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Chapter 1 Bootstrapping and kernel
initialization

Contributed by Sergey Lyubka.

1.1 Synopsis
This chapter is an overview of the boot and system initialization process, starting from the BIOS (firmware) POST, to
the first user process creation. Since the initial steps of system startup are very architecture dependent, the IA-32
architecture is used as an example.

1.2 Overview
A computer running FreeBSD can boot by several methods, although the most common method, booting from a
harddisk where the OS is installed, will be discussed here. The boot process is divided into several steps:

• BIOS POST

• boot0 stage

• boot2 stage

• loader stage

• kernel initialization

Theboot0 andboot2 stages are also referred to asbootstrap stages 1 and 2in boot(8) as the first steps in FreeBSD’s
3-stage bootstrapping procedure. Various information is printed on the screen at each stage, so you may visually
recognize them using the table that follows. Please note that the actual data may differ from machine to machine:

may vary BIOS (firmware) messages

F1 FreeBSD
F2 BSD

F5 Disk 2

boot0

>>FreeBSD/i386 BOOT
Default: 1:ad(1,a)/boot/loader

boot:

boot2 a

1



Chapter 1 Bootstrapping and kernel initialization

BTX loader 1.0 BTX version is 1.01
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS 639kB/64512kB available memory
FreeBSD/i386 bootstrap loader, Revision 0.8
Console internal video/keyboard
(jkh@bento.freebsd.org, Mon Nov 20 11:41:23 GMT 2000)
/kernel text=0x1234 data=0x2345 syms=[0x4+0x3456]
Hit [Enter] to boot immediately, or any other key for command prompt

Booting [kernel] in 9 seconds..._

loader

Copyright (c) 1992-2002 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994

The Regents of the University of California. All rights reserved.
FreeBSD 4.6-RC #0: Sat May 4 22:49:02 GMT 2002

devnull@kukas:/usr/obj/usr/src/sys/DEVNULL

Timecounter "i8254" frequency 1193182 Hz

kernel

Notes: a. This prompt will appear if the user presses a key just after selecting an OS to boot at theboot0 stage.

1.3 BIOS POST
When the PC powers on, the processor’s registers are set to some predefined values. One of the registers is the
instruction pointerregister, and its value after a power on is well defined: it is a 32-bit value of 0xfffffff0. The
instruction pointer register points to code to be executed by the processor. One of the registers is thecr1 32-bit
control register, and its value just after the reboot is 0. One of the cr1’s bits, the bit PE (Protected Enabled) indicates
whether the processor is running in protected or real mode. Since at boot time this bit is cleared, the processor boots
in real mode. Real mode means, among other things, that linear and physical addresses are identical.

The value of 0xfffffff0 is slightly less then 4Gb, so unless the machine has 4Gb physical memory, it cannot point to a
valid memory address. The computer’s hardware translates this address so that it points to a BIOS memory block.

BIOS stands forBasic Input Output System, and it is a chip on the motherboard that has a relatively small amount of
read-only memory (ROM). This memory contains various low-level routines that are specific to the hardware
supplied with the motherboard. So, the processor will first jump to the address 0xfffffff0, which really resides in the
BIOS’s memory. Usually this address contains a jump instruction to the BIOS’s POST routines.

POST stands forPower On Self Test. This is a set of routines including the memory check, system bus check and
other low-level stuff so that the CPU can initialize the computer properly. The important step on this stage is
determining the boot device. All modern BIOS’s allow the boot device to be set manually, so you can boot from a
floppy, CD-ROM, harddisk etc.

The very last thing in the POST is theINT 0x19 instruction. That instruction reads 512 bytes from the first sector of
boot device into the memory at address 0x7c00. The termfirst sectororiginates from harddrive architecture, where
the magnetic plate is divided to a number of cylindrical tracks. Tracks are numbered, and every track is divided by a
number (usually 64) sectors. Track number 0 is the outermost on the magnetic plate, and sector 1, the first sector
(tracks, or, cylinders, are numbered starting from 0, but sectors - starting from 1), has a special meaning. It is also
called Master Boot Record, or MBR. The remaining sectors on the first track are never used1.
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1.4 boot0 stage
Take a look at the file/boot/boot0 . This is a small 512-byte file, and it is exactly what FreeBSD’s installation
procedure wrote to your harddisk’s MBR if you chose the “bootmanager” option at installation time.

As mentioned previously, theINT 0x19 instruction loads an MBR, i.e. theboot0 content, into the memory at
address 0x7c00. Taking a look at the filesys/boot/i386/boot0/boot0.s can give a guess at what is happening
there - this is the boot manager, which is an awesome piece of code written by Robert Nordier.

The MBR, or,boot0 , has a special structure starting from offset 0x1be, called thepartition table. It has 4 records of
16 bytes each, calledpartition records, which represent how the harddisk(s) are partitioned, or, in FreeBSD’s
terminology, sliced. One byte of those 16 says whether a partition (slice) is bootable or not. Exactly one record must
have that flag set, otherwiseboot0 ’s code will refuse to proceed.

A partition record has the following fields:

• the 1-byte filesystem type

• the 1-byte bootable flag

• the 6 byte descriptor in CHS format

• the 8 byte descriptor in LBA format

A partition record descriptor has the information about where exactly the partition resides on the drive. Both
descriptors, LBA and CHS, describe the same information, but in different ways: LBA (Logical Block Addressing)
has the starting sector for the partition and the partition’s length, while CHS (Cylinder Head Sector) has coordinates
for the first and last sectors of the partition.

The boot manager scans the partition table and prints the menu on the screen so the user can select what disk and
what slice to boot. By pressing an appropriate key,boot0 performs the following actions:

• modifies the bootable flag for the selected partition to make it bootable, and clears the previous

• saves itself to disk to remember what partition (slice) has been selected so to use it as the default on the next boot

• loads the first sector of the selected partition (slice) into memory and jumps there

What kind of data should reside on the very first sector of a bootable partition (slice), in our case, a FreeBSD slice?
As you may have already guessed, it isboot2 .

1.5 boot2 stage
You might wonder, whyboot2 comes afterboot0 , and not boot1. Actually, there is a 512-byte file calledboot1 in
the directory/boot as well. It is used for booting from a floppy. When booting from a floppy,boot1 plays the same
role asboot0 for a harddisk: it locatesboot2 and runs it.

You may have realized that a file/boot/mbr exists as well. It is a simplified version ofboot0 . The code inmbr

does not provide a menu for the user, it just blindly boots the partition marked active.

The code implementingboot2 resides insys/boot/i386/boot2/ , and the executable itself is in/boot . The files
boot0 andboot2 that are in/boot are not used by the bootstrap, but by utilities such asboot0cfg. The actual
position forboot0 is in the MBR. Forboot2 it is the beginning of a bootable FreeBSD slice. These locations are not
under the filesystem’s control, so they are invisible to commands likels.
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The main task forboot2 is to load the file/boot/loader , which is the third stage in the bootstrapping procedure.
The code inboot2 cannot use any services likeopen() andread() , since the kernel is not yet loaded. It must scan
the harddisk, knowing about the filesystem structure, find the file/boot/loader , read it into memory using a BIOS
service, and then pass the execution to the loader’s entry point.

Besides that,boot2 prompts for user input so the loader can be booted from different disk, unit, slice and partition.

Theboot2 binary is created in special way:

sys/boot/i386/boot2/Makefile

boot2: boot2.ldr boot2.bin ${BTX}/btx/btx
btxld -v -E ${ORG2} -f bin -b ${BTX}/btx/btx -l boot2.ldr \
-o boot2.ld -P 1 boot2.bin

This Makefile snippet shows that btxld(8) is used to link the binary. BTX, which stands for BooT eXtender, is a piece
of code that provides a protected mode environment for the program, called the client, that it is linked with. So
boot2 is a BTX client, i.e. it uses the service provided by BTX.

Thebtxld utility is the linker. It links two binaries together. The difference between btxld(8) and ld(1) is thatld
usually links object files into a shared object or executable, whilebtxld links an object file with the BTX, producing
the binary file suitable to be put on the beginning of the partition for the system boot.

boot0 passes the execution to BTX’s entry point. BTX then switches the processor to protected mode, and prepares
a simple environment before calling the client. This includes:

• virtual v86 mode. That means, the BTX is a v86 monitor. Real mode instructions like posh, popf, cli, sti, if called
by the client, will work.

• Interrupt Descriptor Table (IDT) is set up so all hardware interrupts are routed to the default BIOS’s handlers, and
interrupt 0x30 is set up to be the syscall gate.

• Two system calls:exec andexit , are defined:

sys/boot/i386/btx/lib/btxsys.s:

.set INT_SYS,0x30 # Interrupt number
#
# System call: exit
#
__exit: xorl %eax,%eax # BTX system
int $INT_SYS # call 0x0
#
# System call: exec
#
__exec: movl $0x1,%eax # BTX system
int $INT_SYS # call 0x1

BTX creates a Global Descriptor Table (GDT):

sys/boot/i386/btx/btx/btx.s:

gdt: .word 0x0,0x0,0x0,0x0 # Null entry
.word 0xffff,0x0,0x9a00,0xcf # SEL_SCODE
.word 0xffff,0x0,0x9200,0xcf # SEL_SDATA
.word 0xffff,0x0,0x9a00,0x0 # SEL_RCODE
.word 0xffff,0x0,0x9200,0x0 # SEL_RDATA
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.word 0xffff,MEM_USR,0xfa00,0xcf# SEL_UCODE

.word 0xffff,MEM_USR,0xf200,0xcf# SEL_UDATA

.word _TSSLM,MEM_TSS,0x8900,0x0 # SEL_TSS

The client’s code and data start from address MEM_USR (0xa000), and a selector (SEL_UCODE) points to the
client’s code segment. The SEL_UCODE descriptor has Descriptor Privilege Level (DPL) 3, which is the lowest
privilege level. But theINT 0x30 instruction handler resides in a segment pointed to by the SEL_SCODE
(supervisor code) selector, as shown from the code that creates an IDT:

mov $SEL_SCODE,%dh # Segment selector
init.2: shr %bx # Handle this int?
jnc init.3 # No
mov %ax,(%di) # Set handler offset
mov %dh,0x2(%di) # and selector
mov %dl,0x5(%di) # Set P:DPL:type
add $0x4,%ax # Next handler

So, when the client calls__exec() , the code will be executed with the highest privileges. This allows the kernel to
change the protected mode data structures, such as page tables, GDT, IDT, etc later, if needed.

boot2 defines an important structure,struct bootinfo . This structure is initialized byboot2 and passed to the
loader, and then further to the kernel. Some nodes of this structures are set byboot2 , the rest by the loader. This
structure, among other information, contains the kernel filename, BIOS harddisk geometry, BIOS drive number for
boot device, physical memory available,envp pointer etc. The definition for it is:

/usr/include/machine/bootinfo.h

struct bootinfo {
u_int32_t bi_version;
u_int32_t bi_kernelname; /* represents a char * */
u_int32_t bi_nfs_diskless; /* struct nfs_diskless * */
/* End of fields that are always present. */
#define bi_endcommon bi_n_bios_used
u_int32_t bi_n_bios_used;
u_int32_t bi_bios_geom[N_BIOS_GEOM];
u_int32_t bi_size;
u_int8_t bi_memsizes_valid;
u_int8_t bi_bios_dev; /* bootdev BIOS unit number */
u_int8_t bi_pad[2];
u_int32_t bi_basemem;
u_int32_t bi_extmem;
u_int32_t bi_symtab; /* struct symtab * */
u_int32_t bi_esymtab; /* struct symtab * */
/* Items below only from advanced bootloader */
u_int32_t bi_kernend; /* end of kernel space */
u_int32_t bi_envp; /* environment */
u_int32_t bi_modulep; /* preloaded modules */
};

boot2 enters into an infinite loop waiting for user input, then callsload() . If the user does not press anything, the
loop brakes by a timeout, soload() will load the default file (/boot/loader ). Functionsino_t lookup(char

*filename) andint xfsread(ino_t inode, void *buf, size_t nbyte) are used to read the content of a
file into memory./boot/loader is an ELF binary, but where the ELF header is prepended with a.out’sstruct
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exec structure.load() scans the loader’s ELF header, loading the content of/boot/loader into memory, and
passing the execution to the loader’s entry:

sys/boot/i386/boot2/boot2.c:

__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
MAKEBOOTDEV(dev_maj[dsk.type], 0, dsk.slice, dsk.unit, dsk.part),
0, 0, 0, VTOP(&bootinfo));

1.6 loader stage
loader is a BTX client as well. I will not describe it here in detail, there is a comprehensive manpage written by
Mike Smith, loader(8). The underlying mechanisms and BTX were discussed above.

The main task for the loader is to boot the kernel. When the kernel is loaded into memory, it is being called by the
loader:

sys/boot/common/boot.c:

/* Call the exec handler from the loader matching the kernel */
module_formats[km->m_loader]->l_exec(km);

1.7 Kernel initialization
To where exactly is the execution passed by the loader, i.e. what is the kernel’s actual entry point. Let us take a look
at the command that links the kernel:

sys/conf/Makefile.i386:

ld -elf -Bdynamic -T /usr/src/sys/conf/ldscript.i386 -export-dynamic \
-dynamic-linker /red/herring -o kernel -X locore.o \
<lots of kernel .o files >

A few interesting things can be seen in this line. First, the kernel is an ELF dynamically linked binary, but the
dynamic linker for kernel is/red/herring , which is definitely a bogus file. Second, taking a look at the file
sys/conf/ldscript.i386 gives an idea about whatld options are used when compiling a kernel. Reading
through the first few lines, the string

sys/conf/ldscript.i386:

ENTRY(btext)

says that a kernel’s entry point is the symbol ‘btext’. This symbol is defined inlocore.s :

sys/i386/i386/locore.s:

.text
/**********************************************************************

*
* This is where the bootblocks start us, set the ball rolling...
*
*/

NON_GPROF_ENTRY(btext)

6
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First what is done is the register EFLAGS is set to a predefined value of 0x00000002, and then all the segment
registers are initialized:

sys/i386/i386/locore.s

/* Don’t trust what the BIOS gives for eflags. */
pushl $PSL_KERNEL
popfl

/*
* Don’t trust what the BIOS gives for %fs and %gs. Trust the bootstrap
* to set %cs, %ds, %es and %ss.
*/

mov %ds, %ax
mov %ax, %fs
mov %ax, %gs

btext calls the routinesrecover_bootinfo() , identify_cpu() , create_pagetables() , which are also
defined inlocore.s . Here is a description of what they do:

recover_bootinfo This routine parses the parameters to the kernel passed
from the bootstrap. The kernel may have been booted in 3
ways: by the loader, described above, by the old disk boot
blocks, and by the old diskless boot procedure. This
function determines the booting method, and stores the
struct bootinfo structure into the kernel memory.

identify_cpu This functions tries to find out what CPU it is running on,
storing the value found in a variable_cpu .

create_pagetables This function allocates and fills out a Page Table Directory
at the top of the kernel memory area.

The next steps are enabling VME, if the CPU supports it:

testl $CPUID_VME, R(_cpu_feature)
jz 1f
movl %cr4, %eax
orl $CR4_VME, %eax
movl %eax, %cr4

Then, enabling paging:

/* Now enable paging */
movl R(_IdlePTD), %eax
movl %eax,%cr3 /* load ptd addr into mmu */
movl %cr0,%eax /* get control word */
orl $CR0_PE|CR0_PG,%eax /* enable paging */
movl %eax,%cr0 /* and let’s page NOW! */

The next three lines of code are because the paging was set, so the jump is needed to continue the execution in
virtualized address space:

pushl $begin /* jump to high virtualized address */

7
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ret

/* now running relocated at KERNBASE where the system is linked to run */
begin:

The functioninit386() is called, with a pointer to the first free physical page, after thatmi_startup() . init386

is an architecture dependent initialization function, andmi_startup() is an architecture independent one (the ’mi_’
prefix stands for Machine Independent). The kernel never returns frommi_startup() , and by calling it, the kernel
finishes booting:

sys/i386/i386/locore.s:

movl physfree, %esi
pushl %esi /* value of first for init386(first) */
call _init386 /* wire 386 chip for unix operation */
call _mi_startup /* autoconfiguration, mountroot etc */
hlt /* never returns to here */

1.7.1 init386()

init386() is defined insys/i386/i386/machdep.c and performs low-level initialization, specific to the i386
chip. The switch to protected mode was performed by the loader. The loader has created the very first task, in which
the kernel continues to operate. Before running straight away to the code, I will enumerate the tasks the processor
must complete to initialize protected mode execution:

• Initialize the kernel tunable parameters, passed from the bootstrapping program.

• Prepare the GDT.

• Prepare the IDT.

• Initialize the system console.

• Initialize the DDB, if it is compiled into kernel.

• Initialize the TSS.

• Prepare the LDT.

• Setup proc0’s pcb.

What init386() first does is initialize the tunable parameters passed from bootstrap. This is done by setting the
environment pointer (envp) and callinginit_param1() . The envp pointer has been passed from loader in the
bootinfo structure:

sys/i386/i386/machdep.c:

kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;

/* Init basic tunables, hz etc */
init_param1();

init_param1() is defined insys/kern/subr_param.c . That file has a number of sysctls, and two functions,
init_param1() andinit_param2() , that are called frominit386() :

sys/kern/subr_param.c

hz = HZ;

8
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TUNABLE_INT_FETCH("kern.hz", &hz);

TUNABLE_<typename>_FETCH is used to fetch the value from the environment:

/usr/src/sys/sys/kernel.h

#define TUNABLE_INT_FETCH(path, var) getenv_int((path), (var))

Sysctlkern.hz is the system clock tick. Along with this, the following sysctls are set byinit_param1() :
kern.maxswzone, kern.maxbcache, kern.maxtsiz, kern.dfldsiz, kern.dflssiz,

kern.maxssiz, kern.sgrowsiz .

Theninit386() prepares the Global Descriptors Table (GDT). Every task on an x86 is running in its own virtual
address space, and this space is addressed by a segment:offset pair. Say, for instance, the current instruction to be
executed by the processor lies at CS:EIP, then the linear virtual address for that instruction would be “the virtual
address of code segment CS” + EIP. For convenience, segments begin at virtual address 0 and end at a 4Gb boundary.
Therefore, the instruction’s linear virtual address for this example would just be the value of EIP. Segment registers
such as CS, DS etc are the selectors, i.e. indexes, into GDT (to be more precise, an index is not a selector itself, but
the INDEX field of a selector). FreeBSD’s GDT holds descriptors for 15 selectors per CPU:

sys/i386/i386/machdep.c:

union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */

sys/i386/include/segments.h:

/*
* Entries in the Global Descriptor Table (GDT)
*/

#define GNULL_SEL 0 /* Null Descriptor */
#define GCODE_SEL 1 /* Kernel Code Descriptor */
#define GDATA_SEL 2 /* Kernel Data Descriptor */
#define GPRIV_SEL 3 /* SMP Per-Processor Private Data */
#define GPROC0_SEL 4 /* Task state process slot zero and up */
#define GLDT_SEL 5 /* LDT - eventually one per process */
#define GUSERLDT_SEL 6 /* User LDT */
#define GTGATE_SEL 7 /* Process task switch gate */
#define GBIOSLOWMEM_SEL 8 /* BIOS low memory access (must be entry 8) */
#define GPANIC_SEL 9 /* Task state to consider panic from */
#define GBIOSCODE32_SEL 10 /* BIOS interface (32bit Code) */
#define GBIOSCODE16_SEL 11 /* BIOS interface (16bit Code) */
#define GBIOSDATA_SEL 12 /* BIOS interface (Data) */
#define GBIOSUTIL_SEL 13 /* BIOS interface (Utility) */
#define GBIOSARGS_SEL 14 /* BIOS interface (Arguments) */

Note that those #defines are not selectors themselves, but just a field INDEX of a selector, so they are exactly the
indices of the GDT. for example, an actual selector for the kernel code (GCODE_SEL) has the value 0x08.

The next step is to initialize the Interrupt Descriptor Table (IDT). This table is to be referenced by the processor
when a software or hardware interrupt occurs. For example, to make a system call, user application issues theINT

0x80 instruction. This is a software interrupt, so the processor’s hardware looks up a record with index 0x80 in the
IDT. This record points to the routine that handles this interrupt, in this particular case, this will be the kernel’s
syscall gate. The IDT may have a maximum of 256 (0x100) records. The kernel allocates NIDT records for the IDT,
where NIDT is the maximum (256):

sys/i386/i386/machdep.c:
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static struct gate_descriptor idt0[NIDT];
struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */

For each interrupt, an appropriate handler is set. The syscall gate forINT 0x80 is set as well:

sys/i386/i386/machdep.c:

setidt(0x80, &IDTVEC(int0x80_syscall),
SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));

So when a userland application issues theINT 0x80 instruction, control will transfer to the function
_Xint0x80_syscall , which is in the kernel code segment and will be executed with supervisor privileges.

Console and DDB are then initialized:

sys/i386/i386/machdep.c:

cninit();
/* skipped */
#ifdef DDB
kdb_init();
if (boothowto & RB_KDB)
Debugger("Boot flags requested debugger");
#endif

The Task State Segment is another x86 protected mode structure, the TSS is used by the hardware to store task
information when a task switch occurs.

The Local Descriptors Table is used to reference userland code and data. Several selectors are defined to point to the
LDT, they are the system call gates and the user code and data selectors:

/usr/include/machine/segments.h

#define LSYS5CALLS_SEL 0 /* forced by intel BCS */
#define LSYS5SIGR_SEL 1
#define L43BSDCALLS_SEL 2 /* notyet */
#define LUCODE_SEL 3
#define LSOL26CALLS_SEL 4 /* Solaris >= 2.6 system call gate */
#define LUDATA_SEL 5
/* separate stack, es,fs,gs sels ? */
/* #define LPOSIXCALLS_SEL 5*/ /* notyet */
#define LBSDICALLS_SEL 16 /* BSDI system call gate */
#define NLDT (LBSDICALLS_SEL + 1)

Next, proc0’s Process Control Block (struct pcb ) structure is initialized. proc0 is astruct proc structure that
describes a kernel process. It is always present while the kernel is running, therefore it is declared as global:

sys/kern/kern_init.c:

struct proc proc0;

The structurestruct pcb is a part of a proc structure. It is defined in/usr/include/machine/pcb.h and has a
process’s information specific to the i386 architecture, such as registers values.
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1.7.2 mi_startup()

This function performs a bubble sort of all the system initialization objects and then calls the entry of each object one
by one:

sys/kern/init_main.c:

for (sipp = sysinit; *sipp; sipp++) {

/* ... skipped ... */

/* Call function */
(*((*sipp)->func))((*sipp)->udata);
/* ... skipped ... */
}

Although the sysinit framework is described in the Developers’ Handbook, I will discuss the internals of it.

Every system initialization object (sysinit object) is created by calling a SYSINIT() macro. Let us take as example an
announce sysinit object. This object prints the copyright message:

sys/kern/init_main.c:

static void
print_caddr_t(void *data __unused)
{
printf("%s", (char *)data);
}
SYSINIT(announce, SI_SUB_COPYRIGHT, SI_ORDER_FIRST, print_caddr_t, copyright)

The subsystem ID for this object is SI_SUB_COPYRIGHT (0x0800001), which comes right after the
SI_SUB_CONSOLE (0x0800000). So, the copyright message will be printed out first, just after the console
initialization.

Let us take a look at what exactly the macroSYSINIT() does. It expands to aC_SYSINIT() macro. The
C_SYSINIT() macro then expands to a staticstruct sysinit structure declaration with anotherDATA_SET

macro call:

/usr/include/sys/kernel.h:

#define C_SYSINIT(uniquifier, subsystem, order, func, ident) \
static struct sysinit uniquifier ## _sys_init = { \ subsystem, \
order, \ func, \ ident \ }; \ DATA_SET(sysinit_set,uniquifier ##
_sys_init);

#define SYSINIT(uniquifier, subsystem, order, func, ident) \
C_SYSINIT(uniquifier, subsystem, order, \
(sysinit_cfunc_t)(sysinit_nfunc_t)func, (void *)ident)

TheDATA_SET() macro expands to aMAKE_SET(), and that macro is the point where the all sysinit magic is hidden:

/usr/include/linker_set.h

#define MAKE_SET(set, sym) \
static void const * const __set_##set##_sym_##sym = &sym; \
__asm(".section .set." #set ",\"aw\""); \
__asm(".long " #sym); \
__asm(".previous")
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#endif
#define TEXT_SET(set, sym) MAKE_SET(set, sym)
#define DATA_SET(set, sym) MAKE_SET(set, sym)

In our case, the following declaration will occur:

static struct sysinit announce_sys_init = {
SI_SUB_COPYRIGHT,
SI_ORDER_FIRST,
(sysinit_cfunc_t)(sysinit_nfunc_t) print_caddr_t,
(void *) copyright
};

static void const *const __set_sysinit_set_sym_announce_sys_init =
&announce_sys_init;

__asm(".section .set.sysinit_set" ",\"aw\"");
__asm(".long " "announce_sys_init");
__asm(".previous");

The first__asm instruction will create an ELF section within the kernel’s executable. This will happen at kernel link
time. The section will have the name.set.sysinit_set . The content of this section is one 32-bit value, the
address of announce_sys_init structure, and that is what the second__asm is. The third__asm instruction marks the
end of a section. If a directive with the same section name occurred before, the content, i.e. the 32-bit value, will be
appended to the existing section, so forming an array of 32-bit pointers.

Runningobjdump on a kernel binary, you may notice the presence of such small sections:

% objdump -h /kernel
7 .set.cons_set 00000014 c03164c0 c03164c0 002154c0 2**2

CONTENTS, ALLOC, LOAD, DATA
8 .set.kbddriver_set 00000010 c03164d4 c03164d4 002154d4 2**2

CONTENTS, ALLOC, LOAD, DATA
9 .set.scrndr_set 00000024 c03164e4 c03164e4 002154e4 2**2

CONTENTS, ALLOC, LOAD, DATA
10 .set.scterm_set 0000000c c0316508 c0316508 00215508 2**2

CONTENTS, ALLOC, LOAD, DATA
11 .set.sysctl_set 0000097c c0316514 c0316514 00215514 2**2

CONTENTS, ALLOC, LOAD, DATA
12 .set.sysinit_set 00000664 c0316e90 c0316e90 00215e90 2**2

CONTENTS, ALLOC, LOAD, DATA

This screen dump shows that the size of .set.sysinit_set section is 0x664 bytes, so0x664/sizeof(void *) sysinit
objects are compiled into the kernel. The other sections such as.set.sysctl_set represent other linker sets.

By defining a variable of typestruct linker_set the content of.set.sysinit_set section will be “collected”
into that variable:

sys/kern/init_main.c:

extern struct linker_set sysinit_set; /* XXX */

Thestruct linker_set is defined as follows:

/usr/include/linker_set.h:

struct linker_set {
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int ls_length;
void *ls_items[1]; /* really ls_length of them, trailing NULL */
};

The first node will be equal to the number of a sysinit objects, and the second node will be a NULL-terminated array
of pointers to them.

Returning to themi_startup() discussion, it is must be clear now, how the sysinit objects are being organized. The
mi_startup() function sorts them and calls each. The very last object is the system scheduler:

/usr/include/sys/kernel.h:

enum sysinit_sub_id {
SI_SUB_DUMMY = 0x0000000, /* not executed; for linker*/
SI_SUB_DONE = 0x0000001, /* processed*/
SI_SUB_CONSOLE = 0x0800000, /* console*/
SI_SUB_COPYRIGHT = 0x0800001, /* first use of console*/
...
SI_SUB_RUN_SCHEDULER = 0xfffffff /* scheduler: no return*/
};

The system scheduler sysinit object is defined in the filesys/vm/vm_glue.c , and the entry point for that object is
scheduler() . That function is actually an infinite loop, and it represents a process with PID 0, the swapper process.
The proc0 structure, mentioned before, is used to describe it.

The first user process, calledinit, is created by the sysinit objectinit :

sys/kern/init_main.c:

static void
create_init(const void *udata __unused)
{
int error;
int s;

s = splhigh();
error = fork1(&proc0, RFFDG | RFPROC, &initproc);
if (error)
panic("cannot fork init: %d\n", error);
initproc->p_flag |= P_INMEM | P_SYSTEM;
cpu_set_fork_handler(initproc, start_init, NULL);
remrunqueue(initproc);
splx(s);
}
SYSINIT(init,SI_SUB_CREATE_INIT, SI_ORDER_FIRST, create_init, NULL)

Thecreate_init() allocates a new process by callingfork1() , but does not mark it runnable. When this new
process is scheduled for execution by the scheduler, thestart_init() will be called. That function is defined in
init_main.c . It tries to load and exec theinit binary, probing/sbin/init first, then/sbin/oinit ,
/sbin/init.bak , and finally/stand/sysinstall :

sys/kern/init_main.c:

static char init_path[MAXPATHLEN] =
#ifdef INIT_PATH

__XSTRING(INIT_PATH);
#else
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"/sbin/init:/sbin/oinit:/sbin/init.bak:/stand/sysinstall";
#endif

Notes
1. Some utilities such as disklabel(8) may store the information in this area, mostly in the second sector.
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Chapter 2 Locking Notes
This chapter is maintained by the FreeBSD SMP Next Generation Project. Please direct any comments or suggestions
to its FreeBSD symmetric multiprocessing mailing list (http://lists.FreeBSD.org/mailman/listinfo/freebsd-smp).

This document outlines the locking used in the FreeBSD kernel to permit effective multi-processing within the
kernel. Locking can be achieved via several means. Data structures can be protected by mutexes or lockmgr(9) locks.
A few variables are protected simply by always using atomic operations to access them.

2.1 Mutexes
A mutex is simply a lock used to guarantee mutual exclusion. Specifically, a mutex may only be owned by one entity
at a time. If another entity wishes to obtain a mutex that is already owned, it must wait until the mutex is released. In
the FreeBSD kernel, mutexes are owned by processes.

Mutexes may be recursively acquired, but they are intended to be held for a short period of time. Specifically, one
may not sleep while holding a mutex. If you need to hold a lock across a sleep, use a lockmgr(9) lock.

Each mutex has several properties of interest:

Variable Name

The name of the struct mtx variable in the kernel source.

Logical Name

The name of the mutex assigned to it bymtx_init . This name is displayed in KTR trace messages and witness
errors and warnings and is used to distinguish mutexes in the witness code.

Type

The type of the mutex in terms of theMTX_* flags. The meaning for each flag is related to its meaning as
documented in mutex(9).

MTX_DEF

A sleep mutex

MTX_SPIN

A spin mutex

MTX_RECURSE

This mutex is allowed to recurse.

Protectees

A list of data structures or data structure members that this entry protects. For data structure members, the name
will be in the form of structure name.member name.
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Dependent Functions

Functions that can only be called if this mutex is held.

Table 2-1. Mutex List

Variable Name Logical Name Type Protectees Dependent
Functions
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Variable Name Logical Name Type Protectees Dependent
Functions

sched_lock “sched lock” MTX_SPIN|
MTX_RECURSE

_gmonparam ,
cnt.v_swtch ,
cp_time ,
curpriority ,
mtx.mtx_blocked ,
mtx.mtx_contested ,
proc.p_procq ,
proc.p_slpq ,
proc.p_sflag
proc.p_stat ,
proc.p_estcpu ,
proc.p_cpticks
proc.p_pctcpu ,
proc.p_wchan ,
proc.p_wmesg,
proc.p_swtime ,
proc.p_slptime ,
proc.p_runtime ,
proc.p_uu ,
proc.p_su ,
proc.p_iu ,
proc.p_uticks ,
proc.p_sticks ,
proc.p_iticks ,
proc.p_oncpu ,
proc.p_lastcpu ,
proc.p_rqindex ,
proc.p_heldmtx ,
proc.p_blocked ,
proc.p_mtxname ,
proc.p_contested ,
proc.p_priority ,
proc.p_usrpri ,
proc.p_nativepri ,
proc.p_nice ,
proc.p_rtprio ,
pscnt , slpque ,
itqueuebits ,
itqueues ,
rtqueuebits ,
rtqueues ,
queuebits , queues ,
idqueuebits ,
idqueues ,
switchtime ,
switchticks

setrunqueue ,
remrunqueue ,
mi_switch ,
chooseproc ,
schedclock ,
resetpriority ,
updatepri ,
maybe_resched ,
cpu_switch ,
cpu_throw ,
need_resched ,
resched_wanted ,
clear_resched ,
aston , astoff ,
astpending ,
calcru ,
proc_compare
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Variable Name Logical Name Type Protectees Dependent
Functions

vm86pcb_lock “vm86pcb lock” MTX_DEF vm86pcb vm86_bioscall

Giant “Giant” MTX_DEF|
MTX_RECURSE

nearly everything lots

callout_lock “callout lock” MTX_SPIN|
MTX_RECURSE

callfree ,
callwheel ,
nextsoftcheck ,
proc.p_itcallout ,
proc.p_slpcallout ,
softticks , ticks

2.2 Shared Exclusive Locks
These locks provide basic reader-writer type functionality and may be held by a sleeping process. Currently they are
backed by lockmgr(9).

Table 2-2. Shared Exclusive Lock List

Variable Name Protectees

allproc_lock allproc zombproc pidhashtbl proc.p_list
proc.p_hash nextpid

proctree_lock proc.p_children proc.p_sibling

2.3 Atomically Protected Variables
An atomically protected variable is a special variable that is not protected by an explicit lock. Instead, all data
accesses to the variables use special atomic operations as described in atomic(9). Very few variables are treated this
way, although other synchronization primitives such as mutexes are implemented with atomically protected variables.

• mtx.mtx_lock

18



Chapter 3 Kernel Objects
Kernel Objects, orKobj provides an object-oriented C programming system for the kernel. As such the data being
operated on carries the description of how to operate on it. This allows operations to be added and removed from an
interface at run time and without breaking binary compatibility.

3.1 Terminology

Object

A set of data - data structure - data allocation.

Method

An operation - function.

Class

One or more methods.

Interface

A standard set of one or more methods.

3.2 Kobj Operation
Kobj works by generating descriptions of methods. Each description holds a unique id as well as a default function.
The description’s address is used to uniquely identify the method within a class’ method table.

A class is built by creating a method table associating one or more functions with method descriptions. Before use
the class is compiled. The compilation allocates a cache and associates it with the class. A unique id is assigned to
each method description within the method table of the class if not already done so by another referencing class
compilation. For every method to be used a function is generated by script to qualify arguments and automatically
reference the method description for a lookup. The generated function looks up the method by using the unique id
associated with the method description as a hash into the cache associated with the object’s class. If the method is not
cached the generated function proceeds to use the class’ table to find the method. If the method is found then the
associated function within the class is used; otherwise, the default function associated with the method description is
used.

These indirections can be visualized as the following:

object->cache<->class
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3.3 Using Kobj

3.3.1 Structures

struct kobj_method

3.3.2 Functions

void kobj_class_compile(kobj_class_t cls);
void kobj_class_compile_static(kobj_class_t cls, kobj_ops_t ops);
void kobj_class_free(kobj_class_t cls);
kobj_t kobj_create(kobj_class_t cls, struct malloc_type *mtype, int mflags);
void kobj_init(kobj_t obj, kobj_class_t cls);
void kobj_delete(kobj_t obj, struct malloc_type *mtype);

3.3.3 Macros

KOBJ_CLASS_FIELDS
KOBJ_FIELDS
DEFINE_CLASS(name, methods, size)
KOBJMETHOD(NAME, FUNC)

3.3.4 Headers

<sys/param.h>
<sys/kobj.h>

3.3.5 Creating an interface template

The first step in using Kobj is to create an Interface. Creating the interface involves creating a template that the script
src/sys/kern/makeobjops.pl can use to generate the header and code for the method declarations and method
lookup functions.

Within this template the following keywords are used:#include , INTERFACE, CODE, METHOD, STATICMETHOD, and
DEFAULT.

The#include statement and what follows it is copied verbatim to the head of the generated code file.

For example:

#include <sys/foo.h>

The INTERFACEkeyword is used to define the interface name. This name is concatenated with each method name as
[interface name]_[method name]. Its syntax is INTERFACE [interface name];.

For example:
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INTERFACE foo;

TheCODEkeyword copies its arguments verbatim into the code file. Its syntax isCODE { [whatever] };

For example:

CODE {
struct foo * foo_alloc_null(struct bar *)
{
return NULL;
}
};

TheMETHODkeyword describes a method. Its syntax isMETHOD [return type] [method name] { [object

[, arguments]] };

For example:

METHOD int bar {
struct object *;
struct foo *;
struct bar;
};

TheDEFAULTkeyword may follow theMETHODkeyword. It extends theMETHODkey word to include the default
function for method. The extended syntax isMETHOD [return type] [method name] { [object; [other

arguments]] }DEFAULT [default function];

For example:

METHOD int bar {
struct object *;
struct foo *;
int bar;
} DEFAULT foo_hack;

TheSTATICMETHODkeyword is used like theMETHODkeyword except the kobj data is not at the head of the object
structure so casting to kobj_t would be incorrect. InsteadSTATICMETHODrelies on the Kobj data being referenced as
’ops’. This is also useful for calling methods directly out of a class’s method table.

Other complete examples:

src/sys/kern/bus_if.m
src/sys/kern/device_if.m

3.3.6 Creating a Class

The second step in using Kobj is to create a class. A class consists of a name, a table of methods, and the size of
objects if Kobj’s object handling facilities are used. To create the class use the macroDEFINE_CLASS() . To create
the method table create an array of kobj_method_t terminated by a NULL entry. Each non-NULL entry may be
created using the macroKOBJMETHOD().

For example:
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DEFINE_CLASS(fooclass, foomethods, sizeof(struct foodata));

kobj_method_t foomethods[] = {
KOBJMETHOD(bar_doo, foo_doo),
KOBJMETHOD(bar_foo, foo_foo),
{ NULL, NULL}
};

The class must be “compiled”. Depending on the state of the system at the time that the class is to be initialized a
statically allocated cache, “ops table” have to be used. This can be accomplished by declaring a struct kobj_ops and
usingkobj_class_compile_static(); otherwise,kobj_class_compile() should be used.

3.3.7 Creating an Object

The third step in using Kobj involves how to define the object. Kobj object creation routines assume that Kobj data is
at the head of an object. If this in not appropriate you will have to allocate the object yourself and then use
kobj_init() on the Kobj portion of it; otherwise, you may usekobj_create() to allocate and initialize the Kobj
portion of the object automatically.kobj_init() may also be used to change the class that an object uses.

To integrate Kobj into the object you should use the macro KOBJ_FIELDS.

For example

struct foo_data {
KOBJ_FIELDS;
foo_foo;
foo_bar;
};

3.3.8 Calling Methods

The last step in using Kobj is to simply use the generated functions to use the desired method within the object’s
class. This is as simple as using the interface name and the method name with a few modifications. The interface
name should be concatenated with the method name using a ’_’ between them, all in upper case.

For example, if the interface name was foo and the method was bar then the call would be:

[return value = ] FOO_BAR(object [, other parameters]);

3.3.9 Cleaning Up

When an object allocated throughkobj_create() is no longer neededkobj_delete() may be called on it, and
when a class is no longer being usedkobj_class_free() may be called on it.

22



Chapter 4 The Jail Subsystem
On most UNIX systems, root has omnipotent power. This promotes insecurity. If an attacker were to gain root on a
system, he would have every function at his fingertips. In FreeBSD there are sysctls which dilute the power of root,
in order to minimize the damage caused by an attacker. Specifically, one of these functions is called secure levels.
Similarly, another function which is present from FreeBSD 4.0 and onward, is a utility called jail(8).Jail chroots an
environment and sets certain restrictions on processes which are forked from within. For example, a jailed process
cannot affect processes outside of the jail, utilize certain system calls, or inflict any damage on the main computer.

Jail is becoming the new security model. People are running potentially vulnerable servers such as Apache, BIND,
and sendmail within jails, so that if an attacker gains root within theJail, it is only an annoyance, and not a
devastation. This article focuses on the internals (source code) ofJail. It will also suggest improvements upon the jail
code base which are already being worked on. If you are looking for a how-to on setting up aJail, I suggest you look
at my other article in Sys Admin Magazine, May 2001, entitled "Securing FreeBSD usingJail."

4.1 Architecture
Jail consists of two realms: the user-space program, jail, and the code implemented within the kernel: thejail()

system call and associated restrictions. I will be discussing the user-space program and then how jail is implemented
within the kernel.

4.1.1 Userland code

The source for the user-land jail is located in/usr/src/usr.sbin/jail , consisting of one file,jail.c . The
program takes these arguments: the path of the jail, hostname, ip address, and the command to be executed.

4.1.1.1 Data Structures

In jail.c , the first thing I would note is the declaration of an important structurestruct jail j ; which was
included from/usr/include/sys/jail.h .

The definition of the jail structure is:

/usr/include/sys/jail.h :

struct jail {
u_int32_t version;
char *path;
char *hostname;
u_int32_t ip_number;

};

As you can see, there is an entry for each of the arguments passed to the jail program, and indeed, they are set during
it’s execution.

/usr/src/usr.sbin/jail.c

j.version = 0;
j.path = argv[1];
j.hostname = argv[2];
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4.1.1.2 Networking

One of the arguments passed to the Jail program is an IP address with which the jail can be accessed over the
network. Jail translates the ip address given into network byte order and then stores it in j (the jail structure).

/usr/src/usr.sbin/jail/jail.c :
struct in.addr in;
...
i = inet.aton(argv[3], &in);
...
j.ip_number = ntohl(in.s.addr);

The inet_aton(3) functiot "interprets the specified character string as an Internet address, placing the address into the
structure provided." The ip number node in the jail structure is set only when the ip address placed onto the in
structure by inet atot is translated into network byte order byntohl() .

4.1.1.3 Jailing The Process

Finally, the userland program jails the process, and executes the command specified. Jail now becomes an
imprisoned process itself and forks a child process which then executes the command given using execv(3)

/usr/src/sys/usr.sbin/jail/jail.c

i = jail(&j);
...
i = execv(argv[4], argv + 4);

As you can see, the jail functiot is being called, and its argument is the jail structure which has been filled with the
arguments given to the program. Finally, the program you specify is executed. I will now discuss how Jail is
implemented within the kernel.

4.1.2 Kernel Space

We will now be looking at the file/usr/src/sys/kern/kern_jail.c . This is the file where the jail system call,
appropriate sysctls, and networking functiots are defined.

4.1.2.1 sysctls

In kern_jail.c , the following sysctls are defined:

/usr/src/sys/kern/kern_jail.c:

int jail_set_hostname_allowed = 1;
SYSCTL_INT(_jail, OID_AUTO, set_hostname_allowed, CTLFLAG_RW,

&jail_set_hostname_allowed, 0,
"Processes in jail can set their hostnames");

int jail_socket_unixiproute_only = 1;
SYSCTL_INT(_jail, OID_AUTO, socket_unixiproute_only, CTLFLAG_RW,

&jail_socket_unixiproute_only, 0,
"Processes in jail are limited to creating UNIX/IPv4/route sockets only
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");

int jail_sysvipc_allowed = 0;
SYSCTL_INT(_jail, OID_AUTO, sysvipc_allowed, CTLFLAG_RW,

&jail_sysvipc_allowed, 0,
"Processes in jail can use System V IPC primitives");

Each of these sysctls can be accessed by the user through the sysctl program. Throughout the kernel, these specific
sysctls are recognized by their name. For example, the name of the first sysctl isjail.set.hostname.allowed .

4.1.2.2 jail(2) system call

Like all system calls, the jail(2) system call takes two arguments,struct proc *p andstruct jail_args

*uap . p is a pointer to a proc structure which describes the calling process. In this context, uap is a pointer to a
structure which specifies the arguments given to jail(2) from the userland programjail.c . When I described the
userland program before, you saw that the jail(2) system call was given a jail structure as its own argument.

/usr/src/sys/kern/kern_jail.c:

int
jail(p, uap)

struct proc *p;
struct jail_args /* {

syscallarg(struct jail *) jail;
} */ *uap;

Therefore,uap->jail would access the jail structure which was passed to the system call. Next, the system call
copies the jail structure into kernel space using thecopyin() function.copyin() takes three arguments: the data
which is to be copied into kernel space,uap->jail , where to store it,j and the size of the storage. The jail structure
uap->jail is copied into kernel space and stored in another jail structure,j .

/usr/src/sys/kern/kern_jail.c:

error = copyin(uap->jail, &j, sizeof j);

There is another important structure defined in jail.h. It is the prison structure (pr ). The prison structure is used
exclusively within kernel space. The jail(2) system call copies everything from the jail structure onto the prison
structure. Here is the definition of the prison structure.

/usr/include/sys/jail.h :
struct prison {

int pr_ref;
char pr_host[MAXHOSTNAMELEN];
u_int32_t pr_ip;
void *pr_linux;

};

The jail() system call then allocates memory for a pointer to a prison structure and copies data between the two
structures.

/usr/src/sys/kern/kern_jail.c :
MALLOC(pr, struct prison *, sizeof *pr , M_PRISON, M_WAITOK);
bzero((caddr_t)pr, sizeof *pr);
error = copyinstr(j.hostname, &pr->pr_host, sizeof pr->pr_host, 0);

25



Chapter 4 The Jail Subsystem

if (error)
goto bail;

Finally, the jail system call chroots the path specified. The chroot function is given two arguments. The first is p,
which represents the calling process, the second is a pointer to the structure chroot args. The structure chroot args
contains the path which is to be chrooted. As you can see, the path specified in the jail structure is copied to the
chroot args structure and used.

/usr/src/sys/kern/kern_jail.c :
ca.path = j.path;
error = chroot(p, &ca);

These next three lines in the source are very important, as they specify how the kernel recognizes a process as jailed.
Each process on a Unix system is described by its own proc structure. You can see the whole proc structure in
/usr/include/sys/proc.h . For example, the p argument in any system call is actually a pointer to that process’
proc structure, as stated before. The proc structure contains nodes which can describe the owner’s identity (p_cred ),
the process resource limits (p_limit ), and so on. In the definition of the process structure, there is a pointer to a
prison structure. (p_prison ).

/usr/include/sys/proc.h:

struct proc {
...
struct prison *p_prison;
...
};

In kern_jail.c , the function then copies the pr structure, which is filled with all the information from the original
jail structure, over to thep->p_prison structure. It then does a bitwise OR ofp->p_flag with the constant
P_JAILED , meaning that the calling process is now recognized as jailed. The parent process of each process, forked
within the jail, is the program jail itself, as it calls the jail(2) system call. When the program is executed through
execve, it inherits the properties of its parents proc structure, therefore it has thep->p_flag set, and the
p->p_prison structure is filled.

/usr/src/sys/kern/kern_jail.c

p->p.prison = pr;
p->p.flag |= P.JAILED;

When a process is forked from a parent process, the fork(2) system call deals differently with imprisoned processes.
In the fork system call, there are two pointers to aproc structurep1 andp2. p1 points to the parent’sproc structure
and p2 points to the child’s unfilledproc structure. After copying all relevant data between the structures, fork(2)
checks if the structurep->p_prison is filled onp2. If it is, it increments thepr.ref by one, and sets thep_flag to
one on the child process.

/usr/src/sys/kern/kern_fork.c :
if (p2->p_prison) {

p2->p_prison->pr_ref++;
p2->p_flag |= P_JAILED;
}
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4.2 Restrictions
Throughout the kernel there are access restrictions relating to jailed processes. Usually, these restrictions only check
if the process is jailed, and if so, returns an error. For example:

if (p->p_prison)
return EPERM;

4.2.1 SysV IPC

System V IPC is based on messages. Processes can send each other these messages which tell them how to act. The
functions which deal with messages are:msgsys , msgctl , msgget , msgsend andmsgrcv . Earlier, I mentioned that
there were certain sysctls you could turn on or off in order to affect the behavior of Jail. One of these sysctls was
jail_sysvipc_allowed . On most systems, this sysctl is set to 0. If it were set to 1, it would defeat the whole
purpose of having a jail; privleged users from within the jail would be able to affect processes outside of the
environment. The difference between a message and a signal is that the message only consists of the signal number.

/usr/src/sys/kern/sysv_msg.c :

• msgget(3): msgget returns (and possibly creates) a message descriptor that designates a message queue for use in
other system calls.

• msgctl(3): Using this function, a process can query the status of a message descriptor.

• msgsnd(3): msgsnd sends a message to a process.

• msgrcv(3): a process receives messages using this function

In each of these system calls, there is this conditional:

/usr/src/sys/kern/sysv msg.c :
if (!jail.sysvipc.allowed && p->p_prison != NULL)

return (ENOSYS);

Semaphore system calls allow processes to synchronize execution by doing a set of operations atomically on a set of
semaphores. Basically semaphores provide another way for processes lock resources. However, process waiting on a
semaphore, that is being used, will sleep until the resources are relinquished. The following semaphore system calls
are blocked inside a jail:semsys , semget , semctl andsemop.

/usr/src/sys/kern/sysv_sem.c :

• semctl(2)(id, num, cmd, arg) : Semctl does the specified cmd on the semaphore queue indicated by id.

• semget(2)(key, nsems, flag) : Semget creates an array of semaphores, corresponding to key.

Key and flag take on the same meaning as they do in msgget.

• semop(2)(id, ops, num) : Semop does the set of semaphore operations in the array of structures ops, to the set
of semaphores identified by id.

System V IPC allows for processes to share memory. Processes can communicate directly with each other by sharing
parts of their virtual address space and then reading and writing data stored in the shared memory. These system calls
are blocked within a jailed environment:shmdt, shmat, oshmctl, shmctl, shmget , andshmsys .
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/usr/src/sys/kern/sysv shm.c :

• shmctl(2)(id, cmd, buf) : shmctl does various control operations on the shared memory region identified by id.

• shmget(2)(key, size, flag) : shmget accesses or creates a shared memory region of size bytes.

• shmat(2)(id, addr, flag) : shmat attaches a shared memory region identified by id to the address space of a
process.

• shmdt(2)(addr) : shmdt detaches the shared memory region previously attached at addr.

4.2.2 Sockets

Jail treats the socket(2) system call and related lower-level socket functions in a special manner. In order to
determine whether a certain socket is allowed to be created, it first checks to see if the sysctl
jail.socket.unixiproute.only is set. If set, sockets are only allowed to be created if the family specified is
eitherPF_LOCAL, PF_INET or PF_ROUTE. Otherwise, it returns an error.

/usr/src/sys/kern/uipc_socket.c :
int socreate(dom, aso, type, proto, p)
...
register struct protosw *prp;
...
{

if (p->p_prison && jail_socket_unixiproute_only &&
prp->pr_domain->dom_family != PR_LOCAL && prp->pr_domain->dom_family != PF_INET
&& prp->pr_domain->dom_family != PF_ROUTE)

return (EPROTONOSUPPORT);
...
}

4.2.3 Berkeley Packet Filter

The Berkeley Packet Filter provides a raw interface to data link layers in a protocol independent fashion. The
functionbpfopen() opens an Ethernet device. There is a conditional which disallows any jailed processes from
accessing this function.

/usr/src/sys/net/bpf.c :
static int bpfopen(dev, flags, fmt, p)
...
{

if (p->p_prison)
return (EPERM);

...
}
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4.2.4 Protocols

There are certain protocols which are very common, such as TCP, UDP, IP and ICMP. IP and ICMP are on the same
level: the network layer 2. There are certain precautions which are taken in order to prevent a jailed process from
binding a protocol to a certain port only if thenamparameter is set. nam is a pointer to a sockaddr structure, which
describes the address on which to bind the service. A more exact definition is that sockaddr "may be used as a
template for reffering to the identifying tag and length of each address"[2]. In the function inpcbbind , sin is a
pointer to a sockaddr.in structure, which contains the port, address, length and domain family of the socket which is
to be bound. Basically, this disallows any processes from jail to be able to specify the domain family.

/usr/src/sys/kern/netinet/in_pcb.c :
int in.pcbbind(int, nam, p)
...

struct sockaddr *nam;
struct proc *p;

{
...
struct sockaddr.in *sin;
...
if (nam) {

sin = (struct sockaddr.in *)nam;
...
if (sin->sin_addr.s_addr != INADDR_ANY)

if (prison.ip(p, 0, &sin->sin.addr.s_addr))
return (EINVAL);

....
}

...
}

You might be wondering what functionprison_ip() does. prison.ip is given three arguments, the current process
(represented byp), any flags, and an ip address. It returns 1 if the ip address belongs to a jail or 0 if it does not. As
you can see from the code, if it is indeed an ip address belonging to a jail, the protcol is not allowed to bind to a
certain port.

/usr/src/sys/kern/kern_jail.c:

int prison_ip(struct proc *p, int flag, u_int32_t *ip) {
u_int32_t tmp;

if (!p->p_prison)
return (0);

if (flag)
tmp = *ip;

else tmp = ntohl (*ip);

if (tmp == INADDR_ANY) {
if (flag)

*ip = p->p_prison->pr_ip;
else *ip = htonl(p->p_prison->pr_ip);
return (0);

}

if (p->p_prison->pr_ip != tmp)
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return (1);
return (0);

}

Jailed users are not allowed to bind services to an ip which does not belong to the jail. The restriction is also written
within the functionin_pcbbind :

/usr/src/sys/net inet/in_pcb.c

if (nam) {
...
lport = sin->sin.port;
... if (lport) {

...
if (p && p->p_prison)

prison = 1;
if (prison &&

prison_ip(p, 0, &sin->sin_addr.s_addr))
return (EADDRNOTAVAIL);

4.2.5 Filesystem

Even root users within the jail are not allowed to set any file flags, such as immutable, append, and no unlink flags, if
the securelevel is greater than 0.

/usr/src/sys/ufs/ufs/ufs_vnops.c:
int ufs.setattr(ap)

...
{

if ((cred->cr.uid == 0) && (p->prison == NULL)) {
if ((ip->i_flags

& (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) &&
securelevel > 0)

return (EPERM);
}
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Chapter 5 The Sysinit Framework
Sysinit is the framework for a generic call sort and dispatch mechanism. FreeBSD currently uses it for the dynamic
initialization of the kernel. Sysinit allows FreeBSD’s kernel subsystems to be reordered, and added, removed, and
replaced at kernel link time when the kernel or one of its modules is loaded without having to edit a statically ordered
initialization routing and recompile the kernel. This system also allows kernel modules, currently calledKLD’s, to be
separately compiled, linked, and initialized at boot time and loaded even later while the system is already running.
This is accomplished using the “kernel linker” and “linker sets”.

5.1 Terminology

Linker Set

A linker technique in which the linker gathers statically declared data throughout a program’s source files into a
single contiguously addressable unit of data.

5.2 Sysinit Operation
Sysinit relies on the ability of the linker to take static data declared at multiple locations throughout a program’s
source and group it together as a single contiguous chunk of data. This linker technique is called a “linker set”.
Sysinit uses two linker sets to maintain two data sets containing each consumer’s call order, function, and a pointer to
the data to pass to that function.

Sysinit uses two priorities when ordering the functions for execution. The first priority is a subsystem ID giving an
overall order Sysinit’s dispatch of functions. Current predeclared ID’s are in<sys/kernel.h> in the enum list
sysinit_sub_id . The second priority used is an element order within the subsystem. Current predeclared
subsystem element orders are in<sys/kernel.h> in the enum listsysinit_elem_order .

There are currently two uses for Sysinit. Function dispatch at system startup and kernel module loads, and function
dispatch at system shutdown and kernel module unload.

5.3 Using Sysinit

5.3.1 Interface

5.3.1.1 Headers

<sys/kernel.h>

5.3.1.2 Macros

SYSINIT(uniquifier, subsystem, order, func, ident)
SYSUNINIT(uniquifier, subsystem, order, func, ident)
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5.3.2 Startup

TheSYSINIT() macro creates the necessary sysinit data in Sysinit’s startup data set for Sysinit to sort and dispatch a
function at system startup and module load.SYSINIT() takes a uniquifier that Sysinit uses identify the particular
function dispatch data, the subsystem order, the subsystem element order, the function to call, and the data to pass
the function. All functions must take a constant pointer argument.

For example:

#include <sys/kernel.h>

void foo_null(void *unused)
{

foo_doo();
}
SYSINIT(foo_null, SI_SUB_FOO, SI_ORDER_FOO, NULL);

struct foo foo_voodoo = {
FOO_VOODOO;

}

void foo_arg(void *vdata)
{

struct foo *foo = (struct foo *)vdata;
foo_data(foo);

}
SYSINIT(foo_arg, SI_SUB_FOO, SI_ORDER_FOO, foo_voodoo);

5.3.3 Shutdown

TheSYSUNINIT() macro behaves similarly to theSYSINIT() macro except that it adds the Sysinit data to Sysinit’s
shutdown data set.

For example:

#include <sys/kernel.h>

void foo_cleanup(void *unused)
{

foo_kill();
}
SYSUNINIT(foo_cleanup, SI_SUB_FOO, SI_ORDER_FOO, NULL);

struct foo_stack foo_stack = {
FOO_STACK_VOODOO;

}

void foo_flush(void *vdata)
{
}
SYSUNINIT(foo_flush, SI_SUB_FOO, SI_ORDER_FOO, foo_stack);
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Chapter 6 The TrustedBSD MAC Framework
Chris Costello and Robert Watson.

6.1 MAC Documentation Copyright
This documentation was developed for the FreeBSD Project by Chris Costello at Safeport Network Services and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035 (“CBOSS”), as part of the DARPA CHATS research program.

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF
and so forth) with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE NETWORKS ASSOCIATES TECHNOLOGY, INC
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL NETWORKS ASSOCIATES TECHNOLOGY, INC BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6.2 Synopsis
FreeBSD includes experimental support for several mandatory access control policies, as well as a framework for
kernel security extensibility, the TrustedBSD MAC Framework. The MAC Framework provides a pluggable access
control framework, permitting new security policies to be easily linked into the kernel, loaded at boot, or loaded
dynamically at run-time. The framework provides a variety of features to make it easier to implement new policies,
including the ability to easily tag security labels (such as confidentiality information) onto system objects.

This chapter introduces the MAC policy framework and provides documentation for a sample MAC policy module.

6.3 Introduction
The TrustedBSD MAC framework provides a mechanism to allow the compile-time or run-time extension of the
kernel access control model. New system policies may be implemented as kernel modules and linked to the kernel; if
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multiple policy modules are present, their results will be composed. The MAC Framework provides a variety of
access control infrastructure services to assist policy writers, including support for transient and persistent
policy-agnostic object security labels. This support is currently considered experimental.

6.4 Policy Background
Mandatory Access Control (MAC), refers to a set of access control policies that are mandatorily enforced on users by
the operating system. MAC policies may be contrasted with Discretionary Access Control (DAC) protections, by
which non-administrative users may (at their discretion) protect objects. In traditional UNIX systems, DAC
protections include file permissions and access control lists; MAC protections include process controls preventing
inter-user debugging and firewalls. A variety of MAC policies have been formulated by operating system designers
and security researches, including the Multi-Level Security (MLS) confidentiality policy, the Biba integrity policy,
Role-Based Access Control (RBAC), and Type Enforcement (TE). Each model bases decisions on a variety of
factors, including user identity, role, and security clearance, as well as security labels on objects representing
concepts such as data sensitivity and integrity.

The TrustedBSD MAC Framework is capable of supporting policy modules that implement all of these policies, as
well as a broad class of system hardening policies. In addition, despite the name, the MAC Framework can also be
used to implement purely discretionary policies, as policy modules are given substantial flexibility in how they
authorize protections.

6.5 MAC Framework Kernel Architecture
The TrustedBSD MAC Framework permits kernel modules to extend the operating system security policy, as well as
providing infrastructure functionality required by many access control modules. If multiple policies are
simultaneously loaded, the MAC Framework will usefully (for some definition of useful) compose the results of the
policies.

6.5.1 Kernel Elements

The MAC Framework contains a number of kernel elements:

• Framework management interfaces

• Concurrency and synchronization primitives.

• Policy registration

• Extensible security label for kernel objects

• Policy entry point composition operators

• Label management primitives

• Entry point API invoked by kernel services

• Entry point API to policy modules

• Entry points implementations (policy life cycle, object life cycle/label management, access control checks).

• Policy-agnostic label-management system calls
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• mac_syscall() multiplex system call

• Various security policies implemented as MAC policy modules

6.5.2 Management Interfaces

The TrustedBSD MAC Framework may be directly managed using sysctls, loader tunables, and system calls.

In most cases, sysctls and loader tunables modify the same parameters, and control behavior such as enforcement of
protections relating to various kernel subsystems. In addition, if MAC debugging support is compiled into the kernel,
a variety of counters will be maintained tracking label allocation. In most cases, it is advised that per-subsystem
enforcement controls not be used to control policy behavior in production environments, as they broadly impact the
operation of all active policies. Instead, per-policy controls should be preferred to ensure proper policy operation.

Loading and unloading of policy modules is performed using the system module management system calls and other
system interfaces, including loader variables.

6.5.3 Concurrency and Synchronization

As the set of active policies may change at run-time, and the invocation of entry points is non-atomic,
synchronization is required to prevent unloading or loading of new policies while an entry point invocation is
progress, freezing the list of policies for the duration. This is accomplished by means of a Framework busy count.
Whenever an entry point is entered, the busy count is incremented; whenever it is exited, the busy count is
decremented. While the busy count is elevated, policy list changes are not permitted, and threads attempting to
modify the policy list will sleep until the list is not busy. The busy count is protected by a mutex, and a condition
variable is used to wake up sleepers waiting on policy list modifications.

Various optimizations are used to reduce the overhead of the busy count, including avoiding the full cost of
incrementing and decrementing if the list is empty or contains only static entries (policies that are loaded before the
system starts, and cannot be unloaded).

6.5.4 Policy Registration

The MAC Framework maintains two lists of active policies: a static list, and a dynamic list. The lists differ only with
regards to their locking semantics: an elevated reference count is not required to make use of the static list. When
kernel modules containing MAC Framework policies are loaded, the policy module will useSYSINIT to invoke a
registration function; when a policy module is unloaded,SYSINIT will likewise invoke a de-registration function.
Registration may fail if a policy module is loaded more than once, if insufficient resources are available for the
registration (for example, the policy might require labeling and insufficient labeling state might be available), or
other policy prerequisites might not be met (some policies may only be loaded prior to boot). Likewise,
de-registration may fail if a policy refuses an unload.

6.5.5 Entry Points

Kernel services interact with the MAC Framework in two ways: they invoke a series of APIs to notify the framework
of relevant events, and they a policy-agnostic label structure in security-relevant objects. This label structure is
maintained by the MAC Framework via label management entry points, and permits the Framework to offer a
labeling service to policy modules through relatively non-invasive changes to the kernel subsystem maintaining the
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object. For example, label structures have been added to processes, process credentials, sockets, pipes, vnodes,
Mbufs, network interfaces, IP reassembly queues, and a variety of other security-relevant structures. Kernel services
also invoke the MAC Framework when they perform important security decisions, permitting policy modules to
augment those decisions based on their own criteria (possibly including data stored in security labels).

6.5.6 Policy Composition

When more than one policy module is loaded into the kernel at a time, the results of the policy modules will be
composed by the framework using a composition operator. This operator is currently hard-coded, and requires that
all active policies must approve a request for it to occur. As policies may return a variety of error conditions (success,
access denied, object doesn’t exist, ...), a precedence operator selects the resulting error from the set of errors
returned by policies. While it is not guaranteed that the resulting composition will be useful or secure, we’ve found
that it is for many useful selections of policies.

6.5.7 Labeling Support

As many interesting access control extensions rely on security labels on objects, the MAC Framework provides a set
of policy-agnostic label management system calls covering a variety of user-exposed objects. Common label types
include partition identifiers, sensitivity labels, integrity labels, compartments, domains, roles, and types. Policy
modules participate in the internalization and externalization of string-based labels provides by user applications, and
can expose multiple label elements to applications if desired.

In-memory labels are stored in struct label, which consists of a fixed-length array of unions, each holding avoid *

pointer and along . Policies registering for label storage will be assigned a "slot" identifier, which may be used to
dereference the label storage. The semantics of the storage are left entirely up to the policy module: modules are
provided with a variety of entry points associated with the kernel object life cycle, including initialization,
association/creation, and destruction. Using these interfaces, it is possible to implement reference counting and other
storage mechanisms. Direct access to the kernel object is generally not required by policy modules to retrieve a label,
as the MAC Framework generally passes both a pointer to the object and a direct pointer to the object’s label into
entry points.

Initialization entry points frequently include a blocking disposition flag indicating whether or not an initialization is
permitted to block; if blocking is not permitted, a failure may be returned to cancel allocation of the label. This may
occur, for example, in the network stack during interrupt handling, where blocking is not permitted. Due to the
performance cost of maintaining labels on in-flight network packets (Mbufs), policies must specifically declare a
requirement that Mbuf labels be allocated. Dynamically loaded policies making use of labels must be able to handle
the case where their init function has not been called on an object, as objects may already exist when the policy is
loaded.

In the case of file system labels, special support is provided for the persistent storage of security labels in extended
attributes. Where available, EA transactions are used to permit consistent compound updates of security labels on
vnodes.

Note: Currently, if a labeled policy permits dynamic unloading, its state slot cannot be reclaimed.
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6.5.8 System Calls

The MAC Framework implements a number of system calls: most of these calls support the policy-agnostic label
retrieval and manipulation APIs exposed to user applications.

The label management calls accept a label description structure, struct mac, which contains a series of MAC label
elements. Each element contains a character string name, and character string value. Each policy will be given the
chance to claim a particular element name, permitting policies to expose multiple independent elements if desired.
Policy modules perform the internalization and externalization between kernel labels and user-provided labels via
entry points, permitting a variety of semantics. Label management system calls are generally wrapped by user library
functions to perform memory allocation and error handling.

In addition,mac_syscall() permits policy modules to create new system calls without allocating system calls.
mac_execve() permits an atomic process credential label change when executing a new image.

6.6 MAC Policy Architecture
Security policies are either linked directly into the kernel, or compiled into loadable kernel modules that may be
loaded at boot, or dynamically using the module loading system calls at runtime. Policy modules interact with the
system through a set of declared entry points, providing access to a stream of system events and permitting the policy
to influence access control decisions. Each policy contains a number of elements:

• Optional configuration parameters for policy.

• Centralized implementation of the policy logic and parameters.

• Optional implementation of policy life cycle events, such as initialization and destruction.

• Optional support for initializing, maintaining, and destroying labels on selected kernel objects.

• Optional support for user process inspection and modification of labels on selected objects.

• Implementation of selected access control entry points that are of interest to the policy.

• Declaration of policy identity, module entry points, and policy properties.

6.6.1 Policy Declaration

Modules may be declared using theMAC_POLICY_SET() macro, which names the policy, provides a reference to the
MAC entry point vector, provides load-time flags determining how the policy framework should handle the policy,
and optionally requests the allocation of label state by the framework.

static struct mac_policy_ops mac_ policy _ops =
{

.mpo_destroy = mac_ policy _destroy,

.mpo_init = mac_ policy _init,

.mpo_init_bpfdesc_label = mac_ policy _init_bpfdesc_label,

.mpo_init_cred_label = mac_ policy _init_label,
/* ... */

.mpo_check_vnode_setutimes = mac_ policy _check_vnode_setutimes,

.mpo_check_vnode_stat = mac_ policy _check_vnode_stat,

.mpo_check_vnode_write = mac_ policy _check_vnode_write,
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};

The MAC policy entry point vector,mac_policy _ops in this example, associates functions defined in the module
with specific entry points. A complete listing of available entry points and their prototypes may be found in the MAC
entry point reference section. Of specific interest during module registration are the .mpo_destroy and .mpo_init
entry points. .mpo_init will be invoked once a policy is successfully registered with the module framework but prior
to any other entry points becoming active. This permits the policy to perform any policy-specific allocation and
initialization, such as initialization of any data or locks. .mpo_destroy will be invoked when a policy module is
unloaded to permit releasing of any allocated memory and destruction of locks. Currently, these two entry points are
invoked with the MAC policy list mutex held to prevent any other entry points from being invoked: this will be
changed, but in the mean time, policies should be careful about what kernel primitives they invoke so as to avoid lock
ordering or sleeping problems.

The policy declaration’s module name field exists so that the module may be uniquely identified for the purposes of
module dependencies. An appropriate string should be selected. The full string name of the policy is displayed to the
user via the kernel log during load and unload events, and also exported when providing status information to
userland processes.

6.6.2 Policy Flags

The policy declaration flags field permits the module to provide the framework with information about its
capabilities at the time the module is loaded. Currently, three flags are defined:

MPC_LOADTIME_FLAG_UNLOADOK

This flag indicates that the policy module may be unloaded. If this flag is not provided, then the policy
framework will reject requests to unload the module. This flag might be used by modules that allocate label
state and are unable to free that state at runtime.

MPC_LOADTIME_FLAG_NOTLATE

This flag indicates that the policy module must be loaded and initialized early in the boot process. If the flag is
specified, attempts to register the module following boot will be rejected. The flag may be used by policies that
require pervasive labeling of all system objects, and cannot handle objects that have not been properly
initialized by the policy.

MPC_LOADTIME_FLAG_LABELMBUFS

This flag indicates that the policy module requires labeling of Mbufs, and that memory should always be
allocated for the storage of Mbuf labels. By default, the MAC Framework will not allocate label storage for
Mbufs unless at least one loaded policy has this flag set. This measurably improves network performance when
policies do not require Mbuf labeling. A kernel option,MAC_ALWAYS_LABEL_MBUF, exists to force the MAC
Framework to allocate Mbuf label storage regardless of the setting of this flag, and may be useful in some
environments.

Note: Policies using the MPC_LOADTIME_FLAG_LABELMBUFSwithout the MPC_LOADTIME_FLAG_NOTLATEflag set
must be able to correctly handle NULL Mbuf label pointers passed into entry points. This is necessary as in-flight
Mbufs without label storage may persist after a policy enabling Mbuf labeling has been loaded. If a policy is
loaded before the network subsystem is active (i.e., the policy is not being loaded late), then all Mbufs are
guaranteed to have label storage.
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6.6.3 Policy Entry Points

Four classes of entry points are offered to policies registered with the framework: entry points associated with the
registration and management of policies, entry points denoting initialization, creation, destruction, and other life
cycle events for kernel objects, events associated with access control decisions that the policy module may influence,
and calls associated with the management of labels on objects. In addition, amac_syscall() entry point is
provided so that policies may extend the kernel interface without registering new system calls.

Policy module writers should be aware of the kernel locking strategy, as well as what object locks are available
during which entry points. Writers should attempt to avoid deadlock scenarios by avoiding grabbing non-leaf locks
inside of entry points, and also follow the locking protocol for object access and modification. In particular, writers
should be aware that while necessary locks to access objects and their labels are generally held, sufficient locks to
modify an object or its label may not be present for all entry points. Locking information for arguments is
documented in the MAC framework entry point document.

Policy entry points will pass a reference to the object label along with the object itself. This permits labeled policies
to be unaware of the internals of the object yet still make decisions based on the label. The exception to this is the
process credential, which is assumed to be understood by policies as a first class security object in the kernel. Policies
that do not implement labels on kernel objects will be passed NULL pointers for label arguments to entry points.

6.7 MAC Policy Entry Point Reference

6.7.1 General-Purpose Module Entry Points

6.7.1.1 mpo_init

void mpo_init (struct mac_policy_conf * conf );

Parameter Description Locking

conf MAC policy definition

Policy load event. The policy list mutex is held, so caution should be applied.

6.7.1.2 mpo_destroy

void mpo_destroy (struct mac_policy_conf * conf );

Parameter Description Locking
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Parameter Description Locking

conf MAC policy definition

Policy load event. The policy list mutex is held, so caution should be applied.

6.7.1.3 mpo_syscall

int mpo_syscall (struct thread * td , int call , void * arg );

Parameter Description Locking

td Calling thread

call Syscall number

arg Pointer to syscall arguments

This entry point provides a policy-multiplexed system call so that policies may provide additional services to user
processes without registering specific system calls. The policy name provided during registration is used to demux
calls from userland, and the arguments will be forwarded to this entry point. When implementing new services,
security modules should be sure to invoke appropriate access control checks from the MAC framework as needed.
For example, if a policy implements an augmented signal functionality, it should call the necessary signal access
control checks to invoke the MAC framework and other registered policies.

Note: Modules must currently perform the copyin() of the syscall data on their own.

6.7.1.4 mpo_thread_userret

void mpo_thread_userret (struct thread * td );

Parameter Description Locking

td Returning thread

This entry point permits policy modules to perform MAC-related events when a thread returns to user space. This is
required for policies that have floating process labels, as it’s not always possible to acquire the process lock at
arbitrary points in the stack during system call processing; process labels might represent traditional authentication
data, process history information, or other data.
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6.7.2 Label Operations

6.7.2.1 mpo_init_bpfdesc_label

void mpo_init_bpfdesc_label (struct label * label );

Parameter Description Locking

label New label to apply

Initialize the label on a newly instantiated bpfdesc (BPF descriptor)

6.7.2.2 mpo_init_cred_label

void mpo_init_cred_label (struct label * label );

Parameter Description Locking

label New label to initialize

Initialize the label for a newly instantiated user credential.

6.7.2.3 mpo_init_devfsdirent_label

void mpo_init_devfsdirent_label (struct label * label );

Parameter Description Locking

label New label to apply

Initialize the label on a newly instantiated devfs entry.

6.7.2.4 mpo_init_ifnet_label

void mpo_init_ifnet_label (struct label * label );

Parameter Description Locking

label New label to apply

Initialize the label on a newly instantiated network interface.
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6.7.2.5 mpo_init_ipq_label

void mpo_init_ipq_label (struct label * label , int flag );

Parameter Description Locking

label New label to apply

flag Blocking/non-blocking malloc(9); see below

Initialize the label on a newly instantiated IP fragment reassembly queue. Theflag field may be one of
M_WAITOK and M_NOWAIT, and should be employed to avoid performing a blocking malloc(9) during this
initialization call. IP fragment reassembly queue allocation frequently occurs in performance sensitive environments,
and the implementation should be careful to avoid blocking or long-lived operations. This entry point is permitted to
fail resulting in the failure to allocate the IP fragment reassembly queue.

6.7.2.6 mpo_init_mbuf_label

void mpo_init_mbuf_label (int flag , struct label * label );

Parameter Description Locking

flag Blocking/non-blocking malloc(9); see below

label Policy label to initialize

Initialize the label on a newly instantiated mbuf packet header (mbuf ). Theflag field may be one of M_WAITOK
and M_NOWAIT, and should be employed to avoid performing a blocking malloc(9) during this initialization call.
Mbuf allocation frequently occurs in performance sensitive environments, and the implementation should be careful
to avoid blocking or long-lived operations. This entry point is permitted to fail resulting in the failure to allocate the
mbuf header.

6.7.2.7 mpo_init_mount_label

void mpo_init_mount_label (struct label * mntlabel , struct label * fslabel );

Parameter Description Locking

mntlabel Policy label to be initialized for the mount itself

fslabel Policy label to be initialized for the file system

Initialize the labels on a newly instantiated mount point.
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6.7.2.8 mpo_init_mount_fs_label

void mpo_init_mount_fs_label (struct label * label );

Parameter Description Locking

label Label to be initialized

Initialize the label on a newly mounted file system.

6.7.2.9 mpo_init_pipe_label

void mpo_init_pipe_label (struct label* label );

Parameter Description Locking

label Label to be filled in

Initialize a label for a newly instantiated pipe.

6.7.2.10 mpo_init_socket_label

void mpo_init_socket_label (struct label * label , int flag );

Parameter Description Locking

label New label to initialize

flag malloc(9) flags

Initialize a label for a newly instantiated socket.

6.7.2.11 mpo_init_socket_peer_label

void mpo_init_socket_peer_label (struct label * label , int flag );

Parameter Description Locking

label New label to initialize

flag malloc(9) flags

Initialize the peer label for a newly instantiated socket.
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6.7.2.12 mpo_init_proc_label

void mpo_init_proc_label (struct label * label );

Parameter Description Locking

label New label to initialize

Initialize the label for a newly instantiated process.

6.7.2.13 mpo_init_vnode_label

void mpo_init_vnode_label (struct label * label );

Parameter Description Locking

label New label to initialize

Initialize the label on a newly instantiated vnode.

6.7.2.14 mpo_destroy_bpfdesc_label

void mpo_destroy_bpfdesc_label (struct label * label );

Parameter Description Locking

label bpfdesc label

Destroy the label on a BPF descriptor. In this entry point a policy should free any internal storage associated with
label so that it may be destroyed.

6.7.2.15 mpo_destroy_cred_label

void mpo_destroy_cred_label (struct label * label );

Parameter Description Locking

label Label being destroyed

Destroy the label on a credential. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.
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6.7.2.16 mpo_destroy_devfsdirent_label

void mpo_destroy_devfsdirent_label (struct label * label );

Parameter Description Locking

label Label being destroyed

Destroy the label on a devfs entry. In this entry point, a policy module should free any internal storage associated
with label so that it may be destroyed.

6.7.2.17 mpo_destroy_ifnet_label

void mpo_destroy_ifnet_label (struct label * label );

Parameter Description Locking

label Label being destroyed

Destroy the label on a removed interface. In this entry point, a policy module should free any internal storage
associated withlabel so that it may be destroyed.

6.7.2.18 mpo_destroy_ipq_label

void mpo_destroy_ipq_label (struct label * label );

Parameter Description Locking

label Label being destroyed

Destroy the label on an IP fragment queue. In this entry point, a policy module should free any internal storage
associated withlabel so that it may be destroyed.

6.7.2.19 mpo_destroy_mbuf_label

void mpo_destroy_mbuf_label (struct label * label );

Parameter Description Locking

label Label being destroyed
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Destroy the label on an mbuf header. In this entry point, a policy module should free any internal storage associated
with label so that it may be destroyed.

6.7.2.20 mpo_destroy_mount_label

void mpo_destroy_mount_label (struct label * label );

Parameter Description Locking

label Mount point label being destroyed

Destroy the labels on a mount point. In this entry point, a policy module should free the internal storage associated
with mntlabel so that they may be destroyed.

6.7.2.21 mpo_destroy_mount_label

void mpo_destroy_mount_label (struct label * mntlabel , struct label * fslabel );

Parameter Description Locking

mntlabel Mount point label being destroyed

fslabel File system label being destroyed>

Destroy the labels on a mount point. In this entry point, a policy module should free the internal storage associated
with mntlabel andfslabel so that they may be destroyed.

6.7.2.22 mpo_destroy_socket_label

void mpo_destroy_socket_label (struct label * label );

Parameter Description Locking

label Socket label being destroyed

Destroy the label on a socket. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.23 mpo_destroy_socket_peer_label

void mpo_destroy_socket_peer_label (struct label * peerlabel );
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Parameter Description Locking

peerlabel Socket peer label being destroyed

Destroy the peer label on a socket. In this entry point, a policy module should free any internal storage associated
with label so that it may be destroyed.

6.7.2.24 mpo_destroy_pipe_label

void mpo_destroy_pipe_label (struct label * label );

Parameter Description Locking

label Pipe label

Destroy the label on a pipe. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.25 mpo_destroy_proc_label

void mpo_destroy_proc_label (struct label * label );

Parameter Description Locking

label Process label

Destroy the label on a process. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.26 mpo_destroy_vnode_label

void mpo_destroy_vnode_label (struct label * label );

Parameter Description Locking

label Process label

Destroy the label on a vnode. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.
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6.7.2.27 mpo_copy_mbuf_label

void mpo_copy_mbuf_label (struct label * src , struct label * dest );

Parameter Description Locking

src Source label

dest Destination label

Copy the label information insrc into dest .

6.7.2.28 mpo_copy_pipe_label

void mpo_copy_pipe_label (struct label * src , struct label * dest );

Parameter Description Locking

src Source label

dest Destination label

Copy the label information insrc into dest .

6.7.2.29 mpo_copy_vnode_label

void mpo_copy_vnode_label (struct label * src , struct label * dest );

Parameter Description Locking

src Source label

dest Destination label

Copy the label information insrc into dest .

6.7.2.30 mpo_externalize_cred_label

int mpo_externalize_cred_label (struct label * label , char * element_name , struct sbuf
* sb , int *claimed );

Parameter Description Locking
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Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

claimed Should be incremented whenelement_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill insb . If element_name does not match the name of your policy,
simply return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data , *claimed should be incremented.

6.7.2.31 mpo_externalize_ifnet_label

int mpo_externalize_ifnet_label (struct label * label , char * element_name , struct sbuf
* sb , int *claimed );

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

claimed Should be incremented whenelement_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill insb . If element_name does not match the name of your policy,
simply return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data , *claimed should be incremented.

6.7.2.32 mpo_externalize_pipe_label

int mpo_externalize_pipe_label (struct label * label , char * element_name , struct sbuf
* sb , int *claimed );

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label
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Parameter Description Locking

claimed Should be incremented whenelement_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill insb . If element_name does not match the name of your policy,
simply return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data , *claimed should be incremented.

6.7.2.33 mpo_externalize_socket_label

int mpo_externalize_socket_label (struct label * label , char * element_name , struct sbuf
* sb , int *claimed );

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

claimed Should be incremented whenelement_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill insb . If element_name does not match the name of your policy,
simply return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data , *claimed should be incremented.

6.7.2.34 mpo_externalize_socket_peer_label

int mpo_externalize_socket_peer_label (struct label * label , char * element_name , struct
sbuf * sb , int *claimed );

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

claimed Should be incremented whenelement_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
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policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill insb . If element_name does not match the name of your policy,
simply return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data , *claimed should be incremented.

6.7.2.35 mpo_externalize_vnode_label

int mpo_externalize_vnode_label (struct label * label , char * element_name , struct sbuf
* sb , int *claimed );

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

claimed Should be incremented whenelement_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill insb . If element_name does not match the name of your policy,
simply return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data , *claimed should be incremented.

6.7.2.36 mpo_internalize_cred_label

int mpo_internalize_cred_label (struct label * label , char * element_name , char
* element_data , int * claimed );

Parameter Description Locking

label Label to be filled in

element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents ofelement_name to its own name in order to be sure it should be internalizing the data in
element_data . Just as in theexternalize entry points, the entry point should return 0 ifelement_name
does not match its own name, or when data can successfully be internalized, in which case*claimed should be
incremented.
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6.7.2.37 mpo_internalize_ifnet_label

int mpo_internalize_ifnet_label (struct label * label , char * element_name , char
* element_data , int * claimed );

Parameter Description Locking

label Label to be filled in

element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents ofelement_name to its own name in order to be sure it should be internalizing the data in
element_data . Just as in theexternalize entry points, the entry point should return 0 ifelement_name
does not match its own name, or when data can successfully be internalized, in which case*claimed should be
incremented.

6.7.2.38 mpo_internalize_pipe_label

int mpo_internalize_pipe_label (struct label * label , char * element_name , char
* element_data , int * claimed );

Parameter Description Locking

label Label to be filled in

element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents ofelement_name to its own name in order to be sure it should be internalizing the data in
element_data . Just as in theexternalize entry points, the entry point should return 0 ifelement_name
does not match its own name, or when data can successfully be internalized, in which case*claimed should be
incremented.

6.7.2.39 mpo_internalize_socket_label

int mpo_internalize_socket_label (struct label * label , char * element_name , char
* element_data , int * claimed );
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Parameter Description Locking

label Label to be filled in

element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents ofelement_name to its own name in order to be sure it should be internalizing the data in
element_data . Just as in theexternalize entry points, the entry point should return 0 ifelement_name
does not match its own name, or when data can successfully be internalized, in which case*claimed should be
incremented.

6.7.2.40 mpo_internalize_vnode_label

int mpo_internalize_vnode_label (struct label * label , char * element_name , char
* element_data , int * claimed );

Parameter Description Locking

label Label to be filled in

element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents ofelement_name to its own name in order to be sure it should be internalizing the data in
element_data . Just as in theexternalize entry points, the entry point should return 0 ifelement_name
does not match its own name, or when data can successfully be internalized, in which case*claimed should be
incremented.

6.7.3 Label Events

This class of entry points is used by the MAC framework to permit policies to maintain label information on kernel
objects. For each labeled kernel object of interest to a MAC policy, entry points may be registered for relevant life
cycle events. All objects implement initialization, creation, and destruction hooks. Some objects will also implement
relabeling, allowing user processes to change the labels on objects. Some objects will also implement object-specific
events, such as label events associated with IP reassembly. A typical labeled object will have the following life cycle
of entry points:

Label initialization o
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(object-specific wait) \
Label creation o

\
Relabel events, o--<--.
Various object-specific, | |
Access control events ~-->--o

\
Label destruction o

Label initialization permits policies to allocate memory and set initial values for labels without context for the use of
the object. The label slot allocated to a policy will be zeroed by default, so some policies may not need to perform
initialization.

Label creation occurs when the kernel structure is associated with an actual kernel object. For example, Mbufs may
be allocated and remain unused in a pool until they are required. mbuf allocation causes label initialization on the
mbuf to take place, but mbuf creation occurs when the mbuf is associated with a datagram. Typically, context will be
provided for a creation event, including the circumstances of the creation, and labels of other relevant objects in the
creation process. For example, when an mbuf is created from a socket, the socket and its label will be presented to
registered policies in addition to the new mbuf and its label. Memory allocation in creation events is discouraged, as
it may occur in performance sensitive ports of the kernel; in addition, creation calls are not permitted to fail so a
failure to allocate memory cannot be reported.

Object specific events do not generally fall into the other broad classes of label events, but will generally provide an
opportunity to modify or update the label on an object based on additional context. For example, the label on an IP
fragment reassembly queue may be updated during the MAC_UPDATE_IPQ entry point as a result of the acceptance
of an additional mbuf to that queue.

Access control events are discussed in detail in the following section.

Label destruction permits policies to release storage or state associated with a label during its association with an
object so that the kernel data structures supporting the object may be reused or released.

In addition to labels associated with specific kernel objects, an additional class of labels exists: temporary labels.
These labels are used to store update information submitted by user processes. These labels are initialized and
destroyed as with other label types, but the creation event is MAC_INTERNALIZE, which accepts a user label to be
converted to an in-kernel representation.

6.7.3.1 File System Object Labeling Event Operations

6.7.3.1.1 mpo_associate_vnode_devfs

void mpo_associate_vnode_devfs (struct mount * mp, struct label * fslabel , struct
devfs_dirent * de , struct label * delabel , struct vnode * vp , struct label * vlabel );

Parameter Description Locking

mp Devfs mount point

fslabel Devfs file system label (mp->mnt_fslabel )

de Devfs directory entry
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Parameter Description Locking

delabel Policy label associated withde

vp vnode associated withde

vlabel Policy label associated withvp

Fill in the label (vlabel ) for a newly created devfs vnode based on the devfs directory entry passed inde and its
label.

6.7.3.1.2 mpo_associate_vnode_extattr

int mpo_associate_vnode_extattr (struct mount * mp, struct label * fslabel , struct vnode
* vp , struct label * vlabel );

Parameter Description Locking

mp File system mount point

fslabel File system label

vp Vnode to label

vlabel Policy label associated withvp

Attempt to retrieve the label forvp from the file system extended attributes. Upon success, the value0 is returned.
Should extended attribute retrieval not be supported, an accepted fallback is to copyfslabel into vlabel . In the
event of an error, an appropriate value forerrno should be returned.

6.7.3.1.3 mpo_associate_vnode_singlelabel

void mpo_associate_vnode_singlelabel (struct mount * mp, struct label * fslabel , struct
vnode * vp , struct label * vlabel );

Parameter Description Locking

mp File system mount point

fslabel File system label

vp Vnode to label

vlabel Policy label associated withvp

On non-multilabel file systems, this entry point is called to set the policy label forvp based on the file system label,
fslabel .
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6.7.3.1.4 mpo_create_devfs_device

void mpo_create_devfs_device (dev_t dev , struct devfs_dirent * devfs_dirent , struct
label * label );

Parameter Description Locking

dev Device corresponding withdevfs_dirent

devfs_dirent Devfs directory entry to be labeled.

label Label fordevfs_dirent to be filled in.

Fill out the label on a devfs_dirent being created for the passed device. This call will be made when the device file
system is mounted, regenerated, or a new device is made available.

6.7.3.1.5 mpo_create_devfs_directory

void mpo_create_devfs_directory (char * dirname , int dirnamelen , struct devfs_dirent
* devfs_dirent , struct label * label );

Parameter Description Locking

dirname Name of directory being created

namelen Length of stringdirname

devfs_dirent Devfs directory entry for directory being created.

Fill out the label on a devfs_dirent being created for the passed directory. This call will be made when the device file
system is mounted, regenerated, or a new device requiring a specific directory hierarchy is made available.

6.7.3.1.6 mpo_create_devfs_symlink

void mpo_create_devfs_symlink (struct ucred * cred , struct mount * mp, struct
devfs_dirent * dd , struct label * ddlabel , struct devfs_dirent * de , struct label
* delabel );

Parameter Description Locking

cred Subject credential

mp Devfs mount point

dd Link destination

ddlabel Label associated withdd

de Symlink entry
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Parameter Description Locking

delabel Label associated withde

Fill in the label (delabel ) for a newly created devfs(5) symbolic link entry.

6.7.3.1.7 mpo_create_vnode_extattr

int mpo_create_vnode_extattr (struct ucred * cred , struct mount * mp, struct label
* fslabel , struct vnode * dvp , struct label * dlabel , struct vnode * vp , struct label
* vlabel , struct componentname * cnp );

Parameter Description Locking

cred Subject credential

mount File system mount point

label File system label

dvp Parent directory vnode

dlabel Label associated withdvp

vp Newly created vnode

vlabel Policy label associated withvp

cnp Component name forvp

Write out the label forvp to the appropriate extended attribute. If the write succeeds, fill invlabel with the label,
and return 0. Otherwise, return an appropriate error.

6.7.3.1.8 mpo_create_mount

void mpo_create_mount (struct ucred * cred , struct mount * mp, struct label * mnt , struct
label * fslabel );

Parameter Description Locking

cred Subject credential

mp Object; file system being mounted

mntlabel Policy label to be filled in formp

fslabel Policy label for the file systemmpmounts.

Fill out the labels on the mount point being created by the passed subject credential. This call will be made when a
new file system is mounted.
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6.7.3.1.9 mpo_create_root_mount

void mpo_create_root_mount (struct ucred * cred , struct mount * mp, struct label
* mntlabel , struct label * fslabel );

Parameter Description Locking

SeeSection 6.7.3.1.8.

Fill out the labels on the mount point being created by the passed subject credential. This call will be made when the
root file system is mounted, after mpo_create_mount;.

6.7.3.1.10 mpo_relabel_vnode

void mpo_relabel_vnode (struct ucred * cred , struct vnode * vp , struct label * vnodelabel ,
struct label * newlabel );

Parameter Description Locking

cred Subject credential

vp vnode to relabel

vnodelabel Existing policy label forvp

newlabel New, possibly partial label to replacevnodelabel

Update the label on the passed vnode given the passed update vnode label and the passed subject credential.

6.7.3.1.11 mpo_setlabel_vnode_extattr

int mpo_setlabel_vnode_extattr (struct ucred * cred , struct vnode * vp , struct label
* vlabel , struct label * intlabel );

Parameter Description Locking

cred Subject credential

vp Vnode for which the label is being written

vlabel Policy label associated withvp

intlabel Label to write out

Write out the policy fromintlabel to an extended attribute. This is called fromvop_stdcreatevnode_ea .
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6.7.3.1.12 mpo_update_devfsdirent

void mpo_update_devfsdirent (struct devfs_dirent * devfs_dirent , struct label
* direntlabel , struct vnode * vp , struct label * vnodelabel );

Parameter Description Locking

devfs_dirent Object; devfs directory entry

direntlabel Policy label fordevfs_dirent to be updated.

vp Parent vnode Locked

vnodelabel Policy label forvp

Update thedevfs_dirent label from the passed devfs vnode label. This call will be made when a devfs vnode
has been successfully relabeled to commit the label change such that it lasts even if the vnode is recycled. It will also
be made when when a symlink is created in devfs, following a call tomac_vnode_create_from_vnode to
initialize the vnode label.

6.7.3.2 IPC Object Labeling Event Operations

6.7.3.2.1 mpo_create_mbuf_from_socket

void mpo_create_mbuf_from_socket (struct socket * so , struct label * socketlabel , struct
mbuf * m, struct label * mbuflabel );

Parameter Description Locking

socket Socket Socket locking WIP

socketlabel Policy label forsocket

m Object; mbuf

mbuflabel Policy label to fill in form

Set the label on a newly created mbuf header from the passed socket label. This call is made when a new datagram or
message is generated by the socket and stored in the passed mbuf.

6.7.3.2.2 mpo_create_pipe

void mpo_create_pipe (struct ucred * cred , struct pipe * pipe , struct label * pipelabel );

Parameter Description Locking

cred Subject credential
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Parameter Description Locking

pipe Pipe

pipelabel Policy label associated withpipe

Set the label on a newly created pipe from the passed subject credential. This call is made when a new pipe is created.

6.7.3.2.3 mpo_create_socket

void mpo_create_socket (struct ucred * cred , struct socket * so , struct label
* socketlabel );

Parameter Description Locking

cred Subject credential Immutable

so Object; socket to label

socketlabel Label to fill in for so

Set the label on a newly created socket from the passed subject credential. This call is made when a socket is created.

6.7.3.2.4 mpo_create_socket_from_socket

void mpo_create_socket_from_socket (struct socket * oldsocket , struct label
* oldsocketlabel , struct socket * newsocket , struct label * newsocketlabel );

Parameter Description Locking

oldsocket Listening socket

oldsocketlabel Policy label associated witholdsocket

newsocket New socket

newsocketlabel Policy label associated withnewsocketlabel

Label a socket,newsocket , newly accept(2)ed, based on the listen(2) socket,oldsocket .

6.7.3.2.5 mpo_relabel_pipe

void mpo_relabel_pipe (struct ucred * cred , struct pipe * pipe , struct label * oldlabel ,
struct label * newlabel );

Parameter Description Locking

cred Subject credential
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Parameter Description Locking

pipe Pipe

oldlabel Current policy label associated withpipe

newlabel Policy label update to apply topipe

Apply a new label,newlabel , to pipe .

6.7.3.2.6 mpo_relabel_socket

void mpo_relabel_socket (struct ucred * cred , struct socket * so , struct label * oldlabel ,
struct label * newlabel );

Parameter Description Locking

cred Subject credential Immutable

so Object; socket

oldlabel Current label forso

newlabel Label update forso

Update the label on a socket from the passed socket label update.

6.7.3.2.7 mpo_set_socket_peer_from_mbuf

void mpo_set_socket_peer_from_mbuf (struct mbuf * mbuf , struct label * mbuflabel , struct
label * oldlabel , struct label * newlabel );

Parameter Description Locking

mbuf First datagram received over socket

mbuflabel Label formbuf

oldlabel Current label for the socket

newlabel Policy label to be filled out for the socket

Set the peer label on a stream socket from the passed mbuf label. This call will be made when the first datagram is
received by the stream socket, with the exception of Unix domain sockets.

6.7.3.2.8 mpo_set_socket_peer_from_socket

void mpo_set_socket_peer_from_socket (struct socket * oldsocket , struct label
* oldsocketlabel , struct socket * newsocket , struct label * newsocketpeerlabel );
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Parameter Description Locking

oldsocket Local socket

oldsocketlabel Policy label foroldsocket

newsocket Peer socket

newsocketpeerlabel Policy label to fill in fornewsocket

Set the peer label on a stream UNIX domain socket from the passed remote socket endpoint. This call will be made
when the socket pair is connected, and will be made for both endpoints.

6.7.3.3 Network Object Labeling Event Operations

6.7.3.3.1 mpo_create_bpfdesc

void mpo_create_bpfdesc (struct ucred * cred , struct bpf_d * bpf_d , struct label
* bpflabel );

Parameter Description Locking

cred Subject credential Immutable

bpf_d Object; bpf descriptor

bpf Policy label to be filled in forbpf_d

Set the label on a newly created BPF descriptor from the passed subject credential. This call will be made when a
BPF device node is opened by a process with the passed subject credential.

6.7.3.3.2 mpo_create_ifnet

void mpo_create_ifnet (struct ifnet * ifnet , struct label * ifnetlabel );

Parameter Description Locking

ifnet Network interface

ifnetlabel Policy label to fill in for ifnet

Set the label on a newly created interface. This call may be made when a new physical interface becomes available to
the system, or when a pseudo-interface is instantiated during the boot or as a result of a user action.

6.7.3.3.3 mpo_create_ipq

void mpo_create_ipq (struct mbuf * fragment , struct label * fragmentlabel , struct ipq
* ipq , struct label * ipqlabel );
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Parameter Description Locking

fragment First received IP fragment

fragmentlabel Policy label forfragment

ipq IP reassembly queue to be labeled

ipqlabel Policy label to be filled in foripq

Set the label on a newly created IP fragment reassembly queue from the mbuf header of the first received fragment.

6.7.3.3.4 mpo_create_datagram_from_ipq

void mpo_create_create_datagram_from_ipq (struct ipq * ipq , struct label * ipqlabel ,
struct mbuf * datagram , struct label * datagramlabel );

Parameter Description Locking

ipq IP reassembly queue

ipqlabel Policy label foripq

datagram Datagram to be labeled

datagramlabel Policy label to be filled in fordatagramlabel

Set the label on a newly reassembled IP datagram from the IP fragment reassembly queue from which it was
generated.

6.7.3.3.5 mpo_create_fragment

void mpo_create_fragment (struct mbuf * datagram , struct label * datagramlabel , struct
mbuf * fragment , struct label * fragmentlabel );

Parameter Description Locking

datagram Datagram

datagramlabel Policy label fordatagram

fragment Fragment to be labeled

fragmentlabel Policy label to be filled in fordatagram

Set the label on the mbuf header of a newly created IP fragment from the label on the mbuf header of the datagram it
was generate from.
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6.7.3.3.6 mpo_create_mbuf_from_mbuf

void mpo_create_mbuf_from_mbuf (struct mbuf * oldmbuf , struct label * oldmbuflabel ,
struct mbuf * newmbuf , struct label * newmbuflabel );

Parameter Description Locking

oldmbuf Existing (source) mbuf

oldmbuflabel Policy label foroldmbuf

newmbuf New mbuf to be labeled

newmbuflabel Policy label to be filled in fornewmbuf

Set the label on the mbuf header of a newly created datagram from the mbuf header of an existing datagram. This
call may be made in a number of situations, including when an mbuf is re-allocated for alignment purposes.

6.7.3.3.7 mpo_create_mbuf_linklayer

void mpo_create_mbuf_linklayer (struct ifnet * ifnet , struct label * ifnetlabel , struct
mbuf * mbuf , struct label * mbuflabel );

Parameter Description Locking

ifnet Network interface

ifnetlabel Policy label forifnet

mbuf mbuf header for new datagram

mbuflabel Policy label to be filled in formbuf

Set the label on the mbuf header of a newly created datagram generated for the purposes of a link layer response for
the passed interface. This call may be made in a number of situations, including for ARP or ND6 responses in the
IPv4 and IPv6 stacks.

6.7.3.3.8 mpo_create_mbuf_from_bpfdesc

void mpo_create_mbuf_from_bpfdesc (struct bpf_d * bpf_d , struct label * bpflabel , struct
mbuf * mbuf , struct label * mbuflabel );

Parameter Description Locking

bpf_d BPF descriptor

bpflabel Policy label forbpflabel

mbuf New mbuf to be labeled
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Parameter Description Locking

mbuflabel Policy label to fill in formbuf

Set the label on the mbuf header of a newly created datagram generated using the passed BPF descriptor. This call is
made when a write is performed to the BPF device associated with the passed BPF descriptor.

6.7.3.3.9 mpo_create_mbuf_from_ifnet

void mpo_create_mbuf_from_ifnet (struct ifnet * ifnet , struct label * ifnetlabel , struct
mbuf * mbuf , struct label * mbuflabel );

Parameter Description Locking

ifnet Network interface

ifnetlabel Policy label forifnetlabel

mbuf mbuf header for new datagram

mbuflabel Policy label to be filled in formbuf

Set the label on the mbuf header of a newly created datagram generated from the passed network interface.

6.7.3.3.10 mpo_create_mbuf_multicast_encap

void mpo_create_mbuf_multicast_encap (struct mbuf * oldmbuf , struct label * oldmbuflabel ,
struct ifnet * ifnet , struct label * ifnetlabel , struct mbuf * newmbuf , struct label
* newmbuflabel );

Parameter Description Locking

oldmbuf mbuf header for existing datagram

oldmbuflabel Policy label foroldmbuf

ifnet Network interface

ifnetlabel Policy label forifnet

newmbuf mbuf header to be labeled for new datagram

newmbuflabel Policy label to be filled in fornewmbuf

Set the label on the mbuf header of a newly created datagram generated from the existing passed datagram when it is
processed by the passed multicast encapsulation interface. This call is made when an mbuf is to be delivered using
the virtual interface.
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6.7.3.3.11 mpo_create_mbuf_netlayer

void mpo_create_mbuf_netlayer (struct mbuf * oldmbuf , struct label * oldmbuflabel , struct
mbuf * newmbuf , struct label * newmbuflabel );

Parameter Description Locking

oldmbuf Received datagram

oldmbuflabel Policy label foroldmbuf

newmbuf Newly created datagram

newmbuflabel Policy label fornewmbuf

Set the label on the mbuf header of a newly created datagram generated by the IP stack in response to an existing
received datagram (oldmbuf ). This call may be made in a number of situations, including when responding to
ICMP request datagrams.

6.7.3.3.12 mpo_fragment_match

int mpo_fragment_match (struct mbuf * fragment , struct label * fragmentlabel , struct ipq
* ipq , struct label * ipqlabel );

Parameter Description Locking

fragment IP datagram fragment

fragmentlabel Policy label forfragment

ipq IP fragment reassembly queue

ipqlabel Policy label foripq

Determine whether an mbuf header containing an IP datagram (fragment ) fragment matches the label of the
passed IP fragment reassembly queue (ipq ). Return (1) for a successful match, or (0) for no match. This call is
made when the IP stack attempts to find an existing fragment reassembly queue for a newly received fragment; if this
fails, a new fragment reassembly queue may be instantiated for the fragment. Policies may use this entry point to
prevent the reassembly of otherwise matching IP fragments if policy does not permit them to be reassembled based
on the label or other information.

6.7.3.3.13 mpo_relabel_ifnet

void mpo_relabel_ifnet (struct ucred * cred , struct ifnet * ifnet , struct label
* ifnetlabel , struct label * newlabel );

Parameter Description Locking
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Parameter Description Locking

cred Subject credential

ifnet Object; Network interface

ifnetlabel Policy label forifnet

newlabel Label update to apply toifnet

Update the label of network interface,ifnet , based on the passed update label,newlabel , and the passed subject
credential,cred .

6.7.3.3.14 mpo_update_ipq

void mpo_update_ipq (struct mbuf * fragment , struct label * fragmentlabel , struct ipq
* ipq , struct label * ipqlabel );

Parameter Description Locking

mbuf IP fragment

mbuflabel Policy label formbuf

ipq IP fragment reassembly queue

ipqlabel Policy label to be updated foripq

Update the label on an IP fragment reassembly queue (ipq ) based on the acceptance of the passed IP fragment mbuf
header (mbuf ).

6.7.3.4 Process Labeling Event Operations

6.7.3.4.1 mpo_create_cred

void mpo_create_cred (struct ucred * parent_cred , struct ucred * child_cred );

Parameter Description Locking

parent_cred Parent subject credential

child_cred Child subject credential

Set the label of a newly created subject credential from the passed subject credential. This call will be made when
crcopy(9) is invoked on a newly created struct ucred. This call should not be confused with a process forking or
creation event.
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6.7.3.4.2 mpo_execve_transition

void mpo_execve_transition (struct ucred * old , struct ucred * new, struct vnode * vp ,
struct label * vnodelabel );

Parameter Description Locking

old Existing subject credential Immutable

new New subject credential to be labeled

vp File to execute Locked

vnodelabel Policy label forvp

Update the label of a newly created subject credential (new) from the passed existing subject credential (old ) based
on a label transition caused by executing the passed vnode (vp ). This call occurs when a process executes the passed
vnode and one of the policies returns a success from thempo_execve_will_transition entry point. Policies may
choose to implement this call simply by invokingmpo_create_cred and passing the two subject credentials so as
not to implement a transitioning event. Policies should not leave this entry point unimplemented if they implement
mpo_create_cred , even if they do not implementmpo_execve_will_transition .

6.7.3.4.3 mpo_execve_will_transition

int mpo_execve_will_transition (struct ucred * old , struct vnode * vp , struct label
* vnodelabel );

Parameter Description Locking

old Subject credential prior to execve(2)Immutable

vp File to execute

vnodelabel Policy label forvp

Determine whether the policy will want to perform a transition event as a result of the execution of the passed vnode
by the passed subject credential. Return 1 if a transition is required, 0 if not. Even if a policy returns 0, it should
behave correctly in the presence of an unexpected invocation ofmpo_execve_transition , as that call may happen
as a result of another policy requesting a transition.

6.7.3.4.4 mpo_create_proc0

void mpo_create_proc0 (struct ucred * cred );

Parameter Description Locking

cred Subject credential to be filled in
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Create the subject credential of process 0, the parent of all kernel processes.

6.7.3.4.5 mpo_create_proc1

void mpo_create_proc1 (struct ucred * cred );

Parameter Description Locking

cred Subject credential to be filled in

Create the subject credential of process 1, the parent of all user processes.

6.7.3.4.6 mpo_relabel_cred

void mpo_relabel_cred (struct ucred * cred , struct label * newlabel );

Parameter Description Locking

cred Subject credential

newlabel Label update to apply tocred

Update the label on a subject credential from the passed update label.

6.7.4 Access Control Checks

Access control entry points permit policy modules to influence access control decisions made by the kernel.
Generally, although not always, arguments to an access control entry point will include one or more authorizing
credentials, information (possibly including a label) for any other objects involved in the operation. An access
control entry point may return 0 to permit the operation, or an errno(2) error value. The results of invoking the entry
point across various registered policy modules will be composed as follows: if all modules permit the operation to
succeed, success will be returned. If one or modules returns a failure, a failure will be returned. If more than one
module returns a failure, the errno value to return to the user will be selected using the following precedence,
implemented by theerror_select() function inkern_mac.c :

Most precedence EDEADLK

EINVAL

ESRCH

EACCES

Least precedence EPERM

If none of the error values returned by all modules are listed in the precedence chart then an arbitrarily selected value
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from the set will be returned. In general, the rules provide precedence to errors in the following order: kernel failures,
invalid arguments, object not present, access not permitted, other.

6.7.4.1 mpo_check_bpfdesc_receive

int mpo_check_bpfdesc_receive (struct bpf_d * bpf_d , struct label * bpflabel , struct
ifnet * ifnet , struct label * ifnetlabel );

Parameter Description Locking

bpf_d Subject; BPF descriptor

bpflabel Policy label forbpf_d

ifnet Object; network interface

ifnetlabel Policy label forifnet

Determine whether the MAC framework should permit datagrams from the passed interface to be delivered to the
buffers of the passed BPF descriptor. Return (0) for success, or anerrno value for failure Suggested failure:
EACCES for label mismatches, EPERM for lack of privilege.

6.7.4.2 mpo_check_kenv_dump

int mpo_check_kenv_dump (struct ucred * cred );

Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to retrieve the kernel environment (see kenv(2)).

6.7.4.3 mpo_check_kenv_get

int mpo_check_kenv_get (struct ucred * cred , char * name);

Parameter Description Locking

cred Subject credential

name Kernel environment variable name

Determine whether the subject should be allowed to retrieve the value of the specified kernel environment variable.
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6.7.4.4 mpo_check_kenv_set

int mpo_check_kenv_set (struct ucred * cred , char * name);

Parameter Description Locking

cred Subject credential

name Kernel environment variable name

Determine whether the subject should be allowed to set the specified kernel environment variable.

6.7.4.5 mpo_check_kenv_unset

int mpo_check_kenv_unset (struct ucred * cred , char * name);

Parameter Description Locking

cred Subject credential

name Kernel environment variable name

Determine whether the subject should be allowed to unset the specified kernel environment variable.

6.7.4.6 mpo_check_kld_load

int mpo_check_kld_load (struct ucred * cred , struct vnode * vp , struct label * vlabel );

Parameter Description Locking

cred Subject credential

vp Kernel module vnode

vlabel Label associated withvp

Determine whether the subject should be allowed to load the specified module file.

6.7.4.7 mpo_check_kld_stat

int mpo_check_kld_stat (struct ucred * cred );

Parameter Description Locking
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Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to retrieve a list of loaded kernel module files and associated
statistics.

6.7.4.8 mpo_check_kld_unload

int mpo_check_kld_unload (struct ucred * cred );

Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to unload a kernel module.

6.7.4.9 mpo_check_pipe_ioctl

int mpo_check_pipe_ioctl (struct ucred * cred , struct pipe * pipe , struct label
* pipelabel , unsigned long cmd, void * data );

Parameter Description Locking

cred Subject credential

pipe Pipe

pipelabel Policy label associated withpipe

cmd ioctl(2) command

data ioctl(2) data

Determine whether the subject should be allowed to make the specified ioctl(2) call.

6.7.4.10 mpo_check_pipe_poll

int mpo_check_pipe_poll (struct ucred * cred , struct pipe * pipe , struct label
* pipelabel );

Parameter Description Locking

cred Subject credential

pipe Pipe

pipelabel Policy label associated withpipe
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Determine whether the subject should be allowed to pollpipe .

6.7.4.11 mpo_check_pipe_read

int mpo_check_pipe_read (struct ucred * cred , struct pipe * pipe , struct label
* pipelabel );

Parameter Description Locking

cred Subject credential

pipe Pipe

pipelabel Policy label associated withpipe

Determine whether the subject should be allowed read access topipe .

6.7.4.12 mpo_check_pipe_relabel

int mpo_check_pipe_relabel (struct ucred * cred , struct pipe * pipe , struct label
* pipelabel , struct label * newlabel );

Parameter Description Locking

cred Subject credential

pipe Pipe

pipelabel Current policy label associated withpipe

newlabel Label update topipelabel

Determine whether the subject should be allowed to relabelpipe .

6.7.4.13 mpo_check_pipe_stat

int mpo_check_pipe_stat (struct ucred * cred , struct pipe * pipe , struct label
* pipelabel );

Parameter Description Locking

cred Subject credential

pipe Pipe

pipelabel Policy label associated withpipe

Determine whether the subject should be allowed to retrieve statistics related topipe .
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6.7.4.14 mpo_check_pipe_write

int mpo_check_pipe_write (struct ucred * cred , struct pipe * pipe , struct label
* pipelabel );

Parameter Description Locking

cred Subject credential

pipe Pipe

pipelabel Policy label associated withpipe

Determine whether the subject should be allowed to write topipe .

6.7.4.15 mpo_check_socket_bind

int mpo_check_socket_bind (struct ucred * cred , struct socket * socket , struct label
* socketlabel , struct sockaddr * sockaddr );

Parameter Description Locking

cred Subject credential

socket Socket to be bound

socketlabel Policy label forsocket

sockaddr Address ofsocket

6.7.4.16 mpo_check_socket_connect

int mpo_check_socket_connect (struct ucred * cred , struct socket * socket , struct label
* socketlabel , struct sockaddr * sockaddr );

Parameter Description Locking

cred Subject credential

socket Socket to be connected

socketlabel Policy label forsocket

sockaddr Address ofsocket

Determine whether the subject credential (cred ) can connect the passed socket (socket ) to the passed socket
address (sockaddr ). Return 0 for success, or anerrno value for failure. Suggested failure: EACCES for label
mismatches, EPERM for lack of privilege.
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6.7.4.17 mpo_check_socket_receive

int mpo_check_socket_receive (struct ucred * cred , struct socket * so , struct label
* socketlabel );

Parameter Description Locking

cred Subject credential

so Socket

socketlabel Policy label associated withso

Determine whether the subject should be allowed to receive information from the socketso .

6.7.4.18 mpo_check_socket_send

int mpo_check_socket_send (struct ucred * cred , struct socket * so , struct label
* socketlabel );

Parameter Description Locking

cred Subject credential

so Socket

socketlabel Policy label associated withso

Determine whether the subject should be allowed to send information across the socketso .

6.7.4.19 mpo_check_cred_visible

int mpo_check_cred_visible (struct ucred * u1 , struct ucred * u2);

Parameter Description Locking

u1 Subject credential

u2 Object credential

Determine whether the subject credentialu1 can “see” other subjects with the passed subject credentialu2 . Return 0
for success, or anerrno value for failure. Suggested failure: EACCES for label mismatches, EPERM for lack of
privilege, or ESRCH to hide visibility. This call may be made in a number of situations, including inter-process
status sysctls used byps , and in procfs lookups.
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6.7.4.20 mpo_check_socket_visible

int mpo_check_socket_visible (struct ucred * cred , struct socket * socket , struct label
* socketlabel );

Parameter Description Locking

cred Subject credential

socket Object; socket

socketlabel Policy label forsocket

6.7.4.21 mpo_check_ifnet_relabel

int mpo_check_ifnet_relabel (struct ucred * cred , struct ifnet * ifnet , struct label
* ifnetlabel , struct label * newlabel );

Parameter Description Locking

cred Subject credential

ifnet Object; network interface

ifnetlabel Existing policy label forifnet

newlabel Policy label update to later be applied toifnet

Determine whether the subject credential can relabel the passed network interface to the passed label update.

6.7.4.22 mpo_check_socket_relabel

int mpo_check_socket_relabel (struct ucred * cred , struct socket * socket , struct label
* socketlabel , struct label * newlabel );

Parameter Description Locking

cred Subject credential

socket Object; socket

socketlabel Existing policy label forsocket

newlabel Label update to later be applied tosocketlabel

Determine whether the subject credential can relabel the passed socket to the passed label update.
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6.7.4.23 mpo_check_cred_relabel

int mpo_check_cred_relabel (struct ucred * cred , struct label * newlabel );

Parameter Description Locking

cred Subject credential

newlabel Label update to later be applied tocred

Determine whether the subject credential can relabel itself to the passed label update.

6.7.4.24 mpo_check_vnode_relabel

int mpo_check_vnode_relabel (struct ucred * cred , struct vnode * vp , struct label
* vnodelabel , struct label * newlabel );

Parameter Description Locking

cred Subject credential Immutable

vp Object; vnode Locked

vnodelabel Existing policy label forvp

newlabel Policy label update to later be applied tovp

Determine whether the subject credential can relabel the passed vnode to the passed label update.

6.7.4.25 mpo_check_mount_stat

int mpo_check_mount_stat (struct ucred * cred , struct mount * mp, struct label
* mountlabel );

Parameter Description Locking

cred Subject credential

mp Object; file system mount

mountlabel Policy label formp

Determine whether the subject credential can see the results of a statfs performed on the file system. Return 0 for
success, or anerrno value for failure. Suggested failure: EACCES for label mismatches or EPERM for lack of
privilege. This call may be made in a number of situations, including during invocations of statfs(2) and related calls,
as well as to determine what file systems to exclude from listings of file systems, such as when getfsstat(2) is invoked.
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6.7.4.26 mpo_check_proc_debug

int mpo_check_proc_debug (struct ucred * cred , struct proc * proc );

Parameter Description Locking

cred Subject credentialImmutable

proc Object; process

Determine whether the subject credential can debug the passed process. Return 0 for success, or anerrno value for
failure. Suggested failure: EACCES for label mismatch, EPERM for lack of privilege, or ESRCH to hide visibility of
the target. This call may be made in a number of situations, including use of the ptrace(2) and ktrace(2) APIs, as well
as for some types of procfs operations.

6.7.4.27 mpo_check_vnode_access

int mpo_check_vnode_access (struct ucred * cred , struct vnode * vp , struct label * label ,
int flags );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

flags access(2) flags

Determine how invocations of access(2) and related calls by the subject credential should return when performed on
the passed vnode using the passed access flags. This should generally be implemented using the same semantics used
in mpo_check_vnode_open . Return 0 for success, or anerrno value for failure. Suggested failure: EACCES for
label mismatches or EPERM for lack of privilege.

6.7.4.28 mpo_check_vnode_chdir

int mpo_check_vnode_chdir (struct ucred * cred , struct vnode * dvp , struct label
* dlabel );

Parameter Description Locking

cred Subject credential

dvp Object; vnode to chdir(2) into

dlabel Policy label fordvp
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Determine whether the subject credential can change the process working directory to the passed vnode. Return 0 for
success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.29 mpo_check_vnode_chroot

int mpo_check_vnode_chroot (struct ucred * cred , struct vnode * dvp , struct label
* dlabel );

Parameter Description Locking

cred Subject credential

dvp Directory vnode

dlabel Policy label associated withdvp

Determine whether the subject should be allowed to chroot(2) into the specified directory (dvp ).

6.7.4.30 mpo_check_vnode_create

int mpo_check_vnode_create (struct ucred * cred , struct vnode * dvp , struct label
* dlabel , struct componentname * cnp , struct vattr * vap );

Parameter Description Locking

cred Subject credential

dvp Object; vnode

dlabel Policy label fordvp

cnp Component name fordvp

vap vnode attributes forvap

Determine whether the subject credential can create a vnode with the passed parent directory, passed name
information, and passed attribute information. Return 0 for success, or anerrno value for failure. Suggested failure:
EACCES. for label mismatch, or EPERM for lack of privilege. This call may be made in a number of situations,
including as a result of calls to open(2) with O_CREAT, mknod(2), mkfifo(2), and others.

6.7.4.31 mpo_check_vnode_delete

int mpo_check_vnode_delete (struct ucred * cred , struct vnode * dvp , struct label
* dlabel , struct vnode * vp , void * label , struct componentname * cnp );
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Parameter Description Locking

cred Subject credential

dvp Parent directory vnode

dlabel Policy label fordvp

vp Object; vnode to delete

label Policy label forvp

cnp Component name forvp

Determine whether the subject credential can delete a vnode from the passed parent directory and passed name
information. Return 0 for success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or
EPERM for lack of privilege. This call may be made in a number of situations, including as a result of calls to
unlink(2) and rmdir(2). Policies implementing this entry point should also implementmpo_check_rename_to to
authorize deletion of objects as a result of being the target of a rename.

6.7.4.32 mpo_check_vnode_deleteacl

int mpo_check_vnode_deleteacl (struct ucred * cred , struct vnode * vp , struct label
* label , acl_type_t type );

Parameter Description Locking

cred Subject credentialImmutable

vp Object; vnode Locked

label Policy label forvp

type ACL type

Determine whether the subject credential can delete the ACL of passed type from the passed vnode. Return 0 for
success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.33 mpo_check_vnode_exec

int mpo_check_vnode_exec (struct ucred * cred , struct vnode * vp , struct label * label );

Parameter Description Locking

cred Subject credential

vp Object; vnode to execute

label Policy label forvp

Determine whether the subject credential can execute the passed vnode. Determination of execute privilege is made
separately from decisions about any transitioning event. Return 0 for success, or anerrno value for failure.
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Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.34 mpo_check_vnode_getacl

int mpo_check_vnode_getacl (struct ucred * cred , struct vnode * vp , struct label * label ,
acl_type_t type );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

type ACL type

Determine whether the subject credential can retrieve the ACL of passed type from the passed vnode. Return 0 for
success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.35 mpo_check_vnode_getextattr

int mpo_check_vnode_getextattr (struct ucred * cred , struct vnode * vp , struct label
* label , int attrnamespace , const char * name, struct uio * uio );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

attrnamespace Extended attribute namespace

name Extended attribute name

uio I/O structure pointer; see uio(9)

Determine whether the subject credential can retrieve the extended attribute with the passed namespace and name
from the passed vnode. Policies implementing labeling using extended attributes may be interested in special
handling of operations on those extended attributes. Return 0 for success, or anerrno value for failure. Suggested
failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.36 mpo_check_vnode_link

int mpo_check_vnode_link (struct ucred * cred , struct vnode * dvp , struct label * dlabel ,
struct vnode * vp , struct label * label , struct componentname * cnp );
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Parameter Description Locking

cred Subject credential

dvp Directory vnode

dlabel Policy label associated withdvp

vp Link destination vnode

label Policy label associated withvp

cnp Component name for the link being created

Determine whether the subject should be allowed to create a link to the vnodevp with the name specified bycnp .

6.7.4.37 mpo_check_vnode_mmap

int mpo_check_vnode_mmap (struct ucred * cred , struct vnode * vp , struct label * label ,
int prot );

Parameter Description Locking

cred Subject credential

vp Vnode to map

label Policy label associated withvp

prot Mmap protections (see mmap(2))

Determine whether the subject should be allowed to map the vnodevp with the protections specified inprot .

6.7.4.38 mpo_check_vnode_mmap_downgrade

void mpo_check_vnode_mmap_downgrade (struct ucred * cred , struct vnode * vp , struct label
* label , int * prot );

Parameter Description Locking

cred SeeSection 6.7.4.37.

vp

label

prot Mmap protections to be downgraded

Downgrade the mmap protections based on the subject and object labels.
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6.7.4.39 mpo_check_vnode_mprotect

int mpo_check_vnode_mprotect (struct ucred * cred , struct vnode * vp , struct label
* label , int prot );

Parameter Description Locking

cred Subject credential

vp Mapped vnode

prot Memory protections

Determine whether the subject should be allowed to set the specified memory protections on memory mapped from
the vnodevp .

6.7.4.40 mpo_check_vnode_poll

int mpo_check_vnode_poll (struct ucred * active_cred , struct ucred * file_cred , struct
vnode * vp , struct label * label );

Parameter Description Locking

active_cred Subject credential

file_cred Credential associated with the struct file

vp Polled vnode

label Policy label associated withvp

Determine whether the subject should be allowed to poll the vnodevp .

6.7.4.41 mpo_check_vnode_rename_from

int mpo_vnode_rename_from (struct ucred * cred , struct vnode * dvp , struct label * dlabel ,
struct vnode * vp , struct label * label , struct componentname * cnp );

Parameter Description Locking

cred Subject credential

dvp Directory vnode

dlabel Policy label associated withdvp

vp Vnode to be renamed

label Policy label associated withvp

cnp Component name forvp
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Determine whether the subject should be allowed to rename the vnodevp to something else.

6.7.4.42 mpo_check_vnode_rename_to

int mpo_check_vnode_rename_to (struct ucred * cred , struct vnode * dvp , struct label
* dlabel , struct vnode * vp , struct label * label , int samedir , struct componentname
* cnp );

Parameter Description Locking

cred Subject credential

dvp Directory vnode

dlabel Policy label associated withdvp

vp Overwritten vnode

label Policy label associated withvp

samedir Boolean;1 if the source and destination directories are the same

cnp Destination component name

Determine whether the subject should be allowed to rename to the vnodevp , into the directorydvp , or to the name
represented bycnp . If there is no existing file to overwrite,vp andlabel will be NULL.

6.7.4.43 mpo_check_socket_listen

int mpo_check_socket_listen (struct ucred * cred , struct socket * socket , struct label
* socketlabel );

Parameter Description Locking

cred Subject credential

socket Object; socket

socketlabel Policy label forsocket

Determine whether the subject credential can listen on the passed socket. Return 0 for success, or anerrno value for
failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.44 mpo_check_vnode_lookup

int mpo_check_vnode_lookup (struct ucred *cred, struct vnode *dvp, struct label
*dlabel, struct componentname * cnp );
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Parameter Description Locking

cred Subject credential

dvp Object; vnode

dlabel Policy label fordvp

cnp Component name being looked up

Determine whether the subject credential can perform a lookup in the passed directory vnode for the passed name.
Return 0 for success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for
lack of privilege.

6.7.4.45 mpo_check_vnode_open

int mpo_check_vnode_open (struct ucred * cred , struct vnode * vp , struct label * label ,
int acc_mode );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

acc_mode open(2) access mode

Determine whether the subject credential can perform an open operation on the passed vnode with the passed access
mode. Return 0 for success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM
for lack of privilege.

6.7.4.46 mpo_check_vnode_readdir

int mpo_check_vnode_readdir (struct ucred *cred, struct vnode *dvp, struct label
*dlabel);

Parameter Description Locking

cred Subject credential

dvp Object; directory vnode

dlabel Policy label fordvp

Determine whether the subject credential can perform areaddir operation on the passed directory vnode. Return 0
for success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.
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6.7.4.47 mpo_check_vnode_readlink

int mpo_check_vnode_readlink (struct ucred * cred , struct vnode * vp , struct label
* label );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

Determine whether the subject credential can perform areadlink operation on the passed symlink vnode. Return 0
for success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege. This call may be made in a number of situations, including an explicitreadlink call by the user process,
or as a result of an implicitreadlink during a name lookup by the process.

6.7.4.48 mpo_check_vnode_revoke

int mpo_check_vnode_revoke (struct ucred * cred , struct vnode * vp , struct label * label );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

Determine whether the subject credential can revoke access to the passed vnode. Return 0 for success, or anerrno

value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.49 mpo_check_vnode_setacl

int mpo_check_vnode_setacl (struct ucred * cred , struct vnode * vp , struct label * label ,
acl_type_t type , struct acl * acl );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

type ACL type

acl ACL
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Determine whether the subject credential can set the passed ACL of passed type on the passed vnode. Return 0 for
success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.50 mpo_check_vnode_setextattr

int mpo_check_vnode_setextattr (struct ucred * cred , struct vnode * vp , struct label
* label , int attrnamespace , const char * name, struct uio * uio );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

attrnamespace Extended attribute namespace

name Extended attribute name

uio I/O structure pointer; see uio(9)

Determine whether the subject credential can set the extended attribute of passed name and passed namespace on the
passed vnode. Policies implementing security labels backed into extended attributes may want to provide additional
protections for those attributes. Additionally, policies should avoid making decisions based on the data referenced
from uio , as there is a potential race condition between this check and the actual operation. Theuio may also be
NULL if a delete operation is being performed. Return 0 for success, or anerrno value for failure. Suggested failure:
EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.51 mpo_check_vnode_setflags

int mpo_check_vnode_setflags (struct ucred * cred , struct vnode * vp , struct label
* label , u_long flags );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

flags File flags; see chflags(2)

Determine whether the subject credential can set the passed flags on the passed vnode. Return 0 for success, or an
errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.
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6.7.4.52 mpo_check_vnode_setmode

int mpo_check_vnode_setmode (struct ucred * cred , struct vnode * vp , struct label * label ,
mode_t mode);

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

mode File mode; see chmod(2)

Determine whether the subject credential can set the passed mode on the passed vnode. Return 0 for success, or an
errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.53 mpo_check_vnode_setowner

int mpo_check_vnode_setowner (struct ucred * cred , struct vnode * vp , struct label
* label , uid_t uid , gid_t gid );

Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

uid User ID

gid Group ID

Determine whether the subject credential can set the passed uid and passed gid as file uid and file gid on the passed
vnode. The IDs may be set to (-1 ) to request no update. Return 0 for success, or anerrno value for failure.
Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.54 mpo_check_vnode_setutimes

int mpo_check_vnode_setutimes (struct ucred *cred, struct vnode *vp, struct label
*label, struct timespec atime, struct timespec mtime);

Parameter Description Locking

cred Subject credential

vp Object; vp
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Parameter Description Locking

label Policy label forvp

atime Access time; see utimes(2)

mtime Modification time; see utimes(2)

Determine whether the subject credential can set the passed access timestamps on the passed vnode. Return 0 for
success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.55 mpo_check_proc_sched

int mpo_check_proc_sched (struct ucred * ucred , struct proc * proc );

Parameter Description Locking

cred Subject credential

proc Object; process

Determine whether the subject credential can change the scheduling parameters of the passed process. Return 0 for
success, or anerrno value for failure. Suggested failure: EACCES for label mismatch, EPERM for lack of privilege,
or ESRCH to limit visibility.

See setpriority(2) for more information.

6.7.4.56 mpo_check_proc_signal

int mpo_check_proc_signal (struct ucred * cred , struct proc * proc , int signal );

Parameter Description Locking

cred Subject credential

proc Object; process

signal Signal; see kill(2)

Determine whether the subject credential can deliver the passed signal to the passed process. Return 0 for success, or
anerrno value for failure. Suggested failure: EACCES for label mismatch, EPERM for lack of privilege, or ESRCH
to limit visibility.

6.7.4.57 mpo_check_vnode_stat

int mpo_check_vnode_stat (struct ucred * cred , struct vnode * vp , struct label * label );
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Parameter Description Locking

cred Subject credential

vp Object; vnode

label Policy label forvp

Determine whether the subject credential canstat the passed vnode. Return 0 for success, or anerrno value for
failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

See stat(2) for more information.

6.7.4.58 mpo_check_ifnet_transmit

int mpo_check_ifnet_transmit (struct ucred * cred , struct ifnet * ifnet , struct label
* ifnetlabel , struct mbuf * mbuf , struct label * mbuflabel );

Parameter Description Locking

cred Subject credential

ifnet Network interface

ifnetlabel Policy label forifnet

mbuf Object; mbuf to be sent

mbuflabel Policy label formbuf

Determine whether the network interface can transmit the passed mbuf. Return 0 for success, or anerrno value for
failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.59 mpo_check_socket_deliver

int mpo_check_socket_deliver (struct ucred * cred , struct ifnet * ifnet , struct label
* ifnetlabel , struct mbuf * mbuf , struct label * mbuflabel );

Parameter Description Locking

cred Subject credential

ifnet Network interface

ifnetlabel Policy label forifnet

mbuf Object; mbuf to be delivered

mbuflabel Policy label formbuf

Determine whether the socket may receive the datagram stored in the passed mbuf header. Return 0 for success, or an
errno value for failure. Suggested failures: EACCES for label mismatch, or EPERM for lack of privilege.
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6.7.4.60 mpo_check_socket_visible

int mpo_check_socket_visible (struct ucred * cred , struct socket * so , struct label
* socketlabel );

Parameter Description Locking

cred Subject credentialImmutable

so Object; socket

socketlabel Policy label forso

Determine whether the subject credential cred can "see" the passed socket (socket ) using system monitoring
functions, such as those employed by netstat(8) and sockstat(1). Return 0 for success, or anerrno value for failure.
Suggested failure: EACCES for label mismatches, EPERM for lack of privilege, or ESRCH to hide visibility.

6.7.4.61 mpo_check_system_acct

int mpo_check_system_acct (struct ucred * ucred , struct vnode * vp , struct label
* vlabel );

Parameter Description Locking

ucred Subject credential

vp Accounting file; acct(5)

vlabel Label associated withvp

Determine whether the subject should be allowed to enable accounting, based on its label and the label of the
accounting log file.

6.7.4.62 mpo_check_system_nfsd

int mpo_check_system_nfsd (struct ucred * cred );

Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to call nfssvc(2).
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6.7.4.63 mpo_check_system_reboot

int mpo_check_system_reboot (struct ucred * cred , int howto );

Parameter Description Locking

cred Subject credential

howto howto parameter from reboot(2)

Determine whether the subject should be allowed to reboot the system in the specified manner.

6.7.4.64 mpo_check_system_settime

int mpo_check_system_settime (struct ucred * cred );

Parameter Description Locking

cred Subject credential

Determine whether the user should be allowed to set the system clock.

6.7.4.65 mpo_check_system_swapon

int mpo_check_system_swapon (struct ucred * cred , struct vnode * vp , struct label
* vlabel );

Parameter Description Locking

cred Subject credential

vp Swap device

vlabel Label associated withvp

Determine whether the subject should be allowed to addvp as a swap device.

6.7.4.66 mpo_check_system_sysctl

int mpo_check_system_sysctl (struct ucred * cred , int * name, u_int * namelen , void * old ,
size_t * oldlenp , int inkernel , void * new, size_t newlen );

Parameter Description Locking
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Parameter Description Locking

cred Subject credential

name See sysctl(3)

namelen

old

oldlenp

inkernel Boolean;1 if called from kernel

new See sysctl(3)

newlen

Determine whether the subject should be allowed to make the specified sysctl(3) transaction.

6.7.5 Label Management Calls

Relabel events occur when a user process has requested that the label on an object be modified. A two-phase update
occurs: first, an access control check will be performed to determine if the update is both valid and permitted, and
then the update itself is performed via a separate entry point. Relabel entry points typically accept the object, object
label reference, and an update label submitted by the process. Memory allocation during relabel is discouraged, as
relabel calls are not permitted to fail (failure should be reported earlier in the relabel check).

6.8 Userland Architecture
The TrustedBSD MAC Framework includes a number of policy-agnostic elements, including MAC library interfaces
for abstractly managing labels, modifications to the system credential management and login libraries to support the
assignment of MAC labels to users, and a set of tools to monitor and modify labels on processes, files, and network
interfaces. More details on the user architecture will be added to this section in the near future.

6.8.1 APIs for Policy-Agnostic Label Management

The TrustedBSD MAC Framework provides a number of library and system calls permitting applications to manage
MAC labels on objects using a policy-agnostic interface. This permits applications to manipulate labels for a variety
of policies without being written to support specific policies. These interfaces are used by general-purpose tools such
as ifconfig(8), ls(1) and ps(1) to view labels on network interfaces, files, and processes. The APIs also support MAC
management tools including getfmac(8), getpmac(8), setfmac(8), setfsmac(8), and setpmac(8). The MAC APIs are
documented in mac(3).

Applications handle MAC labels in two forms: an internalized form used to return and set labels on processes and
objects (mac_t ), and externalized form based on C strings appropriate for storage in configuration files, display to
the user, or input from the user. Each MAC label contains a number of elements, each consisting of a name and value
pair. Policy modules in the kernel bind to specific names and interpret the values in policy-specific ways. In the
externalized string form, labels are represented by a comma-delimited list of name and value pairs separated by the/

character. Labels may be directly converted to and from text using provided APIs; when retrieving labels from the
kernel, internalized label storage must first be prepared for the desired label element set. Typically, this is done in one
of two ways: using mac_prepare(3) and an arbitrary list of desired label elements, or one of the variants of the call
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that loads a default element set from the mac.conf(5) configuration file. Per-object defaults permit application writers
to usefully display labels associated with objects without being aware of the policies present in the system.

Note: Currently, direct manipulation of label elements other than by conversion to a text string, string editing, and
conversion back to an internalized label is not supported by the MAC library. Such interfaces may be added in the
future if they prove necessary for application writers.

6.8.2 Binding of Labels to Users

The standard user context management interface, setusercontext(3), has been modified to retrieve MAC labels
associated with a user’s class from login.conf(5). These labels are then set along with other user context when either
LOGIN_SETALL is specified, or whenLOGIN_SETMACis explicitly specified.

Note: It is expected that, in a future version of FreeBSD, the MAC label database will be separated from the
login.conf user class abstraction, and be maintained in a separate database. However, the setusercontext(3)
API should remain the same following such a change.

6.9 Conclusion
The TrustedBSD MAC framework permits kernel modules to augment the system security policy in a highly
integrated manner. They may do this based on existing object properties, or based on label data that is maintained
with the assistance of the MAC framework. The framework is sufficiently flexible to implement a variety of policy
types, including information flow security policies such as MLS and Biba, as well as policies based on existing BSD
credentials or file protections. Policy authors may wish to consult this documentation as well as existing security
modules when implementing a new security service.
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Chapter 7 Virtual Memory System
Contributed by Matthew Dillon.

7.1 Management of physical memory— vm_page_t

Physical memory is managed on a page-by-page basis through thevm_page_t structure. Pages of physical memory
are categorized through the placement of their respectivevm_page_t structures on one of several paging queues.

A page can be in a wired, active, inactive, cache, or free state. Except for the wired state, the page is typically placed
in a doubly link list queue representing the state that it is in. Wired pages are not placed on any queue.

FreeBSD implements a more involved paging queue for cached and free pages in order to implement page coloring.
Each of these states involves multiple queues arranged according to the size of the processor’s L1 and L2 caches.
When a new page needs to be allocated, FreeBSD attempts to obtain one that is reasonably well aligned from the
point of view of the L1 and L2 caches relative to the VM object the page is being allocated for.

Additionally, a page may be held with a reference count or locked with a busy count. The VM system also
implements an “ultimate locked” state for a page using the PG_BUSY bit in the page’s flags.

In general terms, each of the paging queues operates in a LRU fashion. A page is typically placed in a wired or active
state initially. When wired, the page is usually associated with a page table somewhere. The VM system ages the
page by scanning pages in a more active paging queue (LRU) in order to move them to a less-active paging queue.
Pages that get moved into the cache are still associated with a VM object but are candidates for immediate reuse.
Pages in the free queue are truly free. FreeBSD attempts to minimize the number of pages in the free queue, but a
certain minimum number of truly free pages must be maintained in order to accommodate page allocation at
interrupt time.

If a process attempts to access a page that does not exist in its page table but does exist in one of the paging queues
(such as the inactive or cache queues), a relatively inexpensive page reactivation fault occurs which causes the page
to be reactivated. If the page does not exist in system memory at all, the process must block while the page is brought
in from disk.

FreeBSD dynamically tunes its paging queues and attempts to maintain reasonable ratios of pages in the various
queues as well as attempts to maintain a reasonable breakdown of clean vs. dirty pages. The amount of rebalancing
that occurs depends on the system’s memory load. This rebalancing is implemented by the pageout daemon and
involves laundering dirty pages (syncing them with their backing store), noticing when pages are activity referenced
(resetting their position in the LRU queues or moving them between queues), migrating pages between queues when
the queues are out of balance, and so forth. FreeBSD’s VM system is willing to take a reasonable number of
reactivation page faults to determine how active or how idle a page actually is. This leads to better decisions being
made as to when to launder or swap-out a page.

7.2 The unified buffer cache— vm_object_t

FreeBSD implements the idea of a generic “VM object”. VM objects can be associated with backing store of various
types—unbacked, swap-backed, physical device-backed, or file-backed storage. Since the filesystem uses the same
VM objects to manage in-core data relating to files, the result is a unified buffer cache.

VM objects can beshadowed. That is, they can be stacked on top of each other. For example, you might have a
swap-backed VM object stacked on top of a file-backed VM object in order to implement a MAP_PRIVATE
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mmap()ing. This stacking is also used to implement various sharing properties, including copy-on-write, for forked
address spaces.

It should be noted that avm_page_t can only be associated with one VM object at a time. The VM object
shadowing implements the perceived sharing of the same page across multiple instances.

7.3 Filesystem I/O— struct buf

vnode-backed VM objects, such as file-backed objects, generally need to maintain their own clean/dirty info
independent from the VM system’s idea of clean/dirty. For example, when the VM system decides to synchronize a
physical page to its backing store, the VM system needs to mark the page clean before the page is actually written to
its backing store. Additionally, filesystems need to be able to map portions of a file or file metadata into KVM in
order to operate on it.

The entities used to manage this are known as filesystem buffers,struct buf ’s, or bp ’s. When a filesystem needs
to operate on a portion of a VM object, it typically maps part of the object into a struct buf and the maps the pages in
the struct buf into KVM. In the same manner, disk I/O is typically issued by mapping portions of objects into buffer
structures and then issuing the I/O on the buffer structures. The underlying vm_page_t’s are typically busied for the
duration of the I/O. Filesystem buffers also have their own notion of being busy, which is useful to filesystem driver
code which would rather operate on filesystem buffers instead of hard VM pages.

FreeBSD reserves a limited amount of KVM to hold mappings from struct bufs, but it should be made clear that this
KVM is used solely to hold mappings and does not limit the ability to cache data. Physical data caching is strictly a
function ofvm_page_t ’s, not filesystem buffers. However, since filesystem buffers are used to placehold I/O, they
do inherently limit the amount of concurrent I/O possible. However, as there are usually a few thousand filesystem
buffers available, this is not usually a problem.

7.4 Mapping Page Tables— vm_map_t, vm_entry_t

FreeBSD separates the physical page table topology from the VM system. All hard per-process page tables can be
reconstructed on the fly and are usually considered throwaway. Special page tables such as those managing KVM are
typically permanently preallocated. These page tables are not throwaway.

FreeBSD associates portions of vm_objects with address ranges in virtual memory throughvm_map_t and
vm_entry_t structures. Page tables are directly synthesized from thevm_map_t /vm_entry_t / vm_object_t

hierarchy. Recall that I mentioned that physical pages are only directly associated with avm_object ; that is not
quite true.vm_page_t ’s are also linked into page tables that they are actively associated with. Onevm_page_t can
be linked into severalpmaps, as page tables are called. However, the hierarchical association holds, so all references
to the same page in the same object reference the samevm_page_t and thus give us buffer cache unification across
the board.

7.5 KVM Memory Mapping
FreeBSD uses KVM to hold various kernel structures. The single largest entity held in KVM is the filesystem buffer
cache. That is, mappings relating tostruct buf entities.

Unlike Linux, FreeBSD doesnot map all of physical memory into KVM. This means that FreeBSD can handle
memory configurations up to 4G on 32 bit platforms. In fact, if the mmu were capable of it, FreeBSD could
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theoretically handle memory configurations up to 8TB on a 32 bit platform. However, since most 32 bit platforms are
only capable of mapping 4GB of ram, this is a moot point.

KVM is managed through several mechanisms. The main mechanism used to manage KVM is thezone allocator.
The zone allocator takes a chunk of KVM and splits it up into constant-sized blocks of memory in order to allocate a
specific type of structure. You can usevmstat -m to get an overview of current KVM utilization broken down by
zone.

7.6 Tuning the FreeBSD VM system
A concerted effort has been made to make the FreeBSD kernel dynamically tune itself. Typically you do not need to
mess with anything beyond themaxusers andNMBCLUSTERSkernel config options. That is, kernel compilation
options specified in (typically)/usr/src/sys/i386/conf/ CONFIG_FILE . A description of all available kernel
configuration options can be found in/usr/src/sys/i386/conf/LINT .

In a large system configuration you may wish to increasemaxusers . Values typically range from 10 to 128. Note
that raisingmaxusers too high can cause the system to overflow available KVM resulting in unpredictable
operation. It is better to leavemaxusers at some reasonable number and add other options, such asNMBCLUSTERS,
to increase specific resources.

If your system is going to use the network heavily, you may want to increaseNMBCLUSTERS. Typical values range
from 1024 to 4096.

TheNBUFparameter is also traditionally used to scale the system. This parameter determines the amount of KVA the
system can use to map filesystem buffers for I/O. Note that this parameter has nothing whatsoever to do with the
unified buffer cache! This parameter is dynamically tuned in 3.0-CURRENT and later kernels and should generally
not be adjusted manually. We recommend that younot try to specify anNBUFparameter. Let the system pick it. Too
small a value can result in extremely inefficient filesystem operation while too large a value can starve the page
queues by causing too many pages to become wired down.

By default, FreeBSD kernels are not optimized. You can set debugging and optimization flags with the
makeoptions directive in the kernel configuration. Note that you should not use-g unless you can accommodate
the large (typically 7 MB+) kernels that result.

makeoptions DEBUG="-g"
makeoptions COPTFLAGS="-O -pipe"

Sysctl provides a way to tune kernel parameters at run-time. You typically do not need to mess with any of the sysctl
variables, especially the VM related ones.

Run time VM and system tuning is relatively straightforward. First, use Soft Updates on your UFS/FFS filesystems
whenever possible./usr/src/sys/ufs/ffs/README.softupdates contains instructions (and restrictions) on
how to configure it.

Second, configure sufficient swap. You should have a swap partition configured on each physical disk, up to four,
even on your “work” disks. You should have at least 2x the swap space as you have main memory, and possibly even
more if you do not have a lot of memory. You should also size your swap partition based on the maximum memory
configuration you ever intend to put on the machine so you do not have to repartition your disks later on. If you want
to be able to accommodate a crash dump, your first swap partition must be at least as large as main memory and
/var/crash must have sufficient free space to hold the dump.
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NFS-based swap is perfectly acceptable on 4.X or later systems, but you must be aware that the NFS server will take
the brunt of the paging load.
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Chapter 8 SMPng Design Document
John Baldwin and Robert Watson.

8.1 Introduction
This document presents the current design and implementation of the SMPng Architecture. First, the basic primitives
and tools are introduced. Next, a general architecture for the FreeBSD kernel’s synchronization and execution model
is laid out. Then, locking strategies for specific subsystems are discussed, documenting the approaches taken to
introduce fine-grained synchronization and parallelism for each subsystem. Finally, detailed implementation notes
are provided to motivate design choices, and make the reader aware of important implications involving the use of
specific primitives.

This document is a work-in-progress, and will be updated to reflect on-going design and implementation activities
associated with the SMPng Project. Many sections currently exist only in outline form, but will be fleshed out as
work proceeds. Updates or suggestions regarding the document may be directed to the document editors.

The goal of SMPng is to allow concurrency in the kernel. The kernel is basically one rather large and complex
program. To make the kernel multi-threaded we use some of the same tools used to make other programs
multi-threaded. These include mutexes, shared/exclusive locks, semaphores, and condition variables. For the
definitions of these and other SMP-related terms, please see theGlossarysection of this article.

8.2 Basic Tools and Locking Fundamentals

8.2.1 Atomic Instructions and Memory Barriers

There are several existing treatments of memory barriers and atomic instructions, so this section will not include a lot
of detail. To put it simply, one can not go around reading variables without a lock if a lock is used to protect writes to
that variable. This becomes obvious when you consider that memory barriers simply determine relative order of
memory operations; they do not make any guarantee about timing of memory operations. That is, a memory barrier
does not force the contents of a CPU’s local cache or store buffer to flush. Instead, the memory barrier at lock release
simply ensures that all writes to the protected data will be visible to other CPU’s or devices if the write to release the
lock is visible. The CPU is free to keep that data in its cache or store buffer as long as it wants. However, if another
CPU performs an atomic instruction on the same datum, the first CPU must guarantee that the updated value is made
visible to the second CPU along with any other operations that memory barriers may require.

For example, assuming a simple model where data is considered visible when it is in main memory (or a global
cache), when an atomic instruction is triggered on one CPU, other CPU’s store buffers and caches must flush any
writes to that same cache line along with any pending operations behind a memory barrier.

This requires one to take special care when using an item protected by atomic instructions. For example, in the sleep
mutex implementation, we have to use anatomic_cmpset rather than anatomic_set to turn on the
MTX_CONTESTEDbit. The reason is that we read the value ofmtx_lock into a variable and then make a decision
based on that read. However, the value we read may be stale, or it may change while we are making our decision.
Thus, when theatomic_set executed, it may end up setting the bit on another value than the one we made the
decision on. Thus, we have to use anatomic_cmpset to set the value only if the value we made the decision on is
up-to-date and valid.
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Finally, atomic instructions only allow one item to be updated or read. If one needs to atomically update several
items, then a lock must be used instead. For example, if two counters must be read and have values that are consistent
relative to each other, then those counters must be protected by a lock rather than by separate atomic instructions.

8.2.2 Read Locks versus Write Locks

Read locks do not need to be as strong as write locks. Both types of locks need to ensure that the data they are
accessing is not stale. However, only write access requires exclusive access. Multiple threads can safely read a value.
Using different types of locks for reads and writes can be implemented in a number of ways.

First, sx locks can be used in this manner by using an exclusive lock when writing and a shared lock when reading.
This method is quite straightforward.

A second method is a bit more obscure. You can protect a datum with multiple locks. Then for reading that data you
simply need to have a read lock of one of the locks. However, to write to the data, you need to have a write lock of all
of the locks. This can make writing rather expensive but can be useful when data is accessed in various ways. For
example, the parent process pointer is protected by both the proctree_lock sx lock and the per-process mutex.
Sometimes the proc lock is easier as we are just checking to see who a parent of a process is that we already have
locked. However, other places such asinferior need to walk the tree of processes via parent pointers and locking
each process would be prohibitive as well as a pain to guarantee that the condition you are checking remains valid for
both the check and the actions taken as a result of the check.

8.2.3 Locking Conditions and Results

If you need a lock to check the state of a variable so that you can take an action based on the state you read, you can
not just hold the lock while reading the variable and then drop the lock before you act on the value you read. Once
you drop the lock, the variable can change rendering your decision invalid. Thus, you must hold the lock both while
reading the variable and while performing the action as a result of the test.

8.3 General Architecture and Design

8.3.1 Interrupt Handling

Following the pattern of several other multi-threaded UNIX® kernels, FreeBSD deals with interrupt handlers by
giving them their own thread context. Providing a context for interrupt handlers allows them to block on locks. To
help avoid latency, however, interrupt threads run at real-time kernel priority. Thus, interrupt handlers should not
execute for very long to avoid starving other kernel threads. In addition, since multiple handlers may share an
interrupt thread, interrupt handlers should not sleep or use a sleepable lock to avoid starving another interrupt handler.

The interrupt threads currently in FreeBSD are referred to as heavyweight interrupt threads. They are called this
because switching to an interrupt thread involves a full context switch. In the initial implementation, the kernel was
not preemptive and thus interrupts that interrupted a kernel thread would have to wait until the kernel thread blocked
or returned to userland before they would have an opportunity to run.

To deal with the latency problems, the kernel in FreeBSD has been made preemptive. Currently, we only preempt a
kernel thread when we release a sleep mutex or when an interrupt comes in. However, the plan is to make the
FreeBSD kernel fully preemptive as described below.
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Not all interrupt handlers execute in a thread context. Instead, some handlers execute directly in primary interrupt
context. These interrupt handlers are currently misnamed “fast” interrupt handlers since theINTR_FAST flag used in
earlier versions of the kernel is used to mark these handlers. The only interrupts which currently use these types of
interrupt handlers are clock interrupts and serial I/O device interrupts. Since these handlers do not have their own
context, they may not acquire blocking locks and thus may only use spin mutexes.

Finally, there is one optional optimization that can be added in MD code called lightweight context switches. Since
an interrupt thread executes in a kernel context, it can borrow the vmspace of any process. Thus, in a lightweight
context switch, the switch to the interrupt thread does not switch vmspaces but borrows the vmspace of the
interrupted thread. In order to ensure that the vmspace of the interrupted thread does not disappear out from under us,
the interrupted thread is not allowed to execute until the interrupt thread is no longer borrowing its vmspace. This can
happen when the interrupt thread either blocks or finishes. If an interrupt thread blocks, then it will use its own
context when it is made runnable again. Thus, it can release the interrupted thread.

The cons of this optimization are that they are very machine specific and complex and thus only worth the effort if
their is a large performance improvement. At this point it is probably too early to tell, and in fact, will probably hurt
performance as almost all interrupt handlers will immediately block on Giant and require a thread fix-up when they
block. Also, an alternative method of interrupt handling has been proposed by Mike Smith that works like so:

1. Each interrupt handler has two parts: a predicate which runs in primary interrupt context and a handler which
runs in its own thread context.

2. If an interrupt handler has a predicate, then when an interrupt is triggered, the predicate is run. If the predicate
returns true then the interrupt is assumed to be fully handled and the kernel returns from the interrupt. If the
predicate returns false or there is no predicate, then the threaded handler is scheduled to run.

Fitting light weight context switches into this scheme might prove rather complicated. Since we may want to change
to this scheme at some point in the future, it is probably best to defer work on light weight context switches until we
have settled on the final interrupt handling architecture and determined how light weight context switches might or
might not fit into it.

8.3.2 Kernel Preemption and Critical Sections

8.3.2.1 Kernel Preemption in a Nutshell

Kernel preemption is fairly simple. The basic idea is that a CPU should always be doing the highest priority work
available. Well, that is the ideal at least. There are a couple of cases where the expense of achieving the ideal is not
worth being perfect.

Implementing full kernel preemption is very straightforward: when you schedule a thread to be executed by putting it
on a runqueue, you check to see if it’s priority is higher than the currently executing thread. If so, you initiate a
context switch to that thread.

While locks can protect most data in the case of a preemption, not all of the kernel is preemption safe. For example,
if a thread holding a spin mutex preempted and the new thread attempts to grab the same spin mutex, the new thread
may spin forever as the interrupted thread may never get a chance to execute. Also, some code such as the code to
assign an address space number for a process during exec() on the Alpha needs to not be preempted as it supports the
actual context switch code. Preemption is disabled for these code sections by using a critical section.
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8.3.2.2 Critical Sections

The responsibility of the critical section API is to prevent context switches inside of a critical section. With a fully
preemptive kernel, everysetrunqueue of a thread other than the current thread is a preemption point. One
implementation is forcritical_enter to set a per-thread flag that is cleared by its counterpart. Ifsetrunqueue is
called with this flag set, it does not preempt regardless of the priority of the new thread relative to the current thread.
However, since critical sections are used in spin mutexes to prevent context switches and multiple spin mutexes can
be acquired, the critical section API must support nesting. For this reason the current implementation uses a nesting
count instead of a single per-thread flag.

In order to minimize latency, preemptions inside of a critical section are deferred rather than dropped. If a thread is
made runnable that would normally be preempted to outside of a critical section, then a per-thread flag is set to
indicate that there is a pending preemption. When the outermost critical section is exited, the flag is checked. If the
flag is set, then the current thread is preempted to allow the higher priority thread to run.

Interrupts pose a problem with regards to spin mutexes. If a low-level interrupt handler needs a lock, it needs to not
interrupt any code needing that lock to avoid possible data structure corruption. Currently, providing this mechanism
is piggybacked onto critical section API by means of thecpu_critical_enter andcpu_critical_exit

functions. Currently this API disables and re-enables interrupts on all of FreeBSD’s current platforms. This approach
may not be purely optimal, but it is simple to understand and simple to get right. Theoretically, this second API need
only be used for spin mutexes that are used in primary interrupt context. However, to make the code simpler, it is
used for all spin mutexes and even all critical sections. It may be desirable to split out the MD API from the MI API
and only use it in conjunction with the MI API in the spin mutex implementation. If this approach is taken, then the
MD API likely would need a rename to show that it is a separate API now.

8.3.2.3 Design Tradeoffs

As mentioned earlier, a couple of trade-offs have been made to sacrifice cases where perfect preemption may not
always provide the best performance.

The first trade-off is that the preemption code does not take other CPUs into account. Suppose we have a two CPU’s
A and B with the priority of A’s thread as 4 and the priority of B’s thread as 2. If CPU B makes a thread with priority
1 runnable, then in theory, we want CPU A to switch to the new thread so that we will be running the two highest
priority runnable threads. However, the cost of determining which CPU to enforce a preemption on as well as
actually signaling that CPU via an IPI along with the synchronization that would be required would be enormous.
Thus, the current code would instead force CPU B to switch to the higher priority thread. Note that this still puts the
system in a better position as CPU B is executing a thread of priority 1 rather than a thread of priority 2.

The second trade-off limits immediate kernel preemption to real-time priority kernel threads. In the simple case of
preemption defined above, a thread is always preempted immediately (or as soon as a critical section is exited) if a
higher priority thread is made runnable. However, many threads executing in the kernel only execute in a kernel
context for a short time before either blocking or returning to userland. Thus, if the kernel preempts these threads to
run another non-realtime kernel thread, the kernel may switch out the executing thread just before it is about to sleep
or execute. The cache on the CPU must then adjust to the new thread. When the kernel returns to the interrupted
CPU, it must refill all the cache information that was lost. In addition, two extra context switches are performed that
could be avoided if the kernel deferred the preemption until the first thread blocked or returned to userland. Thus, by
default, the preemption code will only preempt immediately if the higher priority thread is a real-time priority thread.

Turning on full kernel preemption for all kernel threads has value as a debugging aid since it exposes more race
conditions. It is especially useful on UP systems were many races are hard to simulate otherwise. Thus, there will be
a kernel option to enable preemption for all kernel threads that can be used for debugging purposes.
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8.3.3 Thread Migration

Simply put, a thread migrates when it moves from one CPU to another. In a non-preemptive kernel this can only
happen at well-defined points such as when callingtsleep or returning to userland. However, in the preemptive
kernel, an interrupt can force a preemption and possible migration at any time. This can have negative affects on
per-CPU data since with the exception ofcurthread andcurpcb the data can change whenever you migrate. Since
you can potentially migrate at any time this renders per-CPU data rather useless. Thus it is desirable to be able to
disable migration for sections of code that need per-CPU data to be stable.

Critical sections currently prevent migration since they do not allow context switches. However, this may be too
strong of a requirement to enforce in some cases since a critical section also effectively blocks interrupt threads on
the current processor. As a result, it may be desirable to provide an API whereby code may indicate that if the current
thread is preempted it should not migrate to another CPU.

One possible implementation is to use a per-thread nesting counttd_pinnest along with atd_pincpu which is
updated to the current CPU on each context switch. Each CPU has its own run queue that holds threads pinned to that
CPU. A thread is pinned when its nesting count is greater than zero and a thread starts off unpinned with a nesting
count of zero. When a thread is put on a runqueue, we check to see if it is pinned. If so, we put it on the per-CPU
runqueue, otherwise we put it on the global runqueue. Whenchoosethread is called to retrieve the next thread, it
could either always prefer bound threads to unbound threads or use some sort of bias when comparing priorities. If
the nesting count is only ever written to by the thread itself and is only read by other threads when the owning thread
is not executing but while holding thesched_lock , thentd_pinnest will not need any other locks. The
migrate_disable function would increment the nesting count andmigrate_enable would decrement the
nesting count. Due to the locking requirements specified above, they will only operate on the current thread and thus
would not need to handle the case of making a thread migrateable that currently resides on a per-CPU run queue.

It is still debatable if this API is needed or if the critical section API is sufficient by itself. Many of the places that
need to prevent migration also need to prevent preemption as well, and in those places a critical section must be used
regardless.

8.3.4 Callouts

The timeout() kernel facility permits kernel services to register functions for execution as part of the
softclock() software interrupt. Events are scheduled based on a desired number of clock ticks, and callbacks to
the consumer-provided function will occur at approximately the right time.

The global list of pending timeout events is protected by a global spin mutex,callout_lock ; all access to the
timeout list must be performed with this mutex held. Whensoftclock() is woken up, it scans the list of pending
timeouts for those that should fire. In order to avoid lock order reversal, thesoftclock thread will release the
callout_lock mutex when invoking the providedtimeout() callback function. If theCALLOUT_MPSAFEflag was
not set during registration, then Giant will be grabbed before invoking the callout, and then released afterwards. The
callout_lock mutex will be re-grabbed before proceeding. Thesoftclock() code is careful to leave the list in a
consistent state while releasing the mutex. IfDIAGNOSTICis enabled, then the time taken to execute each function is
measured, and a warning generated if it exceeds a threshold.
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8.4 Specific Locking Strategies

8.4.1 Credentials

struct ucred is the kernel’s internal credential structure, and is generally used as the basis for process-driven access
control within the kernel. BSD-derived systems use a “copy-on-write” model for credential data: multiple references
may exist for a credential structure, and when a change needs to be made, the structure is duplicated, modified, and
then the reference replaced. Due to wide-spread caching of the credential to implement access control on open, this
results in substantial memory savings. With a move to fine-grained SMP, this model also saves substantially on
locking operations by requiring that modification only occur on an unshared credential, avoiding the need for explicit
synchronization when consuming a known-shared credential.

Credential structures with a single reference are considered mutable; shared credential structures must not be
modified or a race condition is risked. A mutex,cr_mtxp protects the reference count of struct ucred so as to
maintain consistency. Any use of the structure requires a valid reference for the duration of the use, or the structure
may be released out from under the illegitimate consumer.

The struct ucred mutex is a leaf mutex, and for performance reasons, is implemented via a mutex pool.

Usually, credentials are used in a read-only manner for access control decisions, and in this casetd_ucred is
generally preferred because it requires no locking. When a process’ credential is updated theproc lock must be held
across the check and update operations thus avoid races. The process credentialp_ucred must be used for check
and update operations to prevent time-of-check, time-of-use races.

If system call invocations will perform access control after an update to the process credential, the value of
td_ucred must also be refreshed to the current process value. This will prevent use of a stale credential following
a change. The kernel automatically refreshes thetd_ucred pointer in the thread structure from the process
p_ucred whenever a process enters the kernel, permitting use of a fresh credential for kernel access control.

8.4.2 File Descriptors and File Descriptor Tables

Details to follow.

8.4.3 Jail Structures

struct prison stores administrative details pertinent to the maintenance of jails created using the jail(2) API. This
includes the per-jail hostname, IP address, and related settings. This structure is reference-counted since pointers to
instances of the structure are shared by many credential structures. A single mutex,pr_mtx protects read and write
access to the reference count and all mutable variables inside the struct jail. Some variables are set only when the jail
is created, and a valid reference to the struct prison is sufficient to read these values. The precise locking of each
entry is documented via comments insys/jail.h .

8.4.4 MAC Framework

The TrustedBSD MAC Framework maintains data in a variety of kernel objects, in the form of struct label. In
general, labels in kernel objects are protected by the same lock as the remainder of the kernel object. For example,
thev_label label in struct vnode is protected by the vnode lock on the vnode.
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In addition to labels maintained in standard kernel objects, the MAC Framework also maintains a list of registered
and active policies. The policy list is protected by a global mutex (mac_policy_list_lock ) and a busy count (also
protected by the mutex). Since many access control checks may occur in parallel, entry to the framework for a
read-only access to the policy list requires holding the mutex while incrementing (and later decrementing) the busy
count. The mutex need not be held for the duration of the MAC entry operation--some operations, such as label
operations on file system objects--are long-lived. To modify the policy list, such as during policy registration and
de-registration, the mutex must be held and the reference count must be zero, to prevent modification of the list while
it is in use.

A condition variable,mac_policy_list_not_busy , is available to threads that need to wait for the list to become
unbusy, but this condition variable must only be waited on if the caller is holding no other locks, or a lock order
violation may be possible. The busy count, in effect, acts as a form of shared/exclusive lock over access to the
framework: the difference is that, unlike with an sx lock, consumers waiting for the list to become unbusy may be
starved, rather than permitting lock order problems with regards to the busy count and other locks that may be held
on entry to (or inside) the MAC Framework.

8.4.5 Modules

For the module subsystem there exists a single lock that is used to protect the shared data. This lock is a
shared/exclusive (SX) lock and has a good chance of needing to be acquired (shared or exclusively), therefore there
are a few macros that have been added to make access to the lock more easy. These macros can be located in
sys/module.h and are quite basic in terms of usage. The main structures protected under this lock are the module_t
structures (when shared) and the global modulelist_t structure, modules. One should review the related source code
in kern/kern_module.c to further understand the locking strategy.

8.4.6 Newbus Device Tree

The newbus system will have one sx lock. Readers will hold a shared (read) lock (sx_slock(9)) and writers will hold
an exclusive (write) lock (sx_xlock(9)). Internal functions will not do locking at all. Externally visible ones will lock
as needed. Those items that do not matter if the race is won or lost will not be locked, since they tend to be read all
over the place (e.g. device_get_softc(9)). There will be relatively few changes to the newbus data structures, so a
single lock should be sufficient and not impose a performance penalty.

8.4.7 Pipes

...

8.4.8 Processes and Threads

- process hierarchy

- proc locks, references

- thread-specific copies of proc entries to freeze during system calls, including td_ucred

- inter-process operations

- process groups and sessions
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8.4.9 Scheduler

Lots of references tosched_lock and notes pointing at specific primitives and related magic elsewhere in the
document.

8.4.10 Select and Poll

The select() and poll() functions permit threads to block waiting on events on file descriptors--most frequently,
whether or not the file descriptors are readable or writable.

...

8.4.11 SIGIO

The SIGIO service permits processes to request the delivery of a SIGIO signal to its process group when the
read/write status of specified file descriptors changes. At most one process or process group is permitted to register
for SIGIO from any given kernel object, and that process or group is referred to as the owner. Each object supporting
SIGIO registration contains pointer field that is NULL if the object is not registered, or points to a struct sigio
describing the registration. This field is protected by a global mutex,sigio_lock . Callers to SIGIO maintenance
functions must pass in this field “by reference” so that local register copies of the field are not made when
unprotected by the lock.

One struct sigio is allocated for each registered object associated with any process or process group, and contains
back-pointers to the object, owner, signal information, a credential, and the general disposition of the registration.
Each process or progress group contains a list of registered struct sigio structures,p_sigiolst for processes, and
pg_sigiolst for process groups. These lists are protected by the process or process group locks respectively.
Most fields in each struct sigio are constant for the duration of the registration, with the exception of the
sio_pgsigio field which links the struct sigio into the process or process group list. Developers implementing
new kernel objects supporting SIGIO will, in general, want to avoid holding structure locks while invoking SIGIO
supporting functions, such asfsetown() or funsetown() to avoid defining a lock order between structure locks
and the global SIGIO lock. This is generally possible through use of an elevated reference count on the structure,
such as reliance on a file descriptor reference to a pipe during a pipe operation.

8.4.12 Sysctl

Thesysctl() MIB service is invoked from both within the kernel and from userland applications using a system
call. At least two issues are raised in locking: first, the protection of the structures maintaining the namespace, and
second, interactions with kernel variables and functions that are accessed by the sysctl interface. Since sysctl permits
the direct export (and modification) of kernel statistics and configuration parameters, the sysctl mechanism must
become aware of appropriate locking semantics for those variables. Currently, sysctl makes use of a single global sx
lock to serialize use of sysctl(); however, it is assumed to operate under Giant and other protections are not provided.
The remainder of this section speculates on locking and semantic changes to sysctl.

- Need to change the order of operations for sysctl’s that update values from read old, copyin and copyout, write new
to copyin, lock, read old and write new, unlock, copyout. Normal sysctl’s that just copyout the old value and set a
new value that they copyin may still be able to follow the old model. However, it may be cleaner to use the second
model for all of the sysctl handlers to avoid lock operations.

106



Chapter 8 SMPng Design Document

- To allow for the common case, a sysctl could embed a pointer to a mutex in the SYSCTL_FOO macros and in the
struct. This would work for most sysctl’s. For values protected by sx locks, spin mutexes, or other locking strategies
besides a single sleep mutex, SYSCTL_PROC nodes could be used to get the locking right.

8.4.13 Taskqueue

The taskqueue’s interface has two basic locks associated with it in order to protect the related shared data. The
taskqueue_queues_mutex is meant to serve as a lock to protect thetaskqueue_queues TAILQ. The other
mutex lock associated with this system is the one in the struct taskqueue data structure. The use of the
synchronization primitive here is to protect the integrity of the data in the struct taskqueue. It should be noted that
there are no separate macros to assist the user in locking down his/her own work since these locks are most likely not
going to be used outside ofkern/subr_taskqueue.c .

8.5 Implementation Notes

8.5.1 Details of the Mutex Implementation

- Should we require mutexes to be owned for mtx_destroy() since we can not safely assert that they are unowned by
anyone else otherwise?

8.5.1.1 Spin Mutexes

- Use a critical section...

8.5.1.2 Sleep Mutexes

- Describe the races with contested mutexes

- Why it is safe to read mtx_lock of a contested mutex when holding sched_lock.

- Priority propagation

8.5.2 Witness

- What does it do

- How does it work

8.6 Miscellaneous Topics

8.6.1 Interrupt Source and ICU Abstractions

- struct isrc
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- pic drivers

8.6.2 Other Random Questions/Topics

Should we pass an interlock intosema_wait ?

- Generic turnstiles for sleep mutexes and sx locks.

- Should we have non-sleepable sx locks?

Glossary
atomic

An operation is atomic if all of its effects are visible to other CPUs together when the proper access protocol is
followed. In the degenerate case are atomic instructions provided directly by machine architectures. At a higher
level, if several members of a structure are protected by a lock, then a set of operations are atomic if they are all
performed while holding the lock without releasing the lock in between any of the operations.

See Also:operation.

block

A thread is blocked when it is waiting on a lock, resource, or condition. Unfortunately this term is a bit
overloaded as a result.

See Also:sleep.

critical section

A section of code that is not allowed to be preempted. A critical section is entered and exited using the
critical_enter(9) API.

MD

Machine dependent.

See Also:MI.

memory operation

A memory operation reads and/or writes to a memory location.

MI

Machine independent.
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See Also:MD.

operation

See:memory operation

primary interrupt context

Primary interrupt context refers to the code that runs when an interrupt occurs. This code can either run an
interrupt handler directly or schedule an asynchronous interrupt thread to execute the interrupt handlers for a
given interrupt source.

realtime kernel thread

A high priority kernel thread. Currently, the only realtime priority kernel threads are interrupt threads.

See Also:thread.

sleep

A thread is asleep when it is blocked on a condition variable or a sleep queue viamsleep or tsleep .

See Also:block.

sleepable lock

A sleepable lock is a lock that can be held by a thread which is asleep. Lockmgr locks and sx locks are currently
the only sleepable locks in FreeBSD. Eventually, some sx locks such as the allproc and proctree locks may
become non-sleepable locks.

See Also:sleep.

thread

A kernel thread represented by a struct thread. Threads own locks and hold a single execution context.
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Chapter 9 * UFS
UFS, FFS, Ext2FS, JFS, inodes, buffer cache, labeling, locking, metadata, soft-updates, LFS, portalfs, procfs,
vnodes, memory sharing, memory objects, TLBs, caching
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Chapter 10 * AFS
AFS, NFS, SANs, etc.
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Chapter 11 * Syscons
Syscons, tty, PCVT, serial console, screen savers, etc.
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Chapter 12 * Compatibility Layers

12.1 * Linux
Linux, SVR4, etc.
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Chapter 13 Writing FreeBSD Device Drivers
This chapter was written by Murray Stokely <murray@FreeBSD.org > with selections from a variety of sources
including the intro(4) manual page by Jörg Wunsch <joerg@FreeBSD.org >.

13.1 Introduction
This chapter provides a brief introduction to writing device drivers for FreeBSD. A device in this context is a term
used mostly for hardware-related stuff that belongs to the system, like disks, printers, or a graphics display with its
keyboard. A device driver is the software component of the operating system that controls a specific device. There
are also so-called pseudo-devices where a device driver emulates the behavior of a device in software without any
particular underlying hardware. Device drivers can be compiled into the system statically or loaded on demand
through the dynamic kernel linker facility ‘kld’.

Most devices in a Unix-like operating system are accessed through device-nodes, sometimes also called special files.
These files are usually located under the directory/dev in the filesystem hierarchy. In releases of FreeBSD older
than 5.0-RELEASE, where devfs(5) support is not integrated into FreeBSD, each device node must be created
statically and independent of the existence of the associated device driver. Most device nodes on the system are
created by runningMAKEDEV.

Device drivers can roughly be broken down into two categories; character and network device drivers.

13.2 Dynamic Kernel Linker Facility - KLD
The kld interface allows system administrators to dynamically add and remove functionality from a running system.
This allows device driver writers to load their new changes into a running kernel without constantly rebooting to test
changes.

The kld interface is used through the following privileged commands:

• kldload - loads a new kernel module

• kldunload - unloads a kernel module

• kldstat - lists the currently loaded modules

Skeleton Layout of a kernel module

/*
* KLD Skeleton
* Inspired by Andrew Reiter’s Daemonnews article
*/

#include <sys/types.h >

#include <sys/module.h >

#include <sys/systm.h > /* uprintf */
#include <sys/errno.h >

#include <sys/param.h > /* defines used in kernel.h */
#include <sys/kernel.h > /* types used in module initialization */
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/*
* Load handler that deals with the loading and unloading of a KLD.
*/

static int
skel_loader(struct module *m, int what, void *arg)
{

int err = 0;

switch (what) {
case MOD_LOAD: /* kldload */

uprintf("Skeleton KLD loaded.\n");
break;

case MOD_UNLOAD:
uprintf("Skeleton KLD unloaded.\n");
break;

default:
err = EINVAL;
break;

}
return(err);

}

/* Declare this module to the rest of the kernel */

static moduledata_t skel_mod = {
"skel",
skel_loader,
NULL

};

DECLARE_MODULE(skeleton, skel_mod, SI_SUB_KLD, SI_ORDER_ANY);

13.2.1 Makefile

FreeBSD provides a makefile include that you can use to quickly compile your kernel addition.

SRCS=skeleton.c
KMOD=skeleton

.include <bsd.kmod.mk >

Simply runningmake with this makefile will create a fileskeleton.ko that can be loaded into your system by
typing:

# kldload -v ./skeleton.ko
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13.3 Accessing a device driver
Unix provides a common set of system calls for user applications to use. The upper layers of the kernel dispatch
these calls to the corresponding device driver when a user accesses a device node. The/dev/MAKEDEV script makes
most of the device nodes for your system but if you are doing your own driver development it may be necessary to
create your own device nodes withmknod.

13.3.1 Creating static device nodes

Themknod command requires four arguments to create a device node. You must specify the name of the device
node, the type of device, the major number of the device, and the minor number of the device.

13.3.2 Dynamic device nodes

The device filesystem, or devfs, provides access to the kernel’s device namespace in the global filesystem
namespace. This eliminates the problems of potentially having a device driver without a static device node, or a
device node without an installed device driver. Devfs is still a work in progress, but it is already working quite nicely.

13.4 Character Devices
A character device driver is one that transfers data directly to and from a user process. This is the most common type
of device driver and there are plenty of simple examples in the source tree.

This simple example pseudo-device remembers whatever values you write to it and can then supply them back to you
when you read from it.

/*
* Simple ‘echo’ pseudo-device KLD
*
* Murray Stokely
*/

#define MIN(a,b) (((a) < (b)) ? (a) : (b))

#include <sys/types.h >

#include <sys/module.h >

#include <sys/systm.h > /* uprintf */
#include <sys/errno.h >

#include <sys/param.h > /* defines used in kernel.h */
#include <sys/kernel.h > /* types used in module initialization */
#include <sys/conf.h > /* cdevsw struct */
#include <sys/uio.h > /* uio struct */
#include <sys/malloc.h >

#define BUFFERSIZE 256

/* Function prototypes */
d_open_t echo_open;
d_close_t echo_close;
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d_read_t echo_read;
d_write_t echo_write;

/* Character device entry points */
static struct cdevsw echo_cdevsw = {

echo_open,
echo_close,
echo_read,
echo_write,
noioctl,
nopoll,
nommap,
nostrategy,
"echo",
33, /* reserved for lkms - /usr/src/sys/conf/majors */
nodump,
nopsize,
D_TTY,
-1

};

typedef struct s_echo {
char msg[BUFFERSIZE];
int len;

} t_echo;

/* vars */
static dev_t sdev;
static int len;
static int count;
static t_echo *echomsg;

MALLOC_DECLARE(M_ECHOBUF);
MALLOC_DEFINE(M_ECHOBUF, "echobuffer", "buffer for echo module");

/*
* This function acts is called by the kld[un]load(2) system calls to
* determine what actions to take when a module is loaded or unloaded.
*/

static int
echo_loader(struct module *m, int what, void *arg)
{

int err = 0;

switch (what) {
case MOD_LOAD: /* kldload */

sdev = make_dev( &echo_cdevsw,
0,
UID_ROOT,
GID_WHEEL,
0600,
"echo");
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/* kmalloc memory for use by this driver */
/* malloc(256,M_ECHOBUF,M_WAITOK); */
MALLOC(echomsg, t_echo *, sizeof(t_echo), M_ECHOBUF, M_WAITOK);
printf("Echo device loaded.\n");
break;

case MOD_UNLOAD:
destroy_dev(sdev);
FREE(echomsg,M_ECHOBUF);
printf("Echo device unloaded.\n");
break;

default:
err = EINVAL;
break;

}
return(err);

}

int
echo_open(dev_t dev, int oflags, int devtype, struct proc *p)
{

int err = 0;

uprintf("Opened device \"echo\" successfully.\n");
return(err);

}

int
echo_close(dev_t dev, int fflag, int devtype, struct proc *p)
{

uprintf("Closing device \"echo.\"\n");
return(0);

}

/*
* The read function just takes the buf that was saved via
* echo_write() and returns it to userland for accessing.
* uio(9)
*/

int
echo_read(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;
int amt;

/* How big is this read operation? Either as big as the user wants,
or as big as the remaining data */

amt = MIN(uio->uio_resid, (echomsg->len - uio->uio_offset > 0) ? echomsg->len - uio->uio_offset : 0);
if ((err = uiomove(echomsg->msg + uio->uio_offset,amt,uio)) != 0) {

uprintf("uiomove failed!\n");
}

return err;
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}

/*
* echo_write takes in a character string and saves it
* to buf for later accessing.
*/

int
echo_write(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;

/* Copy the string in from user memory to kernel memory */
err = copyin(uio->uio_iov->iov_base, echomsg->msg, MIN(uio->uio_iov->iov_len,BUFFERSIZE));

/* Now we need to null terminate */
*(echomsg->msg + MIN(uio->uio_iov->iov_len,BUFFERSIZE)) = 0;
/* Record the length */
echomsg->len = MIN(uio->uio_iov->iov_len,BUFFERSIZE);

if (err != 0) {
uprintf("Write failed: bad address!\n");

}

count++;
return(err);

}

DEV_MODULE(echo,echo_loader,NULL);

To install this driver you will first need to make a node on your filesystem with a command such as:

# mknod /dev/echo c 33 0

With this driver loaded you should now be able to type something like:

# echo -n "Test Data" > /dev/echo
# cat /dev/echo
Test Data

Real hardware devices in the next chapter..

Additional Resources

• Dynamic Kernel Linker (KLD) Facility Programming Tutorial
(http://www.daemonnews.org/200010/blueprints.html) - Daemonnews (http://www.daemonnews.org/) October
2000

• How to Write Kernel Drivers with NEWBUS (http://www.daemonnews.org/200007/newbus-intro.html) -
Daemonnews (http://www.daemonnews.org/) July 2000
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13.5 Network Drivers
Drivers for network devices do not use device nodes in order to be accessed. Their selection is based on other
decisions made inside the kernel and instead of calling open(), use of a network device is generally introduced by
using the system call socket(2).

man ifnet(), loopback device, Bill Paul’s drivers, etc..
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• static int xxx_isa_resume (device_t dev); Resume the device activity after return from power-save
state.

xxx_isa_probe() andxxx_isa_attach() are mandatory, the rest of the routines are optional, depending on the
device’s needs.

The driver is linked to the system with the following set of descriptions.

/* table of supported bus methods */
static device_method_t xxx_isa_methods[] = {

/* list all the bus method functions supported by the driver */
/* omit the unsupported methods */
DEVMETHOD(device_identify, xxx_isa_identify),
DEVMETHOD(device_probe, xxx_isa_probe),
DEVMETHOD(device_attach, xxx_isa_attach),
DEVMETHOD(device_detach, xxx_isa_detach),
DEVMETHOD(device_shutdown, xxx_isa_shutdown),
DEVMETHOD(device_suspend, xxx_isa_suspend),
DEVMETHOD(device_resume, xxx_isa_resume),

{ 0, 0 }
};

static driver_t xxx_isa_driver = {
"xxx",
xxx_isa_methods,
sizeof(struct xxx_softc),

};

static devclass_t xxx_devclass;

DRIVER_MODULE(xxx, isa, xxx_isa_driver, xxx_devclass,
load_function, load_argument);

Here struct xxx_softc is a device-specific structure that contains private driver data and descriptors for the driver’s
resources. The bus code automatically allocates one softc descriptor per device as needed.

If the driver is implemented as a loadable module thenload_function() is called to do driver-specific
initialization or clean-up when the driver is loaded or unloaded and load_argument is passed as one of its arguments.
If the driver does not support dynamic loading (in other words it must always be linked into the kernel) then these
values should be set to 0 and the last definition would look like:

DRIVER_MODULE(xxx, isa, xxx_isa_driver,
xxx_devclass, 0, 0);

If the driver is for a device which supports PnP then a table of supported PnP IDs must be defined. The table consists
of a list of PnP IDs supported by this driver and human-readable descriptions of the hardware types and models
having these IDs. It looks like:

static struct isa_pnp_id xxx_pnp_ids[] = {
/* a line for each supported PnP ID */
{ 0x12345678, "Our device model 1234A" },
{ 0x12345679, "Our device model 1234B" },
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{ 0, NULL }, /* end of table */
};

If the driver does not support PnP devices it still needs an empty PnP ID table, like:

static struct isa_pnp_id xxx_pnp_ids[] = {
{ 0, NULL }, /* end of table */

};

14.3 Device_t pointer
Device_t is the pointer type for the device structure. Here we consider only the methods interesting from the device
driver writer’s standpoint. The methods to manipulate values in the device structure are:

• device_t device_get_parent(dev) Get the parent bus of a device.

• driver_t device_get_driver(dev) Get pointer to its driver structure.

• char *device_get_name(dev) Get the driver name, such as"xxx" for our example.

• int device_get_unit(dev) Get the unit number (units are numbered from 0 for the devices associated with
each driver).

• char *device_get_nameunit(dev) Get the device name including the unit number, such as “xxx0”, “xxx1”
and so on.

• char *device_get_desc(dev) Get the device description. Normally it describes the exact model of device in
human-readable form.

• device_set_desc(dev, desc) Set the description. This makes the device description point to the string desc
which may not be deallocated or changed after that.

• device_set_desc_copy(dev, desc) Set the description. The description is copied into an internal
dynamically allocated buffer, so the string desc may be changed afterwards without adverse effects.

• void *device_get_softc(dev) Get pointer to the device descriptor (struct xxx_softc) associated with this
device.

• u_int32_t device_get_flags(dev) Get the flags specified for the device in the configuration file.

A convenience functiondevice_printf(dev, fmt, ...) may be used to print the messages from the device
driver. It automatically prepends the unitname and colon to the message.

The device_t methods are implemented in the filekern/bus_subr.c .

14.4 Configuration file and the order of identifying and probing
during auto-configuration
The ISA devices are described in the kernel configuration file like:

device xxx0 at isa? port 0x300 irq 10 drq 5
iomem 0xd0000 flags 0x1 sensitive
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The values of port, IRQ and so on are converted to the resource values associated with the device. They are optional,
depending on the device’s needs and abilities for auto-configuration. For example, some devices do not need DRQ at
all and some allow the driver to read the IRQ setting from the device configuration ports. If a machine has multiple
ISA buses the exact bus may be specified in the configuration line, likeisa0 or isa1 , otherwise the device would be
searched for on all the ISA buses.

sensitive is a resource requesting that this device must be probed before all non-sensitive devices. It is supported
but does not seem to be used in any current driver.

For legacy ISA devices in many cases the drivers are still able to detect the configuration parameters. But each device
to be configured in the system must have a config line. If two devices of some type are installed in the system but
there is only one configuration line for the corresponding driver, ie:

device xxx0 at isa?

then only one device will be configured.

But for the devices supporting automatic identification by the means of Plug-n-Play or some proprietary protocol one
configuration line is enough to configure all the devices in the system, like the one above or just simply:

device xxx at isa?

If a driver supports both auto-identified and legacy devices and both kinds are installed at once in one machine then it
is enough to describe in the config file the legacy devices only. The auto-identified devices will be added
automatically.

When an ISA bus is auto-configured the events happen as follows:

All the drivers’ identify routines (including the PnP identify routine which identifies all the PnP devices) are called in
random order. As they identify the devices they add them to the list on the ISA bus. Normally the drivers’ identify
routines associate their drivers with the new devices. The PnP identify routine does not know about the other drivers
yet so it does not associate any with the new devices it adds.

The PnP devices are put to sleep using the PnP protocol to prevent them from being probed as legacy devices.

The probe routines of non-PnP devices marked assensitive are called. If probe for a device went successfully, the
attach routine is called for it.

The probe and attach routines of all non-PNP devices are called likewise.

The PnP devices are brought back from the sleep state and assigned the resources they request: I/O and memory
address ranges, IRQs and DRQs, all of them not conflicting with the attached legacy devices.

Then for each PnP device the probe routines of all the present ISA drivers are called. The first one that claims the
device gets attached. It is possible that multiple drivers would claim the device with different priority; in this case,
the highest-priority driver wins. The probe routines must callISA_PNP_PROBE() to compare the actual PnP ID with
the list of the IDs supported by the driver and if the ID is not in the table return failure. That means that absolutely
every driver, even the ones not supporting any PnP devices must callISA_PNP_PROBE(), at least with an empty PnP
ID table to return failure on unknown PnP devices.

The probe routine returns a positive value (the error code) on error, zero or negative value on success.

The negative return values are used when a PnP device supports multiple interfaces. For example, an older
compatibility interface and a newer advanced interface which are supported by different drivers. Then both drivers
would detect the device. The driver which returns a higher value in the probe routine takes precedence (in other
words, the driver returning 0 has highest precedence, returning -1 is next, returning -2 is after it and so on). In result
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the devices which support only the old interface will be handled by the old driver (which should return -1 from the
probe routine) while the devices supporting the new interface as well will be handled by the new driver (which
should return 0 from the probe routine). If multiple drivers return the same value then the one called first wins. So if
a driver returns value 0 it may be sure that it won the priority arbitration.

The device-specific identify routines can also assign not a driver but a class of drivers to the device. Then all the
drivers in the class are probed for this device, like the case with PnP. This feature is not implemented in any existing
driver and is not considered further in this document.

Because the PnP devices are disabled when probing the legacy devices they will not be attached twice (once as
legacy and once as PnP). But in case of device-dependent identify routines it is the responsibility of the driver to
make sure that the same device will not be attached by the driver twice: once as legacy user-configured and once as
auto-identified.

Another practical consequence for the auto-identified devices (both PnP and device-specific) is that the flags can not
be passed to them from the kernel configuration file. So they must either not use the flags at all or use the flags from
the device unit 0 for all the auto-identified devices or use the sysctl interface instead of flags.

Other unusual configurations may be accommodated by accessing the configuration resources directly with functions
of familiesresource_query_*() andresource_*_value() . Their implementations are located in
kern/subr_bus.c . The old IDE disk driveri386/isa/wd.c contains examples of such use. But the standard
means of configuration must always be preferred. Leave parsing the configuration resources to the bus configuration
code.

14.5 Resources
The information that a user enters into the kernel configuration file is processed and passed to the kernel as
configuration resources. This information is parsed by the bus configuration code and transformed into a value of
structure device_t and the bus resources associated with it. The drivers may access the configuration resources
directly using functions resource_* for more complex cases of configuration. However, generally this is neither
needed nor recommended, so this issue is not discussed further here.

The bus resources are associated with each device. They are identified by type and number within the type. For the
ISA bus the following types are defined:

• SYS_RES_IRQ- interrupt number

• SYS_RES_DRQ- ISA DMA channel number

• SYS_RES_MEMORY- range of device memory mapped into the system memory space

• SYS_RES_IOPORT- range of device I/O registers

The enumeration within types starts from 0, so if a device has two memory regions it would have resources of type
SYS_RES_MEMORY numbered 0 and 1. The resource type has nothing to do with the C language type, all the
resource values have the C language typeunsigned long and must be cast as necessary. The resource numbers do
not have to be contiguous, although for ISA they normally would be. The permitted resource numbers for ISA
devices are:

IRQ: 0-1
DRQ: 0-1
MEMORY: 0-3
IOPORT: 0-7
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All the resources are represented as ranges, with a start value and count. For IRQ and DRQ resources the count
would normally be equal to 1. The values for memory refer to the physical addresses.

Three types of activities can be performed on resources:

• set/get

• allocate/release

• activate/deactivate

Setting sets the range used by the resource. Allocation reserves the requested range that no other driver would be able
to reserve it (and checking that no other driver reserved this range already). Activation makes the resource accessible
to the driver by doing whatever is necessary for that (for example, for memory it would be mapping into the kernel
virtual address space).

The functions to manipulate resources are:

• int bus_set_resource(device_t dev, int type, int rid, u_long start, u_long count)

Set a range for a resource. Returns 0 if successful, error code otherwise. Normally, this function will return an
error only if one oftype , rid , start or count has a value that falls out of the permitted range.

• dev - driver’s device

• type - type of resource, SYS_RES_*

• rid - resource number (ID) within type

• start, count - resource range

• int bus_get_resource(device_t dev, int type, int rid, u_long *startp, u_long

*countp)

Get the range of resource. Returns 0 if successful, error code if the resource is not defined yet.

• u_long bus_get_resource_start(device_t dev, int type, int rid) u_long

bus_get_resource_count (device_t dev, int type, int rid)

Convenience functions to get only the start or count. Return 0 in case of error, so if the resource start has 0 among
the legitimate values it would be impossible to tell if the value is 0 or an error occurred. Luckily, no ISA resources
for add-on drivers may have a start value equal to 0.

• void bus_delete_resource(device_t dev, int type, int rid)

Delete a resource, make it undefined.

• struct resource * bus_alloc_resource(device_t dev, int type, int *rid, u_long start,

u_long end, u_long count, u_int flags)

Allocate a resource as a range of count values not allocated by anyone else, somewhere between start and end.
Alas, alignment is not supported. If the resource was not set yet it is automatically created. The special values of
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start 0 and end ~0 (all ones) means that the fixed values previously set bybus_set_resource() must be used
instead: start and count as themselves and end=(start+count), in this case if the resource was not defined before
then an error is returned. Although rid is passed by reference it is not set anywhere by the resource allocation code
of the ISA bus. (The other buses may use a different approach and modify it).

Flags are a bitmap, the flags interesting for the caller are:

• RF_ACTIVE- causes the resource to be automatically activated after allocation.

• RF_SHAREABLE- resource may be shared at the same time by multiple drivers.

• RF_TIMESHARE- resource may be time-shared by multiple drivers, i.e. allocated at the same time by many but
activated only by one at any given moment of time.

• Returns 0 on error. The allocated values may be obtained from the returned handle using methodsrhand_*() .

• int bus_release_resource(device_t dev, int type, int rid, struct resource *r)

• Release the resource, r is the handle returned bybus_alloc_resource() . Returns 0 on success, error code
otherwise.

• int bus_activate_resource(device_t dev, int type, int rid, struct resource *r) int

bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)

• Activate or deactivate resource. Return 0 on success, error code otherwise. If the resource is time-shared and
currently activated by another driver then EBUSY is returned.

• int bus_setup_intr(device_t dev, struct resource *r, int flags, driver_intr_t

*handler, void *arg, void **cookiep) int bus_teardown_intr(device_t dev, struct

resource *r, void *cookie)

• Associate or de-associate the interrupt handler with a device. Return 0 on success, error code otherwise.

• r - the activated resource handler describing the IRQ

flags - the interrupt priority level, one of:

• INTR_TYPE_TTY - terminals and other likewise character-type devices. To mask them usespltty() .

• (INTR_TYPE_TTY | INTR_TYPE_FAST) - terminal type devices with small input buffer, critical to the data
loss on input (such as the old-fashioned serial ports). To mask them usespltty() .

• INTR_TYPE_BIO - block-type devices, except those on the CAM controllers. To mask them usesplbio() .

• INTR_TYPE_CAM- CAM (Common Access Method) bus controllers. To mask them usesplcam() .

• INTR_TYPE_NET- network interface controllers. To mask them usesplimp() .

• INTR_TYPE_MISC - miscellaneous devices. There is no other way to mask them than bysplhigh() which
masks all interrupts.

When an interrupt handler executes all the other interrupts matching its priority level will be masked. The only
exception is the MISC level for which no other interrupts are masked and which is not masked by any other interrupt.

• handler- pointer to the handler function, the type driver_intr_t is defined asvoid driver_intr_t(void *)
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• arg - the argument passed to the handler to identify this particular device. It is cast from void* to any real type by
the handler. The old convention for the ISA interrupt handlers was to use the unit number as argument, the new
(recommended) convention is using a pointer to the device softc structure.

• cookie[p] - the value received fromsetup() is used to identify the handler when passed toteardown()

A number of methods are defined to operate on the resource handlers (struct resource *). Those of interest to the
device driver writers are:

• u_long rman_get_start(r) u_long rman_get_end(r) Get the start and end of allocated resource range.

• void *rman_get_virtual(r) Get the virtual address of activated memory resource.

14.6 Bus memory mapping
In many cases data is exchanged between the driver and the device through the memory. Two variants are possible:

(a) memory is located on the device card

(b) memory is the main memory of the computer

In case (a) the driver always copies the data back and forth between the on-card memory and the main memory as
necessary. To map the on-card memory into the kernel virtual address space the physical address and length of the
on-card memory must be defined as a SYS_RES_MEMORY resource. That resource can then be allocated and
activated, and its virtual address obtained usingrman_get_virtual() . The older drivers used the function
pmap_mapdev() for this purpose, which should not be used directly any more. Now it is one of the internal steps of
resource activation.

Most of the ISA cards will have their memory configured for physical location somewhere in range 640KB-1MB.
Some of the ISA cards require larger memory ranges which should be placed somewhere under 16MB (because of
the 24-bit address limitation on the ISA bus). In that case if the machine has more memory than the start address of
the device memory (in other words, they overlap) a memory hole must be configured at the address range used by
devices. Many BIOSes allow configuration of a memory hole of 1MB starting at 14MB or 15MB. FreeBSD can
handle the memory holes properly if the BIOS reports them properly (this feature may be broken on old BIOSes).

In case (b) just the address of the data is sent to the device, and the device uses DMA to actually access the data in
the main memory. Two limitations are present: First, ISA cards can only access memory below 16MB. Second, the
contiguous pages in virtual address space may not be contiguous in physical address space, so the device may have to
do scatter/gather operations. The bus subsystem provides ready solutions for some of these problems, the rest has to
be done by the drivers themselves.

Two structures are used for DMA memory allocation, bus_dma_tag_t and bus_dmamap_t. Tag describes the
properties required for the DMA memory. Map represents a memory block allocated according to these properties.
Multiple maps may be associated with the same tag.

Tags are organized into a tree-like hierarchy with inheritance of the properties. A child tag inherits all the
requirements of its parent tag, and may make them more strict but never more loose.

Normally one top-level tag (with no parent) is created for each device unit. If multiple memory areas with different
requirements are needed for each device then a tag for each of them may be created as a child of the parent tag.

The tags can be used to create a map in two ways.

First, a chunk of contiguous memory conformant with the tag requirements may be allocated (and later may be
freed). This is normally used to allocate relatively long-living areas of memory for communication with the device.
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Loading of such memory into a map is trivial: it is always considered as one chunk in the appropriate physical
memory range.

Second, an arbitrary area of virtual memory may be loaded into a map. Each page of this memory will be checked for
conformance to the map requirement. If it conforms then it is left at its original location. If it is not then a fresh
conformant “bounce page” is allocated and used as intermediate storage. When writing the data from the
non-conformant original pages they will be copied to their bounce pages first and then transferred from the bounce
pages to the device. When reading the data would go from the device to the bounce pages and then copied to their
non-conformant original pages. The process of copying between the original and bounce pages is called
synchronization. This is normally used on a per-transfer basis: buffer for each transfer would be loaded, transfer done
and buffer unloaded.

The functions working on the DMA memory are:

• int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_size_t

boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void

*filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags,

bus_dma_tag_t *dmat)

Create a new tag. Returns 0 on success, the error code otherwise.

• parent- parent tag, or NULL to create a top-level tag.

• alignment- required physical alignment of the memory area to be allocated for this tag. Use value 1 for “no
specific alignment”. Applies only to the futurebus_dmamem_alloc() but notbus_dmamap_create() calls.

• boundary- physical address boundary that must not be crossed when allocating the memory. Use value 0 for
“no boundary”. Applies only to the futurebus_dmamem_alloc() but notbus_dmamap_create() calls. Must
be power of 2. If the memory is planned to be used in non-cascaded DMA mode (i.e. the DMA addresses will
be supplied not by the device itself but by the ISA DMA controller) then the boundary must be no larger than
64KB (64*1024) due to the limitations of the DMA hardware.

• lowaddr, highaddr- the names are slightly misleading; these values are used to limit the permitted range of
physical addresses used to allocate the memory. The exact meaning varies depending on the planned future use:

• For bus_dmamem_alloc() all the addresses from 0 to lowaddr-1 are considered permitted, the higher ones
are forbidden.

• Forbus_dmamap_create() all the addresses outside the inclusive range [lowaddr; highaddr] are considered
accessible. The addresses of pages inside the range are passed to the filter function which decides if they are
accessible. If no filter function is supplied then all the range is considered unaccessible.

• For the ISA devices the normal values (with no filter function) are:

lowaddr = BUS_SPACE_MAXADDR_24BIT

highaddr = BUS_SPACE_MAXADDR

• filter, filterarg - the filter function and its argument. If NULL is passed for filter then the whole range [lowaddr,
highaddr] is considered unaccessible when doingbus_dmamap_create() . Otherwise the physical address of
each attempted page in range [lowaddr; highaddr] is passed to the filter function which decides if it is
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accessible. The prototype of the filter function is:int filterfunc(void *arg, bus_addr_t paddr) . It
must return 0 if the page is accessible, non-zero otherwise.

• maxsize- the maximal size of memory (in bytes) that may be allocated through this tag. In case it is difficult to
estimate or could be arbitrarily big, the value for ISA devices would be BUS_SPACE_MAXSIZE_24BIT.

• nsegments- maximal number of scatter-gather segments supported by the device. If unrestricted then the value
BUS_SPACE_UNRESTRICTED should be used. This value is recommended for the parent tags, the actual
restrictions would then be specified for the descendant tags. Tags with nsegments equal to
BUS_SPACE_UNRESTRICTED may not be used to actually load maps, they may be used only as parent tags.
The practical limit for nsegments seems to be about 250-300, higher values will cause kernel stack overflow (the
hardware can not normally support that many scatter-gather buffers anyway).

• maxsegsz- maximal size of a scatter-gather segment supported by the device. The maximal value for ISA device
would be BUS_SPACE_MAXSIZE_24BIT.

• flags- a bitmap of flags. The only interesting flags are:

• BUS_DMA_ALLOCNOW- requests to allocate all the potentially needed bounce pages when creating the tag.

• BUS_DMA_ISA- mysterious flag used only on Alpha machines. It is not defined for the i386 machines.
Probably it should be used by all the ISA drivers for Alpha machines but it looks like there are no such
drivers yet.

• dmat- pointer to the storage for the new tag to be returned.

• int bus_dma_tag_destroy(bus_dma_tag_t dmat)

Destroy a tag. Returns 0 on success, the error code otherwise.

dmat - the tag to be destroyed.

• int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t

*mapp)

Allocate an area of contiguous memory described by the tag. The size of memory to be allocated is tag’s maxsize.
Returns 0 on success, the error code otherwise. The result still has to be loaded bybus_dmamap_load() before
being used to get the physical address of the memory.

• dmat- the tag

• vaddr - pointer to the storage for the kernel virtual address of the allocated area to be returned.

• flags - a bitmap of flags. The only interesting flag is:

• BUS_DMA_NOWAIT- if the memory is not immediately available return the error. If this flag is not set then
the routine is allowed to sleep until the memory becomes available.

• mapp- pointer to the storage for the new map to be returned.

• void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
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Free the memory allocated bybus_dmamem_alloc() . At present, freeing of the memory allocated with ISA
restrictions is not implemented. Because of this the recommended model of use is to keep and re-use the allocated
areas for as long as possible. Do not lightly free some area and then shortly allocate it again. That does not mean
thatbus_dmamem_free() should not be used at all: hopefully it will be properly implemented soon.

• dmat- the tag

• vaddr - the kernel virtual address of the memory

• map- the map of the memory (as returned frombus_dmamem_alloc() )

• int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)

Create a map for the tag, to be used inbus_dmamap_load() later. Returns 0 on success, the error code otherwise.

• dmat- the tag

• flags- theoretically, a bit map of flags. But no flags are defined yet, so at present it will be always 0.

• mapp- pointer to the storage for the new map to be returned

• int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)

Destroy a map. Returns 0 on success, the error code otherwise.

• dmat - the tag to which the map is associated

• map - the map to be destroyed

• int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t

buflen, bus_dmamap_callback_t *callback, void *callback_arg, int flags)

Load a buffer into the map (the map must be previously created bybus_dmamap_create() or
bus_dmamem_alloc() ). All the pages of the buffer are checked for conformance to the tag requirements and for
those not conformant the bounce pages are allocated. An array of physical segment descriptors is built and passed
to the callback routine. This callback routine is then expected to handle it in some way. The number of bounce
buffers in the system is limited, so if the bounce buffers are needed but not immediately available the request will
be queued and the callback will be called when the bounce buffers will become available. Returns 0 if the callback
was executed immediately or EINPROGRESS if the request was queued for future execution. In the latter case the
synchronization with queued callback routine is the responsibility of the driver.

• dmat- the tag

• map- the map

• buf - kernel virtual address of the buffer

• buflen- length of the buffer

• callback, callback_arg - the callback function and its argument

The prototype of callback function is:
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void callback(void *arg, bus_dma_segment_t *seg, int nseg, int error)

• arg - the same as callback_arg passed tobus_dmamap_load()

• seg- array of the segment descriptors

• nseg- number of descriptors in array

• error - indication of the segment number overflow: if it is set to EFBIG then the buffer did not fit into the
maximal number of segments permitted by the tag. In this case only the permitted number of descriptors will be
in the array. Handling of this situation is up to the driver: depending on the desired semantics it can either
consider this an error or split the buffer in two and handle the second part separately

Each entry in the segments array contains the fields:

• ds_addr- physical bus address of the segment

• ds_len- length of the segment

• void bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)

unload the map.

• dmat- tag

• map- loaded map

• void bus_dmamap_sync (bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)

Synchronise a loaded buffer with its bounce pages before and after physical transfer to or from device. This is the
function that does all the necessary copying of data between the original buffer and its mapped version. The
buffers must be synchronized both before and after doing the transfer.

• dmat- tag

• map- loaded map

• op - type of synchronization operation to perform:

• BUS_DMASYNC_PREREAD- before reading from device into buffer

• BUS_DMASYNC_POSTREAD- after reading from device into buffer

• BUS_DMASYNC_PREWRITE- before writing the buffer to device

• BUS_DMASYNC_POSTWRITE- after writing the buffer to device

As of now PREREAD and POSTWRITE are null operations but that may change in the future, so they must not be
ignored in the driver. Synchronization is not needed for the memory obtained frombus_dmamem_alloc() .

Before calling the callback function frombus_dmamap_load() the segment array is stored in the stack. And it gets
pre-allocated for the maximal number of segments allowed by the tag. Because of this the practical limit for the
number of segments on i386 architecture is about 250-300 (the kernel stack is 4KB minus the size of the user
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structure, size of a segment array entry is 8 bytes, and some space must be left). Because the array is allocated based
on the maximal number this value must not be set higher than really needed. Fortunately, for most of hardware the
maximal supported number of segments is much lower. But if the driver wants to handle buffers with a very large
number of scatter-gather segments it should do that in portions: load part of the buffer, transfer it to the device, load
next part of the buffer, and so on.

Another practical consequence is that the number of segments may limit the size of the buffer. If all the pages in the
buffer happen to be physically non-contiguous then the maximal supported buffer size for that fragmented case
would be (nsegments * page_size). For example, if a maximal number of 10 segments is supported then on i386
maximal guaranteed supported buffer size would be 40K. If a higher size is desired then special tricks should be used
in the driver.

If the hardware does not support scatter-gather at all or the driver wants to support some buffer size even if it is
heavily fragmented then the solution is to allocate a contiguous buffer in the driver and use it as intermediate storage
if the original buffer does not fit.

Below are the typical call sequences when using a map depend on the use of the map. The characters -> are used to
show the flow of time.

For a buffer which stays practically fixed during all the time between attachment and detachment of a device:

bus_dmamem_alloc -> bus_dmamap_load -> ...use buffer... -> -> bus_dmamap_unload -> bus_dmamem_free

For a buffer that changes frequently and is passed from outside the driver:

bus_dmamap_create ->
-> bus_dmamap_load -> bus_dmamap_sync(PRE...) -> do transfer ->
-> bus_dmamap_sync(POST...) -> bus_dmamap_unload ->
...
-> bus_dmamap_load -> bus_dmamap_sync(PRE...) -> do transfer ->
-> bus_dmamap_sync(POST...) -> bus_dmamap_unload ->
-> bus_dmamap_destroy

When loading a map created bybus_dmamem_alloc() the passed address and size of the buffer must be the same
as used inbus_dmamem_alloc() . In this case it is guaranteed that the whole buffer will be mapped as one segment
(so the callback may be based on this assumption) and the request will be executed immediately (EINPROGRESS
will never be returned). All the callback needs to do in this case is to save the physical address.

A typical example would be:

static void
alloc_callback(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{

*(bus_addr_t *)arg = seg[0].ds_addr;
}

...
int error;
struct somedata {

....
};
struct somedata *vsomedata; /* virtual address */
bus_addr_t psomedata; /* physical bus-relative address */
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bus_dma_tag_t tag_somedata;
bus_dmamap_t map_somedata;
...

error=bus_dma_tag_create(parent_tag, alignment,
boundary, lowaddr, highaddr, /*filter*/ NULL, /*filterarg*/ NULL,
/*maxsize*/ sizeof(struct somedata), /*nsegments*/ 1,
/*maxsegsz*/ sizeof(struct somedata), /*flags*/ 0,
&tag_somedata);

if(error)
return error;

error = bus_dmamem_alloc(tag_somedata, &vsomedata, /* flags*/ 0,
&map_somedata);

if(error)
return error;

bus_dmamap_load(tag_somedata, map_somedata, (void *)vsomedata,
sizeof (struct somedata), alloc_callback,
(void *) &psomedata, /*flags*/0);

Looks a bit long and complicated but that is the way to do it. The practical consequence is: if multiple memory areas
are allocated always together it would be a really good idea to combine them all into one structure and allocate as
one (if the alignment and boundary limitations permit).

When loading an arbitrary buffer into the map created bybus_dmamap_create() special measures must be taken
to synchronize with the callback in case it would be delayed. The code would look like:

{
int s;
int error;

s = splsoftvm();
error = bus_dmamap_load(

dmat,
dmamap,
buffer_ptr,
buffer_len,
callback,
/*callback_arg*/ buffer_descriptor,
/*flags*/0);

if (error == EINPROGRESS) {
/*

* Do whatever is needed to ensure synchronization
* with callback. Callback is guaranteed not to be started
* until we do splx() or tsleep().
*/

}
splx(s);

}

Two possible approaches for the processing of requests are:
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1. If requests are completed by marking them explicitly as done (such as the CAM requests) then it would be simpler
to put all the further processing into the callback driver which would mark the request when it is done. Then not
much extra synchronization is needed. For the flow control reasons it may be a good idea to freeze the request queue
until this request gets completed.

2. If requests are completed when the function returns (such as classic read or write requests on character devices)
then a synchronization flag should be set in the buffer descriptor andtsleep() called. Later when the callback gets
called it will do its processing and check this synchronization flag. If it is set then the callback should issue a
wakeup. In this approach the callback function could either do all the needed processing (just like the previous case)
or simply save the segments array in the buffer descriptor. Then after callback completes the calling function could
use this saved segments array and do all the processing.

14.7 DMA
The Direct Memory Access (DMA) is implemented in the ISA bus through the DMA controller (actually, two of
them but that is an irrelevant detail). To make the early ISA devices simple and cheap the logic of the bus control and
address generation was concentrated in the DMA controller. Fortunately, FreeBSD provides a set of functions that
mostly hide the annoying details of the DMA controller from the device drivers.

The simplest case is for the fairly intelligent devices. Like the bus master devices on PCI they can generate the bus
cycles and memory addresses all by themselves. The only thing they really need from the DMA controller is bus
arbitration. So for this purpose they pretend to be cascaded slave DMA controllers. And the only thing needed from
the system DMA controller is to enable the cascaded mode on a DMA channel by calling the following function
when attaching the driver:

void isa_dmacascade(int channel_number)

All the further activity is done by programming the device. When detaching the driver no DMA-related functions
need to be called.

For the simpler devices things get more complicated. The functions used are:

• int isa_dma_acquire(int chanel_number)

Reserve a DMA channel. Returns 0 on success or EBUSY if the channel was already reserved by this or a different
driver. Most of the ISA devices are not able to share DMA channels anyway, so normally this function is called
when attaching a device. This reservation was made redundant by the modern interface of bus resources but still
must be used in addition to the latter. If not used then later, other DMA routines will panic.

• int isa_dma_release(int chanel_number)

Release a previously reserved DMA channel. No transfers must be in progress when the channel is released (in
addition the device must not try to initiate transfer after the channel is released).

• void isa_dmainit(int chan, u_int bouncebufsize)

Allocate a bounce buffer for use with the specified channel. The requested size of the buffer can not exceed 64KB.
This bounce buffer will be automatically used later if a transfer buffer happens to be not physically contiguous or
outside of the memory accessible by the ISA bus or crossing the 64KB boundary. If the transfers will be always
done from buffers which conform to these conditions (such as those allocated bybus_dmamem_alloc() with
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proper limitations) thenisa_dmainit() does not have to be called. But it is quite convenient to transfer arbitrary
data using the DMA controller. The bounce buffer will automatically care of the scatter-gather issues.

• chan- channel number

• bouncebufsize- size of the bounce buffer in bytes

• void isa_dmastart(int flags, caddr_t addr, u_int nbytes, int chan)

Prepare to start a DMA transfer. This function must be called to set up the DMA controller before actually starting
transfer on the device. It checks that the buffer is contiguous and falls into the ISA memory range, if not then the
bounce buffer is automatically used. If bounce buffer is required but not set up byisa_dmainit() or too small
for the requested transfer size then the system will panic. In case of a write request with bounce buffer the data
will be automatically copied to the bounce buffer.

• flags - a bitmask determining the type of operation to be done. The direction bits B_READ and B_WRITE are
mutually exclusive.

• B_READ - read from the ISA bus into memory

• B_WRITE - write from the memory to the ISA bus

• B_RAW - if set then the DMA controller will remember the buffer and after the end of transfer will
automatically re-initialize itself to repeat transfer of the same buffer again (of course, the driver may change the
data in the buffer before initiating another transfer in the device). If not set then the parameters will work only
for one transfer, andisa_dmastart() will have to be called again before initiating the next transfer. Using
B_RAW makes sense only if the bounce buffer is not used.

• addr - virtual address of the buffer

• nbytes - length of the buffer. Must be less or equal to 64KB. Length of 0 is not allowed: the DMA controller will
understand it as 64KB while the kernel code will understand it as 0 and that would cause unpredictable effects. For
channels number 4 and higher the length must be even because these channels transfer 2 bytes at a time. In case of
an odd length the last byte will not be transferred.

• chan - channel number

• void isa_dmadone(int flags, caddr_t addr, int nbytes, int chan)

Synchronize the memory after device reports that transfer is done. If that was a read operation with a bounce
buffer then the data will be copied from the bounce buffer to the original buffer. Arguments are the same as for
isa_dmastart() . Flag B_RAW is permitted but it does not affectisa_dmadone() in any way.

• int isa_dmastatus(int channel_number)

Returns the number of bytes left in the current transfer to be transferred. In case the flag B_READ was set in
isa_dmastart() the number returned will never be equal to zero. At the end of transfer it will be automatically
reset back to the length of buffer. The normal use is to check the number of bytes left after the device signals that
the transfer is completed. If the number of bytes is not 0 then something probably went wrong with that transfer.
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• int isa_dmastop(int channel_number)

Aborts the current transfer and returns the number of bytes left untransferred.

14.8 xxx_isa_probe
This function probes if a device is present. If the driver supports auto-detection of some part of device configuration
(such as interrupt vector or memory address) this auto-detection must be done in this routine.

As for any other bus, if the device cannot be detected or is detected but failed the self-test or some other problem
happened then it returns a positive value of error. The value ENXIO must be returned if the device is not present.
Other error values may mean other conditions. Zero or negative values mean success. Most of the drivers return zero
as success.

The negative return values are used when a PnP device supports multiple interfaces. For example, an older
compatibility interface and a newer advanced interface which are supported by different drivers. Then both drivers
would detect the device. The driver which returns a higher value in the probe routine takes precedence (in other
words, the driver returning 0 has highest precedence, one returning -1 is next, one returning -2 is after it and so on).
In result the devices which support only the old interface will be handled by the old driver (which should return -1
from the probe routine) while the devices supporting the new interface as well will be handled by the new driver
(which should return 0 from the probe routine).

The device descriptor struct xxx_softc is allocated by the system before calling the probe routine. If the probe routine
returns an error the descriptor will be automatically deallocated by the system. So if a probing error occurs the driver
must make sure that all the resources it used during probe are deallocated and that nothing keeps the descriptor from
being safely deallocated. If the probe completes successfully the descriptor will be preserved by the system and later
passed to the routinexxx_isa_attach() . If a driver returns a negative value it can not be sure that it will have the
highest priority and its attach routine will be called. So in this case it also must release all the resources before
returning and if necessary allocate them again in the attach routine. Whenxxx_isa_probe() returns 0 releasing the
resources before returning is also a good idea and a well-behaved driver should do so. But in cases where there is
some problem with releasing the resources the driver is allowed to keep resources between returning 0 from the
probe routine and execution of the attach routine.

A typical probe routine starts with getting the device descriptor and unit:

struct xxx_softc *sc = device_get_softc(dev);
int unit = device_get_unit(dev);
int pnperror;
int error = 0;

sc->dev = dev; /* link it back */
sc->unit = unit;

Then check for the PnP devices. The check is carried out by a table containing the list of PnP IDs supported by this
driver and human-readable descriptions of the device models corresponding to these IDs.

pnperror=ISA_PNP_PROBE(device_get_parent(dev), dev,
xxx_pnp_ids); if(pnperror == ENXIO) return ENXIO;
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The logic of ISA_PNP_PROBE is the following: If this card (device unit) was not detected as PnP then ENOENT
will be returned. If it was detected as PnP but its detected ID does not match any of the IDs in the table then ENXIO
is returned. Finally, if it has PnP support and it matches on of the IDs in the table, 0 is returned and the appropriate
description from the table is set bydevice_set_desc() .

If a driver supports only PnP devices then the condition would look like:

if(pnperror != 0)
return pnperror;

No special treatment is required for the drivers which do not support PnP because they pass an empty PnP ID table
and will always get ENXIO if called on a PnP card.

The probe routine normally needs at least some minimal set of resources, such as I/O port number to find the card
and probe it. Depending on the hardware the driver may be able to discover the other necessary resources
automatically. The PnP devices have all the resources pre-set by the PnP subsystem, so the driver does not need to
discover them by itself.

Typically the minimal information required to get access to the device is the I/O port number. Then some devices
allow to get the rest of information from the device configuration registers (though not all devices do that). So first
we try to get the port start value:

sc->port0 = bus_get_resource_start(dev,
SYS_RES_IOPORT, 0 /*rid*/); if(sc->port0 == 0) return ENXIO;

The base port address is saved in the structure softc for future use. If it will be used very often then calling the
resource function each time would be prohibitively slow. If we do not get a port we just return an error. Some device
drivers can instead be clever and try to probe all the possible ports, like this:

/* table of all possible base I/O port addresses for this device */
static struct xxx_allports {

u_short port; /* port address */
short used; /* flag: if this port is already used by some unit */

} xxx_allports = {
{ 0x300, 0 },
{ 0x320, 0 },
{ 0x340, 0 },
{ 0, 0 } /* end of table */

};

...
int port, i;
...

port = bus_get_resource_start(dev, SYS_RES_IOPORT, 0 /*rid*/);
if(port !=0 ) {

for(i=0; xxx_allports[i].port!=0; i++) {
if(xxx_allports[i].used || xxx_allports[i].port != port)

continue;

/* found it */
xxx_allports[i].used = 1;
/* do probe on a known port */
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return xxx_really_probe(dev, port);
}
return ENXIO; /* port is unknown or already used */

}

/* we get here only if we need to guess the port */
for(i=0; xxx_allports[i].port!=0; i++) {

if(xxx_allports[i].used)
continue;

/* mark as used - even if we find nothing at this port
* at least we won’t probe it in future
*/
xxx_allports[i].used = 1;

error = xxx_really_probe(dev, xxx_allports[i].port);
if(error == 0) /* found a device at that port */

return 0;
}
/* probed all possible addresses, none worked */
return ENXIO;

Of course, normally the driver’sidentify() routine should be used for such things. But there may be one valid
reason why it may be better to be done inprobe() : if this probe would drive some other sensitive device crazy. The
probe routines are ordered with consideration of thesensitive flag: the sensitive devices get probed first and the
rest of the devices later. But theidentify() routines are called before any probes, so they show no respect to the
sensitive devices and may upset them.

Now, after we got the starting port we need to set the port count (except for PnP devices) because the kernel does not
have this information in the configuration file.

if(pnperror /* only for non-PnP devices */
&& bus_set_resource(dev, SYS_RES_IOPORT, 0, sc->port0,
XXX_PORT_COUNT)<0)

return ENXIO;

Finally allocate and activate a piece of port address space (special values of start and end mean “use those we set by
bus_set_resource() ”):

sc->port0_rid = 0;
sc->port0_r = bus_alloc_resource(dev, SYS_RES_IOPORT,
&sc->port0_rid,

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->port0_r == NULL)
return ENXIO;

Now having access to the port-mapped registers we can poke the device in some way and check if it reacts like it is
expected to. If it does not then there is probably some other device or no device at all at this address.

Normally drivers do not set up the interrupt handlers until the attach routine. Instead they do probes in the polling
mode using theDELAY() function for timeout. The probe routine must never hang forever, all the waits for the
device must be done with timeouts. If the device does not respond within the time it is probably broken or
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misconfigured and the driver must return error. When determining the timeout interval give the device some extra
time to be on the safe side: althoughDELAY() is supposed to delay for the same amount of time on any machine it
has some margin of error, depending on the exact CPU.

If the probe routine really wants to check that the interrupts really work it may configure and probe the interrupts too.
But that is not recommended.

/* implemented in some very device-specific way */
if(error = xxx_probe_ports(sc))

goto bad; /* will deallocate the resources before returning */

The functionxxx_probe_ports() may also set the device description depending on the exact model of device it
discovers. But if there is only one supported device model this can be as well done in a hardcoded way. Of course,
for the PnP devices the PnP support sets the description from the table automatically.

if(pnperror)
device_set_desc(dev, "Our device model 1234");

Then the probe routine should either discover the ranges of all the resources by reading the device configuration
registers or make sure that they were set explicitly by the user. We will consider it with an example of on-board
memory. The probe routine should be as non-intrusive as possible, so allocation and check of functionality of the rest
of resources (besides the ports) would be better left to the attach routine.

The memory address may be specified in the kernel configuration file or on some devices it may be pre-configured in
non-volatile configuration registers. If both sources are available and different, which one should be used? Probably
if the user bothered to set the address explicitly in the kernel configuration file they know what they are doing and
this one should take precedence. An example of implementation could be:

/* try to find out the config address first */
sc->mem0_p = bus_get_resource_start(dev, SYS_RES_MEMORY, 0 /*rid*/);
if(sc->mem0_p == 0) { /* nope, not specified by user */

sc->mem0_p = xxx_read_mem0_from_device_config(sc);

if(sc->mem0_p == 0)
/* can’t get it from device config registers either */
goto bad;

} else {
if(xxx_set_mem0_address_on_device(sc) < 0)

goto bad; /* device does not support that address */
}

/* just like the port, set the memory size,
* for some devices the memory size would not be constant
* but should be read from the device configuration registers instead
* to accommodate different models of devices. Another option would
* be to let the user set the memory size as "msize" configuration
* resource which will be automatically handled by the ISA bus.
*/
if(pnperror) { /* only for non-PnP devices */

sc->mem0_size = bus_get_resource_count(dev, SYS_RES_MEMORY, 0 /*rid*/);
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if(sc->mem0_size == 0) /* not specified by user */
sc->mem0_size = xxx_read_mem0_size_from_device_config(sc);

if(sc->mem0_size == 0) {
/* suppose this is a very old model of device without

* auto-configuration features and the user gave no preference,
* so assume the minimalistic case
* (of course, the real value will vary with the driver)
*/

sc->mem0_size = 8*1024;
}

if(xxx_set_mem0_size_on_device(sc) < 0)
goto bad; /* device does not support that size */

if(bus_set_resource(dev, SYS_RES_MEMORY, /*rid*/0,
sc->mem0_p, sc->mem0_size) <0)

goto bad;
} else {

sc->mem0_size = bus_get_resource_count(dev, SYS_RES_MEMORY, 0 /*rid*/);
}

Resources for IRQ and DRQ are easy to check by analogy.

If all went well then release all the resources and return success.

xxx_free_resources(sc);
return 0;

Finally, handle the troublesome situations. All the resources should be deallocated before returning. We make use of
the fact that before the structure softc is passed to us it gets zeroed out, so we can find out if some resource was
allocated: then its descriptor is non-zero.

bad:

xxx_free_resources(sc);
if(error)

return error;
else /* exact error is unknown */

return ENXIO;

That would be all for the probe routine. Freeing of resources is done from multiple places, so it is moved to a
function which may look like:

static void
xxx_free_resources(sc)

struct xxx_softc *sc;
{

/* check every resource and free if not zero */

/* interrupt handler */
if(sc->intr_r) {

bus_teardown_intr(sc->dev, sc->intr_r, sc->intr_cookie);
bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
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sc->intr_r);
sc->intr_r = 0;

}

/* all kinds of memory maps we could have allocated */
if(sc->data_p) {

bus_dmamap_unload(sc->data_tag, sc->data_map);
sc->data_p = 0;

}
if(sc->data) { /* sc->data_map may be legitimately equal to 0 */

/* the map will also be freed */
bus_dmamem_free(sc->data_tag, sc->data, sc->data_map);
sc->data = 0;

}
if(sc->data_tag) {

bus_dma_tag_destroy(sc->data_tag);
sc->data_tag = 0;

}

... free other maps and tags if we have them ...

if(sc->parent_tag) {
bus_dma_tag_destroy(sc->parent_tag);
sc->parent_tag = 0;

}

/* release all the bus resources */
if(sc->mem0_r) {

bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->mem0_rid,
sc->mem0_r);

sc->mem0_r = 0;
}
...
if(sc->port0_r) {

bus_release_resource(sc->dev, SYS_RES_IOPORT, sc->port0_rid,
sc->port0_r);

sc->port0_r = 0;
}

}

14.9 xxx_isa_attach
The attach routine actually connects the driver to the system if the probe routine returned success and the system had
chosen to attach that driver. If the probe routine returned 0 then the attach routine may expect to receive the device
structure softc intact, as it was set by the probe routine. Also if the probe routine returns 0 it may expect that the
attach routine for this device shall be called at some point in the future. If the probe routine returns a negative value
then the driver may make none of these assumptions.

The attach routine returns 0 if it completed successfully or error code otherwise.
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The attach routine starts just like the probe routine, with getting some frequently used data into more accessible
variables.

struct xxx_softc *sc = device_get_softc(dev);
int unit = device_get_unit(dev);
int error = 0;

Then allocate and activate all the necessary resources. Because normally the port range will be released before
returning from probe, it has to be allocated again. We expect that the probe routine had properly set all the resource
ranges, as well as saved them in the structure softc. If the probe routine had left some resource allocated then it does
not need to be allocated again (which would be considered an error).

sc->port0_rid = 0;
sc->port0_r = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port0_rid,

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->port0_r == NULL)
return ENXIO;

/* on-board memory */
sc->mem0_rid = 0;
sc->mem0_r = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->mem0_rid,

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->mem0_r == NULL)
goto bad;

/* get its virtual address */
sc->mem0_v = rman_get_virtual(sc->mem0_r);

The DMA request channel (DRQ) is allocated likewise. To initialize it use functions of theisa_dma*() family. For
example:

isa_dmacascade(sc->drq0);

The interrupt request line (IRQ) is a bit special. Besides allocation the driver’s interrupt handler should be associated
with it. Historically in the old ISA drivers the argument passed by the system to the interrupt handler was the device
unit number. But in modern drivers the convention suggests passing the pointer to structure softc. The important
reason is that when the structures softc are allocated dynamically then getting the unit number from softc is easy
while getting softc from the unit number is difficult. Also this convention makes the drivers for different buses look
more uniform and allows them to share the code: each bus gets its own probe, attach, detach and other bus-specific
routines while the bulk of the driver code may be shared among them.

sc->intr_rid = 0;
sc->intr_r = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->intr_rid,

/*start*/ 0, /*end*/ ~0, /*count*/ 0, RF_ACTIVE);

if(sc->intr_r == NULL)
goto bad;

/*
* XXX_INTR_TYPE is supposed to be defined depending on the type of
* the driver, for example as INTR_TYPE_CAM for a CAM driver
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*/
error = bus_setup_intr(dev, sc->intr_r, XXX_INTR_TYPE,

(driver_intr_t *) xxx_intr, (void *) sc, &sc->intr_cookie);
if(error)

goto bad;

If the device needs to make DMA to the main memory then this memory should be allocated like described before:

error=bus_dma_tag_create(NULL, /*alignment*/ 4,
/*boundary*/ 0, /*lowaddr*/ BUS_SPACE_MAXADDR_24BIT,
/*highaddr*/ BUS_SPACE_MAXADDR, /*filter*/ NULL, /*filterarg*/ NULL,
/*maxsize*/ BUS_SPACE_MAXSIZE_24BIT,
/*nsegments*/ BUS_SPACE_UNRESTRICTED,
/*maxsegsz*/ BUS_SPACE_MAXSIZE_24BIT, /*flags*/ 0,
&sc->parent_tag);

if(error)
goto bad;

/* many things get inherited from the parent tag
* sc->data is supposed to point to the structure with the shared data,
* for example for a ring buffer it could be:
* struct {
* u_short rd_pos;
* u_short wr_pos;
* char bf[XXX_RING_BUFFER_SIZE]
* } *data;
*/

error=bus_dma_tag_create(sc->parent_tag, 1,
0, BUS_SPACE_MAXADDR, 0, /*filter*/ NULL, /*filterarg*/ NULL,
/*maxsize*/ sizeof(* sc->data), /*nsegments*/ 1,
/*maxsegsz*/ sizeof(* sc->data), /*flags*/ 0,
&sc->data_tag);

if(error)
goto bad;

error = bus_dmamem_alloc(sc->data_tag, &sc->data, /* flags*/ 0,
&sc->data_map);

if(error)
goto bad;

/* xxx_alloc_callback() just saves the physical address at
* the pointer passed as its argument, in this case &sc->data_p.
* See details in the section on bus memory mapping.
* It can be implemented like:
*
* static void
* xxx_alloc_callback(void *arg, bus_dma_segment_t *seg,
* int nseg, int error)
* {
* *(bus_addr_t *)arg = seg[0].ds_addr;
* }
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*/
bus_dmamap_load(sc->data_tag, sc->data_map, (void *)sc->data,

sizeof (* sc->data), xxx_alloc_callback, (void *) &sc->data_p,
/*flags*/0);

After all the necessary resources are allocated the device should be initialized. The initialization may include testing
that all the expected features are functional.

if(xxx_initialize(sc) < 0)
goto bad;

The bus subsystem will automatically print on the console the device description set by probe. But if the driver wants
to print some extra information about the device it may do so, for example:

device_printf(dev, "has on-card FIFO buffer of %d bytes\n", sc->fifosize);

If the initialization routine experiences any problems then printing messages about them before returning error is also
recommended.

The final step of the attach routine is attaching the device to its functional subsystem in the kernel. The exact way to
do it depends on the type of the driver: a character device, a block device, a network device, a CAM SCSI bus device
and so on.

If all went well then return success.

error = xxx_attach_subsystem(sc);
if(error)

goto bad;

return 0;

Finally, handle the troublesome situations. All the resources should be deallocated before returning an error. We
make use of the fact that before the structure softc is passed to us it gets zeroed out, so we can find out if some
resource was allocated: then its descriptor is non-zero.

bad:

xxx_free_resources(sc);
if(error)

return error;
else /* exact error is unknown */

return ENXIO;

That would be all for the attach routine.

14.10 xxx_isa_detach
If this function is present in the driver and the driver is compiled as a loadable module then the driver gets the ability
to be unloaded. This is an important feature if the hardware supports hot plug. But the ISA bus does not support hot
plug, so this feature is not particularly important for the ISA devices. The ability to unload a driver may be useful
when debugging it, but in many cases installation of the new version of the driver would be required only after the
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old version somehow wedges the system and a reboot will be needed anyway, so the efforts spent on writing the
detach routine may not be worth it. Another argument that unloading would allow upgrading the drivers on a
production machine seems to be mostly theoretical. Installing a new version of a driver is a dangerous operation
which should never be performed on a production machine (and which is not permitted when the system is running
in secure mode). Still, the detach routine may be provided for the sake of completeness.

The detach routine returns 0 if the driver was successfully detached or the error code otherwise.

The logic of detach is a mirror of the attach. The first thing to do is to detach the driver from its kernel subsystem. If
the device is currently open then the driver has two choices: refuse to be detached or forcibly close and proceed with
detach. The choice used depends on the ability of the particular kernel subsystem to do a forced close and on the
preferences of the driver’s author. Generally the forced close seems to be the preferred alternative.

struct xxx_softc *sc = device_get_softc(dev);
int error;

error = xxx_detach_subsystem(sc);
if(error)

return error;

Next the driver may want to reset the hardware to some consistent state. That includes stopping any ongoing
transfers, disabling the DMA channels and interrupts to avoid memory corruption by the device. For most of the
drivers this is exactly what the shutdown routine does, so if it is included in the driver we can just call it.

xxx_isa_shutdown(dev);

And finally release all the resources and return success.

xxx_free_resources(sc);
return 0;

14.11 xxx_isa_shutdown
This routine is called when the system is about to be shut down. It is expected to bring the hardware to some
consistent state. For most of the ISA devices no special action is required, so the function is not really necessary
because the device will be re-initialized on reboot anyway. But some devices have to be shut down with a special
procedure, to make sure that they will be properly detected after soft reboot (this is especially true for many devices
with proprietary identification protocols). In any case disabling DMA and interrupts in the device registers and
stopping any ongoing transfers is a good idea. The exact action depends on the hardware, so we do not consider it
here in any detail.

14.12 xxx_intr
The interrupt handler is called when an interrupt is received which may be from this particular device. The ISA bus
does not support interrupt sharing (except in some special cases) so in practice if the interrupt handler is called then
the interrupt almost for sure came from its device. Still, the interrupt handler must poll the device registers and make
sure that the interrupt was generated by its device. If not it should just return.
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The old convention for the ISA drivers was getting the device unit number as an argument. This is obsolete, and the
new drivers receive whatever argument was specified for them in the attach routine when calling
bus_setup_intr() . By the new convention it should be the pointer to the structure softc. So the interrupt handler
commonly starts as:

static void
xxx_intr(struct xxx_softc *sc)
{

It runs at the interrupt priority level specified by the interrupt type parameter ofbus_setup_intr() . That means
that all the other interrupts of the same type as well as all the software interrupts are disabled.

To avoid races it is commonly written as a loop:

while(xxx_interrupt_pending(sc)) {
xxx_process_interrupt(sc);
xxx_acknowledge_interrupt(sc);

}

The interrupt handler has to acknowledge interrupt to the device only but not to the interrupt controller, the system
takes care of the latter.
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This chapter will talk about the FreeBSD mechanisms for writing a device driver for a device on a PCI bus.

15.1 Probe and Attach
Information here about how the PCI bus code iterates through the unattached devices and see if a newly loaded kld
will attach to any of them.

/*
* Simple KLD to play with the PCI functions.
*
* Murray Stokely
*/

#define MIN(a,b) (((a) < (b)) ? (a) : (b))

#include <sys/types.h >

#include <sys/module.h >

#include <sys/systm.h > /* uprintf */
#include <sys/errno.h >

#include <sys/param.h > /* defines used in kernel.h */
#include <sys/kernel.h > /* types used in module initialization */
#include <sys/conf.h > /* cdevsw struct */
#include <sys/uio.h > /* uio struct */
#include <sys/malloc.h >

#include <sys/bus.h > /* structs, prototypes for pci bus stuff */

#include <pci/pcivar.h > /* For get_pci macros! */

/* Function prototypes */
d_open_t mypci_open;
d_close_t mypci_close;
d_read_t mypci_read;
d_write_t mypci_write;

/* Character device entry points */

static struct cdevsw mypci_cdevsw = {
.d_open = mypci_open,
.d_close = mypci_close,
.d_read = mypci_read,
.d_write = mypci_write,
.d_name = "mypci",
};

/* vars */
static dev_t sdev;

/* We’re more interested in probe/attach than with
open/close/read/write at this point */
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int
mypci_open(dev_t dev, int oflags, int devtype, struct proc *p)
{

int err = 0;

uprintf("Opened device \"mypci\" successfully.\n");
return(err);

}

int
mypci_close(dev_t dev, int fflag, int devtype, struct proc *p)
{

int err=0;

uprintf("Closing device \"mypci.\"\n");
return(err);

}

int
mypci_read(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;

uprintf("mypci read!\n");
return err;

}

int
mypci_write(dev_t dev, struct uio *uio, int ioflag)
{

int err = 0;

uprintf("mypci write!\n");
return(err);

}

/* PCI Support Functions */

/*
* Return identification string if this is device is ours.
*/

static int
mypci_probe(device_t dev)
{

uprintf("MyPCI Probe\n"
"Vendor ID : 0x%x\n"
"Device ID : 0x%x\n",pci_get_vendor(dev),pci_get_device(dev));

if (pci_get_vendor(dev) == 0x11c1) {
uprintf("We’ve got the Winmodem, probe successful!\n");
return 0;

}
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return ENXIO;
}

/* Attach function is only called if the probe is successful */

static int
mypci_attach(device_t dev)
{

uprintf("MyPCI Attach for : deviceID : 0x%x\n",pci_get_vendor(dev));
sdev = make_dev( &mypci_cdevsw,
0,
UID_ROOT,
GID_WHEEL,
0600,
"mypci");
uprintf("Mypci device loaded.\n");
return ENXIO;

}

/* Detach device. */

static int
mypci_detach(device_t dev)
{

uprintf("Mypci detach!\n");
return 0;

}

/* Called during system shutdown after sync. */

static int
mypci_shutdown(device_t dev)
{

uprintf("Mypci shutdown!\n");
return 0;

}

/*
* Device suspend routine.
*/

static int
mypci_suspend(device_t dev)
{

uprintf("Mypci suspend!\n");
return 0;

}

/*
* Device resume routine.
*/

static int
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mypci_resume(device_t dev)
{

uprintf("Mypci resume!\n");
return 0;

}

static device_method_t mypci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mypci_probe),
DEVMETHOD(device_attach, mypci_attach),
DEVMETHOD(device_detach, mypci_detach),
DEVMETHOD(device_shutdown, mypci_shutdown),
DEVMETHOD(device_suspend, mypci_suspend),
DEVMETHOD(device_resume, mypci_resume),

{ 0, 0 }
};

static driver_t mypci_driver = {
"mypci",
mypci_methods,
0,
/* sizeof(struct mypci_softc), */
};

static devclass_t mypci_devclass;

DRIVER_MODULE(mypci, pci, mypci_driver, mypci_devclass, 0, 0);

Additional Resources

• PCI Special Interest Group (http://www.pcisig.org/)

• PCI System Architecture, Fourth Edition by Tom Shanley, et al.

15.2 Bus Resources
FreeBSD provides an object-oriented mechanism for requesting resources from a parent bus. Almost all devices will
be a child member of some sort of bus (PCI, ISA, USB, SCSI, etc) and these devices need to acquire resources from
their parent bus (such as memory segments, interrupt lines, or DMA channels).

15.2.1 Base Address Registers

To do anything particularly useful with a PCI device you will need to obtain theBase Address Registers(BARs) from
the PCI Configuration space. The PCI-specific details of obtaining the BAR are abstracted in the
bus_alloc_resource() function.

For example, a typical driver might have something similar to this in theattach() function:
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sc->bar0id = 0x10;
sc->bar0res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar0id),

0, ~0, 1, RF_ACTIVE);
if (sc->bar0res == NULL) {

uprintf("Memory allocation of PCI base register 0 failed!\n");
error = ENXIO;
goto fail1;

}

sc->bar1id = 0x14;
sc->bar1res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar1id),

0, ~0, 1, RF_ACTIVE);
if (sc->bar1res == NULL) {

uprintf("Memory allocation of PCI base register 1 failed!\n");
error = ENXIO;
goto fail2;

}
sc->bar0_bt = rman_get_bustag(sc->bar0res);
sc->bar0_bh = rman_get_bushandle(sc->bar0res);
sc->bar1_bt = rman_get_bustag(sc->bar1res);
sc->bar1_bh = rman_get_bushandle(sc->bar1res);

Handles for each base address register are kept in the softc structure so that they can be used to write to the device
later.

These handles can then be used to read or write from the device registers with thebus_space_* functions. For
example, a driver might contain a shorthand function to read from a board specific register like this:

uint16_t
board_read(struct ni_softc *sc, uint16_t address) {

return bus_space_read_2(sc->bar1_bt, sc->bar1_bh, address);
}

Similarly, one could write to the registers with:

void
board_write(struct ni_softc *sc, uint16_t address, uint16_t value) {

bus_space_write_2(sc->bar1_bt, sc->bar1_bh, address, value);
}

These functions exist in 8bit, 16bit, and 32bit versions and you should usebus_space_{read|write}_{1|2|4}

accordingly.

15.2.2 Interrupts

Interrupts are allocated from the object-oriented bus code in a way similar to the memory resources. First an IRQ
resource must be allocated from the parent bus, and then the interrupt handler must be setup to deal with this IRQ.

Again, a sample from a deviceattach() function says more than words.

/* Get the IRQ resource */

sc->irqid = 0x0;
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sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &(sc->irqid),
0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);

if (sc->irqres == NULL) {
uprintf("IRQ allocation failed!\n");
error = ENXIO;
goto fail3;

}

/* Now we should setup the interrupt handler */

error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_MISC,
my_handler, sc, &(sc->handler));

if (error) {
printf("Couldn’t set up irq\n");
goto fail4;

}

sc->irq_bt = rman_get_bustag(sc->irqres);
sc->irq_bh = rman_get_bushandle(sc->irqres);

Some care must be taken in the detach routine of the driver. You must quiess the device’s interrupt stream, and
remove the interrupt hanlder. Oncebus_space_teardown_intr() has returned, you know that your interrupt
handler will no longer be called, and that all threads that might have been this interrupt handler have returned.
Depending on the locking strategy of your driver, you will also need to be careful with what locks you hold when
you do this to avoid deadlock.

15.2.3 DMA

This section is obsolete, and present only for historical reasons. The proper methods for dealing with these issues is
to use thebus_space_dma*() functions instead. This paragraph can be removed when this section is updated to
reflect that usage. However, at the moment, the API is in a bit of flux, so once that settles down, it would be good to
update this section to reflect that.

On the PC, peripherals that want to do bus-mastering DMA must deal with physical addresses. This is a problem
since FreeBSD uses virtual memory and deals almost exclusively with virtual addresses. Fortunately, there is a
function,vtophys() to help.

#include <vm/vm.h >

#include <vm/pmap.h >

#define vtophys(virtual_address) (...)

The solution is a bit different on the alpha however, and what we really want is a function calledvtobus() .

#if defined(__alpha__)
#define vtobus(va) alpha_XXX_dmamap((vm_offset_t)va)
#else
#define vtobus(va) vtophys(va)
#endif
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15.2.4 Deallocating Resources

It is very important to deallocate all of the resources that were allocated duringattach() . Care must be taken to
deallocate the correct stuff even on a failure condition so that the system will remain usable while your driver dies.
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Chapter 16 Common Access Method SCSI
Controllers
This chapter was written by Sergey Babkin <babkin@FreeBSD.org > Modifications for the handbook made by
Murray Stokely <murray@FreeBSD.org >.

16.1 Synopsis
This document assumes that the reader has a general understanding of device drivers in FreeBSD and of the SCSI
protocol. Much of the information in this document was extracted from the drivers:

• ncr (/sys/pci/ncr.c ) by Wolfgang Stanglmeier and Stefan Esser

• sym (/sys/dev/sym/sym_hipd.c ) by Gerard Roudier

• aic7xxx (/sys/dev/aic7xxx/aic7xxx.c ) by Justin T. Gibbs

and from the CAM code itself (by Justing T. Gibbs, see/sys/cam/* ). When some solution looked the most logical
and was essentially verbatim extracted from the code by Justin Gibbs, I marked it as “recommended”.

The document is illustrated with examples in pseudo-code. Although sometimes the examples have many details and
look like real code, it is still pseudo-code. It was written to demonstrate the concepts in an understandable way. For a
real driver other approaches may be more modular and efficient. It also abstracts from the hardware details, as well as
issues that would cloud the demonstrated concepts or that are supposed to be described in the other chapters of the
developers handbook. Such details are commonly shown as calls to functions with descriptive names, comments or
pseudo-statements. Fortunately real life full-size examples with all the details can be found in the real drivers.

16.2 General architecture
CAM stands for Common Access Method. It is a generic way to address the I/O buses in a SCSI-like way. This
allows a separation of the generic device drivers from the drivers controlling the I/O bus: for example the disk driver
becomes able to control disks on both SCSI, IDE, and/or any other bus so the disk driver portion does not have to be
rewritten (or copied and modified) for every new I/O bus. Thus the two most important active entities are:

• Peripheral Modules- a driver for peripheral devices (disk, tape, CDROM, etc.)

• SCSI Interface Modules(SIM) - a Host Bus Adapter drivers for connecting to an I/O bus such as SCSI or IDE.

A peripheral driver receives requests from the OS, converts them to a sequence of SCSI commands and passes these
SCSI commands to a SCSI Interface Module. The SCSI Interface Module is responsible for passing these commands
to the actual hardware (or if the actual hardware is not SCSI but, for example, IDE then also converting the SCSI
commands to the native commands of the hardware).

Because we are interested in writing a SCSI adapter driver here, from this point on we will consider everything from
the SIM standpoint.

A typical SIM driver needs to include the following CAM-related header files:

#include <cam/cam.h >
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#include <cam/cam_ccb.h >

#include <cam/cam_sim.h >

#include <cam/cam_xpt_sim.h >

#include <cam/cam_debug.h >

#include <cam/scsi/scsi_all.h >

The first thing each SIM driver must do is register itself with the CAM subsystem. This is done during the driver’s
xxx_attach() function (here and further xxx_ is used to denote the unique driver name prefix). The
xxx_attach() function itself is called by the system bus auto-configuration code which we do not describe here.

This is achieved in multiple steps: first it is necessary to allocate the queue of requests associated with this SIM:

struct cam_devq *devq;

if(( devq = cam_simq_alloc(SIZE) )==NULL) {
error; /* some code to handle the error */

}

Here SIZE is the size of the queue to be allocated, maximal number of requests it could contain. It is the number of
requests that the SIM driver can handle in parallel on one SCSI card. Commonly it can be calculated as:

SIZE = NUMBER_OF_SUPPORTED_TARGETS * MAX_SIMULTANEOUS_COMMANDS_PER_TARGET

Next we create a descriptor of our SIM:

struct cam_sim *sim;

if(( sim = cam_sim_alloc(action_func, poll_func, driver_name,
softc, unit, max_dev_transactions,
max_tagged_dev_transactions, devq) )==NULL) {

cam_simq_free(devq);
error; /* some code to handle the error */

}

Note that if we are not able to create a SIM descriptor we free the devq also because we can do nothing else with it
and we want to conserve memory.

If a SCSI card has multiple SCSI buses on it then each bus requires its own cam_sim structure.

An interesting question is what to do if a SCSI card has more than one SCSI bus, do we need one devq structure per
card or per SCSI bus? The answer given in the comments to the CAM code is: either way, as the driver’s author
prefers.

The arguments are:

• action_func - pointer to the driver’sxxx_action function.

static void xxx_action ( struct cam_sim *sim , union ccb *ccb );

• poll_func - pointer to the driver’sxxx_poll()

static void xxx_poll ( struct cam_sim *sim );
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• driver_name - the name of the actual driver, such as “ncr” or “wds”.

• softc - pointer to the driver’s internal descriptor for this SCSI card. This pointer will be used by the driver in future
to get private data.

• unit - the controller unit number, for example for controller “wds0” this number will be 0

• max_dev_transactions - maximal number of simultaneous transactions per SCSI target in the non-tagged mode.
This value will be almost universally equal to 1, with possible exceptions only for the non-SCSI cards. Also the
drivers that hope to take advantage by preparing one transaction while another one is executed may set it to 2 but
this does not seem to be worth the complexity.

• max_tagged_dev_transactions - the same thing, but in the tagged mode. Tags are the SCSI way to initiate multiple
transactions on a device: each transaction is assigned a unique tag and the transaction is sent to the device. When
the device completes some transaction it sends back the result together with the tag so that the SCSI adapter (and
the driver) can tell which transaction was completed. This argument is also known as the maximal tag depth. It
depends on the abilities of the SCSI adapter.

Finally we register the SCSI buses associated with our SCSI adapter:

if(xpt_bus_register(sim, bus_number) != CAM_SUCCESS) {
cam_sim_free(sim, /*free_devq*/ TRUE);
error; /* some code to handle the error */

}

If there is one devq structure per SCSI bus (i.e. we consider a card with multiple buses as multiple cards with one bus
each) then the bus number will always be 0, otherwise each bus on the SCSI card should be get a distinct number.
Each bus needs its own separate structure cam_sim.

After that our controller is completely hooked to the CAM system. The value of devq can be discarded now: sim will
be passed as an argument in all further calls from CAM and devq can be derived from it.

CAM provides the framework for such asynchronous events. Some events originate from the lower levels (the SIM
drivers), some events originate from the peripheral drivers, some events originate from the CAM subsystem itself.
Any driver can register callbacks for some types of the asynchronous events, so that it would be notified if these
events occur.

A typical example of such an event is a device reset. Each transaction and event identifies the devices to which it
applies by the means of “path”. The target-specific events normally occur during a transaction with this device. So
the path from that transaction may be re-used to report this event (this is safe because the event path is copied in the
event reporting routine but not deallocated nor passed anywhere further). Also it is safe to allocate paths dynamically
at any time including the interrupt routines, although that incurs certain overhead, and a possible problem with this
approach is that there may be no free memory at that time. For a bus reset event we need to define a wildcard path
including all devices on the bus. So we can create the path for the future bus reset events in advance and avoid
problems with the future memory shortage:

struct cam_path *path;

if(xpt_create_path(&path, /*periph*/NULL,
cam_sim_path(sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {

xpt_bus_deregister(cam_sim_path(sim));
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cam_sim_free(sim, /*free_devq*/TRUE);
error; /* some code to handle the error */

}

softc->wpath = path;
softc->sim = sim;

As you can see the path includes:

• ID of the peripheral driver (NULL here because we have none)

• ID of the SIM driver (cam_sim_path(sim) )

• SCSI target number of the device (CAM_TARGET_WILDCARD means “all devices”)

• SCSI LUN number of the subdevice (CAM_LUN_WILDCARD means “all LUNs”)

If the driver can not allocate this path it will not be able to work normally, so in that case we dismantle that SCSI bus.

And we save the path pointer in the softc structure for future use. After that we save the value of sim (or we can also
discard it on the exit fromxxx_probe() if we wish).

That is all for a minimalistic initialization. To do things right there is one more issue left.

For a SIM driver there is one particularly interesting event: when a target device is considered lost. In this case
resetting the SCSI negotiations with this device may be a good idea. So we register a callback for this event with
CAM. The request is passed to CAM by requesting CAM action on a CAM control block for this type of request:

struct ccb_setasync csa;

xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = xxx_async;
csa.callback_arg = sim;
xpt_action((union ccb *)&csa);

Now we take a look at thexxx_action() andxxx_poll() driver entry points.

static void xxx_action ( struct cam_sim *sim , union ccb *ccb );

Do some action on request of the CAM subsystem. Sim describes the SIM for the request, CCB is the request itself.
CCB stands for “CAM Control Block”. It is a union of many specific instances, each describing arguments for some
type of transactions. All of these instances share the CCB header where the common part of arguments is stored.

CAM supports the SCSI controllers working in both initiator (“normal”) mode and target (simulating a SCSI device)
mode. Here we only consider the part relevant to the initiator mode.

There are a few function and macros (in other words, methods) defined to access the public data in the struct sim:

• cam_sim_path(sim) - the path ID (see above)

• cam_sim_name(sim) - the name of the sim
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• cam_sim_softc(sim) - the pointer to the softc (driver private data) structure

• cam_sim_unit(sim) - the unit number

• cam_sim_bus(sim) - the bus ID

To identify the device,xxx_action() can get the unit number and pointer to its structure softc using these
functions.

The type of request is stored inccb- >ccb_h.func_code . So generallyxxx_action() consists of a big switch:

struct xxx_softc *softc = (struct xxx_softc *) cam_sim_softc(sim);
struct ccb_hdr *ccb_h = &ccb->ccb_h;
int unit = cam_sim_unit(sim);
int bus = cam_sim_bus(sim);

switch(ccb_h->func_code) {
case ...:

...
default:

ccb_h->status = CAM_REQ_INVALID;
xpt_done(ccb);
break;

}

As can be seen from the default case (if an unknown command was received) the return code of the command is set
into ccb- >ccb_h.status and the completed CCB is returned back to CAM by callingxpt_done(ccb) .

xpt_done() does not have to be called fromxxx_action() : For example an I/O request may be enqueued inside
the SIM driver and/or its SCSI controller. Then when the device would post an interrupt signaling that the processing
of this request is completexpt_done() may be called from the interrupt handling routine.

Actually, the CCB status is not only assigned as a return code but a CCB has some status all the time. Before CCB is
passed to thexxx_action() routine it gets the status CCB_REQ_INPROG meaning that it is in progress. There are
a surprising number of status values defined in/sys/cam/cam.h which should be able to represent the status of a
request in great detail. More interesting yet, the status is in fact a “bitwise or” of an enumerated status value (the
lower 6 bits) and possible additional flag-like bits (the upper bits). The enumerated values will be discussed later in
more detail. The summary of them can be found in the Errors Summary section. The possible status flags are:

• CAM_DEV_QFRZN- if the SIM driver gets a serious error (for example, the device does not respond to the
selection or breaks the SCSI protocol) when processing a CCB it should freeze the request queue by calling
xpt_freeze_simq() , return the other enqueued but not processed yet CCBs for this device back to the CAM
queue, then set this flag for the troublesome CCB and callxpt_done() . This flag causes the CAM subsystem to
unfreeze the queue after it handles the error.

• CAM_AUTOSNS_VALID- if the device returned an error condition and the flag CAM_DIS_AUTOSENSE is not
set in CCB the SIM driver must execute the REQUEST SENSE command automatically to extract the sense
(extended error information) data from the device. If this attempt was successful the sense data should be saved in
the CCB and this flag set.

• CAM_RELEASE_SIMQ- like CAM_DEV_QFRZN but used in case there is some problem (or resource shortage)
with the SCSI controller itself. Then all the future requests to the controller should be stopped by
xpt_freeze_simq() . The controller queue will be restarted after the SIM driver overcomes the shortage and
informs CAM by returning some CCB with this flag set.
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• CAM_SIM_QUEUED- when SIM puts a CCB into its request queue this flag should be set (and removed when
this CCB gets dequeued before being returned back to CAM). This flag is not used anywhere in the CAM code
now, so its purpose is purely diagnostic.

The functionxxx_action() is not allowed to sleep, so all the synchronization for resource access must be done
using SIM or device queue freezing. Besides the aforementioned flags the CAM subsystem provides functions
xpt_release_simq() andxpt_release_devq() to unfreeze the queues directly, without passing a CCB to
CAM.

The CCB header contains the following fields:

• path- path ID for the request

• target_id- target device ID for the request

• target_lun- LUN ID of the target device

• timeout- timeout interval for this command, in milliseconds

• timeout_ch- a convenience place for the SIM driver to store the timeout handle (the CAM subsystem itself does
not make any assumptions about it)

• flags- various bits of information about the request spriv_ptr0, spriv_ptr1 - fields reserved for private use by the
SIM driver (such as linking to the SIM queues or SIM private control blocks); actually, they exist as unions:
spriv_ptr0 and spriv_ptr1 have the type (void *), spriv_field0 and spriv_field1 have the type unsigned long,
sim_priv.entries[0].bytes and sim_priv.entries[1].bytes are byte arrays of the size consistent with the other
incarnations of the union and sim_priv.bytes is one array, twice bigger.

The recommended way of using the SIM private fields of CCB is to define some meaningful names for them and use
these meaningful names in the driver, like:

#define ccb_some_meaningful_name sim_priv.entries[0].bytes
#define ccb_hcb spriv_ptr1 /* for hardware control block */

The most common initiator mode requests are:

• XPT_SCSI_IO- execute an I/O transaction

The instance “struct ccb_scsiio csio” of the union ccb is used to transfer the arguments. They are:

• cdb_io- pointer to the SCSI command buffer or the buffer itself

• cdb_len- SCSI command length

• data_ptr- pointer to the data buffer (gets a bit complicated if scatter/gather is used)

• dxfer_len- length of the data to transfer

• sglist_cnt- counter of the scatter/gather segments

• scsi_status- place to return the SCSI status

• sense_data- buffer for the SCSI sense information if the command returns an error (the SIM driver is supposed
to run the REQUEST SENSE command automatically in this case if the CCB flag CAM_DIS_AUTOSENSE is
not set)

• sense_len- the length of that buffer (if it happens to be higher than size of sense_data the SIM driver must
silently assume the smaller value) resid, sense_resid - if the transfer of data or SCSI sense returned an error
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these are the returned counters of the residual (not transferred) data. They do not seem to be especially
meaningful, so in a case when they are difficult to compute (say, counting bytes in the SCSI controller’s FIFO
buffer) an approximate value will do as well. For a successfully completed transfer they must be set to zero.

• tag_action- the kind of tag to use:

• CAM_TAG_ACTION_NONE - do not use tags for this transaction

• MSG_SIMPLE_Q_TAG, MSG_HEAD_OF_Q_TAG, MSG_ORDERED_Q_TAG - value equal to the
appropriate tag message (see /sys/cam/scsi/scsi_message.h); this gives only the tag type, the SIM driver must
assign the tag value itself

The general logic of handling this request is the following:

The first thing to do is to check for possible races, to make sure that the command did not get aborted when it was
sitting in the queue:

struct ccb_scsiio *csio = &ccb->csio;

if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
xpt_done(ccb);
return;

}

Also we check that the device is supported at all by our controller:

if(ccb_h->target_id > OUR_MAX_SUPPORTED_TARGET_ID
|| cch_h->target_id == OUR_SCSI_CONTROLLERS_OWN_ID) {

ccb_h->status = CAM_TID_INVALID;
xpt_done(ccb);
return;

}
if(ccb_h->target_lun > OUR_MAX_SUPPORTED_LUN) {

ccb_h->status = CAM_LUN_INVALID;
xpt_done(ccb);
return;

}

Then allocate whatever data structures (such as card-dependent hardware control block) we need to process this
request. If we ca not then freeze the SIM queue and remember that we have a pending operation, return the CCB
back and ask CAM to re-queue it. Later when the resources become available the SIM queue must be unfrozen by
returning a ccb with the CAM_SIMQ_RELEASE bit set in its status. Otherwise, if all went well, link the CCB
with the hardware control block (HCB) and mark it as queued.

struct xxx_hcb *hcb = allocate_hcb(softc, unit, bus);

if(hcb == NULL) {
softc->flags |= RESOURCE_SHORTAGE;
xpt_freeze_simq(sim, /*count*/1);
ccb_h->status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;

}

hcb->ccb = ccb; ccb_h->ccb_hcb = (void *)hcb;
ccb_h->status |= CAM_SIM_QUEUED;
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Extract the target data from CCB into the hardware control block. Check if we are asked to assign a tag and if yes
then generate an unique tag and build the SCSI tag messages. The SIM driver is also responsible for negotiations
with the devices to set the maximal mutually supported bus width, synchronous rate and offset.

hcb->target = ccb_h->target_id; hcb->lun = ccb_h->target_lun;
generate_identify_message(hcb);
if( ccb_h->tag_action != CAM_TAG_ACTION_NONE )

generate_unique_tag_message(hcb, ccb_h->tag_action);
if( !target_negotiated(hcb) )

generate_negotiation_messages(hcb);

Then set up the SCSI command. The command storage may be specified in the CCB in many interesting ways,
specified by the CCB flags. The command buffer can be contained in CCB or pointed to, in the latter case the
pointer may be physical or virtual. Since the hardware commonly needs physical address we always convert the
address to the physical one.

A NOT-QUITE RELATED NOTE: Normally this is done by a call to vtophys(), but for the PCI device (which
account for most of the SCSI controllers now) drivers’ portability to the Alpha architecture the conversion must be
done by vtobus() instead due to special Alpha quirks. [IMHO it would be much better to have two separate
functions, vtop() and ptobus() then vtobus() would be a simple superposition of them.] In case if a physical
address is requested it is OK to return the CCB with the status CAM_REQ_INVALID, the current drivers do that.
But it is also possible to compile the Alpha-specific piece of code, as in this example (there should be a more
direct way to do that, without conditional compilation in the drivers). If necessary a physical address can be also
converted or mapped back to a virtual address but with big pain, so we do not do that.

if(ccb_h->flags & CAM_CDB_POINTER) {
/* CDB is a pointer */
if(!(ccb_h->flags & CAM_CDB_PHYS)) {

/* CDB pointer is virtual */
hcb->cmd = vtobus(csio->cdb_io.cdb_ptr);

} else {
/* CDB pointer is physical */

#if defined(__alpha__)
hcb->cmd = csio->cdb_io.cdb_ptr | alpha_XXX_dmamap_or ;

#else
hcb->cmd = csio->cdb_io.cdb_ptr ;

#endif
}

} else {
/* CDB is in the ccb (buffer) */
hcb->cmd = vtobus(csio->cdb_io.cdb_bytes);

}
hcb->cmdlen = csio->cdb_len;

Now it is time to set up the data. Again, the data storage may be specified in the CCB in many interesting ways,
specified by the CCB flags. First we get the direction of the data transfer. The simplest case is if there is no data to
transfer:

int dir = (ccb_h->flags & CAM_DIR_MASK);

if (dir == CAM_DIR_NONE)
goto end_data;

Then we check if the data is in one chunk or in a scatter-gather list, and the addresses are physical or virtual. The
SCSI controller may be able to handle only a limited number of chunks of limited length. If the request hits this
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limitation we return an error. We use a special function to return the CCB to handle in one place the HCB resource
shortages. The functions to add chunks are driver-dependent, and here we leave them without detailed
implementation. See description of the SCSI command (CDB) handling for the details on the address-translation
issues. If some variation is too difficult or impossible to implement with a particular card it is OK to return the
status CAM_REQ_INVALID. Actually, it seems like the scatter-gather ability is not used anywhere in the CAM
code now. But at least the case for a single non-scattered virtual buffer must be implemented, it is actively used by
CAM.

int rv;

initialize_hcb_for_data(hcb);

if((!(ccb_h->flags & CAM_SCATTER_VALID)) {
/* single buffer */
if(!(ccb_h->flags & CAM_DATA_PHYS)) {

rv = add_virtual_chunk(hcb, csio->data_ptr, csio->dxfer_len, dir);
}

} else {
rv = add_physical_chunk(hcb, csio->data_ptr, csio->dxfer_len, dir);

}
} else {

int i;
struct bus_dma_segment *segs;
segs = (struct bus_dma_segment *)csio->data_ptr;

if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
/* The SG list pointer is physical */
rv = setup_hcb_for_physical_sg_list(hcb, segs, csio->sglist_cnt);

} else if (!(ccb_h->flags & CAM_DATA_PHYS)) {
/* SG buffer pointers are virtual */
for (i = 0; i < csio->sglist_cnt; i++) {

rv = add_virtual_chunk(hcb, segs[i].ds_addr,
segs[i].ds_len, dir);

if (rv != CAM_REQ_CMP)
break;

}
} else {

/* SG buffer pointers are physical */
for (i = 0; i < csio->sglist_cnt; i++) {

rv = add_physical_chunk(hcb, segs[i].ds_addr,
segs[i].ds_len, dir);

if (rv != CAM_REQ_CMP)
break;

}
}

}
if(rv != CAM_REQ_CMP) {

/* we expect that add_*_chunk() functions return CAM_REQ_CMP
* if they added a chunk successfully, CAM_REQ_TOO_BIG if
* the request is too big (too many bytes or too many chunks),
* CAM_REQ_INVALID in case of other troubles
*/

free_hcb_and_ccb_done(hcb, ccb, rv);
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return;
}
end_data:

If disconnection is disabled for this CCB we pass this information to the hcb:

if(ccb_h->flags & CAM_DIS_DISCONNECT)
hcb_disable_disconnect(hcb);

If the controller is able to run REQUEST SENSE command all by itself then the value of the flag
CAM_DIS_AUTOSENSE should also be passed to it, to prevent automatic REQUEST SENSE if the CAM
subsystem does not want it.

The only thing left is to set up the timeout, pass our hcb to the hardware and return, the rest will be done by the
interrupt handler (or timeout handler).

ccb_h->timeout_ch = timeout(xxx_timeout, (caddr_t) hcb,
(ccb_h->timeout * hz) / 1000); /* convert milliseconds to ticks */

put_hcb_into_hardware_queue(hcb);
return;

And here is a possible implementation of the function returning CCB:

static void
free_hcb_and_ccb_done(struct xxx_hcb *hcb, union ccb *ccb, u_int32_t status)
{

struct xxx_softc *softc = hcb->softc;

ccb->ccb_h.ccb_hcb = 0;
if(hcb != NULL) {

untimeout(xxx_timeout, (caddr_t) hcb, ccb->ccb_h.timeout_ch);
/* we’re about to free a hcb, so the shortage has ended */
if(softc->flags & RESOURCE_SHORTAGE) {

softc->flags &= ~RESOURCE_SHORTAGE;
status |= CAM_RELEASE_SIMQ;

}
free_hcb(hcb); /* also removes hcb from any internal lists */

}
ccb->ccb_h.status = status |

(ccb->ccb_h.status & ~(CAM_STATUS_MASK|CAM_SIM_QUEUED));
xpt_done(ccb);

}

• XPT_RESET_DEV- send the SCSI “BUS DEVICE RESET” message to a device

There is no data transferred in CCB except the header and the most interesting argument of it is target_id.
Depending on the controller hardware a hardware control block just like for the XPT_SCSI_IO request may be
constructed (see XPT_SCSI_IO request description) and sent to the controller or the SCSI controller may be
immediately programmed to send this RESET message to the device or this request may be just not supported (and
return the status CAM_REQ_INVALID). Also on completion of the request all the disconnected transactions for
this target must be aborted (probably in the interrupt routine).

Also all the current negotiations for the target are lost on reset, so they might be cleaned too. Or they clearing may
be deferred, because anyway the target would request re-negotiation on the next transaction.
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• XPT_RESET_BUS- send the RESET signal to the SCSI bus

No arguments are passed in the CCB, the only interesting argument is the SCSI bus indicated by the struct sim
pointer.

A minimalistic implementation would forget the SCSI negotiations for all the devices on the bus and return the
status CAM_REQ_CMP.

The proper implementation would in addition actually reset the SCSI bus (possible also reset the SCSI controller)
and mark all the CCBs being processed, both those in the hardware queue and those being disconnected, as done
with the status CAM_SCSI_BUS_RESET. Like:

int targ, lun;
struct xxx_hcb *h, *hh;
struct ccb_trans_settings neg;
struct cam_path *path;

/* The SCSI bus reset may take a long time, in this case its completion
* should be checked by interrupt or timeout. But for simplicity
* we assume here that it’s really fast.
*/

reset_scsi_bus(softc);

/* drop all enqueued CCBs */
for(h = softc->first_queued_hcb; h != NULL; h = hh) {

hh = h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}

/* the clean values of negotiations to report */
neg.bus_width = 8;
neg.sync_period = neg.sync_offset = 0;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID

| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID);

/* drop all disconnected CCBs and clean negotiations */
for(targ=0; targ <= OUR_MAX_SUPPORTED_TARGET; targ++) {

clean_negotiations(softc, targ);

/* report the event if possible */
if(xpt_create_path(&path, /*periph*/NULL,

cam_sim_path(sim), targ,
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {

xpt_async(AC_TRANSFER_NEG, path, &neg);
xpt_free_path(path);

}

for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcb[targ][eb!b; h != NULL; h = hh) {

h=(h->next;)]TJ 0 -11.676 Td[(free_hcb_and_ccb_do(e˝s)-10h,)-600(h->ccb,)-600(CAM_SCSI_BUS_RESET);)]TJ -21.519 -11.656 Td[(})]TJ- 43.039 -11.656 Td[}5
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ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);

/* report the event */
xpt_async(AC_BUS_RESET, softc->wpath, NULL);
return;

Implementing the SCSI bus reset as a function may be a good idea because it would be re-used by the timeout
function as a last resort if the things go wrong.

• XPT_ABORT- abort the specified CCB

The arguments are transferred in the instance “struct ccb_abort cab” of the union ccb. The only argument field in it
is:

abort_ccb- pointer to the CCB to be aborted

If the abort is not supported just return the status CAM_UA_ABORT. This is also the easy way to minimally
implement this call, return CAM_UA_ABORT in any case.

The hard way is to implement this request honestly. First check that abort applies to a SCSI transaction:

struct ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;

if(abort_ccb->ccb_h.func_code != XPT_SCSI_IO) {
ccb->ccb_h.status = CAM_UA_ABORT;
xpt_done(ccb);
return;

}

Then it is necessary to find this CCB in our queue. This can be done by walking the list of all our hardware control
blocks in search for one associated with this CCB:

struct xxx_hcb *hcb, *h;

hcb = NULL;

/* We assume that softc->first_hcb is the head of the list of all
* HCBs associated with this bus, including those enqueued for
* processing, being processed by hardware and disconnected ones.
*/

for(h = softc->first_hcb; h != NULL; h = h->next) {
if(h->ccb == abort_ccb) {

hcb = h;
break;

}
}

if(hcb == NULL) {
/* no such CCB in our queue */
ccb->ccb_h.status = CAM_PATH_INVALID;
xpt_done(ccb);
return;

}
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hcb=found_hcb;

Now we look at the current processing status of the HCB. It may be either sitting in the queue waiting to be sent to
the SCSI bus, being transferred right now, or disconnected and waiting for the result of the command, or actually
completed by hardware but not yet marked as done by software. To make sure that we do not get in any races with
hardware we mark the HCB as being aborted, so that if this HCB is about to be sent to the SCSI bus the SCSI
controller will see this flag and skip it.

int hstatus;

/* shown as a function, in case special action is needed to make
* this flag visible to hardware
*/

set_hcb_flags(hcb, HCB_BEING_ABORTED);

abort_again:

hstatus = get_hcb_status(hcb);
switch(hstatus) {
case HCB_SITTING_IN_QUEUE:

remove_hcb_from_hardware_queue(hcb);
/* FALLTHROUGH */

case HCB_COMPLETED:
/* this is an easy case */
free_hcb_and_ccb_done(hcb, abort_ccb, CAM_REQ_ABORTED);
break;

If the CCB is being transferred right now we would like to signal to the SCSI controller in some
hardware-dependent way that we want to abort the current transfer. The SCSI controller would set the SCSI
ATTENTION signal and when the target responds to it send an ABORT message. We also reset the timeout to
make sure that the target is not sleeping forever. If the command would not get aborted in some reasonable time
like 10 seconds the timeout routine would go ahead and reset the whole SCSI bus. Because the command will be
aborted in some reasonable time we can just return the abort request now as successfully completed, and mark the
aborted CCB as aborted (but not mark it as done yet).

case HCB_BEING_TRANSFERRED:
untimeout(xxx_timeout, (caddr_t) hcb, abort_ccb->ccb_h.timeout_ch);
abort_ccb->ccb_h.timeout_ch =

timeout(xxx_timeout, (caddr_t) hcb, 10 * hz);
abort_ccb->ccb_h.status = CAM_REQ_ABORTED;
/* ask the controller to abort that HCB, then generate

* an interrupt and stop
*/

if(signal_hardware_to_abort_hcb_and_stop(hcb) < 0) {
/* oops, we missed the race with hardware, this transaction

* got off the bus before we aborted it, try again */
goto abort_again;

}

break;

If the CCB is in the list of disconnected then set it up as an abort request and re-queue it at the front of hardware
queue. Reset the timeout and report the abort request to be completed.
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case HCB_DISCONNECTED:
untimeout(xxx_timeout, (caddr_t) hcb, abort_ccb->ccb_h.timeout_ch);
abort_ccb->ccb_h.timeout_ch =

timeout(xxx_timeout, (caddr_t) hcb, 10 * hz);
put_abort_message_into_hcb(hcb);
put_hcb_at_the_front_of_hardware_queue(hcb);
break;

}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;

That is all for the ABORT request, although there is one more issue. Because the ABORT message cleans all the
ongoing transactions on a LUN we have to mark all the other active transactions on this LUN as aborted. That
should be done in the interrupt routine, after the transaction gets aborted.

Implementing the CCB abort as a function may be quite a good idea, this function can be re-used if an I/O
transaction times out. The only difference would be that the timed out transaction would return the status
CAM_CMD_TIMEOUT for the timed out request. Then the case XPT_ABORT would be small, like that:

case XPT_ABORT:
struct ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;

if(abort_ccb->ccb_h.func_code != XPT_SCSI_IO) {
ccb->ccb_h.status = CAM_UA_ABORT;
xpt_done(ccb);
return;

}
if(xxx_abort_ccb(abort_ccb, CAM_REQ_ABORTED) < 0)

/* no such CCB in our queue */
ccb->ccb_h.status = CAM_PATH_INVALID;

else
ccb->ccb_h.status = CAM_REQ_CMP;

xpt_done(ccb);
return;

• XPT_SET_TRAN_SETTINGS- explicitly set values of SCSI transfer settings

The arguments are transferred in the instance “struct ccb_trans_setting cts” of the union ccb:

• valid - a bitmask showing which settings should be updated:

• CCB_TRANS_SYNC_RATE_VALID- synchronous transfer rate

• CCB_TRANS_SYNC_OFFSET_VALID- synchronous offset

• CCB_TRANS_BUS_WIDTH_VALID- bus width

• CCB_TRANS_DISC_VALID- set enable/disable disconnection

• CCB_TRANS_TQ_VALID- set enable/disable tagged queuing

• flags- consists of two parts, binary arguments and identification of sub-operations. The binary arguments are:

• CCB_TRANS_DISC_ENB- enable disconnection
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• CCB_TRANS_TAG_ENB- enable tagged queuing

• the sub-operations are:

• CCB_TRANS_CURRENT_SETTINGS- change the current negotiations

• CCB_TRANS_USER_SETTINGS- remember the desired user values sync_period, sync_offset -
self-explanatory, if sync_offset==0 then the asynchronous mode is requested bus_width - bus width, in bits
(not bytes)

Two sets of negotiated parameters are supported, the user settings and the current settings. The user settings are
not really used much in the SIM drivers, this is mostly just a piece of memory where the upper levels can store
(and later recall) its ideas about the parameters. Setting the user parameters does not cause re-negotiation of the
transfer rates. But when the SCSI controller does a negotiation it must never set the values higher than the user
parameters, so it is essentially the top boundary.

The current settings are, as the name says, current. Changing them means that the parameters must be
re-negotiated on the next transfer. Again, these “new current settings” are not supposed to be forced on the device,
just they are used as the initial step of negotiations. Also they must be limited by actual capabilities of the SCSI
controller: for example, if the SCSI controller has 8-bit bus and the request asks to set 16-bit wide transfers this
parameter must be silently truncated to 8-bit transfers before sending it to the device.

One caveat is that the bus width and synchronous parameters are per target while the disconnection and tag
enabling parameters are per lun.

The recommended implementation is to keep 3 sets of negotiated (bus width and synchronous transfer) parameters:

• user- the user set, as above

• current- those actually in effect

• goal - those requested by setting of the “current” parameters

The code looks like:

struct ccb_trans_settings *cts;
int targ, lun;
int flags;

cts = &ccb->cts;
targ = ccb_h->target_id;
lun = ccb_h->target_lun;
flags = cts->flags;
if(flags & CCB_TRANS_USER_SETTINGS) {

if(flags & CCB_TRANS_SYNC_RATE_VALID)
softc->user_sync_period[targ] = cts->sync_period;

if(flags & CCB_TRANS_SYNC_OFFSET_VALID)
softc->user_sync_offset[targ] = cts->sync_offset;

if(flags & CCB_TRANS_BUS_WIDTH_VALID)
softc->user_bus_width[targ] = cts->bus_width;

if(flags & CCB_TRANS_DISC_VALID) {
softc->user_tflags[targ][lun] &= ~CCB_TRANS_DISC_ENB;
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softc->user_tflags[targ][lun] |= flags & CCB_TRANS_DISC_ENB;
}
if(flags & CCB_TRANS_TQ_VALID) {

softc->user_tflags[targ][lun] &= ~CCB_TRANS_TQ_ENB;
softc->user_tflags[targ][lun] |= flags & CCB_TRANS_TQ_ENB;

}
}
if(flags & CCB_TRANS_CURRENT_SETTINGS) {

if(flags & CCB_TRANS_SYNC_RATE_VALID)
softc->goal_sync_period[targ] =

max(cts->sync_period, OUR_MIN_SUPPORTED_PERIOD);
if(flags & CCB_TRANS_SYNC_OFFSET_VALID)

softc->goal_sync_offset[targ] =
min(cts->sync_offset, OUR_MAX_SUPPORTED_OFFSET);

if(flags & CCB_TRANS_BUS_WIDTH_VALID)
softc->goal_bus_width[targ] = min(cts->bus_width, OUR_BUS_WIDTH);

if(flags & CCB_TRANS_DISC_VALID) {
softc->current_tflags[targ][lun] &= ~CCB_TRANS_DISC_ENB;
softc->current_tflags[targ][lun] |= flags & CCB_TRANS_DISC_ENB;

}
if(flags & CCB_TRANS_TQ_VALID) {

softc->current_tflags[targ][lun] &= ~CCB_TRANS_TQ_ENB;
softc->current_tflags[targ][lun] |= flags & CCB_TRANS_TQ_ENB;

}
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;

Then when the next I/O request will be processed it will check if it has to re-negotiate, for example by calling the
function target_negotiated(hcb). It can be implemented like this:

int
target_negotiated(struct xxx_hcb *hcb)
{

struct softc *softc = hcb->softc;
int targ = hcb->targ;

if( softc->current_sync_period[targ] != softc->goal_sync_period[targ]
|| softc->current_sync_offset[targ] != softc->goal_sync_offset[targ]
|| softc->current_bus_width[targ] != softc->goal_bus_width[targ] )

return 0; /* FALSE */
else

return 1; /* TRUE */
}

After the values are re-negotiated the resulting values must be assigned to both current and goal parameters, so for
future I/O transactions the current and goal parameters would be the same andtarget_negotiated() would
return TRUE. When the card is initialized (inxxx_attach() ) the current negotiation values must be initialized to
narrow asynchronous mode, the goal and current values must be initialized to the maximal values supported by
controller.
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• XPT_GET_TRAN_SETTINGS- get values of SCSI transfer settings

This operations is the reverse of XPT_SET_TRAN_SETTINGS. Fill up the CCB instance “struct
ccb_trans_setting cts” with data as requested by the flags CCB_TRANS_CURRENT_SETTINGS or
CCB_TRANS_USER_SETTINGS (if both are set then the existing drivers return the current settings). Set all the
bits in the valid field.

• XPT_CALC_GEOMETRY- calculate logical (BIOS) geometry of the disk

The arguments are transferred in the instance “struct ccb_calc_geometry ccg” of the union ccb:

• block_size- input, block (A.K.A sector) size in bytes

• volume_size- input, volume size in bytes

• cylinders- output, logical cylinders

• heads- output, logical heads

• secs_per_track- output, logical sectors per track

If the returned geometry differs much enough from what the SCSI controller BIOS thinks and a disk on this SCSI
controller is used as bootable the system may not be able to boot. The typical calculation example taken from the
aic7xxx driver is:

struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
int extended;

ccg = &ccb->ccg;
size_mb = ccg->volume_size

/ ((1024L * 1024L) / ccg->block_size);
extended = check_cards_EEPROM_for_extended_geometry(softc);

if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;

} else {
ccg->heads = 64;
ccg->secs_per_track = 32;

}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;

This gives the general idea, the exact calculation depends on the quirks of the particular BIOS. If BIOS provides
no way set the “extended translation” flag in EEPROM this flag should normally be assumed equal to 1. Other
popular geometries are:

128 heads, 63 sectors - Symbios controllers
16 heads, 63 sectors - old controllers
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Some system BIOSes and SCSI BIOSes fight with each other with variable success, for example a combination of
Symbios 875/895 SCSI and Phoenix BIOS can give geometry 128/63 after power up and 255/63 after a hard reset
or soft reboot.

• XPT_PATH_INQ- path inquiry, in other words get the SIM driver and SCSI controller (also known as HBA - Host
Bus Adapter) properties

The properties are returned in the instance “struct ccb_pathinq cpi” of the union ccb:

• version_num - the SIM driver version number, now all drivers use 1

• hba_inquiry - bitmask of features supported by the controller:

• PI_MDP_ABLE - supports MDP message (something from SCSI3?)

• PI_WIDE_32 - supports 32 bit wide SCSI

• PI_WIDE_16 - supports 16 bit wide SCSI

• PI_SDTR_ABLE - can negotiate synchronous transfer rate

• PI_LINKED_CDB - supports linked commands

• PI_TAG_ABLE - supports tagged commands

• PI_SOFT_RST - supports soft reset alternative (hard reset and soft reset are mutually exclusive within a SCSI
bus)

• target_sprt - flags for target mode support, 0 if unsupported

• hba_misc - miscellaneous controller features:

• PIM_SCANHILO - bus scans from high ID to low ID

• PIM_NOREMOVE - removable devices not included in scan

• PIM_NOINITIATOR - initiator role not supported

• PIM_NOBUSRESET - user has disabled initial BUS RESET

• hba_eng_cnt - mysterious HBA engine count, something related to compression, now is always set to 0

• vuhba_flags - vendor-unique flags, unused now

• max_target - maximal supported target ID (7 for 8-bit bus, 15 for 16-bit bus, 127 for Fibre Channel)

• max_lun - maximal supported LUN ID (7 for older SCSI controllers, 63 for newer ones)

• async_flags - bitmask of installed Async handler, unused now

• hpath_id - highest Path ID in the subsystem, unused now

• unit_number - the controller unit number, cam_sim_unit(sim)

• bus_id - the bus number, cam_sim_bus(sim)

• initiator_id - the SCSI ID of the controller itself

• base_transfer_speed - nominal transfer speed in KB/s for asynchronous narrow transfers, equals to 3300 for
SCSI

• sim_vid - SIM driver’s vendor id, a zero-terminated string of maximal length SIM_IDLEN including the
terminating zero
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• hba_vid - SCSI controller’s vendor id, a zero-terminated string of maximal length HBA_IDLEN including the
terminating zero

• dev_name - device driver name, a zero-terminated string of maximal length DEV_IDLEN including the
terminating zero, equal to cam_sim_name(sim)

The recommended way of setting the string fields is using strncpy, like:

strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);

After setting the values set the status to CAM_REQ_CMP and mark the CCB as done.

16.3 Polling

static void xxx_poll ( struct cam_sim *sim );

The poll function is used to simulate the interrupts when the interrupt subsystem is not functioning (for example,
when the system has crashed and is creating the system dump). The CAM subsystem sets the proper interrupt level
before calling the poll routine. So all it needs to do is to call the interrupt routine (or the other way around, the poll
routine may be doing the real action and the interrupt routine would just call the poll routine). Why bother about a
separate function then? Because of different calling conventions. Thexxx_poll routine gets the struct cam_sim
pointer as its argument when the PCI interrupt routine by common convention gets pointer to the struct xxx_softc
and the ISA interrupt routine gets just the device unit number. So the poll routine would normally look as:

static void
xxx_poll(struct cam_sim *sim)
{

xxx_intr((struct xxx_softc *)cam_sim_softc(sim)); /* for PCI device */
}

or

static void
xxx_poll(struct cam_sim *sim)
{

xxx_intr(cam_sim_unit(sim)); /* for ISA device */
}

16.4 Asynchronous Events
If an asynchronous event callback has been set up then the callback function should be defined.

static void
ahc_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
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• callback_arg - the value supplied when registering the callback

• code - identifies the type of event

• path - identifies the devices to which the event applies

• arg - event-specific argument

Implementation for a single type of event, AC_LOST_DEVICE, looks like:

struct xxx_softc *softc;
struct cam_sim *sim;
int targ;
struct ccb_trans_settings neg;

sim = (struct cam_sim *)callback_arg;
softc = (struct xxx_softc *)cam_sim_softc(sim);
switch (code) {
case AC_LOST_DEVICE:

targ = xpt_path_target_id(path);
if(targ <= OUR_MAX_SUPPORTED_TARGET) {

clean_negotiations(softc, targ);
/* send indication to CAM */
neg.bus_width = 8;
neg.sync_period = neg.sync_offset = 0;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID

| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID);
xpt_async(AC_TRANSFER_NEG, path, &neg);

}
break;

default:
break;

}

16.5 Interrupts
The exact type of the interrupt routine depends on the type of the peripheral bus (PCI, ISA and so on) to which the
SCSI controller is connected.

The interrupt routines of the SIM drivers run at the interrupt level splcam. Sosplcam() should be used in the driver
to synchronize activity between the interrupt routine and the rest of the driver (for a multiprocessor-aware driver
things get yet more interesting but we ignore this case here). The pseudo-code in this document happily ignores the
problems of synchronization. The real code must not ignore them. A simple-minded approach is to setsplcam() on
the entry to the other routines and reset it on return thus protecting them by one big critical section. To make sure that
the interrupt level will be always restored a wrapper function can be defined, like:

static void
xxx_action(struct cam_sim *sim, union ccb *ccb)
{

int s;
s = splcam();
xxx_action1(sim, ccb);
splx(s);
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}

static void
xxx_action1(struct cam_sim *sim, union ccb *ccb)
{

... process the request ...
}

This approach is simple and robust but the problem with it is that interrupts may get blocked for a relatively long
time and this would negatively affect the system’s performance. On the other hand the functions of thespl() family
have rather high overhead, so vast amount of tiny critical sections may not be good either.

The conditions handled by the interrupt routine and the details depend very much on the hardware. We consider the
set of “typical” conditions.

First, we check if a SCSI reset was encountered on the bus (probably caused by another SCSI controller on the same
SCSI bus). If so we drop all the enqueued and disconnected requests, report the events and re-initialize our SCSI
controller. It is important that during this initialization the controller will not issue another reset or else two
controllers on the same SCSI bus could ping-pong resets forever. The case of fatal controller error/hang could be
handled in the same place, but it will probably need also sending RESET signal to the SCSI bus to reset the status of
the connections with the SCSI devices.

int fatal=0;
struct ccb_trans_settings neg;
struct cam_path *path;

if( detected_scsi_reset(softc)
|| (fatal = detected_fatal_controller_error(softc)) ) {

int targ, lun;
struct xxx_hcb *h, *hh;

/* drop all enqueued CCBs */
for(h = softc->first_queued_hcb; h != NULL; h = hh) {

hh = h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}

/* the clean values of negotiations to report */
neg.bus_width = 8;
neg.sync_period = neg.sync_offset = 0;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID

| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET_VALID);

/* drop all disconnected CCBs and clean negotiations */
for(targ=0; targ <= OUR_MAX_SUPPORTED_TARGET; targ++) {

clean_negotiations(softc, targ);

/* report the event if possible */
if(xpt_create_path(&path, /*periph*/NULL,

cam_sim_path(sim), targ,
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {

xpt_async(AC_TRANSFER_NEG, path, &neg);
xpt_free_path(path);
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}

for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcb[targ][lun]; h != NULL; h = hh) {

hh=h->next;
if(fatal)

free_hcb_and_ccb_done(h, h->ccb, CAM_UNREC_HBA_ERROR);
else

free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);
}

}

/* report the event */
xpt_async(AC_BUS_RESET, softc->wpath, NULL);

/* re-initialization may take a lot of time, in such case
* its completion should be signaled by another interrupt or
* checked on timeout - but for simplicity we assume here that
* it’s really fast
*/

if(!fatal) {
reinitialize_controller_without_scsi_reset(softc);

} else {
reinitialize_controller_with_scsi_reset(softc);

}
schedule_next_hcb(softc);
return;

}

If interrupt is not caused by a controller-wide condition then probably something has happened to the current
hardware control block. Depending on the hardware there may be other non-HCB-related events, we just do not
consider them here. Then we analyze what happened to this HCB:

struct xxx_hcb *hcb, *h, *hh;
int hcb_status, scsi_status;
int ccb_status;
int targ;
int lun_to_freeze;

hcb = get_current_hcb(softc);
if(hcb == NULL) {

/* either stray interrupt or something went very wrong
* or this is something hardware-dependent
*/

handle as necessary;
return;

}

targ = hcb->target;
hcb_status = get_status_of_current_hcb(softc);

First we check if the HCB has completed and if so we check the returned SCSI status.
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if(hcb_status == COMPLETED) {
scsi_status = get_completion_status(hcb);

Then look if this status is related to the REQUEST SENSE command and if so handle it in a simple way.

if(hcb->flags & DOING_AUTOSENSE) {
if(scsi_status == GOOD) { /* autosense was successful */

hcb->ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_SCSI_STATUS_ERROR);

} else {
autosense_failed:

free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_AUTOSENSE_FAIL);
}
schedule_next_hcb(softc);
return;

}

Else the command itself has completed, pay more attention to details. If auto-sense is not disabled for this CCB and
the command has failed with sense data then run REQUEST SENSE command to receive that data.

hcb->ccb->csio.scsi_status = scsi_status;
calculate_residue(hcb);

if( (hcb->ccb->ccb_h.flags & CAM_DIS_AUTOSENSE)==0
&& ( scsi_status == CHECK_CONDITION

|| scsi_status == COMMAND_TERMINATED) ) {
/* start auto-SENSE */
hcb->flags |= DOING_AUTOSENSE;
setup_autosense_command_in_hcb(hcb);
restart_current_hcb(softc);
return;

}
if(scsi_status == GOOD)

free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_REQ_CMP);
else

free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_SCSI_STATUS_ERROR);
schedule_next_hcb(softc);
return;

}

One typical thing would be negotiation events: negotiation messages received from a SCSI target (in answer to our
negotiation attempt or by target’s initiative) or the target is unable to negotiate (rejects our negotiation messages or
does not answer them).

switch(hcb_status) {
case TARGET_REJECTED_WIDE_NEG:

/* revert to 8-bit bus */
softc->current_bus_width[targ] = softc->goal_bus_width[targ] = 8;
/* report the event */
neg.bus_width = 8;
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);
continue_current_hcb(softc);
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return;
case TARGET_ANSWERED_WIDE_NEG:

{
int wd;

wd = get_target_bus_width_request(softc);
if(wd <= softc->goal_bus_width[targ]) {

/* answer is acceptable */
softc->current_bus_width[targ] =
softc->goal_bus_width[targ] = neg.bus_width = wd;

/* report the event */
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);

} else {
prepare_reject_message(hcb);

}
}
continue_current_hcb(softc);
return;

case TARGET_REQUESTED_WIDE_NEG:
{

int wd;

wd = get_target_bus_width_request(softc);
wd = min (wd, OUR_BUS_WIDTH);
wd = min (wd, softc->user_bus_width[targ]);

if(wd != softc->current_bus_width[targ]) {
/* the bus width has changed */
softc->current_bus_width[targ] =
softc->goal_bus_width[targ] = neg.bus_width = wd;

/* report the event */
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);

}
prepare_width_nego_rsponse(hcb, wd);

}
continue_current_hcb(softc);
return;

}

Then we handle any errors that could have happened during auto-sense in the same simple-minded way as before.
Otherwise we look closer at the details again.

if(hcb->flags & DOING_AUTOSENSE)
goto autosense_failed;

switch(hcb_status) {

The next event we consider is unexpected disconnect. Which is considered normal after an ABORT or BUS DEVICE
RESET message and abnormal in other cases.
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case UNEXPECTED_DISCONNECT:
if(requested_abort(hcb)) {

/* abort affects all commands on that target+LUN, so
* mark all disconnected HCBs on that target+LUN as aborted too
*/

for(h = softc->first_discon_hcb[hcb->target][hcb->lun];
h != NULL; h = hh) {

hh=h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_REQ_ABORTED);

}
ccb_status = CAM_REQ_ABORTED;

} else if(requested_bus_device_reset(hcb)) {
int lun;

/* reset affects all commands on that target, so
* mark all disconnected HCBs on that target+LUN as reset
*/

for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcb[hcb->target][lun];

h != NULL; h = hh) {
hh=h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}

/* send event */
xpt_async(AC_SENT_BDR, hcb->ccb->ccb_h.path_id, NULL);

/* this was the CAM_RESET_DEV request itself, it’s completed */
ccb_status = CAM_REQ_CMP;

} else {
calculate_residue(hcb);
ccb_status = CAM_UNEXP_BUSFREE;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = hcb->lun;

}
break;

If the target refuses to accept tags we notify CAM about that and return back all commands for this LUN:

case TAGS_REJECTED:
/* report the event */
neg.flags = 0 & ~CCB_TRANS_TAG_ENB;
neg.valid = CCB_TRANS_TQ_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &neg);

ccb_status = CAM_MSG_REJECT_REC;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = hcb->lun;
break;
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Then we check a number of other conditions, with processing basically limited to setting the CCB status:

case SELECTION_TIMEOUT:
ccb_status = CAM_SEL_TIMEOUT;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = CAM_LUN_WILDCARD;
break;

case PARITY_ERROR:
ccb_status = CAM_UNCOR_PARITY;
break;

case DATA_OVERRUN:
case ODD_WIDE_TRANSFER:

ccb_status = CAM_DATA_RUN_ERR;
break;

default:
/* all other errors are handled in a generic way */
ccb_status = CAM_REQ_CMP_ERR;
/* request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = CAM_LUN_WILDCARD;
break;

}

Then we check if the error was serious enough to freeze the input queue until it gets proceeded and do so if it is:

if(hcb->ccb->ccb_h.status & CAM_DEV_QFRZN) {
/* freeze the queue */
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);

/* re-queue all commands for this target/LUN back to CAM */

for(h = softc->first_queued_hcb; h != NULL; h = hh) {
hh = h->next;

if(targ == h->targ
&& (lun_to_freeze == CAM_LUN_WILDCARD || lun_to_freeze == h->lun) )

free_hcb_and_ccb_done(h, h->ccb, CAM_REQUEUE_REQ);
}

}
free_hcb_and_ccb_done(hcb, hcb->ccb, ccb_status);
schedule_next_hcb(softc);
return;

This concludes the generic interrupt handling although specific controllers may require some additions.

16.6 Errors Summary
When executing an I/O request many things may go wrong. The reason of error can be reported in the CCB status
with great detail. Examples of use are spread throughout this document. For completeness here is the summary of
recommended responses for the typical error conditions:
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• CAM_RESRC_UNAVAIL- some resource is temporarily unavailable and the SIM driver cannot generate an event
when it will become available. An example of this resource would be some intra-controller hardware resource for
which the controller does not generate an interrupt when it becomes available.

• CAM_UNCOR_PARITY- unrecovered parity error occurred

• CAM_DATA_RUN_ERR- data overrun or unexpected data phase (going in other direction than specified in
CAM_DIR_MASK) or odd transfer length for wide transfer

• CAM_SEL_TIMEOUT- selection timeout occurred (target does not respond)

• CAM_CMD_TIMEOUT- command timeout occurred (the timeout function ran)

• CAM_SCSI_STATUS_ERROR- the device returned error

• CAM_AUTOSENSE_FAIL- the device returned error and the REQUEST SENSE COMMAND failed

• CAM_MSG_REJECT_REC- MESSAGE REJECT message was received

• CAM_SCSI_BUS_RESET- received SCSI bus reset

• CAM_REQ_CMP_ERR- “impossible” SCSI phase occurred or something else as weird or just a generic error if
further detail is not available

• CAM_UNEXP_BUSFREE- unexpected disconnect occurred

• CAM_BDR_SENT- BUS DEVICE RESET message was sent to the target

• CAM_UNREC_HBA_ERROR- unrecoverable Host Bus Adapter Error

• CAM_REQ_TOO_BIG- the request was too large for this controller

• CAM_REQUEUE_REQ- this request should be re-queued to preserve transaction ordering. This typically occurs
when the SIM recognizes an error that should freeze the queue and must place other queued requests for the target
at the sim level back into the XPT queue. Typical cases of such errors are selection timeouts, command timeouts
and other like conditions. In such cases the troublesome command returns the status indicating the error, the and
the other commands which have not be sent to the bus yet get re-queued.

• CAM_LUN_INVALID- the LUN ID in the request is not supported by the SCSI controller

• CAM_TID_INVALID- the target ID in the request is not supported by the SCSI controller

16.7 Timeout Handling
When the timeout for an HCB expires that request should be aborted, just like with an XPT_ABORT request. The
only difference is that the returned status of aborted request should be CAM_CMD_TIMEOUT instead of
CAM_REQ_ABORTED (that is why implementation of the abort better be done as a function). But there is one
more possible problem: what if the abort request itself will get stuck? In this case the SCSI bus should be reset, just
like with an XPT_RESET_BUS request (and the idea about implementing it as a function called from both places
applies here too). Also we should reset the whole SCSI bus if a device reset request got stuck. So after all the timeout
function would look like:

static void
xxx_timeout(void *arg)
{

struct xxx_hcb *hcb = (struct xxx_hcb *)arg;
struct xxx_softc *softc;
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struct ccb_hdr *ccb_h;

softc = hcb->softc;
ccb_h = &hcb->ccb->ccb_h;

if(hcb->flags & HCB_BEING_ABORTED
|| ccb_h->func_code == XPT_RESET_DEV) {

xxx_reset_bus(softc);
} else {

xxx_abort_ccb(hcb->ccb, CAM_CMD_TIMEOUT);
}

}

When we abort a request all the other disconnected requests to the same target/LUN get aborted too. So there appears
a question, should we return them with status CAM_REQ_ABORTED or CAM_CMD_TIMEOUT? The current
drivers use CAM_CMD_TIMEOUT. This seems logical because if one request got timed out then probably
something really bad is happening to the device, so if they would not be disturbed they would time out by themselves.
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This chapter was written by Nick Hibma <n_hibma@FreeBSD.org >. Modifications made for the handbook by
Murray Stokely <murray@FreeBSD.org >.

17.1 Introduction
The Universal Serial Bus (USB) is a new way of attaching devices to personal computers. The bus architecture
features two-way communication and has been developed as a response to devices becoming smarter and requiring
more interaction with the host. USB support is included in all current PC chipsets and is therefore available in all
recently built PCs. Apple’s introduction of the USB-only iMac has been a major incentive for hardware
manufacturers to produce USB versions of their devices. The future PC specifications specify that all legacy
connectors on PCs should be replaced by one or more USB connectors, providing generic plug and play capabilities.
Support for USB hardware was available at a very early stage in NetBSD and was developed by Lennart Augustsson
for the NetBSD project. The code has been ported to FreeBSD and we are currently maintaining a shared code base.
For the implementation of the USB subsystem a number of features of USB are important.

Lennart Augustsson has done most of the implementation of the USB support for the NetBSD project. Many thanks
for this incredible amount of work. Many thanks also to Ardy and Dirk for their comments and proofreading of this
paper.

• Devices connect to ports on the computer directly or on devices called hubs, forming a treelike device structure.

• The devices can be connected and disconnected at run time.

• Devices can suspend themselves and trigger resumes of the host system

• As the devices can be powered from the bus, the host software has to keep track of power budgets for each hub.

• Different quality of service requirements by the different device types together with the maximum of 126 devices
that can be connected to the same bus, require proper scheduling of transfers on the shared bus to take full
advantage of the 12Mbps bandwidth available. (over 400Mbps with USB 2.0)

• Devices are intelligent and contain easily accessible information about themselves

The development of drivers for the USB subsystem and devices connected to it is supported by the specifications that
have been developed and will be developed. These specifications are publicly available from the USB home pages.
Apple has been very strong in pushing for standards based drivers, by making drivers for the generic classes
available in their operating system MacOS and discouraging the use of separate drivers for each new device. This
chapter tries to collate essential information for a basic understanding of the present implementation of the USB
stack in FreeBSD/NetBSD. It is recommended however to read it together with the relevant specifications mentioned
in the references below.

17.1.1 Structure of the USB Stack

The USB support in FreeBSD can be split into three layers. The lowest layer contains the host controller driver,
providing a generic interface to the hardware and its scheduling facilities. It supports initialisation of the hardware,
scheduling of transfers and handling of completed and/or failed transfers. Each host controller driver implements a
virtual hub providing hardware independent access to the registers controlling the root ports on the back of the
machine.

184



Chapter 17 USB Devices

The middle layer handles the device connection and disconnection, basic initialisation of the device, driver selection,
the communication channels (pipes) and does resource management. This services layer also controls the default
pipes and the device requests transferred over them.

The top layer contains the individual drivers supporting specific (classes of) devices. These drivers implement the
protocol that is used over the pipes other than the default pipe. They also implement additional functionality to make
the device available to other parts of the kernel or userland. They use the USB driver interface (USBDI) exposed by
the services layer.

17.2 Host Controllers
The host controller (HC) controls the transmission of packets on the bus. Frames of 1 millisecond are used. At the
start of each frame the host controller generates a Start of Frame (SOF) packet.

The SOF packet is used to synchronise to the start of the frame and to keep track of the frame number. Within each
frame packets are transferred, either from host to device (out) or from device to host (in). Transfers are always
initiated by the host (polled transfers). Therefore there can only be one host per USB bus. Each transfer of a packet
has a status stage in which the recipient of the data can return either ACK (acknowledge reception), NAK (retry),
STALL (error condition) or nothing (garbled data stage, device not available or disconnected). Section 8.5 of the
USB specification (http://www.usb.org/developers/docs.html) explains the details of packets in more detail. Four
different types of transfers can occur on a USB bus: control, bulk, interrupt and isochronous. The types of transfers
and their characteristics are described below (‘Pipes’ subsection).

Large transfers between the device on the USB bus and the device driver are split up into multiple packets by the host
controller or the HC driver.

Device requests (control transfers) to the default endpoints are special. They consist of two or three phases: SETUP,
DATA (optional) and STATUS. The set-up packet is sent to the device. If there is a data phase, the direction of the
data packet(s) is given in the set-up packet. The direction in the status phase is the opposite of the direction during
the data phase, or IN if there was no data phase. The host controller hardware also provides registers with the current
status of the root ports and the changes that have occurred since the last reset of the status change register. Access to
these registers is provided through a virtualised hub as suggested in the USB specification [ 2]. The virtual hub must
comply with the hub device class given in chapter 11 of that specification. It must provide a default pipe through
which device requests can be sent to it. It returns the standard andhub class specific set of descriptors. It should also
provide an interrupt pipe that reports changes happening at its ports. There are currently two specifications for host
controllers available: Universal Host Controller Interface (http://developer.intel.com/design/USB/UHCI11D.htm)
(UHCI; Intel) and Open Host Controller Interface (http://www.compaq.com/productinfo/development/openhci.html)
(OHCI; Compaq, Microsoft, National Semiconductor). The UHCI specification has been designed to reduce
hardware complexity by requiring the host controller driver to supply a complete schedule of the transfers for each
frame. OHCI type controllers are much more independent by providing a more abstract interface doing alot of work
themselves.

17.2.1 UHCI

The UHCI host controller maintains a framelist with 1024 pointers to per frame data structures. It understands two
different data types: transfer descriptors (TD) and queue heads (QH). Each TD represents a packet to be
communicated to or from a device endpoint. QHs are a means to groupTDs (and QHs) together.
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Each transfer consists of one or more packets. The UHCI driver splits large transfers into multiple packets. For every
transfer, apart from isochronous transfers, a QH is allocated. For every type of transfer these QHs are collected at a
QH for that type. Isochronous transfers have to be executed first because of the fixed latency requirement and are
directly referred to by the pointer in the framelist. The last isochronous TD refers to the QH for interrupt transfers for
that frame. All QHs for interrupt transfers point at the QH for control transfers, which in turn points at the QH for
bulk transfers. The following diagram gives a graphical overview of this:

This results in the following schedule being run in each frame. After fetching the pointer for the current frame from
the framelist the controller first executes the TDs for all the isochronous packets in that frame. The last of these TDs
refers to the QH for the interrupt transfers for thatframe. The host controller will then descend from that QH to the
QHs for the individual interrupt transfers. After finishing that queue, the QH for the interrupt transfers will refer the
controller to the QH for all control transfers. It will execute all the subqueues scheduled there, followed by all the
transfers queued at the bulk QH. To facilitate the handling of finished or failed transfers different types of interrupts
are generated by the hardware at the end of each frame. In the last TD for a transfer the Interrupt-On Completion bit
is set by the HC driver to flag an interrupt when the transfer has completed. An error interrupt is flagged if a TD
reaches its maximum error count. If the short packet detect bit is set in a TD and less than the set packet length is
transferred this interrupt is flagged to notify the controller driver of the completed transfer. It is the host controller
driver’s task to find out which transfer has completed or produced an error. When called the interrupt service routine
will locate all the finished transfers and call their callbacks.

See for a more elaborate description the UHCI specification. (http://developer.intel.com/design/USB/UHCI11D.htm)

17.2.2 OHCI

Programming an OHCI host controller is much simpler. The controller assumes that a set of endpoints is available,
and is aware of scheduling priorities and the ordering of the types of transfers in a frame. The main data structure
used by the host controller is the endpoint descriptor (ED) to which aqueue of transfer descriptors (TDs) is attached.
The ED contains the maximum packet size allowed for an endpoint and the controller hardware does the splitting
into packets. The pointers to the data buffers are updated after each transfer and when the start and end pointer are
equal, the TD is retired to the done-queue. The four types of endpoints have their own queues. Control and bulk
endpoints are queued each at their own queue. Interrupt EDs are queued in a tree, with the level in the tree defining
the frequency at which they run.

framelist interruptisochronous control bulk

The schedule being run by the host controller in each frame looks as follows. The controller will first run the
non-periodic control and bulk queues, up to a time limit set by the HC driver. Then the interrupt transfers for that
frame number are run, by using the lower five bits of the frame number as an index into level 0 of the tree of
interrupts EDs. At the end of this tree the isochronous EDs are connected and these are traversed subsequently. The
isochronous TDs contain the frame number of the first frame the transfer should be run in. After all the periodic
transfers have been run, the control and bulk queues are traversed again. Periodically the interrupt service routine is
called to process the done queue and call the callbacks for each transfer and reschedule interrupt and isochronous
endpoints.

See for a more elaborate description the OHCI specification
(http://www.compaq.com/productinfo/development/openhci.html). Services layer The middle layer provides access
to the device in a controlled way and maintains resources in use by the different drivers and the services layer. The
layer takes care of the following aspects:

• The device configuration information
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• The pipes to communicate with a device

• Probing and attaching and detaching form a device.

17.3 USB Device Information

17.3.1 Device configuration information
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for completion (synchronous transfer). Transfers to an endpoint are serialised in the pipe. A transfer can either
complete, fail or time-out (if a time-out has been set). There are two types of time-outs for transfers. Time-outs can
happen due to time-out on the USBbus (milliseconds). These time-outs are seen as failures and can be due to
disconnection of the device. A second form of time-out is implemented in software and is triggered when a transfer
does not complete within a specified amount of time (seconds). These are caused by a device acknowledging
negatively (NAK) the transferred packets. The cause for this is the device not being ready to receive data, buffer
under- or overrun or protocol errors.

If a transfer over a pipe is larger than the maximum packet size specified in the associated endpoint descriptor, the
host controller (OHCI) or the HC driver (UHCI) will split the transfer into packets of maximum packet size, with the
last packet possibly smaller than the maximum packet size.

Sometimes it is not a problem for a device to return less data than requested. For example abulk-in-transfer to a
modem might request 200 bytes of data, but the modem has only 5 bytes available at that time. The driver can set the
short packet (SPD) flag. It allows the host controller to accept a packet even if the amount of data transferred is less
than requested. This flag is only valid for in-transfers, as the amount of data to be sent to a device is always known
beforehand. If an unrecoverable error occurs in a device during a transfer the pipe is stalled. Before any more data is
accepted or sent the driver needs to resolve the cause of the stall and clear the endpoint stall condition through send
the clear endpoint halt device request over the default pipe. The default endpoint should never stall.

There are four different types of endpoints and corresponding pipes: - Control pipe / default pipe: There is one
control pipe per device, connected to the default endpoint (endpoint 0). The pipe carries the device requests and
associated data. The difference between transfers over the default pipe and other pipes is that the protocol for the
transfers is described in the USB specification [ 2]. These requests are used to reset and configure the device. A basic
set of commands that must be supported by each device is provided in chapter 9 of the USB specification [ 2]. The
commands supported on this pipe can be extended by a device class specification to support additional functionality.

• Bulk pipe: This is the USB equivalent to a raw transmission medium.

• Interrupt pipe: The host sends a request for data to the device and if the device has nothing to send, it will NAK the
data packet. Interrupt transfers are scheduled at a frequency specified when creating the pipe.

• Isochronous pipe: These pipes are intended for isochronous data, for example video or audio streams, with fixed
latency, but no guaranteed delivery. Some support for pipes of this type is available in the current implementation.
Packets in control, bulk and interrupt transfers are retried if an error occurs during transmission or the device
acknowledges the packet negatively (NAK) due to for example lack of buffer space to store the incoming data.
Isochronous packets are however not retried in case of failed delivery or NAK of a packet as this might violate the
timing constraints.

The availability of the necessary bandwidth is calculated during the creation of the pipe. Transfers are scheduled
within frames of 1 millisecond. The bandwidth allocation within a frame is prescribed by the USB specification,
section 5.6 [ 2]. Isochronous and interrupt transfers are allowed to consume up to 90% of the bandwidth within a
frame. Packets for control and bulk transfers are scheduled after all isochronous and interrupt packets and will
consume all the remaining bandwidth.

More information on scheduling of transfers and bandwidth reclamation can be found in chapter 5of the USB
specification [ 2], section 1.3 of the UHCI specification [ 3] and section 3.4.2 of the OHCI specification [4].
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17.4 Device probe and attach
After the notification by the hub that a new device has been connected, the service layer switches on the port,
providing the device with 100 mA of current. At this point the device is in its default state and listening to device
address 0. The services layer will proceed to retrieve the various descriptors through the default pipe. After that it
will send a Set Address request to move the device away from the default device address (address 0). Multiple device
drivers might be able to support the device. For example a modem driver might be able to support an ISDN TA
through the AT compatibility interface. A driver for that specific model of the ISDN adapter might however be able
to provide much better support for this device. To support this flexibility, the probes return priorities indicating their
level of support. Support for a specific revision of a product ranks the highest and the generic driver the lowest
priority. It might also be that multiple drivers could attach to one device if there are multiple interfaces within one
configuration. Each driver only needs to support a subset of the interfaces.

The probing for a driver for a newly attached device checks first for device specific drivers. If not found, the probe
code iterates over all supported configurations until a driver attaches in a configuration. To support devices with
multiple drivers on different interfaces, the probe iterates over all interfaces in a configuration that have not yet been
claimed by a driver. Configurations that exceed the power budget for the hub are ignored. During attach the driver
should initialise the device to its proper state, but not reset it, as this will make the device disconnect itself from the
bus and restart the probing process for it. To avoid consuming unnecessary bandwidth should not claim the interrupt
pipe at attach time, but should postpone allocating the pipe until the file is opened and the data is actually used.
When the file is closed the pipe should be closed again, even though the device might still be attached.

17.4.1 Device disconnect and detach

A device driver should expect to receive errors during any transaction with the device. The design of USB supports
and encourages the disconnection of devices at any point in time. Drivers should make sure that they do the right
thing when the device disappears.

Furthermore a device that has been disconnected and reconnected will not be reattached at the same device instance.
This might change in the future when more devices support serial numbers (see the device descriptor) or other means
of defining an identity for a device have been developed.

The disconnection of a device is signaled by a hub in the interrupt packet delivered to the hub driver. The status
change information indicates which port has seen a connection change. The device detach method for all device
drivers for the device connected on that port are called and the structures cleaned up. If the port status indicates that
in the mean time a device has been connected to that port, the procedure for probing and attaching the device will be
started. A device reset will produce a disconnect-connect sequence on the hub and will be handled as described
above.

17.5 USB Drivers Protocol Information
The protocol used over pipes other than the default pipe is undefined by the USB specification. Information on this
can be found from various sources. The most accurate source is the developer’s section on the USB home pages [ 1].
From these pages a growing number of deviceclass specifications are available. These specifications specify what a
compliant device should look like from a driver perspective, basic functionality it needs to provide and the protocol
that is to be used over the communication channels. The USB specification [ 2] includes the description of the Hub
Class. A class specification for Human Interface Devices (HID) has been created to cater for keyboards, tablets,

189



Chapter 17 USB Devices

bar-code readers, buttons, knobs, switches, etc. A third example is the class specification for mass storage devices.
For a full list of device classes see the developers section on the USB home pages [ 1].

For many devices the protocol information has not yet been published however. Information on the protocol being
used might be available from the company making the device. Some companies will require you to sign a Non
-Disclosure Agreement (NDA) before giving you the specifications. This in most cases precludes making the driver
open source.

Another good source of information is the Linux driver sources, as a number of companies have started to provide
drivers for Linux for their devices. It is always a good idea to contact the authors of those drivers for their source of
information.

Example: Human Interface Devices The specification for the Human Interface Devices like keyboards, mice, tablets,
buttons, dials,etc. is referred to in other device class specifications and is used in many devices.

For example audio speakers provide endpoints to the digital to analogue converters and possibly an extra pipe for a
microphone. They also provide a HID endpoint in a separate interface for the buttons and dials on the front of the
device. The same is true for the monitor control class. It is straightforward to build support for these interfaces
through the available kernel and userland libraries together with the HID class driver or the generic driver. Another
device that serves as an example for interfaces within one configuration driven by different device drivers is a cheap
keyboard with built-in legacy mouse port. To avoid having the cost of including the hardware for a USB hub in the
device, manufacturers combined the mouse data received from the PS/2 port on the back of the keyboard and the key
presses from the keyboard into two separate interfaces in the same configuration. The mouse and keyboard drivers
each attach to the appropriate interface and allocate the pipes to the two independent endpoints.

Example: Firmware download Many devices that have been developed are based on a general purpose processor with
an additional USB core added to it. Because the development of drivers and firmware for USB devices is still very
new, many devices require the downloading of the firmware after they have been connected.

The procedure followed is straightforward. The device identifies itself through a vendor and product Id. The first
driver probes and attaches to it and downloads the firmware into it. After that the device soft resets itself and the
driver is detached. After a short pause the device announces its presence on the bus. The device will have changed its
vendor/product/revision Id to reflect the fact that it has been supplied with firmware and as a consequence a second
driver will probe it and attach to it.

An example of these types of devices is the ActiveWire I/O board, based on the EZ-USB chip. For this chip a generic
firmware downloader is available. The firmware downloaded into the ActiveWire board changes the revision Id. It
will then perform a soft reset of the USB part of the EZ-USB chip to disconnect from the USB bus and again
reconnect.

Example: Mass Storage Devices Support for mass storage devices is mainly built around existing protocols. The
Iomega USB Zipdrive is based on the SCSI version of their drive. The SCSI commands and status messages are
wrapped in blocks and transferred over the bulk pipes to and from the device, emulating a SCSI controller over the
USB wire. ATAPI and UFI commands are supported in a similar fashion.

The Mass Storage Specification supports 2 different types of wrapping of the command block.The initial attempt was
based on sending the command and status through the default pipe and using bulk transfers for the data to be moved
between the host and the device. Based on experience a second approach was designed that was based on wrapping
the command and status blocks and sending them over the bulk out and in endpoint. The specification specifies
exactly what has to happen when and what has to be done in case an error condition is encountered. The biggest
challenge when writing drivers for these devices is to fit USB based protocol into the existing support for mass
storage devices. CAM provides hooks to do this in a fairly straight forward way. ATAPI is less simple as historically
the IDE interface has never had many different appearances.
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The support for the USB floppy from Y-E Data is again less straightforward as a new command set has been
designed.
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Written by Jeroen Ruigrok van der Werven (asmodai) and Hiten Pandya.

Special thanks to Matthew N. Dodd, Warner Losh, Bill Paul, Doug Rabson, Mike Smith, Peter Wemm and Scott Long.

This chapter explains the Newbus device framework in detail.

18.1 Device Drivers

18.1.1 Purpose of a Device Driver

A device driver is a software component which provides the interface between the kernel’s generic view of a
peripheral (e.g. disk, network adapter) and the actual implementation of the peripheral. Thedevice driver interface
(DDI) is the defined interface between the kernel and the device driver component.

18.1.2 Types of Device Drivers

There used to be days in UNIX®, and thus FreeBSD, in which there were four types of devices defined:

• block device drivers

• character device drivers

• network device drivers

• pseudo-device drivers

Block devicesperformed in way that used fixed size blocks [of data]. This type of driver depended on the so called
buffer cache, which had the purpose to cache accessed blocks of data in a dedicated part of the memory. Often this
buffer cache was based on write-behind, which meant that when data was modified in memory it got synced to disk
whenever the system did its periodical disk flushing, thus optimizing writes.

18.1.3 Character devices

However, in the versions of FreeBSD 4.0 and onward the distinction between block and character devices became
non-existent.

18.2 Overview of Newbus
Newbusis the implementation of a new bus architecture based on abstraction layers which saw its introduction in
FreeBSD 3.0 when the Alpha port was imported into the source tree. It was not until 4.0 before it became the default
system to use for device drivers. Its goals are to provide a more object oriented means of interconnecting the various
busses and devices which a host system provides to theOperating System.

Its main features include amongst others:
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• dynamic attaching

• easy modularization of drivers

• pseudo-busses

One of the most prominent changes is the migration from the flat and ad-hoc system to a device tree lay-out.

At the top level resides the“root” device which is the parent to hang all other devices on. For each architecture, there
is typically a single child of “root” which has such things ashost-to-PCI bridges, etc. attached to it. For x86, this
“root” device is the“nexus” device and for Alpha, various different different models of Alpha have different
top-level devices corresponding to the different hardware chipsets, includinglca, apecs, cia andtsunami.

A device in the Newbus context represents a single hardware entity in the system. For instance each PCI device is
represented by a Newbus device. Any device in the system can have children; a device which has children is often
called a“bus” . Examples of common busses in the system are ISA and PCI which manage lists of devices attached
to ISA and PCI busses respectively.

Often, a connection between different kinds of bus is represented by a“bridge” device which normally has one child
for the attached bus. An example of this is aPCI-to-PCI bridgewhich is represented by a devicepcibN on the
parent PCI bus and has a childpciN for the attached bus. This layout simplifies the implementation of the PCI bus
tree, allowing common code to be used for both top-level and bridged busses.

Each device in the Newbus architecture asks its parent to map its resources. The parent then asks its own parent until
the nexus is reached. So, basically the nexus is the only part of the Newbus system which knows about all resources.

Tip: An ISA device might want to map its IO port at 0x230 , so it asks its parent, in this case the ISA bus. The ISA
bus hands it over to the PCI-to-ISA bridge which in its turn asks the PCI bus, which reaches the host-to-PCI
bridge and finally the nexus. The beauty of this transition upwards is that there is room to translate the requests.
For example, the 0x230 IO port request might become memory-mapped at 0xb0000230 on a MIPS box by the
PCI bridge.

Resource allocation can be controlled at any place in the device tree. For instance on many Alpha platforms, ISA
interrupts are managed separately from PCI interrupts and resource allocations for ISA interrupts are managed by the
Alpha’s ISA bus device. On IA-32, ISA and PCI interrupts are both managed by the top-level nexus device. For both
ports, memory and port address space is managed by a single entity - nexus for IA-32 and the relevant chipset driver
on Alpha (e.g. CIA or tsunami).

In order to normalize access to memory and port mapped resources, Newbus integrates thebus_space APIs from
NetBSD. These provide a single API to replace inb/outb and direct memory reads/writes. The advantage of this is
that a single driver can easily use either memory-mapped registers or port-mapped registers (some hardware supports
both).

This support is integrated into the resource allocation mechanism. When a resource is allocated, a driver can retrieve
the associatedbus_space_tag_t andbus_space_handle_t from the resource.

Newbus also allows for definitions of interface methods in files dedicated to this purpose. These are the.m files that
are found under thesrc/sys hierarchy.

The core of the Newbus system is an extensible “object-based programming” model. Each device in the system has a
table of methods which it supports. The system and other devices uses those methods to control the device and
request services. The different methods supported by a device are defined by a number of “interfaces”. An
“interface” is simply a group of related methods which can be implemented by a device.
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In the Newbus system, the methods for a device are provided by the various device drivers in the system. When a
device is attached to a driver duringauto-configuration, it uses the method table declared by the driver. A device can
laterdetachfrom its driver andre-attachto a new driver with a new method table. This allows dynamic replacement
of drivers which can be useful for driver development.

The interfaces are described by an interface definition language similar to the language used to define vnode
operations for file systems. The interface would be stored in a methods file (which would normally named
foo_if.m ).

Example 18-1. Newbus Methods

# Foo subsystem/driver (a comment...)

INTERFACE foo

METHOD int doit {
device_t dev;
};

# DEFAULT is the method that will be used, if a method was not
# provided via: DEVMETHOD()

METHOD void doit_to_child {
device_t dev;
driver_t child;
} DEFAULT doit_generic_to_child;

When this interface is compiled, it generates a header file “foo_if.h ” which contains function declarations:

int FOO_DOIT(device_t dev);
int FOO_DOIT_TO_CHILD(device_t dev, device_t child);

A source file, “foo_if.c ” is also created to accompany the automatically generated header file; it contains
implementations of those functions which look up the location of the relevant functions in the object’s method table
and call that function.

The system defines two main interfaces. The first fundamental interface is called“device” and includes methods
which are relevant to all devices. Methods in the“device” interface include“probe” , “attach” and“detach” to
control detection of hardware and“shutdown”, “suspend”and“resume” for critical event notification.

The second, more complex interface is“bus” . This interface contains methods suitable for devices which have
children, including methods to access bus specific per-device information1, event notification (child_detached ,
driver_added ) and resource management (alloc_resource , activate_resource , deactivate_resource ,
release_resource ).

Many methods in the “bus” interface are performing services for some child of the bus device. These methods would
normally use the first two arguments to specify the bus providing the service and the child device which is requesting
the service. To simplify driver code, many of these methods have accessor functions which lookup the parent and call
a method on the parent. For instance the methodBUS_TEARDOWN_INTR(device_t dev, device_t child,

...) can be called using the functionbus_teardown_intr(device_t child, ...) .
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Some bus types in the system define additional interfaces to provide access to bus-specific functionality. For instance,
the PCI bus driver defines the “pci” interface which has two methodsread_config andwrite_config for
accessing the configuration registers of a PCI device.

18.3 Newbus API
As the Newbus API is huge, this section makes some effort at documenting it. More information to come in the next
revision of this document.

18.3.1 Important locations in the source hierarchy

src/sys/[arch]/[arch] - Kernel code for a specific machine architecture resides in this directory. for example,
the i386 architecture, or theSPARC64architecture.

src/sys/dev/[bus] - device support for a specific[bus] resides in this directory.

src/sys/dev/pci - PCI bus support code resides in this directory.

src/sys/[isa|pci] - PCI/ISA device drivers reside in this directory. The PCI/ISA bus support code used to exist
in this directory in FreeBSD version4.0 .

18.3.2 Important structures and type definitions

devclass_t - This is a type definition of a pointer to astruct devclass .

device_method_t - This is same askobj_method_t (seesrc/sys/kobj.h ).

device_t - This is a type definition of a pointer to astruct device . device_t represents a device in the system.
It is a kernel object. Seesrc/sys/sys/bus_private.h for implementation details.

driver_t - This is a type definition which, referencesstruct driver . Thedriver struct is a class of the
device kernel object; it also holds data private to for the driver.

Figure 18-1.driver_t implementation

struct driver {
KOBJ_CLASS_FIELDS;

void *priv; /* driver private data */
};

A device_state_t type, which is an enumeration,device_state . It contains the possible states of a Newbus
device before and after the autoconfiguration process.

Figure 18-2. Device statesdevice_state_t

/*
* src/sys/sys/bus.h
*/

typedef enum device_state {
DS_NOTPRESENT, /* not probed or probe failed */

DS_ALIVE, /* probe succeeded */
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DS_ATTACHED, /* attach method called */
DS_BUSY /* device is open */

} device_state_t;

Notes
1. bus_generic_read_ivar(9) and bus_generic_write_ivar(9)
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Contributed by Jean-Francois Dockes.

19.1 Introduction
The FreeBSD sound subsystem cleanly separates generic sound handling issues from device-specific ones. This
makes it easier to add support for new hardware.

The pcm(4) framework is the central piece of the sound subsystem. It mainly implements the following elements:

• A system call interface (read, write, ioctls) to digitized sound and mixer functions. The ioctl command set is
compatible with the legacyOSSor Voxwareinterface, allowing common multimedia applications to be ported
without modification.

• Common code for processing sound data (format conversions, virtual channels).

• A uniform software interface to hardware-specific audio interface modules.

• Additional support for some common hardware interfaces (ac97), or shared hardware-specific code (ex: ISA DMA
routines).

The support for specific sound cards is implemented by hardware-specific drivers, which provide channel and mixer
interfaces to plug into the genericpcm code.

In this chapter, the termpcm will refer to the central, common part of the sound driver, as opposed to the
hardware-specific modules.

The prospective driver writer will of course want to start from an existing module and use the code as the ultimate
reference. But, while the sound code is nice and clean, it is also mostly devoid of comments. This document tries to
give an overview of the framework interface and answer some questions that may arise while adapting the existing
code.

As an alternative, or in addition to starting from a working example, you can find a commented driver template at
http://people.FreeBSD.org/~cg/template.c (http://people.FreeBSD.org/~cg/template.c)

19.2 Files
All the relevant code currently (FreeBSD 4.4) lives in/usr/src/sys/dev/sound/ , except for the public ioctl
interface definitions, found in/usr/src/sys/sys/soundcard.h

Under/usr/src/sys/dev/sound/ , thepcm/ directory holds the central code, while theisa/ andpci/

directories have the drivers for ISA and PCI boards.

19.3 Probing, attaching, etc.
Sound drivers probe and attach in almost the same way as any hardware driver module. You might want to look at the
ISA or PCIspecific sections of the handbook for more information.

However, sound drivers differ in some ways:
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• They declare themselves aspcm class devices, with a struct snddev_info device private structure:

static driver_t xxx_driver = {
"pcm",
xxx_methods,
sizeof(struct snddev_info)

};

DRIVER_MODULE(snd_xxxpci, pci, xxx_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(snd_xxxpci, snd_pcm, PCM_MINVER, PCM_PREFVER,PCM_MAXVER);

Most sound drivers need to store additional private information about their device. A private data structure is
usually allocated in the attach routine. Its address is passed topcm by the calls topcm_register() and
mixer_init() . pcm later passes back this address as a parameter in calls to the sound driver interfaces.

• The sound driver attach routine should declare its MIXER or AC97 interface topcm by callingmixer_init() .
For a MIXER interface, this causes in turn a call toxxxmixer_init() .

• The sound driver attach routine declares its general CHANNEL configuration topcm by calling
pcm_register(dev, sc, nplay, nrec) , wheresc is the address for the device data structure, used in
further calls frompcm, andnplay andnrec are the number of play and record channels.

• The sound driver attach routine declares each of its channel objects by calls topcm_addchan() . This sets up the
channel glue inpcm and causes in turn a call toxxxchannel_init() .

• The sound driver detach routine should callpcm_unregister() before releasing its resources.

There are two possible methods to handle non-PnP devices:

• Use adevice_identify() method (example:sound/isa/es1888.c ). Thedevice_identify() method
probes for the hardware at known addresses and, if it finds a supported device, creates a new pcm device which is
then passed to probe/attach.

• Use a custom kernel configuration with appropriate hints for pcm devices (example:sound/isa/mss.c ).

pcm drivers should implementdevice_suspend , device_resume anddevice_shutdown routines, so that power
management and module unloading function correctly.

19.4 Interfaces
The interface between thepcm core and the sound drivers is defined in terms ofkernel objects.

There are two main interfaces that a sound driver will usually provide:CHANNELand eitherMIXERor AC97.

TheAC97interface is a very small hardware access (register read/write) interface, implemented by drivers for
hardware with an AC97 codec. In this case, the actual MIXER interface is provided by the shared AC97 code inpcm.
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19.4.1 The CHANNEL interface

19.4.1.1 Common notes for function parameters

Sound drivers usually have a private data structure to describe their device, and one structure for each play and
record data channel that it supports.

For all CHANNEL interface functions, the first parameter is an opaque pointer.

The second parameter is a pointer to the private channel data structure, except forchannel_init() which has a
pointer to the private device structure (and returns the channel pointer for further use bypcm).

19.4.1.2 Overview of data transfer operations

For sound data transfers, thepcm core and the sound drivers communicate through a shared memory area, described
by a struct snd_dbuf.

struct snd_dbuf is private topcm, and sound drivers obtain values of interest by calls to accessor functions
(sndbuf_getxxx() ).

The shared memory area has a size ofsndbuf_getsize() and is divided into fixed size blocks of
sndbuf_getblksz() bytes.

When playing, the general transfer mechanism is as follows (reverse the idea for recording):

• pcm initially fills up the buffer, then calls the sound driver’sxxxchannel_trigger() function with a parameter
of PCMTRIG_START.

• The sound driver then arranges to repeatedly transfer the whole memory area (sndbuf_getbuf() ,
sndbuf_getsize() ) to the device, in blocks ofsndbuf_getblksz() bytes. It calls back thechn_intr() pcm

function for each transferred block (this will typically happen at interrupt time).

• chn_intr() arranges to copy new data to the area that was transferred to the device (now free), and make
appropriate updates to the snd_dbuf structure.

19.4.1.3 channel_init

xxxchannel_init() is called to initialize each of the play or record channels. The calls are initiated from the
sound driver attach routine. (See theprobe and attach section).

static void *
xxxchannel_init(kobj_t obj, void *data,

struct snd_dbuf *b, struct pcm_channel *c, int dir) ➊

{
struct xxx_info *sc = data;
struct xxx_chinfo *ch;

...
return ch; ➋

}
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➊ b is the address for the channel struct snd_dbuf. It should be initialized in the function by calling
sndbuf_alloc() . The buffer size to use is normally a small multiple of the ’typical’ unit transfer size for your
device.

c is thepcm channel control structure pointer. This is an opaque object. The function should store it in the local
channel structure, to be used in later calls topcm (ie: chn_intr(c) ).

dir indicates the channel direction (PCMDIR_PLAYor PCMDIR_REC).

➋ The function should return a pointer to the private area used to control this channel. This will be passed as a
parameter to other channel interface calls.

19.4.1.4 channel_setformat

xxxchannel_setformat() should set up the hardware for the specified channel for the specified sound format.

static int
xxxchannel_setformat(kobj_t obj, void *data, u_int32_t format) ➊

{
struct xxx_chinfo *ch = data;

...
return 0;

}

➊ format is specified as anAFMT_XXX value (soundcard.h ).

19.4.1.5 channel_setspeed

xxxchannel_setspeed() sets up the channel hardware for the specified sampling speed, and returns the possibly
adjusted speed.

static int
xxxchannel_setspeed(kobj_t obj, void *data, u_int32_t speed)
{

struct xxx_chinfo *ch = data;
...

return speed;
}

19.4.1.6 channel_setblocksize

xxxchannel_setblocksize() sets the block size, which is the size of unit transactions betweenpcm and the
sound driver, and between the sound driver and the device. Typically, this would be the number of bytes transferred
before an interrupt occurs. During a transfer, the sound driver should callpcm’s chn_intr() every time this size has
been transferred.

Most sound drivers only take note of the block size here, to be used when an actual transfer will be started.

static int
xxxchannel_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
{

200



Chapter 19 Sound subsystem

struct xxx_chinfo *ch = data;
...

return blocksize; ➊

}

➊ The function returns the possibly adjusted block size. In case the block size is indeed changed,
sndbuf_resize() should be called to adjust the buffer.

19.4.1.7 channel_trigger

xxxchannel_trigger() is called bypcm to control data transfer operations in the driver.

static int
xxxchannel_trigger(kobj_t obj, void *data, int go) ➊

{
struct xxx_chinfo *ch = data;

...
return 0;

}

➊ go defines the action for the current call. The possible values are:

• PCMTRIG_START: the driver should start a data transfer from or to the channel buffer. If needed, the buffer
base and size can be retrieved throughsndbuf_getbuf() andsndbuf_getsize() .

• PCMTRIG_EMLDMAWR/ PCMTRIG_EMLDMARD: this tells the driver that the input or output buffer may have
been updated. Most drivers just ignore these calls.

• PCMTRIG_STOP/ PCMTRIG_ABORT: the driver should stop the current transfer.

Note: If the driver uses ISA DMA, sndbuf_isadma() should be called before performing actions on the device,
and will take care of the DMA chip side of things.

19.4.1.8 channel_getptr

xxxchannel_getptr() returns the current offset in the transfer buffer. This will typically be called by
chn_intr() , and this is howpcm knows where it can transfer new data.

19.4.1.9 channel_free

xxxchannel_free() is called to free up channel resources, for example when the driver is unloaded, and should be
implemented if the channel data structures are dynamically allocated or ifsndbuf_alloc() was not used for buffer
allocation.
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19.4.1.10 channel_getcaps

struct pcmchan_caps *
xxxchannel_getcaps(kobj_t obj, void *data)
{

return &xxx_caps; ➊

}

➊ The routine returns a pointer to a (usually statically-defined) pcmchan_caps structure (defined in
sound/pcm/channel.h . The structure holds the minimum and maximum sampling frequencies, and the
accepted sound formats. Look at any sound driver for an example.

19.4.1.11 More functions

channel_reset() , channel_resetdone() , andchannel_notify() are for special purposes and should not be
implemented in a driver without discussing it with the authorities (Cameron Grant <cg@FreeBSD.org >).

channel_setdir() is deprecated.

19.4.2 The MIXER interface

19.4.2.1 mixer_init

xxxmixer_init() initializes the hardware and tellspcm what mixer devices are available for playing and recording

static int
xxxmixer_init(struct snd_mixer *m)
{

struct xxx_info *sc = mix_getdevinfo(m);
u_int32_t v;

[Initialize hardware]

[Set appropriate bits in v for play mixers] ➊

mix_setdevs(m, v);
[Set appropriate bits in v for record mixers]
mix_setrecdevs(m, v)

return 0;
}

➊ Set bits in an integer value and callmix_setdevs() andmix_setrecdevs() to tell pcm what devices exist.

Mixer bits definitions can be found insoundcard.h (SOUND_MASK_XXXvalues andSOUND_MIXER_XXXbit shifts).
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19.4.2.2 mixer_set

xxxmixer_set() sets the volume level for one mixer device.

static int
xxxmixer_set(struct snd_mixer *m, unsigned dev,

unsigned left, unsigned right) ➊

{
struct sc_info *sc = mix_getdevinfo(m);
[set volume level]
return left | (right << 8); ➋

}

➊ The device is specified as a SOUND_MIXER_XXX value

The volume values are specified in range [0-100]. A value of zero should mute the device.

➋ As the hardware levels probably won’t match the input scale, and some rounding will occur, the routine returns
the actual level values (in range 0-100) as shown.

19.4.2.3 mixer_setrecsrc

xxxmixer_setrecsrc() sets the recording source device.

static int
xxxmixer_setrecsrc(struct snd_mixer *m, u_int32_t src) ➊

{
struct xxx_info *sc = mix_getdevinfo(m);

[look for non zero bit(s) in src, set up hardware]

[update src to reflect actual action]
return src; ➋

}

➊ The desired recording devices are specified as a bit field

➋ The actual devices set for recording are returned. Some drivers can only set one device for recording. The
function should return -1 if an error occurs.

19.4.2.4 mixer_uninit, mixer_reinit

xxxmixer_uninit() should ensure that all sound is muted and if possible mixer hardware should be powered down

xxxmixer_reinit() should ensure that the mixer hardware is powered up and any settings not controlled by
mixer_set() or mixer_setrecsrc() are restored.
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19.4.3 The AC97 interface

TheAC97interface is implemented by drivers with an AC97 codec. It only has three methods:

• xxxac97_init() returns the number of ac97 codecs found.

• ac97_read() andac97_write() read or write a specified register.

TheAC97interface is used by the AC97 code inpcm to perform higher level operations. Look at
sound/pci/maestro3.c or many others undersound/pci/ for an example.
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