk fr eely available. You
can retrieve this version via the World Wide Web from his home page.* It is
available in several archive formats:

Shell archive
http://cm.bell-labs.com/who/bwk/awk.shar

Compr essed tar file
http://cm.bell-labs.com/who/bwk/awk.tar.gz

Zip file
http://cm.bell-labs.com/who/bwk/awk.zip

This version requir es an ISO C (1990 standard) compiler; the C compiler from
GCC (the GNU Compiler Collection) works quite nicely.

See the section “Extensions in the Bell Laboratories awk” in Appendix A, The
Evolution of the awk Language, for a list of extensions in this awk that are not
in POSIX awk.

mawk
Michael Brennan has written an independent implementation of awk, called
mawk. It is available under the GPL (see Appendix E, GNU General Public
License), just as gawk is.

You can get it via anonymous ftp to the host ftp.whidbey.net. Change direc-
tory to /pub/br ennan. Use “binary” or “image” mode, and retrieve
mawk1.3.3.tar.gz (or the latest version that is there).

gunzip may be used to decompress this file. Installation is similar to gawk ’s
(see the section “Compiling and Installing gawk on Unix” earlier in this
appendix).

* http://cm.bell-labs.com/who/bwk/.

9 October 2001 01:39

mawk has the following extensions that are not in POSIX awk :

• The fflush built-in function for flushing buffer ed output (see the section
“Input/Output Functions” in Chapter 8, Functions).

• The ** and **= operators (see the section “Arithmetic Operators” and sec-
tion “Assignment Expressions” in Chapter 5, Expr essions).

• The use of func as an abbreviation for function (see the section “Function
Definition Syntax” in Chapter 8).

• The \x escape sequence (see the section “Escape Sequences” in Chapter 2,
Regular Expressions).

• The /dev/stdout, and /dev/stderr special files (see the section “Special File-
names in gawk” in Chapter 4, Printing Output). Use "-" instead of
"/dev/stdin" with mawk.

• The ability for FS and for the third argument to split to be null strings
(see the section “Making Each Character a Separate Field” in Chapter 3,
Reading Input Files).

• The ability to delete all of an array at once with delete array (see the
section “The delete Statement” in Chapter 7, Arrays in awk).

• The ability for RS to be a regexp (see the section “How Input Is Split into
Records” in Chapter 3).

• The BINMODE special variable for non-Unix operating systems (see the sec-
tion “Using gawk on PC Operating Systems” earlier in this appendix).

The next version of mawk will support nextfile.

awka
Written by Andrew Sumner, awka translates awk pr ograms into C, compiles
them, and links them with a library of functions that provides the core awk
functionality. It also has a number of extensions.

The awk translator is released under the GPL, and the library is under the
LGPL.

To get awka, go to its home page at http://awka.sour ceforge.net. You can
reach Andrew Sumner at andr ew_sumner@bigfoot.com.

Other Freely Available awk Implementations 349

9 October 2001 01:39

C
Implementation Notes

This appendix contains information mainly of interest to implementors and main-
tainers of gawk. Everything in it applies specifically to gawk and not to other
implementations.

Downward Compatibility
and Debugging
See the section “Extensions in gawk Not in POSIX awk” in Appendix A, The Evolu-
tion of the awk Language, for a summary of the GNU extensions to the awk lan-
guage and program. All of these features can be turned off by invoking gawk with
the ––traditional option or with the ––posix option.

If gawk is compiled for debugging with -DDEBUG, then there is one more option
available on the command line:

-W parsedebug

--parsedebug

Prints out the parse stack information as the program is being parsed.

This option is intended only for serious gawk developers and not for the casual
user. It probably has not even been compiled into your version of gawk, since it
slows down execution.

350

9 October 2001 01:39

Making Additions to gawk
If you find that you want to enhance gawk in a significant fashion, you are per-
fectly free to do so. That is the point of having free software; the source code is
available and you are free to change it as you want (see Appendix E, GNU General
Public License).

This section discusses the ways you might want to change gawk as well as any
considerations you should bear in mind.

Adding New Features
You are free to add any new features you like to gawk. However, if you want your
changes to be incorporated into the gawk distribution, there are several steps that
you need to take in order to make it possible for me to include your changes:

1. Before building the new feature into gawk itself, consider writing it as an
extension module (see the section “Adding New Built-in Functions to gawk”
later in this appendix). If that’s not possible, continue with the rest of the
steps in this list.

2. Get the latest version. It is much easier for me to integrate changes if they are
relative to the most recent distributed version of gawk. If your version of gawk
is very old, I may not be able to integrate them at all. (See the section “Getting
the gawk Distribution” in Appendix B, Installing gawk, for information on get-
ting the latest version of gawk.)

3. Follow the GNU Coding Standards. This document describes how GNU soft-
war e should be written. If you haven’t read it, please do so, preferably befor e
starting to modify gawk. (The GNU Coding Standards ar e available from the
GNU Project’s FTP site, at ftp://gnudist.gnu.or g/gnu/GNUInfo/standards.text.
Texinfo, Info, and DVI versions are also available.)

4. Use the gawk coding style. The C code for gawk follows the instructions in the
GNU Coding Standards, with minor exceptions. The code is formatted using
the traditional “K&R” style, particularly as regards to the placement of braces
and the use of tabs. In brief, the coding rules for gawk ar e as follows:

• Use ANSI/ISO style (prototype) function headers when defining functions.

• Put the name of the function at the beginning of its own line.

• Put the retur n type of the function, even if it is int, on the line above the
line with the name and arguments of the function.

• Put spaces around parentheses used in control structures (if, while, for,
do, switch, and return).

Making Additions to gawk 351

9 October 2001 01:39

352 Appendix C: Implementation Notes

• Do not put spaces in front of parentheses used in function calls.

• Put spaces around all C operators and after commas in function calls.

• Do not use the comma operator to produce multiple side effects, except
in for loop initialization and increment parts, and in macro bodies.

• Use real tabs for indenting, not spaces.

• Use the “K&R” brace layout style.

• Use comparisons against NULL and ’\0’ in the conditions of if, while, and
for statements, as well as in the cases of switch statements, instead of just
the plain pointer or character value.

• Use the TRUE, FALSE and NULL symbolic constants and the character con-
stant ’\0’ wher e appr opriate, instead of 1 and 0.

• Use the ISALPHA, ISDIGIT, etc. macros, instead of the traditional lowercase
versions; these macros are better behaved for non-ASCII character sets.

• Provide one-line descriptive comments for each function.

• Do not use #elif. Many older Unix C compilers cannot handle it.

• Do not use the alloca function for allocating memory off the stack. Its use
causes more portability trouble than is worth the minor benefit of not hav-
ing to free the storage. Instead, use malloc and free.

If I have to refor mat your code to follow the coding style used in
gawk, I may not bother to integrate your changes at all.

5. Be pr epar ed to sign the appropriate paperwork. In order for the FSF to dis-
tribute your changes, you must either place those changes in the public
domain and submit a signed statement to that effect, or assign the copyright in
your changes to the FSF. Both of these actions are easy to do and many peo-
ple have done so already. If you have questions, please contact me (see the
section “Reporting Problems and Bugs” in Appendix B), or gnu@gnu.or g.

6. Update the documentation. Along with your new code, please supply new
sections and/or chapters for this book. If at all possible, please use real Tex-
info, instead of just supplying unformatted ASCII text (although even that is
better than no documentation at all). Conventions to be followed in Ef fective
awk Programming ar e pr ovided after the @bye at the end of the Texinfo
source file. If possible, please update the manpage as well.

You will also have to sign paperwork for your documentation changes.

9 October 2001 01:39

7. Submit changes as context diffs or unified diffs. Use diff -c -r -N or diff -u
-r -N to compare the original gawk source tree with your version. (I find con-
text diffs to be more readable but unified diffs are mor e compact.) I recom-
mend using the GNU version of dif f. Send the output produced by either run
of dif f to me when you submit your changes. (See the section “Reporting
Pr oblems and Bugs” in Appendix B, for the electronic mail information.)

Using this format makes it easy for me to apply your changes to the master
version of the gawk source code (using patch). If I have to apply the changes
manually, using a text editor, I may not do so, particularly if there are lots of
changes.

8. Include an entry for the ChangeLog file with your submission. This helps fur-
ther minimize the amount of work I have to do, making it easier for me to
accept patches.

Although this sounds like a lot of work, please remember that while you may
write the new code, I have to maintain it and support it. If it isn’t possible for me
to do that with a minimum of extra work, then I probably will not.

Porting gawk to a New Operating System
If you want to port gawk to a new operating system, there are several steps:

1. Follow the guidelines in the previous section concerning coding style, submis-
sion of diffs, and so on.

2. When doing a port, bear in mind that your code must coexist peacefully with
the rest of gawk and the other ports. Avoid gratuitous changes to the system-
independent parts of the code. If at all possible, avoid sprinkling #ifdefs just
for your port throughout the code.

If the changes needed for a particular system affect too much of the code, I
pr obably will not accept them. In such a case, you can, of course, distribute
your changes on your own, as long as you comply with the GPL (see
Appendix E).

3. A number of the files that come with gawk ar e maintained by other people at
the Free Software Foundation. Thus, you should not change them unless it is
for a very good reason; i.e., changes are not out of the question, but changes
to these files are scrutinized extra carefully. The files are getopt.h, getopt.c,
getopt1.c, regex.h, regex.c, dfa.h, dfa.c, install-sh, and mkinstalldirs.

4. Be willing to continue to maintain the port. Non-Unix operating systems are
supported by volunteers who maintain the code needed to compile and run
gawk on their systems. If noone volunteers to maintain a port, it becomes
unsupported and it may be necessary to remove it from the distribution.

Making Additions to gawk 353

9 October 2001 01:39

354 Appendix C: Implementation Notes

5. Supply an appropriate gawkmisc.??? file. Each port has its own gawkmisc.???
that implements certain operating system specific functions. This is cleaner
than a plethora of #ifdefs scatter ed thr oughout the code. The gawkmisc.c in
the main source directory includes the appropriate gawkmisc.??? file from each
subdir ectory. Be sure to update it as well. Each port’s gawkmisc.??? file has a
suf fix reminiscent of the machine or operating system for the port—for exam-
ple, pc/gawkmisc.pc and vms/gawkmisc.vms. The use of separate suffixes,
instead of plain gawkmisc.c, makes it possible to move files from a port’s sub-
dir ectory into the main subdirectory, without accidentally destroying the real
gawkmisc.c file. (Currently, this is only an issue for the PC operating system
ports.)

6. Supply a Makefile as well as any other C source and header files that are nec-
essary for your operating system. All your code should be in a separate subdi-
rectory, with a name that is the same as, or reminiscent of, either your operat-
ing system or the computer system. If possible, try to structure things so that it
is not necessary to move files out of the subdirectory into the main source
dir ectory. If that is not possible, then be sure to avoid using names for your
files that duplicate the names of files in the main source directory.

7. Update the documentation. Please write a section (or sections) for this book
describing the installation and compilation steps needed to compile and/or
install gawk for your system.

8. Be pr epar ed to sign the appropriate paperwork. In order for the FSF to dis-
tribute your code, you must either place your code in the public domain and
submit a signed statement to that effect, or assign the copyright in your code
to the FSF.

Following these steps makes it much easier to integrate your changes into gawk
and have them coexist happily with other operating systems’ code that is already
ther e.

In the code that you supply and maintain, feel free to use a coding style and brace
layout that suits your taste.

Adding New Built-in Functions to gawk
Beginning with gawk 3.1, it is possible to add new built-in functions to gawk using
dynamically loaded libraries. This facility is available on systems (such as
GNU/Linux) that support the dlopen and dlsym functions. This section describes
how to write and use dynamically loaded extentions for gawk. Experience with
pr ogramming in C or C++ is necessary when reading this section.

9 October 2001 01:39

The facilities described in this section are very much subject to
change in the next gawk release. Be aware that you may have to re-
do everything, perhaps from scratch, upon the next release.

A Minimal Introduction to gawk Inter nals
The truth is that gawk was not designed for simple extensibility. The facilities for
adding functions using shared libraries work, but are something of a “bag on the
side.” Thus, this tour is brief and simplistic; would-be gawk hackers are encour-
aged to spend some time reading the source code before trying to write exten-
sions based on the material presented here. Of particular note are the files awk.h,
builtin.c, and eval.c. Reading awk.y in order to see how the parse tree is built
would also be of use.

With the disclaimers out of the way, the following types, structure members, func-
tions, and macros are declar ed in awk.h and are of use when writing extensions.
The next section shows how they are used:

AWKNUM

An AWKNUM is the internal type of awk floating-point numbers. Typically, it is a
C double.

NODE

Just about everything is done using objects of type NODE. These contain both
strings and numbers, as well as variables and arrays.

AWKNUM force_number(NODE *n)

This macro forces a value to be numeric. It retur ns the actual numeric value
contained in the node. It may end up calling an internal gawk function.

void force_string(NODE *n)

This macro guarantees that a NODE’s string value is current. It may end up call-
ing an internal gawk function. It also guarantees that the string is zero-ter mi-
nated.

n->param_cnt

The number of parameters actually passed in a function call at runtime.

n->stptr

n->stlen

The data and length of a NODE’s string value, respectively. The string is not
guaranteed to be zero-ter minated. If you need to pass the string value to a C
library function, save the value in n->stptr[n->stlen], assign ’\0’ to it, call
the routine, and then restor e the value.

Adding New Built-in Functions to gawk 355

9 October 2001 01:39

356 Appendix C: Implementation Notes

n->type

The type of the NODE. This is a C enum. Values should be either Node_var or
Node_var_array for function parameters.

n->vname

The “variable name” of a node. This is not of much use inside externally writ-
ten extensions.

void assoc_clear(NODE *n)

Clears the associative array pointed to by n. Make sure that n->type ==

Node_var_array first.

NODE **assoc_lookup(NODE *symbol, NODE *subs, int reference)

Finds, and installs if necessary, array elements. symbol is the array, subs is the
subscript. This is usually a value created with tmp_string (see below). refer-

ence should be TRUE if it is an error to use the value before it is created. Typi-
cally, FALSE is the correct value to use from extension functions.

NODE *make_string(char *s, size_t len)

Take a C string and turn it into a pointer to a NODE that can be stored appropri-
ately. This is permanent storage; understanding of gawk memory management
is helpful.

NODE *make_number(AWKNUM val)

Take an AWKNUM and turn it into a pointer to a NODE that can be stored appro-
priately. This is permanent storage; understanding of gawk memory manage-
ment is helpful.

NODE *tmp_string(char *s, size_t len);

Take a C string and turn it into a pointer to a NODE that can be stored appropri-
ately. This is temporary storage; understanding of gawk memory management
is helpful.

NODE *tmp_number(AWKNUM val)

Take an AWKNUM and turn it into a pointer to a NODE that can be stored appro-
priately. This is temporary storage; understanding of gawk memory manage-
ment is helpful.

NODE *dupnode(NODE *n)

Duplicate a node. In most cases, this increments an internal refer ence count
instead of actually duplicating the entire NODE; understanding of gawk memory
management is helpful.

void free_temp(NODE *n)

This macro releases the memory associated with a NODE allocated with
tmp_string or tmp_number. Understanding of gawk memory management is
helpful.

9 October 2001 01:39

void make_builtin(char *name, NODE *(*func)(NODE *), int count)

Register a C function pointed to by func as new built-in function name. name is
a regular C string. count is the maximum number of arguments that the func-
tion takes. The function should be written in the following manner:

/* do_xxx --- do xxx function for gawk */

NODE *
do_xxx(NODE *tree)
{

...
}

NODE *get_argument(NODE *tree, int i)

This function is called from within a C extension function to get the i-th argu-
ment from the function call. The first argument is argument zero.

void set_value(NODE *tree)

This function is called from within a C extension function to set the retur n
value from the extension function. This value is what the awk pr ogram sees as
the retur n value from the new awk function.

void update_ERRNO(void)

This function is called from within a C extension function to set the value of
gawk ’s ERRNO variable, based on the current value of the C errno variable. It is
pr ovided as a convenience.

An argument that is supposed to be an array needs to be handled with some extra
code, in case the array being passed in is actually from a function parameter. The
following boilerplate code shows how to do this:

NODE *the_arg;

the_arg = get_argument(tree, 2); /* assume need 3rd arg, 0-based */

/* if a parameter, get it off the stack */
if (the_arg->type == Node_param_list)

the_arg = stack_ptr[the_arg->param_cnt];

/* parameter referenced an array, get it */
if (the_arg->type == Node_array_ref)

the_arg = the_arg->orig_array;

/* check type */
if (the_arg->type != Node_var && the_arg->type != Node_var_array)

fatal("newfunc: third argument is not an array");

/* force it to be an array, if necessary, clear it */
the_arg->type = Node_var_array;
assoc_clear(the_arg);

Adding New Built-in Functions to gawk 357

9 October 2001 01:39

358 Appendix C: Implementation Notes

Again, you should spend time studying the gawk inter nals; don’t just blindly copy
this code.

Director y and File Operation Built-ins
Two useful functions that are not in awk ar e chdir (so that an awk pr ogram can
change its directory) and stat (so that an awk pr ogram can gather information
about a file). This section implements these functions for gawk in an external
extension library.

Using chdir and stat

This section shows how to use the new functions at the awk level once they’ve
been integrated into the running gawk interpr eter. Using chdir is very straightfor-
ward. It takes one argument, the new directory to change to:

...
newdir = "/home/arnold/funstuff"
ret = chdir(newdir)
if (ret < 0) {

printf("could not change to %s: %s\n",
newdir, ERRNO) > "/dev/stderr"

exit 1
}
...

The retur n value is negative if the chdir failed, and ERRNO (see the section “Built-in
Variables” in Chapter 6, Patter ns, Actions, and Variables) is set to a string indicat-
ing the error.

Using stat is a bit more complicated. The C stat function fills in a structure that
has a fair amount of information. The right way to model this in awk is to fill in an
associative array with the appropriate information:

file = "/home/arnold/.profile"
fdata[1] = "x" # force ‘fdata’ to be an array
ret = stat(file, fdata)
if (ret < 0) {

printf("could not stat %s: %s\n", file, ERRNO) > "/dev/stderr"
exit 1

}
printf("size of %s is %d bytes\n", file, fdata["size"])

The stat function always clears the data array, even if the stat fails. It fills in the
following elements:

9 October 2001 01:39

"name"

The name of the file that was stat’ed.

"dev"

"ino"

The file’s device and inode numbers, respectively.

"mode"

The file’s mode, as a numeric value. This includes both the file’s type and its
per missions.

"nlink"

The number of hard links (directory entries) the file has.

"uid"

"gid"

The numeric user and group ID numbers of the file’s owner.

"size"

The size in bytes of the file.

"blocks"

The number of disk blocks the file actually occupies. This may not be a func-
tion of the file’s size if the file has holes.

"atime", "mtime", "ctime"
The file’s last access, modification, and inode update times, respectively. These
ar e numeric timestamps, suitable for formatting with strftime (see the section
“Built-in Functions” in Chapter 8, Functions).

"pmode"

The file’s “printable mode.” This is a string repr esentation of the file’s type
and permissions, such as what is produced by ls -l—for example, "drwxr-
xr-x".

"type"

A printable string repr esentation of the file’s type. The value is one of the fol-
lowing:

"blockdev"

"chardev"

The file is a block or character device (“special file”).

"directory"

The file is a directory.

"fifo"

The file is a named-pipe (also known as a FIFO).

Adding New Built-in Functions to gawk 359

9 October 2001 01:39

360 Appendix C: Implementation Notes

"file"

The file is just a regular file.

"socket"

The file is an AF_UNIX (“Unix domain”) socket in the filesystem.

"symlink"

The file is a symbolic link.

Several additional elements may be present depending upon the operating system
and the type of the file. You can test for them in your awk pr ogram by using the
in operator (see the section “Referring to an Array Element” in Chapter 7, Arrays
in awk):

"blksize"

The preferr ed block size for I/O to the file. This field is not present on all
POSIX-like systems in the C stat structur e.

"linkval"

If the file is a symbolic link, this element is the name of the file the link points
to (i.e., the value of the link).

"rdev", "major", "minor"
If the file is a block or character device file, then these values repr esent the
numeric device number and the major and minor components of that number,
respectively.

C code for chdir and stat

Her e is the C code for these extensions. They were written for GNU/Linux. The
code needs some more work for complete portability to other POSIX-compliant
systems:*

#include "awk.h"

#include <sys/sysmacros.h>

/* do_chdir --- provide dynamically loaded chdir() builtin for gawk */

static NODE *
do_chdir(tree)
NODE *tree;
{

NODE *newdir;
int ret = -1;

newdir = get_argument(tree, 0);

* This version is edited slightly for presentation. The complete version can be found in
extension/filefuncs.c in the gawk distribution.

9 October 2001 01:39

The file includes the "awk.h" header file for definitions for the gawk inter nals. It
includes <sys/sysmacros.h> for access to the major and minor macr os.

By convention, for an awk function foo, the function that implements it is called
do_foo. The function should take a NODE * argument, usually called tree, that rep-
resents the argument list to the function. The newdir variable repr esents the new
dir ectory to change to, retrieved with get_argument. Note that the first argument is
number ed zer o.

This code actually accomplishes the chdir. It first forces the argument to be a
string and passes the string value to the chdir system call. If the chdir fails, ERRNO
is updated. The result of force_string has to be freed with free_temp:

if (newdir != NULL) {
(void) force_string(newdir);
ret = chdir(newdir->stptr);
if (ret < 0)

update_ERRNO();

free_temp(newdir);
}

Finally, the function retur ns the retur n value to the awk level, using set_value.
Then it must retur n a value from the call to the new built-in (this value ignored by
the interpreter):

/* Set the return value */
set_value(tmp_number((AWKNUM) ret));

/* Just to make the interpreter happy */
return tmp_number((AWKNUM) 0);

}

The stat built-in is more involved. First comes a function that turns a numeric
mode into a printable repr esentation (e.g., 644 becomes -rw-r—r—). This is omitted
her e for brevity:

/* format_mode --- turn a stat mode field into something readable */

static char *
format_mode(fmode)
unsigned long fmode;
{

...
}

Adding New Built-in Functions to gawk 361

9 October 2001 01:39

362 Appendix C: Implementation Notes

Next comes the actual do_stat function itself. First come the variable declarations
and argument checking:

/* do_stat --- provide a stat() function for gawk */

static NODE *
do_stat(tree)
NODE *tree;
{

NODE *file, *array;
struct stat sbuf;
int ret;
char *msg;
NODE **aptr;
char *pmode; /* printable mode */
char *type = "unknown";

/* check arg count */
if (tree->param_cnt != 2)

fatal(
"stat: called with incorrect number of arguments (%d), should be 2",

tree->param_cnt);

Then comes the actual work. First, we get the arguments. Then, we always clear
the array. To get the file information, we use lstat, in case the file is a symbolic
link. If there’s an error, we set ERRNO and retur n:

/* directory is first arg, array to hold results is second */
file = get_argument(tree, 0);
array = get_argument(tree, 1);

/* empty out the array */
assoc_clear(array);

/* lstat the file, if error, set ERRNO and return */
(void) force_string(file);
ret = lstat(file->stptr, & sbuf);
if (ret < 0) {

update_ERRNO();

set_value(tmp_number((AWKNUM) ret));

free_temp(file);
return tmp_number((AWKNUM) 0);

}

Now comes the tedious part: filling in the array. Only a few of the calls are shown
her e, since they all follow the same pattern:

9 October 2001 01:39

/* fill in the array */
aptr = assoc_lookup(array, tmp_string("name", 4), FALSE);
*aptr = dupnode(file);

aptr = assoc_lookup(array, tmp_string("mode", 4), FALSE);
*aptr = make_number((AWKNUM) sbuf.st_mode);

aptr = assoc_lookup(array, tmp_string("pmode", 5), FALSE);
pmode = format_mode(sbuf.st_mode);
*aptr = make_string(pmode, strlen(pmode));

When done, we free the temporary value containing the filename, set the retur n
value, and retur n:

free_temp(file);

/* Set the return value */
set_value(tmp_number((AWKNUM) ret));

/* Just to make the interpreter happy */
return tmp_number((AWKNUM) 0);

}

Finally, it’s necessary to provide the “glue” that loads the new function(s) into
gawk. By convention, each library has a routine named dlload that does the job:

/* dlload --- load new builtins in this library */

NODE *
dlload(tree, dl)
NODE *tree;
void *dl;
{

make_builtin("chdir", do_chdir, 1);
make_builtin("stat", do_stat, 2);
return tmp_number((AWKNUM) 0);

}

And that’s it! As an exercise, consider adding functions to implement system calls
such as chown, chmod, and umask.

Integ rating the extensions

Now that the code is written, it must be possible to add it at runtime to the run-
ning gawk interpr eter. First, the code must be compiled. Assuming that the func-
tions are in a file named filefuncs.c, and idir is the location of the gawk include
files, the following steps create a GNU/Linux shared library:

$ gcc -shared -DHAVE_CONFIG_H -c -O -g -Iidir filefuncs.c
$ ld -o filefuncs.so -shared filefuncs.o

Adding New Built-in Functions to gawk 363

9 October 2001 01:39

364 Appendix C: Implementation Notes

Once the library exists, it is loaded by calling the extension built-in function. This
function takes two arguments: the name of the library to load and the name of a
function to call when the library is first loaded. This function adds the new func-
tions to gawk. It retur ns the value retur ned by the initialization function within the
shar ed library:

file testff.awk
BEGIN {

extension("./filefuncs.so", "dlload")

chdir(".") # no-op

data[1] = 1 # force ‘data’ to be an array
print "Info for testff.awk"
ret = stat("testff.awk", data)
print "ret =", ret
for (i in data)

printf "data[\"%s\"] = %s\n", i, data[i]
print "testff.awk modified:",

strftime("%m %d %y %H:%M:%S", data["mtime"])
}

Her e ar e the results of running the program:

$ gawk -f testff.awk
Info for testff.awk
ret = 0
data["blksize"] = 4096
data["mtime"] = 932361936
data["mode"] = 33188
data["type"] = file
data["dev"] = 2065
data["gid"] = 10
data["ino"] = 878597
data["ctime"] = 971431797
data["blocks"] = 2
data["nlink"] = 1
data["name"] = testff.awk
data["atime"] = 971608519
data["pmode"] = -rw-r--r--
data["size"] = 607
data["uid"] = 2076
testff.awk modified: 07 19 99 08:25:36

Probable Future Extensions
This section briefly lists extensions and possible improvements that indicate the
dir ections we are curr ently considering for gawk. The file FUTURES in the gawk
distribution lists these extensions as well.

9 October 2001 01:39

Following is a list of probable future changes visible at the awk language level:

Loadable module interface
It is not clear that the awk-level interface to the modules facility is as good as
it should be. The interface needs to be redesigned, particularly taking name-
space issues into account, as well as possibly including issues such as library
search path order and versioning.

RECLEN variable for fixed-length recor ds
Along with FIELDWIDTHS, this would speed up the processing of fixed-length
records. PROCINFO["RS"] would be "RS" or "RECLEN", depending upon which
kind of record processing is in effect.

Additional printf specifiers
The 1999 ISO C standard added a number of additional printf for mat speci-
fiers. These should be evaluated for possible inclusion in gawk.

Databases
It may be possible to map a GDBM/NDBM/SDBM file into an awk array.

Lar ge character sets
It would be nice if gawk could handle UTF-8 and other character sets that are
larger than eight bits.

Mor e lint war nings
Ther e ar e mor e things that could be checked for portability.

Following is a list of probable improvements that will make gawk ’s source code
easier to work with:

Loadable module mechanics
The current extension mechanism works (see the earlier section “Adding New
Built-in Functions to gawk)”, but is rather primitive. It requir es a fair amount
of manual work to create and integrate a loadable module. Nor is the current
mechanism as portable as might be desired. The GNU libtool package pro-
vides a number of features that would make using loadable modules much
easier. gawk should be changed to use libtool.

Loadable module internals
The API to its internals that gawk “exports” should be revised. Too many
things are needlessly exposed. A new API should be designed and imple-
mented to make module writing easier.

Better array subscript management
gawk ’s management of array subscript storage could use revamping, so that
using the same value to index multiple arrays only stores one copy of the
index value.

Probable Future Extensions 365

9 October 2001 01:39

366 Appendix C: Implementation Notes

Integrating the DBUG library
Integrating Fred Fish’s DBUG library would be helpful during development,
but it’s a lot of work to do.

Following is a list of probable improvements that will make gawk per form better:

An improved version of dfa
The dfa patter n matcher from GNU gr ep has some problems. Either a new ver-
sion or a fixed one will deal with some important regexp matching issues.

Compilation of awk programs
gawk uses a Bison (YACC-like) parser to convert the script given it into a syn-
tax tree; the syntax tree is then executed by a simple recursive evaluator. This
method incurs a lot of overhead, since the recursive evaluator perfor ms many
pr ocedure calls to do even the simplest things.

It should be possible for gawk to convert the script’s parse tree into a C pro-
gram which the user would then compile, using the normal C compiler and a
special gawk library to provide all the needed functions (regexps, fields, asso-
ciative arrays, type coercion, and so on).

An easier possibility might be for an intermediate phase of gawk to convert
the parse tree into a linear byte code form like the one used in GNU Emacs
Lisp. The recursive evaluator would then be replaced by a straight line byte
code interpreter that would be intermediate in speed between running a com-
piled program and doing what gawk does now.

Finally, the programs in the test suite could use documenting in this book.

See the earlier section “Making Additions to gawk” if you are inter ested in tackling
any of these projects.

9 October 2001 01:39

D
Basic Prog ramming Concepts

This appendix attempts to define some of the basic concepts and terms that are
used throughout the rest of this book. As this book is specifically about awk, and
not about computer programming in general, the coverage here is by necessity
fairly cursory and simplistic. (If you need more backgr ound, ther e ar e many other
intr oductory texts that you should refer to instead.)

What a Prog ram Does
At the most basic level, the job of a program is to process some input data and
pr oduce results. This is shown graphically in Figure D-1.

PROGRAM
Results

Data

Figur e D-1. The basic job of a program

The “program” in the figure can be either a compiled program* (such as ls), or it
may be interpr eted. In the latter case, a machine-executable program such as awk
reads your program, and then uses the instructions in your program to process the
data.

* Compiled programs are typically written in lower-level languages such as C, C++, Fortran, or Ada,
and then translated, or compiled, into a form that the computer can execute directly.

367

9 October 2001 01:39

368 Appendix D: Basic Prog ramming Concepts

When you write a program, it usually consists of the following, very basic set of
steps, as shown in Figure D-2:

More Data?

Initialization YES

NO

Clean
Up

Read
Data

PROCESS

Figur e D-2. The basic outline of a program

Initialization
These are the things you do before actually starting to process data, such as
checking arguments, initializing any data you need to work with, and so on.
This step corresponds to awk ’s BEGIN rule (see the section “The BEGIN and
END Special Patterns” in Chapter 6, Patter ns, Actions, and Variables).

If you were baking a cake, this might consist of laying out all the mixing
bowls and the baking pan, and making sure you have all the ingredients that
you need.

Pr ocessing
This is where the actual work is done. Your program reads data, one logical
chunk at a time, and processes it as appropriate.

In most programming languages, you have to manually manage the reading of
data, checking to see if there is mor e each time you read a chunk. awk ’s pat-
ter n-action paradigm (see Chapter 1, Getting Started with awk) handles the
mechanics of this for you.

In baking a cake, the processing corresponds to the actual labor: breaking
eggs, mixing the flour, water, and other ingredients, and then putting the cake
into the oven.

Clean Up
Once you’ve processed all the data, you may have things you need to do
befor e exiting. This step corresponds to awk ’s END rule (see the section “The
BEGIN and END Special Patterns” in Chapter 6).

9 October 2001 01:39

After the cake comes out of the oven, you still have to wrap it in plastic wrap
to keep anyone from tasting it, as well as wash the mixing bowls and utensils.

An algorithm is a detailed set of instructions necessary to accomplish a task, or
pr ocess data. It is much the same as a recipe for baking a cake. Programs imple-
ment algorithms. Often, it is up to you to design the algorithm and implement it,
simultaneously.

The “logical chunks” we talked about previously are called recor ds, similar to the
records a company keeps on employees, a school keeps for students, or a doctor
keeps for patients. Each record has many component parts, such as first and last
names, date of birth, address, and so on. The component parts are referr ed to as
the fields of the record.

The act of reading data is termed input, and that of generating results, not too sur-
prisingly, is termed output. They are often referr ed to together as “input/output,”
and even more often, as “I/O” for short. (You will also see “input” and “output”
used as verbs.)

awk manages the reading of data for you, as well as the breaking it up into
records and fields. Your program’s job is to tell awk what to with the data. You do
this by describing patter ns in the data to look for, and actions to execute when
those patterns are seen. This data-driven natur e of awk pr ograms usually makes
them both easier to write and easier to read.

Data Values in a Computer
In a program, you keep track of information and values in things called variables.
A variable is just a name for a given value, such as first_name, last_name,
address, and so on. awk has several predefined variables, and it has special names
to refer to the current input record and the fields of the record. You may also
gr oup multiple associated values under one name, as an array.

Data, particularly in awk, consists of either numeric values, such as 42 or
3.1415927, or string values. String values are essentially anything that’s not a num-
ber, such as a name. Strings are sometimes referr ed to as character data, since
they store the individual characters that comprise them. Individual variables, as
well as numeric and string variables, are referr ed to as scalar values. Groups of
values, such as arrays, are not scalars.

Within computers, there are two kinds of numeric values: integers and floating-
point. In school, integer values were referr ed to as “whole” numbers—that is,
numbers without any fractional part, such as 1, 42, or −17. The advantage to inte-
ger numbers is that they repr esent values exactly. The disadvantage is that their
range is limited. On most modern systems, this range is −2,147,483,648 to

Data Values in a Computer 369

9 October 2001 01:39

370 Appendix D: Basic Prog ramming Concepts

2,147,483,647.

Integer values come in two flavors: signed and unsigned. Signed values may be
negative or positive, with the range of values just described. Unsigned values are
always positive. On most modern systems, the range is from 0 to 4,294,967,295.

Floating-point numbers repr esent what are called “real” numbers; i.e., those that
do have a fractional part, such as 3.1415927. The advantage to floating-point num-
bers is that they can repr esent a much larger range of values. The disadvantage is
that there are numbers that they cannot repr esent exactly. awk uses double-pr eci-
sion floating-point numbers, which can hold more digits than single-pr ecision
floating-point numbers. Floating-point issues are discussed more fully in the sec-
tion “Floating-Point Number Caveats” later in this appendix.

At the very lowest level, computers store values as groups of binary digits, or bits.
Moder n computers group bits into groups of eight, called bytes. Advanced applica-
tions sometimes have to manipulate bits directly, and gawk pr ovides functions for
doing so.

While you are probably used to the idea of a number without a value (i.e., zero),
it takes a bit more getting used to the idea of zero-length character data. Neverthe-
less, such a thing exists. It is called the null string. The null string is character data
that has no value. In other words, it is empty. It is written in awk pr ograms like
this: "".

Humans are used to working in decimal; i.e., base 10. In base 10, numbers go
fr om 0 to 9, and then “roll over” into the next column. (Remember grade school?
42 is 4 times 10 plus 2.)

Ther e ar e other number bases though. Computers commonly use base 2 or binary,
base 8 or octal, and base 16 or hexadecimal. In binary, each column repr esents
two times the value in the column to its right. Each column may contain either a 0
or a 1. Thus, binary 1010 repr esents 1 times 8, plus 0 times 4, plus 1 times 2, plus
0 times 1, or decimal 10. Octal and hexadecimal are discussed more in the section
“Octal and Hexadecimal Numbers” in Chapter 5, Expr essions.

Pr ograms ar e written in programming languages. Hundreds, if not thousands, of
pr ogramming languages exist. One of the most popular is the C programming lan-
guage. The C language had a very strong influence on the design of the awk lan-
guage.

Ther e have been several versions of C. The first is often referr ed to as “K&R” C,
after the initials of Brian Kernighan and Dennis Ritchie, the authors of the first
book on C. (Dennis Ritchie created the language, and Brian Kernighan was one of
the creators of awk.)

9 October 2001 01:39

In the mid-1980s, an effort began to produce an international standard for C. This
work culminated in 1989, with the production of the ANSI standard for C. This
standard became an ISO standard in 1990. Where it makes sense, POSIX awk is
compatible with 1990 ISO C.

In 1999, a revised ISO C standard was approved and released. Future versions of
gawk will be as compatible as possible with this standard.

Floating-Point Number Caveats
As mentioned earlier, floating-point numbers repr esent what are called “real” num-
bers, i.e., those that have a fractional part. awk uses double-precision floating-
point numbers to repr esent all numeric values. This section describes some of the
issues involved in using floating-point numbers.

Ther e is a very nice paper on floating-point arithmetic by David Goldberg, “What
Every Computer Scientist Should Know About Floating-point Arithmetic,” ACM
Computing Surveys 23, 1 (1991-03), 5-48.* This is worth reading if you are inter-
ested in the details, but it does requir e a backgr ound in computer science.

Inter nally, awk keeps both the numeric value (double-precision floating-point) and
the string value for a variable. Separately, awk keeps track of what type the vari-
able has (see the section “Variable Typing and Comparison Expressions” in Chap-
ter 5), which plays a role in how variables are used in comparisons.

It is important to note that the string value for a number may not reflect the full
value (all the digits) that the numeric value actually contains. The following pro-
gram (values.awk) illustrates this:

{
$1 = $2 + $3
see it for what it is
printf("$1 = %.12g\n", $1)
use CONVFMT
a = "<" $1 ">"
print "a =", a
use OFMT
print "$1 =", $1

}

This program shows the full value of the sum of $2 and $3 using printf, and then
prints the string values obtained from both automatic conversion (via CONVFMT) and
fr om printing (via OFMT).

* http://www.validgh.com/goldber g/paper.ps.

Floating-Point Number Caveats 371

9 October 2001 01:39

372 Appendix D: Basic Prog ramming Concepts

Her e is what happens when the program is run:

$ echo 2 3.654321 1.2345678 | awk -f values.awk
$1 = 4.8888888
a = <4.88889>
$1 = 4.88889

This makes it clear that the full numeric value is differ ent fr om what the default
string repr esentations show.

CONVFMT’s default value is "%.6g", which yields a value with at least six significant
digits. For some applications, you might want to change it to specify more preci-
sion. On most modern machines, most of the time, 17 digits is enough to capture a
floating-point number’s value exactly.*

Unlike numbers in the abstract sense (such as what you studied in high school or
college math), numbers stored in computers are limited in certain ways. They can-
not repr esent an infinite number of digits, nor can they always repr esent things
exactly. In particular, floating-point numbers cannot always repr esent values
exactly. Here is an example:

$ awk ’{ printf("%010d\n", $1 * 100) }’
515.79
0000051579
515.80
0000051579
515.81
0000051580
515.82
0000051582
Ctrl-d

This shows that some values can be repr esented exactly, whereas others are only
appr oximated. This is not a “bug” in awk, but simply an artifact of how computers
repr esent numbers.

Another peculiarity of floating-point numbers on modern systems is that they often
have more than one repr esentation for the number zero! In particular, it is possible
to repr esent “minus zero” as well as regular, or “positive” zero.

This example shows that negative and positive zero are distinct values when
stor ed inter nally, but that they are in fact equal to each other, as well as to “regu-
lar” zero:

* Pathological cases can requir e up to 752 digits (!), but we doubt that you need to worry about this.

9 October 2001 01:39

$ gawk ’BEGIN { mz = -0 ; pz = 0
> printf "-0 = %g, +0 = %g, (-0 == +0) -> %d\n", mz, pz, mz == pz
> printf "mz == 0 -> %d, pz == 0 -> %d\n", mz == 0, pz == 0
> }’
-0 = -0, +0 = 0, (-0 == +0) -> 1
mz == 0 -> 1, pz == 0 -> 1

It helps to keep this in mind should you process numeric data that contains nega-
tive zero values; the fact that the zero is negative is noted and can affect compar-
isons.

Floating-Point Number Caveats 373

9 October 2001 01:39

E
GNU General Public License

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to guaran-
tee your freedom to share and change free software—to make sure the software is
fr ee for all its users. This General Public License applies to most of the Free Soft-
war e Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is cover ed by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our Gen-
eral Public Licenses are designed to make sure that you have the freedom to dis-
tribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you
modify it.

374

9 October 2001 01:40

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these
ter ms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or mod-
ify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is mod-
ified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone’s free use or not
licensed at all.

The precise terms and conditions for copying, distribution, and modification fol-
low.

Terms and Conditions for Copying,
Distr ibution, and Modification
0. This License applies to any program or other work which contains a notice

placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The “Program,” below, refers to any such program
or work, and a “work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Pro-
gram or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without limitation
in the term “modification.”) Each licensee is addressed as “you.”

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents con-
stitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program
does.

Terms and Conditions for Copying, Distribution, and Modification 375

9 October 2001 01:40

376 Appendix E: GNU General Public License

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
for ming a work based on the Program, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a. You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

c. If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an
appr opriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the
Pr ogram is not requir ed to print an announcement.)

These requir ements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
consider ed independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to con-
tr ol the distribution of derivative or collective works based on the Program.

9 October 2001 01:40

In addition, mere aggr egation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under sec-
tion 2) in object code or executable form under the terms of sections 1 and 2
above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of sections 1 and 2
above on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give
any third party, for a charge no more than your cost of physically per-
for ming source distribution, a complete machine-readable copy of the cor-
responding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferr ed for m of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface defi-
nition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, ker nel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy
fr om a designated place, then offering equivalent access to copy the source
code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expr essly pr ovided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

Terms and Conditions for Copying, Distribution, and Modification 377

9 October 2001 01:40

378 Appendix E: GNU General Public License

5. You are not requir ed to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Pro-
gram or its derivative works. These actions are prohibited by law if you do not
accept this License. Ther efor e, by modifying or distributing the Program (or
any work based on the Program), you indicate your acceptance of this License
to do so, and all its terms and conditions for copying, distributing or modify-
ing the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agr eement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obliga-
tions under this License and any other pertinent obligations, then as a conse-
quence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-fr ee redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribu-
tion of the Program.

If any portion of this section is held invalid or unenforceable under any partic-
ular circumstance, the balance of the section is intended to apply and the sec-
tion as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this sec-
tion has the sole purpose of protecting the integrity of the free software distri-
bution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed
thr ough that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute software
thr ough any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical

9 October 2001 01:40

distribution limitation excluding those countries, so that distribution is permit-
ted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Fr ee Softwar e Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version,”
you have the option of following the terms and conditions either of that ver-
sion or of any later version published by the Free Software Foundation. If the
Pr ogram does not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are dif ferent, write to the author to ask for per-
mission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for
this. Our decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing and reuse
of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PAR TIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PAR TICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PAR TY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PAR TIES OR A FAILURE OF THE

NO WARRANTY 379

9 October 2001 01:40

380 Appendix E: GNU General Public License

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PAR TY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Ter ms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use
to the public, the best way to achieve this is to make it free software which every-
one can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the
full notice is found:

one line to give the program’s name and an idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts
in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands show w and show c should show the appropriate parts
of the General Public License. Of course, the commands you use may be called
something other than show w and show c; they could even be mouse-clicks or
menu items—whatever suits your program.

9 October 2001 01:40

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a “copyright disclaimer” for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it
mor e useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Lesser General Public License instead of this
License.

END OF TERMS AND CONDITIONS 381

9 October 2001 01:40

F
GNU Free Documentation
License

Version 1.1, March 2000

Copyright © 2000 Fr ee Softwar e Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written
document “free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the
GNU General Public License, which is a copyleft license designed for free soft-
war e.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
refer ence.

382

9 October 2001 01:40

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document,” below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you.”

A “Modified Version” of the Document means any work containing the Docu-
ment or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related mat-
ters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relationship could be
a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transpar ent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transpar ent file
for mat whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transpar ent. A copy that is not “Transpar ent” is
called “Opaque.”

Examples of suitable formats for Transpar ent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary for-
mats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for out-
put purposes only.

Appendix F: GNU Free Documentation License 383

9 October 2001 01:40

384 Appendix F: GNU Free Documentation License

The “Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requir es
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repr o-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requir es Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verba-
tim copying in other respects.

If the requir ed texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transpar ent copy along
with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transpar ent copy
of the Document, free of added material, which the general network-using
public has access to download anonymously at no charge using public-stan-
dard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to

9 October 2001 01:40

ensur e that this Transpar ent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not requir ed, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if
ther e wer e any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its princi-
pal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
requir ed Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History,” and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher

Appendix F: GNU Free Documentation License 385

9 October 2001 01:40

386 Appendix F: GNU Free Documentation License

of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transpar ent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Docu-
ment itself, or if the original publisher of the version it refers to gives per-
mission.

K. In any section entitled “Acknowledgements” or “Dedications,” preserve the
section’s title, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given
ther ein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section entitled “Endorsements.” Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invari-
ant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section
titles.

You may add a section entitled “Endorsements,” provided it contains nothing
but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organiza-
tion as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a pas-
sage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
pr eviously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old
one, on explicit permission from the previous publisher that added the old
one.

9 October 2001 01:40

The author(s) and publisher(s) of the Document do not by this License give
per mission to use their names for publicity for or to assert or imply endorse-
ment of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
pr ovided that you include in the combination all of the Invariant Sections of
all of the original documents, unmodified, and list them all as Invariant Sec-
tions of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but differ ent contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements,” and any sections entitled
“Dedications.” You must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
pr ovided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
pr ovided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate,” and this License does not apply to the
other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the
Document.

Appendix F: GNU Free Documentation License 387

9 October 2001 01:40

388 Appendix F: GNU Free Documentation License

If the Cover Text requir ement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggr e-
gate, the Document’s Cover Texts may be placed on covers that surround only
the Document within the aggregate. Otherwise they must appear on covers
ar ound the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant
Sections with translations requir es special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the original English
version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will
pr evail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expr essly pr ovided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Fr ee Documentation License from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ in detail to address new
pr oblems or concerns. See http://www.gnu.or g/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any ver-
sion ever published (not as a draft) by the Free Software Foundation.

9 October 2001 01:40

ADDENDUM: How to Use This License
for Your Documents
To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write “with no Invariant Sections” instead of say-
ing which ones are invariant. If you have no Front-Cover Texts, write “no Front-
Cover Texts” instead of “Front-Cover Texts being list ”; likewise for Back-Cover
Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.

ADDENDUM: How to Use This License for Your Documents 389

9 October 2001 01:40

9 October 2001 01:40

Glossar y

Action
A series of awk statements attached to a rule. If the rule’s pattern matches an
input record, awk executes the rule’s action. Actions are always enclosed in
curly braces. (See the section “Actions” in Chapter 6, Patter ns, Actions, and
Variables.)

Amazing awk Assembler
Henry Spencer at the University of Tor onto wr ote a retargetable assembler
completely as sed and awk scripts. It is thousands of lines long, including
machine descriptions for several eight-bit microcomputers. It is a good exam-
ple of a program that would have been better written in another language. It
is available over the Internet from ftp://ftp.fr eefriends.org/ar nold/Awk-
stuf f/aaa.tgz.

Amazingly Workable Formatter (awf)
Henry Spencer at the University of Tor onto wr ote a for matter that accepts a
large subset of the nroff -ms and nroff -man for matting commands, using
awk and sh. It is available over the Internet from ftp://ftp.fr eefriends.org/
ar nold/Awkstuf f/awf.tgz.

Anchor
The regexp metacharacters ˆ and $, which force the match to the beginning or
end of the string, respectively.

ANSI
The American National Standards Institute. This organization produces many
standards, among them the standards for the C and C++ programming lan-
guages. These standards often become international standards as well. See
also “ISO.”

391

9 October 2001 01:44

392 Glossary

Array
A grouping of multiple values under the same name. Most languages provide
just sequential arrays. awk pr ovides associative arrays (see “Associative
Array”).

Assertion
A statement in a program that a condition is true at this point in the program.
Useful for reasoning about how a program is supposed to behave.

Assignment
An awk expr ession that changes the value of some awk variable or data
object. An object that you can assign to is called an lvalue. The assigned val-
ues are called rvalues. See the section “Assignment Expressions” in Chapter 5,
Expr essions.

Associative Array
Arrays in which the indices may be numbers or strings, not just sequential
integers in a fixed range.

awk Language
The language in which awk pr ograms ar e written.

awk Program
An awk pr ogram consists of a series of patter ns and actions, collectively
known as rules. For each input record given to the program, the program’s
rules are all processed in turn. awk pr ograms may also contain function defi-
nitions.

awk Script
Another name for an awk pr ogram.

Bash
The GNU version of the standard shell (the Bourne-again shell). See also
“Bour ne Shell.”

BBS
See “Bulletin Board System.”

Bit Short for “Binary Digit.” All values in computer memory ultimately reduce to
binary digits: values that are either zero or one. Groups of bits may be inter-
pr eted dif ferently — as integers, floating-point numbers, character data,
addr esses of other memory objects, or other data. awk lets you work with
floating-point numbers and strings. gawk lets you manipulate bit values with
the built-in functions described in the section “Bit-Manipulation Functions of
gawk” in Chapter 8, Functions.

Computers are often defined by how many bits they use to repr esent integer
values. Typical systems are 32-bit systems, but 64-bit systems are becoming
incr easingly popular, while 16-bit systems are waning in popularity.

9 October 2001 01:44

Boolean Expression
Named after the English mathematician Boole. See also “Logical Expression.”

Bour ne Shell
The standard shell (/bin/sh) on Unix and Unix-like systems, originally written
by Steven R. Bourne. Many shells (Bash, ksh, pdksh, zsh) are generally
upwardly compatible with the Bourne shell.

Built-in Function
The awk language provides built-in functions that perfor m various numerical,
I/O-r elated, and string computations. Examples are sqrt (for the square root
of a number) and substr (for a substring of a string). gawk pr ovides functions
for timestamp management, bit manipulation, and runtime string translation.
(See the section “Built-in Functions” in Chapter 8.)

Built-in Variable
ARGC, ARGV, CONVFMT, ENVIRON, FILENAME, FNR, FS, NF, NR, OFMT, OFS, ORS, RLENGTH,
RSTART, RS, and SUBSEP ar e the variables that have special meaning to awk. In
addition, ARGIND, BINMODE, ERRNO, FIELDWIDTHS, IGNORECASE, LINT, PROCINFO, RT,
and TEXTDOMAIN ar e the variables that have special meaning to gawk. Changing
some of them affects awk ’s running environment. (See the section “Built-in
Variables” in Chapter 6.)

Braces
See “Curly Braces.”

Bulletin Board System
A computer system allowing users to log in and read and/or leave messages
for other users of the system, much like leaving paper notes on a bulletin
board.

C The system programming language that most GNU software is written in. The
awk pr ogramming language has C-like syntax, and this book points out simi-
larities between awk and C when appropriate.

In general, gawk attempts to be as similar to the 1990 version of ISO C as
makes sense. Future versions of gawk may adopt features from the newer
1999 standard, as appropriate.

C++
A popular object-oriented programming language derived from C.

Character Set
The set of numeric codes used by a computer system to repr esent the charac-
ters (letters, numbers, punctuation, etc.) of a particular country or place. The
most common character set in use today is ASCII (American Standard Code for
Infor mation Interchange). Many European countries use an extension of ASCII
known as ISO-8859-1 (ISO Latin-1).

Glossar y 393

9 October 2001 01:44

394 Glossary

CHEM
A prepr ocessor for pic that reads descriptions of molecules and produces pic
input for drawing them. It was written in awk by Brian Kernighan and Jon
Bentley, and is available from http://cm.bell-labs.com/netlib/typesetting/
chem.gz.

Copr ocess
A subordinate program with which two-way communication is possible.

Compiler
A program that translates human-readable source code into machine-exe-
cutable object code. The object code is then executed directly by the com-
puter. See also “Interpreter.”

Compound Statement
A series of awk statements, enclosed in curly braces. Compound statements
may be nested. (See the section “Control Statements in Actions” in Chapter 6.)

Concatenation
Concatenating two strings means sticking them together, one after another,
pr oducing a new string. For example, the string foo concatenated with the
string bar gives the string foobar. (See the section “String Concatenation” in
Chapter 5.)

Conditional Expression
An expression using the ?: ter nary operator, such as expr1 ? expr2 : expr3.
The expression expr1 is evaluated; if the result is true, the value of the whole
expr ession is the value of expr2; otherwise, the value is expr3. In either case,
only one of expr2 and expr3 is evaluated. (See the section “Conditional
Expr essions” in Chapter 5.)

Comparison Expression
A relation that is either true or false, such as (a < b). Comparison expressions
ar e used in if, while, do, and for statements, and in patterns to select which
input records to process. (See the section “Variable Typing and Comparison
Expr essions” in Chapter 5.)

Curly Braces
The characters { and }. Curly braces are used in awk for delimiting actions,
compound statements, and function bodies.

Dark Corner
An area in the language in which specifications often were (or still are) not
clear, leading to unexpected or undesirable behavior. Such areas are marked
with “(d.c.)” in the text and are indexed under the heading “dark corner.”

9 October 2001 01:44

Data Driven
A description of awk pr ograms, in which you specify the data you are inter-
ested in processing and what to do when that data is seen.

Data Objects
Numbers and strings of characters. Numbers are converted into strings and
vice versa, as needed. (See the section “Conversion of Strings and Numbers” in
Chapter 5.)

Deadlock
The situation in which two communicating processes are each waiting for the
other to perfor m an action.

Double-Pr ecision
An internal repr esentation of numbers that can have fractional parts. Double-
pr ecision numbers keep track of more digits than do single-precision numbers,
but operations on them are sometimes more expensive. This is the way awk
stor es numeric values. It is the C type double.

Dynamic Regular Expression
A dynamic regular expression is a regular expression written as an ordinary
expr ession. It could be a string constant, such as "foo", but it may also be an
expr ession whose value can vary. (See the section “Using Dynamic Regexps”
in Chapter 2, Regular Expressions.)

Envir onment
A collection of strings, of the form name=val, that each program has available
to it. Users generally place values into the environment in order to provide
infor mation to various programs. Typical examples are the environment vari-
ables HOME and PATH.

Empty String
See “Null String.”

Epoch
The date used as the “beginning of time” for timestamps. Time values in Unix
systems are repr esented as seconds since the epoch, with library functions
available for converting these values into standard date and time formats.

The epoch on Unix and POSIX systems is 1970-01-01 00:00:00 UTC. See also
“GMT” and “UTC.”

Escape Sequences
A special sequence of characters used for describing nonprinting characters,
such as \n for newline or \033 for the ASCII ESC (Escape) character. (See the
section “Escape Sequences” in Chapter 2.)

Glossar y 395

9 October 2001 01:44

396 Glossary

FDL
See “Free Documentation License.”

Field
When awk reads an input record, it splits the record into pieces separated by
whitespace (or by a separator regexp that you can change by setting the built-
in variable FS). Such pieces are called fields. If the pieces are of fixed length,
you can use the built-in variable FIELDWIDTHS to describe their lengths. (See
the section “Specifying How Fields Are Separated” and the section “Reading
Fixed-Width Data” in Chapter 3, Reading Input Files.)

Flag
A variable whose truth value indicates the existence or nonexistence of some
condition.

Floating-Point Number
Often referr ed to in mathematical terms as a “rational” or real number, this is
just a number that can have a fractional part. See also “Double-Precision” and
“Single-Pr ecision.”

For mat
For mat strings are used to control the appearance of output in the strftime

and sprintf functions, and are used in the printf statement as well. Also, data
conversions from numbers to strings are contr olled by the format string con-
tained in the built-in variable CONVFMT. (See the section “Format-Contr ol Let-
ters” in Chapter 4, Printing Output.)

Fr ee Documentation License
This document describes the terms under which this book is published and
may be copied. (See Appendix F, GNU Free Documentation License.)

Function
A specialized group of statements used to encapsulate general or program-
specific tasks. awk has a number of built-in functions, and also allows you to
define your own. (See Chapter 8.)

FSF
See “Free Software Foundation.”

Fr ee Softwar e Foundation
A nonpr ofit organization dedicated to the production and distribution of freely
distributable software. It was founded by Richard M. Stallman, the author of
the original Emacs editor. GNU Emacs is the most widely used version of
Emacs today.

9 October 2001 01:44

gawk
The GNU implementation of awk.

General Public License
This document describes the terms under which gawk and its source code
may be distributed. (See Appendix E, GNU General Public License.)

GMT
“Gr eenwich Mean Time.” This is the old term for UTC. It is the time of day
used as the epoch for Unix and POSIX systems. See also “Epoch” and “UTC.”

GNU
“GNU’s not Unix.” An ongoing project of the Free Software Foundation to
cr eate a complete, freely distributable, POSIX-compliant computing environ-
ment.

GNU/Linux
A variant of the GNU system using the Linux kernel, instead of the Free Soft-
war e Foundation’s Hurd kernel. Linux is a stable, efficient, full-featured clone
of Unix that has been ported to a variety of architectur es. It is most popular
on PC-class systems, but runs well on a variety of other systems too. The
Linux kernel source code is available under the terms of the GNU General
Public License, which is perhaps its most important aspect.

GPL
See “General Public License.”

Hexadecimal
Base 16 notation, in which the digits are 0–9 and A–F, with A repr esenting 10, B
repr esenting 11, and so on, up to F for 15. Hexadecimal numbers are written
in C using a leading 0x, to indicate their base. Thus, 0x12 is 18 (1 times 16 plus
2).

I/O
Abbr eviation for “input/output,” the act of moving data into and/or out of a
running program.

Input Record
A single chunk of data that is read in by awk. Usually, an awk input record
consists of one line of text. (See the section “How Input Is Split into Records”
in Chapter 3.)

Integer
A whole number, i.e., a number that does not have a fractional part.

Inter nationalization
The process of writing or modifying a program so that it can use multiple lan-
guages without requiring further source code changes.

Glossar y 397

9 October 2001 01:44

398 Glossary

Interpr eter
A program that reads human-readable source code directly, and uses the
instructions in it to process data and produce results. awk is typically (but not
always) implemented as an interpreter. See also “Compiler.”

Interval Expression
A component of a regular expression that lets you specify repeated matches of
some part of the regexp. Interval expressions were not traditionally available
in awk pr ograms.

ISO
The International Standards Organization. This organization produces interna-
tional standards for many things, including programming languages, such as C
and C++. In the computer arena, important standards like those for C, C++,
and POSIX become both American national and ISO international standards
simultaneously. This book refers to Standard C as “ISO C” throughout.

Keywor d
In the awk language, a keyword is a word that has special meaning. Keywords
ar e reserved and may not be used as variable names.

gawk ’s keywords are: BEGIN, END, if, else, while, do...while, for, for...in,
break, continue, delete, next, nextfile, function, func, and exit.

Lesser General Public License (LGPL)
This document describes the terms under which binary library archives or
shar ed objects, and whether their source code may be distributed.

Linux
See “GNU/Linux.”

Localization
The process of providing the data necessary for an internationalized program
to work in a particular language.

Logical Expression
An expression using the operators for logic, AND, OR, and NOT, written &&,
||, and ! in awk. Often called Boolean expressions, after the mathematician
who pioneered this kind of mathematical logic.

Lvalue
An expression that can appear on the left side of an assignment operator. In
most languages, lvalues can be variables or array elements. In awk, a field
designator can also be used as an lvalue.

Matching
The act of testing a string against a regular expression. If the regexp describes
the contents of the string, it is said to match it.

9 October 2001 01:44

Metacharacters
Characters used within a regexp that do not stand for themselves. Instead,
they denote regular expression operations, such as repetition, grouping, or
alter nation.

Null String
A string with no characters in it. It is repr esented explicitly in awk pr ograms
by placing two double quote characters next to each other (""). It can appear
in input data by having two successive occurrences of the field separator
appear next to each other.

Number
A numeric-valued data object. Modern awk implementations use double-
pr ecision floating-point to repr esent numbers. Very old awk implementations
use single-precision floating-point.

Octal
Base-8 notation, in which the digits are 0–7. Octal numbers are written in C
using a leading 0, to indicate their base. Thus, 013 is 11 (1 times 8 plus 3).

P1003.2
See “POSIX.”

Patter n
Patter ns tell awk which input records are inter esting to which rules.

A patter n is an arbitrary conditional expression against which input is tested. If
the condition is satisfied, the pattern is said to match the input record. A typi-
cal pattern might compare the input record against a regular expression. (See
the section “Pattern Elements” in Chapter 6.)

POSIX
The name for a series of standards that specify a Portable Operating System
inter face. The “IX” denotes the Unix heritage of these standards. The main
standard of interest for awk users is IEEE Standard for Information Technol-
ogy, Standard 1003.2-1992, Portable Operating System Interface (POSIX) Part
2: Shell and Utilities. Infor mally, this standard is often referr ed to as simply
“P1003.2.”

Pr ecedence
The order in which operations are per formed when operators are used with-
out explicit parentheses.

Private
Variables and/or functions that are meant for use exclusively by library func-
tions and not for the main awk pr ogram. Special care must be taken when
naming such variables and functions. (See the section “Naming Library Func-
tion Global Variables” in Chapter 12, A Library of awk Functions.)

Glossar y 399

9 October 2001 01:44

400 Glossary

Range (of input lines)
A sequence of consecutive lines from the input file(s). A pattern can specify
ranges of input lines for awk to process or it can specify single lines. (See the
section “Pattern Elements” in Chapter 6.)

Recursion
When a function calls itself, either directly or indirectly. If this isn’t clear, refer
to the entry for “redir ection.”

Redir ection
Redir ection means perfor ming input from something other than the standard
input stream, or perfor ming output to something other than the standard out-
put stream.

You can redir ect the output of the print and printf statements to a file or a
system command, using the >, >>, |, and |& operators. You can redir ect input
to the getline statement using the <, |, and |& operators. (See the section
“Redir ecting Output of print and printf ” in Chapter 4, and the section “Explicit
Input with getline” in Chapter 3.)

Regexp
Short for regular expression. A regexp is a pattern that denotes a set of strings,
possibly an infinite set. For example, the regexp R.*xp matches any string
starting with the letter R and ending with the letters xp. In awk, regexps are
used in patterns and in conditional expressions. Regexps may contain escape
sequences. (See Chapter 2.)

Regular Expression
See “Regexp.”

Regular Expression Constant
A regular expression constant is a regular expression written within slashes,
such as /foo/. This regular expression is chosen when you write the awk pr o-
gram and cannot be changed during its execution. (See the section “How to
Use Regular Expressions” in Chapter 2.)

Rule
A segment of an awk pr ogram that specifies how to process single-input
records. A rule consists of a patter n and an action. awk reads an input record;
then, for each rule, if the input record satisfies the rule’s pattern, awk executes
the rule’s action. Otherwise, the rule does nothing for that input record.

Rvalue
A value that can appear on the right side of an assignment operator. In awk,
essentially every expression has a value. These values are rvalues.

9 October 2001 01:44

Scalar
A single value, be it a number or a string. Regular variables are scalars; arrays
and functions are not.

Sear ch Path
In gawk, a list of directories to search for awk pr ogram source files. In the
shell, a list of directories to search for executable programs.

Seed
The initial value, or starting point, for a sequence of random numbers.

sed
See “Stream Editor.”

Shell
The command interpreter for Unix and POSIX-compliant systems. The shell
works both interactively, and as a programming language for batch files or
shell scripts.

Short-Cir cuit
The nature of the awk logical operators && and ||. If the value of the entire
expr ession is determinable from evaluating just the lefthand side of these
operators, the righthand side is not evaluated. (See the section “Boolean
Expr essions” in Chapter 5.)

Side Effect
A side effect occurs when an expression has an effect aside from merely pro-
ducing a value. Assignment expressions, increment and decrement expres-
sions, and function calls have side effects. (See the section “Assignment
Expr essions” in Chapter 5.)

Single-Pr ecision
An internal repr esentation of numbers that can have fractional parts. Single-
pr ecision numbers keep track of fewer digits than do double-precision num-
bers, but operations on them are sometimes less expensive in terms of CPU
time. This is the type used by some very old versions of awk to store numeric
values. It is the C type float.

Space
The character generated by hitting the space bar on the keyboard.

Special File
A filename interpreted internally by gawk, instead of being handed directly to
the underlying operating system—for example, /dev/stderr. (See the section
“Special Filenames in gawk” in Chapter 4.)

Glossar y 401

9 October 2001 01:44

402 Glossary

Str eam Editor
A program that reads records from an input stream and processes them one or
mor e at a time. This is in contrast with batch programs, which may expect to
read their input files in entirety before starting to do anything, as well as with
interactive programs that requir e input from the user.

String
A datum consisting of a sequence of characters, such as I am a string. Con-
stant strings are written with double quotes in the awk language and may con-
tain escape sequences. (See the section “Escape Sequences” in Chapter 2.)

Tab
The character generated by hitting the Tab key on the keyboard. It usually
expands to up to eight spaces upon output.

Text Domain
A unique name that identifies an application. Used for grouping messages that
ar e translated at runtime into the local language.

Timestamp
A value in the “seconds since the epoch” format used by Unix and POSIX sys-
tems. Used for the gawk functions mktime, strftime, and systime. See also
“Epoch” and “UTC.”

Unix
A computer operating system originally developed in the early 1970s at AT&T
Bell Laboratories. It initially became popular in universities around the world
and later moved into commercial environments as a software-development
system and network-server system. There are many commercial versions of
Unix, as well as several work-alike systems whose source code is freely avail-
able (such as GNU/Linux, NetBSD, FreeBSD, and OpenBSD).

UTC
The accepted abbreviation for “Universal Coordinated Time.” This is standard
time in Greenwich, England, which is used as a refer ence time for day and
date calculations. See also “Epoch” and “GMT.”

Whitespace
A sequence of space, tab, or newline characters occurring inside an input
record or a string.

9 October 2001 01:44

Index

Symbols
& (ampersand)

&& operator, 98, 102
gsub/gensub/sub functions and, 153

< (left angle bracket)
< operator, 95, 102
< operator (I/O), 53
<= operator, 95, 102

> (right angle bracket)
> operator, 95, 102
> operator (I/O), 68
>> operator (I/O), 68, 102
>= operator, 95, 102

* (asterisk)
* operator

as multiplication operator, 101
null strings, matching, 155
as regexp operator, 24

** operator, 86, 101, 198
**= operator, 90, 102, 198
*= operator, 90, 102

\ (backslash), 5, 7-8, 23
\< operator (gawk), 28
\> operator (gawk), 28
\‘ operator (gawk), 28
\’ operator (gawk), 28
\/ escape sequence, 22
\" escape sequence, 22
\a escape sequence, 21
\b escape sequence, 21
\B operator (gawk), 28
in character lists, 26

We’d like to hear your suggestions for improving our indexes. Send email to index@or eilly.com.

continuing lines and, 15, 247
comments and, 16
in csh, 14, 16

in escape sequences, 21-22
POSIX and, 22

\f escape sequence, 21
as field separators, 44
gsub/gensub/sub functions and, 153
\n escape sequence, 21
\nnn escape sequence, 21
\r escape sequence, 21
regexp constants, 31
\t escape sequence, 21
\v escape sequence, 21
\W operator (gawk), 28
\w operator (gawk), 28
\x escape sequence, 21
\y operator (gawk), 28

! (exclamation point)
! operator, 98, 101, 246
!= operator, 95, 102
!˜ operator, 20, 30-31, 80, 95-96, 102, 104

| (vertical bar), 24
| operator (I/O), 54, 68, 102
|& operator (I/O), 56, 69, 102, 187, 287

pipes, closing, 77
two-way communications, 189

|| operator, 98, 102
{} (braces)

actions and, 110
pgawk program, 192

403

9 October 2001 01:45

404 Index

{ } (braces) (continued)
statements, grouping, 111

[] (squar e brackets), 24
ˆ (car et), 23, 28

ˆ operator, 101, 198
ˆ= operator, 90, 102, 198
in character lists, 26

, (comma), in range patterns, 106
- (hyphen)

- operator, 90
- operator, 92, 101-102
-- (decr ement/incr ement) operator, 101
-= operator, 102
in character lists, 26
filenames beginning with, 196

$ (dollar sign), 23
$ field operator, 37, 101
incr ementing fields and arrays, 92

. (period), 23
= (equals sign)

= operator, 88
== operator, 95, 102

(number sign)
#! (executable scripts), 6

portability issues with, 6
commenting, 6

() (par entheses), 24
pgawk program, 192

% (percent sign)
% operator, 101
%= operator, 90, 102

+ (plus sign), 25
+ operator, 92, 101-102
+= operator, 90, 102
++ operator, 101
decr ement/incr ement operators, 92

; (semicolon), 16
AWKPATH variable and, 345
separating statements in actions, 110-111

/ (forward slash), 19
/ operator, 101
/= operator, 90, 102

vs. /= . . . / regexp constant, 91
patter ns and, 104

˜ (tilde)
˜ operator, 20, 30-31, 80, 95-96, 102, 104

_ (underscor e)
_ C macr o, 176, 178
in names of private variables, 208

" (double quote), 5, 8
regexp constants, 31

' (single quote), 4, 6-9
vs. apostrophe, 7
with double quotes, 9

? (question mark), 25, 28
?: operator, 102

A
account information, 228, 232
actions, 110

contr ol statements in, 111-119
default, 11
empty, 11

adding
featur es to gawk, 351-353
fields, 40
functions to gawk, 354-364

advanced features
buf fering, 157
close function, 76
constants, values of, 80
datafiles as single record, 36
fixed-width data, 46
FNR/NR variables, 126
gawk, 185-193

BSD portals, 189
network programming, 188
nondecimal input data, 185
pr ocesses, communicating with, 186

network connections, 185, 288
(see also networks, connections)

null strings, matching, 155
operators, precedence, 93
piping into sh, 70
regexp constants, 91

alar m clock example program, 260-262
alar m.awk pr ogram, 260
algorithms, 369
Alpha (DEC), xxi
ampersand (&)

&& operator, 98, 102
gsub/gensub/sub functions and, 153

and function, 164
AND operation, 164-166
and operator, 97
Apache server, 313

PUT method and, 319
ARGC/ARGV variables, 123, 127

command-line arguments, 200
portability and, 6

ARGIND variable, 123
command-line arguments, 200

arguments
command-line, 123, 127, 200

invoking awk, 194
in function calls, 99

9 October 2001 01:45

arguments (continued)
pr ocessing, 222
retrieving, 357

arithmetic operators, 85
arrays, 129-141

associative, 130
clearing, 356
library functions and, 209

elements
assigning, 133
deleting, 135
installing, 356
order of, 135
refer encing, 132
retrieving number of, 145

for statement and, 134
IGNORECASE variable and, 131
indexing, 130-132
merging into strings, 216
multidimensional, 138

scanning, 139
names of, 129
as parameters to functions, 171
scanning, 134
sorting, 140

IGNORECASE variable and, 141
sparse, 131
subscripts, 136

uninitialized variables as, 137
artificial intelligence, gawk and, 339
ASCII, 215
asort function (gawk), 145

arrays, sorting, 140
assert function

C library, 211-213
user-defined, 212

assertions, 211-213
--assign option, 195
assignment operators, 88-91

evaluation order, 90
lvalues/rvalues, 89

assignments as filenames, 221
assoc_clear/assoc_lookup internal

functions, 356
associative arrays, 130
asterisk (*)

* operator
as multiplication operator, 101
null strings, matching, 155
as regexp operator, 24

** operator, 86, 101, 198
**= operator, 90, 102, 198
*= operator, 90, 102

atan2 function, 144

awk, xv
function of, 3
gawk and, xv, xviii
history of, xvi
implementation issues

pipes, 70
implementations, 348-349

limits, 56
invoking, 194
new vs. old, xvii

OFMT variable, 85
POSIX and, xv

(see also POSIX)
regexp constants and, 96
ter ms describing, xvii
uses for, xv, 3, 17
versions of, xvii, 327-330

changes between SVR4 and POSIX
awk, 329

changes between V7 and
SVR3.1, 327-328

(see also Bell Laboratories awk)
(see also gawk)

awk programs, 3, 6, 13
complex, 18
documenting, 6, 208
examples of, 237-280
execution of, 117
inter nationalizing, 166, 177-182
lengthy, 5

assertions, 211
location of, 195
one-line examples, 11
pr ofiling, 190-193

enabling, 198
running, 4-5

without input files, 4
fr om shell scripts, 4

shell variables in, 109
awka compiler, 349
awk.h file (internal), 355
AWKNUM type, 355
AWKPATH envir onment variable, 201, 345
awkpr of.out file, 190
awksed.awk program, 273
awkvars.out file, 196

B
backslash (\), 5, 7-8, 23

\< operator (gawk), 28
\> operator (gawk), 28
\‘ operator (gawk), 28

Index 405

9 October 2001 01:45

406 Index

backslash (\) (continued)
\’ operator (gawk), 28
\/ escape sequence, 22
\" escape sequence, 22
\B operator (gawk), 28
in character lists, 26
continuing lines and, 15, 247

comments and, 16
in csh, 14, 16

in escape sequences, 21-22
POSIX and, 22

as field separators, 44
gsub/gensub/sub functions and, 153
\n escape sequence, 21
\nnn escape sequence, 21
\r escape sequence, 21
regexp constants, 31
\t escape sequence, 21
\v escape sequence, 21
\w operator (gawk), 28
\W operator (gawk), 28
\x escape sequence, 21
\y operator (gawk), 28

BBS-list file, 10
BEGIN pattern, 34, 42, 107-109

assert user-defined function and, 213
Boolean patterns and, 105
exit statement and, 119
getline and, 57
headings, adding, 60
next/nextfile statements and, 108, 117
OFS/ORS variables, assigning values

to, 61
operators and, 107
pgawk program, 191
print statement and, 108
pwcat program, 230
running awk programs and, 239
TEXTDOMAIN variable and, 178

beginfile user-defined function, 220
Bell Laboratories awk extensions, 330
binary input/output, 120
bindtextdomain function

C library, 175, 178
gawk, 166
portability and, 181

BINMODE variable, 120, 345
bits2str user-defined function, 165
bitwise

complement, 164
operations, 164-166
shift, 164

body
in actions, 111
in loops, 112

Boolean expressions, 97-98
as patterns, 105

Boolean operators (see Boolean
expr essions)

Bour ne shell
backslash continuation and, 16
quoting rules for, 7

braces ({})
actions and, 110
pgawk program, 192
statements, grouping, 111

bracket expressions (see character lists)
br eak statement, 115
BSD portals, 189
buf fering

input/output, 157, 187
interactive vs. noninteractive, 157

buf fers
flushing, 156-157
operators for, 28

built-in functions, 142-166
evaluation order, 143

built-in variables, 120-123
conveying information, 123-126
user-modifiable, 120-123
-v option, setting with, 195

C
C shell, backslash continuation and, 16
call by refer ence, 171
call by value, 170
car et (ˆ), 23, 28

ˆ operator, 101, 198
ˆ= operator, 90, 102, 198
in character lists, 26

case sensitivity
array indices and, 131
converting case, 152
example programs, 208
gawk, 30
regexps and, 29-30, 121
string comparisons and, 121

CGI (Common Gateway Interface)
dynamic web pages and, 293
files, 313
library, 298-301

character encodings, 215
character lists, 24, 26-28

character classes, 26

9 October 2001 01:45

character lists (continued)
collating elements, 27
complemented, 24
non-ASCII, 27
range expressions, 26

character sets, 24, 215
(see also character lists)

characters
counting, 256-259
transliterating, 262-264
values of as numbers, 214

chdir function, implementing in
gawk, 358-364

chr function, 215
Clif f random numbers, 214
clif f_rand user-defined function, 214
close function, 54-55, 74, 155

retur n values, 76
two-way pipes and, 187

collating elements, 27
columns

aligning, 60
cutting, 238-243

comma (,), in range patterns, 106
command line

arguments, 123, 127, 200
for mats, 4
FS on, setting, 44
invoking awk from, 194
options, 5, 44, 195-200

end of, 196
variables, assigning on, 83

command-line options
pr ocessing, 222-227
string extraction, 179

commenting, 6
backslash continuation and, 16

Common Gateway Interface (see CGI)
comparison expressions, 94-97

as patterns, 104
string vs. regexp, 96

--compat option (gawk), 196
compatibility mode (gawk)

extensions, 331-335
filenames, 73
hexadecimal numbers, 80
octal numbers, 80
specifying, 196

compiled programs, 367
compl function (gawk), 164
comp.lang.awk newsgroup, 347
complement, bitwise, 164

compound statements, control statements
and, 111

concatenating, 87
conditional expressions, 99
configuration options, gawk, 342
constants

nondecimal, 185
types of, 79-80

continue statement, 116
contr ol statements, 111-119
converting

case, 152
dates to timestamps, 160
during subscripting, 137
numbers, 84

to strings, 166
strings to numbers, 84

CONVFMT variable, 84, 120
array subscripts and, 136

copr ocesses, 69, 187
closing, 74-77
getline from, 56

--copyleft option, 196
--copyright option, 196
cos function, 144
counting, 256-259
csh utility, 16

backslash continuation and, 14
copr ocesses and, 187
POSIXLY_CORRECT environment

variable, 200
curr ency symbols, localization, 176
custom.h file, 343
cut utility, 238-243
cut.awk program, 239

D
dark corner, xxi, 44, 65, 93

array subscripts, 138
br eak statement, 115
close function, 76
command-line arguments, 84
continue statement, 116
CONVFMT variable, 85
escape sequences, 201

for metacharacters, 22
exit statement, 119
field separators, 46
FILENAME variable, 57, 124
FNR/NR variables, 126
for mat-control characters, 64
input files, 35

Index 407

9 October 2001 01:45

408 Index

dark corner (continued)
invoking awk, 194
multiline records, 49
NF variable, decrementing, 41
OFMT variable, 62
RAW protocol, 286
regexp constants, 81

/= operator and, 91
as arguments to user-defined

functions, 82
split function, 148
strings, storing, 36

dash (see hyphen)
data, fixed-width, 46
database

gr oup, reading, 232-236
users, reading, 228-232

data-driven languages, 369
date utility

GNU, 159
POSIX, 163

dates
converting to timestamps, 160
infor mation related to, localization, 177

d.c. (see dark corner)
dcgettext function (gawk), 166, 177

portability and, 181
deadlocks, 187
debugging gawk, 203

bug reports, 346-347
decr ement operators, 92-93
delete statement, 135
deleting elements in arrays, 135
/dev/. . . special files (gawk), 71
dif ferences in awk and gawk

ARGC/ARGV variables, 128
ARGIND variable, 123
array elements, deleting, 136
asort function, 146
asort function (gawk), 145
AWKPATH envir onment variable, 201
BEGIN/END patterns, 108
BINMODE variable, 120, 345
close function, 75-76
ERRNO variable, 124
err or messages, 71
FIELDWIDTHS variable, 120
function arguments (gawk), 143
gensub function (gawk), 152
getline command, 51
IGNORECASE variable, 121
implementation limitations, 56, 70
input/output operators, 56, 69
line continuations, 99

LINT variable, 121
match function, 147
next/nextfile statements, 117
print/printf statements, 64
PROCINFO variable, 125
record separators, 35
regexp constants, 82
regular expressions, 30
RS/R T variables, 36
RT variable, 126
single-character fields, 43
split function, 148
strings, 79

storing, 36
strtonum function (gawk), 149
TEXTDOMAIN variable, 123
trunc-mod operation, 86

dir ectories
changing, 358-364
searching, 201, 280

--disable-nls configuration option, 342
division, 86
do statement, 20
documentation

of awk programs, 208
GNU FDL, 382-389
GPL, 374-381
online, xxi

documents, searching, 259
dollar sign ($), 23

$ field operator, 37, 101
incr ementing fields and arrays, 92

double quote ("), 5, 8
regexp constants, 31

double-pr ecision floating-point, 370
do-while statement, 113
--dump-variables option, 196, 209
dupnode internal function, 356
dupword.awk program, 259

E
EBCDIC, 215
egr ep utility, 26, 243
egr ep.awk pr ogram, 244
elements in arrays, 132

assigning, 133
deleting, 135
order of, 135
scanning, 134

ELIZA program, 302, 305
email, 292

9 October 2001 01:45

embedded systems, remote configuration
of, 308-310

empty pattern, 109
empty programs, invoking awk with, 194
empty strings (see null strings)
--enable-portals configuration option, 342
--enable-portals option, 189
END pattern, 107-109

assert user-defined function and, 212
backslash continuation and, 247
Boolean patterns and, 105
exit statement and, 119
next/nextfile statements and, 108, 117
operators and, 107
pgawk program, 191
print statement and, 108

endfile user-defined function, 220
endgr ent user-defined function, 236
endpwent user-defined function, 232
ENVIRON variable, 124
envir onment variables, 124
equals sign (=)

= operator, 88
== operator, 95, 102

equivalence classes, 27
EREs (Extended Regular Expressions), 26
ERRNO variable, 51, 124, 357
err or handling, 71

ERRNO variable and, 124
err or output, 71
escape processing, gsub/gensub/sub

functions, 153
escape sequences, 21

unr ecognized, 198
evaluation order, 93

concatenation, 87
functions, 143

exclamation point (!)
! operator, 98, 101, 246
!= operator, 95, 102
!˜ operator, 20, 30-31, 95-96, 102, 104

exit statement, 119
exp function, 143
expand utility, 12
expr essions, 78-102

assignment, 88-91
Boolean, 97-98
comparison, 94-97
conditional, 99
matching (see comparison expressions)
as patterns, 104
selecting, 99

Extended Regular Expressions (EREs), 26
extension function, 364

extensions
Bell Laboratories awk, 330
in gawk, not in POSIX awk, 331-335
mawk, 349

extract.awk program, 270

F
-F option, 44, 195

-Ft sets FS to tab, 199
tr oubleshooting, 203

-f option, 5, 195
on command line, 199

false, logical, 93
FDL (Free Documentation License), 382-389
featur es

adding to gawk, 351-353
advanced (see advanced features)
depr ecated, 202

fflush function, unsupported, 198
field numbers, 38
field operators, dollar sign as, 37
field separators, 40-46, 121-122

choice of, 42
on command line, 44
FIELDWIDTHS variable and, 120
in multiline records, 49
POSIX and, 36, 46
regular expressions as, 42-43
spaces as, 240
(see also OFS)

fields, 33, 369
adding, 40
changing contents of, 39-41
cutting, 238-243
examining, 36-38
number of, 37
numbers, 38
printing, 59
separating, 41-46

(see also field separators)
single-character, 43

--field-separator option, 195
FIELDWIDTHS variable, 47, 120
file descriptors, 71
--file option, 195
FILENAME variable, 33, 124

getline, setting with, 57
filenames

assignments as, 221
in compatibility mode, 73
distinguishing, 124
for network access, 282-284

Index 409

9 October 2001 01:45

410 Index

filenames (continued)
standard streams in gawk, 71

files
awk programs in, 5
awkpr of.out, 190
awkvars.out, 196
CGI, 313
closing, 155
descriptors (see file descriptors)
/dev/. . . special files, 71
gr oup, 232
/inet/ (gawk), 188, 282
/inet/raw (gawk), 286
/inet/tcp (gawk), 285
/inet/udp (gawk), 285
infor mation about, retrieving, 358-364
initialization and cleanup, 219
input (see input files)
log, timestamps in, 158-163
managing, 218-222

datafile boundaries, 219
message object, 175

converting from portable object
files, 183

specifying directory of, 175, 178
.mo, 175

converting from .po, 183
specifying directory of, 175, 178

multiple passes over, 201
multiple, duplicating output into, 251
output (see output files)
/p, 189
password, 228
.po, 175, 179

converting to .mo, 183
portable object, 175, 179

converting to message object files, 183
generating, 197

portal, 189
for process information, 72
pr ocessing, ARGIND variable and, 123
reading, 220

multiline records, 48-51
searching for regular

expr essions, 243-247
as single records, 36
skipping, 221
source, search path for, 280
splitting, 249-251
Texinfo, extracting programs

fr om, 269-272
finger utility, 290
fixed-width data, 46
flag variables, 98, 251

floating-point, 372
numbers, 369

AWKNUM internal type, 355
FNR variable, 33, 124

changing, 126
for statement, 113

in arrays, 134
force_number internal function, 355
force_string internal function, 355
for mat specifiers

mixing regular with positional
specifiers, 180

printf statement, 63
str ftime function (gawk), 160

for mat strings, 62
for mats, numeric output, 61
for matting output, 62
forward slash (/), 19

/ operator, 101
/= operator, 90, 102

vs. /= . . . / regexp constant, 91
patter ns and, 104

Fr ee Documentation License (FDL), 382-389
Fr ee Softwar e Foundation (FSF), xxi, 337
fr ee_temp macr o, 356
FS variable, 41, 121

changing value of, 41, 203
--field-separator option and, 195
as null string, 44
running awk programs and, 239
setting from command line, 44
as tab character, 198

FSF (Free Software Foundation), xxi, 337
function calls, 99
functions, 17

arrays as parameters to, 171
built-in, 99, 142-166

adding to gawk, 354-364
evaluation order, 143

defining, 167-170
library, 207-236

assertions, 211-213
associative arrays and, 209
C library, 222-236
character values as numbers, 214
Clif f random numbers, 214
command-line options, 222-227
example program for using, 274-280
gr oup database, reading, 232-236
managing datafiles, 218-222
managing time, 217
merging arrays into strings, 216
nextfile statement, 210-211

9 October 2001 01:45

functions, library (continued)
rounding numbers, 213
user database, reading, 228-232

names of, 129, 167
recursive, 168
retur n values, setting, 357
string-translation, 166
undefined, 171
user-defined, 166-173

calling, 170-172
counts, 192
library of, 207-236
next/nextfile statements and, 117-118

G
gawk, xv

awk and, xv, xviii
bitwise operations in, 164
br eak statement in, 115
built-in variables and, 120
character classes and, 28
coding style in, 351
command-line options, 29
comparison operators and, 95
configuring, 343

options, 342
continue statement in, 116
debugging, 203
distribution, 338-341
escape sequences, 22
extensions, disabling, 198
featur es

adding, 351-353
advanced, 185-193

fflush function in, 156
field separators and, 121
FIELDWIDTHS variable in, 120
filenames in, 70-74
for mat-control characters, 64
function arguments and, 143
functions, adding, 354-364
hexadecimal numbers and, 80
IGNORECASE variable in, 121
implementation issues, 350-366

debugging, 350
downward compatibility, 350
limits, 56
pipes, 70

installing, 337-349
inter nal expr essions and, 25
inter nals, 355-358

inter nationalization and (see
inter nationalization)

interpr eter, adding code to, 363, 366
line continuation in, 99
LINT variable in, 121
MS-DOS version of, 345
networking, 281-306

connections, 283, 287-289
filenames, 282-284
resources about, 323
service, establishing, 290
tr oubleshooting, 305
(see also email)

newlines in, 15
nextfile statement in, 118, 210
octal numbers and, 80
OS/2 version of, 345
regexp constants and, 81
regular expressions

case sensitivity, 30
operators, 28-29
pr ecedence, 25

source code, obtaining, 337
splitting fields and, 48
string-translation functions, 166
timestamps, 158-163
uses for, xv
versions of

changes between SVR3.1 and
SVR4, 328

infor mation about, printing, 199
web and (see web service)
word-boundary operator, 28
(see also awk)

General Public License (see GPL)
--gen-po option, 179, 197
gensub function (gawk), 82

escape processing, 153
get_argument internal function, 357
getgr ent function

C library, 232, 236
user-defined, 232, 236

getgrgid function
C library, 236
user-defined, 236

getgr nam function
C library, 235
user-defined, 235

getgruser function
C library, 236
user-defined, 236

getline command, 33, 287
copr ocesses, using from, 56, 74

Index 411

9 October 2001 01:45

412 Index

getline command (continued)
deadlock and, 187
explicit input with, 51-57
FILENAME variable, 57
_gr_init user-defined function, 234
_ pw_init function, 230
retur n values, 51
variants, 57

getopt function
C library, 222, 225
user-defined, 222, 225

getpwent function
C library, 228, 231
user-defined, 228, 231

getpwnam function
C library, 231
user-defined, 231

getpwuid function
C library, 231
user-defined, 231

getservbyname function (C library), 189
gettext function (C library), 176
gettext library, 175-177

locale categories, 176
gettimeofday user-defined function, 217
GETURL program, 307
GIF image format, 293

generating, 313-318
GNITS mailing list, xxiii
GNU awk (see gawk)
GNU long options, 194-196

printing list of, 197
GNU Project, xxi
GNU/Linux, xxi
GNUPlot utility, 298, 313-318
GPL (General Public License), xxi, 374-381

printing, 196
grcat program, 232
_gr_init user-defined function, 234
gr oup database, reading, 232-236
gr oup file, 232
gr oups, infor mation about, 232
gsub function, 82, 150

arguments of, 150
escape processing, 153

H
--help option, 197
hexadecimal

numbers, 79
values

enabling interpretation of, 197
POSIX and, 21

histsort.awk program, 268
hostname field, 283
HTML (Hypertext Markup Language), 293
HTTP (Hypertext Transfer Protocol), 293

embedded systems, configuring, 308-310
record separators and, 293

HTTP server, cor e logic, 295
HUP signal, 193
hyperlinks

extracting, 312
for gawk networking, 323

Hypertext Markup Language (HTML), 293
Hypertext Transfer Protocol (see HTTP)
hyphen (-)

- operator, 90, 92, 101-102
-- (decr ement/incr ement) operators, 101
-= operator, 102
in character lists, 26
filenames beginning with, 196

I
id utility, 247
id.awk program, 247
if statement, 20

actions, changing, 106
if-else statement, 111
igawk.sh program, 276
IGNORECASE variable, 30, 121

array sorting and, 141
array subscripts and, 131
in example programs, 208

images
generating, 313-318
retrieving over networks, 293
in web pages, 298

implementation issues, gawk, 350-366
debugging, 350
limits, 56, 70

in operator, 95, 102, 249
arrays and, 132, 134

incr ement operators, 92-93
index function, 146
indexing arrays, 130-132
/inet/ files (gawk), 188, 282
/inet/raw files (gawk), 286
/inet/tcp files (gawk), 285
/inet/udp files (gawk), 285
initialization, automatic, 14
input

data, nondecimal, 185
explicit, 51-57
files (see input files)

9 October 2001 01:45

input (continued)
multiline records, 48-51
redir ection, 53
splitting into records, 33-36
standard, 4, 71

input files, 33
closing, 74-77
counting elements in, 256-259
examples, 10
reading, 33-57
running awk without, 4
skipping, 210
variable assignments and, 200

input pipeline, 54
input/output

fr om BEGIN and END, 108
binary, 120
two-way, 187, 282

(see also gawk, networking)
installing gawk, 337-349
int function, 143
integers, 369

unsigned, 370
interacting with other programs, 156
inter nationalization, 166, 174

localization, 123, 174-184
character classes, 27
gawk and, 174
locale categories, 176
marked strings, 177
portability and, 181

Inter net (see networks)
interpr eted pr ograms, 367
interval expressions, 25
inventory-shipped file, 10

J
join user-defined function, 216

K
kill command, dynamic profiling, 193

L
labels.awk program, 265
languages, data-driven, 369
LC_ALL locale category, 177
LC_COLLATE locale category, 176
LC_CTYPE locale category, 176
LC_MESSAGES locale category, 176

bindtextdomain function (gawk), 178
LC_MONETARY locale category, 176
LC_NUMERIC locale category, 177

LC_RESPONSE locale category, 177
LC_TIME locale category, 177
left angle bracket (<)

< operator, 95, 102
< operator (I/O), 53
<= operator, 95, 102

left shift, bitwise, 164
leftmost longest match, 49
length function, 146
libraries of awk functions, 207-236

assertions, 211-213
associative arrays and, 209
character values as numbers, 214
command-line options, 222-227
example program for using, 274-280
gr oup database, reading, 232-236
managing

datafiles, 218-222
time, 217

merging arrays into strings, 216
nextfile statement, 210-211
rounding numbers, 213
user database, reading, 228-232

line breaks, 15
line continuations, 98

with C shell, 14, 16
gawk, 99
in print statement, 60

lines
blank, printing, 59
counting, 256-259
duplicate, removing, 268-269
matching ranges of, 106
skipping between markers, 106

lint checking, 121
array elements, 135
array subscripts, 138
invoking awk with empty programs, 194
issuing warnings, 197
POSIXLY_CORRECT environment

variable, 200
undefined functions, 172

--lint option, 194, 197
LINT variable, 121
--lint-old option, 197
locale categories, 176
localization (see internationalization,

localization)
localport field, 282
log files, timestamps in, 158-163
log function, 144
logical false/true, 93
logical operators (see Boolean expressions)

Index 413

9 October 2001 01:45

414 Index

login information, 228
long options, 194
loops, 112

continue statements and, 114
count for header, 192
exiting, 115
(see also while statement)

ls utility, 14
lshift function (gawk), 165
lvalues/rvalues, 89

M
mailing labels, printing, 264-266
mailing list, GNITS, xxiii
make function, 357
make_number internal function, 356
make_string internal function, 356
mark parity, 215
marked strings, extracting, 179
match function, 147

RLENGTH/RSTAR T variables, 147
matching

expr essions (see comparison
expr essions)

leftmost longest, 49
null strings, 155

mawk program, 348
memory

releasing, 356
setting limits, 195

message object files, 175
converting from portable object files, 183
specifying directory of, 175, 178

metacharacters, escape sequences for, 22
-mf/-mr options, 195
Micr osoft Windows, networking, 289

ports, 291
MiniSQL, 310
minus sign (see hyphen)
mktime function (gawk), 159
.mo files, 175

converting from .po, 183
specifying directory of, 175, 178

MOBAGWHO program, 318-323
mobile agents, 318-323
modifiers, in format specifiers, 64
monetary information, localization, 176
msgfmt utility, 183

N
names

arrays/variables, 129, 208
functions, 167, 208

namespace issues, 129, 208
functions, 167

nawk utility, xvii
negative zero, 372
networks, 306

gawk and, 281-306
connections, 283, 287-289
filenames, 282-284
resources about, 323
service, establishing, 290
tr oubleshooting, 305
(see also email)

ports
reserved, 291
specifying, 283

pr ogramming, 188
support for, 73
(see also web pages)

newlines, 15, 98, 198
in dynamic regexps, 32
as field separators, 42
printing, 59
as record separators, 34
in regexp constants, 32
separating statements in actions, 110-111

next file statement, 334
depr ecated, 202

next statement, 98, 117
BEGIN/END patterns and, 108
user-defined functions and, 117

nextfile function, 210
nextfile statement, 117

BEGIN/END patterns and, 108
in gawk, 118
implementing, 210-211
next file statement and, 202
user-defined functions and, 118

NF variable, 37, 125
decr ementing, 41

noassign.awk program, 222
NODE internal type, 355
nodes, duplicating, 356
--non-decimal-data option, 185, 197

strtonum function and, 186
not operator, 97
NR variable, 33, 125

changing, 126
null strings, 35, 43, 93, 370

array elements and, 135

9 October 2001 01:45

null strings (continued)
as array subscripts, 138
converting numbers to strings, 84
matching, 155
quoting and, 9

number sign (#)
#! (executable scripts), 6

portability issues with, 6
commenting, 6

numbers, 356
as array subscripts, 136
Clif f random, 214
converting, 84

to strings, 120, 122, 166
floating-point, 369

AWKNUM internal type, 355
hexadecimal, 79
NODE internal type, 355
octal, 79
random, 144
rounding, 213
as values of characters, 214

numeric
constants, 79
output format, 61
strings, 94
values, 355

O
oawk utility, xvii
obsolete features, 202
octal numbers, 79
octal values, enabling interpretation of, 197
OFMT variable, 61, 85, 122

POSIX and, 62
OFS variable, 40, 60, 122
operating systems, 337

BSD-based, xxi, 189
PC, gawk on, 345-346

installing, 343
porting gawk to, 353
(see also GNU/Linux, PC operating

systems, Unix)
operations, bitwise, 164-166
operators

arithmetic, 85
assignment, 88-91

evaluation order, 90
Boolean (see Boolean expressions)
decr ement/incr ement, 92-93
GNU-specific, 28
input/output, 53, 56, 68-69, 102
logical (see Boolean expressions)

pr ecedence, 93, 101-102
relational (see operators, comparison)
short-circuit, 98
string, 87
string-matching, 20

for buffers, 28
word-boundary (gawk), 28

options
command-line, 5, 44, 195-200

end of, 196
invoking awk, 194
pr ocessing, 222-227

depr ecated, 202
long, 194-196
printing list of, 197

or function (gawk), 164
OR operation, 164-166
or operator, 97
ord user-defined function, 215
order of evaluation, concatenation, 87
ORS variable, 61, 122

HTTP and, 293
POP and, 292

output
buf fering, 156-157
duplicating into files, 251
files, closing, 74-77
for mat specifier, OFMT, 61
for matted, 62
pipes, 68
printing (see printing)
records, 61
redir ection, 68-70
standard, 71

output field separator (see OFS variable)
output record separator (see ORS variable)

P
/p files, 189
PANIC program, 306
param_cnt internal variable, 355
parameters, number of, 355
par entheses (), 24

pgawk program, 192
password file, 228
patter ns, 103-109

comparison expressions as, 104
counts, 192
default, 11
empty, 109
expr essions as, 104
ranges in, 106

Index 415

9 October 2001 01:45

416 Index

patter ns (continued)
regexp constants as, 105
types of, 103

PC operating systems, gawk on, 345-346
installing, 343

percent sign (%)
% operator, 101
%= operator, 90, 102

period (.), 23
Perl, gawk networking and, 281
pgawk program, 190-193

awkpr of.out file, 190
dynamic profiling, 193

pipes
closing, 74-77
input, 54
networking and, 287
output, 68

plus sign (+), 25
+ operator, 92, 101-102
+= operator, 90, 102
++ operator, 101
decr ement/incr ement operators, 92

PNG image format, 293
generating, 313-318

.po files, 175, 179
converting to .mo, 183

POP (Post Office Protocol), 292
portability, 22

** operator and, 86
**= operator and, 91
#! (executable scripts), 6
ARGV variable, 6
backslash continuation and, 15
backslash in escape sequences, 22
close function and, 75
datafiles as single record, 36
deleting array elements, 136
example programs, 207
fflush function and, 156
functions, defining, 168
gawk, 353
gettext library and, 175
inter nationalization and, 181
length function, 146
new awk vs. old awk, 85
next statement in user-defined

functions, 172
NF variable, decrementing, 41
operators, 93

not specified by POSIX, 102
POSIXLY_CORRECT environment

variable, 200
substr function, 152

portable object files, 175, 179
converting to message object files, 183
generating, 197

portal files, 189
positional specifiers, printf statement, 64,

179
mixing with regular formats, 180

positive zero, 372
POSIX, xviii

< operator and, 53
**= operator and, 91
| I/O operator and, 55
arithmetic operators and, 86
awk and, xv
backslashes in string constants, 22
BEGIN/END patterns, 108
br eak statement and, 115
changes in awk versions, 329
character lists and, 26

character classes, 26, 28
continue statement and, 116
CONVFMT variable and, 120
date utility and, 163
field separators and, 36, 46
FS variable and, 121
functions and

gsub/sub, 153
length, 146

gawk extensions not included in, 331-335
GNU long options and, 195
hexadecimal values in, 21
inter nal expr essions and, 25
next/nextfile statements and, 117
numeric strings and, 94
OFMT variable and, 62, 85
operators not specified by, 102
period (.), using, 24
pipes, closing, 76
printf format strings and, 66
pr ograms, implementing in awk, 238-259
regular expressions and, 25
timestamps and, 159

POSIX mode, 198, 200
--posix option, 198

--traditional option (gawk) and, 198
POSIXLY_CORRECT environment

variable, 200
Post Office Protocol (POP), 292
PostScript, generating files, 312-318
pr ecedence, 93, 101-102

regexp operators, 25
print statement, 58-60, 68

BEGIN/END patterns and, 108

9 October 2001 01:45

print statement (continued)
commas, omitting, 59
I/O operators in, 102
line continuations and, 60
OFMT variable and, 122
sprintf function and, 213
(see also redir ection, of output)

printf statement, 58, 62-68
columns, aligning, 60
for mat-control characters, 63
I/O operators in, 102
modifiers, 64-66
positional specifiers, 64, 179

mixing with regular formats, 180
sprintf function and, 213
syntax of, 62
(see also redir ection, of output)

printing, 58-77
list of options, 197
mailing labels, 264-266
unduplicated lines of text, 252-256
user information, 247

private variables, 208
pr ocess infor mation, files for, 72
pr ocesses, two-way communications

with, 186
pr ocessing data, 367
PROCINFO array, 73, 125, 228, 232
--pr ofile option, 190, 198
pr ofiling awk programs, 190-193

dynamically, 193
pr ofiling gawk (see pgawk program)
pr ogramming

basic steps, 368
concepts, 367-373

pr ogramming conventions
ARGC/ARGV variables, 123
exit statement, 119
function parameters, 172
functions

calling, 142
writing, 167

gawk internals, 361
nextfile statement, 210
--non-decimal-data option, 186
private variable names, 208

pr ogramming languages, data-driven vs.
pr ocedural, 3

pr otocol field, 282
pwcat program, 228
_ pw_init user-defined function, 229
Python, gawk networking and, 281

Q
question mark (?), 25, 28

?: operator, 102
quoting, 5, 7

rules for, 7
tricks for, 9

R
rand function, 144
random numbers

Clif f, 214
rand/srand functions, 144
seed of, 144

range expressions, 26
range patterns, 106
RAW protocol, 286
raw sockets, 188
readable datafiles, checking, 221
readable.awk program, 221
record separators, 34, 122

changing, 35
HTTP and, 293
with multiline records, 48
POP and, 292
regular expressions as, 35

records, 33, 369
multiline, 48-51
printing, 59
splitting input into, 33-36
ter minating, 35
tr eating files as, 36

recursive functions, 168
redir ection

of input, 53
of output, 68-70

refer ence counting, sorting arrays, 141
regexp (see regular expressions)
regexp constants, 20, 80-82, 97

/= . . . /
/= operator and, 91

in gawk, 81
as patterns, 105
slashes vs. quotes, 31
vs. string constants, 32

regular expressions, 19-32
anchors in, 23
case sensitivity, 29-30, 121
computed, 31-32
constants (see regexp constants)
dynamic, 31-32

with embedded newlines, 32
as field separators, 42-43

Index 417

9 October 2001 01:45

418 Index

regular expressions (continued)
gawk, command-line options, 29
interval expressions and, 198
leftmost longest match, 31
operators, 20, 23-26

for buffers, 28
gawk, 28-29
pr ecedence of, 25

as patterns, 19, 104
as record separators, 35
searching for, 243-247

--re-interval option, 198
relational operators (see comparison

operators)
REMCONF program, 308-310
remoteport field, 282
retur n statement, user-defined

functions, 172
retur n values, close function, 76
rewind user-defined function, 220
right angle bracket (>)

> operator, 95, 102
> operator (I/O), 68
>> operator (I/O), 68, 102
>= operator, 95, 102

right shift, bitwise, 164
RLENGTH variable, 126

match function and, 147
rounding numbers, 213
RS variable, 34, 122

HTTP and, 293
multiline records and, 48
POP and, 292

rshift function (gawk), 165
RSTAR T variable, 126

match function and, 147
RT variable, 35, 51, 126
rvalues/lvalues, 89

S
scalar values, 369
search paths, 345

for source files, 201, 280
searching, 146

files for regular expressions, 243-247
for words, 259

sed utility, 273, 276
field separators and, 46

semicolon (;), 16
AWKPATH variable and, 345
separating statements in actions, 110-111

separators
field, 121-122

FIELDWIDTHS variable and, 120
POSIX and, 36

record, 122
for records, 34-35

regular expressions as, 35
for statements in actions, 110
subscript, 122

servers, 290
Apache, 313
as hosts, 283
HTTP, 295
web, 301-305

set_value internal function, 357
shells

piping commands into, 70
quoting, 109

rules for, 7
scripts, 4
variables, 109

shift, bitwise, 164
short-circuit operators, 98
side effects, 87, 93

array indexing, 132
asort function, 141
assignment expressions, 88
Boolean operators, 97
conditional expressions, 99
decr ement/incr ement operators, 92
FILENAME variable, 57
function calls, 100
statements, 110

signals
HUP/SIGHUP, 193
USR1/SIGUSR1, 193

Simple Mail Transfer Protocol (SMTP), 292
sin function, 144
single quote ('), 4, 6-9

vs. apostrophe, 7
with double quotes, 9

single-character fields, 43
single-pr ecision floating-point, 370
sleep utility, 262
SMTP (Simple Mail Transfer Protocol), 292
sockets, 188
sort function

arrays, sorting, 140
copr ocesses and, 187

sort utility, 267
sorting characters in differ ent

languages, 176

9 October 2001 01:45

source code
awka, 349
Bell Laboratories awk, 348
gawk, 337
mawk, 348
mixing, 199

source files, search path for, 280
--source option, 199
SPAK utility, 286
sparse arrays, 131
split function, 148

array elements, deleting, 136
split utility, split.awk program, 249
sprintf function, 61, 149

OFMT variable and, 122
print/printf statements and, 213

squar e brackets ([]), 24
squar e root (sqrt) function, 143
srand function, 145
standard input, 4, 71
standard output, 71
stat function, implementing in

gawk, 358-364
statements

compound, control statements and, 111
contr ol, in actions, 111-119
multiple, 16

STATIST program, 313-318
stlen internal variable, 355
stptr internal variable, 355
str eam editors, 273, 276

field separators and, 46
str ftime function (gawk), 159-163
string constants, 79

vs. regexp constants, 32
string operators, 87
string-matching operators, 20
strings, 356

converting, 84
numbers to, 120, 122, 166

empty (see null strings)
extracting, 179
length of, 79
for localization, 177
merging arrays into, 216
NODE internal type, 355
null, 43
numeric, 94
splitting, 148
value of, retrieving, 149

strtonum function (gawk), 149
--non-decimal-data option and, 186

sub function, 82, 149
arguments of, 150

escape processing, 153
subscript separators, 122
subscripts in arrays

multidimensional, 138
scanning, 139

numbers as, 136
uninitialized variables as, 137

SUBSEP variable, 122
multidimensional arrays, 138

substr function, 152
system function, 156
systime function (gawk), 159

T
Tcl/Tk, gawk and, 281, 306
TCP (Transmission Control Protocol), 282,

285
connection, establishing, 287-289
UDP and, 290

TCP/IP, 188-189
pr otocols, selecting, 282
sockets and, 282
support for, 73

tee utility, tee.awk program, 251
ter minating records, 35
testbits.awk program, 165
Texinfo, 340

chapter beginnings in files, 23
extracting programs from source

files, 269-272
text, printing, 59

unduplicated lines of, 252-256
textdomain function (C library), 175
TEXTDOMAIN variable, 123, 177

BEGIN pattern and, 178
portability and, 181

tilde (˜)
˜ operator, 20, 30-31, 95-96, 102, 104

time
alar m clock example program, 260-262
localization and, 177
managing, 217
retrieving, 159

timestamps, 158-163
converting dates to, 160
for matted, 217

tmp_number/tmp_string internal
functions, 356

tolower/toupper functions, 152
tr utility, 262
--traditional option (gawk), 196

--posix option and, 198

Index 419

9 October 2001 01:45

420 Index

translate.awk program, 263
Transmission Control Protocol (see TCP)
tr oubleshooting

== operator, 95
division, 86
-F option, 203
fatal errors

field widths, specifying, 47
printf format strings, 66

fflush function, 156
function call syntax, 100
gawk, 203, 350

bug reports, 346-347
fatal errors, function arguments, 143
networks, 305

gensub/sub functions, 150
getline function, 221
match function, 148
networks, connections, 288
--non-decimal-data option, 197
print statement, omitting commas, 59
printing, 70
quotes with filenames, 72
readable datafiles, 221
string concatenation, 87
substr function, 152
system function, 157
typographical errors, global

variables, 197
true, logical, 93
trunc-mod operation, 86
truth values, 93
type conversion, 84

U
UDP (User Datagram Protocol), 285

TCP and, 290
undefined functions, 171
underscor e (_)

_ C macr o, 176, 178
in names of private variables, 208

uninitialized variables as array
subscripts, 137

uniq utility, 252
uniq.awk program, 253

Unix
awk scripts and, 6
backslashes in escape sequences, 22
close function and, 76
network ports and, 291
password files, field separators and, 45

unsigned integers, 370
update_ERRNO internal function, 357

URLCHK program, 310
--usage option, 197
user database, reading, 228-232
User Datagram Protocol (see UDP)
user-defined

functions, 166-173
counts, 192

variables, 82
user-modifiable variables, 120-123
users, information about

printing, 247
retrieving, 228

V
-v option, 195

variables, assigning, 83
values

numeric, 369
string, 369

variable typing, 94-97
variables, 17, 369

assigning on command line, 83
built-in, 83, 120-123

conveying information, 123-126
-v option, setting with, 195

flag, 98
getline command into, using, 52, 54-56
global

for library functions, 208
printing list of, 196

initializing, 83
names of, 129
private, 208
setting, 195
shadowing, 168
types of, 89

comparison expressions and, 94-97
uninitialized, as array subscripts, 137
user-defined, 82

--version option, 199
vertical bar (|), 24

| operator (I/O), 54, 102
|& I/O operator (I/O), 187
|& operator (I/O), 56, 102, 287

two-way communications, 189
|| operator, 98, 102

vname internal variable, 356

9 October 2001 01:45

W
-W option, 196
w utility, 47
war nings, issuing, 197
wc utility, 256

wc.awk program, 257
web browsers (see web service)
web pages, 293

extracting links from, 312
images in, 298
retrieving, 307

web robots, 312
web servers, 301-305
web service, 294-301, 306
web sites, checking for changes to, 310
WEBGRAB program, 312
while statement, 20, 112
whitespace

as field separators, 42
functions, calling, 142
newlines as, 198

--with-included-gettext option, 184
configuring gawk with, 342

word boundaries, matching, 28
word-boundary operator (gawk), 28
wordfr eq.awk pr ogram, 267
words

counting, 256-259
duplicate, searching for, 259
usage counts, generating, 266-268

X
XBM image format, 298
xgettext utility, 179
xor function (gawk), 164
XOR operation, 164-166

Z
zer o, negative vs. positive, 372

Index 421

9 October 2001 01:45

9 October 2001 01:45

About the Author
Arnold Robbins, a native of Atlanta, Georgia, is a professional programmer and a
technical author. He is also a happy husband, the father of four very cute chil-
dren, and an amateur Talmudist (Babylonian and Jerusalem). Since late 1997, he
and his family have been living happily in Israel.

Arnold has been working with Unix systems since 1980, when he was introduced
to a PDP-11 running a version of Sixth Edition Unix. He has been a heavy awk
user since 1987, when he became involved with gawk, the GNU project’s version
of awk. As a member of the POSIX 1003.2 balloting group, he helped shape the
POSIX standard for awk. He currently maintains gawk and its documentation (i.e.,
this book). The documentation is also available from the Free Software Founda-
tion (http://www.gnu.org).

In previous incarnations, Arnold was a systems administrator and taught
continuing education classes in Unix and networking. He has also had more than
one poor experience with startup software companies, about which he prefers not
to think anymore.

O’Reilly & Associates has been keeping him busy. In addition to this book, Arnold
is the author of Unix in a Nutshell, Third Edition, and the sed & awk Pocket
Reference ; he is the coauthor of sed & awk, Second Edition, and Learning the vi
Editor, Sixth Edition.

Colophon
Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Effective awk Programming, Third Edition, is a great
auk, a powerful symbol of nineteenth-century European and American arrogance
toward nature. In using great auks as food and for their oil, and later collecting
specimen for the kind of trivial display so popular with the inhabitants of
mansions in Victorian England, mankind showed no mercy; mankind did not take
care to effectively manage the few delicate populations as sustainable resources,
much less treat the great auk as a living species worthy of respect. In 1844, sailors
working for a British collector killed the last two great auks and stole their incu-
bating egg on an island off the coast of Iceland.

,AUTHOR.COLO.23763 Page 423 Tuesday, October 9, 2001 1:55 AM

The original penguin, great auks were large, black and white, flightless seabirds
with pronounced, bent, orange beaks. The auks nested for three to four weeks
each spring on craggy islands in the North Atlantic. When not nesting with their
lifelong mates, great auks swam the seas in extended-family groups, occasionally
deep-sea diving for large fish. Sixteenth-century sailors who exploited nesting
populations for food during long voyages called the birds penguins, a name they
also gave to the smaller-beaked seabirds of the Southern Hemisphere that still exist
today.

Jeffrey Holcomb was the production editor for Effective awk Programming, Third
Edition. Claire Cloutier was the production manager. Mary Brady was the copyed-
itor, and Maureen Dempsey was the proofreader. Rachel Wheeler, Matt
Hutchinson, and Claire Cloutier provided quality control. Kimo Carter and Matt
Hutchinson provided production support. Arnold Robbins and Nancy Crumpton
wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from Century Illustrated
Monthly Magazine. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe’s ITC Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest.
Using a version of makeinfo modified by Phillippe Martin to create DocBook and
enhanced by the author, the book was converted by the author from the Texinfo
source into DocBook XML. Arnold then post-processed the generated DocBook
with no less than six awk scripts (of course!), finally tuning the DocBook source
files by hand. The print version of this book was created by translating the
DocBook XML markup of its source files into a set of groff macros using a filter
developed at O’Reilly & Associates by Norman Walsh. Steve Talbott designed and
wrote the underlying macro set on the basis of the GNU troff –mgs macros; Lenny
Muellner adapted them to XML and implemented the book design. The GNU groff
text formatter Version 1.11.1 was used to generate PostScript output. The text and
heading fonts are ITC Garamond Light and Garamond Book; the code font is
Constant Willison. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. This colophon was written by Sarah Jane Shangraw.

Whenever possible, our books use a durable and flexible lay-flat binding. If the
page count exceeds this binding’s limit, perfect binding is used.

,AUTHOR.COLO.23763 Page 424 Tuesday, October 9, 2001 1:55 AM

