Making Easy Things Easy
& Hard Things Possible

Learning

: . Randal L. Schwartz,
O’REILLY 1om Phoenix & brian d foy



Programming/Perl

O’REILLY"

Learning Perl

This bestselling Perl tutorial, first published in 1993

the language up to and including Perl 5.10.

This book reflects the combined experience of its authors who
have taught Perl at Stonehenge Consulting since 1991. Years of
classroom testing and experience helped shape the book’s
pace and scope, and the exercises at the end of each chapter
let you practice the concepts while you follow along with

the text. Topics in this fifth edition include:

* Perl data and variable types
* Subroutines

* File operations

* Regular expressions

e String manipulation

e Lists and sorting

* Process management

e Smart matching

¢ Third-party modules

Perl is the language for people who want to get work done.
Originally targeted to sysadmins for heavy-duty text processing,
Perl is now a full-featured programming language suitable for

almost any task on almost any platform—from short fixes on the

command line to web applications, bioinformatics, finance, and
much more. Other books may teach you to program in Perl, but
Learning Perl will turn you into a Perl programmer.

www.oreilly.com

US $39.99 CAN $39.99
ISBN: 978-0-596-52010-6

MO g

780596"520106

Learning Perl, popularly known as “the llama book”
is what most programmers use to get started with Perl.

and now in its fifth edition, covers recent changes to

Safari

Books Online

“If you're looking for the

best way to spend your

Sirst 30 to 45 hours with

the Perl programming
language, you've found it.”

—from the Preface

Randal Schwartz started
Stonehenge Consulting Services
in 1985 and built it into the
premier Perl training shop. He’s
written numerous books and
magazine columns on Perl over
the past two decades.

Tom Phoenix is a Perl trainer at
Stonehenge Consulting and a
frequent contributor to the Perl
beginner’s list.

brian d foy, a partner at
Stonehenge Consulting, is the
publisher of The Perl Review
magazine.

Free online edition
for 45 days with
purchase of this book.
Details on last page.



Learning Perl



Other Perl resources from 0’Reilly

Related titles

Perl Books
Resource Center

O'REILLY"

perl.com
THE SOURCE FOR PERL

Conferences

O'REILLY NETWORK
Safari
Bookshelf.

Advanced Perl Programming Perl Debugger Pocket

Intermediate Perl Reference

Mastering Perl Perl in a Nutshell

Perl 6 and Parrot Essentials Perl Testing: ﬁ Developer’s
Perl Best Practices Notebook

Perl Cookbook™ Practical mod-perl

perl.oreilly.com is a complete catalog of O’Reilly’s books on Perl
and related technologies, including sample chapters and code
examples.

Perl.com is the central web site for the Perl community. It is the
perfect starting place for finding out everything there is to know
about Perl.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.



FIFTH EDITION

Learning Perl

Randal L. Schwartz, Tom Phoenix, and brian d foy

O’REILLY"

Beijing + Cambridge - Farnham - Koln - Sebastopol - Taipei - Tokyo



Learning Perl, Fifth Edition
by Randal L. Schwartz, Tom Phoenix, and brian d foy

Copyright © 2008 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Ellen Troutman Zaig
Production Editor: Loranah Dimant Cover Designer: Karen Montgomery
Copyeditor: Loranah Dimant Interior Designer: David Futato
Proofreader: Sada Preisch lllustrator: Jessamyn Read
Printing History:

November 1993:  First Edition.

July 1997: Second Edition.

July 2001: Third Edition.

July 2005: Fourth Edition.

July 2008: Fifth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning Perl, the image of a llama, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52010-6
(M]
1213729146


http://safari.oreilly.com

Table of Contents

11 T Xi
T Introduction .....oueniniii i i i i e it it e 1
Questions and Answers 1
What Does “Perl” Stand For? 4
How Can I Get Perl? 8
How Do I Make a Perl Program? 12
A Whirlwind Tour of Perl 16
Exercises 17
2. SaalarData .........iiiiiiii i i e i it 19
Numbers 19
Strings 22
Perl’s Built-in Warnings 26
Scalar Variables 27
Output with print 29
The if Control Structure 33
Getting User Input 34
The chomp Operator 35
The while Control Structure 36
The undef Value 36
The defined Function 37
Exercises 38
3. Listsand Arrays ......ouuvuriniiniiniiniiiiiiieiiiiiiiieiieiieieeaaeaas 39
Accessing Elements of an Array 40
Special Array Indices 41
List Literals 41
List Assignment 43
Interpolating Arrays into Strings 46
The foreach Control Structure 47
Scalar and List Context 49




<STDIN> in List Context 52

Exercises 54
4. Subroutines ...ttt 55
Defining a Subroutine 55
Invoking a Subroutine 56
Return Values 56
Arguments 58
Private Variables in Subroutines 60
Variable-Length Parameter Lists 60
Notes on Lexical (my) Variables 63
The use strict Pragma 64
The return Operator 65
Nonscalar Return Values 67
Persistent, Private Variables 68
Exercises 69
5. Inputand Output ........coeniiiiiiii i e VAl
Input from Standard Input 71
Input from the Diamond Operator 73
The Invocation Arguments 75
Output to Standard Output 76
Formatted Output with printf 79
Filehandles 81
Opening a Filehandle 83
Fatal Errors with die 86
Using Filehandles 88
Reopening a Standard Filehandle 90
Output with say 90
Exercises 91
6. Hashes .......ooovnniiiiiiiiiii i 93
What Is a Hash? 93
Hash Element Access 96
Hash Functions 100
Typical Use of a Hash 103
The %ENV hash 104
Exercises 105
7. Inthe World of Regular Expressions ............ccooviiiiiiiiiiiiiiennns 107
What Are Regular Expressions? 107
Using Simple Patterns 108
Character Classes 113

vi | Table of Contents



10.

1.

12.

Exercises

Matching with Regular Expressions ...............

Matches with m//

Option Modifiers
Anchors

The Binding Operator, =~
Interpolating into Patterns
The Match Variables
General Quantifiers
Precedence

A Pattern Test Program
Exercises

Processing Text with Regular Expressions

Substitutions with s///

The split Operator

The join Function

m// in List Context

More Powerful Regular Expressions
Exercises

More Control Structures .........ccovvvnvenenn..

The unless Control Structure

The until Control Structure
Expression Modifiers

The Naked Block Control Structure
The elsif Clause

Autoincrement and Autodecrement
The for Control Structure

Loop Controls

The Ternary Operator, ?:

Logical Operators

Exercises

PerlModules .........covvvviviiiniiiiiinnnnns

Finding Modules
Installing Modules
Using Simple Modules
Exercise

FileTests vovvriniiiii it iiieieneenes

File Test Operators

115

........................ 117

117
118
120
121
122
123
129
130
132
132

................................. 135

135
138
139
140
140
147

........................ 149

149
150
151
152
153
154
155
158
162
164
168

........................ 169

169
170
171
177

........................ 179

179

Table of Contents | vii



The stat and Istat Functions 186

The localtime Function 187
Bitwise Operators 188
Exercises 189
13. Directory Operations ..........coovuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienneens 191
Moving Around the Directory Tree 191
Globbing 192
An Alternate Syntax for Globbing 193
Directory Handles 194
Recursive Directory Listing 195
Manipulating Files and Directories 195
Removing Files 196
Renaming Files 197
Links and Files 198
Making and Removing Directories 203
Modifying Permissions 205
Changing Ownership 205
Changing Timestamps 206
Exercises 206
14, Stringsand Sorting ..........oveiiiiiiiiiiiiii i i 209
Finding a Substring with index 209
Manipulating a Substring with substr 210
Formatting Data with sprintf 212
Advanced Sorting 214
Exercises 219
15.  Smart Matchingand given-when ... 221
The Smart Match Operator 221
Smart Match Precedence 224
The given Statement 225
when with Many Items 229
Exercises 230
16.  ProcessManagement ...........coeuiiuniiiiiiniiniineiieniieneeneenenns 233
The system Function 233
The exec Function 236
The Environment Variables 237
Using Backquotes to Capture Output 238
Processes as Filehandles 241
Getting Down and Dirty with Fork 243
Sending and Receiving Signals 244

viii | Table of Contents



17.

Exercises

Some Advanced Perl Techniques ....................

Trapping Errors with eval

Picking Items from a List with grep
Transforming Items from a List with map
Unquoted Hash Keys

Slices

Exercise

EXercise ANSWerS . .vvvvervininnerenneenneennnes

Beyondthellama ...............cciviiniiinnnen,

246

..................... 249

249
252
253
254
254
259

Table of Contents | ix






Preface

Welcome to the fifth edition of Learning Perl, updated for Perl 5.10 and its latest fea-
tures. This book is good even if you are still using Perl 5.6 (although, it’s been a long
time since it was released; have you thought about upgrading?).

If you’re looking for the best way to spend your first 30 to 45 hours with the Perl
programming language, you’ve found it. In the pages that follow, you’ll find a carefully
paced introduction to the language that is the workhorse of the Internet, as well as the
language of choice for system administrators, web hackers, and casual programmers
around the world.

We can’t give you all of Perl in just a few hours. The books that promise that are
probably fibbing a bit. Instead, we’ve carefully selected a useful subset of Perl for you
to learn, good for programs from 1 to 128 lines long, which end up being about 90%
of the programs in use out there. And when you’re ready to go on, you can get Inter-
mediate Perl, which picks up where this book leaves off. We’ve also included a number
of pointers for further education.

Each chapter is small enough so you can read it in an hour or two. Each chapter ends
with a series of exercises to help you practice what you’ve just learned, with the answers
in Appendix A for your reference. Thus, this book is ideally suited for a classroom
“Introduction to Perl” course. We know this directly because the material for this book
was lifted almost word-for-word from our flagship “Learning Perl” course, delivered
to thousands of students around the world. However, we’ve designed the book for self-
study as well.

Perl lives as the “toolbox for Unix,” but you don’t have to be a Unix guru—or even a
Unix user—to read this book. Unless otherwise noted, everything we’re saying applies
equally well to Windows ActivePerl from ActiveState and pretty much every other
modern implementation of Perl.

Although you don’t need to know a single bit about Perl to begin reading this book,
we recommend that you already have familiarity with basic programming concepts
such as variables, loops, subroutines, and arrays, and the all-important “editing a
source code file with your favorite text editor.” We don’t spend any time trying to
explain those concepts. Although we’re pleased that we’ve had many reports of people

Xi



picking up Learning Perl and successfully grasping Perl as their first programming lan-
guage, of course, we can’t promise the same results for everyone.

Typographical Conventions

The following font conventions are used in this book:

Constant width
Used for method names, function names, variables, and attributes. It is also used
for code examples.

Constant width bold
Used to indicate user input.

Constant width italic
Used to indicate a replaceable item in code (e.g., filename, where you are supposed
to substitute an actual filename).

Italic
Used for filenames, URLs, hostnames, commands in text, important words on first
mention, and emphasis.

Footnotes
Used to attach parenthetical notes that you should not read on your first (or perhaps
second or third) reading of this book. Sometimes lies are spoken to simplify the
presentation, and the footnotes restore the lie to truth. Often, the material in the
footnote will be advanced material not even discussed anywhere else in the book.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities,
but you may find that features have changed or that we have let errors slip through the
production of the book. Please let us know of any errors that you find, as well as sug-
gestions for future editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-7000 (international/local)
707-829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request
a catalog, send email to:

info@oreilly.com

xii | Preface



To ask technical questions or to comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans for
future editions. It also offers a downloadable set of text files (and a couple of Perl
programs) that are useful, but not required, when doing some of the exercises. You can
access this page at:

http://www.oreilly.com/catalog/9780596520106
For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission. We ap-
preciate, but do not require, attribution. An attribution usually includes the title, au-
thor, publisher, and ISBN. For example: “Learning Perl, Fifth edition, by Randal L.
Schwartz, Tom Phoenix, and brian d foy. Copyright 2008 O’Reilly Media, Inc.,
978-0-596-52010-6.” If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Preface | xiii


http://www.oreilly.com/catalog/9780596520106
http://www.oreilly.com
http://safari.oreilly.com.

History of This Book

For the curious, here’s how Randal tells the story of how this book came about:

After I had finished the first Programming Perl book with Larry Wall (in 1991), I was
approached by Taos Mountain Software in Silicon Valley to produce a training course.
This included having me deliver the first dozen or so courses and train their staff to
continue offering the course. I wrote the course for them” and delivered it as promised.

On the third or fourth delivery of that course (in late 1991), someone came up to me
and said, “You know, I really like Programming Perl, but the way the material is pre-
sented in this course is so much easier to follow—you oughta write a book like this
course.” It sounded like an opportunity to me, so I started thinking about it.

[ wrote to Tim O’Reilly with a proposal based on an outline that was similar to the
course I was presenting for Taos—although I had rearranged and modified a few of the
chapters based on observations in the classroom. I think that was my fastest proposal
acceptance in history—I got a message from Tim within 15 minutes saying, “We’ve
been waiting for you to pitch a second book—Programming Perl is selling like gang-
busters.” That started the effort over the next 18 months to finish the first edition of
Learning Perl.

During that time, I was starting to see an opportunity to teach Perl classes outside
Silicon Valley,T so I created a class based on the text I was writing for Learning Perl. |
gave a dozen classes for various clients (including my primary contractor, Intel Oregon),
and used the feedback to fine-tune the book draft even further.

The first edition hit the streets on the first day of November 1993% and became a
smashing success, frequently even outpacing Programming Perl book sales.

The back-cover jacket of the first book said “written by a leading Perl trainer.” Well,
that became a self-fulfilling prophesy. Within a few months, I was starting to get email
from people all over the United States asking me to teach at their site. In the following
seven years, my company became the leading worldwide on-site Perl training company,
and I had personally racked up (literally) a million frequent-flier miles. It didn’t hurt
that the Web started taking off about then, and the webmasters and webmistresses
picked Perl as the language of choice for content management, interaction through
CGI, and maintenance.

" In the contract, I retained the rights to the exercises, hoping someday to reuse them in some other way, like
in the magazine columns I was writing at the time. The exercises are the only things that leapt from the Taos
course to the book.

T My Taos contract had a no-compete clause, so I had to stay out of Silicon Valley with any similar courses,
which I respected for many years.

I remember that date very well because it was also the day [ was arrested at my home for computer-related-
activities around my Intel contract, a series of felony charges for which I was later convicted.

xiv | Preface



For two years, I worked closely with Tom Phoenix in his role as lead trainer and content
manager for Stonehenge, giving him charter to experiment with the “Llama” course by
moving things around and breaking things up. When we had come up with what we
thought was the best major revision of the course, I contacted O’Reilly and said, “It’s
time for a new book!” And that became the third edition.

Two years after writing the third edition of the Llama, Tom and I decided it was time
to push our follow-on “advanced” course out into the world as a book, for people
writing programs that are “100 to 10,000 lines of code.” And together we created the
first Alpaca book, released in 2003.

But fellow instructor brian d foy was just getting back from the conflict in the Gulf, and
had noticed that we could use some rewriting in both books because our courseware
still needed to track the changing needs of the typical student. So, he pitched the idea
to O’Reilly to take on rewriting both the Llama and the Alpaca one final time before
Perl 6 (we hope). This fifth edition of the Llama reflects those changes. brian was really
the lead writer, working with my occasional guidance, and has done a brilliant job of
the usual “herding cats” that a multiple-writer team generally feels like.

On December 18, 2007, the perlSporters released Perl 5.10, a significant new version
of Perl with several new features. The previous version, 5.8, had focused on the
underpinnings of Perl and its Unicode support. The latest version, starting from the
stable 5.8 foundation, was able to add completely new features, some of which it bor-
rowed from the development of Perl 6 (not yet released). Some of these features, such
as named captures in regular expressions, are much better than the old ways of doing
things, thus perfect for Perl beginners. We hadn’t thought about a fifth edition of this
book, but Perl 5.10 was so much better that we couldn’t resist.

Some of the differences you may notice from prior editions:

* The text is updated for the latest version, Perl 5.10, and some of the code only
works with that version. We note in the text when we are talking about a Perl 5.10
feature, and we mark those code sections with a special use statement that ensures
you’re using the right version:

use 5.010; # this script requires Perl 5.10 or greater

If you don’t see that use 5.010 in a code example, it should work all the way back
to Perl 5.6. To see which version of Perl you have, try the -v command-line switch:

prompt% perl -v

Here are some of the new features from Perl 5.10 that we cover, and where appropriate,
we still show you the old ways of doing the same thing;:

* There is more information in the regular expression chapters, covering the new
features from Perl 5.10. These include relative back references (Chapter 7), new
character classes (Chapter 7), and named captures (Chapter 8).

Preface | xv



* Perl 5.10 includes a switch statement, which it calls given-when. We cover it in
Chapter 15 along with the smart match operator.

* Subroutines now have static variables just like C does, although Perl calls them
state variables. They persist between calls to the subroutine and are lexically
scoped. We cover that in Chapter 4.

Acknowledgments

From Randal. I want to thank the Stonehenge trainers past and present (Joseph Hall,
Tom Phoenix, Chip Salzenberg, brian d foy, and Tad McClellan) for their willingness
to go out and teach in front of classrooms week after week and to come back with their
notes about what’s working (and what’s not), so we could fine-tune the material for
this book. T especially want to single out my coauthor and business associate, Tom
Phoenix, for having spent many, many hours working to improve Stonehenge’s Llama
course and to provide the wonderful core text for most of this book. And brian d foy
for being the lead writer of the fourth edition, including taking that eternal to-do item
out of my inbox so that it would finally happen.

[also want to thank everyone at O’Reilly, especially our very patient editor and overseer
on the previous edition, Allison Randal (no relation, but she has a nicely spelled last
name), and Tim O’Reilly himself for taking a chance on me in the first place with the
Camel and Llama books.

[ am also absolutely indebted to the thousands of people who have purchased the past
editions of the Llama so that I could use the money to stay “off the streets and out of
jail,” and to those students in my classrooms who have trained me to be a better trainer,
and to the stunning array of Fortune 1000 clients who have purchased our classes in
the past and will continue to do so into the future.

As always, a special thanks to Lyle and Jack, for teaching me nearly everything I know
about writing. I won’t ever forget you guys.

From Tom. I've got to echo Randal’s thanks to everyone at O’Reilly. For the third
edition of this book, Linda Mui was our editor, and I still thank her, for her patience
in pointing out which jokes and footnotes were most excessive (she is in no way to
blame for the ones that remain). Both she and Randal have guided me through the
writing process, and I am grateful. On the fourth edition, Allison Randal stepped in as
editor, and my thanks go to her as well.

[ also echo Randal with regard to the other Stonehenge trainers, who hardly ever com-
plained when I unexpectedly updated the course materials to try out a new teaching
technique. You folks have contributed many different viewpoints on teaching methods
that I would never have seen.

xvi | Preface



For many years, I worked at the Oregon Museum of Science and Industry (OMSI), and
I’d like to thank the folks there for letting me hone my teaching skills as I learned to
build a joke or two into every activity, explosion, or dissection.

To the many folks on Usenet who have given me your appreciation and encouragement
for my contributions there, thanks. As always, I hope this helps.

Also to my many students, who have shown me with their questions (and befuddled
looks) when I needed to try a new way of expressing a concept. I hope that the present
edition helps to relieve any remaining puzzlement.

Of course, deep thanks are due especially to my coauthor Randal for giving me the
freedom to try various ways of presenting the material both in the classroom and here
in the book, as well as for the push to make this material into a book in the first place.
And without fail, I must say that I am indeed inspired by your ongoing work to ensure
that no one else becomes ensnared by the legal troubles that have stolen so much of
your time and energy; you're a fine example.

To my wife, Jenna, thanks for being a cat person, and everything thereafter.

From brian. I have to thank Randal first, since I learned Perl from the first edition of
this book, and then had to learn it again when he asked me to start teaching for Stone-
henge in 1998. Teaching is often the best way to learn. Since then Randal has mentored
me not only in Perl, but in several other things he thought I needed to learn, like the
time he decided that we could use Smalltalk instead of Perl for a demonstration at a
web conference. I'm always amazed at the breadth of his knowledge. He’s the one who
told me to start writing about Perl. Now I’'m helping out on the book where I started.
I'm honored, Randal.

I’ve probably only actually seen Tom Phoenix for less than two weeks in the entire time
I’'ve worked for Stonehenge, but I've been teaching his version of our Learning Perl
course for years. That version turned into the third edition of this book. Teaching Tom’s
new version, I found new ways to explain almost everything, and learned even more
corners of Perl.

When I convinced Randal that I should help out on the Llama update, I was anointed
as the maker of the proposal to the publisher, the keeper of the outline, and the version
control wrangler. Our editor on the fourth edition, Allison Randal, helped me get set
up in all of those roles and endured my frequent emails without complaining.

Special non-Perl thanks to Stacey, Buster, Mimi, Roscoe, Amelia, Lila, and everyone
else who tried to distract me while T was busy but still talked to me even though 1
couldn’t come out to play.

From All of Us. Thanks to our reviewers David H. Adler, Andy Armstrong, Dave Cross,
Chris Devers, Paul Fenwick, Stephen B. Jenkins, Matthew Musgrove, Steve Peters, and
Wil Wheaton for providing comments on the draft of this book.

Preface | xvii



Thanks also to our many students who have let us know what parts of the course
material have needed improvement over the years. It’s because of you that we’re all so
proud of it today.

Thanks to the many Perl Mongers who have made us feel at home as we’ve visited your
cities. Let’s do it again sometime.

And finally, our sincerest thanks to our friend Larry Wall, for having the wisdom to
share his really cool and powerful toys with the rest of the world so that we can all get
our work done just a little bit faster, easier, and with more fun.

xviii | Preface



CHAPTER 1
Introduction

Welcome to the Llama book!

This is the fifth edition of a book that has been enjoyed by half a million readers since
1993. At least, we hope they’ve enjoyed it. It’s a sure thing that we’ve enjoyed writing
it.”

Questions and Answers

You probably have some questions about Perl, and maybe even some about this book,
especially if you've already flipped through it to see what’s coming. So, we’ll use this
chapter to answer them.

Is This the Right Book for You?

If you’re anything like us, you’re probably standing in a bookstore right now,T won-
dering whether you should get this Llama book and learn Perl, or maybe that book over
there and learn some language named after a snake, or a beverage, or a letter of the
alphabet. You’ve got about two minutes before the bookstore manager comes over to
tell you that this isn’t a library,!l and you need to buy something or get out. Maybe you
want to use these two minutes to see a quick Perl program, so you’ll know something

" To be sure, the first edition was written by Randal L. Schwartz, the second by Randal and Tom Christiansen,
then one by Randal and Tom Phoenix, and now by Randal, Tom Phoenix, and brian d foy. So, whenever we
say “we” in this edition, we mean that last group. Now, if you’re wondering how we can say that we’ve
enjoyed writing it (in the past tense) when we’re still on the first page, that’s easy: we started at the end, and
worked our way backward. It sounds like a strange way to do it, we know. But, honestly, once we finished
writing the index, the rest was hardly any trouble at all.

T Actually, if you’re like us, you’re standing in a library, not a bookstore. But we’re tightwads.

¥ Before you write to tell us that it’s a comedy troupe, not a snake, we should really explain that we’re
dyslexically thinking of CORBA.

I Unless it is.




about how powerful Perl is and what it can do. In that case, you should check out “A
Whirlwind Tour of Perl,” later in this chapter.

Why Are There So Many Footnotes?

Thank you for noticing. There are a lot of footnotes in this book. Ignore them. They’re
needed because Perl is chock-full of exceptions to its rules. This is a good thing, as real
life is chock-full of exceptions to rules.

But it means that we can’t honestly say, “The fizzbin operator frobnicates the hoozi-
static variables” without a footnote giving the exceptions.” We’re pretty honest, so we
have to write the footnotes. But you can be honest without reading them. (It’s funny
how that works out.)

Many of the exceptions have to do with portability. Perl began on Unix systems, and
it still has deep roots in Unix. But wherever possible, we’ve tried to show when some-
thing may behave unexpectedly, whether that’s because it’s running on a non-Unix
system, or for another reason. We hope that readers who know nothing about Unix
will nevertheless find this book a good introduction to Perl. (And they’ll learn a little
about Unix along the way, at no extra charge.)

And many of the other exceptions have to do with the old “80/20” rule. By that we
mean that 80% of the behavior of Perl can be described in 20% of the documentation,
and the other 20% of the behavior takes up the other 80% of the documentation. So
to keep this book small, we’ll talk about the most common, easy-to-talk-about behavior
in the main text, and hint in the direction of the other stuff in the footnotes (which are
in a smaller font, so we can say more in the same space). Once you’ve read the book
all the way through without reading the footnotes, you’ll probably want to look back
at some sections for reference. At that point, or if you become unbearably curious along
the way, go ahead and read the notes. A lot of them are just computer jokes anyway.

What About the Exercises and Their Answers?

The exercises are at the end of each chapter because, between the three of us, we've
presented this same course material to several thousand students.¥ We have carefully
crafted these exercises to give you the chance to make mistakes as well.

It’s not that we want you to make mistakes, but you need to have the chance. That’s
because you are going to make most of these mistakes during your Perl programming

" Except on Tuesdays, during a power outage, when you hold your elbow at a funny angle during the equinox,
or when use integer is in effect inside a loop block being called by a prototyped subroutine prior to Perl
version 5.6.

T We even discussed doing the entire book as a footnote to save the page count, but footnotes on footnotes
started to get a bit crazy.

 Not all at once.

2 | Chapter1: Introduction



career, and it may as well be now. Any mistake that you make while reading this book
you won’t make again when you’re writing a program on a deadline. And we’re always
here to help you out if something goes wrong, in the form of Appendix A, which has
our answers for each exercise and a little text to go with it, explaining the mistakes you
made and a few you didn’t. Check out the answers when you’re done with the exercises.

Try not to peek at the answer until you’ve given the problem a good try, though. You’ll
learn better if you figure it out rather than read about it. Don’t knock your head re-
peatedly against the wall if you don’t figure out a solution: move onto the next chapter
and don’t worry too much about it.

Even if you never make any mistakes, you should look at the answers when you’re done;
the accompanying text will point out some details of the program that might not be
obvious at first.

If you want additional exercises, check out Learning Perl Student Workbook
(O’Reilly), which adds several exercises for each chapter.

What Do Those Numbers at the Start of the Exercise Mean?

Each exercise has a number in square brackets in front of the exercise text, looking
something like this:

1. [2] What does the number 2 inside square brackets mean when it appears at the
start of an exercise’s text?

That number is our (very rough) estimate of how many minutes you can expect to spend
on that particular exercise. It’s rough, so don’t be too surprised if you’re all done (with
writing, testing, and debugging) in half that time, or not done in twice that long. On
the other hand, if you’re really stuck, we won’t tell anyone that you peeked at Appen-
dix A to see what our answer looked like.

What If I'm a Perl Course Instructor?

If you’re a Perl instructor who has decided to use this as your textbook (as many have
over the years), you should know that we’ve tried to make each set of exercises short
enough that most students could do the whole set in 45 minutes to an hour, with a
little time left over for a break. Some chapters’ exercises should be quicker and some
longer. That’s because once we had written all of those little numbers in square brack-
ets, we discovered that we don’t know how to add (luckily we know how to make
computers do it for us).

As we mentioned, we also have a companion book, Learning Perl Student Workbook,
which has additional exercises for each chapter. If you get the version of the workbook
for the fourth edition, you will have to adjust the chapter order because we added a
chapter and moved another chapter in this edition.

Questions and Answers | 3



What Does “Perl” Stand For?

Perl is sometimes called the “Practical Extraction and Report Language,” although it
has also been called a “Pathologically Eclectic Rubbish Lister,” among other expan-
sions. It’s actually a backronym, not an acronym, since Larry Wall—Perl’s creator—
came up with the name first and the expansion later. That’s why “Perl” isn’t in all caps.
There’s no point in arguing which expansion is correct: Larry endorses both.

You may also see “perl” with a lowercase p in some writing. In general, “Perl” with a
capital P refers to the language and “perl” with a lowercase p refers to the actual inter-
preter that compiles and runs your programs.

Why Did Larry Create Perl?

Larry created Perl in the mid-1980s when he was trying to produce some reports from
a Usenet news—like hierarchy of files for a bug-reporting system, and awk ran out of
steam. Larry, being the lazy programmer that he is,” decided to overkill the problem
with a general-purpose tool that he could use in at least one other place. The result was
Perl version zero.

Why Didn’t Larry Just Use Some Other Language?

There’s no shortage of computer languages, is there? But, at the time, Larry didn’t see
anything that really met his needs. If one of the other languages of today had been
available back then, perhaps Larry would have used one of those. He needed something
with the quickness of coding available in shell or awk programming, and with some of
the power of more advanced tools like grep, cut, sort, and sed,T without having to resort
to a language like C.

Perl 9 tries to fill the gap between low-level programming (such as in C or C++ or
assembly) and high-level programming (such as “shell” programming). Low-level pro-
gramming is usually hard to write and ugly, but fast and unlimited; it’s hard to beat the
speed of a well-written low-level program on a given machine. And there’s not much
you can’t do there. High-level programming, at the other extreme, tends to be slow,
hard, ugly, and limited; there are many things you can’t do at all with the shell or batch
programming if there’s no command on your system that provides the needed func-
tionality. Perl is easy, nearly unlimited, mostly fast, and kind of ugly.

Let’s take another look at those four claims we just made about Perl:

" We're not insulting Larry by saying he’s lazy; laziness is a virtue. The wheelbarrow was invented by someone
who was too lazy to carry things; writing was invented by someone who was too lazy to memorize; Perl was
invented by someone who was too lazy to get the job done without inventing a whole new computer language.

T Don’t worry if you don’t know what these are. All that matters is that they were the programs Larry had in
his Unix toolbox, but they weren’t up to the tasks at hand.

4 | Chapter1: Introduction



First, Perl is easy. As you’ll see, though, this means it’s easy to use. It’s not especially
easy to learn. If you drive a car, you spent many weeks or months learning how, and
then it’s easy to drive. When you’ve been programming Perl for about as many hours
as it took you to learn to drive, Perl will be easy for you.

Perl is nearly unlimited. There are very few things you can’t do with Perl. You wouldn’t
want to write a interrupt-microkernel-level device driver in Perl (even though that’s
been done), but most things that ordinary folks need most of the time are good tasks
for Perl, from quick little one-off programs to major industrial-strength applications.

Perl is mostly fast. That’s because nobody is developing Perl who doesn’t also use it—
so we all want it to be fast. If someone wants to add a feature that would be really cool,
but that would slow down other programs, Larry is almost certain to refuse the new
feature until we find a way to make it quick enough.

Perl is kind of ugly. This is true. The symbol of Perl has become the camel, from the
cover of the venerable Camel book (also known as Programming Perl by Larry Wall,
Tom Christiansen, and Jon Orwant [O’Reilly]), a cousin of this Llama (and her sister,
the Alpaca). Camels are kind of ugly, too. But they work hard, even in tough conditions.
Camels are there to get the job done despite all difficulties, even when they look bad
and smell worse and sometimes spit at you. Perl is a little like that.

Is Perl Easy or Hard?

Perl is easy to use, but sometimes hard to learn. This is a generalization, of course. In
designing Perl, Larry made many tradeoffs. When he’s had the chance to make some-
thing easier for the programmer at the expense of being more difficult for the student,
he’s decided in the programmer’s favor nearly every time. That’s because you’ll learn
Perl only once, but you’ll use it again and again.” Perl has any number of conveniences
that let the programmer save time. For example, most functions will have a default;
frequently, the default is the way that you’ll want to use the function. So you’ll see lines
of Perl code like these:T
while (<>) {

chomp;
print join("\t", (split /:/)[0, 2, 1, 5] ), "\n";

Written out in full, without using Per!’s defaults and shortcuts, that snippet would be
roughly 10 or 12 times longer, so it would take much longer to read and write. It would
be harder to maintain and debug, too, with more variables. If you already know some

" If you’re going to use a programming language for only a few minutes each week or month, you’d prefer one
that is easier to learn, since you’ll have forgotten nearly all of it from one use to the next. Perl is for people
who are programmers for at least 20 minutes per day, and probably most of that in Perl.

T 'We won’t explain it all here, but this example pulls some data from an input file or files in one format and
writes some of it out in another format. All of its features are covered in this book.

What Does “Perl” Stand For? | 5



Perl, and you don’t see the variables in that code, that’s part of the point. They’re all
being used by default. But to have this ease at the programmer’s tasks means paying
the price when you’re learning; you have to learn those defaults and shortcuts.

A good analogy is the proper and frequent use of contractions in English. Sure, “will
not” means the same as “won’t.” But most people say “won’t” rather than “will not”
because it saves time, and because everybody knows it and it makes sense. Similarly,
Perl’s “contractions” abbreviate common “phrases” so that they can be “spoken”
quicker and understood by the maintainer as a single idiom, rather than a series of
unrelated steps.

Once you become familiar with Perl, you may find yourself spending less time trying
to get shell quoting (or C declarations) right, and more time surfing the Web because
Perl is a great tool for leverage. Perl’s concise constructs allow you to create (with
minimal fuss) some very cool one-up solutions or general tools. Also, you can drag
those tools along to your next job because Perl is highly portable and readily available,
so you’ll have even more time to surf.

Perl is a very high-level language. That means that the code is quite dense; a Perl pro-
gram may be around a quarter to three-quarters as long as the corresponding program
in C. This makes Perl faster to write, faster to read, faster to debug, and faster to main-
tain. It doesn’t take much programming before you realize that, when the entire sub-
routine is small enough to fit onscreen all at once, you don’t have to keep scrolling back
and forth to see what’s going on. Also, since the number of bugs in a program is roughly
proportional to the length of the source code” (rather than being proportional to the
program’s functionality), the shorter source in Perl will mean fewer bugs on average.

Like any language, Perl can be “write-only”—it’s possible to write programs that are
impossible to read. But with proper care, you can avoid this common accusation. Yes,
sometimes Perl looks like line noise to the uninitiated, but to the seasoned Perl pro-
grammer, it looks like the notes of a grand symphony. If you follow the guidelines of
this book, your programs should be easy to read and easy to maintain, and they prob-
ably won’t win The Obfuscated Perl Contest.

How Did Perl Get to Be So Popular?

After playing with Perl a bit, adding stuff here and there, Larry released it to the com-
munity of Usenet readers, commonly known as “the Net.” The users on this ragtag
fugitive fleet of systems around the world (tens of thousands of them) gave him feed-
back, asking for ways to do this, that, or the other thing, many of which Larry had never
envisioned his little Perl handling.

But as a result, Perl grew, and grew, and grew. It grew in features. It grew in portability.
What was once a little language available on only a couple of Unix systems now has

* With a sharp jump when any one section of the program exceeds the size of your screen.

6 | Chapter1: Introduction



thousands of pages of free online documentation, dozens of books, several mainstream
Usenet newsgroups (and a dozen newsgroups and mailing lists outside the mainstream)
—with an uncountable number of readers, and implementations on nearly every system
in use today—and don’t forget this Llama book as well.

What's Happening with Perl Now?

Larry Wall doesn’t write the code these days, but he still guides the development and
makes the big decisions. Perl is mostly maintained by a hardy group of people called
the Perl 5 Porters. You can subscribe to their mailing list at perl5-porters@perl.org to
follow their work and discussions.

As we write this (March 2008), there is a lot happening with Perl. For the past couple
of years, many people have been working on the next major version of Perl: Perl 6.

Don’t throw away your Perl 5, which is still the current and stable version. We don’t
expect a stable version of Perl 6 for a while yet. Perl 5 does everything it always did,
and always will. Perl 5 won’t disappear when Perl 6 shows up, and people may end up
using both for several years. The Perl 5 Porters maintain Perl 5 just like they always
have and some of the good ideas from Perl 6 have made it into Perl 5. We’re updating
this book because Perl 5.10 just came out, and it looks like the Perl 5 Porters are already
working on Perl 5.12.

In 2000, Larry first proposed the next major release of Perl as the Perl community’s
rewrite of Perl. In the years that followed, a new interpreter called Parrot came to life,
but not much else happened for the users. In 2005, Autrijus Tang started playing with
Pugs (Perl User Golfing System) as a featherweight implementation of Perl 6 in Haskell.
Developers from the Perl and Haskell sides of the world rushed to help. Parrot, the
virtual machine that will run Perl 6, is coming along nicely now, and that’s where most
of the work is happening. You can see more about Perl 6 at http://perlsix.org and http://
www.pugscode.org. For this book, we’re not going to worry about Perl 6, though.

What's Perl Really Good For?

Perl is good for quick-and-dirty programs that you whip up in three minutes. Perl is
also good for long-and-extensive programs that will take a dozen programmers three
years to finish. Of course, you’ll probably find yourself writing many programs that
take you less than an hour to complete, from the initial plan to the fully tested code.

What Does “Perl” Stand For? | 7


http://perlsix.org
http://www.pugscode.org
http://www.pugscode.org

Perl is optimized for problems that are about 90% working with text and about 10%
everything else. That description seems to fit most programming tasks that pop up
these days. In a perfect world, every programmer could know every language; you’d
always be able to choose the best language for each project. Most of the time, you’d
choose Perl.” Although the Web wasn’t even a twinkle in Tim Berners-Lee’s eye when
Larry created Perl, it was a marriage made on the Net. Some claim that the deployment
of Perl in the early 1990s permitted people to move lots of content into HTML format
very rapidly, and the Web couldn’t exist without content. Of course, Perl is the darling
language for small CGI scripting (programs run by a web server) as well—so much so
that many of the uninformed still make statements like “Isn’t CGI just Per]?” or “Why
would you use Perl other than for CGI?” We find those statements amusing.

What Is Perl Not Good For?

So, if it’s good for so many things, what is Perl not good for? Well, you shouldn’t choose
Perl if you’re trying to make an opaque binary. That’s a program that you could give
away or sell to someone who then can’t see your secret algorithms in the source, and
thus can’t help you maintain or debug your code either. When you give someone your
Perl program, you’ll normally be giving them the source, not an opaque binary.

If you’re wishing for an opaque binary, though, we have to tell you that they don’t exist.
If someone can install and run your program, they can turn it back into source code.
Granted, this won’t necessarily be the same source that you started with, but it will be
some kind of source code. The real way to keep your secret algorithm a secret is, alas,
to apply the proper number of attorneys; they can write a license that says, “You can
do this with the code, but you can’t do that. And if you break our rules, we’ve got the
proper number of attorneys to ensure that you’ll regret it.”

How Can | Get Perl?

You probably already have it. At least, we find Perl wherever we go. It ships with many
systems, and system administrators often install it on every machine at their site. But
if you can’t find it already on your system, you can still get it for free.

Perl is distributed under two different licenses. For most people, because you’ll merely
be using it, either license is as good as the other. If you’ll be modifying Perl, however,
you’ll want to read the licenses more closely because they put some small restrictions
on distributing the modified code. For people who won’t modify Perl, the licenses
essentially say, “It’s free—have fun with it.”

" Don’t just take our word for it, though. If you want to know whether Perl is better than language X, learn
them both and try them both, then see which one you use most often. That’s the one that’s best for you. In
the end, you’ll understand Perl better because of your study of language X, and vice versa, so it will be time
well spent.

8 | Chapter1: Introduction



In fact, it’s not only free, but it runs rather nicely on nearly everything that calls itself
Unix and has a C compiler. You download it, type a command or two, and it starts
configuring and building itself. Or, better yet, you get your system administrator to
type those two commands and install it for you.” Besides Unix and Unix-like systems,
people have also been addicted enough to Perl to port it to other systems, such as Mac
0OS X, VMS, 0S/2, even MS/DOS, and every modern species of Windows—and prob-
ably even more by the time you read this.T Many of these ports of Perl come with an
installation program that’s even easier to use than the process for installing Perl on
Unix. Check for links in the “ports” section on CPAN.

What Is CPAN?

CPAN is the Comprehensive Perl Archive Network, your one-stop shop for Perl. It has
the source code for Perl itself, ready-to-install ports of Perl to all sorts of non-Unix
systems, examples, documentation, extensions to Perl, and archives of messages about
Perl. In short, CPAN is comprehensive.

CPAN is replicated on hundreds of mirror machines around the world; start at http://
search.cpan.org/ or http://kobesearch.cpan.org/ to browse or search the archive. If you
don’t have access to the Net, you might find a CD-ROM or DVD-ROM with all of the
useful parts of CPAN on it; check with your local technical bookstore. Look for a
recently minted archive, though. Because CPAN changes daily, an archive from two
years ago is an antique. Better yet, get a kind friend with Net access to burn you one
with today’s CPAN.

How Can | Get Support for Perl?
Well, you get the complete source—so you get to fix the bugs yourself!

That doesn’t sound so good, does it? But it really is a good thing. Since there’s no
“source code escrow” on Perl, anyone can fix a bug—in fact, by the time you’ve found
and verified a bug, someone else probably already has a fix for it. There are thousands
of people around the world who help maintain Perl.

Now, we’re not saying that Perl has a lot of bugs. But it’s a program, and every program
has at least one bug. To see why it’s so useful to have the source to Perl, imagine that
instead of using Perl, you licensed a programming language called Forehead from a

" If system administrators can’t install software, what good are they? If you have trouble convincing your admin
to install Perl, offer to buy a pizza. We’ve never met a sys admin who could say no to a free pizza, or at least
counter-offer with something just as easy to get.

T And no, as we write this, it won’t fit in your Blackberry—it’s just too darn big, even stripped down. We've
heard rumors that it runs on WinCE though.

¥ It’s nearly always better to compile Perl from the source on Unix systems. Other systems may not have a C
compiler and other tools needed for compilation, so CPAN has binaries for these.

How Can | GetPerl? | 9


http://search.cpan.org/
http://search.cpan.org/
http://kobesearch.cpan.org/

giant, powerful corporation owned by a zillionaire with a bad haircut. (This is all
hypothetical. Everyone knows there’s no such programming language as Forehead.)
Now think of what you can do when you find a bug in Forehead. First, you can report
it; second, you can hope—hope that they fix the bug, hope that they fix it soon, hope
that they won’t charge too much for the new version. You can hope that the new version
doesn’t add new features with new bugs, and hope that the giant company doesn’t get
broken up in an antitrust lawsuit.

But with Perl, you’ve got the source. In the rare and unlikely event that you can’t get a
bug fixed any other way, you can hire a programmer or 10 and get to work. For that
matter, if you buy a new machine that Perl doesn’t yet run on, you can port it yourself.
Or if you need a feature that doesn’t yet exist, well, you know what to do.

Are There Any Other Kinds of Support?

Sure. One of our favorites is the Perl Mongers. This is a worldwide association of Perl
users’ groups; see http://www.pm.org/ for more information. There’s probably a group
near you with an expert or someone who knows an expert. If there’s no group, you can
easily start one.

Of course, for the first line of support, you shouldn’t neglect the documentation. Be-
sides the manpages,” you can also find the documentation on the CPAN (http://
www.cpan.org) as well as other sites, such as http://perldoc.perl.org, which has HTML
and PDF versions of the Perl documentation, or http://faq.perl.org/, which has the latest
version of the perlfaq.

Another authoritative source is the book Programming Perl, commonly called “the
Camel book” because of its cover animal (just as this book is known as “the Llama
book”). The Camel book contains the complete reference information, some tutorial
stuff, and a bunch of miscellaneous information about Perl. There’s also a separate
pocket-size Perl 5 Pocket Reference (O’Reilly) by Johan Vromans that’s convenient to
keep at hand (or in your pocket).

If you need to ask a question of someone, there are newsgroups on Usenet and any
number of mailing lists.T At any hour of the day or night, there’s a Perl expert awake
in some time zone, answering questions on Usenet’s Perl newsgroups—the sun never
sets on the Perl empire. This means that if you ask a question, you’ll often get an answer
within minutes. If you didn’t check the documentation and FAQ first, you’ll get flamed
within minutes.

The official Perl newsgroups on Usenet are located in the comp.lang.perl.* part of the
hierarchy. As of this writing, there are five of them, but they change from time to time.

" The term manpages is a Unix-ism meaning documentation. If you’re not on a Unix system, the manpages for
Perl should be available via your system’s native documentation system.

T Many mailing lists are listed at http://lists.perl.org.

10 | Chapter1: Introduction


http://www.pm.org/
http://www.cpan.org
http://www.cpan.org
http://perldoc.perl.org
http://faq.perl.org/
http://lists.perl.org

You (or whoever is in charge of Perl at your site) should generally subscribe to
comp.lang.perl.announce, which is a low-volume newsgroup just for important
announcements about Perl, including especially any security-related announcements.
Ask your local expert if you need help with Usenet.

Also, afew web communities have sprung up around Perl discussions. One very popular
one, Perl Monastery (http://www.perlmonks.org), has seen quite a bit of participation
from many Perl book and column authors, including at least two of the authors of this
book. You can also check out http://learn.perl.org/ and its associated mailing list,
beginners@perl.org. For Perl news, try http://use.perl.org/. Many well-known Perl pro-
grammers also have blogs that regularly feature Perl-related posts, most of which you
can read through http://planet.perl.org.

If you find yourself needing a support contract for Perl, there are a number of firms that
are willing to charge as much as you’d like. In most cases, these other support avenues
will take care of you for free.

What If | Find a Bug in Perl?

The first thing to do when you find a bug is to check the documentation” again.T Perl
has so many special features and exceptions to rules that you may have discovered a
feature, not a bug. Also, check that you don’t have an older version of Perl; maybe you
found something that’s been fixed in a more recent version.

Once you're 99% certain that you’ve found a real bug, ask around. Ask someone at
work, at your local Perl Mongers’ meeting, or at a Perl conference. Chances are, it’s
still a feature, not a bug.

Once you're 100% certain that you’ve found a real bug, cook up a test case. (What,
you haven’t done so already?) The ideal test case is a tiny self-contained program that
any Perl user could run to see the same (mis)behavior you’ve found. Once you’ve got
a test case that clearly shows the bug, use the perlbug utility (which comes with Perl)
to report the bug. That will normally send email from you to the Perl developers, so
don’t use perlbug until you’ve got your test case ready.

Once you’ve sent off your bug report, if you’ve done everything right, it’s not unusual
to get a response within minutes. Typically, you can apply a simple patch and get right
back to work. Of course, you may (at worst) get no response at all; the Perl developers
are under no obligation to even read your bug reports. But all of us love Perl, so nobody
likes to let a bug escape our notice.

" Even Larry admits to consulting the documentation from time to time.

T Maybe even two or three times. Many times, we’ve gone into the documentation looking to explain a
particular unexpected behavior and found some new little nuance that ends up on a slide or in a column.

How Can| GetPerl? | 11


http://www.perlmonks.org
http://learn.perl.org/
http://use.perl.org/
http://planet.perl.org

How Do | Make a Perl Program?

It’s about time you asked (even if you didn’t). Perl programs are text files; you can create
and edit them with your favorite text editor. (You don’t need any special development
environment, although there are some commercial ones available from various vendors.
We’ve never used any of these enough to recommend them.)

You should generally use a programmers’ text editor, rather than an ordinary editor.
What’s the difference? Well, a programmers’ text editor will let you do things that
programmers need, like indenting or unindenting a block of code, or finding the
matching closing curly brace for a given opening curly brace. On Unix systems, the two
most popular programmers’ editors are emacs and vi (and their variants and clones).
BBEdit and TextMate are good editors for Mac OS X, and a lot of people have said nice
things about UltraEdit and PFE (Programmer’s Favorite Editor) on Windows. The
perlfag2 manpage lists several other editors, too. Ask your local expert about text ed-
itors on your system.

For the simple programs you’ll write for the exercises in this book, none of which should
be more than about 20 or 30 lines of code, any text editor will be fine.

Some beginners try to use a word processor instead of a text editor. We recommend
against this—it’s inconvenient at best and impossible at worst. But we won’t try to stop
you. Be sure to tell the word processor to save your file as “text only”; the word pro-
cessor’s own format will almost certainly be unusable. Most word processors will
probably also tell you that your Perl program is spelled incorrectly and should use fewer
semicolons.

In some cases, you may need to compose the program on one machine, then transfer
it to another to run it. If you do this, be sure that the transfer uses “text” or “ASCII”
mode, and not “binary” mode. This step is needed because of the different text formats
on different machines. Without it, you may get inconsistent results—some versions of
Perl actually abort when they detect a mismatch in the line endings.

A Simple Program

According to the oldest rule in the book, any book about a computer language that has
Unix-like roots has to start with showing the “Hello, world” program. So, here it is in
Perl:

#!/usr/bin/perl
print "Hello, world!\n";

12 | Chapter1: Introduction



Let’s imagine that you’ve typed that into your text editor. (Don’t worry yet about what
the parts mean and how they work. We’ll see about those in a moment.) You can
generally save that program under any name you wish. Perl doesn’t require any special
kind of filename or extension, and it’s better not to use an extension at all.” But some
systems may require an extension like .plx (meaning PerL eXecutable); see your sys-
tem’s release notes for more information.

You may also need to do something so that your system knows it’s an executable pro-
gram (that is, a command). What you’ll do depends upon your system; maybe you
won’t have to do anything more than save the program in a certain place. (Your current
directory will generally be fine.) On Unix systems, you mark a program as being exe-
cutable using the chmod command, perhaps like this:

$ chmod a+x my_program

The dollar sign (and space) at the start of the line represents the shell prompt, which
will probably look different on your system. If you’re used to using chmod with a num-
ber like 755 instead of a symbolic parameter like a+x, that’s fine too, of course. Either
way, it tells the system that this file is now a program.

Now you’re ready to run it:
$ ./my_program

The dot and slash at the start of this command mean to find the program in the current
working directory. That’s not needed in all cases, but you should use it at the start of
each command invocation until you fully understand what it’s doing.T If everything
worked, it’s a miracle. More often, you’ll find that your program has a bug. Edit and
try again—but you don’t need to use chmod each time, as that should “stick” to the
file. (Of course, if the bug is that you didn’t use chmod correctly, you’ll probably get a
“permission denied” message from your shell.)

There’s another way to write this simple program in Perl 5.10, and we might as well
get that out of the way right now. Instead of print, we use say, which does almost the
same thing, but with less typing. Since it’s a new feature and you might not be using
Perl 5.10 yet, we include a use 5.010 statement that tells Perl that we used new features:

#!/usr/bin/perl

use 5.010;

*

Why is it better to have no extension? Imagine that you’ve written a program to calculate bowling scores and
you’ve told all of your friends that it’s called bowling.plx. One day you decide to rewrite it in C. Do you still
call it by the same name, implying that it’s still written in Perl? Or do you tell everyone that it has a new
name? (And don’t call it bowling.c, please!) The answer is that it’s none of their business what language it’s
written in, if they’re merely using it. So, it should have simply been called bowling in the first place.

T In short, it’s preventing your shell from running another program (or shell built-in) of the same name. A
common mistake among beginners is to name their first program test. Many systems already have a program
(or shell built-in) with that name; that’s what the beginners run instead of their program.

How Do | Make a Perl Program? | 13



say "Hello World!";

This program only runs under Perl 5.10. When we introduce Perl 5.10 features in this
book, we’ll explicitly say they are new features in the text and include that use 5.010
statement to remind you. Perl actually thinks about the minor version as a three-digit
number, so make sure that you say use 5.010 and not use 5.10 (which Perl thinks is
5.100, a version we definitely don’t have yet!)

What's Inside That Program?

Like other “free-form” languages, Perl generally lets you use insignificant whitespace
(like spaces, tabs, and newlines) at will to make your program easier to read. Most Perl
programs use a fairly standard format, though, much like most of what we show here.
We strongly encourage you to properly indent your programs, as that makes your pro-
gram easier to read; a good text editor will do most of the work for you. Good comments
also make a program easier to read. In perl, comments run from a pound sign (#) to the
end of the line. (There are no “block comments” in Perl.”) We don’t use many comments
in the programs in this book because the surrounding text explains their workings, but
you should use comments as needed in your own programs.

So another way (a very strange way, it must be said) to write that same “Hello, world”
program might be like this:
#!/usr/bin/perl
print # This is a comment

"Hello, world!\n"
H # Don't write your Perl code like this!

That first line is actually a very special comment. On Unix systems,T if the very first
two characters on the first line of a text file are #!, what follows is the name of the
program that actually executes the rest of the file. In this case, the program is stored in

the file /usr/bin/perl.

This #! line is actually the least portable part of a Perl program because you’ll need to
find out what goes there for each machine. Fortunately, it’s almost always either /usr/
bin/perl or fusr/local/bin/perl. If that’s not it, you’ll have to find where your system is
hiding perl, then use that path. On Unix systems, you might use a shebang line that
finds perl for you:

#!/usr/bin/env perl

If perl is not in any of the directories in your search path, you might have to ask your
local system administrator or somebody using the same system as you.

" But there are a number of ways to fake them. See the FAQ (accessible with perldoc perlfag on most
installations).

T Most modern ones, anyway. The “shebang” mechanism was introduced somewhere in the mid-1980s, and
that’s pretty ancient, even on the extensively long Unix timeline.

14 | Chapter1: Introduction



On non-Unix systems, it’s traditional (and even useful) to make the first line say #!
perl. If nothing else, it tells your maintenance programmer as soon as he gets ready to
fix it that it’s a Perl program.

If that #! line is wrong, you’ll generally get an error from your shell. This may be some-
thing unexpected, like “file not found.” It’s not your program that’s not found, though;
it’s fusr/bin/perl that wasn’t where it should have been. We’d make the message clearer,
but it’s not coming from Perl; it’s the shell that’s complaining. (By the way, you should
be careful to spell it usr and not user—the folks who invented Unix were lazy typists,
so they omitted a lot of letters.)

Another problem you could have is that your system doesn’t support the #! line at all.
In that case, your shell (or whatever your system uses) will probably try to run your
program all by itself, with results that may disappoint or astonish you. If you can’t
figure out what some strange error message is telling you, search for it in the perldiag
manpage.

The “main” program consists of all of the ordinary Perl statements (not including any-
thing in subroutines, which you’ll see later). There’s no “main” routine, as there is in
languages like C or Java. In fact, many programs don’t even have routines (in the form
of subroutines).

There’s also no required variable declaration section, as there is in some other lan-
guages. If you’ve always had to declare your variables, you may be startled or unsettled
by this at first. Butit allows us to write “quick-and-dirty” Perl programs. If your program
is only two lines long, you don’t want to have to use one of those lines just to declare
your variables. If you really want to declare your variables, that’s a good thing; you’ll
see how to do that in Chapter 4.

Most statements are an expression followed by a semicolon. Here’s the one you’ve seen
a few times so far:

print "Hello, world!\n";

As you may have guessed by now, this line prints the message Hello, world!. At the
end of that message is the shortcut \n, which is probably familiar to you if you’ve used
another language like C, C++, or Java; it means a newline character. When that’s prin-
ted after the message, the print position drops down to the start of the next line, al-
lowing the following shell prompt to appear on a line of its own, rather than being
attached to the message. Every line of output should end with a newline character.
We’ll see more about the newline shortcut and other so-called backslash escapes in the
next chapter.

How Do | Compile Perl?

Just run your Perl program. The perl interpreter compiles and then runs your program
in one user step:

How Do | Make a Perl Program? | 15



$ perl my program

When you run your program, Perl’s internal compiler first runs through your entire
source, turning it into internal bytecode, which is an internal data structure representing
the program. Perl’s bytecode engine takes over and actually runs the bytecode. If there’s
a syntax error on line 200, you’ll get that error message before you start running line
2." If you have a loop that runs 5000 times, it’s compiled just once; the actual loop can
then run at top speed. And there’s no runtime penalty for using as many comments
and as much whitespace as you need to make your program easy to understand. You
can even use calculations involving only constants, and the result is a constant com-
puted once as the program is beginning—not each time through a loop.

To be sure, this compilation does take time—it’s inefficient to have a voluminous Perl
program that does one small quick task (out of many potential tasks, say) and then
exits because the runtime for the program will be dwarfed by the compile time. But the
compiler is very fast; normally the compilation will be a tiny percentage of the runtime.

An exception might be if you were writing a program run as a CGI script, where it may
be called hundreds or thousands of times every minute. (This is a very high usage rate.
If it were called a few hundred or thousand times per day, like most programs on the
Web, we probably wouldn’t worry too much about it.) Many of these programs have
very short runtimes, so the issue of recompilation may become significant. If this is an
issue for you, you’ll want to find a way to keep your program in memory between
invocations. The mod_perl extension to the Apache web server (http://perl.apache.org)
or Perl modules like CGI: :Fast can help you.

What if you could save the compiled bytecode to avoid the overhead of compilation?
Or, even better, what if you could turn the bytecode into another language, like C, and
then compile that? Well, both of these things are possible in some cases, but they
probably won’t make most programs any easier to use, maintain, debug, or install, and
they may even make your program slower. Perl 6 should do a lot better in this regard,
although it is too soon to tell (as we write this).

A Whirlwind Tour of Perl

So, you want to see a real Perl program with some meat? (If you don’t, just play along
for now.) Here you are:
#!/usr/bin/perl
@lines = “perldoc -u -f atan2’;
foreach (@lines) {
s/\w<([*>]+)>/\Us1/g;
print;

}

" Unless line two happens to be a compile-time operation, like a BEGIN block or a use invocation.

16 | Chapter1: Introduction


http://perl.apache.org

Now, the first time you see Perl code like this, it can seem pretty strange. (In fact, every
time you see Perl code like this, it can seem pretty strange.) But let’s take it line by line,
and see what this example does. (These explanations are very brief; this is a whirlwind
tour, after all. We’ll see all of this program’s features in more detail during the rest of
this book. You’re not really supposed to understand the whole thing until later.)

The first line is the #! line, as you saw before. You might need to change that line for
your system, as we discussed earlier.

The second line runs an external command, named within backquotes (" ). (The
backquote key is often found next to the number 1 on full-sized American keyboards.
Be sure not to confuse the backquote with the single quote, '.) The command we used
is perldoc -u -f atan2; try typing that at your command line to see what its output looks
like. The perldoc command is used on most systems to read and display the documen-
tation for Perl and its associated extensions and utilities, so it should normally be avail-
able.” This command tells you something about the trigonometric function atan2; we’re
using it here just as an example of an external command whose output we wish to
process.

The output of that command in the backquotes is saved in an array variable called
@lines. The next line of code starts a loop that will process each one of those lines.
Inside the loop, the statements are indented. Although Perl doesn’t require this, good
programmers do.

The first line inside the loop body is the scariest one; it says s/\w<([*>]+)>/\U$1/g;.
Without going into too much detail, we’ll just say that this can change any line that
has a special marker made with angle brackets (< »), and there should be at least one
of those in the output of the perldoc command.

The next line, in a surprise move, prints out each (possibly modified) line. The resulting
output should be similar to what perldoc -u -f atan2 would do on its own, but there
will be a change where any of those markers appear.

Thus, in the span of a few lines, we’ve run another program, saved its output in memory,
updated the memory items, and printed them out. This kind of program is a fairly
common use of Perl, where one type of data is converted to another.

Exercises

Normally, each chapter will end with some exercises, with the answers in Appen-
dix A. But you don’t need to write the programs needed to complete this section—
those are supplied within the chapter text.

" If perldoc is not available, that probably means that your system doesn’t have a command-line interface, and
your Perl can’t run commands (like perldoc) in backquotes or via the piped open, which you’ll see in
Chapter 16. In that case, you should simply skip the exercises that use perldoc.

Exercises | 17



If you can’t get these exercises to work on your machine, double-check your work and
then consult your local expert. Remember that you may need to tweak each program
a little, as described in the text.

1. [7] Type in the “Hello, world” program and get it to work! (You may name it
anything you wish, but a good name might be ex1-1, for simplicity, since it’s ex-
ercise 1 in Chapter 1.)

2. [5] Type the command perldoc -u -f atan2 at a command prompt and note its
output. If you can’t get that to work, find out from a local administrator or the
documentation for your version of Perl about how to invoke perldoc or its equiv-
alent. (You’ll need this for the next exercise anyway.)

3. [6] Type in the second example program (from the previous section) and see what
it prints. (Hint: be careful to type those punctuation marks exactly as shown!) Do
you see how it changed the output of the command?

18 | Chapter1: Introduction



CHAPTER 2
Scalar Data

In English, as in many other spoken languages, you’re used to distinguishing between
singular and plural. As a computer language designed by a human linguist, Perl is sim-
ilar. As a general rule, when Perl has just one of something, that’s a scalar.” A scalar is
the simplest kind of data that Perl manipulates. Most scalars are either a number (like
255 or 3.25€20) or a string of characters (like helloT or the Gettysburg Address).
Although you may think of numbers and strings as very different things, Perl uses them
nearly interchangeably.

A scalar value can be acted upon with operators (like addition or concatenation), gen-
erally yielding a scalar result. A scalar value can be stored into a scalar variable. Scalars
can be read from files and devices, and can be written out as well.

Numbers

Although a scalar is most often either a number or a string, it’s useful to look at numbers
and strings separately for the moment. We’ll cover numbers first, and then move on to
strings.

" This has little to do with the similar term from mathematics or physics in that a scalar is a single thing; there
are no “vectors” in Perl.

T If you have been using other programming languages, you may think of hello as a collection of five characters,
rather than as a single thing. Butin Perl, a string is a single scalar value. Of course, you can access the individual
characters when you need to; you’ll see how to do that in later chapters.

19



All Numbers Have the Same Format Internally

Asyou’ll see in the next few paragraphs, you can specify both integers (whole numbers,
like 255 or 2001) and floating-point numbers (real numbers with decimal points, like
3.14159, or 1.35 x 10%). But internally, Perl computes with double-precision floating-
point values.” This means that there are no integer values internal to Perl—an integer
constant in the program is treated as the equivalent floating-point value.™ You probably
won’t notice the conversion (or care much), but you should stop looking for distinct
integer operations (as opposed to floating-point operations) because there aren’t any. ¥

Floating-Point Literals

Aliteral is the way a value is represented in the source code of the Perl program. A literal
is not the result of a calculation or an I/O operation; it’s data written directly into the
source code.

Perl’s floating-point literals should look familiar to you. Numbers with and without
decimal points are allowed (including an optional plus or minus prefix), as well as
tacking on a power-of-10 indicator (exponential notation) with E notation. For
example:

1.25
255.000
255.0
7.25e45 # 7.25 times 10 to the 45th power (a big number)
-6.5e24 # negative 6.5 times 10 to the 24th
# (a big negative number)
-12e-24 # negative 12 times 10 to the -24th
# (a very small negative number)
-1.2E-23 # another way to say that - the E may be uppercase

Integer Literals

Integer literals are also straightforward, as in:

0
2001
-40

" A double-precision floating-point value is whatever the C compiler that compiled Perl used for a double
declaration. While the size may vary from machine to machine, most modern systems use the IEEE-754
format, which suggests 15 digits of precision and a range of at least 1e-100 to 1e100.

T Well, Perl will sometimes use internal integers in ways that are not visible to the programmer. That is, the
only difference you should generally be able to see is that your program runs faster. And who could complain
about that?

* Okay, there is the integer pragma. But using that is beyond the scope of this book. And yes, some operations
compute an integer from a given floating-point number, as you’ll see later. But that’s not what we’re talking
about here.

20 | Chapter2: ScalarData



255
61298040283768

That last one is a little hard to read. Perl allows underscores for clarity within integer
literals, so you can also write that number like this:

61 298 040 283 768

It’s the same value; it merely looks different to us human beings. You might have
thought that commas should be used for this purpose, but commas are already used
for a more-important purpose in Perl (as you’ll see in the next chapter).

Nondecimal Integer Literals

Like many other programming languages, Perl allows you to specify numbers in other
than base 10 (decimal). Octal (base 8) literals start with a leading 0, hexadecimal (base
16) literals start with a leading 0x, and binary (base 2) literals start with a leading ob.”
The hex digits A through F (or a through f) represent the conventional digit values of
10 through 15. For example:

0377 # 377 octal, same as 255 decimal

oxff # FF hex, also 255 decimal
0b11111111 # also 255 decimal

Although these values look different to us humans, they’re all three the same number
to Perl. It makes no difference to Perl whether you write 0xFF or 255.000, so choose the
representation that makes the most sense to you and your maintenance programmer
(by which we mean the poor chap who gets stuck trying to figure out what you meant
when you wrote your code; most often, this poor chap is you, and you can’t recall why
you did what you did three months ago).

When a nondecimal literal is more than about four characters long, it may be hard to
read. For this reason, Perl allows underscores for clarity within these literals:

0x1377_0B77
0x50_65_72_7C

Numeric Operators

Perl provides the typical ordinary addition, subtraction, multiplication, and division
operators, and so on. For example:

2 +3 # 2 plus 3, or §5
5.1 - 2.4 # 5.1 minus 2.4, or 2.7
3 * 12 # 3 times 12 = 36
14 / 2 # 14 divided by 2, or 7

" The “leading zero” indicator works only for literals—not for automatic string-to-number conversions, which
you’ll see later in this chapter. You can convert a data string that looks like an octal or hex value into a number
with oct( ) or hex( ). Although there’s no bin function for converting binary values, oct( ) can do that for
strings beginning with ob.

Numbers | 21



10.2 / 0.3 # 10.2 divided by 0.3, or 34
10 /3 # always floating-point divide, so 3.3333333...

Perl also supports a modulus operator (%). The value of the expression 10 % 3 is the
remainder when 10 is divided by 3, which is one. Both values are first reduced to their
integer values, so 10.5 % 3.2 is computed as 10 % 3.” Additionally, Perl provides the
FORTRAN:-like exponentiation operator, which many have yearned for in Pascal and
C. The operator is represented by the double asterisk, such as 2**3, which is two to the
third power, or eight.T In addition, there are other numeric operators, which we’ll
introduce as we need them.

Strings

Strings are sequences of characters (like hello). Strings may contain any combination
of any characters.* The shortest possible string has no characters. The longest string
fills all of your available memory (although you wouldn’t be able to do much with that).
This is in accordance with the principle of “no built-in limits” that Perl follows at every
opportunity. Typical strings are printable sequences of letters and digits and punctu-
ation in the ASCII 32 to ASCII 126 range. However, the ability to have any character
in a string means you can create, scan, and manipulate raw binary data as strings—
something with which many other utilities would have great difficulty. For example,
you could update a graphical image or compiled program by reading it into a Perl string,
making the change, and writing the result back out.

Like numbers, strings have a literal representation, which is the way you represent the
string in a Perl program. Literal strings come in two different flavors: single-quoted string
literals and double-quoted string literals.

Single-Quoted String Literals

A single-quoted string literal is a sequence of characters enclosed in single quotes. The
single quotes are not part of the string itselt—they’re just there to let Perl identify the
beginning and the ending of the string. Any character other than a single quote or a
backslash between the quote marks (including newline characters, if the string contin-
ues onto successive lines) stands for itself inside a string. To get a backslash, put two
backslashes in a row, and to get a single quote, put a backslash followed by a single
quote. In other words:

" The result of a modulus operator when a negative number (or two) is involved can vary between Perl
implementations. Beware.

T You can’t normally raise a negative number to a noninteger exponent. Math geeks know that the result would
be a complex number. To make that possible, you’ll need the help of the Math: : Complex module.

* Unlike C or C++, there’s nothing special about the NUL character in Perl because Perl uses length counting,
not a null byte, to determine the end of the string.

22 | Chapter2: ScalarData



'fred' # those four characters: f, r, e, and d
'barney' # those six characters

v # the null string (no characters)

'Don\'t let an apostrophe end this string prematurely!’
"the last character of this string is a backslash: \\'
"hello\n' # hello followed by backslash followed by n
"hello

there' # hello, newline, there (11 characters total)
ALY # single quote followed by backslash

Note that the \n within a single-quoted string is not interpreted as a newline, but as the
two characters backslash and n. Only when the backslash is followed by another back-
slash or a single quote does it have special meaning.

Double-Quoted String Literals

A double-quoted string literal is similar to the strings you may have seen in other lan-
guages. Once again, it’s a sequence of characters, although this time enclosed in double
quotes. But now the backslash takes on its full power to specify certain control char-
acters, or even any character at all through octal and hex representations. Here are some
double-quoted strings:

"barney" # just the same as 'barney'

"hello world\n" # hello world, and a newline

"The last character of this string is a quote mark: \
"coke\tsprite" # coke, a tab, and sprite

nn

Note that the double-quoted literal string "barney" means the same six-character string
to Perl as does the single-quoted literal string 'barney'. It’s like what you saw with
numeric literals, where you saw that 0377 was another way to write 255.0. Perl lets you
write the literal in the way that makes more sense to you. Of course, if you wish to use
a backslash escape (like \n to mean a newline character), you’ll need to use the double
quotes.

The backslash can precede many different characters to mean different things (generally
called a backslash escape). The nearly complete” list of double-quoted string escapes is
given in Table 2-1.

Table 2-1. Double-quoted string backslash escapes

Construct  Meaning

\n Newline
\r Return

\t Tab

\f Form-feed
\b Backspace

" Recent versions of Perl have introduced “Unicode” escapes, which we aren’t going to show you here.

Strings | 23



Construct  Meaning

\a Bell

\e Escape (ASCIl escape character)

\007 Any octal ASCll value (here, 007 = bell)
\x7f Any hex ASClI value (here, 7f = delete)
\cC A “control” character (here, Control-C)
\\ Backslash

\ Double quote

\l Lowercase next letter

\L Lowercase all following letters until \E
\u Uppercase next letter

\U Uppercase all following letters until \E
\Q Quote nonword characters by adding a backslash until \E
\E End \L, \U, 0or \Q

Another feature of double-quoted strings is that they are variable interpolated, meaning
that some variable names within the string are replaced with their current values when
the strings are used. You haven’t formally been introduced to what a variable looks like
yet, so we’ll get back to that later in this chapter.

String Operators

String values can be concatenated with the . operator. (Yes, that’s a single period.) This
does not alter either string, any more than 2+3 alters either 2 or 3. The resulting (longer)
string is then available for further computation or assignment to a variable. For
example:

"hello"” . "world" # same as "helloworld"

"hello" . ' ' . "world" # same as 'hello world'
'hello world' . "\n" # same as "hello world\n"

Note that the concatenation must be explicitly requested with the . operator, unlike
in some other languages where you merely have to stick the two values next to each
other.

A special string operator is the string repetition operator, consisting of the single
lowercase letter x. This operator takes its left operand (a string) and makes as many
concatenated copies of that string as indicated by its right operand (a number). For
example:

"fred" x 3 # is "fredfredfred"
"barney" x (4+1) # is "barney" x 5, or "barneybarneybarneybarneybarney"
5 x 4 # is really "5" x 4, which is "5555"

24 | Chapter2: ScalarData



That last example is worth spelling out slowly. The string repetition operator wants a
string for a left operand, so the number 5 is converted to the string "5" (using rules
described in detail later), giving a one-character string. This new string is then copied
four times, yielding the four-character string 5555. Note that if you had reversed the
order of the operands, as4 x 5, youwould have made five copies of the string 4, yielding
44444. This shows that string repetition is not commutative.

The copy count (the right operand) is first truncated to an integer value (4.8 becomes
4) before being used. A copy count of less than one results in an empty (zero-length)
string.

Automatic Conversion Between Numbers and Strings

For the most part, Perl automatically converts between numbers and strings as needed.
How does it know which is needed? It all depends upon the operator being used on the
scalar value. If an operator expects a number (like + does), Perl will see the value as a
number. If an operator expects a string (like . does), Perl will see the value as a string.
So you don’t need to worry about the difference between numbers and strings; just use
the proper operators, and Perl will make it all work.

When a string value is used where an operator needs a number (say, for multiplication),
Perl automatically converts the string to its equivalent numeric value, as if it had been
entered as a decimal floating-point value.” So "12" * "3" gives the value 36. Trailing
nonnumber stuff and leading whitespace are discarded, so "12fred34" * " 3" will also
give 36 without any complaints. At the extreme end of this, something that isn’t a
number at all converts to zero. This would happen if you used the string "fred" as a
number.

Likewise, if a numeric value is given when a string value is needed (say, for string con-
catenation), the numeric value is expanded into whatever string would have been prin-
ted for that number. For example, if you want to concatenate the string Z followed by
the result of 5 multiplied by 7,% you can say this simply as:

"Z" . 5% 7 # same as "Z" . 35, or "Z35"

In other words, you don’t really have to worry about whether you have a number or a
string (most of the time). Perl performs all the conversions for you.ll

" The trick of using a leading zero to mean a nondecimal value works for literals, but never for automatic
conversion. Use hex( ) or oct( ) to convert those kinds of strings.

T Unless you request warnings, which we’ll discuss in a moment.
¥ You'll see about precedence and parentheses shortly.

I' And if you’re worried about efficiency, don’t be. Perl generally remembers the result of a conversion so that
it’s done only once.

Strings | 25



Perl’s Built-in Warnings

Perl can be told to warn you when it sees something suspicious going on in your pro-
gram. To run your program with warnings turned on, use the -w option on the com-
mand line:

$ perl -w my program

Or, if you always want warnings, you may request them on the #! line:
#!/usr/bin/perl -w

That works even on non-Unix systems, where it’s traditional to write something like
this, since the path to Perl doesn’t generally matter:

#lperl -w

With Perl 5.6 and later, you can turn on warnings with a pragma (but be careful because
it won’t work for people with earlier versions of Perl):"

#!/usr/bin/perl
use warnings;

Now, Perl will warn you if you use '12fred34’ as if it were a number:

Argument "12fred34" isn't numeric

Of course, warnings are generally meant for programmers, not for end users. If the
warning won’t be seen by a programmer, it probably won’t do any good. And warnings
won’t change the behavior of your program, except that now it will emit gripes once
in a while. If you get a warning message you don’t understand, you can get a longer
description of the problem with the diagnostics pragma. The perldiag manpage has
both the short warning and the longer diagnostic description:

#!/usr/bin/perl
use diagnostics;

When you add the use diagnostics pragma to your program, it may seem to you that
your program now pauses for a moment whenever you launch it. That’s because your
program has to do a lot of work (and a chunk of memory to gobble) just in case you
want to read the documentation as soon as Perl notices your mistakes, if any. This leads
to a nifty optimization that can speed up your program’s launch (and memory foot-
print) with no adverse impact on users; once you no longer need to read the documen-
tation about the warning messages produced by your program, remove the use diag
nostics pragma. (It’s even better if you fix your program to avoid causing the warnings.
But it’s sufficient merely to finish reading the output.)

" The warnings pragma actually allows lexical warnings, but you’ll have to see the perllexwarn manpage to find
out about those.

26 | Chapter2: ScalarData



A further optimization can be had by using one of Perl’s command-line options, -M, to
load the pragma only when needed instead of editing the source code each time to
enable and disable diagnostics:
$ perl -Mdiagnostics ./my_program
Argument "12fred34" isn't numeric in addition (+) at ./my _program line 17 (#1)
(W numeric) The indicated string was fed as an argument to

an operator that expected a numeric value instead. If you're
fortunate the message will identify which operator was so unfortunate.

As we run across situations in which Perl will usually be able to warn us about a mistake
in your code, we’ll point them out. But you shouldn’t count on the text or behavior of
any warning staying exactly the same in future Perl releases.

Scalar Variables

A variable is a name for a container that holds one or more values.” The name of the
variable stays the same throughout the program, but the value or values contained in
that variable typically change over and over again throughout the execution of the
program.

A scalar variable holds a single scalar value, as you’d expect. Scalar variable names begin
with a dollar sign followed by what we’ll call a Perl identifier: a letter or underscore,
and then possibly more letters, or digits, or underscores. Another way to think of it is
that it’s made up of alphanumerics and underscores, but can’t start with a digit. Upper-
and lowercase letters are distinct: the variable $Fred is a different variable from $fred.
And all of the letters, digits, and underscores are significant, so:

$a_very long variable that ends_in_1

is different from:

$a_very long variable that ends _in 2
Scalar variables in Perl are always referenced with the leading $&.7 In the shell, you use
$ to get the value, but leave the $ off to assign a new value. In awk or C, you leave the
$ off entirely. If you bounce back and forth a lot, you’ll find yourself typing the wrong

things occasionally. This is expected. (Most Perl programmers would recommend that
you stop writing shell, awk, and C programs, but that may not work for you.)

Choosing Good Variable Names

You should generally select variable names that mean something regarding the purpose
of the variable. For example, $r is probably not very descriptive but $line_lengthis. A

* Asyou’ll see, a scalar variable can hold only one value. But other types of variables, such as arrays and hashes,
may hold many values.

T This is called a “sigil” in Perlspeak.

Scalar Variables | 27



variable used for only two or three lines close together may be called something simple,
like $n, but a variable used throughout a program should probably have a more
descriptive name.

Similarly, properly placed underscores can make a name easier to read and understand,
especially if your maintenance programmer has a different spoken language back-
ground than you have. For example, $super bowl is a better name than $superbowl,
since that last one might look like $superb owl. Does $stopid mean $sto_pid (storing
a process ID of some kind?) or $s_to_pid (converting something to a process ID?) or
$stop_id (the ID for some kind of “stop” object?) or is it just a stopid misspelling?

Most variable names in our Perl programs are all lowercase, like most of the ones you’ll
see in this book. In a few special cases, uppercase letters are used. Using all caps (like
$ARGV) generally indicates that there’s something special about that variable. When a
variable’s name has more than one word, some say $underscores_are_cool, while others
say $giveMeInitialCaps. Just be consistent.

Of course, choosing good or poor names makes no difference to Perl. You could name
your program’s three most-important variables $000000000, $00000000, and
$000000000 and Perl wouldn’t be bothered—but in that case, please, don’t ask us to
maintain your code.

Scalar Assignment

The most common operation on a scalar variable is assignment, which is the way to
give a value to a variable. The Perl assignment operator is the equals sign (much like
other languages), which takes a variable name on the left side, and gives it the value of
the expression on the right. For example:

$fred = 17; # give $fred the value of 17

$barney = 'hello’; # give $barney the five-character string 'hello’
$barney = $fred + 3; # give $barney the current value of $fred plus 3 (20)
$barney = $barney * 2; # $barney is now $barney multiplied by 2 (40)

Notice that last line uses the $barney variable twice: once to get its value (on the right
side of the equals sign), and once to define where to put the computed expression (on
the left side of the equals sign). This is legal, safe, and rather common. In fact, it’s so
common that you can write it using a convenient shorthand, as you’ll see in the next
section.

Binary Assignment Operators

Expressions like $fred = $fred + 5 (where the same variable appears on both sides of
an assignment) occur frequently enough that Perl (like C and Java) has a shorthand for
the operation of altering a variable—the binary assignment operator. Nearly all binary
operators that compute a value have a corresponding binary assignment form with an
appended equals sign. For example, the following two lines are equivalent:

28 | Chapter2: ScalarData



$fred = $fred + 5; # without the binary assignment operator
$fred += 5; # with the binary assignment operator

These are also equivalent:

$barney = $barney * 3;
$barney *= 3;

In each case, the operator alters the existing value of the variable in some way, rather
than simply overwriting the value with the result of some new expression.

Another common assignment operator is made with the string concatenate operator
(. ); this gives us an append operator ( .=):

$str = $str . " "; # append a space to $str
$str .= " "5 # same thing with assignment operator

Nearly all binary operators are valid this way. For example, a raise to the power of
operator is written as **=. So, $fred **= 3 means “raise the number in $fred to the third
power, placing the result back in $fred.”

Output with print

It’s generally a good idea to have your program produce some output; otherwise,
someone may think it didn’t do anything. The print( ) operator makes that possible:
it takes a scalar argument and puts it out without any embellishment onto standard
output. Unless you've done something odd, this will be your terminal display. For
example:

print "hello world\n"; # say hello world, followed by a newline

print "The answer is ";
print 6 * 7;
print ".\n";

You can give print a series of values, separated by commas:

print "The answer is ", 6 * 7, ".\n";

This is really a list, but we haven’t talked about lists yet, so we’ll put that off for later.

Interpolation of Scalar Variables into Strings

When a string literal is double-quoted, it is subject to variable interpolation” (besides
being checked for backslash escapes). This means that any scalar variable™ name in the
string is replaced with its current value. For example:

" This has nothing to do with mathematical or statistical interpolation.

T And some other variable types, but you won’t see those until later.

Output with print | 29



$meal = "brontosaurus steak";
$barney = "fred ate a $meal”; # $barney is now "fred ate a brontosaurus steak"”
$barney = 'fred ate a ' . $meal; # another way to write that

As you see on the last line above, you can get the same results without the double
quotes, but the double-quoted string is often the more convenient way to write it.

If the scalar variable has never been given a value, the empty string is used instead:

$barney = "fred ate a $meat"; # $barney is now "fred ate a"

Don’t bother with interpolating if you have just the one lone variable:

print "$fred"; # unneeded quote marks
print $fred; # better style

There’s nothing really wrong with putting quote marks around a lone variable, but the
other programmers will laugh at you behind your back.™ Variable interpolation is also
known as double-quote interpolation because it happens when double-quote marks (but
not single quotes) are used. It happens for some other strings in Perl, which we’ll men-
tion as we get to them.

To put a real dollar sign into a double-quoted string, precede the dollar sign with a
backslash, which turns off the dollar sign’s special significance:
$fred = 'hello’;

print "The name is \$fred.\n"; # prints a dollar sign
print 'The name is $fred’ . "\n"; # so does this

The variable name will be the longest possible variable name that makes sense at that
part of the string. This can be a problem if you want to follow the replaced value im-
mediately with some constant text that begins with a letter, digit, or underscore.¥ As
Perl scans for variable names, it would consider those characters as additional name
characters, which is not what you want. Perl provides a delimiter for the variable name
in a manner similar to the shell. Simply enclose the name of the variable in a pair of
curly braces. Or, you can end that part of the string and start another part of the string
with a concatenation operator:

$what = "brontosaurus steak";

$n = 3;

print "fred ate $n $whats.\n"; # not the steaks, but the value of $whats
print "fred ate $n ${what}s.\n"; # now uses $what

print "fred ate $n $what" . "s.\n"; # another way to do it

print 'fred ate ' . $n . ' ' . $what . "s.\n"; # an especially difficult way

" This is actually the special undefined value, undef, which you’ll see a little later in this chapter. If warnings
are turned on, Perl will complain about interpolating the undefined value.

T Well, it may interpret the value as a string, rather than a number. In a few rare cases that may be needed, but
nearly always it’s just a waste of typing.

¥ There are some other characters that may be a problem as well. If you need a left square bracket or a left curly
brace just after a scalar variable’s name, precede it with a backslash. You may also do that if the variable’s
name is followed by an apostrophe or a pair of colons, or you could use the curly-brace method described in
the main text.

30 | Chapter2: ScalarData



Operator Precedence and Associativity

Operator precedence determines which operations in a complex group of operations
happen first. For example, in the expression 2+3*4, do you perform the addition first
or the multiplication first? If you did the addition first, you’d get 5*4, or 20. But if you
did the multiplication first (as you were taught in math class), you’d get 2+12, or 14.
Fortunately, Perl chooses the common mathematical definition, performing the mul-
tiplication first. Because of this, you say multiplication has a higher precedence than
addition.

You can override the default precedence order by using parentheses. Anything in pa-
rentheses is completely computed before the operator outside of the parentheses is
applied (just like you learned in math class). So if you really want the addition before
the multiplication, you can say (2+3)*4, yielding 20. Also, if you wanted to demonstrate
that multiplication is performed before addition, you could add a decorative but un-
necessary set of parentheses, as in 2+(3*4).

While precedence is simple for addition and multiplication, you start running into
problems when faced with, say, string concatenation compared with exponentiation.
The proper way to resolve this is to consult the official, accept-no-substitutes Perl op-
erator precedence chart, shown in Table 2-2." (Note that some of the operators have
not yet been described, and in fact, may not even appear anywhere in this book, but
don’t let that scare you from reading about them in the perlop manpage.)

Table 2-2. Associativity and precedence of operators (highest to lowest)

Associativity ~ Operators

left parentheses and arguments to list operators
left ->
++ -- (autoincrement and autodecrement)
right **
right \ I ~ + - (unary operators)
left =~ 1~
left * /% x
left + - . (binary operators)
left <>

named unary operators (-X filetests, rand)

|n

< <= > >= 1t le gt ge (the “unequal” ones)

|n

== l= <=> eq ne cmp (the “equal” ones)

eft

@

" C programmers: Rejoice! The operators that are available in both Perl and C have the same precedence and
associativity in both.

Output with print | 31



Associativity ~ Operators

|eft | »

left &8

left [

right ?: (ternary)

right = += -= ,=(and similar assignment operators)
|eft , =

list operators (rightward)

right not
left and
left or xor

In the chart, any given operator has higher precedence than all of the operators listed
below it, and lower precedence than all of the operators listed above it. Operators at
the same precedence level resolve according to rules of associativity instead.

Just like precedence, associativity resolves the order of operations when two operators
of the same precedence compete for three operands:
4 k* 3 kK g g 4 k% (3 %% 2), or 4 *¥* 9 (right associative)

72 /12 /3 # (72 / 12) / 3, or 6/3, or 2 (left associative)
36 /6 %3 # (36/6)*3, or 18

In the first case, the ** operator has right associativity, so the parentheses are implied
on the right. Comparatively, the * and / operators have left associativity, yielding a set
of implied parentheses on the left.

So should you just memorize the precedence chart? No! Nobody actually does that.
Instead, just use parentheses when you don’t remember the order of operations, or
when you’re too busy to look in the chart. After all, if you can’t remember it without
the parentheses, your maintenance programmer is going to have the same trouble. So
be nice to your maintenance programmer: you may be that person one day.

Comparison Operators

For comparing numbers, Perl has the logical comparison operators that remind you of
algebra: < <= == »>= > 1=, Each of these returns a true or false value. You’ll find out
more about those return values in the next section. Some of these may be different than
you’d use in other languages. For example, == is used for equality, not a single = sign
because that’s used for assignment. And != is used for inequality testing because <> is
used for another purpose in Perl. And you’ll need >= and not => for “greater than or
equal to” because the latter is used for another purpose in Perl. In fact, nearly every

32 | Chapter2: ScalarData



sequence of punctuation is used for something in Perl. So, if you get writer’s block, just
let the cat walk across the keyboard, and debug what results.

For comparing strings, Perl has an equivalent set of string comparison operators, which
look like funny little words: 1t le eq ge gt ne. These compare two strings character
by character to see whether they’re the same, or whether one comes first in standard
string sorting order. (In ASCII, the capital letters come before the lowercase letters, so
beware.)

The comparison operators (for both numbers and strings) are given in Table 2-3.

Table 2-3. Numeric and string comparison operators

Comparison Numeric  String
Equal == eq
Not equal I= ne
Less than < 1t
Greater than > gt
Less than or equal to <= le
Greater than orequalto  >= ge

Here are some example expressions using these comparison operators:

35 1=30+5 # false

35 == 35.0 # true

'35' eq '35.0' # false (comparing as strings)
'fred' 1t 'barney' # false

'fred' 1t 'free' # true

'fred' eq "fred" # true

'fred' eq 'Fred’ # false

gt # true

The if Control Structure

Once you can compare two values, you’ll probably want your program to make deci-
sions based upon that comparison. Like all similar languages, Perl has an if control
structure:
if ($name gt 'fred') {
print "'$name’ comes after 'fred' in sorted order.\n";

}

If you need an alternative choice, the else keyword provides that as well:

if ($name gt 'fred') {

print "'$name' comes after 'fred' in sorted order.\n";
} else {

print "'$name' does not come after 'fred'.\n";

print "Maybe it's the same string, in fact.\n";

The if Control Structure | 33



Those block curly braces are required around the conditional code (unlike C, whether
you know C or not). It’s a good idea to indent the contents of the blocks of code as we
show here; that makes it easier to see what’s going on. If you’re using a programmers’
text editor (as discussed in Chapter 1), it’ll do most of the work for you.

Boolean Values

You may actually use any scalar value as the conditional of the if control structure.
That’s handy if you want to store a true or false value into a variable, like this:
$is_bigger = $name gt 'fred';
if ($is_bigger) { ... }
But how does Perl decide whether a given value is true or false? Perl doesn’t have a

separate Boolean data type, like some languages have. Instead, it uses a few simple
rules:”

¢ If the value is a number, 0 means false; all other numbers mean true.

* Otherwise, if the value is a string, the empty string (' ') means false; all other strings
mean true.

* Otherwise (that is, if the value is another kind of scalar than a number or a string),
convert it to a number or a string and try again.™

There’s one trick hidden in those rules. Because the string '0" is the exact same scalar
value as the number 0, Perl has to treat them both the same. That means that the string
'0" is the only nonempty string that is false.

If you need to get the opposite of any Boolean value, use the unary not operator, !. If
what follows it is a true value, it returns false; if what follows is false, it returns true:

if (! $is_bigger) {
# Do something when $is bigger is not true

}

Getting User Input

At this point, you’re probably wondering how to get a value from the keyboard into a
Perl program. Here’s the simplest way: use the line-input operator, <STDIN>.F

Each time you use <STDIN> in a place where a scalar value is expected, Perl reads the
next complete text line from standard input (up to the first newline), and uses that string

" These aren’t the rules that Perl uses, of course. These are some rules that you can use to get essentially the
same result, though.

T This means that undef (which we’ll see soon) means false, while all references (which are covered in the Alpaca
book) are true.

¥ This is actually a line-input operator working on the filehandle STDIN, but we can’t tell you about that until
we get to filehandles (in Chapter 5).

34 | Chapter2: ScalarData



as the value of <STDIN>. Standard input can mean many things, but unless you do
something uncommon, it means the keyboard of the user who invoked your program
(probably you). If there’s nothing waiting for <STDIN> to read (typically the case, unless
you type ahead a complete line), the Perl program will stop and wait for you to enter
some characters followed by a newline (return).”

The string value of <STDIN> typically has a newline character on the end of it,T so you
could do something like this:
$line = <STDIN>;
if ($line eq "\n") {
print "That was just a blank line!\n";

} else {
print "That line of input was: $line";

But in practice, you don’t often want to keep the newline, so you need the chomp
operator.

The chomp Operator

The first time you read about the chomp operator, it seems terribly overspecialized. It
works on a variable. The variable has to hold a string. And if the string ends in a newline
character, chomp can get rid of the newline. That’s (nearly) all it does. For example:

$text = "a line of text\n"; # Or the same thing from <STDIN>
chomp($text); # Gets rid of the newline character

But it turns out to be so useful, you’ll put it into nearly every program you write. As
you see, it’s the best way to remove a trailing newline from a string in a variable. In fact,
there’s an easier way to use chomp because of a simple rule: any time that you need a
variable in Perl, you can use an assignment instead. First, Perl does the assignment.
Then it uses the variable in whatever way you requested. So the most common use of
chomp looks like this:

chomp($text = <STDIN>); # Read the text, without the newline character

$text = <STDIN>; # Do the same thing...
chomp($text); # ...but in two steps

At first glance, the combined chomp may not seem to be the easy way, especially if it
seems more complex! If you think of it as two operations—read a line, then chomp it—
then it’s more natural to write it as two statements. But if you think of it as one operation

" To be honest, it’s normally your system that waits for the input; Perl waits for your system. Although the
details depend upon your system and its configuration, you can generally correct your mistyping with the
backspace key before you press Return—your system handles that, not Perl itself. If you need more control
over the input, get the Term: :ReadLine module from CPAN.

T The exception is if the standard input stream somehow runs out in the middle of a line. But that’s not a proper
text file, of course!

The chomp Operator | 35



—read just the text, not the newline—it’s more natural to write the one statement. And
since most other Perl programmers are going to write it that way, you may as well get
used to it now.

chomp is actually a function. As a function, it has a return value, which is the number
of characters removed. This number is hardly ever useful:

$food = <STDIN>;
$betty = chomp $food; # gets the value 1 - but you knew that!

Asyou see, you may write chomp with or without the parentheses. This is another general
rule in Perl: except in cases where it changes the meaning to remove them, parentheses
are always optional.

If a line ends with two or more newlines,” chomp removes only one. If there’s no newline,
it does nothing, and returns zero.

The while Control Structure

Like most algorithmic programming languages, Perl has a number of looping struc-
tures.” The while loop repeats a block of code as long as a condition is true:
$count = 0;
while ($count < 10) {
$count += 2;
print "count is now $count\n"; # Gives values 2 4 6 8 10

}

As always in Perl, the truth value here works like the truth value in the if test. Also like
the if control structure, the block curly braces are required. The conditional expression
is evaluated before the first iteration, so the loop may be skipped completely if the
condition is initially false.

The undef Value

What happens if you use a scalar variable before you give it a value? Nothing serious,
and definitely nothing fatal. Variables have the special undef value before they are first
assigned, which is just Perl’s way of saying, “Nothing here to look at—move along,
move along.” If you try to use this “nothing” as a “numeric something,” it acts like
zero. If you try to use it as a “string something,” it acts like the empty string. But
undef is neither a number nor a string; it’s an entirely separate kind of scalar value.

" This situation can’t arise if you’re reading a line at a time, but it certainly can when you have set the input
separator ($/) to something other than newline, or used the read function, or perhaps have glued some strings
together yourself.

T Every programmer eventually creates an infinite loop by accident. If your program keeps running and running,
though, you can generally stop it in the same way you’d stop any other program on your system. Often,
typing Control-C will stop a runaway program; check with your system’s documentation to be sure.

36 | Chapter2: ScalarData



Because undef automatically acts like zero when used as a number, it’s easy to make an
numeric accumulator that starts out empty:
# Add up some odd numbers
$n = 1;
while ($n < 10) {
$sum += $n;
$n += 2; # On to the next odd number

}

print "The total was $sum.\n";

This works properly when $sum was undef before the loop started. The first time through
the loop $n is one, so the first line inside the loop adds one to $sum. That’s like adding
one to a variable that already holds zero (because you’re using undef as if it were a
number). So now it has the value 1. After that, since it’s been initialized, adding works
in the traditional way.

Similarly, you could have a string accumulator that starts out empty:

$string .= "more text\n";

If $string is undef, this will act as if it already held the empty string, putting "more text
\n" into that variable. But if it already holds a string, the new text is simply appended.

Perl programmers frequently use a new variable in this way, letting it act as either zero
or the empty string as needed.

Many operators return undef when the arguments are out of range or don’t make sense.
If you don’t do anything special, you’ll get a zero or a null string without major con-
sequences. In practice, this is hardly a problem. In fact, most programmers will rely
upon this behavior. But you should know that when warnings are turned on, Perl will
typically warn about unusual uses of the undefined value, since that may indicate a
bug. For example, simply copying undef from one variable into another isn’t a problem,
but trying to print it would generally cause a warning.

The defined Function

The line-input operator <STDIN> is one operator that can return undef. Normally, it will
return a line of text, but if there is no more input, such as at end-of-file, it returns
undef to signal this.” To tell whether a value is undef and not the empty string, use the
defined function, which returns false for undef, and true for everything else:

$madonna = <STDIN>;

if ( defined($madonna) ) {

print "The input was $madonna";
} else {

" Normally, there’s no “end-of-file” when the input comes from the keyboard, but input may have been
redirected to come from a file. Or the user may have pressed the key that the system recognizes to indicate

end-of-file.

The defined Function | 37



print "No input available!\n";

}

If you’d like to make your own undef values, you can use the obscurely named undef
operator:

$madonna = undef; # As if it had never been touched

Exercises

See Appendix A for answers to the following exercises:

1.

[5] Write a program that computes the circumference of a circle with a radius of
12.5. Circumference is 21T times the radius (approximately 2 times 3.141592654).
The answer you get should be about 78.5.

. [4] Modify the program from the previous exercise to prompt for and accept a

radius from the person running the program. So, if the user enters 12.5 for the
radius, she should get the same number as in the previous exercise.

. [4] Modify the program from the previous exercise so that, if the user enters a

number less than zero, the reported circumference will be zero, rather than
negative.

. [8] Write a program that prompts for and reads two numbers (on separate lines of

input) and prints out the product of the two numbers multiplied together.

. [8] Write a program that prompts for and reads a string and a number (on separate

lines of input) and prints out the string the number of times indicated by the num-
ber on separate lines. (Hint: use the x operator.) If the user enters “fred” and “3”,
the output should be three lines, each saying “fred”. If the user enters “fred” and
“299792”, there may be a lot of output.

38 | Chapter2: ScalarData



CHAPTER 3
Lists and Arrays

If a scalar is the “singular” in Perl, as we described it at the beginning of Chapter 2, the
“plural” in Perl is represented by lists and arrays.

A list is an ordered collection of scalars. An array is a variable that contains a list. In
Perl, the two terms are often used as if they’re interchangeable. But, to be accurate, the
list is the data, and the array is the variable. You can have a list value that isn’t in an
array, but every array variable holds a list (although that list may be empty). Fig-
ure 3-1 represents a list, whether it’s stored in an array or not.

VALUES
0 35
(%Y
% 1 124
[
28 2 “hello”
S
5= 3 1.7230
S
- 4 “bye\n”

Figure 3-1. A list with five elements

Each element of an array or list is a separate scalar variable with an independent scalar
value. These values are ordered—that is, they have a particular sequence from the first
to the last element. The elements of an array or list are indexed by small integers starting
at zero and counting by ones, so the first element of any array or list is always element
zero.

" Array and list indices always start at zero in Perl, unlike in some other languages. In early Perl, it was possible
to change the starting number of array and list indexing (not for just one array or list, but for all of them at
once!). Larry later realized that this was a misfeature, and its (ab)use is now strongly discouraged. But, if
you’re terminally curious, look up the $[ variable in the perlvar manpage.

39



Since each element is an independent scalar value, a list or array may hold numbers,
strings, undef values, or any mixture of different scalar values. Nevertheless, it’s most
common to have all elements of the same type, such as a list of book titles (all strings)
or a list of cosines (all numbers).

Arrays and lists can have any number of elements. The smallest one has no elements,
while the largest can fill all of the available memory. Once again, this is in keeping with
Perl’s philosophy of “no unnecessary limits.”

Accessing Elements of an Array

If you’ve used arrays in another language, you won’t be surprised to find that Perl
provides a way to subscript an array in order to refer to an element by a numeric index.

The array elements are numbered using sequential integers, beginning at zero and in-
creasing by one for each element, like this:

$fred[0] = "yabba";
$fred[1] = "dabba";
$fred[2] = "doo";

The array name itself (in this case, "fred") is from a completely separate namespace
than scalars use; you could have a scalar variable named $fred in the same program,
and Perl will treat them as different things and wouldn’t be confused.” (Your mainte-
nance programmer might be confused, though, so don’t capriciously make all of your
variable names the same!)

You can use an array element like $fred[2] in every placet where you could use any
other scalar variable like $fred. For example, you can get the value from an array ele-
ment or change that value by the same sorts of expressions we used in the previous
chapter:

print $fred[o];

$fred[2] = "diddley";
$fred[1] .= "whatsis";

Of course, the subscript may be any expression that gives a numeric value. If it’s not
an integer already, it’ll automatically be truncated to the next lower integer:

$number = 2.71828;

print $fred[$number - 1]; # Same as printing $fred[1]
If the subscript indicates an element that would be beyond the end of the array, the

corresponding value will be undef. This is just as with ordinary scalars; if you’ve never
stored a value into the variable, it’s undef:

" The syntax is always unambiguous—tricky perhaps, but unambiguous.

T Well, almost. The most notable exception is that the control variable of a foreach loop, which you’ll see later
in this chapter, must be a simple scalar. And there are others, like the “indirect object slot” and “indirect
filehandle slot” for print and printf.

40 | Chapter3: Listsand Arrays



$blank = $fred[ 142 857 ]; # unused array element gives undef
$blanc = $mel; # unused scalar $mel also gives undef

Special Array Indices

If you store into an array element that is beyond the end of the array, the array is
automatically extended as needed—there’s no limit on its length, as long as there’s
available memory for Perl to use. If Perl needs to create the intervening elements, it
creates them as undef values:

$rocks[0] = 'bedrock'; # One element...

$rocks[1] = 'slate’; # another...

$rocks[2] = 'lava’; # and another...

$rocks[3] = 'crushed rock'; # and another...

$rocks[99] = 'schist'; # now there are 95 undef elements

Sometimes, you need to find out the last element index in an array. For the array of
rocks that we’ve just been using, the last element index is $#rocks.” That’s not the same
as the number of elements, though, because there’s an element number zero:

$end = $#trocks; # 99, which is the last element's index

$number_of rocks = $end + 1; # okay, but you'll see a better way later
$rocks[ $ttrocks ] = 'hard rock'; # the last rock

Using the $#name value as an index, like that last example, happens often enough that
Larry has provided a shortcut: negative array indices count from the end of the array.
But don’t get the idea that these indices “wrap around.” If you’ve got three elements
in the array, the valid negative indices are -1 (the last element), -2 (the middle element),
and -3 (the first element). In the real world, nobody seems to use any of these except
-1, though.

$rocks[ -1 ] "hard rock'; # easier way to do that last example
$dead_rock = $rocks[-100]; # gets 'bedrock’
$rocks[ -200 ] = 'crystal'; # fatal error!

List Literals

An array (the way you represent a list value within your program) is a list of comma-
separated values enclosed in parentheses. These values form the elements of the list.
For example:

(1, 2, 3) # list of three values 1, 2, and 3

(1, 2, 3,) # the same three values (the trailing comma is ignored)
("fred", 4.5) # two values, "fred" and 4.5

() # empty list - zero elements

(1..100) # list of 100 integers

" Blame this ugly syntax on the C shell. Fortunately, you don’t have to look at this very often in the real world.

Special Array Indices | 41



That last one uses the .. range operator, which is seen here for the first time. That
operator creates a list of values by counting from the left scalar up to the right scalar
by ones. For example:

(1..5) # same as (1, 2, 3, 4, 5)

(1.7..5.7) # same thing - both values are truncated

(5..1) # empty list - .. only counts "uphill"

(o, 2..6, 10, 12) # same as (0, 2, 3, 4, 5, 6, 10, 12)

($m..$n) # range determined by current values of $m and $n

(0. .$i#trocks) # the indices of the rocks array from the previous section

As you can see from those last two items, the elements of a list literal are not necessarily
constants—they can be expressions that will be newly evaluated each time the literal
is used. For example:

($m, 17) # two values: the current value of $m, and 17
($m+$0, $p+$q) # two values

Of course, a list may have any scalar values, like this typical list of strings:

("fred", "barney", "betty", "wilma", "dino")

The qw Shortcut

It turns out that lists of simple words (like the previous example) are frequently needed
in Perl programs. The gw shortcut makes it easy to generate them without typing a lot
of extra quote marks:

qw( fred barney betty wilma dino ) # same as above, but less typing

qw stands for “quoted words” or “quoted by whitespace,” depending upon whom you
ask. Either way, Perl treats it like a single-quoted string (so, you can’t use \n or $fred
inside a gw list as you would in a double-quoted string). The whitespace (characters like
spaces, tabs, and newlines) will be discarded, and whatever is left becomes the list of
items. Since whitespace is discarded, here’s another (but unusual) way to write that
same list:

qw(fred

barney betty
wilma dino) # same as above, but pretty strange whitespace

Since qw is a form of quoting, though, you can’t put comments inside a qw list.

The previous two examples have used parentheses as the delimiter, but Perl actually
lets you choose any punctuation character as the delimiter. Here are some of the com-
mon ones:

qw! fred barney betty wilma dino !
qw/ fred barney betty wilma dino /
qw# fred barney betty wilma dino # # like in a comment!
qw( fred barney betty wilma dino )
qw{ fred barney betty wilma dino }
qw[ fred barney betty wilma dino ]
qw< fred barney betty wilma dino >

42 | Chapter3: Listsand Arrays



As those last four show, sometimes the two delimiters can be different. If the opening
delimiter is one of those “left” characters, the corresponding “right” character is the
proper closing delimiter. Other delimiters use the same character for start and finish.

If you need to include the closing delimiter within the string as one of the characters,
you probably picked the wrong delimiter. But even if you can’t or don’t want to change
the delimiter, you can still include the character using the backslash:

qw! yahoo\! google ask msn ! # include yahoo! as an element

As in single-quoted strings, two consecutive backslashes contribute one single back-
slash to the item.

Now, although the Perl motto is There’s More Than One Way To Do It, you may well
wonder why anyone would need all of those different ways! Well, you’ll see later that
there are other kinds of quoting where Perl uses this same rule, and it can come in handy
in many of those. But even here, it could be useful if you were to need a list of Unix
filenames:
qw{
Jusr/dict/words
/home/rootbeer/.ispell english

}

That list would be quite inconvenient to read, write, and maintain if the slash were the
only delimiter available.

List Assignment

In much the same way as scalar values may be assigned to variables, list values may
also be assigned to variables:

($fred, $barney, $dino) = ("flintstone", "rubble", undef);
All three variables in the list on the left get new values, just as if you did three separate

assignments. Since the list is built up before the assignment starts, this makes it easy
to swap two variables’ values in Perl:’

($fred, $barney) = ($barney, $fred); # swap those values
($betty[0], $betty[1]) = ($betty[1], $betty[0]);

" As opposed to in languages like C, in which there is no easy way to do this in general. C programmers use
an auxiliary swap variable to temporarily hold the value, possibly managed via a macro.

List Assignment | 43



But what happens if the number of variables (on the left side of the equals sign) isn’t
the same as the number of values (from the right side)? In a list assignment, extra values
are silently ignored—-Perl figures that if you wanted those values stored somewhere,
you would have told it where to store them. Alternatively, if you have too many vari-
ables, the extras get the value undef:"

($fred, $barney) = qu< flintstone rubble slate granite >; # two ignored items
($wilma, $dino) = quw[flintstone]; # $dino gets undef

Now that you can assign lists, you could build up an array of strings with a line of code
like this:*

($rocks[0], $rocks[1], $rocks[2], $rocks[3]) = qw/talc mica feldspar quartz/;
But when you wish to refer to an entire array, Perl has a simpler notation. Just use the
at sign (@) before the name of the array (and no index brackets after it) to refer to the

entire array at once. You can read this as “all of the,” so @rocks is “all of the rocks.”*
This works on either side of the assignment operator:

@rocks = qw/ bedrock slate lava /;

@tiny = (); # the empty list

@giant = 1..1e5; # a list with 100,000 elements
@stuff = (@giant, undef, @giant); # a list with 200,001 elements
$dino = "granite";

@quarry = (@rocks, "crushed rock", @tiny, $dino);

That last assignment gives @quarry the five-element list (bedrock, slate, lava, crushed
rock, granite), since @tiny contributes zero elements to the list. (In particular, it doesn’t
put an undef item into the list—but you could do that explicitly, as we did with
@stuff earlier.) It’s also worth noting that an array name is replaced by the list it con-
tains. An array doesn’t become an element in the list because these arrays can contain
only scalars, not other arrays.Il The value of an array variable that has not yet been
assigned is (), the empty list. Just as new, empty scalars start out with undef, new,
empty arrays start out with the empty list.

It’s worth noting that when an array is copied to another array, it’s still a list assignment.
The lists are simply stored in arrays. For example:

@copy = @quarry; # copy a list from one array to another

* Well, that’s true for scalar variables. Array variables get an empty list, as you’ll see in a moment.
T 'We’re cheating by assuming that the rocks array is empty before this statement. If there were a value in
$rocks[7], say, this assignment wouldn’t affect that element.

¥ Larry claims that he chose the dollar and at sign because they can be read as $calar (scalar) and @rray (array).
If you don’t get that, or remember it that way, no big deal.

I But in the Alpaca book, we’ll show you a special kind of scalar called a reference. That lets us make what are
informally called “lists of lists,” among other interesting and useful structures. But in that case, you're still
not really storing a list into a list; you’re storing a reference to an array.

44 | Chapter3: Listsand Arrays



The pop and push Operators

You could add new items to the end of an array by simply storing them as elements
with new, larger indices. But real Perl programmers don’t use indices.” So in the next
few sections, we’ll present some ways to work with an array without using indices.

One common use of an array is as a stack of information, where new values are added
to and removed from the right side of the list. (This is the end with the “last” items in
the array, the end with the highest index values.) These operations occur often enough
to have their own special functions.

The pop operator takes the last element off of an array and returns it:

@array = 5..9;

$fred = pop(@array); # $fred gets 9, @array now has (5, 6, 7, 8)
$barney = pop @array; # $barney gets 8, @array now has (5, 6, 7)
pop @array; # @array now has (5, 6). (The 7 is discarded.)

That last example uses pop “in a void context,” which is merely a fancy way of saying
the return value isn’t going anywhere. There’s nothing wrong with using pop in this
way, if that’s what you want.

If the array is empty, pop will leave it alone (since there is no element to remove), and
it will return undef.

You may have noticed that pop may be used with or without parentheses. This is a
general rule in Perl: as long as you don’t change the meaning by removing the paren-
theses, they’re optional.T The converse operation is push, which adds an element (or a
list of elements) to the end of an array:

push(@array, 0); # @array now has (5, 6, 0)

push @array, 8; # @array now has (5, 6, 0, 8)

push @array, 1..10; # @array now has those ten new elements

@others = qw/ 90210 /;

push @array, @others; # @array now has those five new elements (19 total)

Note that the first argument to push or the only argument for pop must be an array
variable—pushing and popping would not make sense on a literal list.

Of course, we're joking. But there’s a kernel of truth in this joke. Indexing into arrays is not using Perl’s
strengths. If you use the pop, push, and similar operators that avoid using indexing, your code will generally
be faster than if you use many indices, as well as avoiding “off-by-one” errors, often called “fencepost” errors.
Occasionally, a beginning Perl programmer (wanting to see how Perl’s speed compares to C’s) will take, say,
a sorting algorithm optimized for C (with many array index operations), rewrite it straightforwardly in Perl
(again, with many index operations) and wonder why it’s so slow. The answer is that using a Stradivarius
violin to pound nails should not be considered a sound construction technique.

T A reader from the educated class will recognize that this is a tautology.

List Assignment | 45



The shift and unshift Operators

The push and pop operators do things to the end of an array (or the right side of an array,
or the portion with the highest subscripts, depending upon how you like to think of
it). Similarly, the unshift and shift operators perform the corresponding actions on
the “start” of the array (or the “left” side of an array, or the portion with the lowest
subscripts). Here are a few examples:

@array = qw#t dino fred barney #;

$m = shift(@array); # $m gets "dino", @array now has ("fred", "barney")
$n = shift @array; # $n gets "fred", @array now has ("barney")

shift @array; # @array is now empty

$o = shift @array; # %0 gets undef, @array is still empty
unshift(@array, 5); # @array now has the one-element list (5)

unshift @array, 4; # @array now has (4, 5)

@others = 1..3;
unshift @array, @others; # @array now has (1, 2, 3, 4, 5)

Analogous to pop, shift returns undef if given an empty array variable.

Interpolating Arrays into Strings

Like scalars, array values may be interpolated into a double-quoted string. Elements of
an array are automatically separated by spaces” upon interpolation:

@rocks = gqw{ flintstone slate rubble };
print "quartz @rocks limestone\n"; # prints five rocks separated by spaces

There are no extra spaces added before or after an interpolated array; if you want those,
you’ll have to put them in yourself:

print "Three rocks are: @rocks.\n";
print "There's nothing in the parens (@empty) here.\n";

If you forget that arrays interpolate like this, you’ll be surprised when you put an email
address into a double-quoted string:

$email = "fred@bedrock.edu"; # WRONG! Tries to interpolate @bedrock
Although we intended to have an email address, Perl sees the array named @bedrock
and tries to interpolate it. Depending on our version of Perl, we’ll probably just get a
warning: T

Possible unintended interpolation of @bedrock

To get around this problem, we either escape the @ in a double-quoted string or use a
single-quoted string:

" Actually, the separator is the value of the special $" variable, which is a space by default.

T Some Perl versions before 5.6 actually made this a fatal error, but it was changed to a warning because that
was too annoying.

46 | Chapter3: Listsand Arrays



$email = "fred\@bedrock.edu"; # Correct
$email = 'fred@bedrock.edu'; # Another way to do that

A single element of an array will be replaced by its value, just as you’d expect:
@fred = gqw(hello dolly);
Sy = 2;
$x = "This is $fred[1]'s place”; # "This is dolly's place"”
$x = "This is $fred[$y-1]'s place"; # same thing

Note that the index expression is evaluated as an ordinary expression, as if it were
outside a string. It is not variable-interpolated first. In other words, if $y contains the
string "2*4", we're still talking about element 1, not element 7, because "2*4" as a
number (the value of $y used in a numeric expression) is just plain 2. If you want to
follow a simple scalar variable with a left square bracket, you need to delimit the square
bracket so that it isn’t considered part of an array reference, as follows:

@fred = gqw(eating rocks is wrong);

$fred = "right"; # we are trying to say "this is right[3]"

print "this is $fred[3]\n"; # prints "wrong" using $fred[3]

print "this is ${fred}[3]\n"; # prints "right" (protected by braces)

print "this is $fred"."[3]\n"; # right again (different string)

print "this is $fred\[3]\n"; # right again (backslash hides it)

The foreach Control Structure

It’s handy to be able to process an entire array or list, so Perl provides a control structure
to do just that. The foreach loop steps through a list of values, executing one iteration
(time through the loop) for each value:

foreach $rock (qw/ bedrock slate lava /) {
print "One rock is $rock.\n"; # Prints names of three rocks

}

The control variable ($rock in that example) takes on a new value from the list for each
iteration. The first time through the loop, it’s "bedrock"; the third time, it’s "lava".

The control variable is not a copy of the list element—it actually is the list element.
That is, if you modify the control variable inside the loop, you’ll be modifying the
element itself, as shown in the following code snippet. This is useful, and supported,
but it would surprise you if you weren’t expecting it.

@rocks = qw/ bedrock slate lava /;

foreach $rock (@rocks) {

$rock = "\t$rock"; # put a tab in front of each element of @rocks
$rock .= "\n"; # put a newline on the end of each

print "The rocks are:\n", @rocks; # Each one is indented, on its own line

" Of course, if you’ve got warnings turned on, Perl is likely to remind you that "2*4" is a pretty funny looking
number.

The foreach Control Structure | 47



What is the value of the control variable after the loop has finished? It’s the same as it
was before the loop started. Perl automatically saves and restores the value of the con-
trol variable of a foreach loop. While the loop is running, there’s no way to access or
alter that saved value. So after the loop is done, the variable has the value it had before
the loop, or undef if it hadn’t had a value. That means that if you want to name your
loop control variable $rock, you don’t have to worry that maybe you’ve already used
that name for another variable.

Perl’s Favorite Default: §

If you omit the control variable from the beginning of the foreach loop, Perl uses its
favorite default variable, $ . This is (mostly) just like any other scalar variable, except
for its unusual name. For example:

foreach (1..10) { # Uses $_ by default
print "I can count to $ !\n";

}

Although this isn’t Perl’s only default by a long shot, it’s Perl’s most common default.
You’ll see many other cases in which Perl will automatically use $ when you don’t tell
it to use some other variable or value, thereby saving the programmer from the heavy
labor of having to think up and type a new variable name. So as not to keep you in
suspense, one of those cases is print, which will print $_ if given no other argument:

$_ = "Yabba dabba doo\n";
print; # prints $_ by default

The reverse Operator

The reverse operator takes a list of values (which may come from an array) and returns
the list in the opposite order. So if you were disappointed that the range operator, ..,
only counts upward, this is the way to fix it:

@fred = 6..10;

@barney = reverse(@fred); # gets 10, 9, 8, 7, 6

@wilma = reverse 6..10; # gets the same thing, without the other array
@fred = reverse @fred; # puts the result back into the original array

The last line is noteworthy because it uses @fred twice. Perl always calculates the value
being assigned (on the right) before it begins the actual assignment.

Remember that reverse returns the reversed list; it doesn’t affect its arguments. If the
return value isn’t assigned anywhere, it’s useless:

reverse @fred; # WRONG - doesn't change @fred
@fred = reverse @fred; # that's better

48 | Chapter3: Listsand Arrays



The sort Operator

The sort operator takes a list of values (which may come from an array) and sorts them
in the internal character ordering. For ASCII strings, that would be ASClIbetical order.
Of course, ASCII is a strange place where all of the capital letters come before all of the
lowercase letters, where the numbers come before the letters, and the punctuation
marks—well, those are here, there, and everywhere. But sorting in ASCII order is just
the default behavior (you’ll see in Chapter 14 how to sort in whatever order you’d like):

@rocks = qw/ bedrock slate rubble granite /;

@sorted = sort(@rocks); # gets bedrock, granite, rubble, slate
@back = reverse sort @rocks; # these go from slate to bedrock
@rocks = sort @rocks; # puts sorted result back into @rocks
@numbers = sort 97..102; # gets 100, 101, 102, 97, 98, 99

As you can see from that last example, sorting numbers as if they were strings may not
give useful results. But, of course, any string that starts with 1 has to sort before any
string that starts with 9, according to the default sorting rules. And like what happened
with reverse, the arguments themselves aren’t affected. If you want to sort an array,
you must store the result back into that array:

sort @rocks; # WRONG, doesn't modify @rocks
@rocks = sort @rocks; # Now the rock collection is in order

Scalar and List Context

Thisis the mostimportant section in this chapter. In fact, it’s the most important section
in the entire book. It wouldn’t be an exaggeration to say that your entire career in using
Perl will depend upon understanding this section. So if you’ve gotten away with skim-
ming the text up to this point, this is where you should really pay attention.

That’s not to say that this section is in any way difficult to understand. It’s actually a
simple idea: a given expression may mean different things depending upon where it
appears. This is nothing new to you, it happens all the time in natural languages. For
example, in English,” suppose someone asked you what the word “read” means. It has
different meanings depending on how it’s used. You can’t identify the meaning until
you know the context.

" If you aren’t a native speaker of English, this analogy may not be obvious to you. But context sensitivity
happens in every spoken language, so you may be able to think of an example in your own language.

T Or maybe they were asking what the word “red” means, if they were speaking rather than writing a book.
It’s ambiguous either way. As Douglas Hofstadter said, no language can express every thought
unambiguously, especially this one.

Scalar and List Context | 49



The context refers to where an expression is found. As Perl is parsing your expressions,
it always expects either a scalar value or a list value.” What Perl expects is called the
context of the expression.T

42 + something # The something must be a scalar
sort something # The something must be a list

Even if something is the exact same sequence of characters, in one case it may give a
single, scalar value, while in the other, it may give a list.¥ Expressions in Perl always
return the appropriate value for their context. For example, take the “name”ll of an
array. In a list context, it gives the list of elements. But in a scalar context, it returns the
number of elements in the array:

@people = qu( fred barney betty );

@sorted = sort @people; # list context: barney, betty, fred
$number = 42 + @people; # scalar context: 42 + 3 gives 45

Even ordinary assignment (to a scalar or a list) causes different contexts:

@list = @people; # a list of three people
$n = @people; # the number 3

But please don’t jump to the conclusion that scalar context always gives the number
of elements that would have been returned in list context. Most list-producing expres-
sionsS return something much more interesting than that.

Using List-Producing Expressions in Scalar Context

There are many expressions that would typically be used to produce a list. If you use
one in a scalar context, what do you get? See what the author of that operation says
about it. Usually, that person is Larry, and usually the documentation gives the whole
story. In fact, a big part of learning Perl is actually learning how Larry thinks.” There-
fore, once you can think like Larry does, you know what Perl should do. But while
you’re learning, you’ll probably need to look into the documentation.

" Unless, of course, Perl is expecting something else entirely. There are other contexts that aren’t covered here.
In fact, nobody knows how many contexts Perl uses; the biggest brains in all of Perl haven’t agreed on an
answer to that yet.

T This is no different than what you’re used to in human languages. If  make a grammatical mistake, you notice
it right away because you expect certain words in places certain. Eventually, you’ll read Perl this way, too,
but at first you have to think about it.

¥ The list may be just one element long, of course. It could also be empty, or it could have any number of
elements.

' Well, the true name of the array @people is just people. The @-sign is just a qualifier.

§ Bur with regard to the point of this section, there’s no difference between a “list-producing” expression and
a “scalar-producing” one; any expression can produce a list or a scalar, depending upon context. So when
we say “list-producing expressions,” we mean expressions that are typically used in a list context and therefore
might surprise you when they’re used unexpectedly in a scalar context (like reverse or @fred).

" This is only fair, since while writing Perl he tried to think like you do to predict what you would want!

50 | Chapter3: Listsand Arrays



Some expressions don’t have a scalar-context value at all. For example, what should
sort return in a scalar context? You wouldn’t need to sort a list to count its elements,
so until someone implements something else, sort in a scalar context always returns
undef.

Another example is reverse. In a list context, it gives a reversed list. In a scalar context,
it returns a reversed string (or reversing the result of concatenating all the strings of a
list, if given one):
@backwards = reverse qw/ yabba dabba doo /;
# gives doo, dabba, yabba

$backwards = reverse qw/ yabba dabba doo /;
# gives oodabbadabbay

At first, it’s not always obvious whether an expression is being used in a scalar or a list
context. But, trust us, it will become second nature for you eventually.

Here are some common contexts to start you off:

$fred = something; # scalar context
@pebbles = something; # list context
($wilma, $betty) = something; # list context
($dino) = something; # still list context!

Don’t be fooled by the one-element list; that last one is a list context, not a scalar one.
The parentheses are significant here, making the fourth of those different than the first.
If you’re assigning to a list (no matter the number of elements), it’s a list context. If
you’re assigning to an array, it’s a list context.

Here are some other expressions you’ve seen, and the contexts they provide. First, some
that provide scalar context to something:

$fred = something;

$fred[3] = something;

123 + something

something + 654

if (something) { ... }

while (something) { ... }
$fred[something] = something;

And here are some that provide a list context:

@fred = something;

($fred, $barney) = something;
($fred) = something;

push @fred, something;

foreach $fred (something) { ... }
sort something

reverse something

print something

Scalar and List Context | 51



Using Scalar-Producing Expressions in List Context

Going this direction is straightforward: if an expression doesn’t normally have a list
value, the scalar value is automatically promoted to make a one-element list:

@fred = 6 * 7; # gets the one-element list (42)
@barney = "hello" . ' ' . "world";

Well, there’s one possible catch:

@wilma = undef; # OOPS! Gets the one-element list (undef)
# which is not the same as this:
@betty = ( ); # A correct way to empty an array

Since undef is a scalar value, assigning undef to an array doesn’t clear the array. The
better way to do that is to assign an empty list.”

Forcing Scalar Context

On occasion, you may need to force scalar context where Perl is expecting a list. In that
case, you can use the fake function scalar. It’s not a true function because it just tells
Perl to provide a scalar context:

@rocks = qw( talc quartz jade obsidian );

print "How many rocks do you have?\n";

print "I have ", @rocks, " rocks!\n"; # WRONG, prints names of rocks
print "I have ", scalar @rocks, " rocks!\n"; # Correct, gives a number

Oddly enough, there’s no corresponding function to force list context. It turns out you
never need it. Trust us on this, too.

<STDIN> in List Context

One previously seen operator that returns a different value in an array context is the
line-input operator, <STDIN>. As described earlier, <STDIN> returns the next line of input
in a scalar context. Now, in list context, this operator returns all of the remaining lines
up to the end of file. Each line is returned as a separate element of the list. For example:

@lines = <STDIN>; # read standard input in list context

When the input is coming from a file, this will read the rest of the file. But how can
there be an end-of-file when the input comes from the keyboard? On Unix and similar
systems, including Linux and Mac OS X, you’ll normally type a Control-DT to indicate
to the system that there’s no more input; the special character itself is never seen by

" Well, in most real-world algorithms, if the variable is declared in the proper scope, you will not need to
explicitly empty it. So this type of assignment is rare in well-written Perl programs. You’ll learn about scoping
in the next chapter.

T This is merely the default; it can be changed by the stty command. But it’s pretty dependable—we’ve never
seen a Unix system where a different character was used to mean end-of-file from the keyboard.

52 | Chapter3: Listsand Arrays



Perl,” even though it may be echoed to the screen. On DOS/Windows systems, use
Control-Z instead.T You’ll need to check the documentation for your system or ask
your local expert if it’s different from these.

If the person running the program types three lines, then presses the proper keys needed
to indicate end-of-file, the array ends up with three elements. Each element will be a
string that ends in a newline, corresponding to the three newline-terminated lines
entered.

Wouldn'’tit be nice if, having read those lines, you could chomp the newlines all at once?
It turns out that if you give chomp an array holding a list of lines, it will remove the
newlines from each item in the list. For example:

@lines = <STDIN>; # Read all the lines
chomp(@lines); # discard all the newline characters

But the more common way to write that is with code similar to what we used earlier:

chomp(@lines = <STDIN>); # Read the lines, not the newlines

Although you’re welcome to write your code either way in the privacy of your own
cubicle, most Perl programmers will expect the second, more compact, notation.

It may be obvious to you (but it’s not obvious to everyone) that once these lines of input
have been read, they can’t be re-read.¥ Once you’ve reached end-of-file, there’s no more
input out there to read.

And what happens if the input is coming from a 400 MB logfile? The line input operator
reads all of the lines, gobbling up lots of memory.!l Perl tries not to limit you in what
you can do, but the other users of your system (not to mention your system adminis-
trator) are likely to object. If the input data is large, you should generally find a way to
deal with it without reading it all into memory at once.

" It’s the OS that “sees” the Control key and reports “end of file” to the application.

T There’s a bug affecting some ports of Perl for DOS/Windows where the first line of output to the terminal
following the use of Control-Z is obscured. On these systems, you can work around this problem by simply
printing a blank line ("\n") after reading the input.

¥ Well, yes, if the input is from a source upon which you can seek, you’ll be able to go back and read again.
But that’s not what we’re talking about here.

I Typically, that’s much more memory than the size of the file, too. That is, a 400 MB file will typically take
up at least a full gigabyte of memory when read into an array. This is because Perl will generally waste memory
to save time. This is a good tradeoff: if you’re short of memory, you can buy more; if you’re short on time,
you’re hosed.

<STDIN> in List Context | 53



Exercises

See Appendix A for answers to the following exercises:

1. [6] Write a program that reads a list of strings on separate lines until end-of-input
and prints out the list in reverse order. If the input comes from the keyboard, you’ll
probably need to signal the end of the input by pressing Control-D on Unix, or
Control-Z on Windows.

2. [12] Write a program that reads a list of numbers (on separate lines) until end-of-
input and then prints for each number the corresponding person’s name from the
list shown below. (Hardcode this list of names into your program. That is, it should
appear in your program’s source code.) For example, if the input numbers were
1, 2, 4, and 2, the output names would be fred, betty, dino, and betty:

fred betty barney dino wilma pebbles bamm-bamm
3. [8] Write a program that reads a list of strings (on separate lines) until end-of-input.
Then it should print the strings in ASClIbetical order. That is, if you enter the
strings fred, barney, wilma, betty, the output should show barney betty fred
wilma. Are all of the strings on one line in the output or on separate lines? Could
you make the output appear in either style?

54 | Chapter3: Listsand Arrays



CHAPTER 4
Subroutines

You’ve already seen and used some of the built-in system functions, such as chomp,
reverse, print, and so on. But, as other languages do, Perl has the ability to make
subroutines, which are user-defined functions.” These let us recycle one chunk of code
many times in one program.T The name of a subroutine is another Perl identifier (letters,
digits, and underscores, but it can’t start with a digit) with a sometimes-optional
ampersand (&) in front. There’s a rule about when you can omit the ampersand and
when you cannot; you’ll see that rule by the end of the chapter. For now, we’ll just use
it every time that it’s not forbidden, which is always a safe rule. We'll tell you every
place where it’s forbidden, of course.

The subroutine name comes from a separate namespace, so Perl won’t be confused if
you have a subroutine called &fred and a scalar called $fred in the same program—
although there’s no reason to do that under normal circumstances.

Defining a Subroutine

To define your own subroutine, use the keyword sub, the name of the subroutine
(without the ampersand), then the indented block of code (in curly braces),¥ which
makes up the body of the subroutine, something like this:

sub marine {
$n += 1; # Global variable $n
print "Hello, sailor number $n!\n";

}

" In Perl, we don’t generally make the distinction that Pascal programmers are used to, between functions,
which return a value, and procedures, which don’t. But a subroutine is always user-defined, while a
function may or may not be. That is, the word function may be used as a synonym for subroutine, or it may
mean one of Perl’s built-in functions. That’s why this chapter is titled Subroutines, because it’s about the ones
you can define, not the built-ins. Mostly.

T The code examples used in this book are recycled from at least 40% post-consumer programming and are at
least 75% recyclable into your programs when properly decomposed.

* Okay, purists, we admit it: the curly braces are part of the block, properly speaking. And Perl doesn’t require
the indentation of the block—but your maintenance programmer will. So please be stylish.

55



Subroutine definitions can be anywhere in your program text, but programmers who
come from a background of languages like C or Pascal like to put them at the start of
the file. Others may prefer to put them at the end of the file so that the main part of the
program appears at the beginning. It’s up to you. In any case, you don’t normally need
any kind of forward declaration.” Subroutine definitions are global; without some
powerful trickiness, there are no private subroutines. If you have two subroutine def-
initions with the same name, the later one overwrites the earlier one.* That’s generally
considered bad form, or the sign of a confused maintenance programmer.

As you may have noticed in the previous example, you may use any global variables
within the subroutine body. In fact, all of the variables you’ve seen so far are globals;
that is, they are accessible from every part of your program. This horrifies linguistic
purists, but the Perl development team formed an angry mob with torches and ran them
out of town years ago. You'll see how to make private variables in “Private Variables
in Subroutines,” later in this chapter.

Invoking a Subroutine

Invoke a subroutine from within any expression by using the subroutine name (with
the ampersand):|

&marine; # says Hello, sailor number 1!

&marine; # says Hello, sailor number 2!

&marine; # says Hello, sailor number 3!
&marine; # says Hello, sailor number 4!

Most often, we refer to the invocation as simply calling the subroutine.

Return Values

The subroutine is always invoked as part of an expression, even if the result of the
expression isn’t being used. When we invoked 8marine earlier, we were calculating the
value of the expression containing the invocation, but then throwing away the result.

Many times, you’ll call a subroutine and actually do something with the result. This
means that you’ll be paying attention to the return value of the subroutine. All Perl
subroutines have a return value—there’s no distinction between those that return val-
ues and those that don’t. Not all Perl subroutines have a useful return value, however.

" Unless your subroutine is being particularly tricky and declares a “prototype,” which dictates how a compiler
will parse and interpret its invocation arguments. This is rare—see the perlsub manpage for more information.

T If you wish to be powerfully tricky, read the Perl documentation about coderefs stored in private (lexical)
variables.

¥ A warnable offense, however.

I' And frequently a pair of parentheses, even if empty. As written, the subroutine inherits the caller’s @_value,
which we’ll be discussing shortly. So don’t stop reading here, or you’ll be writing code with unintended effects!

56 | Chapter4: Subroutines



Since all Perl subroutines can be called in a way that needs a return value, it’d be a bit
wasteful to have to declare special syntax to “return” a particular value for the majority
of the cases. So Larry made it simple. As Perl is chugging along in a subroutine, it is
calculating values as part of its series of actions. Whatever calculation is last performed
in a subroutine is automatically also the return value.

For example, let’s define this subroutine:

sub sum_of fred and barney {
print "Hey, you called the sum_of fred and barney subroutine!\n";
$fred + $barney; # That's the return value

}

The last expression evaluated in the body of this subroutine is the sum of $fred and
$barney, so the sum of $fred and $barney will be the return value. Here’s that in action:

$fred = 3;
$barney = 4;
$wilma = &sum_of fred and_barney; # $wilma gets 7

print "\$wilma is $wilma.\n";
$betty = 3 * &sum_of fred and_barney; # $betty gets 21
print "\$betty is $betty.\n";

That code will produce this output:

Hey, you called the sum_of fred and_barney subroutine!
$wilma is 7.
Hey, you called the sum of fred and barney subroutine!
$betty is 21.

That print statement is just a debugging aid, so that you can see that you called the
subroutine. You’d take it out when the program is finished. But suppose you added
another line to the end of the code, like this:
sub sum_of fred and barney {
print "Hey, you called the sum_of fred and barney subroutine!\n";

$fred + $barney; # That's not really the return value!
print "Hey, I'm returning a value now!\n"; # Oops!

In this example, the last expression evaluated is not the addition; it’s the print state-
ment. Its return value will normally be 1, meaning “printing was successful,”” but that’s
not the return value you actually wanted. So be careful when adding additional code
to a subroutine, since the last expression evaluated will be the return value.

So, what happened to the sum of $fred and $barney in that second (faulty) subroutine?
We didn’t put it anywhere, so Perl discarded it. If you had requested warnings, Perl
(noticing that there’s nothing useful about adding two variables and discarding the
result) would likely warn you about something like “a useless use of addition in a void

" The return value of print is true for a successful operation and false for a failure. You’ll see how to determine
the kind of failure later in the next chapter.

Return Values | 57



context.” The term void context is just a fancy way of saying that the answer isn’t being
stored in a variable or used in any other way.

“The last expression evaluated” really means the last expression evaluated, rather than
the last line of text. For example, this subroutine returns the larger value of $fred or
$barney:
sub larger of_fred_or_barney {
if ($fred > $barney) {
$fred;

} else {
$barney;

}

The last expression evaluated is either $fred or $barney, so the value of one of those
variables becomes the return value. You won’t know whether the return value will be
$fred or $barney until you see what those variables hold at runtime.

These are all rather trivial examples. It gets better when you can pass values that are
different for each invocation into a subroutine instead of relying on global variables. In
fact, that’s coming right up.

Arguments

That subroutine called larger of fred or barney would be much more useful if it
didn’t force you to use the global variables $fred and $barney. If you wanted to get the
larger value from $wilma and $betty, you currently have to copy those into $fred and
$barney before you can use larger of fred or barney. And if you had something useful
in those variables, you’d have to first copy those to other variables, say $save_fred and
$save_barney. And then, when you’re done with the subroutine, you’d have to copy
those back to $fred and $barney again.

Luckily, Perl has subroutine arguments. To pass an argument list to the subroutine,
simply place the list expression, in parentheses, after the subroutine invocation, like
this:

$n = 8max(10, 15); # This sub call has two parameters

The list is passed to the subroutine; that is, it’s made available for the subroutine to use
however it needs to. Of course, you have to store this list somewhere, so Perl automat-
ically stores the parameter list (another name for the argument list) in the special array
variable named @ _for the duration of the subroutine. The subroutine can access this
variable to determine both the number of arguments and the value of those arguments.

This means that the first subroutine parameter is stored in $_[0], the second one is
stored in $_[1], and so on. But—and here’s an important note—these variables have
nothing whatsoever to do with the $_ variable, any more than $dino[3] (an element of
the @dino array) has to do with $dino (a completely distinct scalar variable). It’s just

58 | Chapter4: Subroutines



that the parameter list must be stored into some array variable for the subroutine to
use it, and Perl uses the array @ for this purpose.

Now, you could write the subroutine 8max to look a little like the subroutine
8larger of fred or_barney, but instead of using $fred you could use the first subrou-
tine parameter ($_[0]), and instead of using $barney, you could use the second
subroutine parameter ($_[1]). And so you could end up with code something like this:
sub max {
# Compare this to &larger of fred or barney
if ($_[o] » $_[1]) {
$_[o];
} else {
$_[1];
}
}

Well, as we said, you could do that. But it’s pretty ugly with all of those subscripts, and
hard to read, write, check, and debug, too. You’ll see a better way in a moment.

There’s another problem with this subroutine. The name 8max is nice and short, but it
doesn’t remind us that this subroutine works properly only if called with exactly two
parameters:

$n = &max(10, 15, 27); # Oops!

Excess parameters are ignored—since the subroutine never looks at$_[2], Perl doesn’t
care whether there’s something in there or not. And insufficient parameters are also
ignored—you simply get undef if you look beyond the end of the @ array, as with any
other array. You’ll see how to make a better &max, which works with any number of
parameters, later in this chapter.

The @_variable is private to the subroutine;’ if there’s a global value in @, it is saved
away before the subroutine is invoked and restored to its previous value upon return
from the subroutine.T This also means that a subroutine can pass arguments to another
subroutine without fear of losing its own @ _variable—the nested subroutine invocation
gets its own @ _in the same way. Even if the subroutine calls itself recursively, each
invocation gets a new @ , so @_is always the parameter list for the current subroutine
invocation.

" Unless there’s an ampersand in front of the name for the invocation, and no parentheses (or arguments)
afterward, in which case the @_ array is inherited from the caller’s context. That’s generally a bad idea, but
is occasionally useful.

T You might recognize that this is the same mechanism as used with the control variable of the foreach loop,
as seen in the previous chapter. In either case, the variable’s value is saved and automatically restored by Perl.

Arguments | 59



Private Variables in Subroutines

But if Perl can give us a new @ for every invocation, can’t it give us variables for our
own use as well? Of course it can.

By default, all variables in Perl are global variables; that is, they are accessible from
every part of the program. But you can create private variables called lexical variables
at any time with the my operator:
sub max {
my($m, $n); # new, private variables for this block
($m, $n) = @ ; # give names to the parameters
if ($m > $n) { $m } else { $n }
}
These variables are private (or scoped) to the enclosing block; any other $mor $n is totally
unaffected by these two. And that goes the other way, too—no other code can access
or modify these private variables, by accident or design.” So, you could drop this sub-
routine into any Perl program in the world and know that you wouldn’t mess up that
program’s $m and $n (if any).T It’s also worth pointing out that, inside the if’s blocks,
there’s no semicolon needed after the return value expression. Although Perl allows
you to omit the last semicolon in a block, in practice you omit it only when the code is
so simple that you can write the block in a single line.

The subroutine in the previous example could be made even simpler. Did you notice
that the list ($m, $n) was written twice? That my operator can also be applied to a list
of variables enclosed in parentheses, so it’s customary to combine those first two state-
ments in the subroutine:

my($m, $n) = @_; # Name the subroutine parameters

That one statement creates the private variables and sets their values, so the first
parameter now has the easier-to-use name $m and the second has $n. Nearly every sub-
routine will start with a line much like that one, naming its parameters. When you see
that line, you’ll know that the subroutine expects two scalar parameters, which you’ll
call $m and $n inside the subroutine.

Variable-Length Parameter Lists

In real-world Perl code, subroutines are often given parameter lists of arbitrary length.
That’s because of Perl’s “no unnecessary limits” philosophy that you’ve already seen.
Of course, this is unlike many traditional programming languages, which require every
subroutine to be strictly typed (that is, to permit only a certain, predefined number of

" Advanced programmers will realize that a lexical variable may be accessible by reference from outside its
scope, but never by name.

T Of course, if that program already had a subroutine called 8max, you’d mess that up.

60 | Chapter4: Subroutines



parameters of predefined types). It’s nice that Perl is so flexible, but (as you saw with
the &max routine earlier) that may cause problems when a subroutine is called with a
different number of arguments than the author expected.

Of course, the subroutine can easily check that it has the right number of arguments
by examining the @ array. For example, we could have written 8max to check its argu-
ment list like this:”

sub max {
if (@ 1= 2) {
print "WARNING! &max should get exactly two arguments!\n";
}

# continue as before...

}
That if test uses the “name” of the array in a scalar context to find out the number of

array elements, as you saw in Chapter 3.

But in real-world Perl programming, this sort of check is hardly ever used; it’s better to
make the subroutine adapt to the parameters.

A Better &max Routine

So let’s rewrite 8max to allow for any number of arguments:

$maximum = &max(3, 5, 10, 4, 6);

sub max {
my($max_so _far) = shift @ ; # the first one is the largest yet seen
foreach (@ ) { # look at the remaining arguments

if ($_ > $max_so_far) {  # could this one be bigger yet?
$max_so far = $ ;
}
}

$max_so_far;

}

This code uses what has often been called the “high-water mark” algorithm; after a
flood, when the waters have surged and receded for the last time, the high-water mark
shows where the highest water was seen. In this routine, $max_so_far keeps track of
our high-water mark, the largest number yet seen.

The first line sets $max_so_far to 3 (the first parameter in the example code) by shifting
that parameter from the parameter array, @ . So @ now holds (5, 10, 4, 6), since the

" As soon as you learn about warn in the next chapter, you’ll see that you can use it to turn improper usage like
this into a proper warning. Or perhaps you’ll decide that this case is severe enough to warrant using die,
described in the same chapter.

Variable-Length Parameter Lists | 61



3 has been shifted off. And the largest number yet seen is the only one yet seen: 3, the
first parameter.

Now, the foreach loop will step through the remaining values in the parameter list,
from @ _. The control variable of the loop is, by default, $_. (But, remember, there’s no
automatic connection between @ and $_; it’s just a coincidence that they have such
similar names.) The first time through the loop, $_is 5. The if test sees that it is larger
than $max_so_far, so $max_so_far is set to 5—the new high-water mark.

The next time through the loop, $_is 10. That’s a new record high, so it’s stored in
$max_so_far as well.

The next time, $_is 4. The if test fails, since that’s no larger than $max_so_far, which
is 10, so the body of the if is skipped.

The next time, $_is 6, and the body of the if is skipped again. And that was the last
time through the loop, so the loop is done.

Now, $max_so_far becomes the return value. It’s the largest number we’ve seen, and
we’ve seen them all, so it must be the largest from the list: 10.

Empty Parameter Lists

That improved &max algorithm works fine now, even if there are more than two
parameters. But what happens if there is none?

At first, it may seem too esoteric to worry about. After all, why would someone call
8max without giving it any parameters? But maybe someone wrote a line like this one:

$maximum = &max(@numbers);

And the array @numbers might sometimes be an empty list; perhaps it was read in from
a file that turned out to be empty, for example. So you need to know: what does &max
do in that case?

The first line of the subroutine sets $max_so_far by using shift on @ , the (now empty)
parameter array. That’s harmless; the array is left empty, and shift returns undef to
$max_so_far.

Now the foreach loop wants to iterate over @ _, but since that’s empty, the loop body
is executed zero times.

So in short order, Perl returns the value of $max_so_far—undef—as the return value of
the subroutine. In some sense, that’s the right answer because there is no largest value
in an empty list.

Of course, whoever is calling this subroutine should be aware that the return value may
be undef—or they could simply ensure that the parameter list is never empty.

62 | Chapter4: Subroutines



Notes on Lexical (my) Variables

Those lexical variables can actually be used in any block, not merely in a subroutine’s
block. For example, they can be used in the block of an if, while, or foreach:
foreach (1..10) {
my($square) = $ * $ ; # private variable in this loop
print "$ squared is $square.\n";

}

The variable $square is private to the enclosing block; in this case, that’s the block of
the foreach loop. If there’s no enclosing block, the variable is private to the entire source
file. For now, your programs aren’t going to use more than one source file, so this isn’t
an issue. But the important concept is that the scope of a lexical variable’s name is
limited to the smallest enclosing block or file. The only code that can say $square and
mean that variable is the code inside that textual scope. This is a big win for maintain-
ability—if the wrong value is found in $square, the culprit will be found within a limited
amount of source code. As experienced programmers have learned (often the hard way),
limiting the scope of a variable to a page of code, or even to a few lines of code, really
speeds along the development and testing cycle.

Note also that the my operator doesn’t change the context of an assignment:

my($num) = @ ; # list context, same as ($num) = @ ;
my $num = @ ; # scalar context, same as $num = @_;

In the first one, $num gets the first parameter, as a list-context assignment; in the second,
it gets the number of parameters, in a scalar context. Either line of code could be what
the programmer wanted; you can’t tell from that one line alone, and so Perl can’t warn
you if you use the wrong one. (Of course, you wouldn’t have both of those lines in the
same subroutine, since you can’t have two lexical variables with the same name de-
clared in the same scope; this is just an example.) So, when reading code like this, you
can always tell the context of the assignment by seeing what the context would be
without the word my.

So long as we’re discussing using my() with parentheses, it’s worth remembering that
without the parentheses, my only declares a single lexical variable:”

my $fred, $barney; # WRONG! Fails to declare $barney
my($fred, $barney); # declares both

Of course, you can use my to create new, private arrays as well:T

my @phone_number;

Any new variable will start out empty—undef for scalars, or the empty list for arrays.

" As usual, turning on warnings will generally report this abuse of my, or you can call 1-800-LEXICAL-ABUSE
and report it yourself. Using the strict pragma, which we’ll see in a moment, should forbid it outright.

T Or hashes, which you’ll see in Chapter 6.

Notes on Lexical (my) Variables | 63



The use strict Pragma

Perl tends to be a pretty permissive language.” But maybe you want Perl to impose a
little discipline; that can be arranged with the use strict pragma.

A pragma is a hint to a compiler, telling it something about the code. In this case, the
use strict pragma tells Perl’s internal compiler that it should enforce some good pro-
gramming rules for the rest of this block or source file.

Why would this be important? Well, imagine that you’re composing your program,
and you type a line like this one:

$bamm_bamm = 3; # Perl creates that variable automatically
Now, you keep typing for a while. After that line has scrolled off the top of the screen,
you type this line to increment the variable:

$bammbamm += 1; # Oops!
Since Perl sees a new variable name (the underscore is significant in a variable name),
it creates a new variable and increments that one. If you’re lucky and smart, you’ve
turned on warnings, and Perl can tell you that you used one or both of those global

variable names only a single time in your program. But if you’re merely smart, you used
each name more than once, and Perl won’t be able to warn you.

To tell Perl that you’re ready to be more restrictive, put the use strict pragma at the
top of your program (or in any block or file where you want to enforce these rules):
use strict; # Enforce some good programming rules
Now, among other restrictions,T Perl will insist that you declare every new variable,
usually done with my:#
my $bamm bamm = 3; # New lexical variable
Now if you try to spell it the other way, Perl can complain that you haven’t declared
any variable called $bammbamm, so your mistake is automatically caught at compile time.
$bammbamm += 1; # No such variable: Compile time fatal error

Of course, this applies only to new variables; you don’t need to declare Perl’s built-in
variables, suchas$_and @ .Ilfyouadd use strict toa program that is already written,

" Bet you hadn’t noticed.

T To learn about the other restrictions, see the documentation for strict. The documentation for any pragma
is filed under that pragma’s name, so the command perldoc strict (or your system’s native documentation
method) should find it for you. In brief, the other restrictions require that strings be quoted in most cases,
and that references be true (hard) references. Neither of these restrictions should affect beginners in Perl.

¥ There are some other ways to declare variables, too.

I' And, at least in some circumstances, you don’t want to declare $a and $b because they’re used internally by
sort. So, if you're testing this feature, use other variable names than those two. The fact that use strict
doesn’t forbid these two is one of the most frequently reported nonbugs in Perl.

64 | Chapter4: Subroutines



you’ll generally get a flood of warning messages, so it’s better to use it from the start,
when it’s needed.

Most people recommend that programs that are longer than a screenful of text generally
need use strict. And we agree.

From here on, most (but not all) of our examples will be written as if use strict isin
effect, even where we don’t show it. That is, we’ll generally declare variables with my
where it’s appropriate. But, even though we don’t always do so here, we encourage you
to include use strict in your programs as often as possible.

The return Operator

The return operator immediately returns a value from a subroutine:

my @names = qw/ fred barney betty dino wilma pebbles bamm-bamm /;
my $result = &which_element_is("dino", @names);

sub which_element_is {
my($what, @array) = @ ;
foreach (0..$#tarray) { # indices of @array's elements
if ($what eq $array[$_]) {
return $_; # return early once found

}

-1; # element not found (return is optional here)

}

This subroutine is being used to find the index of "dino" in the array @names. First, the
my declaration names the parameters: there’s $what, which is what we’re searching for,
and @array, an array of values to search within. That’s a copy of the array @names, in
this case. The foreach loop steps through the indices of @array (the first index is 0, and
the last one is $#tarray, as you saw in Chapter 3).

Each time through the foreach loop, we check to see whether the string in $what is
equal’ to the element from @array at the current index. If it’s equal, we return that index
at once. This is the most common use of the keyword return in Perl—to return a value
immediately, without executing the rest of the subroutine.

But what if we never found that element? In that case, the author of this subroutine has
chosen to return -1 as a “value not found” code. It would be more Perlish, perhaps, to
return undef in that case, but this programmer used -1. Saying return -1 on that last
line would be correct, but the word return isn’t really needed.

Some programmers like to use return every time there’s a return value, as a means of
documenting that it is a return value. For example, you might use return when the
return value is not the last line of the subroutine, such as in the subroutine

" You noticed that we used the string equality test, eq, instead of the numeric equality test, ==, didn’t you?

The return Operator | 65



8larger_of fred or barney, earlier in this chapter. It’s not really needed, but it doesn’t
hurt anything. However, many Perl programmers believe it’s just an extra seven char-
acters of typing.

Omitting the Ampersand

As promised, now we’ll tell you the rule for when a subroutine call can omit the
ampersand. If the compiler sees the subroutine definition before invocation, or if Perl
can tell from the syntax that it’s a subroutine call, the subroutine can be called without
an ampersand, just like a built-in function. (But there’s a catch hidden in that rule, as
you’ll see in a moment.)

This means that if Perl can see that it’s a subroutine call without the ampersand, from
the syntax alone, that’s generally fine. That is, if you've got the parameter list in
parentheses, it’s got to be a function” call:

my @cards = shuffle(@deck of cards); # No & necessary on &shuffle

Or if Perl’s internal compiler has already seen the subroutine definition, that’s generally
okay, too; in that case, you can even omit the parentheses around the argument list:

sub division {
$_[o] / $_[1]; # Divide first param by second

my $quotient = division 355, 113; # Uses &division

This works because of the rule that parentheses may always be omitted, except when
doing so would change the meaning of the code.

But don’t put that subroutine declaration after the invocation, or the compiler won’t
know what the attempted invocation of division is all about. The compiler has to see
the definition before the invocation in order to use the subroutine call as if it were a
built-in.

That’s not the catch, though. The catch is this: if the subroutine has the same name as
a Perl built-in, you must use the ampersand to call it. With an ampersand, you’re sure
to call the subroutine; without it, you can get the subroutine only if there’s no built-in
with the same name:
sub chomp {
print "Munch, munch!\n";

}

&chomp; # That ampersand is not optionall

Without the ampersand, we’d be calling the built-in chomp, even though we’ve defined
the subroutine &chomp. So, the real rule to use is this one: until you know the names of
all of Perl’s built-in functions, always use the ampersand on function calls. That means

" Inthis case, the function is the subroutine &shuffle. But it may be a built-in function, as you’ll see in a moment.

66 | Chapter4: Subroutines



that you will use it for your first hundred programs or so. But when you see someone
else has omitted the ampersand in his own code, it’s not necessarily a mistake; perhaps
he simply knows that Perl has no built-in with that name.” When programmers plan to
call their subroutines as if they were calling Perl’s built-ins, usually when writing mod-
ules, they often use prototypes to tell Perl about the parameters to expect. Making
modules is an advanced topic, though; when you’re ready for that, see Perl’s docu-
mentation (in particular, the perlmod and perlsub documents) for more information
about subroutine prototypes and making modules.

Nonscalar Return Values

A scalar isn’t the only kind of return value a subroutine may have. If you call your
subroutine in a list context, it can return a list of values.

Suppose you wanted to get a range of numbers (as from the range operator, ..), except
that you want to be able to count down as well as up. The range operator only counts
upward, but that’s easily fixed:

sub list from fred to_barney {
if ($fred < $barney) {
# Count upwards from $fred to $barney
$fred..$barney;
} else {
# Count downwards from $fred to $barney
reverse $barney..$fred;

}
}
$fred = 11;
$barney = 6;

@c = &list_from fred to_barney; # @c gets (11, 10, 9, 8, 7, 6)

In this case, the range operator gives us the list from 6 to 11, then reverse reverses the
list so that it goes from $fred (11) to $barney (6), just as we wanted.

The least you can return is nothing at all. A return with no arguments will return
undef in a scalar context or an empty list in a list context. This can be useful for an error
return from a subroutine, signaling to the caller that a more meaningful return value is
unavailable.

" Then again, maybe it is a mistake; you can search the perlfunc and perlop manpages for that name, though,
to see whether it’s the same as a built-in. And Perl will usually be able to warn you about this when you have
warnings turned on.

T You can detect whether a subroutine is being evaluated in a scalar or list context using the wantarray function,
which lets you easily write subroutines with specific list or scalar context values.

Nonscalar Return Values | 67



Persistent, Private Variables

With my we were able to make variables private to a subroutine, although each time we
called the subroutine we had to define them again. With state, we can still have private
variables scoped to the subroutine but Perl will keep their values between calls.

Going back to our first example in this chapter, we had a subroutine named marine that
incremented a variable:
sub marine {
$n += 1; # Global variable $n
print "Hello, sailor number $n!\n";

}

Now that we know about strict, we add that to our program and realize that our use
of the global variable $n isn’t allowed anymore. We can’t make $n a lexical variable
with my because it wouldn’t retain its value.

Declaring our variable with state tells Perl to retain the variable’s value between calls
to the subroutine and to make the variable private to the subroutine:

use 5.010;

sub marine {
state $n = 0; # private, persistent variable $n
$n += 1;
print "Hello, sailor number $n!\n";

}

Now we can get the same output while being strict-clean and not using a global var-
iable. The first time we call the subroutine, Perl declares and initializes $n. Perl ignores
the statement on all subsequent calls. Between calls, Perl retains the value of $n for the
next call to the subroutine.

We can make any variable type a state variable; it’s not just for scalars. Here’s a sub-
routine that remembers its arguments and provides a running sum by using a state
array:

use 5.010;

running_sum( 5, 6 );
running_sum( 1..3 );
running_sum( 4 );

sub running sum {
state $sum = 0;
state @numbers;

foreach my $number ( @_ ) {
push @numbers, $number;
$sum += $number;

}

68 | Chapter4: Subroutines



say "The sum of (@numbers) is $sum";

This outputs a new sum each time we call it, adding the new arguments to all of the
previous ones:
The sum of (5 6) is 11

The sum of (5 6 1 2 3) is 17
The sum of (5 6 1 2 3 4) is 21

There’s a slight restriction on arrays and hashes as state variables, though. We can’t
initialize them in list context as of Perl 5.10:

state @array = qw(a b c); # Error!

This gives us an error that hints that we might be able to do it in a future version of Perl:

Initialization of state variables in list context currently forbidden ...

Exercises

See Appendix A for answers to the following exercises:

1. [12] Write a subroutine, named total, that returns the total of a list of numbers.
(Hint: the subroutine should not perform any 1I/O; it should simply process its
parameters and return a value to its caller.) Try it out in this sample program, which
merely exercises the subroutine to see that it works. The first group of numbers
should add up to 25.

my @fred = qw{ 1357 9 };

my $fred total = total(@fred);
print "The total of \@fred is $fred total.\n";

"

print "Enter some numbers on separate lines: ";
my $user total = total(<STDIN>);
print "The total of those numbers is $user total.\n";
2. [5] Using the subroutine from the previous problem, make a program to calculate
the sum of the numbers from 1 to 1000.

3. [18] Extra credit exercise: write a subroutine, called 8above average, that takes a
list of numbers and returns the ones that are above the average (mean). (Hint: make
another subroutine that calculates the average by dividing the total by the number
of items.) Try your subroutine in this test program.

my @fred = above average(1..10);

print "\@fred is @fred\n";

print "(Should be 6 7 8 9 10)\n";

my @barney = above average(100, 1..10);
print "\@barney is @barney\n";

print "(Should be just 100)\n";

4. [10] Write a subroutine, named greet, that welcomes the person you name by
telling them the name of the last person it greeted:

Exercises | 69



greet( "Fred" );
greet( "Barney" );

This sequence of statements should print:

Hi Fred! You are the first one here!
Hi Barney! Fred is also here!

5. [10] Modify the previous program to tell each new person the names of all of the
people it has previously greeted:

greet( "Fred" );

greet( "Barney" );
greet( "Wilma" );
greet( "Betty" );

This sequence of statements should print:

Hi Fred! You are the first one here!
Hi Barney! I've seen: Fred

Hi Wilma! I've seen: Fred Barney

Hi Betty! I've seen: Fred Barney Wilma

70 | Chapter4: Subroutines



CHAPTER 5
Input and Output

We’ve already seen how to do some input/output (I/O) in order to make some of the
earlier exercises possible. But now we’ll learn more about those operations by covering
the 80% of the I/O you’ll need for most programs. If you're already familiar with the
workings of standard input, output, and error streams, you’re ahead of the game. If
not, we’ll get you caught up by the end of this chapter. For now, just think of “standard
input” as being “the keyboard,” and “standard output” as being “the display screen.”

Input from Standard Input

Reading from the standard input stream is easy. We’ve been doing it already with the
<STDIN> operator.” Evaluating this operator in a scalar context gives you the next line
of input:

$1line = <STDIN>; # read the next line
chomp($1line); # and chomp it
chomp($line = <STDIN>); # same thing, more idiomatically

Since the line-input operator will return undef when you reach end-of-file, this is handy
for dropping out of loops:
while (defined($line = <STDIN>)) {
print "I saw $line";

}

" What we’re calling the line-input operator here, <STDIN>, is actually a line-input operator (represented by the
angle brackets) around a filehandle. You’ll learn about filehandles later in this chapter.

n



There’s alot going on in that first line: we’re reading the input into a variable, checking
that it’s defined, and if it is (meaning that we haven’t reached the end of the input)
we’re running the body of the while loop. So, inside the body of the loop, we’ll see each
line, one after another, in $1line.” This is something you’ll want to do fairly often, so
naturally Perl has a shortcut for it. The shortcut looks like this:
while (<STDIN>) {
print "I saw $_";

}

Now, to make this shortcut, Larry chose some useless syntax. That is, this is literally
saying, “Read a line of input, and see if it’s true. (Normally it is.) And if it is true, enter
the while loop, but throw away that line of input!” Larry knew that it was a useless thing
to do; nobody should ever need to do that in a real Perl program. So, Larry took this
useless syntax and made it useful.

What this is actually saying is that Perl should do the same thing as we saw in our earlier
loop: it tells Perl to read the input into a variable, and (as long as the result was defined,
sowe haven’treached end-of-file) then enter thewhile loop. However, instead of storing
the input into $line, Perl will use its favorite default variable, $ , just as if you had
written this:
while (defined($_ = <STDIN>)) {
print "I saw $_";

}

Now, before we go any further, we must be very clear about something: this shortcut
works only if you write it just as we did. If you put a line-input operator anywhere else
(in particular, as a statement all on its own), it won’t read a line into $_ by default. It
works only if there’s nothing but the line-input operator in the conditional of a while
loop.T If you put anything else into the conditional expression, this shortcut won’t

apply.
There’s otherwise no connection between the line-input operator (<STDIN>) and Perl’s

favorite default variable ($_). In this case, though, it just happens that the input is being
stored in that variable.

On the other hand, evaluating the line-input operator in a list context gives you all of
the (remaining) lines of input as a list—each element of the list is one line:
foreach (<STDIN>) {
print "I saw $ ";

}

" You probably noticed that we never chomped that input. In this kind of a loop, you can’t really put chomp
into the conditional expression, so it’s often the first item in the loop body, when it’s needed. We’ll see
examples of that in the next section.

T 'Well, okay, the conditional of a for loop is just a while conditional in disguise, so it works there, too.

72 | Chapter5: Inputand Output



Once again, there’s no connection between the line-input operator and Perl’s favorite
default variable. In this case, though, the default control variable for foreachis $_. So
in this loop, we’ll see each line of input in $_, one after the other.

That may sound familiar, and for good reason: that’s the same behavior the while loop
would do. Isn’t it?

The difference is under the hood. In the while loop, Perl reads a line of input, puts it
into a variable, and runs the body of the loop. Then, it goes back to find another line
of input. But in the foreach loop, the line-input operator is being used in a list context
(since foreach needs a list to iterate through). So it has to read all of the input before
the loop can start running. That difference will become apparent when the input is
coming from your 400 MB web server logfile! It’s generally best to use code like the
while loop’s shortcut, which will process input a line at a time, whenever possible.

Input from the Diamond Operator

Another way to read input is with the diamond” operator: <>. This is useful for making
programs that work like standard UnixT utilities, with respect to the invocation argu-
ments (which we’ll see in a moment). If you want to make a Perl program that can be
used like the utilities cat, sed, awk, sort, grep, Ipr, and many others, the diamond op-
erator will be your friend. If you want to make anything else, the diamond operator
probably won’t help.

The invocation arguments to a program are normally a number of “words” on the com-
mand line after the name of the program.* In this case, they give the names of the files
your program will process in sequence:

$ ./my_program fred barney betty

That command means to run the command my_program (which will be found in the
current directory), and that the program should process file fred, followed by file bar-
ney, followed by file betty.

" The diamond operator was named by Larry’s daughter, Heidi, when Randal went over to Larry’s house one
day to show off the new training materials he’d been writing and complained that there was no spoken name
for “that thing.” Larry didn’t have a name for it, either. Heidi (eight years old at the time) quickly chimed in,
“That’s a diamond, Daddy.” So the name stuck. Thanks, Heidi!

T But not just on Unix systems. Many other systems have adopted this way of using invocation arguments.

¥ Whenever a program is started, it has a list of zero or more invocation arguments, supplied by whatever
program is starting it. Often this is the shell, which makes up the list depending upon what you type on the
command line. But we’ll see later that you can invoke a program with pretty much any strings as the invocation
arguments. Because they often come from the shell’s command line, they are sometimes called “command-
line arguments” as well.

Input from the Diamond Operator | 73



If you give no invocation arguments, the program should process the standard input
stream. Or, as a special case, if you give just a hyphen as one of the arguments, that
means standard input as well.” So, if the invocation arguments had been fred -
betty, that would have meant that the program should process file fred, followed by
the standard input stream, followed by file betty.

The benefit of making your programs work like this is that you may choose where the
program gets its input at runtime; for example, you won’t have to rewrite the program
to use it in a pipeline (which we’ll discuss more later). Larry put this feature into Perl
because he wanted to make it easy for you to write your own programs that work like
standard Unix utilities—even on non-Unix machines. Actually, he did it so he could
make his own programs work like standard Unix utilities; since some vendors’ utilities
don’t work just like others’, Larry could make his own utilities, deploy them on a
number of machines, and know that they’d all have the same behavior. Of course, this
meant porting Perl to every machine he could find.

The diamond operator is actually a special kind of line-input operator. But instead of
getting the input from the keyboard, it comes from the user’s choice of input:T
while (defined($line = <>)) {
chomp($line);
print "It was $line that I saw!\n";

}

So, if we run this program with the invocation arguments fred, barney, and betty, it
will say something like: “It was [a line from file fred] that I saw!”, “It was [another line
from file fred] that I saw!”, on and on until it reaches the end of file fred. Then, it will
automatically go on to file barney, printing out one line after another, and then on
through file betty. Note that there’s no break when we go from one file to another;
when you use the diamond, it’s as if the input files have been merged into one big
file.¥ The diamond will return undef (and we’ll drop out of the while loop) only at the
end of all of the input.

In fact, since this is just a special kind of line-input operator, we may use the same
shortcut we saw earlier to read the input into $_ by default:
while (<>) {
chomp;

print "It was $_that I saw!\n";
}

" Here’s a possibly unfamiliar Unix fact: most of those standard utilities, like cat and sed, use this same
convention, where a hyphen stands for the standard input stream.

T Which may or may not include getting input from the keyboard.

F If it matters to you, or even if it doesn’t, the current file’s name is kept in Perl’s special variable $ARGV. This
name may be "-" instead of a real filename if the input is coming from the standard input stream, though.

74 | Chapter5: Inputand Output



This works like the loop above, but with less typing. And you may have noticed that
we’re using the default for chomp; without an argument, chomp will work on $_. Every
little bit of saved typing helps!

Since the diamond operator is generally being used to process all of the input, it’s
typically a mistake to use it in more than one place in your program. If you find yourself
putting two diamonds into the same program, especially using the second diamond
inside the while loop that is reading from the first one, it’s almost certainly not going
to do what you would like.” In our experience, when beginners put a second diamond
into a program, they meant to use $_ instead. Remember, the diamond operator
reads the input, but the input itself is (generally, by default) found in $_.

If the diamond operator can’t open one of the files and read from it, it’ll print an
allegedly helpful diagnostic message, such as:

can't open wimla: No such file or directory

The diamond operator will then go on to the next file automatically, much like what
you’d expect from cat or another standard utility.

The Invocation Arguments

Technically, the invocation diamond operator isn’t literally looking at the invocation
arguments—it works from the @ARGV array. This array is a special array that is preset
by the Perl interpreter as the list of the invocation arguments. In other words, this is
just like any other array, (except for its funny, all-caps name), but when your program
starts, @ARGV is already stuffed full of the list of invocation arguments.T

You can use @ARGV just like any other array; you could shift items off of it, perhaps, or
use foreach to iterate over it. You could even check to see if any arguments start with
a hyphen, so that you could process them as invocation options (like Perl does with its
own -w option).¥

The diamond operator looks in @ARGV to determine what filenames it should use. If it
finds an empty list, it uses the standard input stream; otherwise it uses the list of files
that it finds. This means that after your program starts and before you start using the

" If you reinitialize @ARGV before using the second diamond, then you’re on solid ground. We’ll see @ARGV in the
next section.

T C programmers may be wondering about argc (there isn’t one in Perl), and what happened to the program’s
own name (that’s found in Perl’s special variable $0, not @ARGV). Also, depending upon how you’ve invoked
your program, there may be a little more happening than we say here. See the perlrun manpage for the full
details.

 If you need more than just one or two such options, you should almost certainly use a module to process
them in a standard way. See the documentation for the Getopt: :Long and Getopt: :Std modules, which are
part of the standard distribution.

The Invocation Arguments | 75



diamond, you’ve got a chance to tinker with @ARGV. For example, here we can process
three specific files, regardless of what the user chose on the command line:
@ARGV = qw# larry moe curly #; # force these three files to be read
while (<>) {
chomp;
print "It was $_that I saw in some stooge-like file!\n";

}

Output to Standard Output

The print operator takes a list of values and sends each item (as a string, of course) to
standard output in turn, one after another. It doesn’t add any extra characters before,
after, or in between the items;" if you want spaces between items and a newline at the
end, you have to say so:

$name = "Larry Wall";
print "Hello there, $name, did you know that 3+4 is ", 3+4, "?\n";

Of course, that means that there’s a difference between printing an array and interpo-
lating an array:

print @array; # print a list of items
print "@array"; # print a string (containing an interpolated array)

That first print statement will print a list of items, one after another, with no spaces in
between. The second one will print exactly one item, which is the string you get by
interpolating @array into the empty string—that is, it prints the contents of @array,
separated by spaces. So, if @array holds qw/ fred barney betty /,F the first one prints
fredbarneybetty, while the second prints fred barney betty separated by spaces.

But before you decide to always use the second form, imagine that @array is a list of
unchomped lines of input. That is, imagine that each of its strings has a trailing newline
character. Now, the first print statement prints fred, barney, and betty on three sep-
arate lines. But the second one prints this:

fred

barney
betty

Do you see where the spaces come from? Perl is interpolating an array, so it puts spaces
between the elements. So, we get the first element of the array (fred and a newline
character), then a space, then the next element of the array (barney and a newline

*

Well, it doesn’t add anything extra by default, but this default (like so many others in Perl) may be changed.
Changing these defaults will likely confuse your maintenance programmer, though, so avoid doing so except
insmall, quick-and-dirty programs, or (rarely) in a small section of a normal program. See the perlvar manpage
to learn about changing the defaults.

T Yes, the spaces are another default; see the perlvar manpage again.

¥ You know that we mean a three-element list here, right? This is just Perl notation.

76 | Chapter5: Inputand Output



character), then a space, then the last element of the array (betty and a newline char-
acter). The result is that the lines seem to have become indented, except for the first
one. Every week or two, a mailing list or forum has a message with a subject line some-
thing like:

Perl indents everything after the first line

Without even reading the message, we can immediately see that the program used
double quotes around an array containing unchomped strings. “Did you perhaps put
an array of unchomped strings inside double quotes?” we ask, and the answer is always
yes.

Generally, if your strings contain newlines, you simply want to print them, after all:

print @array;

But if they don’t contain newlines, you’ll generally want to add one at the end:

print "@array\n";

So, if you’re using the quote marks, you’ll be (generally) adding the \n at the end of the
string anyway; this should help you to remember which is which.

It’s normal for your program’s output to be buffered. That is, instead of sending out
every little bit of output at once, it’ll be saved until there’s enough to bother with. If
(for example) you’re going to save the output to disk, it’s (relatively) slow and inefficient
to spin the disk every time we add one or two characters to the file. Generally, then,
the output will go into a buffer that is flushed (that is, actually written to disk or wher-
ever) only when the buffer gets full or when the output is otherwise finished (such as
at the end of runtime). Usually, that’s what you want.

But if you (or a program) may be waiting impatiently for the output, you may wish to
take that performance hit and flush the output buffer each time you print. See the Perl
manpages for more information on controlling buffering in that case.

Since print is looking for a list of strings to print, its arguments are evaluated in list
context. Since the diamond operator (as a special kind of line-input operator) will return
a list of lines in a list context, these can work well together:

print <>; # source code for 'cat’

print sort <>; # source code for 'sort’

Output to Standard Output | 77



Well, to be fair, the standard Unix commands cat and sort do have some additional
functionality that these replacements lack. But you can’t beat them for the price! You
can now reimplement all of your standard Unix utilities in Perl and painlessly port them
to any machine that has Perl, whether that machine is running Unix or not. And you
can be sure that the programs on every different type of machine will nevertheless have
the same behavior.”

What might not be obvious is that print has optional parentheses, which can some-
times cause confusion. Remember the rule that parentheses in Perl may always be
omitted, except when doing so would change the meaning of a statement. So, here are
two ways to print the same thing:

print("Hello, world!\n");
print "Hello, world!\n";

So far, so good. But another rule in Perl is that if the invocation of print looks like a
function call, then it is a function call. It’s a simple rule, but what does it mean for
something to look like a function call?

In a function call, there’s a function name immediatelyT followed by parentheses
around the function’s arguments, like this:

print (2+3);

That looks like a function call, so it is a function call. It prints 5, but then it returns a
value like any other function. The return value of print is a true or false value, indicating
the success of the print. It nearly always succeeds, unless you get some I/O error, so
the $result in the following statement will normally be 1:

$result = print("hello world!\n");

But what if you used the result in some other way? Let’s suppose you decide to multiply
the return value times four:

print (2+3)*4; # Oops!

When Perl sees this line of code, it prints 5, just as you asked. Then it takes the return
value from print, which is 1, and multiplies that times 4. It then throws away the prod-
uct, wondering why you didn’t tell it to do something else with it. And at this point,
someone looking over your shoulder says, “Hey, Perl can’t do math! That should have
printed 20, rather than 5!”

*

In fact, the PPT (Perl Power Tools) project, whose goal was to implement all of the classic Unix utilities in
Perl, completed nearly all the utilities (and most of the games!) but got bogged down when they got to
reimplementing the shell. The PPT project has been helpful because it has made these standard utilities
available on many non-Unix machines.

T We say “immediately” here because Perl won’t permit a newline character between the function name and
the opening parenthesis in this kind of function call. If there is a newline there, Perl sees your code as making
a list operator, rather than a function call. This is the kind of piddling technical detail that we mention only
for completeness. If you’re terminally curious, see the full story in the manpages.

78 | Chapter5: Inputand Output



This is the problem with the optional parentheses; sometimes we humans forget where
the parentheses really belong. When there are no parentheses, print is a list operator,
printing all of the items in the following list; that’s generally what you’d expect. But
when the first thing after print is a left parenthesis, print is a function call, and it will
print only what’s found inside the parentheses. Since that line had parentheses, it’s the
same to Perl as if you’d said this:

( print(2+3) ) * 4; # Oops!

Fortunately, Perl itself can almost always help you with this, if you ask for warnings—
SO use -w, or use warnings, at least during program development and debugging.

Actually, this rule—*“If it looks like a function call, it is a function call”—applies to all
list functions” in Perl, not just to print. It’s just that you’re most likely to notice it with
print. If print (or another function name) is followed by an opening parenthesis, make
sure that the corresponding closing parenthesis comes after all of the arguments to that
function.

Formatted Output with printf

You may wish to have a little more control with your output than print provides. In
fact, you may be accustomed to the formatted output of C’s printf function. Fear not
—Perl provides a comparable operation with the same name.

The printf operator takes a format string followed by a list of things to print. The
format® string is a fill-in-the-blanks template showing the desired form of the output:
printf "Hello, %s; your password expires in %d days!\n",
$user, $days to die;

The format string holds a number of so-called conversions; each conversion begins with
a percent sign (%) and ends with a letter. (As we’ll see in a moment, there may be
significant extra characters between these two symbols.) There should be the same
number of items in the following list as there are conversions; if these don’t match up,
itwon’t work correctly. In the example above, there are two items and two conversions,
so the output might look something like this:

Hello, merlyn; your password expires in 3 days!

There are many possible printf conversions, so we’ll take time here to describe just the
most common ones. Of course, the full details are available in the perlfunc manpage.

" Functions that take zero or one arguments don’t suffer from this problem.

T Here, we’re using “format” in the generic sense. Perl has a report-generating feature called “formats” that we
won’t even be mentioning (except in this footnote) until Appendix B, and then only to say that we really
aren’t going to talk about it. So, you’re on your own there. Just wanted to keep you from getting lost.

Formatted Output with printf | 79



To print a number in what’s generally a good way, use %g,” which automatically chooses
floating-point, integer, or even exponential notation as needed:

printf "%g %g %g\n", 5/2, 51/17, 51 ** 17; # 2.5 3 1.0683e+29
The %d format means a decimalT integer, truncated as needed:
printf "in %d days!\n", 17.85; # in 17 days!

Note that this is truncated, not rounded; we’ll see how to round off a number in a
moment.

In Perl, printf is most often used for columnar data, since most formats accept a field
width. If the data won’t fit, the field will generally be expanded as needed:

printf "%6d\n", 42; # output like ' '42 (the ° symbol stands for a space)

printf "%2d\n", 2e3 + 1.95; # 2001
The %s conversion means a string, so it effectively interpolates the given value as a string,
but with a given field width:

printf "%10s\n", "wilma"; # looks like ****° wilma

A negative field width is left-justified (in any of these conversions):
printf "%-15s\n", "flintstone"; # looks like flintstone """

The %f conversion (floating-point) rounds off its output as needed, and even lets you
request a certain number of digits after the decimal point:
printf "%12f\n", 6 * 7 + 2/3; # looks like " "42.666667

printf "%12.3f\n", 6 * 7 + 2/3; # looks like *****° 42.667
printf "%12.0f\n", 6 * 7 + 2/3; # looks like * " ° 43

To print a real percent sign, use %%, which is special in that it uses no element from the
list: ¥

printf "Monthly interest rate: %.2f%%\n",
5.25/12; # the value looks like "0.44%"

" “General” numeric conversion. Or maybe a “Good conversion for this number” or “Guess what I want the
output to look like.”

T There’s also %x for hexadecimal and %o for octal if you need those. But we really say “decimal” here as a
memory aid: %d for decimal integer.

¥ Maybe you thought you could simply put a backslash in front of the percent sign. Nice try, but no. The reason
that won’t work is that the format is an expression, and the expression "\%" means the one-character string
'%'. Even if we got a backslash into the format string, printf wouldn’t know what to do with it. Besides, C
programmers are used to printf working like this.

80 | Chapter5: Inputand Output



Arrays and printf

Generally, you won’t use an array as an argument to printf. That’s because an array
may hold any number of items, and a given format string will work with only a certain
fixed number of items: if there are three conversions in the format, there must be exactly
three items.

But there’s no reason you can’t whip up a format string on the fly, since it may be any
expression. This can be tricky to get right, though, so it may be handy (especially when
debugging) to store the format into a variable:

my @items = qw( wilma dino pebbles );

my $format = "The items are:\n" . ("%10s\n" x @items);

## print "the format is >>$format<<\n"; # for debugging
printf $format, @items;

This uses the x operator (which we learned about in Chapter 2) to replicate the given
string a number of times given by @items (which is being used in a scalar context). In
this case, that’s 3, since there are three items, so the resulting format string is the same
as if we had written it as The items are:\n%10s\n%10s\n%10s\n. And the output prints
each item on its own line, right-justified in a 10-character column, under a heading
line. Pretty cool, huh? But not cool enough because you can even combine these:

printf "The items are:\n".("%10s\n" x @items), @items;

Note that here we have @items being used once in a scalar context, to get its length, and
once in a list context, to get its contents. Context is important.

Filehandles

A filehandle is the name in a Perl program for an I/O connection between your Perl
process and the outside world. That is, it’s the name of a connection, not necessarily
the name of a file.

Filehandles are named like other Perl identifiers (with letters, digits, and underscores,
but they can’t start with a digit), though since they don’t have any prefix character they
might be confused with present or future reserved words, or with labels, which we cover
in Chapter 10. Once again, as with labels, the recommendation from Larry is that you
use all uppercase letters in the name of your filehandle—not only will it stand out better,
but it will also guarantee that your program won’t fail when a future (lowercase) re-
served word is introduced.

Filehandles | 81



But there are also six special filehandle names that Perl already uses for its own pur-
poses: STDIN, STDOUT, STDERR, DATA, ARGV, and ARGVOUT.” Although you may choose any
filehandle name you’d like, you shouldn’t choose one of those six unless you intend to
use that one’s special properties.

Maybe you recognized some of those names already. When your program starts,
STDIN is the filehandle naming the connection between the Perl process and wherever
the program should get its input, known as the standard input stream. This is generally
the user’s keyboard unless the user asked for something else to be the source of input,
such as a file or the output of another program through a pipe.¥ There’s also the
standard output stream, which is STDOUT. By default, this one goes to the user’s display
screen, but the user may send the output to a file or to another program, as we’ll see
shortly. These standard streams come to us from the Unix “standard I/O” library, but
they work in much the same way on most modern operating systems.l The general idea
is that your program should blindly read from STDIN and blindly write to STDOUT, trusting
in the user (or generally whichever program is starting your program) to have set those
up. In that way, the user can type a command like this one at the shell prompt:

$ ./your_program <dino >wilma

That command tells the shell that the program’s input should be read from the file
dino, and the output should go to the file wilma. As long as the program blindly reads
its input from STDIN, processes it (in whatever way we need), and blindly writes its
output to STDOUT, this will work just fine.

And at no extra charge, the program will work in a pipeline. This is another concept
from Unix, which lets us write command lines like this one:

$ cat fred barney | sort | ./your program | grep something | lpr

Now, if you’re not familiar with these Unix commands, that’s okay. This line says that
the cat command should print out all of the lines of file fred followed by all of the lines
of file barney. Then that output should be the input of the sort command, which sorts
those lines and passes them on to your_program. After it has done its processing,
your_program will send the data on to grep, which discards certain lines in the data,

" Some people hate typing in all caps, even for a moment, and will try spelling these in lowercase, like stdin.
Perl may even let you get away with that from time to time, but not always. The details of when these work
and when they fail are beyond the scope of this book. But the important thing is that programs that rely upon
this kindness will one day break, so it is best to avoid lowercase here.

T In some cases, you could (re)use these names without a problem. But your maintenance programmer may
think that you’re using the name for its built-in features, and thus may be confused.

¥ The defaults we speak of in this chapter for the three main I/O streams are what the Unix shells do by default.
But it’s not just shells that launch programs, of course. We’ll see in Chapter 16 what happens when you
launch another program from Perl.

I'If you’re not already familiar with how your non-Unix system provides standard input and output, see the
perlport manpage and the documentation for that system’s equivalent to the Unix shell (the program that
runs programs based upon your keyboard input).

82 | Chapter5: Inputand Output



sending the others on to the [pr command, which should print everything that it gets
on a printer. Whew!

Pipelines like that are common in Unix and many other systems today because they let
you build powerful, complex commands out of simple, standard building blocks. Each
building block does one thing very well, and it’s your job to use them together in the
right way.

There’s one more standard I/O stream. If (in the previous example) your_program had
to emit any warnings or other diagnostic messages, those shouldn’t go down the pipe-
line. The grep command is set to discard anything that it hasn’t specifically been told
to look for, and so it will most likely discard the warnings. Even if it did keep the
warnings, you probably don’t want to pass them downstream to the other programs
in the pipeline. So that’s why there’s also the standard error stream: STDERR. Even if the
standard output is going to another program or file, the errors will go to wherever the
user desires. By default, the errors will generally go to the user’s display screen,” but
the user may send the errors to a file with a shell command like this one:

$ netstat | ./your program 2>/tmp/my_errors

Opening a Filehandle

So you’ve seen that Perl provides three filehandles—STDIN, STDOUT, and STDERR—which
are automatically open to files or devices established by the program’s parent process
(probably the shell). When you need other filehandles, use the open operator to tell Perl
to ask the operating system to open the connection between your program and the
outside world. Here are some examples:

open CONFIG, "dino";

open CONFIG, "<dino";

open BEDROCK, ">fred";
open LOG, ">>logfile";

" Also, generally, errors aren’t buffered. That means that if the standard error and standard output streams are
both going to the same place (such as the monitor), the errors may appear earlier than the normal output.
For example, if your program prints a line of ordinary text, then tries to divide by zero, the output may show
the message about dividing by zero first, and the ordinary text second.

Opening a Filehandle | 83



The first one opens a filehandle called CONFIG to a file called dino. That is, the (existing)
file dino will be opened and whatever it holds will come into our program through the
filehandle named CONFIG. This is similar to the way that data from a file could come in
through STDIN if the command line had a shell redirection like <dino. In fact, the second
example uses exactly that sequence. The second does the same as the first, but the less-
than sign explicitly says “use this filename for input,” even though that’s the default.”

Although you don’t have to use the less-than sign to open a file for input, we include
that because, as you can see in the third example, a greater-than sign means to create
a new file for output. This opens the filehandle BEDROCK for output to the new file
fred. Just as when the greater-than sign is used in shell redirection, we’re sending the
output to a new file called fred. If there’s already a file of that name, we’re asking to
wipe it out and replace it with this new one.

The fourth example shows how two greater-than signs may be used (again, as the shell
does) to open a file for appending. That is, if the file already exists, we will add new
data at the end. If it doesn’t exist, it will be created in much the same way as if we had
used just one greater-than sign. This is handy for logfiles; your program could write a
few lines to the end of a logfile each time it’s run. So that’s why the fourth example
names the filehandle LOG and the file logfile.

You can use any scalar expression in place of the filename specifier, although typically
you’ll want to be explicit about the direction specification:

my $selected output = "my_output”;
open LOG, "> $selected output";

Note the space after the greater-than. Perl ignores this, T but it keeps unexpected things
from happening if $selected output were ">passwd" for example (which would make
an append instead of a write).

In modern versions of Perl (starting with Perl 5.6), you can use a “three-argument” open:

open CONFIG, "<", "dino";
open BEDROCK, ">", $file name;
open LOG, ">>", &logfile name();

" This may be important for security reasons. As we’ll see in a moment (and in further detail in Chapter 14),
there are a number of magical characters that may be used in filenames. If $name holds a user-chosen filename,
simply opening $name will allow any of these magical characters to come into play. This could be a convenience
to the user, or it could be a security hole. But opening "< $name" is much safer, since it explicitly says to open
the given name for input. Still, this doesn’t prevent all possible mischief. For more information on different
ways of opening files, especially when security may be a concern, see the perlopentut manpage.

T Yes, this means that if your filename were to have leading whitespace, that would also be ignored by Perl.
See perlfunc and perlopentut if you’re worried about this.

84 | Chapter5: Inputand Output



The advantage here is that Perl never confuses the mode (the second argument) with
some part of the filename (the third argument), which has nice advantages for
security.” However, if you need your Perl to be backward compatible with older Perl
versions (such as when you are contributing to the CPAN), either avoid these forms,
or mark your Perl sources as being compatible only with newer Perls.T

We'll see how to use these filehandles later in this chapter. But first...

Bad Filehandles

Perl can’t actually open a file all by itself. Like any other programming language, Perl
can merely ask the operating system to let us open a file. Of course, the operating system
may refuse because of permission settings, an incorrect filename, or other reasons.

If you try to read from a bad filehandle (that is, a filehandle that isn’t properly open),
you’ll see an immediate end-of-file. (With the I/O methods we’ll see in this chapter,
end-of-file will be indicated by undef in a scalar context or an empty list in a list context.)
If you try to write to a bad filehandle, the data is silently discarded.

Fortunately, these dire consequences are easy to avoid. First of all, if we ask for warnings
with -w or the warnings pragma, Perl will generally be able to tell us with a warning
when it sees that we’re using a bad filehandle. But even before that, open always tells
us if it succeeded or failed, by returning true for success or false for failure. So you could
write code like this:

my $success = open LOG, ">>logfile"; # capture the return value

if (! $success) {
# The open failed

}

Well, you could do it like that, but there’s another way that we’ll see in the next section.

Closing a Filehandle

When you are finished with a filehandle, you may close it with the close operator like
this:
close BEDROCK;

Closing a filehandle tells Perl to inform the operating system that we’re all done with
the given data stream, so any last output data should be written to disk in case someone

" The disadvantage for security is that, presumably, you’re letting a possibly-malicious user inject possibly-
malicious characters into the delicate workings of your innocent program. Once we learn about regular
expressions (starting in Chapter 7) you’ll be able to use those to enforce some sanity checks on user input.
And if your program will have possibly-malicious users, read up on Perl’s helpful security features in the
Alpaca book, in the perlsec manpage, or both.

T Via use 5.6, for example.

Opening a Filehandle | 85



is waiting for it.” Perl will automatically close a filehandle if you reopen it (that is, if you
reuse the filehandle name in a new open) or if you exit the program.t

Because of this, many simple Perl programs don’t bother with close. But it’s there if
you want to be tidy, with one close for every open. In general, it’s best to close each
filehandle soon after you’re done with it, though the end of the program often arrives
soon enough.¥

Fatal Errors with die

Let’s step aside for a moment. We need some stuff that isn’t directly related to (or
limited to) I/O, but is more about getting out of a program earlier than normal.

When a fatal error happens inside Perl (for example, if you divide by zero, use an invalid
regular expression, or call a subroutine that hasn’t been declared), your program stops
with an error message telling why.!l But this functionality is available to us with the
die function, so we can make our own fatal errors.

The die function prints out the message you give it (to the standard error stream, where
such messages should go) and makes sure that your program exits with a nonzero exit
status.

You may not have known it, but every program that runs on Unix (and many other
modern operating systems) has an exit status, telling whether it was successful or not.
Programs that run other programs (like the make utility program) look at that exit status
to see that everything happened correctly. The exit status is just a single byte, so it can’t
say much; traditionally, it is O for success and a nonzero value for failure. Perhaps 1
means a syntax error in the command arguments, while 2 means that something went
wrong during processing, and 3 means the configuration file couldn’t be found; the
details differ from one command to the next. But 0 always means that everything

If you know much about I/O systems, you’ll know there’s more to the story. Generally, though, when a
filehandle is closed, here’s what happens. If there’s input remaining in a file, it’s ignored. If there’s input
remaining in a pipeline, the writing program may get a signal that the pipeline is closed. If there’s output
going to a file or pipeline, the buffer is flushed (that is, pending output is sent on its way). If the filehandle
had a lock, the lock is released. See your system’s I/O documentation for further details.

T Any exit from the program will close all filehandles, but if Perl itself breaks, pending output buffers won’t
get flushed. That s to say, if you accidentally crash your program by dividing by zero, for example, Perl itself
is still running. Perl will ensure that data you’ve written actually gets output in that case. But if Perl itself
can’t run (because you ran out of memory or caught an unexpected signal), the last few pieces of output may
not be written to disk. Usually, this isn’t a big issue.

* Closing a filehandle will flush any output buffers and release any locks on the file. Since someone else may
be waiting for those things, a long-running program should generally close each filehandle as soon as possible.
But many of our programs will take only one or two seconds to run to completion, so this may not matter.
Closing a filehandle also releases possibly limited resources, so it’s more than just being tidy.

I'Well, it does this by default, but errors may be trapped with an eval block, as we’ll see in Chapter 17.

86 | Chapter5: Inputand Output



worked. When the exit status shows failure, a program like make knows not to go on
to the next step.

So we could rewrite the previous example, perhaps like this:

if (! open LOG, ">>logfile") {
die "Cannot create logfile: $!";

}

If the open fails, die will terminate the program and tell you that it cannot create the
logfile. But what’s that $! in the message? That’s the human-readable complaint from
the system. In general, when the system refuses to do something we’ve requested (like
opening a file), $! will give you a reason (perhaps “permission denied” or “file not
found,” in this case). This is the string that you may have obtained with perror in C or
a similar language. This human-readable complaint message will be available in Perl’s
special variable $!." It’s a good idea to include $! in the message when it could help the
user to figure out what he or she did wrong. But if you use die to indicate an error that
is not the failure of a system request, don’t include $!, since it will generally hold an
unrelated message left over from something Perl did internally. It will hold a useful
value only immediately after a failed system request. A successful request won’t leave
anything useful there.

There’s one more thing that die will do for you: it will automatically append the Perl
program name and line number™ to the end of the message, so you can easily identify
which die in your program is responsible for the untimely exit. The error message from
the previous code might look like this, if $! contained the message permission denied:

Cannot create logfile: permission denied at your program line 1234.

That’s pretty helpful—in fact, we always seem to want more information in our error
messages than we included the first time around. If you don’t want the line number
and file revealed, make sure that the dying words have a newline on the end. That is,
another way you could use die is with a trailing newline on the message:
if (@ARGV < 2) {
die "Not enough arguments\n";

}

" On some non-Unix operating systems, $! may say something like error number 7, leaving it up to the user
to look that one up in the documentation. On Windows and VMS, the variable $"E may have additional
diagnostic information.

T If the error happened while reading from a file, the error message will include the “chunk number” (usually
the line number) from the file and the name of the filehandle as well, since those are often useful in tracking
down a bug.

Fatal Errors with die | 87



If there aren’t at least two command-line arguments, the program will say so and quit.
It won’t include the program name and line number, as the line number is of no use to
the user (this is the user’s error, after all). As a rule of thumb, put the newline on
messages that indicate a usage error and leave it off when it the error might be something
you want to track down during debugging.”

You should always check the return value of open, since the rest of the program is relying
upon its success.

Warning Messages with warn

Just as die can indicate a fatal error that acts like one of Perl’s built-in errors (like
dividing by zero), you can use the warn function to cause a warning that acts like one
of Perl’s built-in warnings (like using an undef value as if it were defined, when warnings
are enabled).

The warn function works just like die does, except for that last step—it doesn’t actually
quit the program. But it adds the program name and line number if needed, and it prints
the message to standard error, just as die would.T

And having talked about death and dire warnings, we now return you to your regularly
scheduled I/O instructional material. Read on.

Using Filehandles

Once a filehandle is open for reading, you can read lines from it just like you can read
from standard input with STDIN. So, for example, to read lines from the Unix password

file:

if (! open PASSWD, "/etc/passwd") {
die "How did you get logged in? ($!)";
}

while (<PASSWD>) {
chomp;

}...

In this example, the die message uses parentheses around $!. Those are merely paren-
theses around the message in the output. (Sometimes a punctuation mark is just a

The program’s name is in Perl’s special variable $0, so you may wish to include that in the string: $0:Not
enough arguments\n. This is useful if the program may be used in a pipeline or shell script, for example, where
it’s not obvious which command is complaining. $0 can be changed during the execution of the program,
however. You might also want to look into the special __FILE_ and _ LINE__tokens (or the caller function)
to get the information that is being left out by adding the newline, so you can print it in your own choice of
format.

T Warnings can’t be trapped with an eval block, like fatal errors can be. But see the documentation for the
__WARN__ pseudosignal (in the perlvar manpage) if you need to trap a warning.

88 | Chapter5: Inputand Output



punctuation mark.) As you can see, what we’ve been calling the “line-input operator”
is really made of two components; the angle brackets (the real line-input operator) are
around an input filehandle.

A filehandle open for writing or appending may be used with print or printf, appearing
immediately after the keyword but before the list of arguments:

print LOG "Captain's log, stardate 3.14159\n"; # output goes to LOG
printf STDERR "%d percent complete.\n", $done/$total * 100;

Did you notice that there’s no comma between the filehandle and the items to be prin-
ted?” This looks especially weird if you use parentheses. Either of these forms is correct:

printf (STDERR "%d percent complete.\n", $done/$total * 100);
printf STDERR ("%d percent complete.\n", $done/$total * 100);

Changing the Default Output Filehandle

By default, if you don’t give a filehandle to print (or to printf, as everything we say
here about one applies equally well to the other), the output will go to STDOUT. But that
default may be changed with the select operator. Here we’ll send some output lines
to BEDROCK:

select BEDROCK;

print "I hope Mr. Slate doesn't find out about this.\n";

print "Wilma!\n";
Once you've selected a filehandle as the default for output, it will stay that way. But
it’s usually a bad idea to confuse the rest of the program, so you should generally set it
back to STDOUT when you’re done.T Also by default, the output to each filehandle is
buffered. Setting the special $| variable to 1 will set the currently selected filehandle
(that is, the one selected at the time that the variable is modified) to always flush the
buffer after each output operation. So if you wanted to be sure that the logfile gets its
entries at once, in case you might be reading the log to monitor progress of your long-
running program, you could use something like this:

select LOG;

$| = 1; # don't keep LOG entries sitting in the buffer

select STDOUT;

# ... time passes, babies learn to walk, tectonic plates shift, and then...
print LOG "This gets written to the LOG at once!\n";

*

If you got straight A’s in freshman English or Linguistics, when we say that this is called “indirect object
syntax,” you may say “Ah, of course! I see why there’s no comma after the filehandle name—it’s an indirect
object!” We didn’t get straight A’s. We don’t understand why there’s no comma; we merely omit it because
Larry told us that we should omit the comma.

T In the unlikely case that STDOUT might not be the selected filehandle, you could save and restore the filehandle,
using the technique shown in the documentation for select in the perlfunc manpage. And as long as we’re
sending you to that manpage, we may as well tell you that there are actually two built-in functions in Perl
named select, and both are covered in the perlfunc manpage. The other select always has four arguments,
so it’s sometimes called “four-argument select.”

Using Filehandles | 89



Reopening a Standard Filehandle

We mentioned earlier that if you were to reopen a filehandle (that is, if you were to
open a filehandle FRED when you’ve already got an open filehandle named FRED, say),
the old one would be closed for you automatically. And we said that you shouldn’t
reuse one of the six standard filehandle names unless you intended to get that one’s
special features. And we also said that the messages from die and warn, along with Per!’s
internally generated complaints, go automatically to STDERR. If you put those three
pieces of information together, you now have an idea about how you could send error
messages to a file, rather than to your program’s standard error stream:"
# Send errors to my private error log

if (! open STDERR, ">>/home/barney/.error log") {
die "Can't open error log for append: $!";

}

After reopening STDERR, any error messages from Perl will go into the new file. But what
happens if the die is executed—where will that message go, if the new file couldn’t be
opened to accept the messages?

The answer is that if one of the three system filehandles—STDIN, STDOUT, or STDERR—
fails to reopen, Perl kindly restores the original one.T That is, Perl closes the original
one (of those three) only when it sees that opening the new connection is successful.
Thus, this technique could be used to redirect any (or all) of those three system file-
handles from inside your program, almost as if the program had been run with that
/O redirection from the shell in the first place.

Output with say

Perl 5.10 borrows the say built-in from the ongoing development of Perl 6 (which may
have borrowed its say from Pascal’s println). It’s the same as print, although it adds
a newline to the end. These forms all output the same thing:

use 5.010;
print "Hello!\n";

print "Hello!", "\n";
say "Hello!";

*

Don’t do this without a reason. It’s nearly always better to let the user set up redirection when launching
your program, rather than have redirection hardcoded. But this is handy in cases where your program is being
run automatically by another program (say, by a web server or a scheduling utility like cron or at). Another
reason might be that your program is going to start another process (probably with system or exec, which
we’ll see in ) Chapter 16, and you need that process to have different I/O connections.

T At least, this is true if you haven’t changed Perl’s special $~F variable, which tells Perl that only those three
are special like this. But you’d never change that.

¥ But don’t open STDIN for output or the others for input. Just thinking about that makes our heads hurt.

90 | Chapter5: Inputand Output



To just print a variable’s value followed by a newline, you don’t need to create an extra
string or print a list. You just say the variable. This is especially handy in the common
case of simply wanting to put a newline after whatever you want to output:

use 5.010;

my $name = 'Fred';
print "$name\n";
print $name, "\n";
say $name;

To interpolate an array, you still need to quote it though. It’s the quoting that puts the
spaces between the elements:

use 5.010;

my @array = qw( a b cd);
say @array; # "abcd\n"

say "@array"; # "a b c d\n";

Just like with print, you can specify a filehandle with say:

use 5.010;

say BEDROCK "Hello!";

Since this is a Perl 5.10 feature though, we’ll only use it when we are otherwise using
a Perl 5.10 feature. The old, trusty print is still as good as it ever was, but we suspect
that there are some Perl programmers out there who will want the immediate savings
of not typing the four extra characters (two in the name and the \n).

Exercises

See Appendix A for answers to the following exercises:

1. [7] Write a program that acts like cat, but reverses the order of the output lines.
(Some systems have a utility like this named tac.) If you run yours as ./tac fred
barney betty, the output should be all of file betty from last line to first, then
barney and then fred, also from last line to first. (Be sure to use the ./ in your
program’s invocation if you call it tac so that you don’t get the system’s utility
instead!)

2. [8] Write a program that asks the user to enter a list of strings on separate lines,
printing each string in a right-justified, 20-character column. To be certain that the
output is in the proper columns, print a “ruler line” of digits as well. (This is simply
a debugging aid.) Make sure that you’re not using a 19-character column by mis-
take! For example, entering hello, good-bye should give output something like this:

Exercises | 91



123456789012345678901234567890123456789012345678901234567890
hello
good-bye
3. [8] Modify the previous program to let the user choose the column width so that
entering 30, hello, good-bye (on separate lines) would put the strings at the 30th
column. (Hint: see the section in Chapter 2 about controlling variable interpola-
tion.) For extra credit, make the ruler line longer when the selected width is larger.

92 | Chapter5: Inputand Output



CHAPTER 6
Hashes

In this chapter, you will see a feature that makes Perl one of the world’s truly great
programming languages: hashes.” Although hashes are a powerful and useful feature,
you may have used other powerful languages for years without ever hearing of hashes.
But you’ll use hashes in nearly every Perl program you’ll write from now on; they’re
that important.

What Is a Hash?

A hash is a data structure, not unlike an array in that it can hold any number of values
and retrieve them at will. But instead of indexing the values by number, as we did with
arrays, we’ll look up the values by name. That is, the indices (here, we’ll call them
keys) aren’t numbers, but instead they are arbitrary unique strings (see Figure 6-1).

The keys are strings, first of all, so instead of getting element number 3 from an array,
we’ll be accessing the hash element named wilma.

These keys are arbitrary strings—you can use any string expression for a hash key. And
they are unique strings—just as there’s only one array element numbered 3, there’s only
one hash element named wilma.

Another way to think of a hash is that it’s like a barrel of data (see Figure 6-2), where
each piece of data has a tag attached. You can reach into the barrel and pull out any
tag and see what piece of data is attached. But there’s no “first” item in the barrel; it’s
just a jumble. In an array, we’d start with element 0, then element 1, then element 2,
and so on. But in a hash, there’s no fixed order, no first element. It’s just a collection
of key-value pairs.

" In the olden days, we called these “associative arrays.” But the Perl community decided in about 1995 this
was too many letters to type and too many syllables to say, so we changed the name to “hashes.”

93



VALUES

—— “foo” —»> 35
— “bar” —» 124
§ 5 “hello”
— “wilma” —» 1.72e30
— “betty” —> “bye\n”

Figure 6-1. Hash keys and values

2.5 time
quark | pi

] apple [ o |

hammer ow |

Figure 6-2. A hash as a barrel of data

94 | Chapter6: Hashes



The keys and values are both arbitrary scalars, but the keys are always converted to
strings. So, if you used the numeric expression 50/20 as the key,” it would be turned
into the three-character string "2.5", which is one of the keys shown in the diagram
above.

As usual, Perl’s “no unnecessary limits philosophy” applies: a hash may be of any size,
from an empty hash with zero key-value pairs, up to whatever fills up your memory.

Some implementations of hashes (such as in the original awk language, from which
Larry borrowed the idea) slow down as the hashes get larger and larger. This is not the
case in Perl—it has a good, efficient, scalable algorithm.T So, if a hash has only three
key-value pairs, it’s very quick to “reach into the barrel” and pull out any one of those.
If the hash has three million key-value pairs, it should be just about as quick to pull out
any one of those. A big hash is nothing to fear.

It’s worth mentioning again that the keys are always unique, although the values may
be duplicated. The values of a hash may be all numbers, all strings, undef values, or a
mixture.¥ But the keys are all arbitrary, unique strings.

Why Use a Hash?

When you first hear about hashes, especially if you’ve lived a long and productive life
as a programmer using languages that don’t have hashes, you may wonder why anyone
would want one of these strange beasts. Well, the general idea is that you’ll have one
set of data “related to” another set of data. For example, here are some hashes you
might find in typical applications of Perl:

Given name, family name
The given name (first name) is the key, and the family name is the value. This
requires unique given names, of course; if there were two people named randal,
this wouldn’t work. With this hash, you can look up anyone’s given name, and
find the corresponding family name. If you use the key tom, you get the value
phoenix.

Hostname, IP address
You may know that each computer on the Internet has both a hostname (like http://
www.stonehenge.com) and an IP address number (like 123.45.67.89). That’s be-
cause machines like working with the numbers, but we humans have an easier time
remembering the names. The hostnames are unique strings, so they can be used

" That’s a numeric expression, not the five-character string "50/20". If we used that five-character string as a
hash key, it would stay the same five-character string, of course.

T Technically, Perl rebuilds the hash table as needed for larger hashes. In fact, the term “hashes” comes from
the fact that a hash table is used for implementing them.

* Or, in fact, any scalar values, including other scalar types than the ones we’ll see in this book.

WhatlsaHash? | 95


http://www.stonehenge.com
http://www.stonehenge.com

to make this hash. With this hash, you could look up a hostname and find the
corresponding IP address.

IP address, hostname

Or you could go in the opposite direction. We generally think of the IP address as
a number, but it can also be a unique string, so it’s suitable for use as a hash key.
In this hash, we can use the IP address to look up the corresponding hostname.
Note that this is not the same hash as the previous example: hashes are a one-way
street, running from key to value; there’s no way to look up a value in a hash and
find the corresponding key! So these two are a pair of hashes, one for storing IP
addresses, one for hostnames. It’s easy enough to create one of these given the
other, though, as we’ll see below.

Word, count of number of times that word appears
This is a very common use of a hash. It’s so common, in fact, that it just might turn
up in the exercises at the end of the chapter!

The idea here is that you want to know how often each word appears in a given
document. Perhaps you’re building an index to a number of documents so that
when a user searches for fred, you’ll know that a certain document mentions
fred five times, another mentions fred seven times, and yet another doesn’t men-
tion fred at all—so you’ll know which documents the user is likely to want. As the
index-making program reads through a given document, each time it sees a men-
tion of fred, it adds one to the value filed under the key of fred. That is, if we had
seen fred twice already in this document, the value would be 2, but now we’ll
increment it to 3. If we had never seen fred before, we’d change the value from
undef (the implicit, default value) to 1.

Username, number of disk blocks they are using [wasting]
System administrators like this one: the usernames on a given system are all unique
strings, so they can be used as keys in a hash to look up information about that user.
Driver’s license number, name
There may be many, many people named John Smith, but we hope that each one
has a different driver’s license number. That number makes for a unique key, and
the person’s name is the value.

Yet another way to think of a hash is as a very simple database, in which just one piece
of data may be filed under each key. In fact, if your task description includes phrases
like “finding duplicates,” “unique,” “cross-reference,” or “lookup table,” it’s likely that
a hash will be useful in the implementation.

Hash Element Access

To access an element of a hash, use syntax that looks like this:
$hash{$some_key}

96 | Chapter6: Hashes



This is similar to what we used for array access, but here we use curly braces instead
of square brackets around the subscript (key).” And that key expression is now a string,
rather than a number:

$family name{"fred"} = "flintstone";
$family name{"barney"} = "rubble";

Figure 6-3 shows how the resulting hash keys are assigned.

fred flintstone

barney rubble

Figure 6-3. Assigned hash keys

This lets us use code like this:

foreach $person (qw< barney fred >) {
print "I've heard of $person $family name{$person}.\n";

}

The name of the hash is like any other Perl identifier (letters, digits, and underscores,
but can’t start with a digit). And it’s from a separate namespace; that is, there’s no
connection between the hash element $family name{"fred"} and a subroutine
8family name, for example. Of course, there’s no reason to confuse everyone by giving
everything the same name. But Perl won’t mind if you also have a scalar called
$family name and array elements like $family name[5]. We humans will have to do as
Perl does; that is, we’ll have to look to see what punctuation appears before and after
the identifier to see what it means. When there is a dollar sign in front of the name and
curly braces afterward, it’s a hash element that’s being accessed.

When choosing the name of a hash, it’s often nice to think of the word “for” between
the name of the hash and the key. As in, “the family name for fred is flintstone”. So
the hash isnamed family name. Then the relationship between the keys and their values
becomes clear.
Of course, the hash key may be any expression, not just the literal strings and simple
scalar variables that we’re showing here:

$foo = "bar";

print $family name{ $foo . "ney" }; # prints "rubble"

When you store something into an existing hash element, it overwrites the previous
value:

" Here’s a peek into the mind of Larry Wall: Larry says that we use curly braces instead of square brackets
because we’re doing something fancier than ordinary array access, so we should use fancier punctuation.

Hash Element Access | 97



$family name{"fred"} = "astaire"; # gives new value to existing element
$bedrock = $family name{"fred"}; # gets "astaire"; old value is lost

That’s analogous to what happens with arrays and scalars; if you store something new
into $pebbles[17] or $dino, the old value is replaced. If you store something new into
$family name{"fred"}, the old value is replaced as well.

Hash elements will spring into existence by assignment:

$family name{"wilma"} = "flintstone"; # adds a new key (and value)
$family_name{"betty"} .= $family name{"barney"}; # creates the element if needed

That’s also just like what happens with arrays and scalars; if you didn’t have

$pebbles[17] or $dino before, you will have it after you assign to it. If you didn’t have
$family name{"betty"} before, you do now.

And accessing outside the hash gives undef:
$granite = $family name{"larry"}; # No larry here: undef
Once again, this is just like what happens with arrays and scalars; if there’s nothing yet

stored in $pebbles[17] or $dino, accessing them will yield undef. If there’s nothing yet
stored in $family name{"larry"}, accessing it will yield undef.

The Hash As a Whole

To refer to the entire hash, use the percent sign (%) as a prefix. So, the hash we’ve been
using for the last few pages is actually called %family name.

For convenience, a hash may be converted into a list, and back again. Assigning to a
hash (in this case, the one from Figure 6-1) is a list-context assignment, where the list
is made of key-value pairs:”

%some_hash = ("foo", 35, "bar", 12.4, 2.5, "hello",
"wilma", 1.72e30, "betty", "bye\n");

The value of the hash (in a list context) is a simple list of key-value pairs:

@any_array = %some_hash;

We call this unwinding the hash—turning it back into a list of key-value pairs. Of course,
the pairs won’t necessarily be in the same order as the original list:
print "@any array\n";
# might give something like this:
# betty bye (and a newline) wilma 1.72e+30 foo 35 2.5 hello bar 12.4

The order is jumbled because Perl keeps the key-value pairs in an order that’s conven-
ient for Perl so that it can look up any item quickly. You use a hash either when you
don’t care what order the items are in, or when you have an easy way to put them into
the order you want.

" Although any list expression may be used, it must have an even number of elements because the hash is made
of key-value pairs. An odd element will likely do something unreliable, although it’s a warnable offense.

98 | Chapter6: Hashes



Of course, even though the order of the key-value pairs is jumbled, each key “sticks”
with its corresponding value in the resulting list. So, even though we don’t know where
the key foo will appear in the list, we know that its value, 35, will be right after it.

Hash Assignment

It’s rare to do so, but a hash may be copied using the obvious syntax:
%new_hash = %old_hash;

This is actually more work for Perl than meets the eye. Unlike what happens in lan-
guages like Pascal or C, where such an operation would be a simple matter of copying
a block of memory, Perl’s data structures are more complex. So, that line of code tells
Perl to unwind the %o0ld hash into a list of key-value pairs, then assign those to
%new_hash, building it up one key-value pair at a time.

It’s more common to transform the hash in some way, though. For example, we could
make an inverse hash:

%inverse_hash = reverse %any_hash;

This takes %any_hash and unwinds it into a list of key-value pairs, making a list like
(key, value, key, value, key, value, ...). Then reverse turns that list end-for-end, making
a list like (value, key, value, key, value, key, ...). Now the keys are where the values
used to be, and the values are where the keys used to be. When that’s stored into
%inverse_hash, we’ll be able to look up a string that was a value in %any_hash—it’s now
a key of %inverse_hash. And the value we’ll find is one that was one of the keys from
%any_hash. So, we have a way to look up a “value” (now a key), and find a “key” (now
a value).

Of course, you might guess (or determine from scientific principles if you’re clever) that
this will work properly only if the values in the original hash were unique—otherwise,
we’d have duplicate keys in the new hash, and keys are always unique. Here’s the rule
that Perl uses: the last one in wins. That is, the later items in the list overwrite any earlier
ones. Of course, we don’t know what order the key-value pairs will have in this list, so
there’s no telling which ones would win. You’d use this technique only if you know
there are no duplicates among the original values.” But that’s the case for the IP address
and hostname examples given earlier:

%ip_address = reverse %host name;

Now we can look up a hostname or IP address with equal ease to find the corresponding
[P address or hostname.

" Orif you don’t care that there are duplicates. For example, we could invert the %family_name hash (in which
the keys are people’s given names and values are their family names) to make it easy to determine whether
there is or is not anyone with a given family name in the group. Thus, in the inverted hash, if there’s no key
of slate, we’d know that there’s no one with that name in the original hash.

Hash Element Access | 99



The Big Arrow

When assigning a list to a hash, sometimes it’s not obvious which elements are keys
and which are values. For example, in this assignment (which we saw earlier), we hu-
mans have to count through the list, saying, “key, value, key, value...”, in order to
determine whether 2.5 is a key or a value:

%some_hash = ("foo", 35, "bar", 12.4, 2.5, "hello",
"wilma", 1.72e30, "betty", "bye\n");

Wouldn’t it be nice if Perl gave us a way to pair up keys and values in that kind of a
list, so that it would be easy to see which ones were which? Larry thought so, too, which
is why he invented the big arrow (=>)." To Perl, it’s just a different way to “spell” a
comma, so it’s also sometimes called the “fat comma.” That is, in the Perl grammar,
any time that you need a comma ( , ), you can use the big arrow instead; it’s all the
same to Perl.T So here’s another way to set up the hash of last names:
my %last name = ( # a hash may be a lexical variable
"fred" => "flintstone",
"dino"  => undef,

"barney" => "rubble",
"betty" => "rubble",

)s
Here, it’s easy (or perhaps at least easier) to see whose name pairs with which value,
even if we end up putting many pairs on one line. And notice that there’s an extra
comma at the end of the list. As we saw earlier, this is harmless, but convenient; if we
need to add additional people to this hash, we’ll simply make sure that each line has a
key-value pair and a trailing comma. Perl will see that there is a comma between each
item and the next, and one extra (harmless) comma at the end of the list.

Hash Functions

Naturally, there are some useful functions that can work on an entire hash at once.

The keys and values Functions

The keys function yields a list of all the keys in a hash, while the values function gives
the corresponding values. If there are no elements to the hash, then either function
returns an empty list:

" Yes, there’s also a little arrow (->). It’s used with references, which is an advanced topic; see the perlreftut
and perlref manpages when you’re ready for that.

T 'Well, there’s one technical difference: any bareword (a sequence of nothing but letters, digits, and underscores
not starting with a digit, but optionally prefixed with plus or minus) to the left of the big arrow is implicitly
quoted. So you can leave off the quote marks on a bareword to the left of the big arrow. You may also omit
the quote marks if there’s nothing but a bareword as a key inside the curly braces of a hash.

100 | Chapter6: Hashes



my %hash = ("a" => 1, "b" => 2, "c" => 3);
my @k = keys Z%hash;
my @v = values %hash;

So, @ will contain "a", "b", and "c", and @v will contain 1, 2, and 3—in some order.
Remember, Perl doesn’t maintain the order of elements in a hash. But, whatever order
the keys are in, the values will be in the corresponding order: if "b" is last in the keys,
2 will be last in the values; if "c" is the first key, 3 will be the first value. That’s true as
long as you don’t modify the hash between the request for the keys and the one for the
values. If you add elements to the hash, Perl reserves the right to rearrange it as needed,
to keep the access quick.” In a scalar context, these functions give the number of ele-
ments (key-value pairs) in the hash. They do this quite efficiently, without having to
visit each element of the hash:

my $count = keys %hash; # gets 3, meaning three key-value pairs

Once in a long while, you’ll see that someone has used a hash as a Boolean (true/false)
expression, something like this:
if (%hash) {
print "That was a true value!\n";

}

That will be true if (and only if) the hash has at least one key-value pair.T So, it’s just
saying, “If the hash is not empty...” But this is a pretty rare construct, as such things go.

The each Function

If you wish to iterate over (that is, examine every element of) an entire hash, one of the
usual ways is to use the each function, which returns a key-value pair as a two-element
list.¥ On each evaluation of this function for the same hash, the next successive key-
value pair is returned, until all the elements have been accessed. When there are no
more pairs, each returns an empty list.

In practice, the only way to use each is in a while loop, something like this:

while ( ($key, $value) = each %hash ) {
print "$key => $value\n";

" Of course, if you started adding elements to the hash between keys and values, your list of values (or keys,
whichever you did second) would have additional items, which would be tough to match up with the first
list. So no normal programmer would do that.

T The actual result is an internal debugging string useful to the people who maintain Perl. It looks something
like “4/16,” but the value is guaranteed to be true when the hash is nonempty, and false when it’s empty, so
the rest of us can still use it for that.

¥ The other usual way to iterate over an entire hash is to use foreach on a list of keys from the hash; we’ll see
that by the end of this section.

Hash Functions | 101



There’s a lot going on here. First, each %hash returns a key-value pair from the hash, as

a two-element list; let’s say that the key is "c" and the value is 3, so the list is ("c",

3). That list is assigned to the list ($key, $value), so $key becomes "c", and $value
becomes 3.

But that list assignment is happening in the conditional expression of the while loop,
which is a scalar context. (Specifically, it’s a Boolean context, looking for a true/false
value, and a Boolean context is a particular kind of scalar context.) The value of a list
assignment in a scalar context is the number of elements in the source list—2, in this
case. Since 2 is a true value, we enter the body of the loop and print the message ¢ => 3.

The next time through the loop, each %hash gives a new key-value pair; let’s say it’s
("a", 1) this time. (It knows to return a different pair than previously because it keeps
track of where it is; in technical jargon, there’s an iterator stored in with each hash.”)
Those two items are stored into ($key, $value). Since the number of elements in the
source list was again 2—a true value—the while condition is true, and the loop body
runs again, tellingusa => 1.

We go one more time through the loop, and by now we know what to expect, so it’s
no surprise to see b => 2 appear in the output.

But we knew it couldn’t go on forever. Now, when Perl evaluates each %hash, there are
no more key-value pairs available, so each has to return an empty list.T The empty list
is assigned to ($key, $value), so $key gets undef, and $value also gets undef.

But that hardly matters because the whole thing is being evaluated in the conditional
expression of the while loop. The value of a list assignment in a scalar context is the
number of elements in the source list—in this case, that’s 0. Since 0 is a false value, the
while loop is done, and execution continues with the rest of the program.

Of course, each returns the key-value pairs in a jumbled order. (It’s the same order as
keys and values would give, incidentally; the “natural” order of the hash.) If you need
to go through the hash in order, simply sort the keys, perhaps something like this:

foreach $key (sort keys %hash) {
$value = $hash{skey};
print "$key => $value\n";
# Or, we could have avoided the extra $value variable:
# print "$key => $hash{$key}\n";
}

" Since each hash has its own private iterator, loops using each may be nested, as long as they are iterating over
different hashes. And, as long as we’re already in a footnote, we may as well tell you: it’s unlikely you’ll ever
need to do so, but you may reset the iterator of a hash by using the keys or values function on the hash. The
iterator is also automatically reset if a new list is stored into the entire hash, or if each has iterated through
all of the items to the “end” of the hash. On the other hand, adding new key-value pairs to the hash while
iterating over it is generally a bad idea, since that won’t necessarily reset the iterator. That’s likely to confuse
you, your maintenance programmer, and each as well.

T It’s being used in list context, so it can’t return undef to signal failure; that would be the one-element list
(undef) instead of the empty (zero-element) list ( ).

102 | Chapter6: Hashes



We’ll see more about sorting hashes in Chapter 14.

Typical Use of a Hash

At this point, you may find it helpful to see a more concrete example.
The Bedrock library uses a Perl program in which a hash keeps track of how many
books each person has checked out, among other information:
$books{"fred"} = 3;
$books{"wilma"} = 1;
It’s easy to see whether an element of the hash is true or false; do this:

if ($books{$someone}) {
print "$someone has at least one book checked out.\n";

}

But there are some elements of the hash that aren’t true:

$books{"barney"} = 0; # no books currently checked out
$books{"pebbles"} = undef; # no books EVER checked out - a new library card

Since Pebbles has never checked out any books, her entry has the value of undef, rather
than o.

There’s a key in the hash for everyone who has a library card. For each key (that is, for
each library patron), there’s a value that is either a number of books checked out, or
undef if that person’s library card has never been used.

The exists Function

To see whether a key exists in the hash, (that is, whether someone has a library card or
not), use the exists function, which returns a true value if the given key exists in the
hash, whether the corresponding value is true or not:

if (exists $books{"dino"}) {
print "Hey, there's a library card for dino!\n";

That is to say, exists $books{"dino"} will return a true value if (and only if) dino is
found in the list of keys from keys %books.

The delete Function
The delete function removes the given key (and its corresponding value) from the hash.
(If there’s no such key, its work is done; there’s no warning or error in that case.)

my $person = "betty";
delete $hooks{$person}; # Revoke the library card for $person

Typical Use of aHash | 103



Note that this is not the same as storing undef into that hash element—in fact, it’s
precisely the opposite! Checking exists($books{"betty"}) will give opposite results in
these two cases; after a delete, the key can’t exist in the hash, but after storing undef,
the key must exist.

In the example, delete versus storing undef is the difference between taking away Betty’s
library card versus giving her a card that has never been used.

Hash Element Interpolation

You can interpolate a single hash element into a double-quoted string just as you’d
expect:
foreach $person (sort keys %books) { # each patron, in order

if ($books{$person}) {
print "$person has $books{$person} items\n"; # fred has 3 items

}

But there’s no support for entire hash interpolation; "%books" is just the six characters
of (literally) %books.” So you’ve seen all of the magical characters that need backslashing
in double quotes: $ and @, because they introduce a variable that Perl will try to inter-
polate; ", since that’s the quoting character that would otherwise end the double-
quoted string; and \, the backslash itself. Any other characters in a double-quoted string
are nonmagical and should simply stand for themselves.T

The %ENV hash

Your Perl program, like any other program, runs in a certain environment, and your
program can look at the environment to get information about its surroundings. Perl
stores this information in the %ENV hash. For instance, you’ll probably see a PATH key in
%ENV:

print "PATH is $ENV{PATH}\n";
Depending on your particular setup and operating system, you’ll see something like
this:

PATH is /usr/local/bin:/usr/bin:/sbin:/usr/sbin

Most of these are set for you automatically, but you can add to the environment your-
self. How you do this depends on your operating system and shell:

" Well, it couldn’t really be anything else; if we tried to print out the entire hash, as a series of key-value pairs,
that would be nearly useless. And, as you saw in the last chapter, the percent sign is frequently used in
printf format strings; giving it another meaning here would be terribly inconvenient.

T But do beware of the apostrophe ('), left square bracket ([), left curly brace ({), the small arrow (->), or double
colon (::) following a variable name in a double-quoted string, as they could perhaps mean something you
didn’t intend.

104 | Chapter6: Hashes



Bourne shell

$ CHARACTER=Fred; export CHARACTER
$ export CHARACTER=Fred

csh
% setenv CHARACTER=Fred
DOS or Windows command

C:> set CHARACTER=Fred

Once you set these environment variables outside of your Perl program, you can access
them inside your Perl program:

print "CHARACTER is $ENV{CHARACTER}\n";

Exercises

See Appendix A for answers to the following exercises:

1. [7] Write a program that will ask the user for a given name and report the corre-
sponding family name. Use the names of people you know, or (if you spend so
much time on the computer that you don’t know any actual people) use the fol-
lowing table:

Input Output
fred flintstone
barney rubble

wilma flintstone

2. [15] Write a program that reads a series of words (with one word per line”) until
end-of-input, then prints a summary of how many times each word was seen. (Hint:
remember that when an undefined value is used as if it were a number, Perl auto-
matically converts it to 0. It may help to look back at the earlier exercise that kept
a running total.) So, if the input words were fred, barney, fred, dino, wilma, fred
(all on separate lines), the output should tell us that fred was seen 3 times. For
extra credit, sort the summary words in ASCII order in the output.

3. [15] Write a program to list all of the keys and values in %ENV. Print the results in
two columns in ASClIIbetical order. For extra credit, arrange the output to vertically
align both columns. The length function can help you figure out how wide to make
the first column. Once you get the program running, try setting some new envi-
ronment variables and ensuring that they show up in your output.

" It has to be one word per line because we still haven’t shown you how to extract individual words from a line
of input.

Exercises | 105






CHAPTER 7
In the World of Reqular Expressions

Perl has many features that set it apart from other languages. Of all those features, one
of the most important is its strong support for regular expressions. These allow fast,
flexible, and reliable string handling.

But that power comes at a price. Regular expressions are actually tiny programs in their
own special language, built inside Perl. (Yes, you’re about to learn another program-
ming language!” Fortunately it’s a simple one.) So in this chapter, you’ll visit the world
of regular expressions, where (mostly) you can forget about the world of Perl. Then, in
the next chapter, we’ll show you where this world fits into Perl’s world.

Regular expressions aren’t merely part of Perl; they’re also found in sed and awk,
procmail, grep, most programmers’ text editors such as vi and emacs, and even in more
esoteric places. If you’ve seen some of these already, you’re ahead of the game. Keep
watching, and you’ll see many more tools that use or support regular expressions, such
as search engines on the Web (often written in Perl), email clients, and others. The bad
news is that everybody’s regular expressions have slightly different syntax, so you may
need to learn to include or omit an occasional backslash.

What Are Regular Expressions?

A regular expression, often called a pattern in Perl, is a template that either matches or
doesn’t match a given string.T That is, there are an infinite number of possible text
strings; a given pattern divides that infinite set into two groups: the ones that match,
and the ones that don’t. There’s never any kinda-sorta-almost-up-to-here wishy-washy
matching: either it matches or it doesn’t.

A pattern may match just one possible string, or just two or three, or a dozen, or a
hundred, or an infinite number. Or it may match all strings except for one, or except

" Some might argue that regular expressions are not a complete programming language. We won’t argue.

T Purists would ask for a more rigorous definition. But then again, purists say that Perl’s patterns aren’t really
regular expressions. If you're serious about regular expressions, we highly recommend the book Mastering
Regular Expressions by Jeffrey Friedl (O’Reilly).

107



for some, or except for an infinite number.” We already referred to regular expressions
as being little programs in their own simple programming language. It’s a simple lan-
guage because the programs have just one task: to look at a string and say “it matches”
or “it doesn’t match.”T That’s all they do.

One of the places you’re likely to have seen regular expressions is in the Unix grep
command, which prints out text lines matching a given pattern. For example, if you
wanted to see which lines in a given file mention flint and, somewhere later on the
same line, stone, you might do something like this, with the Unix grep command:

$ grep 'flint.*stone' chapter*.txt

chapter3.txt:a piece of flint, a stone which may be used to start a fire by striking

chapter3.txt:found obsidian, flint, granite, and small stones of basaltic rock,

which
chapter9.txt:a flintlock rifle in poor condition. The sandstone mantle held several

Don’t confuse regular expressions with shell filename-matching patterns, called
globs. A typical glob is what you use when you type *.pm to the Unix shell to match all
filenames that end in . pm. The previous example uses a glob of chapter*. txt. (You may
have noticed that you had to quote the pattern to prevent the shell from treating it like
a glob.) Although globs use a lot of the same characters that you use in regular expres-
sions, those characters are used in totally different ways.¥ We’ll visit globs later, in
Chapter 13, but for now try to put them totally out of your mind.

Using Simple Patterns

To match a pattern (regular expression) against the contents of $_, simply put the pat-
tern between a pair of forward slashes (/), like we do here:
$_ = "yabba dabba doo";
if (/abba/) {
print "It matched!\n";
}

The expression /abba/ looks for that four-letter string in $_; if it finds it, it returns a
true value. In this case, it’s found more than once, but that doesn’t make any difference.
If it’s found at all, it’s a match; if it’s not in there at all, it fails.

Because the pattern match is generally being used to return a true or false value, it is
almost always found in the conditional expression of if or while.

" And as you’ll see, you could have a pattern that always matches or that never does. In rare cases, even these
may be useful. Generally, though, they’re mistakes.

T The programs also pass back some information that Perl can use later. One such piece of information is the
“regular expressions memories” that you’ll learn about a little later.

¥ Globs are also (alas) sometimes called patterns. What’s worse, though, is that some bad Unix books for
beginners (and possibly written by beginners) have taken to calling globs “regular expressions,” which they
certainly are not. This confuses many folks at the start of their work with Unix.

108 | Chapter7: Inthe World of Regular Expressions



All of the usual backslash escapes that you can put into double-quoted strings are
available in patterns, so you could use the pattern /coke\tsprite/ to match the 11
characters of coke, a tab, and sprite.

About Metacharacters

Of course, if patterns matched only simple literal strings, they wouldn’t be very useful.
That’s why there are a number of special characters, called metacharacters, that have
special meanings in regular expressions.

For example, the dot (.) is a wildcard character—it matches any single character except
a newline (which is represented by "\n"). So, the pattern /bet.y/ would match betty.
Or it would match betsy, or bet=y, or bet.y, or any other string that has bet, followed
by any one character (except a newline), followed by y. It wouldn’t match bety or
betsey, though, since those don’t have exactly one character between the t and the y.
The dot always matches exactly one character.

So, if you wanted to match a period in the string, you could use the dot. But that would
match any possible character (except a newline), which might be more than you wan-
ted. If you wanted the dot to match just a period, you can simply backslash it. In fact,
that rule goes for all of Perl’s regular expression metacharacters: a backslash in front
of any metacharacter makes it nonspecial. So, the pattern /3\.14159/ doesn’t have a
wildcard character.

So the backslash is our second metacharacter. If you mean a real backslash, just use a
pair of them—a rule that applies just as well everywhere else in Perl.

Simple Quantifiers

It often happens that you’ll need to repeat something in a pattern. The star (*) means
to match the preceding item zero or more times. So, /fred\t*barney/ matches any
number of tab characters between fred and barney. That is, it matches
"fred\tbarney" with one tab, or "fred\t\tbarney" with two tabs, or "fred\t\t\tbar
ney" with three tabs, or even "fredbarney" with nothing in between at all. That’s be-
cause the star means “zero or more”—so you could even have hundreds of tab char-
acters in between, but nothing other than tabs. You may find it helpful to think of the
star as saying, “That previous thing, any number of times, even zero times” (because *
is the “times” operator in multiplication).

What if you wanted to allow something besides tab characters? The dot matches any
character,” so .* will match any character, any number of times. That means that the

" Except newline. But we’re going to stop reminding you of that so often because you know it by now. Most
of the time it doesn’t matter, anyway, because your strings will most often not have newlines. But don’t forget
this detail because someday a newline will sneak into your string and you’ll need to remember that the dot
doesn’t match a newline.

Using Simple Patterns | 109



pattern /fred.*barney/ matches “any old junk” between fred and barney. Any line that
mentions fred and (somewhere later) barney will match that pattern. We often
call .* the “any old junk” pattern because it can match any old junk in your strings.

The star is formally called a quantifier, meaning that it specifies a quantity of the pre-
ceding item. But it’s not the only quantifier; the plus (+) is another. The plus means to
match the preceding item one or more times: /fred +barney/ matches if fred and
barney are separated by spaces and only spaces. (The space is not a metacharacter.)
This won’t match fredbarney, since the plus means that there must be one or more
spaces between the two names, so at least one space is required. It may be helpful to
think of the plus as saying, “that last thing, plus (optionally) more of the same thing.”

There’s a third quantifier like the star and plus, but more limited. It’s the question mark
(?), which means that the preceding item is optional. That is, the preceding item may
occur once or not at all. Like the other two quantifiers, the question mark means that
the preceding item appears a certain number of times. It’s just that in this case the item
may match one time (if it’s there) or zero times (if it’s not). There aren’t any other
possibilities. So, /bamm-?bamm/ matches either spelling: bamm-bamm or bammbamm. This is
easy to remember, since it’s saying, “That last thing, maybe? Or maybe not?”

All three of these quantifiers must follow something, since they tell how many times
the previous item may repeat.

Grouping in Patterns

Asin mathematics, parentheses (( )) may be used for grouping. So, parentheses are also
metacharacters. As an example, the pattern /fred+/ matches strings like
freddddddddd, but strings like that don’t show up often in real life. But the pat-
tern /(fred)+/ matches strings like fredfredfred, which is more likely to be what you
wanted. And what about the pattern /(fred)*/? That matches strings like hello,
world.”

The parentheses also give us a way to reuse part of the string directly in the match. We
can use back references to refer to text that we matched in the parentheses. We denote
aback reference as a backslash followed by a number, like \1, \2, and so on. The number
denotes the parentheses group.

When we use the parentheses around the dot, we match any nonnewline character.
We can match again whichever character we matched in those parentheses by using
the back reference \1:
§ = "abba";
if (/(.)\1/) { # matches 'bb'
print "It matched same character next to itself!\n";

}

" The star means to match zero or more repetitions of fred. When you’re willing to settle for zero, it’s hard to
be disappointed! That pattern will match any string, even the empty string.

110 | Chapter7: Inthe World of Regular Expressions



The (.)\1 says that we have to match a character right next to itself. At first try, the
(.) matches an a, but when it looks at the back reference—which says the next thing
it must match is a—that trial fails. Perl starts over, using the (.) to match the next
character, a b. The back reference \1 now says that the next character in the pattern is
b, which Perl can match.

The back reference doesn’t have to be right next to the parentheses group. The next
pattern matches any four nonnewline characters after a literal y, and we use the \1 back
reference to denote that we want to match the same four characters after the d:

$_ = "yabba dabba doo";

if (/y(....) d\1/) {
print "It matched the same after y and d!\n";

}

We can use multiple groups of parentheses, and each group gets its own back reference.
We want to match a nonnewline character in a parentheses group, followed by another
nonnewline character in a parentheses group. After those two groups, we use the back
reference \2 followed by the back reference \1. In effect, we’re matching a palindrome
such as abba:

$_ = "yabba dabba doo";

if (/y(.)(.)\2\1/) { # matches 'abba’

print "It matched the same after y and d!'\n";
}

Now, this brings up the question “How do I know which group gets which number?”
Fortunately, Larry did the easiest thing for humans to understand: just count the order
of the opening parenthesis and ignore nesting:
$_ = "yabba dabba doo";
if (/y(()()\3\2) d\1/) {
print "It matched!\n";
}

You might be able to see this if you write out the regular expression to see the different
parts (although this isn’t a valid regular expression’):
( # first open parenthesis
(.) # second open parenthesis
(.) # third open parenthesis
\3
\2
)

Perl 5.10 has a new way to denote back references. Instead of using the backslash and
a number, it uses \g{N}, where N is the number of the back reference that you want to
use. This notation can make it easier for us to show what we intend in the pattern.

" You can expand regular expressions like this by using the /x flag, but we’re not showing that to you until the
next chapter.

Using Simple Patterns | 111



Consider the problem where you want to use a back reference next to a part of the
pattern that is a number. In this regular expression, we want to use \1 to repeat the
character we matched in the parentheses and follow that with the literal string 11:

$ = "aalibb";

if (/(.)\111/) {
print "It matched!\n";

}

Perl has to guess what we mean there. Is that \1, \11, or \111? Perl will create as many
back references as we need, so it assumes that we mean \111. Since we don’t have 111
(or 11) parentheses groups, Perl complains when it tries to compile the program.

By using \g{1}, we disambiguate the back reference and the literal parts of the pattern:”

use 5.010;

$_ = "aalibb";

if (/()\e{1h11/) {
print "It matched!\n";

}

With the \g{N} notation, we can also use negative numbers. Instead of specifying the
absolute number of the parentheses group, we can specify a relative back reference. We
can rewrite the last example to use -1 as the number to do the same thing:

use 5.010;

$ = "aalibb";

if (/()\e{-1311/) {
print "It matched!\n";

}

If T decide to add more to that pattern later, I don’t have to remember to change the
back reference. If I add another parentheses group, I change the absolute numbering
of all the back references. The relative back reference, however, just counts from its
own position and refers to the group right before it no matter its absolute number, so
it stays the same:

use 5.010;

$ = "aalibb";

if (/(.)()\g{-1}11/) {

print "It matched!\n";
}

Alternatives

The vertical bar (]), often pronounced “or” in this usage, means that either the left side
may match, or the right side. That is, if the part of the pattern on the left of the bar fails,

" In general, we could leave the curly braces off the \g{1} and just use \g1, but in this case we need the braces.
Instead of thinking about it, we just use them all the time.

112 | Chapter7: Inthe World of Regular Expressions



the part on the right gets a chance to match. So, /fred|barney|betty/ will match any
string that mentions fred, or barney, or betty.

Now you can make patterns like /fred( |\t)+barney/, which matches if fred and
barney are separated by spaces, tabs, or a mixture of the two. The plus means to repeat
one or more times; each time it repeats, the ( |\t) has the chance to match either a
space or a tab.” There must be at least one of those characters between the two names.

If you wanted the characters between fred and barney to all be the same, you could
rewrite that pattern as /fred( +|\t+)barney/. In this case, the separators must be all
spaces or all tabs.

The pattern /fred (and|or) barney/ matches any string containing either of the two
possible strings: fred and barney, or fred or barney.T You could match the same two
strings with the pattern /fred and barney|fred or barney/, but that would be too much
typing. It would probably also be less efficient, depending upon what optimizations
are built into the regular expression engine.

Character Classes

A character class, a list of possible characters inside square brackets ([ ]), matches any
single character from within the class. It matches just one single character, but that one
character may be any of the ones listed.

For example, the character class [abcwxyz] may match any one of those seven charac-
ters. For convenience, you may specify a range of characters with a hyphen (-) so that
class may also be written as [a-cw-z]. That didn’t save much typing, but it’s more usual
to make a character class like [a-zA-Z] to match any one letter out of that set of 52.%
You may use the same character shortcuts as in any double-quoted string to define a
character, so the class [\000-\177] matches any seven-bit ASCII character.I Of course,
a character class will be just part of a full pattern; it will never stand on its own in Perl.
For example, you might see code that says something like this:

$ = "The HAL-9000 requires authorization to continue.";

if (/HAL-[0-9]+/) {

print "The string mentions some model of HAL computer.\n";

}

" This particular match would normally be done more efficiently with a character class, as you’ll see later in
this chapter.

T Note that the words and and or are not operators in regular expressions! They are shown here in a fixed-width
typeface because they’re part of the strings.

¥ Notice that those 52 don’t include letters like A, E, I, @, and U. But when Unicode processing is available,
that particular character range is noticed and enhanced to automatically do the right thing.

I At least, if you use ASCII and not EBCDIC.

Character Classes | 113



Sometimes, it’s easier to specify the characters left out, rather than the ones within the
character class. A caret () at the start of the character class negates it. That is, [*def]
will match any single character except one of those three. And [*n\-z] matches any
character except for n, hyphen, or z. (Note that the hyphen is backslashed because it’s
special inside a character class. But the first hyphen in /HAL-[0-9]+/ doesn’t need a
backslash because hyphens aren’t special outside a character class.)

Character Class Shortcuts

Some character classes appear so frequently that they have shortcuts. For example, the
character class for any digit, [0-9], may be abbreviated as \d. Thus, the pattern from
the example about HAL could be written /HAL-\d+/ instead.

The shortcut \w is a so-called word character: [A-Za-z0-9_]. If your “words” are made
up of ordinary letters, digits, and underscores, you’ll be happy with this. Most of the
rest of us have words made up of ordinary letters, hyphens, and apostrophes,” and so
we’d like to change this definition of “word.” As of this writing, the Perl developers are
working on it, but it’s not available yet.T So use this one only when you want ordinary
letters, digits, and underscores.

Of course, \w doesn’t match a “word”; it merely matches a single “word” character. To
match an entire word, though, the plus modifier is handy. A pattern like /fred \w+
barney/ will match fred and a space, then a “word,” then a space and barney. That is,
it'll match if there’s one word+ between fred and barney, set off by single spaces.

As you may have noticed in that previous example, it might be handy to be able to
match spaces more flexibly. The \s shortcut is good for whitespace; it’s the same as
[\f\t\n\r ]. Thatis, it’s the same as a class containing the five whitespace characters:
form-feed, tab, newline, carriage return, and the space character itself. These are the
characters that merely move the printing position around; they don’t use any ink. Still,
like the other shortcuts you’ve just seen, \s matches just a single character from the
class, so it’s usual to use either \s* for any amount of whitespace (including none at
all), or \s+ for one or more whitespace characters. (In fact, it’s rare to see \s without
one of those quantifiers.) Since all of those whitespace characters look about the same
to us humans, you can treat them all in the same way with this shortcut.

*

At least, in usual English you do. In other languages, you may have different components of words. And
when looking at ASCII-encoded English text, you have the problem that the single quote and the apostrophe
are the same character, so it’s not possible in isolation to tell whether cats' is a word with an apostrophe or
a word at the end of a quotation. This is probably one reason that computers haven’t been able to take over
the world yet.

T Except to a limited (but nevertheless useful) extent in connection with locales; see the perllocale manpage.

¥ We’re going to stop saying “word” in quotes so much; you know by now that these letter-digit-underscore
words are the ones we mean.

114 | Chapter7: Inthe World of Regular Expressions



Perl 5.10 adds more character classes for whitespace. The \h shortcut only matches
horizontal whitespace, which you can write as the character class [\t ] to match a tab
and a space. The \v shortcut only matches vertical whitespace, or [\f\n\r]. The \R
shortcut matches any sort of linebreak, meaning that you don’t have to think about
which operating system you’re using and what it thinks a linebreak is since \R will figure
it out.

Negating the Shortcuts

Sometimes you may want the opposite of one of these three shortcuts. That is, you may
want ["\d], [*\w], or [*\s], meaning a nondigit character, a nonword character, or a
nonwhitespace character. That’s easy enough to accomplish by using their uppercase
counterparts: \D, \W, or \S. These match any character that their counterpart would
not match.

Any of these shortcuts will work either in place of a character class (standing on their
own in a pattern), or inside the square brackets of a larger character class. That means
that you could now use /[ \dA-Fa-f]+/ to match hexadecimal (base 16) numbers, which
use letters ABCDEF (or the same letters in lowercase) as additional digits.

Another compound character class is [\d\D], which means any digit, or any nondigit.
That is to say, any character at all! This is a common way to match any character, even
anewline. (As opposed to ., which matches any character except a newline.) And then
there’s the totally useless [*\d\D], which matches anything that’s not either a digit or
a nondigit. Right—nothing!

Exercises

See Appendix A for answers to the following exercises (remember, it’s normal to be
surprised by some of the things that regular expressions do; that’s one reason that the
exercises in this chapter are even more important than the others. Expect the unex-
pected):

1. [10] Make a program that prints each line of its input that mentions fred. (It
shouldn’t do anything for other lines of input.) Does it match if your input string
is Fred, frederick, or Alfred? Make a small text file with a few lines mentioning
“fred flintstone” and his friends, then use that file as input to this program and the
ones later in this section.

2. [6] Modify the previous program to allow Fred to match as well. Does it match
now if your input string is Fred, frederick, or Alfred? (Add lines with these names
to the text file.)

3. [6] Make a program that prints each line of its input that contains a period (.),
ignoring other lines of input. Try it on the small text file from the previous exercise:
does it notice Mr. Slate?

Exercises | 115



4. [8] Make a program that prints each line that has a word that is capitalized but not
ALL capitalized. Does it match Fred but neither fred nor FRED?

5. [8] Make a program that prints each line that has a two of the same nonwhitespace
characters next to each other. It should match lines that contain words such as
Mississippi, Bamm-Bamm, or 11ama.

6. [8] Extra credit exercise: write a program that prints out any input line that men-
tions both wilma and fred.

116 | Chapter7: Inthe World of Regular Expressions



CHAPTER 8
Matching with Regular Expressions

In the previous chapter, you visited the world of regular expressions. Now you’ll see
how that world fits into the world of Perl.

Matches with m//

We’ve been writing patterns in pairs of forward slashes, like /fred/. But this is actually
a shortcut for them// (pattern match) operator. As you saw with the qw// operator, you
may choose any pair of delimiters to quote the contents. So you could write that same
expression as m(fred), m<fred>, m{fred}, or m[ fred] using those paired delimiters, or as
m,fred,, m!fred!, m*fred*, or many other ways using nonpaired delimiters."

The shortcut is that if you choose the forward slash as the delimiter, you may omit the
initial m. Since Perl folks love to avoid typing extra characters, you’ll see most pattern
matches written using slashes, as in /fred/.

Of course, you should wisely choose a delimiter that doesn’t appear in your pattern.t
If you wanted to make a pattern to match the beginning of an ordinary web URL, you
might start to write /http:\/\// to match the initial "http://". But that’s easier to read,
write, maintain, and debug if you use a better choice of delimiter: m¥http://%.F It’s
common to use curly braces as the delimiter. If you use a programmer’s text editor, it

" Nonpaired delimiters are the ones that don’t have a different “left” and “right” variety; the same punctuation
mark is used for both ends.

T If you’re using paired delimiters, you shouldn’t generally have to worry about using the delimiter inside the
pattern, since that delimiter will generally be paired inside your pattern. That is, m(fred(.*)barney) and
m{\w{2,}} and m[wilma[\n\t]+betty] are all fine, even though the pattern contains the quoting character,
since each “left” has a corresponding “right.” But the angle brackets (< and ») aren’t regular expression
metacharacters, so they may not be paired; if the pattern were m{ (\d+)\s*>=?\s*(\d+) }, quoting it with angle
brackets would mean having to backslash the greater-than sign so that it wouldn’t prematurely end the
pattern.

¥ Remember, the forward slash is not a metacharacter, so you don’t need to escape it when it’s not the delimiter.

117



probably has the ability to jump from an opening curly brace to the corresponding
closing one, which can be handy in maintaining code.

Option Modifiers

There are several option modifier letters, sometimes called flags, which may be appen-
ded as a group right after the ending delimiter of a regular expression to change its
behavior from the default.

Case-Insensitive Matching with /i

To make a case-insensitive pattern match, so you can match FRED as easily as fred or
Fred, use the /i modifier:
print "Would you like to play a game? ";
chomp($_ = <STDIN>);
if (/yes/i) { # case-insensitive match
print "In that case, I recommend that you go bowling.\n";

}

Matching Any Character with /s

By default, the dot (.) doesn’t match newline, and this makes sense for most “look
within a single line” patterns. If you might have newlines in your strings, and you want
the dot to be able to match them, the /s modifier will do the job. It changes every
dot” in the pattern to act like the character class [\d\D] does, which is to match any
character, even if it is a newline. Of course, you have to have a string with newlines for
this to make a difference:

$_ = "I saw Barney\ndown at the bowling alley\nwith Fred\nlast night.\n";

if (/Barney.*Fred/s) {

print "That string mentions Fred after Barney!\n";

}

Without the /s modifier, that match would fail, since the two names aren’t on the same
line.

Adding Whitespace with /x

The third modifier you’ll see allows you to add arbitrary whitespace to a pattern to
make it easier to read:

/-2\d+\.?\d*/ # what is this doing?
/ -2 \d+ \.? \d*¥ /x # a little better

" If you wish to change just some of them, and not all, you’ll probably want to replace just those few with

[\d\p].

118 | Chapter8: Matching with Regular Expressions



Since the /x allows whitespace inside the pattern, a literal space or tab character within
the pattern is ignored. You could use a backslashed space or \t (among many other
ways) to match these, but it’s more common to use \s (or \s* or \s+) when you want
to match whitespace anyway.

Remember that in Perl, comments may be included as part of the whitespace. Now we
can put comments into that pattern to tell what it’s really doing:

/
-? # an optional minus sign
\d+ # one or more digits before the decimal point
\.? # an optional decimal point
\d* # some optional digits after the decimal point
/x # end of string

Since the pound sign indicates the start of a comment, use \# or [#] in the rare case
that you need to match a pound sign. And be careful not to include the closing delimiter
inside the comments, or it will prematurely terminate the pattern.

Combining Option Modifiers

If you have more than one option modifier to use on the same pattern, they may be
used one after the other (their order isn’t significant):
if (/barney.*fred/is) { # both /i and /s
print "That string mentions Fred after Barney!\n";

}

Or as a more expanded version with comments:

if (m{
barney # the little guy
K # anything in between
fred # the loud guy
}six) { # all three of /s and /i and /x
print "That string mentions Fred after Barney!\n";

}

Note the shift to curly braces here for the delimiters as well, allowing programmer-style
editors to easily bounce from the beginning to the end of the regular expression.

Other Options

There are many other option modifiers available. We’ll cover those as we get to them,
or you can read about them in the perlop manpage and in the descriptions of m// and
the other regular expression operators that you’ll see later in this chapter.

Option Modifiers | 119



Anchors

By default, if a pattern doesn’t match at the start of the string, it can “float” on down
the string, trying to match somewhere else. But there are a number of anchors that may
be used to hold the pattern at a particular point in a string.

The caret” anchor (*) marks the beginning of the string, while the dollar sign ($) marks
the end.T So the pattern /*fred/ will match fred only at the start of the string; it
wouldn’t match manfred mann. And /rock$/ will match rock only at the end of the string;
it wouldn’t match knute rockne.

Sometimes you’ll want to use both of these anchors to ensure that the pattern matches
an entire string. A common example is /*\s*$/, which matches a blank line. But this
“blank” line may include some whitespace characters, like tabs and spaces, which are
invisible to you and me. Any line that matches that pattern looks just like any other
one on paper, so this pattern treats all blank lines as equivalent. Without the anchors,
it would match nonblank lines as well.

Word Anchors

Anchors aren’t just at the ends of the string. The word-boundary anchor, \b, matches
at either end of a word.¥ So you can use /\bfred\b/ to match the word fred but not
frederick oralfred ormanfred mann. This is similar to the feature often called something
like “match whole words only” in a word processor’s search command.

Alas, these aren’t words as you and I are likely to think of them; they’re those \w-type
words made up of ordinary letters, digits, and underscores. The \b anchor matches at
the start or end of a group of \w characters.

In Figure 8-1, there’s a gray underline under each “word,” and the arrows show the
corresponding places where \b could match. There are always an even number of word
boundaries in a given string, since there’s an end-of-word for every start-of-word.

" Yes, you've seen the caret used in another way in patterns. As the first character of a character class, it negates
the class. But outside of a character class, it’s a metacharacter in a different way, being the start-of-string
anchor. There are only so many characters, so you have to use some of them twice.

T Actually, it matches either the end of the string or at a newline at the end of the string. That’s so you can
match the end of the string whether it has a trailing newline or not. Most folks don’t worry about this
distinction much, but once in along while it’simportant to remember that /~fred$/ will match either "fred" or
"fred\n" with equal ease.

* Some regular expression implementations have one anchor for start-of-word and another for end-of-word,
but Perl uses \b for both.

120 | Chapter8: Matching with Regular Expressions



That ' s "word" boundary!

TInfoer 1

Figure 8-1. Word-boundary matches with \b

The “words” are sequences of letters, digits, and underscores; that is, a word in this
sense is what’s matched by /\w+/. There are five words in that sentence: That, s, a,
word, and boundary.” Notice that the quote marks around word don’t change the word
boundaries; these words are made of \w characters.

Each arrow points to the beginning or the end of one of the gray underlines, since the
word-boundary anchor \b matches only at the beginning or the end of a group of word
characters.

The word-boundary anchor is useful to ensure that we don’t accidentally find cat in
delicatessen, dog in boondoggle, or fish in selfishness. Sometimes you’ll want just
one word-boundary anchor, as when using /\bhunt/ to match words like hunt or hunt
ing or hunter, but not shunt, or when using /stone\b/ to match words like sandstone
or flintstone but not capstones.

The nonword-boundary anchor is \B; it matches at any point where \b would not
match. So the pattern /\bsearch\B/ will match searches, searching, and searched, but
not search or researching.

The Binding Operator, =~

Matching against $_ is merely the default; the binding operator, =~, tells Perl to match
the pattern on the right against the string on the left, instead of matching against $_.T
For example:

my $some other = "I dream of betty rubble.";

if ($some_other =~ /\brub/) {
print "Aye, there's the rub.\n";

The first time you see it, the binding operator looks like some kind of assignment
operator. But it’s no such thing! It is simply saying, “This pattern match, which would
attach to $_ by default—make it work with this string on the left instead.” If there’s no
binding operator, the expression is using $ by default.

" You can see why we wish that we could change the definition of “word”; That's should be one word, not
two words with an apostrophe in between. And even in text that may be mostly ordinary English, it’s normal
to find a soupgon of other characters spicing things up.

T The binding operator is also used with some other operations besides the pattern match, as you’ll see later.

The Binding Operator, =~ | 121



In the (somewhat unusual) example that follows, $likes perl is set to a Boolean value
according to what the user typed at the prompt. This is a little on the quick-and-dirty
side because the line of input itself is discarded. This code reads the line of input, tests
that string against the pattern, then discards the line of input.” It doesn’t use or change
$_atall.

print "Do you like Perl? ";

my $likes perl = (<STDIN> =~ /\byes\b/i);

... # Time passes...

if ($likes_perl) {

print "You said earlier that you like Perl, so...\n";

}...

Because the binding operator has fairly high precedence, the parentheses around the
pattern-test expression aren’t required, so the following line does the same thing as the
one above—it stores the result of the test (and not the line of input) into the variable:

my $likes perl = <STDIN> =~ /\byes\b/i;

Interpolating into Patterns

The regular expression is double-quote interpolated, just as if it were a double-quoted
string. This allows us to write a quick grep-like program like this:

#!/usr/bin/perl -w
my $what = "larry";

while (<>) {
if (/~($what)/) { # pattern is anchored at beginning of string
print "We saw $what in beginning of $_";
}
}

The pattern will be built up out of whatever’s in $what when we run the pattern match.

In this case, it’s the same as if we had written /*(larry)/, looking for larry at the start
of each line.

But we didn’t have to get the value of $what from a literal string; we could have gotten
it instead from the command-line arguments in @ARGV:
my $what = shift @ARGV;

Now, if the first command-line argument were fred|barney, the pattern be-
comes /*(fred|barney)/, looking for fred or barney at the start of each line.T The

" Remember, the line of input is not automatically stored into $_ unless the line-input operator (<STDIN>) is all
alone in the conditional expression of a while loop.

T The astute reader will know that you can’t generally type fred|barney as an argument at the command line
because the vertical bar is a shell metacharacter. See the documentation to your shell to learn about how to
quote command-line arguments.

122 | Chapter8: Matching with Regular Expressions



parentheses (which weren’t really necessary when searching for larry) are important
now because without them we’d be matching fred at the start or barney anywhere in
the string.

With that line changed to get the pattern from @ARGV, this program resembles the Unix
grep command. But we have to watch out for metacharacters in the string. If $what
contains 'fred(barney', the pattern would look like /*(fred(barney)/, and you know
that can’t work right—it’ll crash your program with an invalid regular expression error.
With some advanced techniques, you can trap this kind of error (or prevent the magic
of the metacharacters in the first place) so that it won’t crash your program. But for
now, just know that if you give your users the power of regular expressions, they’ll also
need the responsibility to use them correctly.

The Match Variables

So far, when we’ve put parentheses into patterns, they’ve been used only for their ability
to group parts of a pattern together. But parentheses also trigger the regular expression
engine’s memory. The memory holds the part of the string matched by the part of the
pattern inside parentheses. If there is more than one pair of parentheses, there will be
more than one memory. Each regular expression memory holds part of the original
string, not part of the pattern.

Since these variables hold strings, they are scalar variables; in Perl, they have names
like $1 and $2. There are as many of these variables as there are pairs of memory
parentheses in the pattern. As you’d expect, $4 means the string matched by the fourth
set of parentheses.™

These match variables are a big part of the power of regular expressions because they
let us pull out the parts of a string:

$_ = "Hello there, neighbor";
if (/\s(\w+),/) { # memorize the word between space and comma
print "the word was $1\n"; # the word was there

}

Or you could use more than one memory at once:

$ = "Hello there, neighbor";
if (/(\s+) (\s+), (\s+)/) {
print "words were $1 $2 $3\n";

}

" In this case, you would use an eval block to trap the error, or you would quote the interpolated text using
quotemeta (or its \Q equivalent form) so that it’s no longer treated as a regular expression.

T This is the same string that the back reference \4 would refer to during the pattern match. But these aren’t
two different names for the same thing; \4 refers back to the memory during the pattern while it is trying to
match, while $4 refers to the memory of an already completed pattern match. For more information on back
references, see the perlre manpage.

The Match Variables | 123



That tells us that the words were Hello there neighbor. Notice that there’s no comma
in the output. Because the comma is outside of the memory parentheses in the pattern,
there is no comma in memory two. Using this technique, we can choose exactly what
we want in the memories, as well as what we want to leave out.

You could even have an empty match variable” if that part of the pattern might be empty.
That is, a match variable may contain the empty string:
my $dino = "I fear that I'll be extinct after 1000 years.";

if ($dino =~ /(\d*) years/) {
print "That said '$1' years.\n"; # 1000

}

$dino = "I fear that I'll be extinct after a few million years.";
if ($dino =~ /(\d*) years/) {
print "That said '$1' years.\n"; # empty string

}

The Persistence of Memory

These match variables generally stay around until the next successful pattern match.T
That is, an unsuccessful match leaves the previous memories intact, but a successful
one resets them all. This correctly implies that you shouldn’t use these match variables
unless the match succeeded; otherwise, you could be seeing a memory from some pre-
vious pattern. The following (bad) example is supposed to print a word matched from
$wilma. But if the match fails, it will use whatever leftover string happens to be found
in $1.

$wilma =~ /(\w+)/; # BAD! Untested match result
print "Wilma's word was $1... or was it?\n";

This is another reason that a pattern match is almost always found in the conditional
expression of an if or while:
if ($wilma =~ /(\w+)/) {
print "Wilma's word was $1.\n";
} else {
print "Wilma doesn't have a word.\n";

}

Since these memories don’t stay around forever, you shouldn’t use a match variable
like $1 more than a few lines after its pattern match. If your maintenance programmer
adds a new regular expression between your regular expression and your use of $1,
you’ll be getting the value of $1 for the second match, rather than the first. For this
reason, if you need a memory for more than a few lines, it’s generally best to copy it

" Asopposed to an undefined one. If you have three or fewer sets of parentheses in the pattern, $4 will be undef.

T The actual scoping rule is much more complex (see the documentation if you need it), but as long as you
don’t expect the match variables to be untouched many lines after a pattern match, you shouldn’t have
problems.

124 | Chapter8: Matching with Regular Expressions



into an ordinary variable. Doing this helps make the code more readable at the same
time:
if ($wilma =~ /(\w+)/) {

my $wilma_word = $1;

}...

Later, in Chapter 9, you’ll see how to get the memory value directly into the variable at
the same time the pattern match happens, without having to use $1 explicitly.

Noncapturing Parentheses

So far you've seen parentheses that capture parts of a matched string and store them
in the memory variables, but what if you just want to use the parentheses to group
things? Consider a regular expression where we want to make part of it optional, but
capture only another part of it. In this example, we want “bronto” to be optional, but
to make it optional, we have to group that sequence of characters with parentheses.
Later in the pattern, we use an alternation to get either “steak” or “burger”, and we
want to know which one we found.

if (/(bronto)?saurus (steak|burger)/) {
print "Fred wants a $2\n";
}

Even if bronto is not there, its part of the pattern goes into $1. Perl just counts the order
of the opening parentheses to decide what the memory variables will be. The part that
we want to remember ends up in $2. In more complicated patterns, this situation can
get quite confusing.

Fortunately, Perl’s regular expressions have a way to use parentheses to group things
but not trigger the memory variables. We call these noncapturing parentheses, and we
write them with a special sequence. We add a question mark and a colon after the
opening parenthesis, (?:),” and that tells Perl we use these parentheses only for

grouping.
We change our regular expression to use noncapturing parentheses around “bronto”,
and the part that we want to remember now shows up in $1:

if (/(?:bronto)?saurus (steak|burger)/) {
print "Fred wants a $1\n";
}

Later, when we change our regular expression, perhaps to include a possible bar-be-
que version of the brontosaurus burger, we can make the added “BBQ ” (with a space!)
optional and noncapturing, so the part we want to remember still shows up in $1.

" This is the fourth type of ? you'll see in regular expressions: a literal question mark (escaped), the 0 or 1
quantifier, the nongreedy modifier (next chapter), and now the start of an extended pattern.

The Match Variables | 125



Otherwise, we’d potentially have to shift all of our memory variable names every time
we add grouping parentheses to our regular expression:

if (/(?:bronto)?saurus (?:BBQ )?(steak|burger)/) {
print "Fred wants a $1\n";
}

Perl’s regular expressions have several other special parentheses sequences that do
fancy and complicated things like look-ahead, look-behind, embedded comments, or
even run code right in the middle of a pattern. You’ll have to check out the perlre
manpage for the details though.

Named Captures

You can capture parts of the string with parentheses and then look in the number
variables $1, $2, and so on to get the parts of the string that matched. Keeping track of
those number variables and what should be in them can be confusing even for simple
patterns. Consider this regular expression that tries to match the two names in $names:

use 5.010;

my $names = 'Fred or Barney';
if( $names =~ m/(\w+) and (\w+)/ ) { # won't match
say "I saw $1 and $2";

}

We don’t see the message from say because the string has an or where you were ex-
pecting an and. Maybe we were supposed to have it both ways, so we change the regular
expression to have an alternation to handle both and and or, adding another set of
parentheses to group the alternation:

use 5.010;

my $names = 'Fred or Barney';
if( $names =~ m/(\w+) (and|or) (\w+)/ ) { # matches now
say "I saw $1 and $2";

}

Oops! We see a message this time, but it doesn’t have the second name in it because
we added another set of memory parentheses. The value in $2 is from the alternation
and the second name was now in $3 (which we don’t output):

I saw Fred and or
We could have used the noncapturing parentheses to get around this, but the real

problem is that we have to remember which numbered parentheses belong to which
data we are trying to capture. Imagine how much tougher this gets with many captures.

126 | Chapter8: Matching with Regular Expressions



Instead of remembering numbers such as $1, Perl 5.10 lets us name the captures directly
in the regular expression. It saves the text it matches in the hash named %+: the key is
the label we used and the value is the part of the string that it matched. To label a match
variable, we use (?<LABEL>PATTERN) where we replace LABEL with our own names.” We
label the first capture namel and the second one name2, and look in $+{name1} and
$+{name2} to find their values:

use 5.010;

my $names = 'Fred or Barney';
if( $names =~ m/(?2<name1>\w+) (?:and|or) (?<name2>\w+)/ ) {
say "I saw $+{namel} and $+{name2}";

Now we see the right message:

I saw Fred and Barney
Once we label our captures, we can move them around and add additional capturing
parentheses without disturbing the order of the captures:

use 5.010;

my $names = 'Fred or Barney';
if( $names =~ m/((?<name2>\w+) (and|or) (?<name1>\w+))/ ) {
say "I saw $+{name1} and $+{name2}";

Now that we have a way to label matches, we also need a way to refer to them for back
references. Previously, we used either \1 or \g{1} for this. With a labeled group, we can
use the label in \g{label}:

use 5.010;
my $names = 'Fred Flinstone and Wilma Flinstone';
if( $names =~ m/(?<last_name>\w+) and \w+ \g{last name}/ ) {

say "I saw $+{last name}";

We can do the same thing with another syntax. Instead of using \g{label}, we use
\k<label>:T

use 5.010;

my $names = 'Fred Flinstone and Wilma Flinstone';

if( $names =~ m/(?<last_name>\w+) and \w+ \k<last name>/ ) {

" Perl also lets us use the Python syntax (?P<LABEL>...) to do the same thing.

T \k<label> is slightly different than \g{1label}. In patterns that have two or more labeled groups with the same
label, \k<label> and \g{label} always refers to the leftmost group, but \g{N} can be a relative back reference.
If you’re a fan of Python, you can also use the (?P=1abel) syntax.

The Match Variables | 127



say "I saw $+{last name}";

The Automatic Match Variables

There are three more match variables that you get for free,” whether the pattern has
memory parentheses or not. That’s the good news; the bad news is that these variables
have weird names.

Now, Larry probably would have been happy enough to call these by slightly-less-weird
names, like perhaps $gazoo or $ozmodiar. But those are names that you just might want
to use in your own code. To keep ordinary Perl programmers from having to memorize
the names of all of Perl’s special variables before choosing their first variable names in
their first programs, T Larry has given strange names to many of Perl’s built-in variables,
names that “break the rules.” In this case, the names are punctuation marks: $&, $°,
and $'. They’re strange, ugly, and weird, but those are their names.* The part of the
string that actually matched the pattern is automatically stored in $&:
if ("Hello there, neighbor" =~ /\s(\w+),/) {

print "That actually matched '$&'.\n";
}

That tells us that the part that matched was " there," (with a space, a word, and a
comma). Memory one, in $1, has just the five-letter word there, but $& has the entire
matched section.

Whatever came before the matched section is in $°, and whatever was after itisin $'.
Another way to say that is that $* holds whatever the regular expression engine had to
skip over before it found the match, and $' has the remainder of the string that the
pattern never got to. If you glue these three strings together in order, you’ll always get
back the original string:

if ("Hello there, neighbor" =~ /\s(\w+),/) {

print "That was ($7)($&)($').\n";
}

The message shows the string as (Hello)( there,)( neighbor), showing the three au-
tomatic match variables in action. This may seem familiar, and for good reason: these
automatic memory variables are what the pattern test program (from Chapter 7) was
using in its line of “mystery” code, to show what part of the string was being matched
by the pattern:

" Yeah, right. There’s no such thing as a free match. These are “free” only in the sense that they don’t require
match parentheses. Don’t worry; we’ll mention their real cost a little later, though.

T You should still avoid a few classical variable names like $ARGV, but these few are all in all caps. All of Perl’s
built-in variables are documented in the perlvar manpage.

¥ If you really can’t stand these names, check out the English module, which attempts to give all of Perl’s
strangest variables nearly normal names. But the use of this module has never really caught on; instead, Perl
programmers have grown to love the punctuation-mark variable names, strange as they are.

128 | Chapter8: Matching with Regular Expressions



print "Matched: |$ <$&>$'|\n"; # The three automatic match variables

Any or all of these three automatic match variables may be empty, of course, just like
the numbered match variables. And they have the same scope as the numbered match
variables. Generally, that means that they’ll stay around until the next successful pat-
tern match.

Now, we said earlier that these three are “free.” Well, freedom has its price. In this case,
the price is that once you use any one of these automatic match variables anywhere in
your entire program, other regular expressions will run a little more slowly.” Now, this
isn’t a giant slowdown, but it’s enough of a worry that many Perl programmers will
simply never use these automatic match variables.T Instead, they’ll use a workaround.
For example, if the only one you need is $&, just put parentheses around the whole
pattern and use $1 instead (you may need to renumber the pattern’s memories, of
course).

Match variables (both the automatic ones and the numbered ones) are most often used
in substitutions, which you’ll see in the next chapter.

General Quantifiers

A quantifier in a pattern means to repeat the preceding item a certain number of times.
You’ve already seen three quantifiers: *, +, and ?. But if none of those three suits your
needs, just use a comma-separated pair of numbers inside curly braces ({}) to specify
exactly how few and how many repetitions are allowed.

So the pattern /a{5,15}/ will match from 5 to 15 repetitions of the letter a. If the a
appears three times, that’s too few, so it won’t match. If it appears five times, it’s a
match. If it appears 10 times, that’s still a match. If it appears 20 times, just the first 15
will match, since that’s the upper limit.

If you omit the second number (but include the comma), there’s no upper limit to the
number of times the item will match. So, /(fred){3,}/ will match if there are three or
more instances of fred in a row (with no extra characters, like spaces, allowed between
each fred and the next). There’s no upper limit so that would match 88 instances of
fred if you had a string with that many.

If you omit the comma as well as the upper bound, the number given is an exact
count: /\w{8}/ will match exactly eight word characters (occurring as part of a larger

" For every block entry and exit, which is practically everywhere.

T Most of these folks haven’t benchmarked their programs to see whether their workarounds actually save
time, though; it’s as though these variables were poisonous or something. But we can’t blame them for not
benchmarking—many programs that could benefit from these three variables take up only a few minutes of
CPU time in a week, so benchmarking and optimizing would be a waste of time. But in that case, why fear
a possible extra millisecond? By the way, the Perl developers are working on this problem, but there will
probably be no solution before Perl 6.

General Quantifiers | 129



string, perhaps). And /,{5}chameleon/ matches “comma comma comma comma com-
ma chameleon”. By George, that is nice.

In fact, the three quantifier characters that you saw earlier are just common shortcuts.
The star is the same as the quantifier {0, }, meaning zero or more. The plus is the same
as {1,}, meaning one or more. And the question mark could be written as {0,1}. In
practice, it’s unusual to need any curly-brace quantifiers, since the three shortcut char-
acters are nearly always the only ones needed.

Precedence

With all of these metacharacters in regular expressions, you may feel that you can’t
keep track of the players without a scorecard. That’s the precedence chart, which shows
us which parts of the pattern “stick together” the most tightly. Unlike the precedence
chart for operators, the regular expression precedence chart is simple, with only four
levels. As a bonus, this section will review all of the metacharacters that Perl uses in
patterns. Table 8-1 shows the precedence.

Table 8-1. Regular expression precedence

Regular expression feature Example

Parentheses (grouping ormemory) ~ (...), (?:...), (?<LABEL>...)

Quantifiers a* a+ a? a{n,m}
Anchors and sequence abc *a a$
Alternation alb|c

Atoms a [abc] \d \1

1. At the top of the precedence chart are the parentheses, (( )), used for grouping and
memory. Anything in parentheses will “stick together” more tightly than anything
else.

2. The second level is the quantifiers. These are the repeat operators—star (*), plus
(+), and question mark (?)—as well as the quantifiers made with curly braces, like
{5,15}, {3,}, and {5}. These always stick to the item they’re following.

3. The third level of the precedence chart holds anchors and sequence. The anchors
are the caret (*) start-of-string anchor, the dollar-sign ($) end-of-string anchor, the
\b word-boundary anchor, and the \B nonword-boundary anchor. Sequence (put-
ting one item after another) is actually an operator, even though it doesn’t use a
metacharacter. That means that letters in a word will stick together just as tightly
as the anchors stick to the letters.

4. The lowest level of precedence is the vertical bar (|) of alternation. Since this is at
the bottom of the chart, it effectively cuts the pattern into pieces. It’s at the bottom
of the chart because we want the letters in the words in /fred|barney/ to stick
together more tightly than the alternation. If alternation were of higher priority

130 | Chapter8: Matching with Regular Expressions



than sequence, that pattern would mean to match fre, followed by a choice of d
or b, followed by arney. So, alternation is at the bottom of the chart, and the letters
within the names stick together.

5. Atthe lowest level, there are the so-called atoms that make up the most basic pieces
of the pattern. These are the individual characters, character classes, and back
references.

Examples of Precedence

When you need to decipher a complex regular expression, you’ll need to do as Perl
does and use the precedence chart to see what’s really going on.

For example, /*fred|barney$/ is probably not what the programmer intended. That’s
because the vertical bar of alternation is very low precedence; it cuts the pattern in two.
That pattern matches either fred at the beginning of the string or barney at the end. It’s
much more likely that the programmer wanted /*(fred|barney)$/, which will match
if the whole line has nothing but fred or nothing but barney.” And what will /(wilmal|
pebbles?)/ match? The question mark applies to the previous character® so that will
match either wilma or pebbles or pebble, perhaps as part of a larger string (since there
are no anchors).

The pattern /* (\w+)\s+(\w+)$/ matches lines that have a “word,” some required white-
space, and another “word,” with nothing else before or after. That might be used to
match lineslike fred flintstone, for example. The parentheses around the words aren’t
needed for grouping, so they may be intended to save those substrings into the regular
expression memories.

When you’re trying to understand a complex pattern, it may be helpful to add paren-
theses to clarify the precedence. That’s okay, but remember that grouping parentheses
are also automatically memory parentheses; use the noncapturing parentheses if you
just want to group things.

And There’s More

Although we’ve covered all of the regular expression features that most people are likely
to need for everyday programming, there are still even more features. A few are covered
in the Alpaca book, but also check the perlre, perlrequick, and perlretut manpages for
more information about what patterns in Perl can do.¥

" And, perhaps, a newline at the end of the string, as we mentioned earlier in connection with the $ anchor.
T Because a quantifier sticks to the letter s more tightly than the s sticks to the other letters in pebbles.

* And check out YAPE: :Regexp: :Explain in CPAN as a regular-expression-to-English translator.

Precedence | 131



A Pattern Test Program

When in the course of Perl events it becomes necessary for a programmer to write a
regular expression, it may be difficult to tell just what the pattern will do. It’s normal
to find that a pattern matches more than you expected, or less. Or it may match earlier
in the string than you expected, or later, or not at all.

This program is useful to test out a pattern on some strings and see just what it matches,
and where:
#!/usr/bin/perl
while (<>) { # take one input line at a time
chomp;
if (/YOUR_PATTERN GOES HERE/) {
print "Matched: |$ <$&>$'|\n"; # the special match vars
} else {
print "No match: [$_|\n";
}
}

This pattern test program is written for programmers to use, not end users; you can tell
because it doesn’t have any prompts or usage information. It will take any number of
input lines and check each one against the pattern that you’ll put in place of the string
saying YOUR_PATTERN_GOES HERE. For each line that matches, it uses the three special
match variables ($°, $8, and $') to make a picture of where the match happened. What
you’ll see is this: if the pattern is /match/ and the input is beforematchafter, the output
will say “|before<match>after|” , using angle brackets to show you just what part of
the string was matched by your pattern. If your pattern matches something you didn’t
expect, you'll be able to see that right away.

Exercises

Several of these exercises ask you to use the test program from this chapter. You
could manually type up this program, taking great care to get all of the odd punctuation
marks correct.” But you’ll probably find it faster and easier to simply download the
program and some other goodies from the O’Reilly web site, as we mentioned in the
Preface. You'll find this program under the name pattern_test.T

See Appendix A for answers to the following exercises:

" If you do type it up on your own, remember that the backquote character (*) is not the same as the apostrophe
("). On most full-sized computer keyboards these days (in the U.S., at least), the backquote is found on a key
immediately to the left of the 1 key.

T Don’t be surprised if the program you download is a slightly different version than what we have in the book.

132 | Chapter8: Matching with Regular Expressions



. [8] Using the pattern test program, make a pattern to match the string match. Try
the program with the input string beforematchafter. Does the output show the
three parts of the match in the right order?

. [7] Using the pattern test program, make a pattern that matches if any word (in
the \w sense of word) ends with the letter a. Does it match wilma but not barney?
DoesitmatchMrs. Wilma Flintstone? Whataboutwilma&fred? Tryiton thesample
text file from the previous chapter’s exercises (and add these test strings if they
weren’t already in there).

. [5] Modify the program from the previous exercise so that the word ending with
the letter a is captured into memory $1. Update the code to display that variable’s
contents in single quotes, something like $1 contains 'Wilma'.

. [5] Modify the program from the previous exercise to use named captures instead
of relying on $1. Update the code to display that label name, something like 'word'
contains 'Wilma'.

. [5] Extra credit exercise: modify the program from the previous exercise so that
immediately following the word ending in a it will also capture up to five characters
(if there are that many characters, of course) in a separate memory variable. Update
the code to display both memory variables. For example, if the input string says I
saw Wilma yesterday, the up-to-five characters are yest. If the input is I, Wilma!,
the extra memory should have just one character. Does your pattern still match
just plain wilma?

. [5] Write a new program (not the test program!) that prints out any input line

ending with whitespace (other than just a newline). Put a marker character at the
end of the output line so as to make the whitespace visible.

Exercises | 133






CHAPTER9
Processing Text with Regular
Expressions

You can use regular expressions to change text too. So far we’ve only shown you how
to match a pattern, and now we’ll show you how to use patterns to locate the parts of
strings that you want to change.

Substitutions with s///

If you think of the m// pattern match as being like your word processor’s “search”
feature, the “search and replace” feature would be Perl’s s/// substitution operator.
This simply replaces whatever part of a variable” matches a pattern with a replacement
string:

$ = "He's out bowling with Barney tonight.";

s/Barney/Fred/; # Replace Barney with Fred
print "$ \n";

If the match fails, nothing happens, and the variable is untouched:
# Continuing from above; $_has "He's out bowling with Fred tonight."

s/Wilma/Betty/; # Replace Wilma with Betty (fails)

Of course, both the pattern and the replacement string could be more complex. Here,
the replacement string uses the first memory variable, $1, which is set by the pattern
match:

s/with (\w+)/against $1's team/;
print "$_\n"; # says "He's out bowling against Fred's team tonight."

Here are some other possible substitutions. (These are here only as samples; in the real
world, it would not be typical to do so many unrelated substitutions in a row.)

" Unlike m//, which can match against any string expression, s/// is modifying data that must therefore be
contained in what’s known as an [value. This is nearly always a variable, although it could actually be anything
that could be used on the left side of an assignment operator.

135



"green scaly dinosaur";
s/(\w+) (\w+)/$2, $1/; # Now it's "scaly, green dinosaur"
s/~/huge, /; Now it's "huge, scaly, green dinosaur"
s/,.*een//; Empty replacement: Now it's "huge dinosaur"”
s/green/red/; Failed match: still "huge dinosaur"
s/\w+$/($°1)$8/; Now it's "huge (huge !)dinosaur"
s/\s+(1\W+)/$1 /; Now it's "huge (huge!) dinosaur"
s/huge/gigantic/; Now it's "gigantic (huge!) dinosaur"”

o oH OH R B

There’s a useful Boolean value from s///; it’s true if a substitution was successful;
otherwise, it’s false:
$_ = "fred flintstone";
if (s/fred/wilma/) {
print "Successfully replaced fred with wilma!\n";

}

Global Replacements with /g

As you may have noticed in a previous example, s/// will make just one replacement,
even if others are possible. Of course, that’s just the default. The /g modifier tells
s/// to make all possible nonoverlapping” replacements:

$_ = "home, sweet home!";

s/home/cave/g,
print "$ \n"; # "cave, sweet cave!"

A fairly common use of a global replacement is to collapse whitespace; that is, to turn
any arbitrary whitespace into a single space:

$_ = "Input data\t may have extra whitespace.";
s/\s+/ /g; # Now it says "Input data may have extra whitespace."

Once we show collapsing whitespace, everyone wants to know about stripping leading
and trailing whitespace. That’s easy enough, in two steps:

s/"\s+//; # Replace leading whitespace with nothing
s/\s+$//; # Replace trailing whitespace with nothing

We could do that in one step with an alternation and the /g flag, but that turns out to
be a bit slower, at least when we wrote this. The regular expression engine is always
being tuned, but to learn more about that, you can get Jeffrey Fried’s Mastering Regular
Expressions (O’Reilly) and find out what makes regular expressions fast (or slow).

s/™\s+|\s+$//g; # Strip leading, trailing whitespace

Different Delimiters

Just as we did with m// and qw//, we can change the delimiters for s///. But the sub-
stitution uses three delimiter characters, so things are a little different.

" It’s nonoverlapping because each new match starts looking just beyond the latest replacement.

136 | Chapter9: Processing Text with Regular Expressions



With ordinary (nonpaired) characters, which don’t have a left and right variety, just
use three of them, as we did with the forward slash. Here, we’ve chosen the pound
sign” as the delimiter:

s# https://tthttp://#;
But if you use paired characters, which have a left and right variety, you have to use
two pairs: one to hold the pattern and one to hold the replacement string. In this case,
the delimiters don’t have to be the same kind around the string as they are around the

pattern. In fact, the delimiters of the string could even be nonpaired. These are all the
same:

s{fred}{barney};
s[fred](barney);
s<fred>#barney#;

Option Modifiers
In addition to the /g modifier, substitutions may use the /i, /x, and /s modifiers that
you saw in ordinary pattern matching (the order of modifiers isn’t significant):

st#wilmaf#Wilma#tgi; # replace every WilmA or WILMA with Wilma
s{__END__.*}{}s; # chop off the end marker and all following lines

The Binding Operator
Just as you saw withm//, we can choose a different target for s/// by using the binding
operator:

$file name =~ s#~.*/#is; # In $file name, remove any Unix-style path

Case Shifting

It often happens in a substitution that you’ll want to make sure that a replacement word
is properly capitalized (or not, as the case may be). That’s easy to accomplish with Perl,
by using some backslash escapes. The \U escape forces what follows to all uppercase:

$ = "I saw Barney with Fred.";
s/(fred|barney)/\U$1/gi; # ¢ dis now "I saw BARNEY with FRED."

Similarly, the \L escape forces lowercase. Continuing from the previous code:
s/(fred|barney)/\L$1/gi; # ¢ is now "I saw barney with fred."

By default, these affect the rest of the (replacement) string, or you can turn off case
shifting with \E:

" With apologies to our British friends, to whom the pound sign is something else! Although the pound sign
is generally the start of a comment in Perl, it won’t start a comment when the parser knows to expect a
delimiter—in this case, immediately after the s that starts the substitution.

T We still speak of the modifiers with names like /i, even if the delimiter is something other than a slash.

Substitutions withs/// | 137



s/(\w+) with (\w+)/\U$2\E with $1/i; # $_ is now "I saw FRED with barney."

When written in lowercase (\1 and \u ), they affect only the next character:
s/(fred|barney)/\u$1/ig; # ¢ is now "I saw FRED with Barney."
You can even stack them up. Using \u with \L means “all lowercase, but capitalize the
first letter”:”
s/(fred|barney)/\u\L$1/ig; # $_is now "I saw Fred with Barney."
As it happens, although we’re covering case shifting in relation to substitutions, these
escape sequences are available in any double-quotish string:

print "Hello, \L\u$name\E, would you like to play a game?\n";

The split Operator

Another operator that uses regular expressions is split, which breaks up a string ac-
cording to a pattern. This is useful for tab-separated data, or colon-separated,
whitespace-separated, or anything-separated data, really. So long as you can specify
the separator with a regular expression (and generally, it’s a simple regular expression),
you can use split. It looks like this:

@fields = split /separator/, $string;
The split operatort drags the pattern through a string and returns a list of fields (sub-
strings) that were separated by the separators. Whenever the pattern matches, that’s

the end of one field and the start of the next. So, anything that matches the pattern will
never show up in the returned fields. Here’s a typical split pattern, splitting on colons:

@fields = split /:/, "abc:def:g:h"; # gives ("abc", "def", "g", "h")
You could even have an empty field, if there were two delimiters together:

@fields = split /:/, "abc:def::g:h"; # gives ("abc", "def", "", "g", "h")
Here’s a rule that seems odd at first, but it rarely causes problems: leading empty fields
are always returned, but trailing empty fields are discarded. For example:|

@fields = split /:/, ":::a:b:c:::"; # gives ("", "", "", "a", "b", "c")

" The \L and \u may appear together in either order. Larry realized that people would sometimes get those two
backward, so he made Perl figure out that you want just the first letter capitalized and the rest lowercase.
Larry is a pretty nice guy.

T Except “comma-separated values,” normally called CSV files. Those are a pain to do with split; you’re better
off getting the Text: :CSV module from CPAN.

¥ It’s an operator, even though it acts a lot like a function, and everyone generally calls it a function. But the
technical details of the difference are beyond the scope of this book.

I This is merely the default. It’s this way for efficiency. If you worry about losing trailing empty fields, use -1
as a third argument to split and they’ll be kept; see the perlfunc manpage.

138 | Chapter9: Processing Text with Regular Expressions



[t’s also common to split on whitespace, using /\s+/ as the pattern. Under that pattern,
all whitespace runs are equivalent to a single space:

my $some_input = "This is a \t test.\n";
my @args = split /\s+/, $some input; # ("This", "is", "a", "test.")

The default for split is to break up $_ on whitespace:
my @fields = split; # like split /\s+/, $_;

This is almost the same as using /\s+/ as the pattern, except that in this special case a
leading empty field is suppressed—so, if the line starts with whitespace, you won’t see
an empty field at the start of the list. (If you’d like to get the same behavior when splitting

another string on whitespace, just use a single space in place of the pattern: split ' ',
$other_string. Using a space instead of the pattern is a special kind of split.)

Generally, the patterns used for split are as simple as the ones you see here. But if the
pattern becomes more complex, be sure to avoid using memory parentheses in the
pattern since these trigger the (usually) wanted “separator retention mode” (see the
perlfunc manpage for details). Use the noncapturing parentheses, (?:), in split if you
need to group things.

The join Function

The join function doesn’t use patterns, but performs the opposite function of split:
split breaks up a string into a number of pieces, and join glues together a bunch of
pieces to make a single string. The join function looks like this:

my $result = join $glue, @pieces;
The first argument to join is the glue, which may be any string. The remaining argu-

ments are a list of pieces. join puts the glue string between the pieces and returns the
resulting string:

my $x = join ":", 4, 6, 8, 10, 12; # $x is "4:6:8:10:12"
In that example, we had five items, so there are only four colons. That is, there are four
pieces of glue. The glue shows up only between the pieces, never before or after them.
So, there will be one fewer piece of glue than the number of items in the list.
This means that there may be no glue at all if the list doesn’t have at least two elements:

my $y = join "foo", "bar"; # gives just "bar", since no fooglue is needed
my @empty; # empty array
my $empty = join "baz", @empty; # no items, so it's an empty string

Using $x from above, we can break up a string and put it back together with a different
delimiter:

my @values = split /:/, $x; # @values is (4, 6, 8, 10, 12)
my $z = join "-", @values; # $z is "4-6-8-10-12"

The join Function | 139



Although split and join work well together, don’t forget that the first argument to
join is always a string, not a pattern.

m// in List Context

When you use split, the pattern specifies the separator: the part that isn’t the useful
data. Sometimes it’s easier to specify what you want to keep.

When a pattern match (m//) is used in a list context, the return value is a list of the
memory variables created in the match, or an empty list if the match failed:

$_ = "Hello there, neighbor!";

my($first, $second, $third) = /(\S+) (\S+), (\S+)/;

print "$second is my $third\n";
This makes it easy to give the match variables easy-to-use names, and these names may
persist past the next pattern match. (Note also that because there’s no =~ in that code,
the pattern matches against $_ by default.)

The /g modifier that you first saw on s/// also works with m//, which lets it match at
more than one place in a string. In this case, a pattern with a pair of parentheses will
return a memory from each time it matches:

my $text = "Fred dropped a 5 ton granite block on Mr. Slate";

my @words = ($text =~ /([a-z]+)/ig);

print "Result: @words\n";

# Result: Fred dropped a ton granite block on Mr Slate

This is like using split “inside out”: instead of specifying what we want to remove, we
specify what we want to keep.

In fact, if there is more than one pair of parentheses, each match may return more than

one string. Let’s say that we have a string that we want to read into a hash, something
like this:

my $data = "Barney Rubble Fred Flintstone Wilma Flintstone";
my %last _name = ($data =~ /(\w+)\s+(\w+)/g);

Each time the pattern matches, it returns a pair of memories. Those pairs of values then
become the key-value pairs in the newly created hash.

More Powerful Reqular Expressions

After already reading three (almost!) chapters about regular expressions, you know that
they’re a powerful feature in the core of Perl. But there are even more features that the
Perl developers have added; you’ll see some of the most important ones in this section.
At the same time, you’ll see a little more about the internal operation of the regular
expression engine.

140 | Chapter9: Processing Text with Regular Expressions



Nongreedy Quantifiers

The four quantifiers you’ve already seen (in Chapters 7 and 8) are all greedy. That means
that they match as much as they can, only to reluctantly give some back if that’s nec-
essary to allow the overall pattern to succeed. Here’s an example: Suppose you’re using
the pattern /fred.+barney/ on the string fred and barney went bowling last night.
Of course, we know that the regular expression will match that string, but let’s see how
it goes about it.” First, of course, the subpattern fred matches the identical literal string.
The next part of the pattern is the .+, which matches any character except newline, at
least one time. But the plus quantifier is greedy; it prefers to match as much as possible.
So it immediately matches all of the rest of the string, including the word night. (This
may surprise you, but the story isn’t over yet.)

Now the subpattern barney would like to match, but it can’t—we’re at the end of the
string. But since the .+ could still be successful even if it matched one fewer character,
it reluctantly gives back the letter t at the end of the string. (It’s greedy, but it wants
the whole pattern to succeed even more than it wants to match everything all by itself.)

The subpattern barney tries again to match, and still can’t. So the .+ gives back the
letter h and lets it try again. One character after another, the .+ gives back what it
matched until finally it gives up all of the letters of barney. Now, finally, the subpattern
barney can match, and the overall match succeeds.

Regular expression engines do a lot of backtracking like that, trying every different way
of fitting the pattern to the string until one of them succeeds, or until none of them
has.™ But as you could see from this example, that can involve a lot of backtracking, as
the quantifier gobbles up too much of the string and the regular expression engine
forces it to return some of it.

For each of the greedy quantifiers, though, there’s also a nongreedy quantifier available.
Instead of the plus (+), we can use the nongreedy quantifier +?, which matches one or
more times (just as the plus does), except that it prefers to match as few times as pos-
sible, rather than as many as possible. Let’s see how that new quantifier works when
the pattern is rewritten as /fred.+?barney/.

Once again, fred matches right at the start. But this time the next part of the pattern
is .+?, which would prefer to match no more than one character, so it matches just the
space after fred. The next subpattern is barney, but that can’t match here (since the
string at the current position begins with and barney...). So the .+? reluctantly matches

*

The regular expression engine makes a few optimizations that make the true story different than we tell it
here, and those optimizations change from one release of Perl to the next. You shouldn’t be able to tell from
the functionality that it’s not doing as we say, though. If you want to know how it really works, you should
read the latest source code. Be sure to submit patches for any bugs you find.

T In fact, some regular expression engines try every different way, even continuing on after they find one that
fits. But Perl’s regular expression engine is primarily interested in whether the pattern can or cannot match,
so finding even one match means that the engine’s work is done. Again, see Mastering Regular Expressions.

More Powerful Regular Expressions | 141



the a and lets the rest of the pattern try again. Once again, barney can’t match, so
the .+? accepts the letter n and so on. Once the .+? has matched five characters,
barney can match, and the pattern is a success.

There was still some backtracking, but since the engine had to go back and try again
just a few times, it should be a big improvement in speed. Well, it’s an improvement if
you’ll generally find barney near fred. If your data often had fred near the start of the
string and barney only at the end, the greedy quantifier might be a faster choice. In the
end, the speed of the regular expression depends upon the data.

But the nongreedy quantifiers aren’t just about efficiency. Although they’ll always
match (or fail to match) the same strings as their greedy counterparts, they may match
different amounts of the strings. For example, suppose you had some HTML-like" text,
and you want to remove all of the tags <BOLD> and </BOLD>, leaving their contents intact.
Here’s the text:

I’m talking about the cartoon with Fred and <BOLD>Wilma</BOLD>!

And here’s a substitution to remove those tags. But what’s wrong with it?
s# (. *)#$1tg;
The problem is that the star is greedy.T What if the text had said this instead?
I thought you said Fred and <BOLD>Velma</BOLD>, not <BOLD>Wilma</BOLD>

In that case, the pattern would match from the first <BOLD> to the last </BOLD>, leaving
intact the ones in the middle of the line. Oops! Instead, we want a nongreedy quantifier.
The nongreedy form of star is *?, so the substitution now looks like this:

s#<BOLD> (. *2)</BOLD>#$1#g;
And it does the right thing.

Since the nongreedy form of the plus was +? and the nongreedy form of the star was
*?, you’ve probably realized that the other two quantifiers look similar. The nongreedy
form of any curly-brace quantifier looks the same, but with a question mark after the
closing brace, like {5,10}? or {8,}?.F¥ And even the question-mark quantifier has a
nongreedy form: ??. That matches either once or not at all, but it prefers not to match
anything.

" Once again, we aren’t using real HTML because you can’t correctly parse HTML with simple regular
expressions. If you really need to work with HTML or a similar markup language, use a module that’s made
to handle the complexities.

T There’s another possible problem: we should have used the /s modifier as well, since the end tag may be on
a different line than the start tag. It’s a good thing that this is just an example; if we were writing something
like this for real, we would have taken our own advice and used a well-written module.

¥ In theory, there’s also a nongreedy quantifier form that specifies an exact number, like {3}?. But since that
says to match exactly three of the preceding item, it has no flexibility to be either greedy or nongreedy.

142 | Chapter9: Processing Text with Regular Expressions



Matching Multiple-Line Text

Classic regular expressions were used to match just single lines of text. But since Perl
can work with strings of any length, Perl’s patterns can match multiple lines of text as
easily as single lines. Of course, you have to include an expression that holds more than
one line of text. Here’s a string that’s four lines long;:

$_ = "I'm much better\nthan Barney is\nat bowling,\nWilma.\n";

Now, the anchors » and $ are normally anchors for the start and end of the whole string
(see Chapter 8). But the /m regular expression option lets them match at internal new-
lines as well (think m for multiple lines). This makes them anchors for the start and end
of each line, rather than the whole string. So this pattern can match:

print "Found 'wilma' at start of line\n" if /*wilma\b/im;

Similarly, you could do a substitution on each line in a multiline string. Here, we read
an entire file into one variable,” then add the file’s name as a prefix at the start of each
line:
open FILE, $filename
or die "Can't open '$filename’: $!";
my $lines = join '', <FILE>;
$lines =~ s/"/$filename: /gm;

Updating Many Files

The most common way of programmatically updating a text file is by writing an entirely
new file that looks similar to the old one, but making whatever changes we need as we
go along. As you’ll see, this technique gives nearly the same result as updating the file
itself, but it has some beneficial side effects as well.

In this example, we’ve got hundreds of files with a similar format. One of them is
fred03.dat, and it’s full of lines like these:

Program name: granite
Author: Gilbert Bates
Company: RockSoft
Department: R&D

Phone: +1 503 555-0095
Date: Tues March 9, 2004
Version: 2.1

Size: 21k

Status: Final beta

We need to fix this file so that it has some different information. Here’s roughly what
this one should look like when we’re done:

Program name: granite
Author: Randal L. Schwartz

" Hope it’s a small one. The file, that is, not the variable.

More Powerful Regular Expressions | 143



Company: RockSoft
Department: R&D

Date: June 12, 2008 6:38 pm
Version: 2.1

Size: 21k

Status: Final beta

In short, we need to make three changes. The name of the Author should be changed;
the Date should be updated to today’s date, and the Phone should be removed com-
pletely. And we have to make these changes in hundreds of similar files as well.

Perl supports a way of in-place editing of files with a little extra help from the diamond
operator (<>). Here’s a program to do what we want, although it may not be obvious
how it works at first. This program’s only new feature is the special variable $°I; ignore
that for now, and we’ll come back to it:

#!/usr/bin/perl -w
use strict;

chomp(my $date = “date");
$°T = ".bak";

while (<>) {
s/"Author:.*/Author: Randal L. Schwartz/;
s/"Phone:.*\n//;
s/"Date:.*/Date: $date/;
print;
}
Since we need today’s date, the program starts by using the system date command. A
better way to get the date (in a slightly different format) would almost surely be to use
Perl’s own localtime function in a scalar context:

my $date = localtime;
The next line sets $°1, but keep ignoring that for the moment.

The list of files for the diamond operator here are coming from the command line. The
main loop reads, updates, and prints one line at a time. (With what you know so far,
that means that all of the files’ newly modified contents will be dumped to your
terminal, scrolling furiously past your eyes, without the files being changed at all. But
stick with us.) Note that the second substitution can replace the entire line containing
the phone number with an empty string—leaving not even a newline—so when that’s
printed, nothing comes out, and it’s as if the Phone never existed. Most input lines won’t
match any of the three patterns, and those will be unchanged in the output.

So this result is close to what we want, except that we haven’t shown you how the
updated information gets back out on to the disk. The answer is in the variable $*I. By
default it’s undef, and everything is normal. But when it’s set to some string, it makes
the diamond operator (<>) even more magical than usual.

144 | Chapter9: Processing Text with Regular Expressions



We already know about much of the diamond’s magic—it will automatically open and
close a series of files for you, or read from the standard-input stream if there aren’t any
filenames given. But when there’s a string in $*I, that string is used as a backup file-
name’s extension. Let’s see that in action.

Let’s say it’s time for the diamond to open our file fred03.dat. It opens it like before,
but now it renames it, calling it fred03.dat.bak.” We've still got the same file open, but
now it has a different name on the disk. Next, the diamond creates a new file and gives
it the name fred03.dat. That’s okay; we weren’t using that name any more. And now
the diamond selects the new file as the default for output, so that anything that we print
will go into that file.T So now the while loop will read a line from the old file, update
that, and print it out to the new file. This program can update thousands of files in a
few seconds on a typical machine. Pretty powerful, huh?

Once the program has finished, what does the user see? The user says, “Ah, I see what
happened! Perl edited my file fred03.dat, making the changes I needed, and saved me
a copy of the original in the backup file fred03.dat.bak just to be helpful!” But we now
know the truth: Perl didn’t really edit any file. It made a modified copy, said “Abraca-
dabra!” and switched the files around while we were watching sparks come out of the
magic wand. Tricky.

Some folks use a tilde (~) as the value for $*1 since that resembles what emacs does for
backup files. Another possible value for $1 is the empty string. This enables in-place
editing, but doesn’t save the original data in a backup file. But since a small typo in
your pattern could wipe out all of the old data, using the empty string is recommended
only if you want to find out how good your backup tapes are. It’s easy enough to delete
the backup files when you’re done. And when something goes wrong and you need to
rename the backup files to their original names, you’ll be glad that you know how to
use Perl to do that (see the multiple-file rename example in Chapter 14).

In-Place Editing from the Command Line

A program like the example from the previous section is fairly easy to write. But Larry
decided it wasn’t easy enough.

Imagine that you need to update hundreds of files that have the misspelling Randall
instead of the one-1 name Randal. You could write a program like the one in the previous
section. Or you could do it all with a one-line program, right on the command line:

$ perl -p -i.bak -w -e 's/Randall/Randal/g' fred*.dat

" Some of the details of this procedure will vary on non-Unix systems, but the end result should be nearly the
same. See the release notes for your port of Perl.

T The diamond also tries to duplicate the original file’s permission and ownership settings as much as possible;
for example, if the old one was world-readable, the new one should be as well.

More Powerful Regular Expressions | 145



Perl has a whole slew of command-line options that can be used to build a complete
program in a few keystrokes.” Let’s see what these few do.

Starting the command with perl does something like putting #!/usr/bin/perl at the
top of a file does: it says to use the program perl to process what follows.

The -p option tells Perl to write a program for you. It’s not much of a program, though;
it looks something like this:T

while (<>) {

print;

}
If you want even less, you could use -n instead; that leaves out the automatic print
statement, so you can print only what you wish. (Fans of awk will recognize -p and
-n.) Again, it’s not much of a program, but it’s pretty good for the price of a few
keystrokes.

The next option is -i.bak, which you might have guessed sets $*I to ".bak" before the
program starts. If you don’t want a backup file, you can use -i alone, with no extension.
If you don’t want a spare parachute, you can leave the airplane with just one.

We've seen -w before—it turns on warnings.

The -e option says “executable code follows.” That means the s/Randall/Randal/g
string is treated as Perl code. Since we’ve already got a while loop (from the -p option),
this code is put inside the loop, before the print. For technical reasons, the last semi-
colon in the -e code is optional. But if you have more than one -e, and thus more than
one chunk of code, only the semicolon at the end of the last one may safely be omitted.

The last command-line parameter is fred*.dat, which says that @RGV should hold the
list of filenames that match that filename pattern. Put the pieces all together, and it’s
as if we had written a program like this, and put it to work on all of those fred*. dat files:

#!/usr/bin/perl -w
$7T = ".bak";

while (<>) {
s/Randall/Randal/g;
print;
}
Compare this program to the one we used in the previous section. It’s pretty similar.
These command-line options are pretty handy, aren’t they?

" See the perlrun manpage for the complete list.

T Actually, the print occurs in a continue block. See the perlsyn and perlrun manpages for more information.

146 | Chapter9: Processing Text with Regular Expressions



Exercises

See Appendix A for answers to the following exercises:

1

[7] Make a pattern that will match three consecutive copies of whatever is currently
contained in $what. That is, if $what is fred, your pattern should match fred
fredfred. If $what is fred|barney, your pattern should match fredfredbarney or
barneyfredfred or barneybarneybarney or many other variations. (Hint: you should
set $what at the top of the pattern test program with a statement like my $what =
'fred|barney';.)

. [12] Write a program that makes a modified copy of a text file. In the copy, every

string Fred (case-insensitive) should be replaced with Larry. (So, Manfred Mann
should become ManLarry Mann.) The input filename should be given on the com-
mand line (don’t ask the user!), and the output filename should be the corre-
sponding filename ending with .out.

. [8] Modify the previous program to change every Fred to Wilma and every Wilma to

Fred. Now input like freddwilma should look like Wilma&Fred in the output.

. [10] Extra credit exercise: write a program to add a copyright line to all of your

exercise answers so far, by placing a line like:
## Copyright (C) 20XX by Yours Truly
in the file immediately after the “shebang” line. You should edit the files “in place,”

keeping a backup. Presume that the program will be invoked with the filenames to
edit already on the command line.

. [15] Extra extra credit exercise: modify the previous program so that it doesn’t edit

the files that already contain the copyright line. (Hint: you might need to know
that the name of the file being read by the diamond operator is in $ARGV.)

Exercises | 147






CHAPTER 10
More Control Structures

In this chapter, you’ll see some alternative ways to write Perl code. For the most part,
these techniques don’t make the language more powerful, but they make it easier or
more convenient to get the job done. You don’t have to use these techniques in your
own code, but don’t be tempted to skip this chapter—you’re certain to see these control
structures in other people’s code, sooner or later (in fact, you’re absolutely certain to
see these things in use by the time you finish reading this book).

The unless Control Structure

In an if control structure, the block of code is executed only when the conditional
expression is true. If you want to execute a block of code only when the conditional is
false, change if to unless:
unless ($fred =~ /~[A-Z_1\w*$/i) {
print "The value of \$fred doesn't look like a Perl identifier name.\n";

}

Using unless says to run the block of code unless this condition is true. It’s just like
using an if test with the opposite condition. Another way to say it is that it’s like having
the else clause on its own. That is, whenever you see an unless that you don’t under-
stand, you can rewrite it (either in your head or in reality) as an if test:
if ($fred =~ /~[A-Z_]\w*$/i) {
# Do nothing

} else {
print "The value of \$fred doesn't look like a Perl identifier name.\n";

}

It’s no more or less efficient, and it should compile to the same internal byte codes. Or,
another way to rewrite it would be to negate the conditional expression by using the
negation operator (!):

if (! ($fred =~ /A[A-Z_]\w¥$/i) ) {

print "The value of \$fred doesn't look like a Perl identifier name.\n";

}

149



Generally, you should pick the way of writing code that makes the most sense to you,
since that will probably make the most sense to your maintenance programmer. If it
makes the most sense to write if with a negation, do that. More often, however, you’ll
probably find it natural to use unless.

The else Clause with unless

You could even have an else clause with an unless. While this syntax is supported, it’s
potentially confusing:
unless ($mon =~ /“Feb/) {
print "This month has at least thirty days.\n";

} else {
print "Do you see what's going on here?\n";

Some people may wish to use this, especially when the first clause is very short (perhaps
only one line) and the second is several lines of code. But we’d make this one a negated
if, or maybe simply swap the clauses to make a normal if:
if ($mon =~ /~Feb/) {
print "Do you see what's going on here?\n";

} else {
print "This month has at least thirty days.\n";

}

It’s important to remember that you’re always writing code for two readers: the com-
puter that will run the code and the human being who has to keep the code working.
If the human can’t understand what you’ve written, pretty soon the computer won’t
be doing the right thing either.

The until Control Structure

Sometimes you’ll want to reverse the condition of a while loop. To do that, just use
until:

until ($j > $i) {

$j *= 2;

}
This loop runs until the conditional expression returns true. But it’s really just a
while loop in disguise, except that this one repeats as long as the conditional is false,
rather than true. The conditional expression is evaluated before the first iteration, so
this is still a zero-or-more-times loop, just like the while loop.” As with if and unless,
you could rewrite any until loop to become a while loop by negating the condition.
But generally, you’ll find it simple and natural to use until from time to time.

" Pascal programmers, take note: in Pascal, the repeat-until always runs at least one iteration, but an until
loop in Perl may not run at all, if the conditional expression is true before the loop starts.

150 | Chapter10: More Control Structures



Expression Modifiers

In order to have a more compact notation, an expression may be followed by a modifier
that controls it. For example, the if modifier works in a way analogous to an if block:

print "$n is a negative number.\n" if $n < 0;

That gives exactly the same result as if we had used this code, except that we saved
some typing by leaving out the parentheses and curly braces:”
if ($n < 0) {

print "$n is a negative number.\n";

}

As we've said, Perl folks generally like to avoid typing. And the shorter form reads in
English: print this message if $n is less than zero.

Notice that the conditional expression is still evaluated first, even though it’s written
at the end. This is backward from the usual left-to-right ordering; in understanding Perl
code, you’ll have to do as Perl’s internal compiler does, and read to the end of the
statement before you can tell what it’s really doing.

There are other modifiers as well:

8error("Invalid input") unless &valid($input);
$i *= 2 until $i > $j;

print " ", ($n += 2) while $n < 10;
8greet($_) foreach @person;

These all work just as (we hope) you would expect. That is, each one could be rewritten
in a similar way to rewriting the if-modifier example earlier. Here is one:

while ($n < 10) {

print " ", ($n += 2);

}
The expression in parentheses inside the print argument list is noteworthy because it
adds two to $n, storing the result back into $n. Then it returns that new value, which
will be printed.

These shorter forms read almost like a natural language: call the 8greet subroutine for
each @person in the list. Double $i until it’s larger than $j.T One of the common uses
of these modifiers is in a statement like this one:

print "fred is '$fred', barney is '$barney'\n" if $I_am curious;

" We also left out the linebreaks. But we should mention that the curly-brace form does create a new scope.
In the rare case that you need the full details, check the documentation.

T Well, it helps us to think of them like that.

Expression Modifiers | 151



By writing the code “in reverse” like this, you can put the important part of the state-
ment at the beginning. The point of that statement is to monitor some variables; the
point is not to check whether you’re curious.” Some people prefer to write the whole
statement on one line, perhaps with some tab characters before the if, to move it over
toward the right margin, as we showed in the previous example, while others put the
if modifier indented on a new line:

print "fred is '$fred', barney is '$barney'\n"
if $I_am_curious;

Although you can rewrite any of these expressions with modifiers as a block (the “old-
fashioned” way), the converse isn’t necessarily true. Only a single expression is allowed
on either side of the modifier. So you can’t write something if something while some-
thing until something unless something foreach something, which would just be too
confusing. And you can’t put multiple statements on the left of the modifier. If you
need more than just a simple expression on each side, just write the code the old-
fashioned way, with the parentheses and curly braces.

As we mentioned in relation to the if modifier, the control expression (on the right) is
always evaluated first, just as it would be in the old-fashioned form.

With the foreach modifier, there’s no way to choose a different control variable—it’s
always $_. Usually, that’s no problem, but if you want to use a different variable, you’ll
need to rewrite it as a traditional foreach loop.

The Naked Block Control Structure

The so-called naked block is one without a keyword or condition. That is, suppose you
start with a while loop, which looks something like this:

while (condition) {
body;
body;
body;

}

Now, take away the while keyword and the conditional expression, and you’ll have a
naked block:

{
body;
body;
body;
}

The naked block is like a while or foreach loop, except that it doesn’t loop; it just
executes the body of the loop once, and it’s done. It’s an un-loop!

" Of course, we made up the name $I_am_curious; it’s not a built-in Perl variable. Generally, folks who use this
technique will either call their variable $TRACING or use a constant declared with the constant pragma.

152 | Chapter10: More Control Structures



You'll see in a while that there are other uses for the naked block, but one of its features
is that it provides a scope for temporary lexical variables:

print "Please enter a number: ";
chomp(my $n = <STDIN>);

my $root = sqrt $n; # calculate the square root
print "The square root of $n is $root.\n";

}

In this block, $n and $root are temporary variables scoped to the block. As a general
guideline, all variables should be declared in the smallest scope available. If you need
a variable for just a few lines of code, you can put those lines into a naked block and
declare the variable inside that block. Of course, if you would need the value of either
$n or $root later, you would need to declare them in a larger scope.

You may have noticed the sqrt function in that code and wondered about it—yes, it’s
a function we haven’t shown before. Perl has many built-in functions that are beyond
the scope of this book. When you’re ready, check the perlfunc manpage to learn about
more of them.

The elsif Clause

Every so often, you may need to check a number of conditional expressions, one after
another, to see which one of them is true. This can be done with the if control struc-
ture’s elsif clause, as in this example:
if (! defined $dino) {
print "The value is undef.\n";
} elsif ($dino =~ /~-2\d+\.?$/) {
print "The value is an integer.\n";
} elsif ($dino =~ /*-2\d*\.\d+$/) {
print "The value is a _simple floating-point number.\n";
} elsif ($dino eq '') {
print "The value is the empty string.\n";
} else {
print "The value is the string '$dino'.\n";

}

Perl will test the conditional expressions one after another. When one succeeds, the
corresponding block of code is executed, and then the whole control structure is
done,” and execution goes on to the rest of the program. If none has succeeded, the
else block at the end is executed. (Of course, the else clause is still optional, but, in
this case, it’s often a good idea to include it.)

There’s no limit to the number of elsif clauses, but remember that Perl has to evaluate
the first 99 tests before it can get to the 100th. If you’ll have more than half a dozen
elsifs, you should consider whether there’s a more efficient way to write it. The Perl

" There’s no “fall-through” to the next block, as in the “switch” structure of languages like C.

The elsif Clause | 153



FAQ (see the perlfag manpage) has a number of suggestions for emulating the “case”
or “switch” statements of other languages, and users of Perl 5.10 or later can use given-
when, described in Chapter 15, as an alternative.

You may have noticed by this point that the keyword is spelled elsif, with only one
e. If you write it as “elseif”, with a second e, Perl will tell you that it is not the correct
spelling. Why not? Because Larry says so.

Autoincrement and Autodecrement

You’ll often want a scalar variable to count up or down by one. Since these are frequent
constructs, there are shortcuts for them, like nearly everything else we do frequently.

The autoincrement operator (++) adds one to a scalar variable, like the same operator
in C and similar languages:

my $bedrock = 42;
$bedrock++; # add one to $bedrock; it's now 43

Just like other ways of adding one to a variable, the scalar will be created if necessary:

my @people = qw{ fred barney fred wilma dino barney fred pebbles };
my %count; # new empty hash
$count{$_}++ foreach @people; # creates new keys and values as needed

The first time through that foreach loop, $count{$ } is incremented. That’s
$count{"fred"}, which thus goes from undef (since it didn’t previously exist in the hash)
up to 1. The next time through the loop, $count{"barney"} becomes 1; after that,
$count{"fred"} becomes 2. Each time through the loop, one element in %count is in-
cremented, and possibly created as well. After that loop is done, $count{"fred"} is 3.
This provides a quick and easy way to see which items are in a list and how many times
each one appears.

Similarly, the autodecrement operator (--) subtracts one from a scalar variable:

$bedrock--; # subtract one from $bedrock; it's 42 again

The Value of Autoincrement

You can fetch the value of a variable and change that value at the same time. Put the
++ operator in front of the variable name to increment the variable first and then fetch
its value. This is a preincrement:

my $m = 5;
my $n = ++$m; # increment $m to 6, and put that value into $n

" In fact, he resists any suggestion that it even be permitted as a valid alternative spelling. “If you want to spell
it with a second e, it’s simple. Step 1—make up your own language. Step 2—make it popular.” When you
make your own programming language, you can spell the keywords in any way you’d like. We hope that you
will decide that yours shouldn’t be the first to have an “elseunless.”

154 | Chapter10: More Control Structures



Or put the -- operator in front to decrement the variable first and then fetch its value.
This is a predecrement:

my $c = --$m; # decrement $m to 5, and put that value into $c

Here’s the tricky part. Put the variable name first to fetch the value first, and then do
the increment or decrement. This is called a postincrement or postdecrement:

my $d = $m++; # $d gets the old value (5), then increment $m to 6
my $e = $m--; # $e gets the old value (6), then decrement $m to 5

It’s tricky because we’re doing two things at once. We're fetching the value, and we’re
changing it in the same expression. If the operator is first, we increment (or decrement)
first, then use the new value. If the variable is first, we return its (old) value first, then
do the increment or decrement. Another way to say it is that these operators return a
value, but they also have the side effect of modifying the variable’s value.

If you write these in an expression of their own,” not using the value but only the side
effect, there’s no difference™ if you put the operator before or after the variable:

$bedrock++; # adds one to $bedrock
++$bedrock; # just the same; adds one to $bedrock

A common use of these operators is in connection with a hash, to identify when an item
has been seen before:

my @people = qw{ fred barney bamm-bamm wilma dino barney betty pebbles };
my %seen;

foreach (@people) {
print "I've seen you somewhere before, $ !\n"
if $seen{$ }++;

When barney shows up for the first time, the value of $seen{$_}++ is false, since it’s the
value of $seen{$_}, which is $seen{"barney"}, which is undef. But that expression has
the side effect of incrementing $seen{"barney"}. When barney shows up again,
$seen{"barney"} is now a true value, so the message is printed.

The for Control Structure

Perl’s for control structure is like the common for control structure you may have seen
in other languages, such as C. It looks like this:

“ That is, in a void context.

T Programmers who get inside the implementations of languages may expect that postincrement and
postdecrement would be less efficient than their counterparts, but Perl’s not like that. Perl automatically
optimizes the post- forms when they’re used in a void context.

The for Control Structure | 155



for (initialization; test; increment) {
body;
body;

}

To Perl, though, this kind of loop is really awhile loop in disguise, something like this:"
initialization;
while (test) {
body;
body;
increment;

}

The most common use of the for loop, by far, is for making computed iterations:

for ($i = 1; $i <= 10; $i++) { # count from 1 to 10
print "I can count to $i!\n";

}

When you’ve seen these before, you’ll know what the first line is saying even before
you read the comment. Before the loop starts, the control variable, $i, is set to 1. Then,
the loop is really a while loop in disguise, looping while $i is less than or equal to 10.
Between each iteration and the next is the increment, which here is a literal increment,
adding one to the control variable, which is $i.

So, the first time through this loop, $i is 1. Because that’s less than or equal to 10, we
see the message. Although the increment is written at the top of the loop, it logically
happens at the bottom of the loop, after printing the message. So, $i becomes 2, which
is less than or equal to 10, so we print the message again, and $i is incremented to 3,
which is less than or equal to 10, and so on.

Eventually, we print the message that our program can count to 9. Then $1i is incre-
mented to 10, which is less than or equal to 10, so we run the loop one last time and
print that our program can count to 10. Finally, $i is incremented for the last time, to
11, which is not less than or equal to 10. So control drops out of the loop, and we’re on
to the rest of the program.

All three parts are together at the top of the loop so that it’s easy for an experienced
programmer to read that first line and say, “Ah, it’s a loop that counts $i from one to
ten.”

Note that after the loop is done, the control variable has a value “after” the loop. That
is, in this case, the control variable has gone all the way to 11.T This loop is a very
versatile loop; you can make it count in all sorts of ways. For example, we can count
down from 10 to 1:

" Actually, the increment happens in a continue block, which is beyond the scope of this book. See the
perlsyn manpage for the truth.

T Obligatory This is Spinal Tap outdated pop-culture reference.

156 | Chapter10: More Control Structures



for ($i = 10; $i >= 1; $i--) {
print "I can count down to $i\n";

}

And this loop counts from -150 to 1000 by threes:”
for ($i = -150; $i <= 1000; $i += 3) {
print "$i\n";
}
In fact, you could make any of the three control parts (initialization, test, or increment)
empty, if you wish, but you still need the two semicolons. In this (quite unusual) ex-
ample, the test is a substitution, and the increment is empty:

for ($_ = "bedrock"; s/(.)//; ) { # loops while the s/// is successful
print "One character is: $1\n";

}

The test expression (in the implied while loop) is the substitution, which will return a
true value if it succeeded. In this case, the first time through the loop, the substitution
will remove the b from bedrock. Each iteration will remove another letter. When the
string is empty, the substitution will fail, and the loop is done.

If the test expression (the one between the two semicolons) is empty, it’s automatically
true, making an infinite loop. But don’t make an infinite loop like this until you see
how to break out of such a loop, which we’ll discuss later in this chapter:
for (55) {
print "It's an infinite loop!\n";
}
A more Perl-like way to write an intentional infinite loop, when you really want
one,T is with while:
while (1) {
print "It's another infinite loop!\n";

}
Although C programmers are familiar with the first way, even a beginning Perl pro-
grammer should recognize that 1 is always true, making an intentional infinite loop, so
the second is generally a better way to write it. Perl is smart enough to recognize a
constant expression like that and optimize it away, so there’s no difference in efficiency.

The Secret Connection Between foreach and for

It turns out that, inside the Perl parser, the keyword foreach is exactly equivalent to
the keyword for. That is, any time Perl sees one of them, it’s the same as if you had

" Of course, it never gets to 1000 exactly. The last iteration uses 999, since each value of $i is a multiple of three.

T If you somehow made an infinite loop that’s gotten away from you, see whether Control-C will halt it. It’s
possible that you’ll get a lot of output even after typing Control-C, depending upon your system’s I/O and
other factors. Hey, we warned you.

The for Control Structure | 157



typed the other. Perl can tell which you meant by looking inside the parentheses. If
you’ve got the two semicolons, it’s a computed for loop (like we’ve just been talking
about). If you don’t have the semicolons, it’s really a foreach loop:

for (1..10) { # Really a foreach loop from 1 to 10
print "I can count to $ !\n";

}

That’s really a foreach loop, but it’s written for. Except for that one example, all
through this book, we’ll spell out foreach wherever it appears. But in the real world,
do you think that Perl folks will type those extra four letters?” Excepting only beginners’
code, it’s always written for, and you’ll have to do as Perl does and look for the semi-
colons to tell which kind of loop it is.

In Perl, the true foreach loop is almost always a better choice. In the foreach loop
(written for) in that previous example, it’s easy to see at a glance that the loop will go
from 1 to 10. But do you see what’s wrong with this computed loop that’s trying to do
the same thing? Don’t peek at the answer in the footnote until you think you’ve found
what’s wrong: T
for ($i = 1; $i < 10; $i++) { # Oops! Something is wrong here!
print "I can count to $_!\n";

}

Loop Controls

As you’ve surely noticed by now, Perl is one of the so-called structured programming
languages. In particular, there’s just one entrance to any block of code, at the top of
that block. But there are times when you may need more control or versatility than
what we’ve shown so far. For example, you may need to make a loop like a while loop,
but one that always runs at least once. Or maybe you need to occasionally exit a block
of code early. Perl has three loop-control operators you can use in loop blocks to make
the loop do all sorts of tricks.

" If you think that, you haven’t been paying attention. Among programmers, especially Perl programmers,
laziness is one of the classic virtues. If you don’t believe us, ask someone at the next Perl Mongers’ meeting.

T There are two and one-half bugs. First, the conditional uses a less-than sign, so the loop will run 9 times,
instead of 10. It’s easy to get a so-called fencepost bug with this kind of loop, like what happened when the
rancher needed enough fenceposts to make a 30-meter-long fence with a post every 3 meters. (The answer
is not 10 fenceposts.) Second, the control variable is $1, but the loop body is using $_. And second and a half,
it’s a lot more work to read, write, maintain, and debug this type of loop, which is why we say that the true
foreach is generally a better choice in Perl.

158 | Chapter10: More Control Structures



The last Operator

The last operator immediately ends execution of the loop. (If you’ve used the “break”
operator in C or a similar language, it’s like that.) It’s the “emergency exit” for loop
blocks. When you hit last, the loop is done. For example:
# Print all input lines mentioning fred, until the _ END__ marker
while (<STDIN>) {
if (/_END_/) {
# No more input on or after this marker line
last;
} elsif (/fred/) {
print;
}
}

## last comes here #

Once an input line has the __END__ marker, that loop is done. Of course, that comment
line at the end is merely a comment—it’s not required in any way. We just threw that
in to make it clearer what’s happening.

There are five kinds of loop blocks in Perl. These are the blocks of for, foreach, while,
until, or the naked block.” The curly braces of an if block or subroutine® don’t qualify.
As you may have noticed in the example above, the last operator applied to the entire
loop block.

The last operator will apply to the innermost currently running loop block. To jump
out of outer blocks, stay tuned; that’s coming up in a little bit.

The next Operator

Sometimes you’re not ready for the loop to finish, but you’re done with the current
iteration. That’s what the next operator is good for. It jumps to the inside of the bottom
of the current loop block.* After next, control continues with the next iteration of the
loop (much like the “continue” operator in C or a similar language):

# Analyze words in the input file or files
while (<>) {
foreach (split) { # break $_ into words, assign each to $_ in turn
$total++;

" Yes, you can use last to jump out of a naked block. That’s not exactly the same as jumping naked out into
your block.

T 1t’s probably not a good idea, but you could use these loop control operators from inside a subroutine to
control aloop thatis outside the subroutine. That s, if a subroutine is called in a loop block, and the subroutine
executes last when there’s no loop block running inside the subroutine, the flow of control will jump to just
after the loop block in the main code. This ability to use loop control from within a subroutine may go away
in a future version of Perl, and no one is likely to miss it.

¥ This is another of our many lies. In truth, next jumps to the start of the (usually omitted) continue block for
the loop. See the perlsyn manpage for the full details.

Loop Controls | 159



next if /\W/; # strange words skip the remainder of the loop
$valid++;

$count{$ }++; # count each separate word

## next comes here ##

}
}

print "total things = $total, valid words = $valid\n";
foreach $word (sort keys %count) {
print "$word was seen $count{$word} times.\n";

}

This one is a little more complex than most of our examples up to this point, so let’s
take it step by step. The while loop is reading lines of input from the diamond operator,
one after another, into $_; you’ve seen that before. Each time through thatloop, another
line of input willbe in $_.

Inside that loop, the foreach loop is iterating over the return value split. Do you re-
member the default for split with no arguments?” That splits $_on whitespace, in effect
breaking $_ into a list of words. Since the foreach loop doesn’t mention some other
control variable, the control variable will be $_. So, we’ll see one word after another in

$_.

But didn’t we just say that $_holds one line of input after another? Well, in the outer
loop, that’s what it is. But inside the foreach loop, it holds one word after another. It’s
no problem for Perl to reuse $_ for a new purpose; this happens all the time.

Now, inside the foreach loop, we’re seeing one word at a time in $_. $total is incre-
mented, so it must be the total number of words. But the next line (which is the point
of this example) checks to see whether the word has any nonword characters—anything
but letters, digits, and underscores. So, if the word is Tom's, or if it is full-sized, or if
it has an adjoining comma, quote mark, or any other strange character, it will match
that pattern and we’ll skip the rest of the loop, going on to the next word.

But let’s say that it’s an ordinary word, like fred. In that case, we count $valid up by
one, and also $count{$_}, keeping a count for each different word. So, when we finish
the two loops, we’ve counted every word in every line of input from every file the user
wanted us to use.

We’re not going to explain the last few lines. By now, we hope you’ve got stuff like that
down already.

Like last, next may be used in any of the five kinds of loop blocks: for, foreach, while,
until, or the naked block. Also, if loop blocks are nested, next works with the innermost
one. You'll see how to change that at the end of this section.

" If you don’t remember it, don’t worry too much. Don’t waste any brain cells remembering things that you
can look up with perldoc.

160 | Chapter10: More Control Structures



The redo Operator

The third member of the loop control triad is redo. It says to go back to the top of the
current loop block, without testing any conditional expression or advancing to the next
iteration. (If you’ve used C or a similar language, you’ve never seen this one before.
Those languages don’t have this kind of operator.) Here’s an example:

# Typing test

my @words = quw{ fred barney pebbles dino wilma betty };

my $errors = 0;

foreach (@words) {
## redo comes here ##
print "Type the word '$ ': ";
chomp(my $try = <STDIN>);
if ($try ne $_) {
print "Sorry - That's not right.\n\n";
$errors++;
redo; # jump back up to the top of the loop
}
}

print "You've completed the test, with $errors errors.\n";

Like the other two operators, redo will work with any of the five kinds of loop blocks,
and it will work with the innermost loop block when they’re nested.

The big difference between next and redo is that next will advance to the next iteration,
but redo will redo the current iteration. Here’s an example program that you can play
with to get a feel for how these three operators work:"

foreach (1..10) {
print "Iteration number $ .\n\n";
print "Please choose: last, next, redo, or none of the above? ";
chomp(my $choice = <STDIN>);
print "\n";
last if $choice =~ /last/i;
next if $choice =~ /next/i;
redo if $choice =~ /redo/i;
print "That wasn't any of the choices... onward!\n\n";

}
print "That's all, folks!\n";

If you just press Return without typing anything (try it two or three times), the loop
counts along from one number to the next. If you choose last when you get to number
four, the loop is done, and you won’t go on to number five. If you choose next when
you’re on four, you’re on to number five without printing the “onward” message. And
if you choose redo when you’re on four, you’re back to doing number four all over again.

" If you've downloaded the example files from the O’Reilly web site (as described in the Preface), you'll find
this program, called Inr-example.

Loop Controls | 161



Labeled Blocks

When you need to work with a loop block that’s not the innermost one, use a label.
Labels in Perl are like other identifiers—made of letters, digits, and underscores, but
they can’t start with a digit—however, since they have no prefix character, labels could
be confused with the names of built-in function names, or even with your own sub-
routines’ names. So, it would be a poor choice to make a label called print or if. Because
of that, Larry recommends that they be all uppercase. That not only ensures that the
label won’t conflict with another identifier but it also makes it easy to spot the label in
the code. In any case, labels are rare, only showing up in a small percentage of Perl
programs.

To label a loop block, just put the label and a colon in front of the loop. Then, inside
the loop, you may use the label after last, next, or redo as needed:
LINE: while (<>) {

foreach (split) {
last LINE if / _END_/; # bail out of the LINE loop

-
}

For readability, it’s generally nice to put the label at the left margin, even if the current
code is at a higher indentation. Notice that the label names the entire block; it’s not
marking a target point in the code.” In that previous snippet of sample code, the special
__END__ token marks the end of all input. Once that token shows up, the program will
ignore any remaining lines (even from other files).

It often makes sense to choose a noun as the name of the loop.T That is, the outer loop
is processing a line at a time, so we called it LINE. If we had to name the inner loop, we
would have called it WORD, since it processes a word at a time. That makes it convenient
to say things like “(move on to the) next WORD”or “redo (the current) LINE”.

The Ternary Operator, ?:

When Larry was deciding which operators to make available in Perl, he didn’t want
former C programmers to miss something that C had and Perl didn’t, so he brought all
of C’s operators over to Perl.¥ That meant bringing over C’s most confusing operator:
the ternary ?: operator. While it may be confusing, it can also be quite useful.

" This isn’t goto, after all.

T That is, it makes more sense to do that than not to do that. Perl doesn’t care if you call your loop labels things
like XYZzY or PLUGH. However, unless you were friendly with the Colossal Cave in the *70s, you might not get
the reference.

¥ Well, to be sure, he did leave out the ones that have no use in Perl, such as the operator that turns a number
into the memory address of a variable. And he added several operators (like the string concatenation operator)
that make C folks jealous of Perl.

162 | Chapter10: More Control Structures



The ternary operator is like an if-then-else test, all rolled into an expression. It is called
a “ternary” operator because it takes three operands. It looks like this:

expression ? if true expr : if false expr

First, the expression is evaluated to see whether it’s true or false. If it’s true, the second
expression is used; otherwise, the third expression is used. Every time, one of the two
expressions on the right is evaluated, and one is ignored. That is, if the first expression
is true, then the second expression is evaluated, and the third is ignored. If the first
expression is false, then the second is ignored, and the third is evaluated as the value
of the whole thing.

In this example, the result of the subroutine 8is_weekend determines which string ex-
pression will be assigned to the variable:

my $location = 8is_weekend($day) ? "home" : "work";
And here, we calculate and print out an average—or just a placeholder line of hyphens,
if there’s no average available:

my $average = $n ? ($total/$n) : "----- "5
print "Average: $average\n";

You could always rewrite any use of the ?: operator as an if structure, often much less
conveniently and less concisely:

my $average;

if ($n) {

$average = $total / $n;
} else {

$average = "----- "5
}

print "Average: $average\n";

Here’s a trick you might see used to code up a nice multiway branch:

my $size =
($width < 10) ? "small"
($width < 20) ? "medium" :
($width < 50) ? "large"
"extra-large"; # default

That is really just three nested ?: operators, and it works quite well, once you get the
hang of it.

Of course, you’re not obliged to use this operator. Beginners may wish to avoid it. But
you’ll see it in others’ code, sooner or later, and we hope that one day you’ll find a good
reason to use it in your own programs.

The Ternary Operator, 2: | 163



Logical Operators

As you might expect, Perl has all of the necessary logical operators needed to work with
Boolean (true/false) values. For example, it’s often useful to combine logical tests by
using the logical AND operator (88) and the logical OR operator (| |):
if ($dessert{'cake'} && $dessert{'ice cream'}) {
# Both are true
print "Hooray! Cake and ice cream!\n";
} elsif ($dessert{'cake'} || $dessert{'ice cream'}) {
# At least one is true
print "That's still good...\n";
} else {
# Neither is true - do nothing (we're sad)

}

There may be a shortcut. If the left side of a logical AND operation is false, the whole
thing is false, since logical AND needs both sides to be true in order to return true. In
that case, there’s no reason to check the right side, so it will not even be evaluated.
Consider what happens in this example if $hour is 3:
if ( (9 <= $hour) 8& ($hour < 17) ) {
print "Aren't you supposed to be at work...?\n";

}

Similarly, if the left side of a logical OR operation is true, the right side will not be
evaluated. Consider what happens here if $name is fred:
if ( ($name eq 'fred') || ($name eq 'barney') ) {
print "You're my kind of guy!\n";
}
Because of this behavior, these operators are called “short-circuit” logical operators.
They take a short circuit to the result whenever they can. In fact, it’s fairly common to
rely upon this short-circuit behavior. Suppose you need to calculate an average:
if ( ($n != 0) 8& ($total/$n < 5) ) {
print "The average is below five.\n";

}

In that example, the right side will be evaluated only if the left side is true, so we can’t
accidentally divide by zero and crash the program.

The Value of a Short-Circuit Operator

Unlike what happens in C (and similar languages), the value of a short-circuit logical
operator is the last part evaluated, not just a Boolean value. This provides the same
result, in that the last part evaluated is always true when the whole thing should be
true, and it’s always false when the whole thing should be false.

But it’s a much more useful return value. Among other things, the logical OR operator
is quite handy for selecting a default value:

164 | Chapter10: More Control Structures



my $last name = $last name{$someone} || '(No last name)';

If $someone is not listed in the hash, the left side will be undef, which is false. So, the
logical OR will have to look to the right side for the value, making the right side the
default. In this idiom, the default value won’t merely replace undef; it would replace
any false value equally well. You could fix that with the ternary operator:

my $last_name = defined $last_name{$someone} ?
$last_name{$someone} : '(No last name)';

That’s too much work, and you had to say $last_name{$someone} twice. Perl 5.10 added
a better way to do this, and it’s the next section.

The defined-or Operator

In the previous section, you saw us use the || operator to give a default value. That
ignored the special case; there the defined value was false but perfectly acceptable as a
value. You then saw the uglier version using the ternary operator.

Perl 5.10 gets around this sort of bug with the defined-or operator, //, which short-
circuits when it finds a defined value, no matter if that value on the lefthand side is true
or false. Even if someone’s last name is 0, this version still works:

use 5.010;
my $last_name = $last_name{$someone} // '(No last name)';

Sometimes you just want to give a variable a value if it doesn’t already have one, and
leave it alone if it does. Suppose you want to print messages only if you set the
VERBOSE environment variable. You check the value for the VERBOSE key in the %ENV hash.
If it doesn’t have a value, you want to give it one:

use 5.010;

my $Verbose = $ENV{VERBOSE} // 1;
print "I can talk to you!\n" if $Verbose;

You can see this in action by trying several values with // to see which ones pass through
to the default value:

use 5.010;

foreach my $try ( 0, undef, '0', 1, 25 ) {
print "Trying [$try] ---> ";
my $value = $try // 'default';
say "\tgot [$value]”;

The output shows that you only get the default string when $try is undef:

Trying [0] ---> got [0]
Trying [] ---> got [default]
Trying [0] ---> got [0]

Logical Operators | 165



Trying [1] ---> got [1]

Trying [25] ---> got [25]
Sometimes you want to set a value when there isn’t one already. For instance, when
you have warnings enabled and try to print an undefined value, you get an annoying
error:

use warnings;

my $name; # no value, so undefined!
printf "%s", $name; # Use of uninitialized value in printf ...

Sometimes that error is harmless. You could just ignore it, but if you expect that you
might try to print an undefined value, you can use the empty string instead:

use 5.010;
use warnings;

my $name; # no value, so undefined!
printf "%s", $name // '';

Control Structures Using Partial-Evaluation Operators

The four operators that you’ve just seen—=88, | |, //, and ?:—all share a peculiar prop-
erty: depending upon the value on the left side, they may or may not evaluate an
expression. Sometimes the expression is evaluated, and sometimes it isn’t. For that
reason, these are sometimes called partial-evaluation operators, since they may not
evaluate all of the expressions around them. And partial-evaluation operators are
automatically control structures.” It’s not as if Larry felt a burning need to add more
control structures to Perl. But once he had decided to put these partial-evaluation op-
erators into Perl, they automatically became control structures as well. After all, any-
thing that can activate and deactivate a chunk of code is, by that very fact, a control
structure.

Fortunately, you’ll notice this only when the controlled expression has side effects, like
altering a variable’s value or causing some output. For example, suppose you ran across
this line of code:

($m < $n) && ($m = $n);

Right away, you should notice that the result of the logical AND isn’t being assigned
anywhere.T Why not?

If $m is really less than $n, the left side is true, so the right side will be evaluated, thereby
doing the assignment. But if $m is not less than $n, the left side will be false, and thus
the right side would be skipped. So that line of code would do essentially the same thing
as this one, which is easier to understand:

" Some of you were wondering why these logical operators are being covered in this chapter, weren’t you?

T But don’t forget to consider that it might be a return value, as the last expression in a subroutine.

166 | Chapter10: More Control Structures



if ($m < $n) { $m = $n }

Or maybe you’ll be maintaining a program, and you’ll see a line like this one:

($m > 10) || print "why is it not greater?\n";

If $m is really greater than 10, the left side is true, and the logical OR is done. But if it’s
not, the left side is false, and this will go on to print the message. Once again, this could
(and probably should) be written in the traditional way, probably with if or unless.

If you have a particularly twisted brain, you might even learn to read these lines as if
they were written in English. For example: check that $mis less than $n, and if it is, then
do the assignment. Check that $m is more than 10, or if it’s not, then print the message.

It’s generally former C programmers or old-time Perl programmers who most often use
these ways of writing control structures. Why do they do it? Some have the mistaken
idea that these are more efficient. Some think these tricks make their code cooler. Some
are merely copying what they saw someone else do.

In the same way, the ternary operator may be used for control. In this case, we want to
assign $x to the smaller of two variables:

($m < $n) 2 ($m = $x) : ($n = $x);
If $m is smaller, it gets $x. Otherwise, $n does.

There is another way to write the logical AND and logical OR operators. You may wish
to write them out as words: and and or.” These word operators have the same behaviors
as the ones written with punctuation, but the words are down at the bottom of the
precedence chart. Since the words don’t “stick” so tightly to the nearby parts of the
expression, they may need fewer parentheses:

$m < $n and $m = $n; # but better written as the corresponding if

Then again, you may need more parentheses. Precedence is a bugaboo. Be sure to use
parentheses to say what you mean, unless you’re sure of the precedence. Nevertheless,
since the word forms are very low precedence, you can generally understand that they
cut the expression into big pieces, doing everything on the left first, and then (if needed)
everything on the right.

Despite the fact that using logical operators as control structures can be confusing,
sometimes they’re the accepted way to write code. The idiomatic way of opening a file
in Perl looks like this:

open CHAPTER, $filename
or die "Can't open '$filename’: $!";

By using the low-precedence short-circuit or operator, we’re telling Perl that it should
“open this file... or die!” If the open succeeds, returning a true value, the or is complete.

" There are also the low-precedence not (like the logical-negation operator, !) and the rare xor.

Logical Operators | 167



But if it fails, the false value causes the or to evaluate the part on the right, which will
die with a message.

So, using these operators as control structures is part of idiomatic Perl—Perl as she is
spoken. Used properly, they can make your code more powerful; otherwise, they can
make your code unmaintainable. Don’t overuse them.”

Exercises

See Appendix A for the answers to the following exercises:

1. [25] Make a program that will repeatedly ask the user to guess a secret number
from 1 to 100 until the user guesses the secret number. Your program should pick
the number at random by using the magical formula int(1 + rand 100).T When
the user guesses wrong, the program should respond “Too high” or “Too low.” If
the user enters the word quit or exit, or if the user enters a blank line, the program
should quit. Of course, if the user guesses correctly, the program should quit then
as well!

2. [10] Modify the program from the previous exercise to print extra debugging in-
formation as it goes along, such as the secret number it chose. Make your change
such that you can turn it off, but your program emits no warnings if you turn it off.
If you are using Perl 5.10, use the // operator. Otherwise, use the ternary operator.

3. [10] Modify the program from Exercise 3 in Chapter 6 (the environment lister) to
print (undefined value) for environment variables without a value. You can set
the new environment variables in the program. Ensure that your program reports
the right thing for variables with a false value. If you are using Perl 5.10, use
the // operator. Otherwise, use the ternary operator.

" Using these weird forms (anything but or die) more than once per month counts as overuse.

T See what the perlfunc manpage says about int and rand if you’re curious about these functions.

168 | Chapter10: More Control Structures



CHAPTER 11

Perl Modules

There is a lot more to Perl than what we’re able to show you in this book, and there
are a lot of people doing a lot of interesting things with Perl. If there is a problem to
solve, then somebody has probably already solved it and made their solution available
on the Comprehensive Perl Archive Network (CPAN), which is a worldwide collection
of servers and mirrors containing thousands of modules of reusable Perl code.

We’re not going to teach you how to write modules here: you’ll have to get that from
the Alpaca book. In this chapter, we’ll show you how to use modules that already exist.

Finding Modules

Modules come in two types: those that come with Perl and that you should have avail-
able to you, and those that you can get from CPAN to install yourself. Unless we say
otherwise, the modules that we discuss come with Perl.

To find modules that don’t come with Perl, start at either CPAN Search (http:/
search.cpan.org) or Kobes’ Search (http://kobesearch.cpan.org/).” You can browse
through the categories or search directly.

Either of those resources is great since you can read the module before you download
the entire package. You can also browse the distribution and have a peek at the files
without the bother of installing the modules.

Before you go looking for a module, you should check whether it is already installed.
One way is to just try to read the documentation with perldoc. The CGI.pm module
comes with Perl (and we’ll discuss it later in this chapter), so you should be able to read
its documentation:

$ perldoc CGI

Try it with a module that does not exist and you’ll get an error message.

" Yes, there should be two s’s in that URL, but there aren’t and nobody ever fixed it.

169


http://search.cpan.org
http://search.cpan.org
http://kobesearch.cpan.org/

$ perldoc Llamas
$ No documentation found for "Llamas".

The documentation may be available in other formats, such as HTML, on your system,
too. If the documentation is there.”

Installing Modules

When you want to install a module that you don’t already have, sometimes you can
simply download the distribution, unpack it, and run a series of commands from the
shell. Check for a README or INSTALL file that gives you more information. If the
module uses MakeMaker, T the sequence will be something like this:

$ perl Makefile.PL
$ make install

If you can’t install modules in the system-wide directories, you can specify another
directory with a PREFIX argument to Makefile.PL:

$ perl Makefile.PL PREFIX=/Users/fred/lib

Some Perl module authors use another module, Module: :Build, to build and install their
creations. That sequence will be something like this:

$ perl Build.PL
$ ./Build install

Some modules depend on other modules though, and they won’t work unless you
install yet more modules. Instead of doing all that work ourselves, we can use one of
the modules that comes with Perl, CPAN.pm.¥ From the command line, you can start up
the CPAN. pm, from which you can issue commands:

$ perl -MCPAN -e shell
Even this can be a little complicated, so a while ago one of our authors wrote a little

script called “cpan,” which also comes with Perl and is usually installed with perl and
its tools. Just call the script with a list of the modules you want to install:

$ cpan Module::Corelist LWP CGI::Prototype

" We cover Perl documentation in Intermediate Perl (O’Reilly), but for now, just believe us that most module
documentation is in the same file as the actual code.

T That’s really the Perl module ExtUtils: :MakeMaker, which comes with Perl. It handles all of the stuff to create
the file that will have the installation instructions appropriate for your system and installation of Perl.

¥ The “.pm” file extension stands for “Perl Module,” and some popular modules are pronounced with the
“.pm” to distinguish them from something else. In this case, CPAN the archive is different than CPAN the
module, so the latter is said “CPAN.pm.”

170 | Chapter11: Perl Modules



You mightbe saying, “But I don’thave acommand line!” If you are using the ActiveState
port of Perl (for Windows, Linux, or Solaris), you can use the Perl Package Manager
(PPM),” which installs modules for you. You can even get the ActiveState ports on CD
or DVD.T Besides what you’ve seen so far, your particular operating system may have
ways to install software, including Perl modules.

Using Simple Modules

Suppose that you’ve got a long filename like /usr/local/bin/perl in your program, and
you need to find out the basename. That’s easy enough, since the basename is everything
after the last slash (it’s just perl in this case):

my $name = "/usr/local/bin/perl";
(my $basename = $name) =~ s#.*/##; # Oops!

As you saw earlier, first Perl will do the assignment inside the parentheses, then it will
do the substitution. The substitution is supposed to replace any string ending with a
slash (that is, the directory name portion) with an empty string, leaving just the
basename.

And if you try this, it seems to work. Well, it seems to, but actually, there are three
problems.

First, a Unix file or directory name could contain a newline character. (It’s not some-
thing that’s likely to happen by accident, but it’s permitted.) So, since the regular ex-
pression dot (.) can’t match a newline, a filename like the string "/home/fred/flint
stone\n/brontosaurus” won’t work right—that code would think the basename is
"flintstone\n/brontosaurus”. You could fix that with the /s option to the pattern (if
you remembered about this subtle and infrequent case), making the substitution look
like this: s#.*/##s. The second problem is that this is Unix-specific. It assumes that the
forward slash will always be the directory separator, as it is on Unix, and not the back-
slash or colon that some systems use.

And the third (and biggest) problem with this is that we’re trying to solve a problem
that someone else has already solved. Perl comes with a number of modules, which are
smart extensions to Perl that add to its functionality. And if those aren’t enough, there
are many other useful modules available on CPAN, with new ones being added every
week. You (or, better yet, your system administrator) can install them if you need their
functionality.

" http://aspn.activestate.com/ASPN/docs/ActivePerl/faq/ActivePerl-faq2.html

T You can make your own CDs or DVDs too by creating a local repository. Even though CPAN is almost 4 GB
by now, a “minicpan” (again, by one of the authors) pares it down to just the latest versions of everything,
which is about 800 MB. See the CPAN: :Mini module.

Using Simple Modules | 171


http://aspn.activestate.com/ASPN/docs/ActivePerl/faq/ActivePerl-faq2.html

In the rest of this section, we’ll show you how to use some of the features of a couple
of simple modules that come with Perl. (There’s more that these modules can do; this
is just an overview to illustrate the general principles of how to use a simple module.)

Alas, we can’t show you everything you’d need to know about using modules in general,
since you’d have to understand advanced topics like references and objects in order to
use some modules.” Those topics, including how to create a module, are covered in
great detail in the Alpaca. But this section should prepare you for using many simple
modules. Further information on some interesting and useful modules is included in
Appendix B.

The File::Basename Module

In the previous example, we found the basename of a filename in a way that’s not
portable. We showed that something that seemed straightforward was susceptible to
subtle mistaken assumptions (here, the assumption was that newlines would never
appear in file or directory names). And we were reinventing the wheel, solving a prob-
lem that others have solved (and debugged) many times before us.

Here’s a better way to extract the basename of a filename. Perl comes with a module
called File::Basename. With the command perldoc File::Basename, or with your sys-
tem’s documentation system, you can read about what it does. That’s the first step
when using a new module. (It’s often the third and fifth steps, as well.)

Soon you’re ready to use it, so you declare it with a use directive near the top of your
program:T

use File::Basename

During compilation, Perl sees that line and loads up the module. Now, it’s as if Perl
has some new functions that you may use in the remainder of your program.* The one
we wanted in the earlier example is the basename function itself:

my $name = "/usr/local/bin/perl";
my $basename = basename $name; # gives 'perl’

Well, that worked for Unix. What if our program were running on MacPerl or Windows
or VMS, to name a few? There’s no problem—this module can tell which kind of

* As we’ll see in the next few pages, though, you may be able to use a module that uses objects and references
without having to understand those advanced topics.

T It’s traditional to declare modules near the top of the file, since that makes it easy for the maintenance
programmer to see which modules you’ll be using. That greatly simplifies matters when it’s time to install
your program on a new machine, for example.

¥ You guessed it: there’s more to the story, having to do with packages and fully qualified names. When your
programs are growing beyond a few hundred lines in the main program (not counting code in modules),
which is quite large in Perl, you should probably read up about these advanced features. Start with the
perlmod manpage.

172 | Chapter11: Perl Modules



machine you’re using, and it uses that machine’s filename rules by default. (Of course,
you’d have that machine’s kind of filename string in $name, in that case.)

There are some related functions also provided by this module. One is the dirname
function, which pulls the directory name from a full filename. The module also lets you
separate a filename from its extension, or change the default set of filename rules.”

Using Only Some Functions from a Module

Suppose you discovered that when you went to add the File: :Basename module to your
existing program, you already have a subroutine called &dirname—that is, you already
have a subroutine with the same name as one of the module’s functions.T Now there’s
trouble because the new dirname is also implemented as a Perl subroutine (inside the
module). What do you do?

Simply give File::Basename, in your use declaration, an import list showing exactly
which function names it should give you, and it’ll supply those and no others. Here,
we’ll get nothing but basename:

use File::Basename qw/ basename /;

And here, we’ll ask for no new functions at all:

use File::Basename qw/ /;

This is also frequently written as:

use File::Basename ();

Why would you want to do that? Well, this directive tells Perl to load File::Base
name, just as before, but not to import any function names. Importing lets us use the
short, simple function names like basename and dirname. But even if we don’t import
those names, we can still use the functions. When they’re not imported, though, we
have to call them by their full names:

use File::Basename qw/ /; # import no function names

my $betty = &dirname($wilma); # uses our own subroutine &dirname
#(not shown)

my $name = "/usr/local/bin/perl";
my $dirname = File::Basename::dirname $name; # dirname from the module

" You might need to change the filename rules if you were trying to work with a Unix machine’s filenames
from a Windows machine—perhaps while sending commands over an FTP connection, for example.

T Well, it’s not likely that you would already have a &dirname subroutine that you use for another purpose, but
this is just an example. Some modules offer hundreds (really!) of new functions, making a name collision
that much more frequent.

Using Simple Modules | 173



As you can see, the full name of the dirname function from the module is File: :Base
name: :dirname. We can always use the function’s full name (once we’ve loaded the
module) whether we’ve imported the short name dirname or not.

Most of the time, you’ll want to use a module’s default import list. But you can always
override that with a list of your own if you want to leave out some of the default items.
Another reason to supply your own list would be if you wanted to import some function
not on the default list, since most modules include some (infrequently needed) func-
tions that are not on the default import list.

Asyou’d guess, some modules will, by default, import more symbols than others. Each
module’s documentation should make it clear which symbols it imports, if any, but
you are always free to override the default import list by specifying one of your own,
just as we did with File: :Basename. Supplying an empty list imports no symbols.

The File::Spec Module

Now you can find out a file’s basename. That’s useful, but you’ll often want to put that
together with a directory name to get a full filename. For example, here we want to take
a filename like /home/rootbeerfice-2.1.txt and add a prefix to the basename:

use File::Basename;

print "Please enter a filename: ";
chomp(my $old_name = <STDIN>);

my $dirname = dirname $old_name;
my $basename = basename $old_name;

$basename =~ s/*/not/; # Add a prefix to the basename
my $new_name = "$dirname/$basename";

rename($old_name, $new_name)
or warn "Can't rename '$old _name' to '$new_name': $!";

Do you see the problem here? Once again, we’re making the assumption that filenames
will follow the Unix conventions and use a forward slash between the directory name
and the basename. Fortunately, Perl comes with a module to help with this problem,
t0o.

The File::Spec module is used for manipulating file specifications, which are the names
of files, directories, and the other things that are stored on filesystems. Like File: :Base
name, it understands what kind of system it’s running on, and it chooses the right set
of rules every time. But unlike File: :Basename, File: :Spec is an object-oriented (often
abbreviated OO) module.

If you’ve never caught the fever of OO, don’t let that bother you. If you understand
objects, that’s great; you can use this OO module. If you don’t understand objects,
that’s okay, too. You just type the symbols as we show you, and it works just as if you
knew what you were doing.

174 | Chapter 11: Perl Modules



In this case, we learn from reading the documentation for File: : Spec that we want to
use a method called catfile. What’s a method? It’s just a different kind of function, as
far as we’re concerned here. The difference is that you’ll always call the methods from
File::Spec with their full names, like this:

use File::Spec;
# Get the values for $dirname and $basename as above

my $new_name = File::Spec->catfile($dirname, $basename);

rename($old_name, $new_name)
or warn "Can't rename '$old name' to '$new_name': $!";

As you can see, the full name of a method is the name of the module (called a class
here), a small arrow (->) and the short name of the method. It is important to use the
small arrow, rather than the double colon we used with moreinfo="none">File: :Base
name.

Since we’re calling the method by its full name, though, what symbols does the module
import? None of them. That’s normal for OO modules. So you don’t have to worry
about having a subroutine with the same name as one of the many methods of
File::Spec.

Should you bother using modules like these? It’s up to you, as always. If you’re sure
your program will never be run anywhere but on a Unix machine, say, and you’re sure
you completely understand the rules for filenames on Unix,” then you may prefer to
hardcode your assumptions into your programs. But these modules give you an easy
way to make your programs more robust in less time—and more portable at no extra
charge.

CGl.pm

If you need to create CGI programs (which we don’t cover in this book), use the
CGI.pmmodule.T Unless you really know what you are doing (and sometimes even then),
you don’t need to handle the actual interface and input parsing portion of the script,
which gets so many other people into trouble. The CGI.pm author, Lincoln Stein, spent
a lot of time ensuring that the module would work with most servers and operating
systems. Just use the module and focus on the interesting parts of your script.

The CGI module has two flavors: the plain old functional interface and the object-
oriented interface. We’ll use the first one. As before, you can follow the examples in

" If you didn’t know that filenames and directory names could contain newline characters, as we mentioned
earlier in this section, then you don’t know all the rules, do you?

T As with the CPAN.pm module, we pronounce the “.pm” in CGI.pm to distinguish it from the protocol itself.

Using Simple Modules | 175



the CGI.pm documentation. Our simple CGI script parses the CGI input and displays
the input names and values as a plain-text document. In the import list, we use :all,
which is an export tag that specifies a group of functions rather than a single function
like you saw with the previous modules:”

#!/usr/bin/perl
use CGI qw(:all);
print header("text/plain");

foreach my $param ( param() )

" ",

print "$param: " . param($param) . "\n";

}
We can get fancier though because we want to output HTML, and CGI.pm has many,
many convenience functions to do that. It handles the CGI header, the beginning parts
of HTML with start_html(), and many of the HTML tags with functions of the same
name, like h1() for the H1 tag:

#!/usr/bin/perl
use CCGI gqw(:all);

print header(),
start_html("This is the page title"),
hi( "Input parameters" );

my $list items;
foreach my $param ( param() )

$list_items .= 1i( "$param:

}

print ul( $list items );

. param($param) );

print end_html();

Wasn’t that easy? You don’t have to know how CGI.pm is doing all this stuff; you just
have to trust that it does it correctly. Once you let CGI.pm do all the hard work, you get
to focus on the interesting parts of your program.

The CGI.pm module does a lot more: it can handle cookies, redirection, multipage
forms, and a lot more. We don’t have room to cover it here, but you’ll learn more from
the examples in the module documentation.

" The module has several other export tags to select different groups of functions. For instance, if you want
the ones that deal with just the CGI, you can use :cgi, or if you just want the HTML generation functions,
you can use :html4. See the CGI.pm documentation for more details.

176 | Chapter11: Perl Modules



Databases and DBI

The DBI (Database Interface) module doesn’t come with Perl, but it’s one of the most
popular modules since most people have to connect to a database of some sort. The
beauty of DBI is that it allows you to use the same interface for just about any common
database, from simple comma-separated value files to big database servers like Oracle.
It has ODBC drivers, and some of its drivers are even vendor supported. To get the full
details, get Programming the Perl DBI by Alligator Descartes and Tim Bunce (O’Reilly).
You can also check out the DBI web site at http://dbi.perl.org/.

Once you install DBI, you also have to install a DBD (Database Driver). You can get a
long list of DBDs from CPAN Search. Install the right one for your database server, and
ensure that you get the version that goes with the version of your server.

The DBI is an object-oriented module, but you don’t have to know everything about
OO programming to use it. You just have to follow the examples in the documentation.
To connect to a database, you use the DBI module, then call its connect method:

use DBI;

$dbh = DBI->connect($data_source, $username, $password);

The $data_source contains information particular to the DBD that you want to use, so
you’ll get that from the DBD. For PostgreSQL, the driver is DBD::Pg, and the
$data_source is something like:

my $data_source = "dbi:Pg:dbname=name_of database";
Once you connect to the database, you go through a cycle of preparing, executing, and
reading queries.

$sth = $dbh->prepare("SELECT * FROM foo WHERE bla");
$sth->execute();

@row_ary = $sth->fetchrow_array;

$sth->finish;

When you are finished, you disconnect from the database.

$dbh->disconnect();

There are all sorts of other things that the DBI can do too. See its documentation for
more details.

Exercise

See Appendix A for the answer to the following exercise:

1. [15] Install the Module: : CoreList module from CPAN. Print a list of all of the mod-
ules that came with Perl 5.008. To build a hash whose keys are the names of the
modules that came with a given version of Perl, use this line:

my %modules = %{ $Module::CorelList::version{5.008} };

Exercise | 177


http://dbi.perl.org/




CHAPTER 12
File Tests

Earlier, we showed how to open a filehandle for output. Normally, that will create a
new file, wiping out any existing file with the same name. Perhaps you want to check
that there isn’t a file by that name. Perhaps you need to know how old a given file is.
Or perhaps you want to go through a list of files to find which ones are larger than a
certain number of bytes and not accessed for a certain amount of time. Perl has a com-
plete set of tests you can use to find out information about files.

File Test Operators

Before we start a program that creates a new file, let’s make sure that the file doesn’t
already exist so that we don’t accidentally overwrite a vital spreadsheet datafile or that
important birthday calendar. For this, we use the -e file test, testing a filename for
existence:

die "Oops! A file called '$filename' already exists.\n"
if -e $filename;

Notice that we don’t include $! in this die message, since we’re not reporting that the
system refused a request in this case. Here’s an example of checking whether a file is
being kept up-to-date. In this case, we’re testing an already opened filehandle, instead
of a string filename. Let’s say that our program’s configuration file should be updated
every week or two. (Maybe it’s checking for computer viruses, say.) If the file hasn’t
been modified in the past 28 days, then something is wrong:

warn "Config file is looking pretty old!\n"
if -M CONFIG > 28;

179



The third example is more complex. Here, let’s say that disk space is filling up and
rather than buy more disks, we’ve decided to move any large, useless files to the backup
tapes. So let’s go through our list of files” to see which of them are larger than 100 KB.
But even if a file is large, we shouldn’t move it to the backup tapes unless it hasn’t been
accessed in the last 90 days (so we know that it’s not used too often):T

my @original files = qw/ fred barney betty wilma pebbles dino bamm-bamm /;

my @big old_files; # The ones we want to put on backup tapes

foreach my $filename (@original files) {

push @big old files, $filename
if -s $filename > 100 000 and -A $filename > 90;
}

This is the first time that you’ve seen it, so maybe you noticed that the control variable
of the foreach loop is a my variable. That declares it to have the scope of the loop itself,
so this example should work under use strict. Without the my keyword, this would
be using the global $filename.

The file tests all look like a hyphen and a letter, which is the name of the test, followed
by either a filename or a filehandle to test. Many of them return a true/false value, but
several give something more interesting. See Table 12-1 for the complete list, and then
read the following discussion to learn more about the special cases.

Table 12-1. File tests and their meanings

Filetest Meaning

-r File or directory is readable by this (effective) user or group
-w File or directory is writable by this (effective) user or group
X File or directory is executable by this (effective) user or group
-0 File or directory is owned by this (effective) user

-R File or directory is readable by this real user or group

-W File or directory is writable by this real user or group

X File or directory is executable by this real user or group

-0 File or directory is owned by this real user

-e File or directory name exists

-z File exists and has zero size (always false for directories)

- File or directory exists and has nonzero size (the value is the size in bytes)
-f Entry is a plain file

-d Entry is a directory

" 1t’s more likely that, instead of having the list of files in an array, as our example shows, you’ll read it directly
from the filesystem using a glob or directory handle, as we’ll show in Chapter 13. Since you haven’t seen that
yet, we’ll just start with the list and go from there.

T There’s a way to make this example more efficient, as you’ll see by the end of the chapter.

180 | Chapter12: File Tests



Filetest Meaning

-l Entry is a symbolic link

-S Entry is a socket

-p Entry is a named pipe (a “fifo”)

-b Entry is a block-special file (like a mountable disk)
-C Entry is a character-special file (like an /0 device)
-u File or directory is setuid

-g File or directory is setgid

-k File or directory has the sticky bit set

-t The filehandle is a TTY (as reported by the isatty () system function; filenames can’t be tested by this test)
-T File looks like a “text” file

-B File looks like a “binary” file

-M Modification age (measured in days)

-A Access age (measured in days)

-C Inode-modification age (measured in days)

The tests -1, -w, -x, and -o tell whether the given attribute is true for the effective user
or group ID,” which essentially refers to the person who is “in charge of” running the
program.T These tests look at the “permission bits” on the file to see what is permitted.
If your system uses Access Control Lists (ACLs), the tests will use those as well. These
tests generally tell whether the system would ¢ry to permit something, but it doesn’t
mean that it really would be possible. For example, -w may be true for a file on a CD-
ROM, even though you can’t write to it, or -x may be true on an empty file, which can’t
truly be executed.

The -s test does return true if the file is nonempty, but it’s a special kind of true. It’s
the length of the file, measured in bytes, which evaluates as true for a nonzero number.

On a Unix filesystem, there are just seven types of items, represented by the seven file
tests: -f, -d, -1, -S, -p, -b, and -c. Any item should be one of those. But if you have a
symbolic link pointing to a file, that will report true for both -f and -1. So, if you want
to know whether something is a symbolic link, you should generally test that first.
(You’ll learn more about symbolic links in Chapter 13.)

" The -0 and -0 tests relate only to the user ID and not to the group ID.

T Note for advanced students: the corresponding -R, -, -X, and -0 tests use the real user or group ID, which
becomes important if your program may be running set-ID; in that case, it’s generally the ID of the person
who requested running it. See any good book about advanced Unix programming for a discussion of set-ID
programs.

* This is also the case on many non-Unix filesystems, but not all of the file tests are meaningful everywhere.
For example, you aren’t likely to have block-special files on your non-Unix system.

File Test Operators | 181



The age tests, -M, -A, and -C (yes, they’re uppercase), return the number of days since
the file was last modified, accessed, or had its inode changed.” (The inode contains all
of the information about the file except for its contents—see the stat system call man-
page or a good book on Unix internals for details.) This age value is a full floating-point
number, so you might get a value of 2.00001 if a file were modified two days and one
second ago. (These “days” aren’t necessarily the same as a human would count; for
example, if it’s 1:30 in the morning when you check a file modified at about an hour
before midnight, the value of -M for this file would be around 0.1, even though it was
modified “yesterday.”)

When checking the age of a file, you might even get a negative value like -1.2, which
means that the file’s last-access timestamp is set at about 30 hours in the future! The
zero point on this timescale is the moment your program started running, so that value
might mean that a long-running program was looking at a file that had just been ac-
cessed. Or a timestamp could be set (accidentally or intentionally) to a time in the
future.

The tests -T and -B take a try at telling whether a file is text or binary. But people who
know a lot about filesystems know that there’s no bit (at least in Unix-like operating
systems) to indicate that a file is a binary or text file—so how can Perl tell? The answer
is that Perl cheats: it opens the file, looks at the first few thousand bytes, and makes an
educated guess. If it sees a lot of null bytes, unusual control characters, and bytes with
the high bit set, then that looks like a binary file. If there’s not much weird stuff then
it looks like text. As you might guess, it sometimes guesses wrong. If a text file has a
lot of Swedish or French words (which may have characters represented with the high
bit set, as some ISO-8859-something variant, or perhaps even a Unicode version), it
may fool Perl into declaring it binary. So it’s not perfect, but if you just need to separate
your source code from compiled files, or HTML files from PNGs, these tests should do
the trick.

You’d think that -T and -B would always disagree, since a text file isn’t a binary and
vice versa, but there are two special cases where they’re in complete agreement. If the
file doesn’t exist, or can’t be read, both are false, since it’s neither a text file nor a binary.
Alternatively, if the file is empty, it’s an empty text file and an empty binary file at the
same time, so they’re both true.

The -t file test returns true if the given filehandle is a TTY—in short, if it’s interactive
because it’s not a simple file or pipe. When -t STDIN returns true, it generally means
that you can interactively ask the user questions. If it’s false, your program is probably
getting input from a file or pipe, rather than a keyboard.

" This information will be somewhat different on non-Unix systems, since not all keep track of the same times
that Unix does. For example, on some systems, the ctime field (which the -C test looks at) is the file creation
time (which Unix doesn’t keep track of), rather than the inode change time; see the perlport manpage.

T As recorded in the $°T variable, which you could update (with a statement like $°T = time;) if you needed
to get the ages relative to a different starting time.

182 | Chapter12: File Tests



Don’t worry if you don’t know what some of the other file tests mean—if you’ve never
heard of them, you won’t be needing them. But if you’re curious, get a good book about
programming for Unix. (On non-Unix systems, these tests all try to give results anal-
ogous to what they do on Unix, or undef for an unavailable feature. Usually you’ll be
able to guess correctly what they’ll do.)

If you omit the filename or filehandle parameter to a file test (that is, if you have just
-r or just -s, say), the default operand is the file named in $_." So, to test a list of
filenames to see which ones are readable, you simply type:
foreach (@lots of filenames) {
print "$_ is readable\n" if -r; # same as -r $_

}

But if you omit the parameter, be careful that whatever follows the file test doesn’t look
like it could be a parameter. For example, if you wanted to find out the size of a file in
KB rather than in bytes, you might be tempted to divide the result of -s by 1000 (or
1024), like this:

# The filename is in $_

my $size_in K = -s / 1000; # Oops!
When the Perl parser sees the slash, it doesn’t think about division; since it’s looking
for the optional operand for -s, it sees what looks like the start of a regular expression
in forward slashes. One simple way to prevent this kind of confusion is to put paren-
theses around the file test:

my $size in k = (-s) / 1024; # Uses $_ by default

Of course, it’s always safe to explicitly give a file test a parameter.

Testing Several Attributes of the Same File

We can use more than one file test on the same file to create a complex logical condition.
Suppose we want to operate on only files that are both readable and writable. We check
each attribute and combine them with and:
if( -r $file and -w $file ) {
ceo b

This is an expensive operation, though. Each time you perform a file test, Perl asks the
filesystem for all of the information about the file (Perl’s actually doing a stat each
time, which we talk about in the next section). Although we already got that informa-
tion when we tested -r, Perl asks for the same information again so it can test -w. What
awaste! This can be a significant performance problem if you’re testing many attributes
on many files.

" The -t file test is an exception since that test isn’t useful with filenames (they’re never TTYs). By default it
tests STDIN.

File Test Operators | 183



Perl has a special shortcut to help us not do so much work. The virtual filehandle _
(just the underscore) uses the information from the last file lookup that a file test op-
erator performed. Perl only has to look up the file information once now:

if( -r $file and -w _ ) {
cee }

We don’t have to use the file tests next to each other to use _. Here we have them in
separate if conditions:

if( -r $file ) {
print "The file is readable!\n";

}

if(-w_ ) {
print "The file is writable!\n";
}

We have to watch out that we know what the last file lookup really was, though. If we
do something else between the file tests, such as call a subroutine, the last file we looked
up might be different. For instance, this example calls the lookup subroutine, which
has a file test in it. When we return from that subroutine and do another file test, the
_ filehandle isn’t for $file like we expect, but for $other file:
if( -1 $file ) {
print "The file is readable!\n";

}

lookup( $other file );

If(-w_){
print "The file is writable!\n";

}

sub lookup {
return -w $_[0];

Stacked File Test Operators

Previous to Perl 5.10, if we wanted to test several file attributes at the same time, we
had to test them individually, even if using the _filehandle to save ourselves some work.
Suppose we wanted to test whether a file was readable and writable at the same time.
We’d have to test whether it’s readable and then also test whether it’s writable:
if( -r $file and -w _ ) {
print "The file is both readable and writable!\n";
}

It’s much easier to do this all at once. Perl 5.10 lets us “stack” our file test operators by
lining them all up before the filename:

184 | Chapter12: File Tests



use 5.010;

if( -w -r $file ) {
print "The file is both readable and writable!\n";
}

This stacked example is the same as the previous example with just a change in syntax,
although, it looks like the file tests are reversed, Perl does the file test nearest the file-
name first. Normally this isn’t going to matter.

Stacked file tests are especially handy for complex situations. Suppose we want to list
all of the directories that are readable, writable, executable, and owned by our user.
We just need the right set of file tests:

use 5.010;

if( -r -w -x -0 -d $file ) {
print "My directory is readable, writable, and executable!\n";

}

Stacked file tests aren’t good for those that return values other than true or false that
we would want to use in a comparison. We might think that this next bit of code first
tests that it’s a directory and then tests that it is less than 512 bytes, but it doesn’t:

use 5.010;

if( -s -d $file < 512) { # WRONG! DON'T DO THIS
print "The directory is less than 512 bytes!\n";

}

Rewriting the stacked file tests as the previous notation shows us what is going on. The
result of the combination of the file tests becomes the argument for the comparison:
if( ( -d $file and -s _ ) < 512 ) {
print "The directory is less than 512 bytes!\n";

}

When the -d returns false, Perl compares that false value to 512. That turns out to be
true since false will be 0, which just happens to be less than 512. Instead of worrying
about that sort of confusion, we just write it as separate file tests to be nice to the
maintenance programmers who come after us:

if( -d $file and -s < 512 ) {

print "The directory is less than 512 bytes!\n";
}

File Test Operators | 185



The stat and Istat Functions

While these file tests are fine for testing various attributes regarding a particular file or
filehandle, they don’t tell the whole story. For example, there’s no file test that returns
the number of links to a file or the owner’s user ID (uid). To get at the remaining
information about a file, merely call the stat function, which returns pretty much
everything that the stat Unix system call returns (hopefully more than you want to
know).” The operand to stat is a filehandle (including the _ virtual filehandle), or an
expression that evaluates to a filename. The return value is either the empty list, indi-
cating that the stat failed (usually because the file doesn’t exist), or a 13-element list
of numbers, most easily described using the following list of scalar variables:
my($dev, $ino, $mode, $nlink, $uid, $gid, $rdev,

$size, $atime, $mtime, $ctime, $blksize, $blocks)
= stat($filename);

The names here refer to the parts of the stat structure, described in detail in the
stat(2) manpage. You should probably look there for the detailed descriptions. But in
short, here’s a quick summary of the important ones:

$dev and $ino
The device number and inode number of the file. Together they make up a “license
plate” for the file. Even if it has more than one name (hard link), the combination
of device and inode numbers should always be unique.

$mode

The set of permission bits for the file, and some other bits. If you’ve ever used the
Unix command Is - to get a detailed (long) file listing, you’ll see that each line of
output starts with something like -rwxr-xr-x. The nine letters and hyphens of file
permissionsT correspond to the nine least-significant bits of $mode, which would,
in this case, give the octal number 0755. The other bits, beyond the lowest nine,
indicate other details about the file. So, if you need to work with the mode, you’ll
generally want to use the bitwise operators covered later in this chapter.

$nlink
The number of (hard) links to the file or directory. This is the number of true names
that the item has. This number is always 2 or more for directories and (usually) 1
for files. You’ll see more about this when we talk about creating links to files in

*

Onanon-Unix system, both stat and 1stat, as well as the file tests, should return “the closest thing available.”
For example, a system that doesn’t have user IDs (that is, a system that has just one “user,” in the Unix sense)
might return zero for the user and group IDs, as if the one and only user is the system administrator. If stat or
1stat fails, it will return an empty list. If the system call underlying a file test fails (or isn’t available on the
given system), that test will generally return undef. See the perlport manpage for the latest about what to
expect on different systems.

T The first character in that string isn’t a permission bit; it indicates the type of entry: a hyphen for an ordinary
file, d for directory, or 1 for symbolic link, among others. The Is command determines this from the other
bits past the least-significant nine.

186 | Chapter12: File Tests



Chapter 13. In the listing from Is -, this is the number just after the permission-
bits string.

S$uid and $gid

The numeric user ID and group ID showing the file’s ownership.

$size
The size in bytes, as returned by the -s file test.

Satime, $mtime, and $ctime
The three timestamps, but here they’re represented in the system’s timestamp for-
mat: a 32-bit number telling how many seconds have passed since the Epoch, an
arbitrary starting point for measuring system time. On Unix systems and some
others, the Epoch is the beginning of 1970 at midnight Universal Time, but the
Epochisdifferent on some machines. There’s more information later in this chapter
on turning that timestamp number into something useful.

Invoking stat on the name of a symbolic link returns information on what the symbolic
link points at, not information about the symbolic link itself (unless the link just hap-
pens to be pointing at nothing currently accessible). If you need the (mostly useless)
information about the symbolic link itself, use 1stat rather than stat (which returns
the same information in the same order). If the operand isn’t a symbolic link, 1stat
returns the same things that stat would.

Like the file tests, the operand of stat or 1stat defaults to $_, meaning that the under-
lying stat system call will be performed on the file named by the scalar variable $_.

The localtime Function

When you have a timestamp number (such as the ones from stat), it will typically look
something like 1180630098. That’s not very useful for most humans, unless you need
to compare two timestamps by subtracting. You may need to convert it to something
human-readable, such as a string like Thu May 31 09:48:18 2007. Perl can do that with
the localtime function in a scalar context:

my $timestamp = 1180630098;
my $date = localtime $timestamp;

In a list context, localtime returns a list of numbers, several of which may not be quite
what you’d expect:

my($sec, $min, $hour, $day, $mon, $year, $wday, $yday, $isdst)
= localtime $timestamp;

The $mon is a month number, ranging from 0 to 11, which is handy as an index into an
array of month names. The $year is the number of years since 1900, oddly enough, so
add 1900 to get the real year number. The $wday ranges from 0 (for Sunday) through 6
(for Saturday), and the $yday is the day-of-the-year (ranging from O for January 1,
through 364 or 365 for December 31).

The localtime Function | 187



1010
& 1100
1000

Figure 12-1. Bitwise-and addition

There are two related functions that you’ll also find useful. The gmtime function is just
the same as localtime, except that it returns the time in Universal Time (what we once
called Greenwich Mean Time). If you need the current timestamp number from the
system clock, just use the time function. Both localtime and gmtime default to using
the current time value if you don’t supply a parameter:

my $now = gmtime; # Get the current universal timestamp as a string

For more on manipulating dates and times, see the information in Appendix B about
useful modules.

Bitwise Operators

When you need to work with numbers bit by bit, as when working with the mode bits
returned by stat, you’ll need to use the bitwise operators. These are the operators that
perform binary math operations on values. The bitwise-and operator you’ll need to use
the bitwise operators. These are the operators that perform binary math operations on
values. The bitwise-and operator (&) reports which bits are set in the left argument
and in the right argument. For example, the expression 10 & 12 has the value 8. The
bitwise-and needs to have a 1-bit in both operands to produce a one-bit in the result.
That means that the logical-and operation on 10 (which is 1010 in binary) and 12 (which
is 1100) gives 8 (which is 1000, with a 1-bit only where the left operand has a 1-bit
and the right operand also has a 1-bit). See Figure 12-1.

Examples of the bit operators are shown inTable 12-2.

Table 12-2. Bitwise operators

Expression  Meaning

10 & 12 Bitwise-and—which bits are true in both operands (this gives 8)

10 | 12 Bitwise-or—which bits are true in one operand or the other (this gives 14)

10 * 12 Bitwise-xor—which bits are true in one operand or the other but not both (this gives 6)

6 << 2 Bitwise shift left—shift the left operand the number of bits shown by the right operand, adding zero-bits at the
least-significant places (this gives 24)

25 >> 2 Bitwise shift right—shift the left operand the number of bits shown by the right operand, discarding the least-
significant bits (this gives 6)

188 | Chapter12: File Tests



Expression  Meaning

~ 10 Bitwise negation, also called unary bit complement—return the number with the opposite bit for each bit in
the operand (this gives OXFFFFFFFS5, but see the text)

So, here’s an example of some things you could do with the $mode returned by stat.
The results of these bit manipulations could be useful with chmod (which you’ll see in
Chapter 13):

# $mode is the mode value returned from a stat of CONFIG
warn "Hey, the configuration file is world-writable!\n"

if $mode & 0002; # configuration security problem
my $classical mode = 0777 & $mode; # mask off extra high-bits
my $u _plus x = $classical mode | 0100; # turn one bit on
my $go minus r = $classical mode & (~ 0044); # turn two bits off
Using Bitstrings

All of the bitwise operators can work with bitstrings, as well as with integers. If the
operands are integers, the result will be an integer. (The integer will be at least a 32-bit
integer, but may be larger if your machine supports that. That is, if you have a 64-bit
machine, ~10 may give the 64-bit result OXFFFFFFFFFFFFFFF5, rather than the 32-bit result
OXFFFFFFFS5.)

But if any operand of a bitwise operator is a string, Perl will perform the operation on
that bitstring. Thatis, "\xAA" | "\x55" will give the string "\xFF". Note that these values
are single-byte strings; the result is a byte with all eight bits set. Bitstrings may be
arbitrarily long.

Thisis one of the very few places where Perl distinguishes between strings and numbers.
See the perlop manpage for more information on using bitwise operators on strings.

Exercises

See Appendix A for answers to the following exercises:

1. [15] Make a program that takes a list of files named on the command line and
reports for each one whether it’s readable, writable, executable, or doesn’t exist.
(Hint: it may be helpful to have a function that will do all of the file tests for one
file at a time.) What does it report about a file that has been chmod’ed to 0? (That
is, if you’re on a Unix system, use the command chmod 0 some_file to mark that
file as not being readable, writable, nor executable.) In most shells, use a star as
the argument to mean all of the normal files in the current directory. That is, you
could type something like . /ex12-2 * to ask the program for the attributes of many
files at once.

Exercises | 189



2. [10] Make a program to identify the oldest file named on the command line and
report its age in days. What does it do if the list is empty (that is, if no files are
mentioned on the command line)?

3. [10] Make a program that uses stacked file test operators to list all files named on
the command line that are owned by you, readable, and writable.

190 | Chapter12: File Tests



CHAPTER 13
Directory Operations

The files we created in the previous chapter were generally in the same place as our
program. But modern operating systems let us organize files into directories, allowing
us to keep our Beatles MP3s away from our important Llama book chapter sources so
that we don’t accidentally send an MP3 file to the publisher. Perl lets you manipulate
these directories directly, in ways that are even fairly portable from one operating sys-
tem to another.

Moving Around the Directory Tree

Your program runs with a “working directory,” which is the starting point for relative
pathnames. That is, if you refer to the file fred, that means fred in the current working
directory.

The chdir operator changes the working directory. It’s just like the Unix shell’s ¢d
command:

chdir "/etc" or die "cannot chdir to /etc: $!";

Because this is a system request, the value of $! will be set if an error occurs. You should
normally check $! when a false value is returned from chdir, since that indicates that
something has not gone as requested.

The working directory is inherited by all processes that Perl starts (we’ll talk more about
thatin Chapter 16). However, the change in working directory cannot affect the process
that invoked Perl, such as the shell.” So you can’t make a Perl program to replace your
shell’s cd command.

If you omit the parameter, Perl determines your home directory as best as it can and
attempts to set the working directory to your home directory, similar to using the cd
command at the shell without a parameter. This is one of the few places where omitting
the parameter doesn’t use $_.

" This isn’t a limitation on Perl’s part; it’s actually a feature of Unix, Windows, and other systems. If you really
need to change the shell’s working directory, see the documentation of your shell.

191



Some shells permit you to use a tilde-prefixed path with cd to use another user’s home
directory as a starting point (like cd ~merlyn). This is a function of the shell, not the
operating system, and Perl is calling the operating system directly. Thus, a tilde prefix
will not work with chdir.

Globbing

Normally, the shell expands any filename patterns on each command line into the
matching filenames. This is called globbing. For example, if you give a filename pattern
of *.pm to the echo command, the shell expands this list to a list of names that match:

$ echo *.pm
barney.pm dino.pm fred.pm wilma.pm

The echo command doesn’t have to know anything about expanding *.pm because the
shell has already expanded it. This works even for your Perl programs:
$ cat >show-args
foreach $arg (@ARGV) {
print "one arg is $arg\n";

}

~D

$ perl show-args *.pm
one arg is barney.pm
one arg is dino.pm
one arg is fred.pm
one arg is wilma.pm

$

Note that show-args didn’t need to know anything about globbing—the names were
already expanded in @ARGV.

But sometimes we end up with a pattern like *.pm inside our Perl program. Can we
expand this pattern into the matching filenames without working very hard? Sure—
just use the glob operator:

my @ll files = glob "*";

my @pm_files = glob "*.pm";
Here, @all files gets all the files in the current directory, alphabetically sorted, and
not including the files beginning with a period, just like the shell. And @pm_files gets
the same list that we got before by using *.pm on the command line.

In fact, anything you can say on the command line, you can also put as the (single)
argument to glob, including multiple patterns separated by spaces:

my @all_files_including_dot = glob ".* *";
Here, we’ve included an additional “dot star” parameter to get the filenames that begin

with a dot as well as the ones that don’t. Please note that the space between these two
items inside the quoted string is significant, as it separates two different items you want

192 | Chapter13: Directory Operations



to glob.” The reason this works exactly as the shell works is that prior to Perl version
5.6, the glob operator simply called /bin/csht behind the scenes to perform the expan-
sion. Because of this, globs were time-consuming and could break in large directories,
or in some other cases. Conscientious Perl hackers avoided globbing in favor of direc-
tory handles, which we will discuss later in this chapter. However, if you’re using a
modern version of Perl, you should no longer be concerned about such things.

An Alternate Syntax for Globbing

Although we use the term globbing freely, and we talk about the glob operator, you
might not see the word glob in very many of the programs that use globbing. Why not?
Well, most legacy code was written before the glob operator was given a name. Instead,
it was called up by the angle-bracket syntax, similar to reading from a filehandle:

my @all files = <*>; ## exactly the same as my @all files = glob "*";

The value between the angle brackets is interpolated similarly to a double-quoted
string, which means that Perl variables are expanded to their current Perl values before

being globbed:

my $dir = "/etc";

my @ir files = <$dir/* $dir/.*>;
Here, we’ve fetched all the nondot and dot files from the designated directory because
$dir has been expanded to its current value.

So, if using angle brackets means both filehandle reading and globbing, how does Perl
decide which of the two operators to use? Well, a filehandle has to be a Perl identifier.
So, if the item between the angle brackets is strictly a Perl identifier, it’s a filehandle
read; otherwise, it’s a globbing operation. For example:

my @files = <FRED/*>; ## a glob

my @lines = <FRED>; ## a filehandle read

my $name = "FRED";
my @files = <$name/*>; ## a glob

The one exception is if the contents are a simple scalar variable (not an element of a
hash or array); then it’s an indirect filehandle read,* where the variable contents give
the name of the filehandle you want to read:

my $name = "FRED";
my @lines = <$name>; ## an indirect filehandle read of FRED handle

" Windows users may be accustomed to using a glob of *.* to mean “all files.” But that actually means “all files
with a dot in their names,” even in Perl on Windows.

T Or it will call a valid substitute if a C shell wasn’t available.

¥ If the indirect handle is a text string, then it’s subject to the “symbolic reference” test that is forbidden under
use strict. However, the indirect handle might also be a typeglob or reference to an I/O object, and then it
would work even under use strict.

An Alternate Syntax for Globbing | 193



Determining whether it’s a glob or a filehandle read is done at compile time, and thus
it is independent of the content of the variables.

If you want, you can get the operation of an indirect filehandle read using the read
line operator, which also makes it clearer:
my $name = "FRED";

my @lines = readline FRED; ## read from FRED
my @lines = readline $name; ## read from FRED

But the readline operator is rarely used, as indirect filehandle reads are uncommon
and are generally performed against a simple scalar variable anyway.

Directory Handles

Another way to get a list of names from a given directory is with a directory handle. A
directory handle looks and acts like a filehandle. You open it (with opendir instead of
open), you read from it (with readdir instead of readline), and you close it (with close
dir instead of close). But instead of reading the contents of a file, you’re reading the
names of files (and other things) in a directory. For example:

my $dir to process = "/etc";

opendir DH, $dir to process or die "Cannot open $dir to process: $!";

foreach $file (readdir DH) {

print "one file in $dir_to_process is $file\n";

}

closedir DH;

Like filehandles, directory handles are automatically closed at the end of the program
or if the directory handle is reopened onto another directory.

Unlike globbing, which in older versions of Perl fired off a separate process, a directory
handle never fires off another process. So it makes them more efficient for applications
that demand every ounce of power from the machine. However, it’s also a lower-level
operation, meaning that we have to do more of the work ourselves.

For example, the names are returned in no particular order.™ And the list includes all
files, not just those matching a particular pattern (like *.pm from our globbing exam-
ples). It is also includes the dot files, and particularly the dot and dot-dot entries.* So,
if we wanted only the pm-ending files, we could use a skip-over function inside the loop:

while ($name = readdir DIR) {
next unless $name =~ /\.pm$/;

" If you're using Perl 5.005 or later.
T It’s actually the unsorted order of the directory entries, similar to the order you get from s -f or find.

* Do not make the mistake of many old Unix programs and presume that dot and dot-dot are always returned
as the first two entries (sorted or not). If that hadn’t even occurred to you, pretend we never said it because
it’s a false presumption. In fact, we’re now sorry for even bringing it up.

194 | Chapter13: Directory Operations



. more processing ...

}

Note here that the syntax is that of a regular expression, not a glob. And if we wanted
all the nondot files, we could say that:

next if $name =~ /~\./;

Or if we wanted everything but the common dot (current directory) and dot-dot (parent
directory) entries, we could explicitly say that:

non

next if $name eq "." or $name eq "..";

Now we’ll look at the part that gets most people mixed up, so pay close attention. The
filenames returned by the readdir operator have no pathname component. It’s just the
name within the directory. So, we’re not looking at /etc/passwd, we’re just looking at
passwd. (And because this is another difference from the globbing operation, it’s easy
to see how people get confused.)

So you’ll need to patch up the name to get the full name:

opendir SOMEDIR, $dirname or die "Cannot open $dirname: $!";
while (my $name = readdir SOMEDIR) {

next if $name =~ /~\./; # skip over dot files

$name = "$dirname/$name"; # patch up the path

next unless -f $name and -r $name; # only readable files

}...

Without the patch, the file tests would have been checking files in the current directory,
rather than in the directory named in $dirname. This is the single most common mistake
when using directory handles.

Recursive Directory Listing

You probably won’t need recursive directory access for the first few dozen hours of
your Perl programming career. So rather than distract you with the possibility of re-
placing all those ugly find scripts with Perl right now, we’ll simply entice you by saying
that Perl comes with a nice library called File::Find, which you can use for nifty re-
cursive directory processing. We're also saying this to keep you from writing your own
routines—which everyone seems to want to do after those first few dozen hours of
programming—and then getting puzzled about things like “local directory handles”
and “how do I change my directory back?”

Manipulating Files and Directories

Perl is commonly used to wrangle files and directories. Because Perl grew up in a Unix
environment and still spends most of its time there, most of the description in this
chapter may seem Unix-centric. But the nice thing is that to whatever degree possible,
Perl works exactly the same way on non-Unix systems.

Recursive Directory Listing | 195



Removing Files

Most of the time, we make files so that the data can stay around for a while. But when
the data has outlived its life, it’s time to make the file go away. At the Unix shell level,
we’d type an rm command to remove a file or files:

$ rm slate bedrock lava

In Perl, we use the unlink operator:

unlink "slate", "bedrock", "lava";
This sends the three named files away to bit heaven, never to be seen again.

Now, since unlink takes a list, and the glob function returns a list, we can combine the
two to delete many files at once:

unlink glob "*.0";

This is similar to rm *.o at the shell, except that we didn’t have to fire off a separate
rm process. So we can make those important files go away that much faster!

The return value from unlink tells us how many files have been successfully deleted.
So, going back to the first example, we can check its success:

my $successful = unlink "slate", "bedrock", "lava";
print "I deleted $successful file(s) just now\n";

Sure, if this number is 3, we know it removed all of the files, and if it’s 0, then we removed
none of them. But what if it’s 1 or 22 Well, there’s no clue as to which ones were
removed. If you need to know, do them one at a time in a loop:
foreach my $file (qw(slate bedrock lava)) {
unlink $file or warn "failed on $file: $!\n";

}

Here, each file being deleted one at a time means the return value will be 0 (failed) or
1 (succeeded), which happens to look like a nice Boolean value, controlling the execu-
tion of warn. Using or warn is similar to or die, except that it’s not fatal, of course (as
we said back in Chapter 5). In this case, we put the newline on the end of the message
to warn because it’s not a bug in our program that causes the message.

When a particular unlink fails, the $! variable is set to something related to the operating
system error, which we’ve included in the message. This makes sense to use only when
doing one filename at a time because the next operating system failed request resets
the variable. You can’t remove a directory with unlink (just like you can’t remove a
directory with the simple rm invocation either). Look for the rmdir function coming up
shortly for that.

Now, here’s a little-known Unix fact. It turns out that you can have a file that you can’t
read, you can’t write, you can’t execute, maybe you don’t even own the file—that is,
it’s somebody else’s file altogether—but you can still delete it. That’s because the

196 | Chapter13: Directory Operations



permission to unlink a file doesn’t depend upon the permission bits on the file itself;
it’s the permission bits on the directory that contains the file that matters.

We mention this because it’s normal for a beginning Perl programmer, in the course
of trying out unlink, to make a file, to chmod it to 0 (so thatit’s not readable or writable),
and then to see whether this makes unlink fail. But instead it vanishes without so much
as a whimper.” If you really want to see a failed unlink, though, just try to remove /etc/
passwd or a similar system file. Since that’s a file controlled by the system administrator,
you won’t be able to remove it."

Renaming Files

Giving an existing file a new name is simple with the rename function:

rename "old", "new";

This is similar to the Unix mv command, taking a file named old and giving it the name
new in the same directory. You can even move things around:

rename "over_there/some/place/some_file", "some_file";

This moves a file called some_file from another directory into the current directory,
provided the user running the program has the appropriate permissions. Like most
functions that request something of the operating system, rename returns false if it fails,
and sets $! with the operating system error, so you can (and often should) use or die
(or or warn) to report this to the user.

One frequent!l question in the Unix shell-usage newsgroups concerns how to rename
everything that ends with .old to the same name with .new. Here’s how to do it in Perl
nicely:
foreach my $file (glob "*.0ld") {
my $newfile = $file;
$newfile =~ s/\.old$/.new/;
if (-e $newfile) {
warn "can't rename $file to $newfile: $newfile exists\n";
} elsif (rename $file, $newfile) {
## success, do nothing
} else {
warn "rename $file to $newfile failed: $!\n";

" Some of these folks know that rm would generally ask before deleting such a file. But rm is a command, and
unlink is a system call. System calls never ask permission, and they never say they’re sorry.

T Of course, if you’re silly enough to try this kind of thing when you are logged in as the system administrator,
you deserve what you get.

¥ And the files must reside on the same filesystem. You’ll see why this rule exists a little later in this chapter.

I This isn’t just any old frequent question; the question of renaming a batch of files at once is the most frequent
question asked in these newsgroups. And that’s why it’s the first question answered in the FAQs for those
newsgroups. And yet, it stays in first place. Hmmm.

Renaming Files | 197



}
}

The check for the existence of $newfile is needed because rename will happily rename
a file right over the top of an existing file, presuming the user has permission to remove
the destination filename. We put the check in so that it’s less likely that we’ll lose
information this way. Of course, if you wanted to replace existing files like
wilma.new, you wouldn’t bother testing with -e first.

Those first two lines inside the loop can be combined (and often are) to simply:
(my $newfile = $file) =~ s/\.old$/.new/;

This works to declare $newfile, copy its initial value from $file, then modify
$newfile with the substitution. You can read this as “transform $file to $newfile using
this replacement on the right.” And yes, because of precedence, those parentheses are
required.

Also, some programmers seeing this substitution for the first time wonder why the
backslash is needed on the left, but not on the right. The two sides aren’t symmetrical:
the left part of a substitution is a regular expression, and the right part is a double-
quoted string. So we use the pattern /\.01d$/ to mean “.old anchored at the end of the
string” (anchored at the end because we don’t want to rename the first occurrence
of .0ld in a file called betty.old.old), but on the right we can simply write .new to make
the replacement.

Links and Files

To understand more about what’s going on with files and directories, it helps to
understand the Unix model of files and directories, even if your non-Unix system
doesn’t work in exactly this way. As usual, there’s more to the story than we’re able to
explain here, so check any good book on Unix internal details if you need the full story.

A mounted volume is a hard disk drive (or something else that works more or less like
that, such as a disk partition, a floppy disk, a CD-ROM, or a DVD-ROM). It may
contain any number of files and directories. Each file is stored in a numbered inode,
which we can think of as a particular piece of disk real estate. One file might be stored
in inode 613, while another is in inode 7033.

198 | Chapter13: Directory Operations



To locate a particular file, though, we’ll have to look it up in a directory. A directory is
a special kind of file, maintained by the system. Essentially, it is a table of filenames
and their inode numbers.” Along with the other things in the directory, there are always
two special directory entries. One is . (called “dot”), which is the name of that very
directory; the other is .. (“dot-dot”), which is the directory one step higher in the
hierarchy (i.e., the directory’s parent directory).T Figure 13-1 provides an illustration
of two inodes. One is for a file called chicken, and the other is Barney’s directory of
poems, /home/barney/poems, which contains that file. The file is stored in inode 613,
while the directory is stored in inode 919. (The directory’s own name, poems, doesn’t
appear in the illustration because it’s stored in another directory.) The directory con-
tains entries for three files (including chicken) and two directories (one of which is the
reference back to the directory itself, in inode 919), along with each item’s inode
number.

inode 613 inode 919
AJurassic chicken named Meg . 919
With two beaks, three wings, and one leg, . 8002

As her third eye she winked, dodgson 7033
Quoth“I'll soon go extinct, chicken 613
But I'll lay first a cubical egg.” abacus 11320

Figure 13-1. The chicken before the egg

When it’s time to make a new file in a given directory, the system adds an entry with
the file’s name and the number of a new inode. How can the system tell that a particular
inode is available though? Each inode holds a number called its link count. The link
count is always zero if the inode isn’t listed in any directory, so any inode with a link
count of zero is available for new file storage. When the inode is added to a directory,
the link count is incremented; when the listing is removed, the link count is decremen-
ted. For the file chicken as illustrated above, the inode count of 1 is shown in the box
above the inode’s data.

" On Unix systems (others don’t generally have inodes, hard links, and such), you can use the Is command’s
-1 option to see files’ inode numbers. Try a command like Is -ail. When two or more inode numbers are the
same for multiple items on a given filesystem, there’s really just one file involved, one piece of the disk.

T The Unix system root directory has no parent. In that directory, .. is the same directory as ., which is the
system root directory itself.

Links and Files | 199



inode 613 inode 919

A Jurassic chicken named Meg 3(1)(9)2
With two beaks, three wings, and one leg, ‘d'o dason 7033
As her third eye she winked, . 9
ap g chicken 613
Quoth“I'll soon go extinct,
But Il lay first a cubical egg.” Ll e
y 99: eqqg 613

Figure 13-2. The egg is linked to the chicken

But some inodes have more than one listing. For example, we’ve already seen that each
directory entry includes ., which points back to that directory’s own inode. So the link
count for a directory should always be at least two: its listing in its parent directory and
its listing in itself. In addition, if it has subdirectories, each of those will add a link,
since each will contain ..." In Figure 13-1, the directory’s inode count of 2 is shown in
the box above its data. A link count is the number of true names for the inode.™ Could
an ordinary file inode have more than one listing in the directory? It certainly could.
Suppose that, working in the directory shown above, Barney uses the Perl link function
to create a new link:

link "chicken", "egg"
or warn "can't link chicken to egg: $!";

This is similar to typing "1n chicken egg" at the Unix shell prompt. If link succeeds,
it returns true. If it fails, it returns false and sets $!, which Barney is checking in the
error message. After this runs, the name egg is another name for the file chicken, and
vice versa; neither name is “more real” than the other, and (as you may have guessed)
it would take some detective work to find out which came first. Figure 13-2 shows a
picture of the new situation, where there are two links to inode 613.

These two filenames are thus talking about the same place on the disk. If the file
chicken holds 200 bytes of data, egg holds the same 200 bytes, for a total of 200 bytes
(since it’s really just one file with two names). If Barney appends a new line of text to
file egg, that line will also appear at the end of chicken.t Now, if Barney were to acci-
dentally (or intentionally) delete chicken, that data will not be lost—it’s still available

" This implies that the link count of a directory is always equal to two plus the number of directories it contains.
On some systems that’s true, in fact, but some other systems work differently.

T In the traditional output of Is -1, the number of hard links to the item appears just to the right of the permission
flags (like -rwxr-xr-x). Now you know why this number is more than one for directories and nearly always
1 for ordinary files.

¥ If you experiment with making links and changing text files, be aware that most text editors don’t edit the
file “in place” but instead save a modified copy. If Barney were to edit egg with a text editor, he’d most likely
end up with a new file called egg and the old file called chicken—two separate files, rather than two links to
the same file.

200 | Chapter13: Directory Operations



under the name egg. And vice versa: if he were to delete egg, he’d still have chicken. Of
course, if he deletes both of them, the data will be lost.” There’s another rule about the
links in directory listings: the inode numbers in a given directory listing all refer to
inodes on that same mounted volume.T This rule ensures that if the physical medium
(the diskette, perhaps) is moved to another machine, all of the directories stick together
with their files. That’s why you can use rename to move a file from one directory to
another, but only if both directories are on the same filesystem (mounted volume). If
they were on different disks, the system would have to relocate the inode’s data, which
is too complex an operation for a simple system call.

And yet another restriction on links is that they can’t make new names for directories.
That’s because the directories are arranged in a hierarchy. If you were able to change
that, utility programs like find and pwd could easily become lost trying to find their way
around the filesystem.

So, links can’t be added to directories, and they can’t cross from one mounted volume
to another. Fortunately, there’s a way to get around these restrictions on links, by using
a new and different kind of link: a symbolic link.¥ A symbolic link (also called a soft
link to distinguish it from the true or hard links that we’ve been talking about up to
now) is a special entry in a directory that tells the system to look elsewhere. Let’s say
that Barney (working in the same directory of poems as before) creates a symbolic link
with Perl’s symlink function, like this:

symlink "dodgson", "carroll"
or warn "can't symlink dodgson to carroll: $!";

This is similar to what would happen if Barney used the command In-s dodgson car-
roll from the shell. Figure 13-3 shows a picture of the result, including the poem in
inode 7033.

Now if Barney chooses to read /home/barney/poems/carroll, he gets the same data as if
he had opened /home/barney/poems/dodgson because the system follows the symbolic
link automatically. But that new name isn’t the “real” name of the file because (as you
can see in the diagram) the link count on inode 7033 is still just one. That’s because
the symbolic link simply tells the system, “If you got here looking for carroll, now you
want to go off to find something called dodgson instead.”

A symbolic link can freely cross mounted filesystems or provide a new name for a
directory, unlike a hard link. In fact, a symbolic link could point to any filename, one
in this directory or in another one—or even to a file that doesn’t exist! But that also
means that a soft link can’t keep data from being lost as a hard link can, since the

" Although the system won’t necessarily overwrite this inode right away, there’s no easy way in general to get
the data back once the link count has gone to zero. Have you made a backup recently?

T The one exception is the special . . entry in the volume’s root directory, which refers to the directory in which
that volume is mounted.

* Some very old Unix systems don’t support symlinks, but those are pretty rare nowadays.

Links and Files | 201



inode 7033 inode 919

iy « Iy

Yet what are all such gaieties to me . 919
Whose thoughts are full of indices .. 8002
and surds? dodgson 7033
chicken 613
X2+ 7x +53 abacus 11320
eqqg 613
=173 carroll-> dodgson

Figure 13-3. A symlink to inode 7033

symlink doesn’t contribute to the link count. If Barney were to delete dodgson, the
system would no longer be able to follow the soft link.” Even though there would still
be an entry called carroll, trying to read from it would give an error like file not
found. The file test -1 'carroll' would report true, but -e 'carroll' would be false:
it’s a symlink, but it doesn’t exist.

Since a soft link could point to a file that doesn’t yet exist, it could be used when creating
a file as well. Barney has most of his files in his home directory, /home/barney, but he
also needs frequent access to a directory with a long name that is difficult to type: /usr/
local/opt/system/httpd/root-deviusers/staging/barney/cgi-bin. So he sets up a symlink
named /home/barney/my_stuff, which points to that long name, and now it’s easy for
him to get to it. If he creates a file (from his home directory) called my_stuff/bowling,
that file’s real name is /usr/local/opt/system/httpd/root-dev/users/staging/barney/cgi-bin/
bowling. Next week, when the system administrator moves these files of Barney’s
to /usr/local/opt/internal/httpd/www-devlusers/staging/barney/cgi-bin, Barney just re-
points the one symlink, and now he and all of his programs can still find his files with
ease.

It’s normal for either /usr/bin/perl or fusr/local/bin/perl (or both) to be symbolic links
to the true Perl binary on your system. This makes it easy to switch to a new version of
Perl. Say you’re the system administrator, and you’ve built the new Perl. Of course,
your older version is still running, and you don’t want to disrupt anything. When you’re
ready for the switch, you simply move a symlink or two, and now every program that
begins with #!/usr/bin/perl will automatically use the new version. In the unlikely
case that there’s some problem, it’s a simple thing to replace the old symlinks and have
the older Perl running the show again. (But, like any good admin, you notified your
users to test their code with the new /usr/bin/perl-7.2 well in advance of the switch, and
you told them that they can keep using the older one during the next month’s grace
period by changing their programs’ first lines to #! /usr/bin/perl-6.1, if they need to.)

" Deleting carroll would merely remove the symlink, of course.

202 | Chapter13: Directory Operations



Perhaps surprisingly, both hard and soft links are very useful. Many non-Unix operating
systems have neither, and the lack is sorely felt. On some non-Unix systems, symbolic
links may be implemented as a “shortcut” or an “alias”—check the perlport manpage
for the latest details.

To find out where a symbolic link is pointing, use the readlink function. This will tell
you where the symlink leads, or it will return undef if its argument wasn’t a symlink:

my $where = readlink "carroll"; # Gives "dodgson"
my $perl = readlink "/usr/local/bin/perl"; # Maybe tells where perl is

You can remove either kind of link with unlink—and now you see where that operation
gets its name. unlink simply removes the directory entry associated with the given
filename, decrementing the link count and thus possibly freeing the inode.

Making and Removing Directories

Making a directory inside an existing directory is easy. Just invoke the mkdir function:

mkdir "fred", 0755 or warn "Cannot make fred directory: $!";
Again, true means success, and $! is set on failure.

But what’s that second parameter, 0755? That’s the initial permission setting” on the
newly created directory (you can always change it later). The value here is specified as
an octal value because the value will be interpreted as a Unix permission value, which
has a meaning based on groups of three bits each, and octal values represent that nicely.
Yes, even on Windows or MacPerl, you still need to know a little about Unix permis-
sions values to use the mkdir function. Mode 0755 is a good one to use because it gives
you full permission, but lets everyone else have read access but no permission to change
anything.

The mkdir function doesn’t require you to specify this value in octal—it’s just looking
for a numeric value (either a literal or a calculation). But unless you can quickly can
figure that 0755 octal is 493 decimal in your head, it’s probably easier to let Perl calculate
that. And if you accidentally leave off the leading zero, you get 755 decimal, which is
1363 octal, a strange permission combination indeed.

As you saw earlier (in Chapter 2), a string value being used as a number is never inter-
preted as octal, even if it starts with a leading 0. So this doesn’t work:

my $name = "fred";
my $permissions = "0755"; # danger... this isn't working
mkdir $name, $permissions;

" The permission value is modified by the umask value in the usual way. See umask(2) for further information.

Making and Removing Directories | 203



Oops, we just created a directory with that bizarre 01363 permissions because 0755 was
treated as decimal. To fix that, use the oct function, which forces octal interpretation
of a string whether or not there’s a leading zero:

mkdir $name, oct($permissions);

Of course, if you are specifying the permission value directly within the program, just
use a number instead of a string. The need for the extra oct function shows up most
often when the value comes from user input. For example, suppose we take the argu-
ments from the command line:

my ($name, $perm) = @ARGV; # first two args are name, permissions
mkdir $name, oct($perm) or die "cannot create $name: $!";

The value here for $perm is interpreted as a string initially, and thus the oct function
interprets the common octal representation properly.

To remove empty directories, use the rmdir function in a manner similar to the
unlink function, although it can only remove on directory per call:
foreach my $dir (qw(fred barney betty)) {
rmdir $dir or warn "cannot rmdir $dir: $!\n";

}

The rmdir operator fails for nonempty directories. As a first pass, you can attempt to
delete the contents of the directory with unlink, then try to remove what should now
be an empty directory. For example, suppose we need a place to write many temporary
files during the execution of a program:

my $temp dir = "/tmp/scratch $$"; # based on process ID; see the text
mkdir $temp dir, 0700 or die "cannot create $temp dir: $!";

# use $temp dir as location of all temporary files

unlink glob "$temp dir/* $temp dir/.*"; # delete contents of $temp dir
rmdir $temp dir; # delete now-empty directory

The initial temporary directory name includes the current process ID, which is unique
for every running process and is accessed with the $$ variable (similar to the shell). We
do this to avoid colliding with any other processes, as long as they also include their
process ID as part of their pathname as well. (In fact, it’s common to use the program’s
name as well as the process ID, so if the program is called quarry, the directory would
probably be something like /tmp/quarry $$.)

At the end of the program, that last unlink should remove all the files in this temporary
directory, and then the rmdir function can delete the then-empty directory. However,
if we’ve created subdirectories under that directory, the unlink operator fails on those,
and the rmdir also fails. For a more robust solution, check out the rmtree function
provided by the File: :Path module of the standard distribution.

204 | Chapter13: Directory Operations



Modifying Permissions

The Unix chmod command changes the permissions on a file or directory. Similarly,
Perl has the chmod function to perform this task:

chmod 0755, "fred", "barney";

As with many of the operating system interface functions, chmod returns the number of
items successfully altered, and when used with a single argument, sets $! in a sensible
way for error messages when it fails. The first parameter is the Unix permission value
(even for non-Unix versions of Perl). For the same reasons we presented earlier when
describing mkdir, this value is usually specified in octal.

Symbolic permissions (like +x or go=u-w) accepted by the Unix chmod command are
not valid for the chmod function.”

Changing Ownership

If the operating system permits it, you may change the ownership and group member-
ship of a list of files (or filehandles) with the chown function. The user and group are
both changed at once, and both have to be the numeric user-ID and group-ID values.
For example:

my $user = 1004;

my $group = 100;

chown $user, $group, glob "*.o0";
What if you have a username like merlyn instead of the number? Simple. Just call the
getpwnam function to translate the name into a number, and the corresponding
getgrnam® to translate the group name into its number:

defined(my $user = getpwnam "merlyn") or die "bad user";

defined(my $group = getgrnam "users") or die "bad group";

chown $user, $group, glob "/home/merlyn/*";
The defined function verifies that the return value is not undef, which will be returned
if the requested user or group is not valid.

The chown function returns the number of files affected, and it sets $! on error.

" Unless you've installed and invoked the File: :chmod module from CPAN, which can apparently upgrade the
chmod operator to understand symbolic mode values.

T These two are among the ugliest function names known to mankind. But don’t blame Larry for them; he’s
just giving them the same names that the folks at Berkeley did.

Modifying Permissions | 205



Changing Timestamps

In those rare cases when you want to lie to other programs about when a file was most
recently modified or accessed, you can use the utime function to fudge the books a bit.
The first two arguments give the new access time and modification time, while the
remaining arguments are the list of filenames to alter to those timestamps. The times
are specified in internal timestamp format (the same type of values returned from the
moreinfo="none">stat function that we mentioned in Chapter 12).

One convenient value to use for the timestamps is “right now,” returned in the proper
format by the time function. So to update all the files in the current directory to look
like they were modified a day ago, but accessed just now, we could simply do this:

my $now = time;

my $ago = $now - 24 * 60 * 60; # seconds per day

utime $now, $ago, glob "*"; # set access to now, mod to a day ago
Of course, nothing stops you from creating a file that is arbitrarily stamped far in the
future or past (within the limits of the Unix timestamp values of 1970 to 2038, or
whatever your non-Unix system uses, unless you have 64-bit timestamps). Maybe you
could use this to create a directory where you keep your notes for that time travel novel
you’re writing.

The third timestamp (the ctime value) is always set to “now” whenever anything alters
a file, so there’s no way to set it (it would have to be reset to “now” after you set it)
with the utime function. That’s because its primary purpose is for incremental backups:
if the file’s ctime is newer than the date on the backup tape, it’s time to back it up again.

Exercises

The programs here are potentially dangerous! Be careful to test them in a mostly empty
directory to make it difficult to accidentally delete something useful.

See Appendix A for answers to the following exercises:

1. [12] Write a program to ask the user for a directory name, then change to that
directory. If the user enters a line with nothing but whitespace, change to his or
her home directory as a default. After changing, list the ordinary directory contents
(not the items whose names begin with a dot) in alphabetical order. (Hint: will that
be easier to do with a directory handle or with a glob?) If the directory change
doesn’t succeed, just alert the user—but don’t try show the contents.

2. [4] Modify the program to include all files, not just the ones that don’t begin with
a dot.

3. [5] If you used a directory handle for the previous exercise, rewrite it to use a glob.
Or if you used a glob, try it now with a directory handle.

206 | Chapter13: Directory Operations



. [6] Write a program that works like rm, deleting any files named on the command
line. (You don’t need to handle any of the options of rm.)

. [10] Write a program that works like mv, renaming the first command-line argu-
ment to the second command-line argument. (You don’t need to handle any of the
options of mv or additional arguments.) Remember to allow for the destination to
be a directory; if it is, use the same original basename in the new directory.

. [7] i your operating system supports it, write a program that works like [n, making
a hard link from the first command-line argument to the second. (You don’t need
to handle options of In or more arguments.) If your system doesn’t have hard links,
just print out a message telling what operation you would perform if it were avail-
able. (Hint: this program has something in common with the previous one—
recognizing that could save you time in coding.)

. [7] If your operating system supports it, fix up the program from the previous
exercise to allow an optional -s switch before the other arguments to indicate that
you want to make a soft link instead of a hard link. (Even if you don’t have hard
links, see whether you can at least make soft links with this program.)

. [7] If your operating system supports it, write a program to find any symbolic links
in the current directory and print out their values (like Is -l would: name -> value).

Exercises | 207






CHAPTER 14
Strings and Sorting

As we mentioned near the beginning of this book, Perl is designed to be good at solving
programming problems that are about 90% working with text and 10% everything else.
So it’s no surprise that Perl has strong text-processing abilities, including all that we’ve
done with regular expressions. But sometimes the regular expression engine is too
fancy, and you’ll need a simpler way of working with a string, as you’ll see in this
chapter.

Finding a Substring with index

Finding a substring depends on where you have lost it. If you happen to have lost it
within a bigger string, you’re in luck because the index function can help you out. Here’s
how it looks:

$where = index($big, $small);

Perl locates the first occurrence of the small string within the big string, returning an
integer location of the first character. The character position returned is a zero-based
value—if the substring is found at the very beginning of the string, index returns 0. If
it’s one character later, the return value is 1, and so on. If the substring can’t be found
at all, the return value is -1 to indicate that.” In this example, $where gets 6:

my $stuff = "Howdy world!";
my $where = index($stuff, "wor");

Another way you could think of the position number is the number of characters to
skip over before getting to the substring. Since $where is 6, we know that we have to
skip over the first six characters of $stuff before we find wor.

The index function will always report the location of the first found occurrence of the
substring. But you can tell it to start searching at a later point than the start of the string
by using the optional third parameter, which tells index to start at that position:

" Former C programmers will recognize this as being like C’s index function. Current C programmers ought
to recognize it as well—but by this point in the book, you should really be a former C programmer.

209



my $stuff = "Howdy world!";

my $wherel = index($stuff, "w"); # $wherel gets 2

my $where2 = index($stuff, "w", $wherel + 1); # $where2 gets 6

my $where3 = index($stuff, "w", $where2 + 1); # $where3 gets -1 (not found)

(Of course, you wouldn’t normally search repeatedly for a substring without using a
loop.) That third parameter is effectively giving a minimum value for the return value;
if the substring can’t be found at that position or later, the return value will be -1.

Once in a while, you might prefer to have the last found occurrence of the substring.”
You can get that with the rindex function. In this example, we can find the last slash,
which turns out to be at position 4 in a string:

my $last_slash = rindex("/etc/passwd", "/"); # value is 4

The rindex function also has an optional third parameter, but, in this case, it effectively
gives the maximum permitted return value:

my $fred = "Yabba dabba doo!";

my $wherel = rindex($fred, "abba"); # $wherel gets 7

my $where2 = rindex($fred, "abba", $wherel - 1); # $where2 gets 1
my $where3 = rindex($fred, "abba", $where2 - 1); # $where3 gets -1

Manipulating a Substring with substr

The substr operator works with only a part of a larger string. It looks like this:

$part = substr($string, $initial position, $length);

It takes three arguments: a string value, a zero-based initial position (like the return
value of index), and a length for the substring. The return value is the substring:

my $mineral = substr("Fred J. Flintstone", 8, 5); # gets "Flint"
my $rock = substr "Fred J. Flintstone", 13, 1000; # gets "stone"

As you may have noticed in the previous example, if the requested length (1000 char-
acters, in this case) would go past the end of the string, there’s no complaint from Perl,
but you simply get a shorter string than you might have. But if you want to be sure to
go to the end of the string, however long or short it may be, just omit that third pa-
rameter (the length), like this:

my $pebble = substr "Fred J. Flintstone", 13; # gets "stone"

" Well, it’s not really the last one found—Perl cleverly starts searching from the other end of the string, and
then returns the first location it finds, which amounts to the same result. Of course, the return value is the
same zero-based number as we always use for describing locations of substrings.

210 | Chapter14: Stringsand Sorting



The initial position of the substring in the larger string can be negative, counting from
the end of the string (that is, position -1 is the last character).” In this example, position
-3 is three characters from the end of the string, which is the location of the letter i:

my $out = substr("some very long string", -3, 2); # $out gets "in"

As you might expect, index and substr work well together. In this example, we can
extract a substring that starts at the location of the letter 1:

my $long = "some very very long string";
my $right = substr($long, index($long, "1") );

Now here’s something really cool: The selected portion of the string can be changed if
the string is a variable:T

my $string = "Hello, world!";
substr($string, 0, 5) = "Goodbye"; # $string is now "Goodbye, world!"

As you see, the assigned (sub)string doesn’t have to be the same length as the substring
it’s replacing. The string’s length is adjusted to fit. Or if that wasn’t cool enough to
impress you, you could use the binding operator (=~) to restrict an operation to work
with just part of a string. This example replaces fred with barney wherever possible
within just the last 20 characters of a string:

substr($string, -20) =~ s/fred/barney/g;

To be completely honest, we’ve never actually needed that functionality in any of our
own code, and chances are that you’ll never need it either. But it’s nice to know that
Perl can do more than you’ll ever need, isn’t it?

Much of the work that substr and index do could be done with regular expressions.
Use those where they’re appropriate. But substr and index can often be faster, since
they don’t have the overhead of the regular expression engine: they’re never case-
insensitive, they have no metacharacters to worry about, and they don’t set any of the
memory variables.

Besides assigning to the substr function (which looks a little weird at first glance, per-
haps), you can also use substr in a slightly more traditional mannert with the four-
argument version, in which the fourth argument is the replacement substring:

my $previous value = substr($string, 0, 5, "Goodbye");

" This is analogous to what you saw with array indices in Chapter 3. Just as arrays may be indexed either from
0 (the first element) upward or from -1 (the last element) downward, substring locations may be indexed
from position 0 (at the first character) upward or from position -1 (at the last character) downward.

T Well, technically, it can be any lvalue. What that term means precisely is beyond the scope of this book, but
you can think of it as anything that can be put on the left side of the equals sign (=) in a scalar assignment.
That’s usually a variable, but it can (as you see here) even be an invocation of the substr operator.

¥ By traditional we mean in the “function invocation” sense, but not the “Perl” sense, since this feature was
introduced to Perl relatively recently.

Manipulating a Substring with substr | 211



The previous value comes back as the return value, although, as always, you can use
this function in a void context to simply discard it.

Formatting Data with sprintf

The sprintf function takes the same arguments as printf (except for the optional
filehandle, of course), but it returns the requested string instead of printing it. This is
handy if you want to store a formatted string into a variable for later use, or if you want
more control over the result than printf alone would provide:
my $date tag = sprintf
"%ad/%02d/%02d %2d:%02d:%02d",
$yr, $mo, $da, $h, $m, $s;

In thatexample, $date_tag gets something like "2038/01/19 3:00:08". The format string
(the firstargument to sprintf) used a leading zero on some of the format number, which
we didn’t mention when we talked about printf formats in Chapter 5. The leading zero
on the format number means to use leading zeros as needed to make the number as
wide as requested. Without a leading zero in the formats, the resulting date-and-time
string would have unwanted leading spaces instead of zeros, like "2038/ 1/19 3: 0: 8".

Using sprintf with “Money Numbers”

One popular use for sprintf is when you want to format a number with a certain
number of places after the decimal point, such as when you want to show an amount
of money as 2.50 and not 2.5—and certainly not as 2.49997! That’s easy to accomplish
with the "%.2f" format:

my $money = sprintf "%.2f", 2.49997;

The full implications of rounding are numerous and subtle, but, in most cases, you
should keep numbers in memory with all of the available accuracy, rounding off only
for output.

If you have a “money number” that may be large enough to need commas to show its
size, you might find it handy to use a subroutine like this one:"

sub big money {

my $number = sprintf "%.2f", shift @ ;

# Add one comma each time through the do-nothing loop
1 while $number =~ s/~(-?\d+)(\d\d\d)/$1,%2/;

# Put the dollar sign in the right place

$number =~ s/~(-2?)/$1\$/;

$number;

" Yes, we know that not everywhere in the world are commas used to separate groups of digits, not everywhere
are the digits grouped by threes, and not everywhere does the currency symbol appears as it does for U.S.
dollars. But this is a good example anyway, so there!

212 | Chapter14: Strings and Sorting



This subroutine uses some techniques you haven’t seen yet, but they logically follow
from what we’ve shown you. The first line of the subroutine formats the first (and only)
parameter to have exactly two digits after the decimal point. That is, if the parameter
were the number 12345678.9, now our $number is the string "12345678.90".

The next line of code uses a while modifier. As we mentioned when we covered that
modifier in Chapter 10, that can always be rewritten as a traditional while loop:

while ($number =~ s/~(-2\d+)(\d\d\d)/$1,%2/) {

1;

}
What does that say to do? It says that as long as the substitution returns a true value
(signifying success), the loop body should run. But the loop body does nothing! That’s
okay with Perl, but it tells us that the purpose of that statement is to do the conditional
expression (the substitution), rather than the useless loop body. The value 1 is tradi-
tionally used as this kind of a placeholder, although any other value would be equally
useful.” This works just as well as the loop above:

"keep looping' while $number =~ s/~(-2?\d+)(\d\d\d)/$1,%$2/;

So, now we know that the substitution is the real purpose of the loop. But what is the
substitution doing? Remember that $number will be some string like "12345678.90" at
this point. The pattern will match the first part of the string, but it can’t get past the
decimal point. (Do you see why it can’t?) Memory $1 will get "12345", and $2 will get
"678", so the substitution will make $number into "12345,678.90" (remember, it couldn’t
match the decimal point, so the last part of the string is left untouched).

Do you see what the dash is doing near the start of that pattern? (Hint: the dash is
allowed at only one place in the string.) We’ll tell you at the end of this section, in case
you haven’t figured it out.

We’re not done with that substitution statement yet. Since the substitution succeeded,
the do-nothing loop goes back to try again. This time, the pattern can’t match anything
from the comma onward, so $number becomes "12,345,678.90". The substitution thus
adds a comma to the number each time through the loop.

Speaking of the loop, it’s still not done. Since the previous substitution was a success,
we’re back around the loop to try again. But this time, the pattern can’t match at all,
since it has to match at least four digits at the start of the string, so now that is the end
of the loop.

Why couldn’t we have simply used the /g modifier to do a “global” search-and-replace,
to save the trouble and confusion of the 1 while? We couldn’t use that because we’re
working backward from the decimal point, rather than forward from the start of the
string. Putting the commas in a number like this can’t be done simply with the s///g

" Which is to say, useless. By the way, in case you’re wondering, Perl optimizes away the constant expression,
so it doesn’t even take up any runtime.

Formatting Data with sprintf | 213



substitution alone.” So, did you figure out the dash? It’s allowing for a possible minus
sign at the start of the string. The next line of code makes the same allowance, putting
the dollar sign in the right place so that $number is something like "$12,345,678.90", or
perhaps "-$12,345,678.90" if it’s negative. Note that the dollar sign isn’t necessarily
the first character in the string, or that line would be a lot simpler. Finally, the last line
of code returns our nicely formatted “money number,” which you can print in the
annual report.

Advanced Sorting

Earlier, in Chapter 3, we showed that you could sort a list in ascending ASClIbetical
order by using the built-in sort operator. What if you want a numeric sort? Or a case-
insensitive sort? Or maybe you want to sort items according to information stored in
a hash. Well, Perl lets you sort a list in whatever order you’d need; you’ll see all of those
examples by the end of the chapter.

You’ll tell Perl what order you want by making a sort-definition subroutine, or sort
subroutine for short. Now, when you first hear the term “sort subroutine,” if you’ve
been through any computer science courses, visions of bubble sort and shell sort and
quick sort race through your head, and you say, “No, never again!” Don’t worry; it’s
not that bad. In fact, it’s pretty simple. Perl already knows how to sort a list of items;
it merely doesn’t know which order you want. So, the sort-definition subroutine simply
tells it the order.

Why is this necessary? Well, if you think about it, sorting is putting a bunch of things
in order by comparing them all. Since you can’t compare them all at once, you need to
compare two at a time, eventually using what you find out about each pair’s order to
put the whole kit and caboodle in line. Perl already understands all of those steps
except for the part about how you’d like to compare the items, so that’s all you have to
write.

This means that the sort subroutine doesn’t need to sort many items after all. It merely
has to be able to compare two items. If it can put two items in the proper order, Perl
will be able to tell (by repeatedly consulting the sort subroutine) what order you want
for your data.

The sort subroutine is defined like an ordinary subroutine (well, almost). This routine
will be called repeatedly, each time checking on a pair of elements from the list you’re
sorting.

Now, if you were writing a subroutine that’s expecting to get two parameters that need
sorting, you might write something like this to start:

" Atleast, it can’t be done without some more advanced regular expression techniques than we’ve shown you
so far. Those darn Perl developers keep making it harder and harder to write Perl books that use the word

P

“can’t.

214 | Chapter14: Strings and Sorting



sub any sort sub { # It doesn't really work this way
my($a, $b) = @ ; # Get and name the two parameters
# start comparing $a and $b here

}...

But the sort subroutine will be called again and again, often hundreds or thousands of
times. Declaring the variables $a and $b and assigning them values at the top of the
subroutine will take just a little time, but multiply that by the thousands of times that
the routine will be called, and you can see that it contributes significantly to the overall
execution speed.

We don’t do it like that. (In fact, if you did it that way, it wouldn’t work.) Instead, it is
as if Perl has done this for us, before our subroutine’s code has even started. You’ll
really write a sort subroutine without that first line; both $a and $b have been assigned
for you. When the sort subroutine starts running, $a and $b are two elements from the
original list.

The subroutine returns a coded value describing how the elements compare (like C’s
gsort(3) does, but it’s Perl’s own internal sort implementation). If $a should appear
before $b in the final list, the sort subroutine returns -1 to say so. If $b should appear
before $a, it returns 1.

If the order of $a and $b doesn’t matter, the subroutine returns 0. Why would it not
matter? Perhaps you’re doing a case-insensitive sort and the two strings are fred and
Fred. Or perhaps you’re doing a numeric sort and the two numbers are equal.

You could now write a numeric sort subroutine like this:

sub by number {

# a sort subroutine, expect $a and $b

if ($a < $b) { -1 } elsif ($a > $b) { 1 } else { 0 }
}

To use the sort subroutine, just put its name (without an ampersand) between the
keyword sort and the list you’re sorting. This example puts a numerically sorted list
of numbers into @result:

my @result = sort by number @some_numbers;

We called the subroutine by number because that describes how it’s sorting. But more
importantly, you can read the line of code that uses it with sort as saying “sort by
number,” as you would in English. Many sort-subroutine names begin with by  to
describe how they sort. Or we could have called this one numerically, for a similar
reason, but that’s more typing and more chance to mess up something.

Notice that we don’t have to do anything in the sort subroutine to declare $a and $b,
and to set their values—and if we did, the subroutine wouldn’t work right. We just let
Perl set up $a and $b for us, and so all we need to write is the comparison.

In fact, we can make it even simpler (and more efficient). Since this kind of three-way
comparison is frequent, Perl has a convenient shortcut to use to write it. In this case,

Advanced Sorting | 215



we use the spaceship operator (<=>)." This operator compares two numbers and returns
-1, 0, or 1 as needed to sort them numerically. So we could have written that sort
subroutine better, like this:

sub by number { $a <=> $b }

Since the spaceship compares numbers, you may have guessed that there’s a corre-
sponding three-way string-comparison operator: cmp. These two are easy to remember
and keep straight. The spaceship has a family resemblance to the numeric comparison
operators like »=, but it’s three characters long instead of two because it has three
possible return values instead of two. And cmp has a family resemblance to the string
comparison operators like ge, but it’s three characters long instead of two because it
also has three possible return values instead of two.T Of course, cmp by itself provides
the same order as the default sort. You’d never need to write this subroutine, which
yields merely the default sort order:¥

sub ASCIIbetically { $a cmp $b }
my @strings = sort ASCIIbetically @any_ strings;

But you can use cmp to build a more complex sort order, like a case-insensitive sort:

sub case_insensitive { "\L$a" cmp "\L$b" }

In this case, we’re comparing the string from $a (forced to lowercase) against the string
from $b (forced to lowercase), giving a case-insensitive sort order.

Note that we’re not modifying the elements themselves; we’re merely using their values.
That’s actually important: for efficiency reasons, $a and $b aren’t copies of the data
items. They’re actually new, temporary aliases for elements of the original list, so if we
changed them, we’d be mangling the original data. Don’t do that—it’s neither sup-
ported nor recommended.

When your sort subroutine is as simple as the ones we show here (and most of the time,
itis), you can make the code even simpler yet, by replacing the name of the sort routine
with the entire sort routine “inline,” like so:

my @numbers = sort { $a <=> $b } @some numbers;

In fact, in modern Perl, you’ll hardly ever see a separate sort subroutine; you’ll fre-
quently find sort routines written inline as we’ve done here.

Suppose you want to sort in descending numeric order. That’s easy enough to do with
the help of reverse:

" Wecallit that because it looks like one of the TIE fighters from Star Wars. Well, it looks like that to us, anyway.

T This is no accident. Larry does things like this on purpose, to make Perl easier to learn and remember.
Remember, he’s a linguist at heart, so he’s studied how people think of languages.

¥ You’d never need to write this unless, of course, you were writing an introductory Perl book and needed it
for an example.

216 | Chapter14: Stringsand Sorting



my @descending = reverse sort { $a <=> $b } @some_numbers;

But here’s a neat trick. The comparison operators (<=> and cmp) are very nearsighted;
that is, they can’t see which operand is $a and which is $b, but only which value is on
the left and which is on the right. So if $a and $b were to swap places, the comparison
operator would get the results backward every time. That means that this is another
way to get a reversed numeric sort:

my @descending = sort { $b <=> $a } @some_numbers;

You can (with a little practice) read this at a glance. It’s a descending-order comparison
(because $b comes before $a, which is descending order), and it’s a numeric comparison
(because it uses the spaceship instead of cmp). So, it’s sorting numbers in reverse order.
(In modern Perl versions, it doesn’t matter much which one of those you do because
reverse is recognized as a modifier to sort, and special shortcuts are taken to avoid
sorting it one way just to have to turn it around the other way.)

Sorting a Hash by Value

Once you’ve been sorting lists happily for a while you’ll run into a situation where you
want to sort a hash by value. For example, three of our characters went out bowling
last night, and we’ve got their bowling scores in the following hash. We want to be able
to print out the list in the proper order, with the game winner at the top, so we want
to sort the hash by score:

my %score = ("barney" => 195, "fred" => 205, "dino" => 30);
my @winners = sort by score keys %score;

Of course, you aren’t really going to be able to sort the hash by score; that’s just a verbal
shortcut. You can’t sort a hash! But when we’ve used sort with hashes before now,
we’ve been sorting the keys of the hash (in ASClIbetical order). Now, you’re still going
to sort the keys of the hash, but the order is defined by their corresponding values from
the hash. In this case, the result should be a list of our three characters’ names, in order
according to their bowling scores.

Writing this sort subroutine is fairly easy. What we want is to use a numeric comparison
on the scores, rather than the names. That is, instead of comparing $a and $b (the
players’ names), we want to compare $score{$a} and $score{$b} (their scores). If you
think of it that way, it almost writes itself, as in:

sub by score { $score{$b} <=> $score{$a} }

Let’s step through this and see how it works. Let’s imagine that the first time it’s called,
Perl has set $a to barney and $b to fred. So the comparison is $score{"fred"} <=>
$score{"barney"}, which (as we can see by consulting the hash) is 205 <=> 195. Re-
member, now, the spaceship is nearsighted, so when it sees 205 before 195, it says, in
effect: “No, that’s not the right numeric order; $b should come before $a.” So it tells
Perl that fred should come before barney.

Advanced Sorting | 217



Maybe the next time the routine is called, $a is barney again but $b is now dino. The
nearsighted numeric comparison sees 30 <=> 195 this time, so it reports that that they’re
in the right order; $a does indeed sort in front of $b. That is, barney comes before
dino. At this point, Perl has enough information to put the list in order: fred is the
winner, then barney in second place, then dino.

Why did the comparison use the $score{$b} before the $score{$a}, instead of the other
way around? That’s because we wanted bowling scores arranged in descending order,
from the highest score down. So you can (again, after a little practice) read this one at
sight as well: $score{$b} <=> $score{$a} means to sort according to the scores, in
reversed numeric order.

Sorting by Multiple Keys

We forgot to mention that there was a fourth player bowling last night with the other
three, so the hash really looked like this:
my %score = (
"barney" => 195, "fred" => 205,
"dino" => 30, "bamm-bamm" => 195,
)s
Now, as you can see, bamm-bamm has the same score as barney. So which one will be first
in the sorted list of players? There’s no telling because the comparison operator (seeing
the same score on both sides) will have to return zero when checking those two.

Maybe that doesn’t matter, but we generally prefer to have a well defined sort. If several
players have the same score, we want them to be together in the list, of course. But
within that group, the names should be in ASClIbetical order. But how can we write
the sort subroutine to say that? Again, this turns out to be pretty easy:

my @winners = sort by score and_name keys %score;

sub by score_and_name {
$score{$b} <=> $score{$a} # by descending numeric score
or
$a cmp $b # ASCIIbetically by name

How does this work? Well, if the spaceship sees two different scores, that’s the com-
parison we want to use. It returns -1 or 1, a true value, so the low-precedence short-
circuit or will mean that the rest of the expression will be skipped, and the comparison
we want is returned. (Remember, the short-circuit or returns the last expression eval-
uated.) But if the spaceship sees two identical scores, it returns 0, a false value, and thus
the cmp operator gets its turn at bat, returning an appropriate ordering value considering
the keys as strings. Thatis, if the scores are the same, the string-order comparison breaks
the tie.

218 | Chapter14: Strings and Sorting



We know that when we use the by _score_and_name sort subroutine like this, it will never
return 0. (Do you see why it won’t? The answer is in the footnote.”) So we know that
the sort order is always well defined; that is, we know that the result today will be
identical to the result with the same data tomorrow.

There’s no reason that your sort subroutine has to be limited to two levels of sorting,
of course. Here the Bedrock library program puts a list of patron ID numbers in order
according to a five-level sort.T This example sorts according to the amount of each
patron’s outstanding fines (as calculated by a subroutine &fines, not shown here), the
number of items they currently have checked out (from %items), their name (in order
by family names, then by personal name, both from hashes), and finally by the patron’s
ID number, in case everything else is the same:
@patron_IDs = sort {
&fines($b) <=> &fines($a) or
$items{$b} <=> $items{$a} or
$family name{$a} cmp $family name{$a} or
$personal _name{$a} cmp $family name{$b} or
$a <=> $b
} @patron_IDs;

Exercises

See Appendix A for answers to the following exercises:

1. [10] Write a program to read in a list of numbers and sort them numerically, print-
ing out the resulting list in a right-justified column. Try it out on this sample data
or use the file numbers from the O’Reilly web site (see the Preface):

17 1000 04 1.50 3.14159 -10 1.5 4 2001 90210 666

2. [15] Make a program that will print the following hash’s data sorted in
case-insensitive alphabetical order by last name. When the last names are the same,
sort those by first name (again, without regard for case). That is, the first name in
the output should be Fred’s, while the last one should be Betty’s. All of the people
with the same family name should be grouped together. Don’t alter the data. The
names should be printed with the same capitalization as shown here. (You can find
the source code to create a hash like this in the file sortable_hash with the other
downloaded files.)

" The only way it could return 0 would be if the two strings were identical, and (since the strings are keys of a
hash) we already know that they’re different. Of course, if you passed a list with duplicate (identical) strings
to sort, it would return 0 when comparing those, but we’re passing a list of hash keys.

T It’s not unusual in the modern world to need a five-level sort like this, although it was quite infrequent in
prehistoric times.

Exercises | 219



my %last name = qw{
fred flintstone Wilma Flintstone Barney Rubble
betty rubble Bamm-Bamm Rubble PEBBLES FLINTSTONE

}’

3. [15] Make a program that looks through a given string for every occurrence of a
given substring, printing out the positions where the substring is found. For
example, given the input string "This is a test." and the substring "is", it should
report positions 2 and 5. If the substring were "a", it should report 8. What does it

report if the substring is "t"?

220 | Chapter14: Stringsand Sorting



CHAPTER 15
Smart Matching and given-when

Wouldn’t it be great if computers could just figure out what you wanted and do it? Perl
already does its best to use numbers when you want numbers, strings when you want
strings, single values where you mean a single value, and lists when you mean lists.
With Perl 5.10’s smart match operator and given-when control structure, it gets even
better.

The Smart Match Operator

The smart match operator, ~~, looks at both of its operands and decides on its own
how it should compare them. If the operands look like numbers, it does a numeric
comparison. If they look like strings, it does a string comparison. If one of the operands
is a regular expression, it does a pattern match. It can also do some complex tasks that
would otherwise take a lot of code, so it keeps you from doing too much typing.

The ~~ looks almost like the binding operator, =~, which you saw in Chapter 8, but
~~ can do much more. It can even stand in for the binding operator. Up to now, you’d
match a pattern by using the binding operator to associate $name with the regular ex-
pression operator:

print "I found Fred in the name!\n" if $name =~ /Fred/;
Now, you can change that binding operator to the smart match operator and do exactly
the same thing:

use 5.010;
say "I found Fred in the name!" if $name ~~ /Fred/;

The smart match operator sees that it has a scalar on the lefthand side and the regular
expression operator on the righthand side, and figures out on its own to do the pattern
match. That’s not impressive, though. It gets much, much better.

The smart match operator starts to show its power with more complex operations.
Suppose you wanted to print a message if one of the keys in the hash %names matches
Fred. You can’t use exists because it only checks for the exact key. You could do it

221



with a foreach that tests each key with the regular expression operator, skipping those
that don’t match. When you find one that does match, you can change the value of
$flag and skip the rest of the iterations with last:
my $flag = 0;
foreach my $key ( keys %names ) {
next unless $key =~ /Fred/;
$flag = $key;
last;
}

print "I found a key matching 'Fred'. It was $flag\n" if $flag;

Whew! That was a lot of work just to explain it, but it works in any version of Perl 5.
With the smart match operator, you just need the hash on the lefthand side and the
regular expression operator on the righthand side:

use 5.010;
say "I found a key matching 'Fred'" if %names ~~ /Fred/;

The smart match operator knows what to do because it sees a hash and a regular ex-
pression. With those two operands, the smart match operator knows to look through
the keys in %names and apply the regular expression to each one. If it finds one that
matches, it already knows to stop and return true. It’s not the same sort of match as
the scalar and regular expression. It’s smart; it does what’s right for the situation. It’s
just that the operator is the same, even though the operation isn’t.

If you want to compare two arrays (limiting them to the same size just to make things
simpler), you could go through the indices of one of the arrays and compare the cor-
responding elements in each of the arrays. Each time the corresponding elements are
the same, you increment the $equal counter. After the loop, if $equal is the same as the
number of elements in @names1, then the arrays must be the same:
my $equal = 0;
foreach my $index ( 0 .. $#names1 ) {
last unless $namesi[$index] eq $names2[$index];
$equal++;

}

print "The arrays have the same elements!\n"
if $equal == @namesi;

Again, that’s too much work. Wouldn’t it be great if there was an easy way to do that?
Wait! How about the smart match operator? Just put the arrays on either side of the
~~. This little bit of code does the same things as the last example, but with almost no
code:

use 5.010;

say "The arrays have the same elements!"
if @names1 ~~ @names2;

222 | Chapter15: Smart Matching and given-when



Okay, one more example. Suppose you call a function and want to check that its return
value is one of a set of possible or expected values. Going back to the max() subroutine
in Chapter 4, you know that max() should return one of the values you passed it. You
could check that by comparing the return value of max to its argument list using the
same techniques as the previous hard ways:

my @ums = qw( 1 2 3 27 42 );
my $result = max( @nums );

my $flag = 0;
foreach my $num ( @nums ) {
next unless $result == $num;
$flag = 1;
last;
}

print "The result is one of the input values\n" if $flag;

You already know what we are going to say: that’s too much work! You can get rid of
all of the code in the middle by using ~~. This is much easier than the previous example:

use 5.010;

my @nums gw( 12 3 27 42 );
my $result = max( @nums );

say "The result [$result] is one of the input values (@nums)"
if @nums ~~ $result;

You can also write that smart match with the operands in the other order and get the
same answer. The smart match operator doesn’t care which operands are on which side:

use 5.010;

my @nums qw( 1 2 3 27 42 );
my $result = max( @nums );

say "The result [$result] is one of the input values (@nums)"
if $result ~~ @nums;

The smart match operator is commutative, which you may remember from high school
algebra as the fancy way to say that the order of the operands doesn’t matter. The smart

match operator is just like addition or multiplication; you get the same answer both
ways. It doesn’t matter what sort of matching it’s doing either. These two are the same:

use 5.010;

say "I found a name matching 'Fred'" if $name ~~ /Fred/;
say "I found a name matching 'Fred'" if /Fred/ ~~ $name;

The Smart Match Operator | 223



Smart Match Precedence

Now that you’ve seen how the smart match operator can save you a lot of work, you
just need to know how to tell which sort of match it will do. For that you have to check
the table in the perlsyn documentation under “Smart matching in detail.” Table 15-1
shows some of the things the smart match operator can do.

Table 15-1. Smart match operations for pairs of operands

Example Type of match

%a ~~ %b Hash keys identical

%a ~~ @b At least one key in %a is in @b

%a ~~ [Fred/ At least one key matches pattern

%a ~~ 'Fred' Hash key existence exists $a{Fred}

@ ~~ @b Arrays are the same

@ ~~ /Fred/ At least one element matches pattern

@a ~~ 123 At least one element is 123, numerically
@ ~~ 'Fred' At least one elementis ' Fred"', stringwise
$name ~~ undef $name is not defined

$name ~~ /Fred/ Pattern match

123 ~~ '123.0' Numeric equality with “numish” string
'Fred' ~~ 'Fred'  Stringequality
123 ~~ 456 Numeric equality

When you use the smart match operator, Perl goes to the top of the chart and starts
looking for a type of match that corresponds to its two operands. It then does the first
type of match it finds. The order of the operands doesn’t matter. For instance, you have
an array and a hash with the smart match:

use 5.010;
if( @array ~~ %hash ) { ... }

Perl first finds the match type for a hash and an array, which checks that at least one
of the elements of @array is a key in %hash. That one is easy because there is only one
type of match for those two operands. What if you have two scalars?

use 5.010;

if( $fred ~~ $barney ) { ... }

224 | Chapter15: Smart Matching and given-when



So far you can’t tell what sort of match it is going to do because Perl needs to look inside
$scalarl and $scalar2 to see what would happen. Perl can’t decide that until it sees
the actual data inside the scalars. Is the smart match going to do a numeric or string
comparison?

To figure out how Perl will compare $fred and $barney, Perl looks at the values and
follows the same rules we just told you. It goes down the precedence chart until it finds
a situation that matches, then uses the right comparison for that situation. There’s a
bit of a trick: Perl can recognize some strings as numbers, which it calls numish strings.
Those are strings such as '123", '3.14149', and so on. We’ve quoted each one, so they
are really strings, which are just sequences of characters. However, Perl can convert
them to numbers without warnings. If Perl sees numbers or numish strings on both
sides of the smart match operator, it does a numeric comparison. Otherwise, it does a
string comparison.

The given Statement

The given-when control structure allows you to run a block of code when the argument
to given satisfies a condition. It’s Perl’s equivalent to C’s switch statement, but as with
most things Perly, it’s a bit more fancy, so it gets a fancier name.

Here’s a bit of code that takes the first argument from the command line, $ARGV[0], and
goes through the when conditions to see if it can find Fred. Each when block reports a
different way that it found Fred, starting with the least restrictive to the most:

use 5.010;

given( $ARGV[0] ) {
when( /fred/i ) { say 'Name has fred in it' }
when( /*Fred/ ) { say 'Name starts with Fred' }
when( 'Fred' ) { say 'Name is Fred' }
default { say "I don't see a Fred" }
}

The given aliases its argument to $_," and each of the when conditions tries an implicit
smart match against $_. You could rewrite the previous example with explicit smart
matching to see exactly what’s happening:

use 5.010;

given( $ARGV[0] ) {
when( $_ ~~ /fred/i ) { say 'Name has fred in it' }
when( $_ ~~ /*Fred/ ) { say 'Name starts with Fred' }
when( $_ ~~ 'Fred' ) { say 'Name is Fred' }
default { say "I don't see a Fred" }
}

" In Perl parlance, given is a topicalizer because it makes its argument the topic, the fancy new name for $_in
Perl 6.

The given Statement | 225



If$_ does not satisfy any of the when conditions, Perl executes the default block. Here’s
the output from several trial runs:

$ perl5.10.0 switch.pl Fred

Name has fred in it

$ perl5.10.0 switch.pl Frederick
Name has fred in it

$ perl5.10.0 switch.pl Barney

I don't see a Fred

$ perl5.10.0 switch.pl Alfred
Name has fred in it

“Big deal,” you say, “I could write this example with if-elsif-else.” The next example
does just that using a $_ declared with my and with all the scoping rules of my, another
new feature of Perl 5.10:

use 5.010;

{
my $ = $ARGV[0]; # lexical $_ as of 5.10!

if( $_ ~~ /fred/i ) { say 'Name has fred in it' }
elsif( $_ ~~ /~Fred/ ) { say 'Name starts with Fred' }

elsif( $_ ~~ 'Fred' ) { say 'Name is Fred' }
else { say "I don't see a Fred" }
}

If given were just the same thing as if-elsif-else, it wouldn’t be that interesting.
Unlike an if-elsif-else construct, however, a given-when can satisfy one condition
and then try the others too. Once an if-elsif-else satisfies a condition, it will only
ever execute one block of code.

Before we go on, let’s make a couple more things explicit so that you can see everything
that’s happening. Unless you say otherwise, there is an implicit break at the end of each
when block, and that tells Perl to stop the given-when construct and move on with the
rest of the program. The previous example really has breaks in it, although you don’t
have to type them yourself:

use 5.010;
given( $ARGV[0] ) {

when( $_ ~~ /fred/i ) { say 'Name has fred in it'; break }
when( $_ ~~ /*Fred/ ) { say 'Name starts with Fred'; break }

when( $_ ~ 'Fred' ) { say 'Name is Fred'; break }
default { say "I don't see a Fred"; break }
}

This doesn’t work very well for the problem, though. Since our example goes from
general to specific, if the argument matches /fred/i, Perl doesn’t test any of the when
conditions. We don’t get to check whether the argument is exactly Fred because the
first when block stops the entire control structure.

226 | Chapter15: Smart Matching and given-when



If you use continue at the end of a when instead, Perl tries the succeeding when statements
too, repeating the process it started before. That’s something that if-elsif-else can’t
do. When another when satisfies its condition, Perl executes its block (again, implicitly
breaking at the end of the block unless you say otherwise). Putting a continue at the
end of each when block means Perl will try every condition:

use 5.010;

given( $ARGV[0] ) {

when( $_ ~~ /fred/i ) { say 'Name has fred in it'; continue }
when( $_ ~~ /*Fred/ ) { say 'Name starts with Fred'; continue }
when( $_ ~~ 'Fred" ) { say 'Name is Fred'; continue } # OOPS!
default { say "I don't see a Fred" }

}

There’s a slight problem with that code, though. When we run it, we see that the
default block runs too:
$ perl5.10.0 switch.pl Alfred

Name has fred in it
I don't see a Fred

That default block is really a when with a condition that is always true. If the when before
the default has a continue, Perl goes on to the default too. It’s as if the default were
really another when:

use 5.010;
given( $ARGV[0] ) {

when( $_ ~~ /fred/i ) { say 'Name has fred in it'; continue }
when( $_ ~~ /~Fred/ ) { say 'Name starts with Fred'; continue }

when( $_ ~~ 'Fred" ) { say 'Name is Fred'; continue } # OOPS!
when( 1 ==1 ) { say "I don't see a Fred" } # default
}

To get around this, we leave off that last continue, so the last when stops the process:
use 5.010;
given( $ARGV[0] ) {

when( $_ ~~ /fred/i ) { say 'Name has fred in it'; continue }
when( $_ ~~ /*Fred/ ) { say 'Name starts with Fred'; continue }

when( $_ ~~ 'Fred' ) { say 'Name is Fred'; break } # OK now!
when( 1 ==1 ) { say "I don't see a Fred" }
}

Now that we’ve shown you everything that’s going on, we rewrite it in the idiomatic
form, which is how you should use it in your programs:

use 5.010;

given( $ARGV[0] ) {
when( /fred/i ) { say 'Name has fred in it'; continue }
when( /*Fred/ ) { say 'Name starts with Fred'; continue }
when( 'Fred' ) { say 'Name is Fred'; }

The given Statement | 227



default { say "I don't see a Fred" }
}

Dumb Matching

Although the given-when can use smart matching, you can use the “dumb” comparisons
that you already know. It’s not really dumb, it’s just the regular matching that you
already know. When Perl sees an explicit comparison operator (of any type) or the
binding operator, it does only what those operators do:

use 5.010;

given( $ARGV[0] ) {
when( $_ =~ /fred/i ) { say 'Name has fred in it'; continue }
when( $_ =~ /*Fred/ ) { say 'Name starts with Fred'; continue }
when( $_eq 'Fred' ) { say 'Name is Fred' }
default { say "I don't see a Fred" }
}

You can even mix and match dumb and smart matching; the individual when expres-
sions figure out their comparisons on their own:

use 5.010;

given( $ARGV[0] ) {
when( /fred/i ) { #smart
say 'Name has fred in it'; continue }
when( $_ =~ /~Fred/ ) { #dumb
say 'Name starts with Fred'; continue }

when( 'Fred' ) { #smart

say 'Name is Fred' }
default { say "I don't see a Fred" }
}

Note that the dumb and smart match for a pattern match are indistinguishable since
the regular expression operator already binds to $_ by default.

The smart match operator finds things that are the same (or mostly the same), so it
doesn’t work with comparisons for greater than or less than. In those cases, you have
to use the right comparison operators:

use 5.010;
given( $ARGV[0] ) {

when( /*-2\d+\.\d+$/ ) { #smart
say 'Not a number!' }

when( $_ > 10 ) { #dumb
say 'Number is greater than 10' }
when( $_ < 10 ) { #dumb
say 'Number is less than 10' }
default { say 'Number is 10' }
}

228 | Chapter15: Smart Matching and given-when



There are certain situations in which Perl will automatically use dumb matching. You
can use the result of a subroutine” inside the when, in which case, Perl uses the truth or
falseness of the return value:

use 5.010;

given( $ARGV[0] ) {
when( name_has_fred( $_ ) ) { #dumb
say 'Name has fred in it'; continue }
}

The subroutine call rule also applies to the Perl built-ins defined, exists, and eof too,
since those are designed to return true or false.

Negated expressions, including negated regular expressions, don’t use a smart match
either. These cases are just like the control structure conditions you saw in previous
chapters:

use 5.010;

given( $ARGV[0] ) {
when( ! $boolean ) { #dumb
say 'Name has fred in it' }
when( ! /fred/i } { #dumb
say 'Does not match Fred' }
}

when with Many Items

Sometimes you’ll want to go through many items, but given takes only one thing at a
time. In this case, you could wrap given in a foreach loop. If you wanted to go through
@names, you could assign the current element to $name, then use that for given:

use 5.010;

foreach my $name ( @names ) {
given( $name ) {

.
}

Guess what? Yep, that’s too much work. (Are you tired of all of this extra work yet?)
This time, let’s alias the current element of @names just so given can alias it also. Perl
should be smarter than that! Don’t worry, it is.

To go through many elements, you don’t need the given. Let foreach put the current
element in $_ on its own. If you want to use smart matching, the current element has
tobeins .

" Perl doesn’t use smart matching for method calls either, but we don’t cover object-oriented programming
until Intermediate Perl (O’Reilly).

when with Many Items | 229



use 5.010;

foreach ( @names ) { # don't use a named variable!
when( /fred/i ) { say 'Name has fred in it'; continue }
when( /~Fred/ ) { say 'Name starts with Fred'; continue }
when( 'Fred' ) { say 'Name is Fred'; }
default { say "I don't see a Fred" }
}

If you are going to go through several names though, you probably want to see which
name you’re working on. You can put other statements in the foreach block, such as
a say statement:

use 5.010;

foreach ( @names ) { # don't use a named variable!
say "\nProcessing $ ";

when( /fred/i ) { say 'Name has fred in it'; continue }
when( /~Fred/ ) { say 'Name starts with Fred'; continue }
when( 'Fred' ) { say 'Name is Fred'; }

default { say "I don't see a Fred" }

}

You can even put extra statements between the whens, such as putting a debugging
statement right before the default (which you can also do with given):

use 5.010;

foreach ( @names ) { # don't use a named variable!
say "\nProcessing $ ";

when( /fred/i ) { say 'Name has fred in it'; continue }
when( /*Fred/ ) { say 'Name starts with Fred'; continue }
when( 'Fred' ) { say 'Name is Fred'; }

say "Moving on to default...";
default { say "I don't see a Fred" }
}

Exercises

See Appendix A for answers to the following exercises:

1. [15] Rewrite your number guessing program from Exercise 1 in Chapter 10 to use
given. How would you handle nonnumeric input? You don’t need to use smart
matching.

2. [15] Write a program using given-when that takes a number as its input, then prints
“Fizz” if it is divisible by three, “Bin” if it is divisible by five, and “Sausage” if it is
divisible by seven. For a number like 15, it should print “Fizz” and “Bin” since 15
is divisible by both 3 and 5. What’s the first number for which your program prints
“Fizz Bin Sausage”?

230 | Chapter15: Smart Matching and given-when



3. [15] Using for-when, write a program that goes through a list of files on the com-
mand line and reports if each file is readable, writable, or executable. You don’t
need to use smart matching.

4. [20] Using given and smart matching, write a program that reports all the divisors
(except 1 and the number itself) of a number you specify on the command line.
For instance, for the number 99, your program should report that it is divisible by
3,9, 11, and 33. If the number is prime (it has no divisors), it should report that
the number is prime instead. If the command-line argument is not a number, it
should report the error and not try to compute the divisors. Although you could
do this with if constructs and with dumb matching, use only smart matching.

To get you started, here’s a subroutine to return a list of divisors. It tries all of the
numbers up to one-half of $number:

sub divisors {
my $number = shift;

my @divisors = ();
foreach my $divisor ( 2 .. $number/2 ) ) {
push @divisors, $divisor unless $ % $divisor;

}

return @divisors;

}

5. [20] Modify the program from the previous exercise to also report if the number
is odd or even, if the number is prime (you find no divisors other than 1 and the
number itself), and if it is divisible by your favorite number. Again, use only smart
matching.

Exercises | 231






CHAPTER 16
Process Management

One of the best parts of being a programmer is launching someone else’s code so that
you don’t have to write it yourself. It’s time to learn how to manage your children” by
launching other programs directly from Perl.

And like everything else in Perl, There’s More Than One Way To Do It, with lots of
overlap, variations, and special features. So, if you don’t like the first way, just read on
for another page or two for a solution more to your liking.

Perl is very portable; most of the rest of this book doesn’t need many notes saying that
it works this way on Unix systems and that way on Windows and the other way on
VMS. But when you’re starting other programs on your machine, different programs
are available on a Macintosh than you’ll likely find on a Cray. The examples in this
chapter are primarily Unix-based; if you have a non-Unix system, you can expect to
see some differences.

The system Function

The simplest way to launch a child process in Perl to run a program is the system
function. For example, to invoke the Unix date command from within Perl, it looks like:

system "date";
The child process runs the date command, which inherits Perl’s standard input, stand-

ard output, and standard error. This mean that the normal short date-and-time string
generated by date ends up wherever Perl’s STDOUT was already going.

The parameter to the system function is generally whatever you’d normally type at the
shell. So, if it were a more complicated command, like Is -l $HOME, we’d just have to
put all that into the parameter:

system 'ls -1 $HOME';

" Child processes, that is.

233



Note that we had to switch here from double quotes to single quotes, since $HOME is the
shell’s variable. Otherwise, the shell would never have seen the dollar sign, since that’s
also an indicator for Perl to interpolate. Alternatively, we could write:

system "ls -1 \$HOME";
But that can quickly become unwieldy.

Now, the date command is output-only, but let’s say it had been a chatty command,
asking first “for which time zone do you want the time?”” That’ll end up on standard
output, and then the program will listen on standard input (inherited from Perl’s
STDIN) for the response. You’ll see the question, and type in the answer (like “Zimbabwe
time”), and then date will finish its duty.

While the child process is running, Perl is patiently waiting for it to finish. So, if the
date command took 37 seconds, then Perl is paused for those 37 seconds. You can use
the shell’s facility to launch a background process, however:

system "long running_command with parameters &";

Here, the shell launches, then notices the ampersand at the end of the command line,
which causes it to put long_running_command into the background. And then the shell
exits rather quickly, which Perl notices and moves on. In this case, the
long_running_command is really a grandchild of the Perl process, to which Perl really
has no direct access or knowledge.

When the command is “simple enough,” no shell gets involved, so for the date and Is
commands earlier, the requested command is launched directly by Perl, which searches
the inherited PATHY to find the command, if necessary. But if there’s anything weird in
the string (such as shell metacharacters like the dollar sign, semicolon, or vertical bar),
then the standard Bourne Shell (/bin/shll) gets invoked to work through the complicated
stuff. In that case, the shell is the child process, and the requested commands are
grandchildren (or further offspring). For example, you can write an entire little shell
script in the argument:

system 'for i in *; do echo == $i ==; cat $i; done’;

Here again, we’re using single quotes because the dollar signs here are meant for the
shell and not for Perl. Double quotes would have permitted Perl to expand $i to its

" As far as we know, no one has made a date command that works like this.

T See what we mean about this depending upon your system? The Unix shell (/bin/sh) lets you use the
ampersand on this kind of command to make a background process. If your non-Unix system doesn’t support
this way to launch a background process, then you can’t do it this way, that’s all.

* The PATH can be changed by adjusting $ENV{'PATH'} at any time. Initially, this is the environment variable
inherited from the parent process (usually the shell). Changing this value affects new child processes, but
cannot affect any preceding parent processes. The PATH is the list of directories where executable programs
(commands) are found, even on some non-Unix systems.

I Or whatever was determined when Perl was built. Practically always, this is just /bin/sh on Unix-like systems.

234 | Chapter16: Process Management



current Perl value and not let the shell expand it to its own value.” By the way, that little
shell script goes through all of the normal files in the current directory, printing out
each one’s name and contents; you can try it out yourself if you don’t believe us.

Avoiding the Shell

The system operator may also be invoked with more than one argument, in which
case, a shell doesn’t get involved, no matter how complicated the text:
my $tarfile = "something*wicked.tar";

my @dirs = qw(fred|flintstone <barney8rubble> betty );
system "tar", "cvf", $tarfile, @dirs;

In this case, the first parameter ("tar" here) gives the name of a command found in the
normal PATH-searching way, while the remaining arguments are passed, one-by-one,
directly to that command. Even if the arguments have shell-significant characters, such
as the name in $tarfile or the directory names in @dirs, the shell never gets a chance
to mangle the string. So that tar command will get precisely five parameters. Compare
this with:

system "tar cvf $tarfile @dirs"; # Oops!

Here, we’ve now piped a bunch of stuff into a flintstone command and put it into the
background, and opened betty for output.

And that’s a bit scary, especially if those variables are from user input—such as from
a web form or something. So, if you can arrange things so that you can use the multiple-
argument version of system, you probably should use that way to launch your subpro-
cess. (You’ll have to give up the ability to have the shell do the work for you to set up
I/O redirection, background processes, and the like, though. There’s no such thing as
a free launch.)

Note that redundantly, a single argument invocation of system is nearly equivalent to
the proper multiple-argument version of system:

system $command_line;
system "/bin/sh", "-c", $command_line;

But nobody writes the latter, unless you want things processed by a different shell, like
the C shell:

system "/bin/csh", "-fc", $command_line;

" Of course, if you set $1 = '$i', then it would work anyway, until a maintenance programmer came along
and “fixed” that line out of existence.

T Or with a parameter in the indirect-object slot, like system { 'fred' } 'barney';, which runs the program
barney, but lies to it so it thinks that it’s called 'fred'. See the perlfunc manpage.

* Unless you're using taint checking and have done all the right things to prescan your data to ensure that the
user isn’t trying to pull a fast one on you.

The system Function | 235



Even this is pretty rare, since the One True Shell” seems to have a lot more flexibility,
especially for scripted items.

The return value of the system operator is based upon the exit status of the child com-
mand.T In Unix, an exit value of 0 means that everything is okay, and a nonzero exit
value usually indicates that something went wrong:

unless (system "date") {

# Return was zero - meaning success
print "We gave you a date, OK!\n";

Note that this is backward from the normal “true is good—false is bad” strategy for
most of the operators, so to write a typical “do this or die” style, we’ll need to flip false
and true. The easiest way is simply to prefix the system operator with a bang (the logical-
not operator):

Isystem "rm -rf files to_delete" or die "something went wrong";

In this case, including $! in the error message would not be appropriate because the
failure is most likely somewhere within the experience of the rm command, and it’s not
a system call-related error within Perl that $! can reveal.

The exec Function

Everything we’ve just said about system syntax and semantics is also true about the
exec function, except for one (very important) thing. The system function creates a child
process, which then scurries off to perform the requested action while Perl naps. The
exec function causes the Perl process itself to perform the requested action. Think of it
as more like a “goto” than a subroutine call.

For example, suppose we wanted to run the bedrock command in the /tmp directory,
passing it arguments of -0 argsl followed by whatever arguments our own program
was invoked with. That’d look like this:

chdir "/tmp" or die "Cannot chdir /tmp: $!";
exec "bedrock", "-o", "argsi", @ARGV;

When we reach the exec operation, Perl locates bedrock, and “jumps into it.” At that
point, there is no Perl process anymore,* just the process running the bedrock

" That’s /bin/sh, or whatever your Unix system has installed as the most Bourne-like shell. If you don’t have a
One True Shell, Perl figures out how to invoke some other command-line interpreter, with notable
consequences—noted, that is, in the documentation for that Perl port.

T It’s actually the “wait” status, which is the child exit code times 256, plus 128 if core was dumped, plus the
signal number triggering termination, if any. But we rarely check the specifics of that, and a simple true/false
value suffices for nearly all applications.

 Actually, it’s the same process, having performed the Unix exec(2) system call (or equivalent). The process
ID remains the same.

236 | Chapter16: Process Management



command. When bedrock is finished, there’s no Perl to come back to, so we’d get a
prompt back if we invoked this program from the command line.

Why is this useful? Well, if the purpose of this Perl program were to set up a particular
environment to run another program, the purpose is fulfilled as soon as the other pro-
gram has started. If we’d used system instead of exec, we’d have a Perl program just
standing around tapping its toes waiting for the other program to complete, just so Perl
could finally immediately exit as well, and that’s a wasted resource.

Having said that, it’s actually quite rare to use exec, except in combination with fork
(which you’ll see later). If you are puzzling over system versus exec, just pick system,
and nearly all of the time, you’ll be just fine.

Because Perl is no longer in control once the requested command has started, it doesn’t
make any sense to have any Perl code following the exec, except for handling the error
when the requested command cannot be started:

exec "date";
die "date couldn't run: $!";

In fact, if you have warnings turned on, and if you have any code after the exec other
than a die,” you’ll get notified.

The Environment Variables

When you'’re starting another process (with any of the methods discussed here), you
may need to set up its environment in one way or another. As we mentioned earlier,
you could start the process with a certain working directory, which it inherits from your
process. Another common configuration detail is the environment variables.

One of the best-known environment variables is PATH. (If you’ve never heard of it, you
probably haven’t used a system that has environment variables.) On Unix and similar
systems, PATH is a colon-separated list of directories that may hold programs. When
you type a command like rm fred, the system will look for the ¥m command in that list
of directories, in order. Perl (or your system) will use PATH whenever it needs to find the
program to run. If the program in turn runs other programs, those may also be found
along the PATH. (Of course, if you give a complete name for a command, such as /bin/
echo, there’s no need to search PATH. But that’s generally much less convenient.)

In Perl, the environment variables are available via the special %ENV hash; each key in
this hash represents one environment variable. At the start of your program’s execution,
%ENV holds values it has inherited from its parent process (generally the shell). Modifying
this hash changes the environment variables, which will then be inherited by new pro-
cesses and possibly used by Perl as well. For example, suppose you wished to run the
system’s make utility (which typically runs other programs), and you want to use a

" Orexit. Or if it’s at the end of a block. This may change in a new release of Perl, too.

The Environment Variables | 237



private directory as the first place to look for commands (including make itself). And
let’s say that you don’t want the IFS environment variable to be set when you run the
command because that might cause make or some subcommand do the wrong thing.
Here we go:

$ENV{'PATH'} = "/home/rootbeer/bin:$ENV{ 'PATH'}";

delete $ENV{'IFS'};
my $make_result = system "make";

Newly created processes will generally inherit from their parent the environment var-
iables; the current working directory; the standard input, output, and error streams;
and a few more esoteric items. See the documentation about programming on your
system for more details. (But your program can’t change the environment for the shell
or other parent process that started it, on most systems.)

Using Backquotes to Capture Output

With both system and exec, the output of the launched command ends up wherever
Perl’s standard output is going. Sometimes it’s interesting to capture that output as a
string value to perform further processing. And that’s done simply by creating a string
using backquotes instead of single or double quotes:

my $now = “date’; # grab the output of date
print "The time is now $now"; # newline already present

Normally, this date command spits out a string approximately 30 characters long to its
standard output, giving the current date and time followed by a newline. When we’ve
placed date between backquotes, Perl executes the date command, arranging to capture
its standard output as a string value and, in this case, assign it to the $now variable.

This is very similar to the Unix shell’s meaning for backquotes. However, the shell also
performs the additional job of ripping off the final end-of-line to make it easier to use
the value as part of other things. Perl is honest; it gives the real output. To get the same
result in Perl, we can simply add an additional chomp operation on the result:

chomp(my $no_newline now = ‘date’);
print "A moment ago, it was $no_newline now, I think.\n";

The value between backquotes is just like the single-argument form of system” and is
interpreted as a double-quoted string, meaning that backslash-escapes and variables
are expanded appropriately.t For example, to fetch the Perl documentation on a list of
Perl functions, we might invoke the perldoc command repeatedly, each time with a
different argument:

" That s, it’s also always interpreted by the One True Shell (/bin/sh) or alternative, as with system.

T So, if you want to pass a real backslash to the shell, you’ll need to use two. If you need to pass two (which
happens frequently on Windows systems), you’ll need to use four.

238 | Chapter16: Process Management



my @functions = qw{ int rand sleep length hex eof not exit sqrt umask };
my %about;

foreach (@functions) {
$about{$ } = “perldoc -t -f $ °;
}

Note that $_ will be a different value for each invocation, letting us grab the output of
adifferent command varying only in one of its parameters. Also note that if you haven’t
seen some of these functions yet, it might be useful to look them up in the documen-
tation to see what they do!

There’s no easy equivalent of single quotes for backquotes;” variable references and
backslash items are always expanded. Also, there’s no easy equivalent of the multiple-
argument version of system (where a shell is never involved). If the command inside the
backquotes is complex enough, a Unix Bourne Shell (or whatever your system uses
instead) is invoked to interpret the command automatically.

At the risk of actually introducing the behavior by demonstrating how not to do it, we’d
also like to suggest that you avoid using backquotes in a place where the value isn’t
being captured.t For example:

print "Starting the frobnitzigator:\n";

“frobnitz -enable’; # please don't do this!

print "Done!\n";
The problem is that Perl has to work a bit harder to capture the output of this command,
even when you’re just throwing it away, and then you also lose the option to use mul-
tiple arguments to system to precisely control the argument list. So from both a security
standpoint and an efficiency viewpoint, just use system instead, please.

Standard error of a backquoted command is inherited from Perl’s current standard error
output. If the command spits out error messages to standard error, you’ll probably see
them on the terminal, which could be confusing to the user who hasn’t personally
invoked the frobnitz command. If you want to capture error messages with standard
output, you can use the shell’s normal “merge standard error to the current standard
output,” which is spelled 2>81 in the normal Unix shell:

my $output with errors = “frobnitz -enable 2>817;
Note that this will make the standard error output intermingled with the standard
output, much as it appears on the terminal (although possibly in a slightly different

sequence because of buffering). If you need the output and the error output separated,
there are many harder-to-type solutions.* Similarly, standard input is inherited from

" For a couple of harder ways, you can place your string inside gx'..." delimiters, or you can put it all in a
variable using a single-quoted string, then interpolate that string into a backquoted string, since the
interpolation will be only one level.

T This is called a “void” context.

* Such as IPC: :0pen3 in the standard Perl library, or writing your own forking code, as you will see later.

Using Backquotes to Capture Output | 239



Perl’s current standard input. Most commands we typically use with backquotes do
not read standard input, so that’s rarely a problem. However, let’s say the date com-
mand asked which time zone you want (as we imagined earlier). That’ll be a problem
because the prompt for “which time zone” will be sent to standard output, which is
being captured as part of the value, and then the date command will start trying to read
from standard input. But since the user has never seen the prompt, he doesn’t know
he should be typing anything! Pretty soon, the user calls you up and tells you that your
program is stuck.

So, stay away from commands that read standard input. If you’re not sure whether

something reads from standard input, then add a redirection from /dev/null for input,
like this:

my $result = ‘some_questionable_command arg arg argh </dev/null’;

Then the child shell will redirect input from /dev/null, and the grandchild questionable
command will at worst try to read and immediately get an end-of-file.

Using Backquotes in a List Context

If the output from a command has multiple lines, the scalar use of backquotes returns
it as a single long string containing newline characters. However, using the same back-
quoted string in a list context yields a list containing one line of output per element.

For example, the Unix who command normally spits out a line of text for each current
login on the system as follows:
merlyn tty/42 Dec 7 19:41

rootbeer console Dec 2 14:15
rootbeer  tty/12 Dec 6 23:00

The left column is the username, the middle column is the tty name (that is, the name
of the user’s connection to the machine), and the rest of the line is the date and time
of login (and possibly remote login information, but not in this example). In a scalar
context, we get all that at once, which we would then need to split up:

my $who_text = “who;

But in a list context, we automatically get the data broken up by lines:
my @who_lines = “who’;

We'll have a number of separate elements in @who_lines, each one terminated by a
newline. Of course, adding a chomp around the outside of that will rip off those newlines,
but let’s go in a different direction. If we put that as part of the value for a foreach, we’ll
iterate over the lines automatically, placing each one in $_:

foreach (“who') {

my($user, $tty, $date) = /(\S+)\s+(\S+)\s+(.*)/;
$ttys{$user} .= "$tty at $date\n";

240 | Chapter16: Process Management



This loop will iterate three times for the data above. (Your system will probably have
more than three active logins at any given time.) Notice that we’ve got a regular
expression match, and in the absence of the binding operator (=~), that’s matching
against $_, which is good because that’s where the data is.

Also notice the regular expression is looking for a nonblank word, some whitespace, a
nonblank word, some whitespace, and then the rest of the line up to, but not including,
the newline (since dot doesn’t match newline by default).” That’s also good because
that’s what the data looks like each time in $_. That’ll make $1 be "merlyn”, $2 be "tty/
42", and $3 be "Dec 7 19:41", as a successful match on the first time through the loop.

However, this regular expression match is in a list context, so we’ll get the list of mem-
ories instead of the true/false “did it match” value, as described in Chapter 8. So,
$user ends up being "merlyn", and so on.

The second statement inside the loop simply stores away the tty and date information,
appending to a (possibly undef) value in the hash because a user might be logged in
more than once, as user "rootbeer" was in our example.

Processes as Filehandles

So far, we’ve been looking at ways to deal with synchronous processes, where Perl stays
in charge, launches a command, (usually) waits for it to finish, then possibly grabs its
output. But Perl can also launch a child process that stays alive, communicating® to
Perl on an ongoing basis until the task is complete.

The syntax for launching a concurrent (parallel) child process is to put the command
as the “filename” for an open call, and either precede or follow the command with a
vertical bar, which is the “pipe” character. For that reason, this is often called a piped
open.

open DATE, "date|" or die "cannot pipe from date: $!";
open MAIL, "|mail merlyn" or die "cannot pipe to mail: $!";

In the first example, with the vertical bar on the right, the command is launched with
its standard output connected to the DATE filehandle opened for reading, similar to the
way that the command date | your_program would work from the shell. In the second
example, with the vertical bar on the left, the command’s standard input is connected
to the MAIL filehandle opened for writing, similar to what happens with the command
your_program | mail merlyn. In either case, the command is now launched and con-
tinues independently of the Perl process.* The open fails if the child process cannot be

* Now you can see why dot doesn’t match newline by default. It makes it easy to write patterns like this one,
in which we don’t have to worry about a newline at the end of the string.

T Via pipes, or whatever your operating system provides for simple interprocess communication.

¥ If the Perl process exits before the command is complete, a command that’s been reading will see end-of-file,
while a command that’s been writing will get a “broken pipe” error signal on the next write, by default.

Processes as Filehandles | 241



created. If the command itself does not exist or exits erroneously, this will (generally)
not be seen as an error when opening, but as an error when closing. We’ll get to that
in a moment.

For all intents and purposes, the rest of the program doesn’t know, doesn’t care, and
would have to work pretty hard to figure out that this is a filehandle opened on a process
rather than on a file. So, to get data from a filehandle opened for reading, we’ll just do
the normal read:

my $now = <DATE>;

And to send data to the mail process (waiting for the body of a message to deliver to
merlyn on standard input), a simple print-with-a-filehandle will do:

print MAIL "The time is now $now"; # presume $now ends in newline

In short, you can pretend that these filehandles are hooked up to magical files, one that
contains the output of the date command, and one that will automatically be mailed
by the mail command.

If a process is connected to a filehandle that is open for reading, and then exits, the
filehandle returns end-of-file, just like reading up to the end of a normal file. When you
close a filehandle open for writing to a process, the process will see end-of-file. So, to
finish sending the email, close the handle:

close MAIL;

die "mail: non-zero exit of $?" if $?;
Closing a filehandle attached to a process waits for the process to complete so that Perl
can get the process’s exit status. The exit status is then available in the $? variable
(reminiscent of the same variable in the Bourne Shell) and is the same kind of number
as the value returned by the system function: zero for success, nonzero for failure. Each
new exited process overwrites the previous value though, so save it quickly if you want
it. (The $? variable also holds the exit status of the most recent system or backquoted
command, if you’re curious.)

The processes are synchronized just like a pipelined command. If you try to read and
no data is available, the process is suspended (without consuming additional CPU time)
until the sending program has started speaking again. Similarly, if a writing process gets
ahead of the reading process, the writing process is slowed down until the reader starts
to catch up. There’s a buffer (usually 8 KB or so) in between, so they don’t have to stay
precisely in lock step.

Why use processes as filehandles? Well, it’s the only easy way to write to a process
based on the results of a computation. But if you’re just reading, backquotes are often
much easier to manage, unless you want to have the results as they come in.

For example, the Unix find command locates files based on their attributes, and it can
take quite a while if used on a fairly large number of files (such as starting from the

242 | Chapter16: Process Management



root directory). You can put a find command inside backquotes, but it’s often nicer to
see the results as they are found:
open F, "find / -atime +90 -size +1000 -print|" or die "fork: $!";
while (<F>) {
chomp;
printf "%s size %dK last accessed on %s\n",
$ , (1023 + -s $ )/1024, -A $_;
}

The find command here is looking for all the files that were not accessed within the
past 90 days and that are larger than 1000 blocks. (These are good candidates to move
to longer-term storage.) While find is searching and searching, Perl can wait. As each
file is found, Perl responds to the incoming name and displays some information about
that file for further research. Had this been written with backquotes, we’d not see any
output until the find command had finished, and it’s comforting to see that it’s actually
doing the job even before it’s done.

Getting Down and Dirty with Fork

In addition to the high-level interfaces already described, Perl provides nearly direct
access to the low-level process management system calls of Unix and some other sys-
tems. If you’ve never done this before,” you will probably want to skip this section.
While it’s a bit much to cover all that stuff in a chapter like this, let’s at least look at a
quick reimplementation of this:

system "date";

Let’s look at how that would be done using the low-level system calls:

defined(my $pid = fork) or die "Cannot fork: $!";
unless ($pid) {

# Child process is here

exec "date";

die "cannot exec date: $!";

i Parent process is here

waitpid($pid, 0);
Here, we’ve checked the return value from fork, which will be undef if it failed. Usually
it will succeed, causing two separate processes to continue to the next line, but here
only the parent process has a nonzero value in $pid, so only the child process executes
the exec function. The parent process skips over that and executes thewaitpid function,
waiting for that particular child to finish (if others finish in the meantime, they are
ignored). If that all sounds like gobbledygook, just remember that you can continue to
use the system function without being laughed at by your friends.

" Or you’re not running on a system that has support for forking. But the Perl developers are working hard to
add forking even on systems whose underlying process model is very different than the one in Unix.

Getting Down and Dirty with Fork | 243



When you go to this extra trouble, you also have full control over arbitrary pipe crea-
tion, rearranging filehandles, and noticing your process ID and your parent’s process
ID (if knowable). But again, that’s all a bit complicated for this chapter, so see the details
in the perlipc manpage (and in any good book on application programming on your
system) for further information.

Sending and Receiving Signals

A Unix signal is a tiny message sent to a process. It can’t say much; it’s like a car horn
honking—does that honk you hear mean “look out—the bridge collapsed” or “the light
has changed—get going” or “stop driving—you’ve got a baby on the roof” or “hello,
world”? Well, fortunately, Unix signals are a little easier to interpret than that because
there’s a different one for each of these situations.” Different signals are identified by a
name (such as SIGINT, meaning “interrupt signal”) and a corresponding small integer
(in the range from 1 to 16, 1 to 32, or 1 to 63, depending on your Unix flavor). Signals
are typically sent when a significant event happens, such as pressing the interrupt char-
acter (typically Control-C) on the terminal, which sends a SIGINT to all the processes
attached to that terminal.t Some signals are sent automatically by the system, but they
can also come from another process.

You can send signals from your Perl process to another process, but you have to know
the target’s process ID number. How to figure that out is a bit complicated, but let’s
say you know that you want to send a SIGINT to process 4201. That’s easy enough:

kill 2, 4201 or die "Cannot signal 4201 with SIGINT: $!";

It’s named “kill” because one of the primary purposes of signals is to stop a process
that’s gone on long enough. You can also use the string 'INT' in place of the 2 there
because signal number 2 is SIGINT. If the process no longer exists,!l you’ll get a false
return value, so you can also use this technique to see whether a process is still alive.
A special signal number of 0 says “just check to see whether I could send a signal if |
wanted to, but I don’t want to, so don’t actually send anything.” So a process probe
might look like:

" Well, not exactly these situations, but analogous Unix-like ones. For these, the signals are SIGHUP, SIGCONT,
SIGINT, and the fake SIGZERO (signal number zero).

T And you thought that pressing Control-C stopped your program. Actually, it simply sends the SIGINT signal,
and that stops the program by default. As you’ll see later in this chapter, you can make a program that does
something different when SIGINT comes in, rather than stopping at once.

¥ Usually you have the process ID because it’s a child process you produced with fork, or you found it in a file
or got it from an external program. Using an external program can be difficult and problematic, which is why
many long-running programs save their own current process ID into a file, usually described in the program’s
documentation.

I Sending a signal will also fail if you’re not the superuser and it’s someone else’s process. It would be rude to
send SIGINT to someone else’s programs, anyway.

244 | Chapter16: Process Management



unless (kill o, $pid) {
warn "$pid has gone away!";

}

Perhaps a little more interesting than sending signals is catching signals. Why might
you want to do this? Well, suppose you have a program that creates files in /tmp, and
you normally delete those files at the end of the program. If someone presses Control-
C during the execution, that leaves trash in /tmp, a very unpolite thing to do. To fix
this, create a signal handler that takes care of the cleanup:

my $temp directory = "/tmp/myprog.$$"; # create files below here
mkdir $temp directory, 0700 or die "Cannot create $temp directory: $!";

sub clean up {
unlink glob "$temp directory/*";
rmdir $temp directory;

}

sub my_int_handler {
&clean_up;
die "interrupted, exiting...\n";

}
$SIG{"'INT'} = 'my_int_handler';

# Time passes, the program runs, creates some temporary
# files in the temp directory, maybe someone presses Control-C

# Now it's the end of normal execution
&clean_up;

The assignment into the special %SIG hash activates the handler (until revoked). The
key is the name of the signal (without the constant SIG prefix), and the value is a
string’ naming the subroutine, without the ampersand. From then on, if a SIGINT comes
along, Perl stops whatever it’s doing and jumps immediately to the subroutine. Our
subroutine cleans up the temp files and then exits. (And if nobody presses Control-C,
we’ll still call &clean_up at the end of normal execution.)

If the subroutine returns rather than exits, execution resumes right where it was inter-
rupted. This can be useful if the interrupt actually needs to interrupt something rather
than cause it to stop. For example, suppose processing each line of a file takes a few
seconds, which is pretty slow, and you want to abort the overall processing when an
interrupt is processed, but not in the middle of processing a line. Just set a flag in the
interrupt procedure, and check it at the end of each line’s processing:

my $int_count;

sub my_int handler { $int count++ }
$SIG{'INT'} = "my_int handler';

$int_count = o;

" The value can also be a subroutine reference, but we’re not doing those here.

Sending and Receiving Signals | 245



while (<SOMEFILE>) {
... some processing that takes a few seconds ...
if ($int_count) {
# interrupt was seen!
print "[processing interrupted...]\n";
last;
}
}

Now as each line is processed, the value of $int_count will be 0 if no one has pressed
Control-C, and so the loop will continue to the next item. However, if an interrupt
comes in, the interrupt handler increments the $int_count flag, breaking out of the loop
when checked at the end.

So, you can either set a flag or break out of the program, and that covers most of what
you’ll need from catching signals. The current implementation of signal handlers is not
entirely without faults,” however, so keep the stuff you’re doing in there to an absolute
minimum, or your program may end up blowing up sometime when you least expect it.

Exercises

See Appendix A for answers to the following exercises:

1. [6] Write a program that changes to some particular (hardcoded) directory, like
the system’s root directory, then executes the Is -l command to get a long-format
directory listing in that directory. (If you use a non-Unix system, use your own
system’s command to get a detailed directory listing.)

2. [10] Modify the previous program to send the output of the command to a file
called Is.out in the current directory. The error output should go to a file called
Is.err. (You don’t need to do anything special about the fact that either of these
files may end up being empty.)

3. [8] Write a program to parse the output of the date command to determine the
current day of the week. If the day of the week is a weekday, print get to work,
otherwise print go play. The output of the date command begins with Mon on a
Monday.T If you don’t have a date command on your non-Unix system, make a
fake little program that simply prints a string like date might print. We’ll even give
you this two-line program if you promise not to ask us how it works:

" This is one of the top items on the Perl developers’ list of things to fix, so we expect reliable signal handling
to be one of the first items on the new feature list for Perl 6. The problem is that a signal may come in at any
time, even when Perl isn’t ready for one. If Perl is (for example) in the middle of allocating some memory
when a signal comes in, the signal handler can accidentally try to allocate some memory—and your program
is dead. You can’t control when your Perl code will allocate memory, but XSUB code (usually written in C)
can safely handle signals. See the Perl documentation for more information about this advanced topic.

T At least when the days of the week are being given in English. You might have to adjust accordingly if that’s
not the case on your system.

246 | Chapter16: Process Management



#!/usr/bin/perl
print localtime( ) . "\n";

Exercises | 247






CHAPTER 17
Some Advanced Perl Techniques

What we’ve put in this book so far is the core of Perl, the part that every Perl user should
understand. But there are a few other techniques that, while not obligatory, are still
valuable tools to have in your toolbox. We’ve gathered the most important of those for
this chapter.

Don’t be misled by the title of the chapter, though; the techniques here aren’t neces-
sarily more difficult to understand than what we have elsewhere. They are “advanced”
merely in the sense that they aren’t necessary for beginners. The first time you read this
book, you may want to skip (or skim) this chapter, so you can get right to using Perl.
Come back to it a month or two later, when you’re ready to get even more out of Perl.
Consider this entire chapter a huge footnote.”

Trapping Errors with eval

Sometimes, your ordinary, everyday code can cause a fatal error in your program. Each
of these typical statements could crash a program:

$barney = $fred / $dino; # divide-by-zero error?
print "match\n" if /~($wilma)/; # illegal regular expression error?

open CAVEMAN, $fred # user-generated error from die?
or die "Can't open file '$fred' for input: $!";
You could go to some trouble to catch some of these, but it’s hard to get them all. (How
could you check the string $wilma from that example to ensure that it makes a valid
regular expression?) Fortunately, Perl provides a simple way to catch fatal errors—wrap
the code in an eval block:

eval { $barney = $fred / $dino } ;

* We contemplated doing that in one of the drafts but got firmly rejected by O’Reilly’s editors.

249



Now, even if $dino is zero, that line won’t crash the program. The eval is actually an
expression (not a control structure, like while or foreach), so that semicolon is required
at the end of the block.

When a normally fatal error happens during the execution of an eval block, the block
is done running, but the program doesn’t crash. So that means that right after an
eval finishes, you’ll want to know whether it exited normally or whether it caught a
fatal error for you. The answer is in the special $@ variable. If the eval caught a fatal
error, $@ will hold what would have been the program’s dying words, perhaps some-
thing like: I1legal division by zero at my program line 12. If there was no error,
$@ will be empty. Of course, that means that $@ is a useful Boolean (true/false) value
(true if there was an error), so you’ll sometimes see code like this after an eval block:

print "An error occurred: $@" if $@;

The eval block is a true block, so it makes a new scope for lexical (my) variables. This
piece of a program shows an eval block hard at work:
foreach my $person (qw/ fred wilma betty barney dino pebbles /) {
eval {

open FILE, "<$person”
or die "Can't open file '$person’: $!";

my($total, $count);

while (<FILE>) {
$total += $_;
$count++;

}

my $average = $total/$count;
print "Average for file $person was $average\n";

8do_something($person, $average);

|5
if ($@) {

print "An error occurred ($@), continuing\n";
}
}

How many possible fatal errors are being trapped here? If there is an error in opening
the file, that error is trapped. Calculating the average may divide by zero so that error
is trapped. Even the call to the mysteriously named &do_something subroutine will be
protected against fatal errors because an eval block traps any otherwise fatal errors that
occur during the time that it’s active. (This feature is handy if you have to call a sub-
routine written by someone else, and you don’t know whether they’ve coded defen-
sively enough to avoid crashing your program.)

If an error occurs during the processing of one of the files, we’ll get an error message,
but the program will go on to the next file without further complaint.

250 | Chapter17: Some Advanced Perl Techniques



You can nest eval blocks inside other eval blocks. The inner one traps errors while it
runs, keeping them from reaching the outer blocks. (Of course, after the inner eval
finishes, if it caught an error, you may wish to repost the error by using die, thereby
letting the outer eval catch it.) An eval block traps any errors that occur during its
execution, including errors that happen during subroutine calls (as you saw in the
example earlier).

We mentioned earlier that the eval is an expression, which is why the trailing semicolon
is needed after the closing curly brace. But since it’s an expression, it has a return value.
If there’sno error, it’s like a subroutine: the return value is the last expression evaluated,
or it’s returned early with an optional return keyword. Here’s another way to do the
math without having to worry about divide-by-zero:

my $barney = eval { $fred / $dino };

If the eval traps a fatal error, the return value is either undef or an empty list, depending
upon the context. So in the previous example, $barney is either the correct result from
dividing, or it’s undef; we don’t really need to check $@ (although it’s probably a good
idea to check defined($barney) before we use it further).

There are four kinds of problems thateval can’t trap. The first group are the very serious
errors that crash Perl itself, such as running out of memory or getting an untrapped
signal. Since Perl itself isn’t running, there’s no way it can trap these errors.” Of course,
syntax errors inside the eval block are caught at compile time—they’re never returned

in $@.

The exit operator terminates the program at once, even if it’s called from a subroutine
inside an eval block. (This correctly implies that when writing a subroutine, you should
use die rather than exit to signal when something goes wrong.)

The fourth and final kind of problem that an eval block can’t trap are warnings, either
user-generated ones (from warn) or Perl’s internally generated warnings (requested with
the -w command-line option or the use warnings pragma). There’s a separate mecha-
nism from eval for trapping warnings; see the discussion of the__WARN__ pseudosignal
in the Perl documentation for the details.

We should also mention that there’s another form of eval that can be dangerous if it’s
mishandled. In fact, you’ll sometimes run across someone who will say that you
shouldn’t use eval in your code for security reasons. They’re (mostly) right that eval
should be used only with great care, but they’re talking about the other form of eval,
sometimes called “eval of a string.” If the keyword eval is followed directly by a block
of code in curly braces, as we’re doing here, there’s no need to worry—that’s the safe
kind of eval.

" Some of these errors are listed with an (X) code on the perldiag manpage, if you’re curious.

Trapping Errors with eval | 251



Picking Items from a List with grep

Sometimes you’ll want only certain items from a list. Maybe you’ll want only the odd
numbers selected from a list of numbers, or maybe only the lines mentioning Fred from
a file of text. As you’ll see in this section, picking some items from a list can be done
simply with the grep operator.

Let’s try that first one and get the odd numbers from a large list of numbers. We don’t
need anything new to do that:

my @odd_numbers;

foreach (1..1000) {
push @odd_numbers, $ if $ 7% 2;
}

That code uses the modulus operator (%), which you saw in Chapter 2. If a number is
even, that number “mod two” gives zero, which is false. But an odd number will give
one; since that’s true, only the odd numbers will be pushed onto the array.

Now, there’s nothing wrong with that code as it stands—except that it’s a little longer
to write and slower to run than it might be, since Perl provides the grep operator:

my @odd_numbers = grep { $_ % 2 } 1..1000;

That line gets a list of 500 odd numbers in one quick line of code. How does it work?
The first argument to grep is a block that uses $_ as a placeholder for each item in the
list, and returns a Boolean (true/false) value. The remaining arguments are the list of
items to search through. The grep operator will evaluate the expression once for each
item in the list, much as our original foreach loop did. For the ones where the last
expression of the block returns a true value, that element is included in the list that
results from grep.

While the grep is running, $_is aliased to one element of the list after another. You’ve
seen this behavior before, in the foreach loop. It’s generally a bad idea to modify $_
inside the grep expression because this will damage the original data.

The grep operator shares its name with a classic Unix utility that picks matching lines
from a file by using regular expressions. We can do that with Perl’s grep, which is much
more powerful. Here we pull only the lines mentioning fred from a file:

my @matching lines = grep { /\bfred\b/i } <FILE>;
There’s a simpler syntax for grep, too. If all you need for the selector is a simple ex-

pression (rather than a whole block), you can just use that expression, followed by a
comma, in place of the block. Here’s the simpler way to write that latest example:

my @matching_lines = grep /\bfred\b/i, <FILE>;

252 | Chapter17: Some Advanced Perl Techniques



Transforming Items from a List with map

Another common task is transforming items from a list. For example, suppose we have
a list of numbers that should be formatted as “money numbers” for output, as with the
subroutine 8big money (from Chapter 14). But we don’t want to modify the original
data; we need a modified copy of the list just for output. Here’s one way to do that:

my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
my @formatted data;

foreach (@data) {
push @formatted data, &big money($ );

That looks similar in form to the example code used at the beginning of the section on
grep, doesn’t it? So it may not surprise you that the replacement code resembles the
first grep example:

my @ata = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);
my @formatted data = map { &big money($_) } @data;

The map operator looks much like grep because it has the same kind of arguments: a
block that uses $_, and a list of items to process. And it operates in a similar way,
evaluating the block once for each item in the list, with $_ aliased to a different original
list element each time. But the last expression of the block is used differently; instead
of giving a Boolean value, the final value actually becomes part of the resulting list.”
Any grep or map statement could be rewritten as a foreach loop pushing items onto a
temporary array. But the shorter way is typically more efficient and more convenient.
Since the result of map or grep is a list, it can be passed directly to another function.
Here we can print that list of formatted “money numbers” as an indented list under a
heading;:
print "The money numbers are:\n",
map { sprintf("%25s\n", $ ) } @formatted data;

Of course, we could have done that processing all at once, without even the temporary
array @formatted data:
my @data = (4.75, 1.5, 2, 1234, 6.9456, 12345678.9, 29.95);

print "The money numbers are:\n",
map { sprintf("%25s\n", 8big money($_) ) } @data;

As we saw with grep, there’s also a simpler syntax for map. If all you need for the selector
is a simple expression (rather than a whole block), you can just use that expression,
followed by a comma, in place of the block:

print "Some powers of two are:\n",
map "\t" . (2*¢ ). "\n", 0..15;

" One other important difference is that the expression used by map is evaluated in a list context and may return
any number of items, not necessarily one each time.

Transforming Items from a List withmap | 253



Unquoted Hash Keys

Perl offers many shortcuts that can help programmers. Here’s a handy one: you may
omit the quote marks on some hash keys.

Of course, you can’t omit the quote marks on just any key, since a hash key may be
any arbitrary string. But keys are often simple. If the hash key is made up of nothing
but letters, digits, and underscores without starting with a digit, you may be able to
omit the quote marks. This kind of simple string without quote marks is called a
bareword, since it stands alone without quotes.

One place you are permitted to use this shortcut is the most common place a hash key
appears: in the curly braces of a hash element reference. For example, instead of
$score{"fred"}, you could write simply $score{fred}. Since many hash keys are simple
like this, not using quotes is a real convenience. But beware: if there’s anything inside
the curly braces besides a bareword, Perl will interpret it as an expression.

Another place where hash keys appear is when assigning an entire hash using a list of
key-value pairs. The big arrow (=>) is especially useful between a key and a value because
(again, only if the key is a bareword) the big arrow quotes it for you:
# Hash containing bowling scores
my %score = (
barney => 195,
fred => 205,
dino => 30,
)s
This is the one important difference between the big arrow and a comma; a bareword
to the left of the big arrow is implicitly quoted. (Whatever is on the right is left alone,
though.) You don’t have to use this feature of the big arrow only for hashes, although
that’s the most frequent use.

Slices

It often happens that we need to work with only a few elements from a given list. For
example, the Bedrock Library keeps information about their patrons in a large file.”
Each line in the file describes one patron with six colon-separated fields: a person’s
name, library card number, home address, home phone number, work phone number,
and number of items currently checked out. A little bit of the file looks something like
this:

fred flintstone:2168:301 Cobblestone Way:555-1212:555-2121:3
barney rubble:709918:3128 Granite Blvd:555-3333:555-3438:0

" It should really be a full-featured database rather than a flat file. They plan to upgrade their system, right
after the next Ice Age.

254 | Chapter17: Some Advanced Perl Techniques



One of the library’s applications needs only the card numbers and number of items
checked out; it doesn’t use any of the other data. It could use code something like this
to get only the fields it needs:
while (<FILE>) {
chomp;
my @items = split /:/;
my($card num, $count) = ($items[1], $items[5]);
# now work with those two variables
}

But the array @items isn’t needed for anything else; it seems like a waste.” Maybe it
would be better to assign the result of split to a list of scalars, like this:

my($name, $card _num, $addr, $home, $work, $count) = split /:/;

Well, that avoids the unneeded array @items—but now we have four scalar variables
that we didn’t really need. For this situation, some people used to make up a number
of dummy variable names, like $dummy_1, that showed that they really didn’t care about
that element from the split. But Larry thought that that was too much trouble, so he
added a special use of undef. If an item in a list being assigned to is undef, that means
simply to ignore the corresponding element of the source list:

my(undef, $card num, undef, undef, undef, $count) = split /:/;

[s this any better? Well, it has the advantage that there aren’t any unneeded variables.
But it has the disadvantage that you have to count undefs to tell which element is
$count. And this becomes quite unwieldy if there are more elements in the list. For
example, some people who wanted just the mtime value from stat were writing code

like this:

my(undef, undef, undef, undef, undef, undef, undef,
undef, undef, $mtime) = stat $some_file;
If you use the wrong number of undefs, you’ll get the atime or ctime by mistake, and
that’s a tough one to debug. There’s a better way: Perl can index into a list as if it were
an array. This is a list slice. Here, since the mtime is item 9 in the list returned by
stat,T we can get it with a subscript:

my $mtime = (stat $some file)[9];
Those parentheses are required around the list of items (in this case, the return value
from stat). If you wrote it like this, it wouldn’t work:

my $mtime = stat($some file)[9]; # Syntax error!

A list slice has to have a subscript expression in square brackets after a list in paren-
theses. The parentheses holding the arguments to a function call don’t count.

" It’s not much of a waste, really. But stay with us. All of these techniques are used by programmers who don’t
understand slices, so it’s worthwhile to see all of them here.

T It’s the tenth item, but the index number is 9, since the first item is at index 0. This is the same kind of zero-
based indexing that we’ve used already with arrays.

Slices | 255



Going back to the Bedrock Library, the list we’re working with is the return value from
split. We can now use a slice to pull out item 1 and item 5 with subscripts:

my $card num = (split /:/)[1];

my $count = (split /:/)[5];
Using a scalar-context slice like this (pulling just a single element from the list) isn’t
bad, but it would be more efficient and simpler if we didn’t have to do the split twice.
So let’s not do it twice; let’s get both values at once by using a list slice in list context:

my($card num, $count) = (split /:/)[1, 5];

The indices pull out element 1 and element 5 from the list, returning those as a two-
element list. When that’s assigned to the two my variables, we get exactly what we
wanted. We do the slice just once, and we set the two variables with a simple notation.

A slice is often the simplest way to pull a few items from a list. Here, we can pull just
the first and last items from a list, using the fact that index -1 means the last element:”

my($first, $last) = (sort @names)[0, -1];

The subscripts of a slice may be in any order and may even repeat values. This example
pulls 5 items from a list of 10:
my @names = qw{ zero one two three four five six seven eight nine };

my @numbers = ( @names )[ 9, 0, 2, 1, 0 ];
print "Bedrock @numbers\n"; # says Bedrock nine zero two one zero

Array Slice

That previous example could be made even simpler. When slicing elements from an
array (as opposed to a list), the parentheses aren’t needed. So we could have done the
slice like this:

my @numbers = @names[ 9, 0, 2, 1, 0 ];

This isn’t merely a matter of omitting the parentheses; this is actually a different nota-
tion for accessing array elements: an array slice. Earlier (in Chapter 3), we said that the
at sign on @names meant “all of the elements.” Actually, in a linguistic sense, it’s more
like a plural marker, much like the letter “s” in words like “cats” and “dogs.” In Perl,
the dollar sign means there’s just one of something, but the at sign means there’s a list
of items.

A slice is always a list, so the array slice notation uses an at sign to indicate that. When
you see something like @names[ ... ] in a Perl program, you’ll need to do just as Perl
does and look at the at sign at the beginning as well as the square brackets at the end.
The square brackets mean that you’re indexing into an array, and the at sign means

" Sorting a list merely to find the extreme elements isn’t likely to be the most efficient way. But Perl’s sort is
fast enough that this is generally acceptable, as long as the list doesn’t have more than a few hundred elements.

256 | Chapter17: Some Advanced Perl Techniques



one element
$names[...]
from an array

@names|[...]

a list of elements

Figure 17-1. Array slices versus single elements

that you’re getting a whole list” of elements, not just a single one (which is what the
dollar sign would mean). See Figure 17-1.

The punctuation mark at the front of the variable reference (either the dollar sign or at
sign) determines the context of the subscript expression. If there’s a dollar sign in front,
the subscript expression is evaluated in a scalar context to get an index. But if there’s
an at sign in front, the subscript expression is evaluated in a list context to get a list of
indices.

So we see that @names[ 2, 5 ] means the same list as ($names[2], $names[5]) does. If
you want that list of values, you can simply use the array slice notation. Any place you
might want to write the list, you can instead use the simpler array slice.

But the slice can be used in one place where the list can’t—a slice may be interpolated
directly into a string:

my @names = qw{ zero one two three four five six seven eight nine };
print "Bedrock @names[ 9, 0, 2, 1, 0 ]\n";

If we were to interpolate @names, that would give all of the items from the array, sepa-
rated by spaces. If instead we interpolate @names[ 9, 0, 2, 1, 0 ], that givesjust those
items from the array, separated by spaces. Let’s go back to the Bedrock Library for a
moment. Maybe now our program is updating Mr. Slate’s address and phone number
in the patron file because he just moved into a large new place in the Hollyrock Hills.
If we’ve got a list of information about him in @items, we could do something like this
to update just those two elements of the array:

" Of course, when we say “a whole list,” that doesn’t necessarily mean more elements than one—the list could
be empty, after all.

T More accurately, the items of the list are separated by the contents of Perl’s $" variable, whose default is a
space. This should not normally be changed. When interpolating a list of values, Perl internally does join
$", @list, where @list stands in for the list expression.

Slices | 257



my $new_home_phone = "555-6099";
my $new_address = "99380 Red Rock West";
@items[2, 3] = ($new_address, $new_home_phone);

Once again, the array slice makes a more compact notation for a list of elements. In
this case, that last line is the same as an assignment to ($items[2], $items[3]), but
more compact and efficient.

Hash Slice

In a way exactly analogous to an array slice, we can also slice some elements from a
hash in a hash slice. Remember when three of our characters went bowling, and we
kept their bowling scores in the %score hash? We could pull those scores with a list of
hash elements or with a slice. These two techniques are equivalent (although the second
is more concise and efficient):

my @three scores = ($score{"barney"}, $score{"fred"}, $score{"dino"});

my @three scores = @score{ quw/ barney fred dino/ };

Asslice is always a list, so the hash slice notation uses an at sign to indicate that.” When
you see something like @score{ ... } in a Perl program, you’ll need to do just as Perl
does and look at the at sign at the beginning as well as the curly braces at the end. The
curly braces mean that you’re indexing into a hash; the at sign means that you’re getting
a whole list of elements, not just a single one (which is what the dollar sign would
mean). See Figure 17-2.

one element
$score{...}
from a hash

@score{...}

a list of elements

Figure 17-2. Hash slices versus single elements

" If it sounds as if we’re repeating ourselves here, it’s because we want to emphasize that hash slices are
analogous to array slices. If it sounds as if we’re not repeating ourselves here, it’s because we want to
emphasize that hash slices are analogous to array slices.

258 | Chapter17: Some Advanced Perl Techniques



As you saw with the array slice, the punctuation mark at the front of the variable ref-
erence (either the dollar sign or at sign) determines the context of the subscript
expression. If there’s a dollar sign in front, the subscript expression is evaluated in a
scalar context to get a single key.” But if there’s an at sign in front, the subscript
expression is evaluated in a list context to get a list of keys.

It’s normal at this point to wonder why there’s no percent sign (%) here, when we’re
talking about a hash. That’s the marker that means there’s a whole hash; a hash slice
(like any other slice) is always a list, not a hash.T In Perl, the dollar sign means there’s
just one of something, but the at sign means there’s a list of items, and the percent sign
means there’s an entire hash.

As you saw with array slices, a hash slice may be used instead of the corresponding list
of elements from the hash, anywhere within Perl. So we can set our friends’ bowling
scores in the hash (without disturbing any other elements in the hash) like this:

my @players = qw/ barney fred dino /;

my @bowling scores = (195, 205, 30);
@score{ @players } = @bowling_scores;

That last line does the same thing as if we had assigned to the three-element list
($score{"barney"}, $score{"fred"}, $score{"dino"}).

A hash slice may be interpolated, too. Here, we print out the scores for our favorite
bowlers:

print "Tonight's players were: @players\n";
print "Their scores were: @score{@players}\n";

Exercise

See Appendix A for an answer to the following exercise:

1. [30] Make a program that reads a list of strings from a file, one string per line, and
then lets the user interactively enter patterns that may match some of the strings.
For each pattern, the program should tell how many strings from the file matched,
then which ones those were. Don’t reread the file for each new pattern; keep the
strings in memory. The filename may be hardcoded in the file. If a pattern is invalid
(for example, if it has unmatched parentheses), the program should simply report
that error and let the user continue trying patterns. When the user enters a blank
line instead of a pattern, the program should quit. (If you need a file full of inter-
esting strings to try matching, try the file sample_text in the files you’ve surely
downloaded by now from the O’Reilly web site; see the Preface.)

" There’s an exception you’re not likely to run across, since it isn’t used much in modern Perl code. See the
entry for $; in the perlvar manpage.

T A hash slice is a slice (not a hash) in the same way that a house fire is a fire (not a house), while a fire house
is a house (not a fire). More or less.

Exercise | 259






APPENDIX A
Exercise Answers

This appendix contains the answers to the exercises that appear throughout the book.

Answers to Chapter 2 Exercises

1. Here’s one way to do it:

#!/usr/bin/perl -w

$pi = 3.141592654;

$circ = 2 * $pi * 12.5;

print "The circumference of a circle of radius 12.5 is $circ.\n";
As you see, we started this program with a typical #! line; your path to Perl may
vary. We also turned on warnings.

The first real line of code sets the value of $pi to our value of 1. There are several
reasons a good programmer will prefer to use a constant” value like this: it takes
time to type 3.141592654 into your program if you ever need it more than once. It
may be a mathematical bug if you accidentally used 3.141592654 in one place and
3.14159 in another. There’s only one line to check on to make sure you didn’t
accidentally type 3.141952654 and send your space probe to the wrong planet. It’s
easier to type $pi than T, especially if you don’t have Unicode. And it will be easy
to maintain the program in case the value of T ever changes.” Next we calculate
the circumference, storing it into $circ, and we print it out in a nice message. The
message ends with a newline character because every line of a good program’s
output should end with a newline. Without it, you might end up with output
looking something like this, depending upon your shell’s prompt:

The circumference of a circle of radius 12.5 is
78.53981635.bash-2.01$[]

" If you’d prefer a more formal sort of constant, the constant pragma may be what you’re looking for.

T It nearly did change more than a century ago by a legislative act in the state of Indiana. See House Bill No.
246, Indiana State Legislature, 1897, http://www.cs.uwaterloo.ca/~alopez-o/math-faq/node45.html.

261


http://www.cs.uwaterloo.ca/~alopez-o/math-faq/node45.html

The box represents the input cursor, blinking at the end of the line, and that’s the
shell’s prompt at the end of the message.” Since the circumference isn’t really
78.53981635.bash-2.01$, this should probably be construed as a bug. So use \n at
the end of each line of output.

2. Here’s one way to do it:

#!/usr/bin/perl -w

$pi = 3.141592654;

print "What is the radius? ";

chomp($radius = <STDIN>);

$circ = 2 * $pi * $radius;

print "The circumference of a circle of radius $radius is $circ.\n";

This is just like the last one, except that now we ask the user for the radius, and
then we use $radius in every place where we previously used the hardcoded value
12.5. If we had written the first program with more foresight, in fact, we would
have had a variable named $radius in that one as well. Note that we chomped the
line of input. If we hadn’t, the mathematical formula would still have worked be-
cause a string like 12.5\n is converted to the number 12.5 without any problem.
But when we print out the message, it would look like this:

The circumference of a circle of radius 12.5
is 78.53981635.

Notice that the newline character is still in $radius, even though we’ve used that
variable as a number. Since we had a space between $radius and the word is in
the print statement, there’s a space at the beginning of the second line of output.
The moral of the story is: chomp your input unless you have a reason not to do that.

3. Here’s one way to do it:

#!/usr/bin/perl -w
$pi = 3.141592654;
print "What is the radius? ";
chomp($radius = <STDIN>);
$circ = 2 * $pi * $radius;
if ($radius < 0) {

$circ = 0;

print "The circumference of a circle of radius $radius is $circ.\n";

Here we added the check for a bogus radius. Even if the given radius was impos-
sible, the returned circumference would at least be nonnegative. You could have
changed the given radius to be zero, and then calculated the circumference, too;
there’s more than one way to do it. In fact, that’s the Perl motto: There Is More
Than One Way To Do It. And that’s why each exercise answer starts with “Here’s
one way to do it.”

" We asked O’Reilly to spend the extra money to print the input cursor with blinking ink, but they wouldn’t
do it for us.

262 | AppendixA: Exercise Answers



4. Here’s one way to do it:

print "Enter first number: ";
chomp($one = <STDIN>);
print "Enter second number: ";
chomp($two = <STDIN>);
$result = $one * $two;
print "The result is $result.\n";

Notice that we’ve left off the #! line for this answer. In fact, from here on, we’ll
assume that you know it’s there, so you don’t need to read it each time.

Perhaps those are poor choices for variable names. In a large program, a mainte-
nance programmer might think that $two should have the value of 2. In this short
program, it probably doesn’t matter, but in a large one we could have called them
something more descriptive, with names like $first_response.

In this program, it wouldn’t make any difference if we forgot to chomp the two
variables $one and $two, since we never use them as strings once they’ve been set.
Butif next week our maintenance programmer edits the program to print a message
like: The result of multiplying $one by $two is $result.\n, those pesky new-
lines will come back to haunt us. Once again, chomp unless you have a reason not
to chomp’ —like in the next exercise.

5. Here’s one way to do it:

print "Enter a string: ";

$str = <STDIN>;

print "Enter a number of times: ";
chomp($num = <STDIN>);

$result = $str x $num;

print "The result is:\n$result";

This program is almost the same as the last one, in a sense. We’re “multiplying” a
string by a number of times. So we’ve kept the structure of the previous exercise.
In this case, though, we didn’t want to chomp the first input item—the string—
because the exercise asked for the strings to appear on separate lines, so if the user
entered fred and a newline for the string, and 3 for the number, we’d get a newline
after each fred just as we wanted.

In the print statement at the end, we put the newline before $result because we
wanted to have the first fred printed on a line of its own. That is, we didn’t want
output like this, with only two of the three freds aligned in a column:

The result is: fred

fred
fred

At the same time, we didn’t need to put another newline at the end of the print
output because $result should already end with a newline.

" Chomping is like chewing—not always needed, but, most of the time, it doesn’t hurt.

Answers to Chapter 2 Exercises | 263



In most cases, Perl won’t mind where you put spaces in your program; you can put
in spaces or leave them out. But it’s important not to accidentally spell the wrong
thing! If the x runs up against the preceding variable name $str, Perl will see
$strx, which won’t work.

Answers to Chapter 3 Exercises

1. Here’s one way to do it:

print "Enter some lines, then press Ctrl-D:\n"; # or maybe Ctrl-Z
@lines = <STDIN>;

@reverse lines = reverse @lines;

print @reverse lines;

...or, even more simply:

print "Enter some lines, then press Ctrl-D:\n";
print reverse <STDIN>;

Most Perl programmers would prefer the second one, as long as they don’t need
to keep the list of lines around for later use.
2. Here’s one way to do it:

@names = qw/ fred betty barney dino wilma pebbles bamm-bamm /;
print "Enter some numbers from 1 to 7, one per line, then press Ctrl-D:\n";
chomp(@numbers = <STDIN>);
foreach (@numbers) {
print "$names[ $_ - 1 J\n";

We have to subtract one from the index number so that the user can count from 1
to 7 even though the array is indexed from 0 to 6. Another way to accomplish this
would be to have a dummy item in the @names array, like this:

@names = qw/ dummy item fred betty barney dino wilma pebbles bamm-bamm /;

Give yourself extra credit if you checked to make sure that the user’s choice of
index was in fact in the range 1 to 7.
3. Here’s one way to do it if you want the output all on one line:

chomp(@lines = <STDIN>);
@sorted = sort @lines;
print "@sorted\n";

...or, to get the output on separate lines:

print sort <STDIN>;

264 | AppendixA: Exercise Answers



Answers to Chapter 4 Exercises

1. Here’s one way to do it:

sub total {
my $sum; # private variable
foreach (@ ) {
$sum += $_;

}

$sum;

}

This subroutine uses $sum to keep a running total. At the start of the subroutine,
$sum is undef, since it’s a new variable. Then, the foreach loop steps through the
parameter list (from @ ), using $_as the control variable. (Note: once again, there’s
no automatic connection between @_, the parameter array, and $_, the default var-
iable for the foreach loop.)

The first time through the foreach loop, the first number (in $_) is added to $sum.
Of course, $sum is undef, since nothing has been stored in there. But since we’re
using it as a number, which Perl sees because of the numeric operator +=, Perl acts
as if it’s already initialized to 0. Perl thus adds the first parameter to 0, and puts the
total back into $sum.

Next time through the loop, the next parameter is added to $sum, which is no longer
undef. The sum is placed back into $sum, and on through the rest of the parameters.
Finally, the last line returns $sum to the caller.

There’s a potential bug in this subroutine, depending upon how you think of
things. Suppose that this subroutine was called with an empty parameter list (as
we considered with the rewritten subroutine 8max in the chapter text). In that case,
$sum would be undef, and that would be the return value. But in this subroutine, it
would probably be “more correct” to return 0 as the sum of the empty list, rather
than undef. (Of course, if you wish to distinguish the sum of an empty list from the
sum of, say, (3, -5, 2), returning undef would be the right thing to do.)

If you don’t want a possibly undefined return value, though, it’s easy to remedy.
Simply initialize $sum to zero rather than use the default of undef:

my $sum = 0;
Now the subroutine will always return a number, even if the parameter list were
empty.
2. Here’s one way to do it:

# Remember to include &total from previous exercise!
print "The numbers from 1 to 1000 add up to ", total(1..1000), ".\n";

Answers to Chapter 4 Exercises | 265



Note that we can’t call the subroutine from inside the double-quoted string,” so
the subroutine call is another separate item being passed to print. The total should
be 500500, a nice round number. And it shouldn’t take any noticeable time at all
to run this program; passing a parameter list of 1000 values is an everyday task for
Perl.
3. Here’s one way to do it:
sub average {
if (@_ == 0) { return }
my $count = @_;

my $sum = total(@_ ); # from earlier exercise
$sum/$count;

}

sub above_average {
my $average = average(@_ );
my @list;
foreach my $element (@_) {
if ($element > $average) {
push @list, $element;
}

}
@list;
}

In average, we return without giving an explicit return value if the parameter list
isempty. That gives the caller undefT to report that no average comes from an empty
list. If the list wasn’t empty, using &total makes it simple to calculate the average.
We didn’t even need to use temporary variables for $sum and $count, but doing so
makes the code easier to read.

The second subroutine, above_average, simply builds up and returns a list of the
desired items. (Why is the control variable named $element, instead of using Per!l’s
favorite default, $_?) Note that this second subroutine uses a different technique
for dealing with an empty parameter list.

4. To remember the last person that greet spoke to, use a state variable. It starts out
as undef, which is how we figure out Fred is the first person it greets. At the end of
the subroutine, we store the current $name in $last_name, so we remember what it
is next time:

use 5.010;

greet( 'Fred' );
greet( 'Barney' );

sub greet {

" We can’t do this without advanced trickiness, that is. It’s rare to find anything that you absolutely can’t do
in Perl.

T Or an empty list, if &average is used in a list context.

266 | AppendixA: Exercise Answers



state $last person;
my $name = shift;
print "Hi $name! ";

if( defined $last person ) {
print "$last person is also here!\n";

}

else {
print "You are the first one here!\n";
}

$last_person = $name;

}

5. This answer is similar to that for the preceding exercise, but this time we store all
the names we have seen. Instead of using a scalar variable, we declare @names as a
state variable and push each name onto it:

use 5.010;

greet( 'Fred' );

greet( 'Barney' );
greet( 'Wilma' );
greet( 'Betty' );

sub greet {
state @names;

my $name = shift;
print "Hi $name! ";

if( @names ) {
print "I've seen: @names\n";

}
else {
print "You are the first one here!\n";

}

push @names, $name;

}

Answers to Chapter 5 Exercises

1. Here’s one way to do it:

print reverse <>;

Well, that’s pretty simple! But it works because print is looking for a list of strings
to print, which it gets by calling reverse in a list context. And reverse is looking
for a list of strings to reverse, which it gets by using the diamond operator in list
context. So, the diamond returns a list of all of the lines from all of the files of the

Answers to Chapter 5 Exercises | 267



user’s choice. That list of lines is just what cat would print out. Now reverse re-
verses the list of lines, and print prints them out.

2. Here’s one way to do it:

print "Enter some lines, then press Ctrl-D:\n"; # or Ctrl-Z
chomp(my @lines = <STDIN>);

print "1234567890" x 7, "12345\n"; # ruler line to column 75

foreach (@lines) {
printf "%20s\n", $_;
}

Here, we start by reading in and chomping all of the lines of text. Then we print
the ruler line. Since that’s a debugging aid, we’d generally comment-out that line
when the program is done. We could have typed "1234567890" again and again, or
even used copy-and-paste to make a ruler line as long as we needed, but we chose
to do it this way because it’s kind of cool.

Now, the foreach loop iterates over the list of lines, printing each one with the
%20s conversion. If you chose to do so, you could have created a format to print
the list all at once, without the loop:

my $format = "%20s\n" x @lines;
printf $format, @lines;

It’s a common mistake to get 19-character columns. That happens when you say
toyourself,” “Hey, why do we chomp the input if we’re only going to add the newlines
back on later?” So you leave out the chomp and use a format of %20s (without a
newline).T And now, mysteriously, the output is off by one space. So, what went
wrong?
The problem happens when Perl tries to count the spaces needed to make the right
number of columns. If the user enters hello and a newline, Perl sees six characters,
not five, since newline is a character. So it prints 14 spaces and a 6-character string,
sure that it gives the 20 characters you asked for in %20s. Oops.
Of course, Perl isn’t looking at the contents of the string to determine the width;
it merely checks the raw number of characters. A newline (or another special char-
acter, such as a tab or a null character) will throw things off.*

3. Here’s one way to do it:

print "What column width would you like? ";
chomp(my $width = <STDIN>);

print "Enter some lines, then press Ctrl-D:\n"; # or Ctrl-Z

" Or to Larry, if he’s standing nearby.
T Unless Larry told you not to do that.

 As Larry should have explained to you by now.

268 | AppendixA: Exercise Answers



chomp(my @lines = <STDIN>);
print "1234567890" x (($width+9)/10), "\n"; # ruler line as needed

foreach (@lines) {
printf "%${width}s\n", $_;
}

This is much like the previous one, but we ask for a column width first. We ask
for that first because we can’t ask for more input after the end-of-file indicator, at
least on some systems. Of course, in the real world, you’ll generally have a better
end-of-input indicator when getting input from the user, as we’ll see in later exer-
cise answers.

Another change from the previous exercise’s answer is the ruler line. We used some
math to cook up a ruler line that’s at least as long as we need, as suggested as an
extra credit part of the exercise. Proving that our math is correct is an additional
challenge. (Hint: consider possible widths of 50 and 51, and remember that the
right-side operand to x is truncated, not rounded.)

To generate the format this time, we used the expression "%${width}s\n", which
interpolates $width. The curly braces are required to “insulate” the name from the
following s; without the curly braces, we’d be interpolating $widths, the wrong
variable. If you forgot how to use curly braces to do this, though, you could have
written an expression like '%' . $width . "s\n" to get the same format string.

The value of $width brings up another case where chomp is vital. If the width isn’t
chomped, the resulting format string would resemble "%30\ns\n". That’s not
useful.

People who have seen printf before may have thought of another solution. Because
printf comes to us from C, which doesn’t have string interpolation, we can use
the same trick that C programmers use. If an asterisk (*) appears in place of a
numeric field width in a conversion, a value from the list of parameters will be used:

printf "%*s\n", $width, $_;

Answers to Chapter 6 Exercises

1. Here’s one way to do it:

my %last name = qw{
fred flintstone
barney rubble
wilma flintstone
};
print "Please enter a first name: ";
chomp(my $name = <STDIN>);
print "That's $name $last name{$name}.\n";

Answers to Chapter 6 Exercises | 269



In this one, we used a qw// list (with curly braces as the delimiter) to initialize the
hash. That’s fine for this simple data set, and it’s easy to maintain because each
data item is a simple given name and simple family name, with nothing tricky. But
if your data might contain spaces—for example, if robert de niro or mary kay
place were to visit Bedrock—this simple method wouldn’t work so well.

You might have chosen to assign each key=value pair separately, something like
this:

my %last_name;

$last_name{"fred"} = "flintstone";

$last_name{"barney"} = "rubble";
$last_name{"wilma"} = "flintstone";

Note that (if you chose to declare the hash with my, perhaps because use strict
was in effect), you must declare the hash before assigning any elements. You can’t
use my on only part of a variable, like this:

my $last_name{"fred"} = "flintstone"; # Oops!

The my operator works only with entire variables, never with just one element of
an array or hash. Speaking of lexical variables, you may have noticed that the lexical
variable $name is being declared inside of the chomp function call; it is fairly common
to declare each my variable as it is needed, like this.

This is another case where chomp is vital. If someone enters the five-character string
"fred\n" and we fail to chomp it, we’ll be looking for "fred\n" as an element of the
hash—and it’s not there. Of course, chomp alone won’t make this bulletproof; if
someone enters "fred \n" (with a trailing space), we don’t have a way with what
we’ve seen so far to tell that they meant fred.

If you added a check whether the given key exists in the hash so that you’ll give
the user an explanatory message when they misspell a name, give yourself extra
points for that.

2. Here’s one way to do it:

my (@words, %count, $word); # (optionally) declare our variables
chomp(@words = <STDIN>);

foreach $word (@words) {
$count{$word} += 1; # or $count{$word} = $count{$word} + 1;
}

foreach $word (keys %count) { # or sort keys %count
print "$word was seen $count{$word} times.\n";

}

In this one, we declared all of the variables at the top. People who come to Perl
from a background in languages like Pascal (where variables are always declared
“at the top”) may find that way more familiar than declaring variables as they are
needed. Of course, we’re declaring these because we’re pretending that use
strict may be in effect; by default, Perl won’t require such declarations.

270 | AppendixA: Exercise Answers



Next, we use the line-input operator, <STDIN>, in a list context to read all of the
input lines into @words, and then we chomp those all at once. So @words is our list of
words from the input (if the words were all on separate lines, as they should have
been, of course).

Then, the first foreach loop goes through all of the words. That loop contains the
most important statement of the entire program, the statement that says to add
one to $count{$word}, and put the result back into $count{$word}. Although you
could write it either the short way (with the += operator) or the long way, the short
way is just a little bit more efficient, since Perl has to look up $word in the hash just
once.” For each word in the first foreach loop, we add one to $count{$word}. So, if
the first word is fred, we add one to $count{"fred"}. Of course, since this is the
first time we’ve seen $count{"fred"}, it’s undef. But since we’re treating it as a
number (with the numeric += operator, or with +, if you wrote it the long way), Perl
converts undef to 0 for us, automatically. The total is 1, which is then stored back
into $count{"fred"}.

The next time through that foreach loop, let’s say the word is barney. So, we add
one to $count{"barney"}, bumping it up from undef to 1, as well.

Now let’s say the next word is fred again. When we add one to $count{"fred"},
which is already 1, we get 2. This goes back into $count{"fred"}, meaning that
we’ve now seen fred twice.

When we finish the first foreach loop, then, we’ve counted how many times each
word has appeared. The hash has a key for each (unique) word from the input, and
the corresponding value is the number of times that word appeared.

So now, the second foreach loop goes through the keys of the hash, which are the
unique words from the input. In this loop, we’ll see each different word once. For
each one, it says something like “fred was seen 3 times”.

If you want the extra credit on this problem, you could put sort before keys to
print out the keys in order. If there will be more than a dozen items in an output
list, it’s generally a good idea for them to be sorted so that a human being who is
trying to debug the program will fairly quickly be able to find the item she wants.

3. Here’s one way to do it:

my $longest = 0;

foreach my $key ( keys %ENV ) {
my $key length = length( $key );
$longest = $key length if $key length > $longest;
}

foreach my $key ( sort keys %ENV ) {

" Also, at least in some versions of Perl, the shorter way will avoid a warning about using an undefined value
that may crop up with the longer one. The warning may also be avoided by using the ++ operator to increment
the variable, although we haven’t shown you that operator yet.

Answers to Chapter 6 Exercises | 271



printf "%-${longest}s %s\n", $key, $ENV{$key};
}

In the first foreach loop, we go through all of the keys and use length to get their
length. If the length we just measured is greater than the one we stored in
$longest, we put the longer value in $longer.

Once we’ve gone through all of the keys, we use printf to print the keys and values
in two columns. We use the same trick we used in exercise 3 from Chapter 5 by
interpolating $longest into the template string.

Answers to Chapter 7 Exercises

1.

Here’s one way to do it:

while (<>) {
if (/fred/) {
print;
}
}

This is pretty simple. The more important part of this exercise is trying it out on
the sample strings. It doesn’t match Fred, showing that regular expressions are
case-sensitive. (We’ll see how to change that later.) It does match frederick and
Alfred, since both of those strings contain the four-letter string fred. (Matching
whole words only, so that frederick and Alfred wouldn’t match, is another feature
we’ll see later.)

. Here’s one way to do it:

Change the pattern used in the first exercise’s answer to /[ fF]red/. You could also
have tried /(f|F)red/ or /fred|Fred/, but the character class is more efficient.

. Here’s one way to do it:

Change the pattern used in the first exercise’s answer to /\./. The backslash is
needed because the dot is a metacharacter, or you could use a character class:

1.1/

. Here’s one way to do it:

Change the pattern used in the first exercise’s answer to /[A-Z][a-z]+/.

. Here’s one way to do it:

Change the pattern used in the first exercise’s answer to /(\S)\1/. The \S character
class matches the nonwhitespace character, and the parentheses allow you to use
the back reference \1 to match the same character immediately following it.

. Here’s one way to do it:

while (<>) {
if (/wilma/) {
if (/fred/) {

print;

272

| AppendixA: Exercise Answers



}
}
}

This tests /fred/ only after we find /wilma/ matches, but fred could appear before
or after wilma in the line; each test is independent of the other.

If you wanted to avoid the extra nested if test, you might have written something

like this:”

while (<>) {
if (/wilma.*fred|fred.*wilma/) {
print;
}
}

This works because we’ll either have wilma before fred, or fred before wilma. If we
had written just /wilma.*fred/, that wouldn’t have matched a line like fred and
wilma flintstone, even though that line mentions both of them.

We made this an extra-credit exercise because many folks have a mental block here.
We showed you an “or” operation (with the vertical bar, |), but we never showed
you an “and” operation. That’s because there isn’t one in regular expressions.T If

you want to know whether one pattern and another are both successful, just test
both of them.

Answers to Chapter 8 Exercises

1. There’s one easy way to do it, and we showed it back in the chapter body. But if
your output isn’t saying before<match>after as it should, you’ve chosen a hard way
to doit.

2. Here’s one way to do it:

/a\b/

(Of course, that’s a pattern for use inside the pattern test program!) If your pattern
mistakenly matches barney, you probably needed the word-boundary anchor.

3. Here’s one way to do it:

#!/usr/bin/perl
while (<STDIN>) {
chomp;

if (/(\b\w*a\b)/) {

" Folks who know about the logical-and operator, which we’ll see in Chapter 10, could do both tests /fred/
and /wilma/ in the same if conditional. That’s more efficient, more scalable, and an all-around better way
than the ones given here. But we haven’t seen logical-and yet.

T But there are some tricky and advanced ways of doing what some folks would call an “and” operation. These
are generally less efficient than using Perl’s logical-and, though, depending upon what optimizations Perl and
its regular expression engine can make.

Answers to Chapter 8 Exercises | 273



print "Matched: |$ <$&>$'|\n";

print "\$1 contains '$1'\n"; # The new output line
} else {
print "No match: |$_|\n";

}
}

This is the same test program (with a new pattern), except that the one marked
line has been added to print out $1.

The pattern uses a pair of \b word-boundary anchors” inside the parentheses,
although the pattern works the same way when they are placed outside. That’s
because anchors correspond to a place in the string, but not to any characters in
the string: anchors have “zero width.”

4. This exercise answer is the same as the previous exercise with a slightly different
regular expression:

#!/usr/bin/perl
use 5.010;

while (<STDIN>) {
chomp;
if (/(2<word>\b\w*a\b)/) {
print "Matched: |$ <$&>$'|\n";

print "'word' contains '$+{word}'\n"; # The new output line
} else {
print "No match: [$_|\n";
}
}
5. Here’s one way to do it:
m!
(\b\w*a\b) # $1: a word ending in a
(.{0,5}) # $2: up to five characters following
Ixs # /x and /s modifiers

(Don’t forget to add code to display $2, now that you have two memory variables.
If you change the pattern to have just one again, you can simply comment-out the
extra line.) If your pattern doesn’t match just plain wilma anymore, perhaps you
require one or more characters, instead of zero or more. You may have omitted
the /s modifier, since there shouldn’t be newlines in the data. (Of course, if there
are newlines in the data, the /s modifier could make for different output.)

6. Here’s one way to do it:

while (<>) {
chomp;
if (/\s+$/) {
print "$ #\n";

" Admittedly, the first anchor isn’t really needed, due to details about greediness that we won’t go into here.
But it may help a tiny bit with efficiency, and it certainly helps with clarity, and in the end that one wins out.

274 | AppendixA: Exercise Answers



}
}

We used the pound sign (#) as the marker character.

Answers to Chapter 9 Exercises

1. Here’s one way to do it:
/($what){3}/

Once $what has been interpolated, this gives a pattern resembling /(fred|barney)
{3}/. Without the parentheses, the pattern would be something
like /fred|barney{3}/, which is the same as /fred|barneyyy/. So, the parentheses
are required.

2. Here’s one way to do it:

my $in = $ARGV[0];
unless (defined $in) {
die "Usage: $0 filename";

}

my $out = $in;
$out =~ s/(\.\w+)?$/.out/;

unless (open IN, "<$in") {
die "Can't open '$in': $!";

}

unless (open OUT, ">$out") {
die "Can't write '$out': $!";

}

while (<IN>) {
s/Fred/Larry/gi;
print OUT $_;

}

This program begins by naming its one and only command-line parameter, and
complaining if it didn’t get it. Then it copies that to $out and does a substitution
to change the file extension, if any, to .out. (It would be sufficient, though, to
merely append .out to the filename.)

Once the filehandles IN and OUT are opened, the real program can begin. If you
didn’t use both options /g and /1, take off half a point, since every fred and every
Fred should be changed.

3. Here’s one way to do it:

while (<IN>) {
chomp;
s/Fred/\n/gi; # Replace all FREDs
s/Wilma/Fred/gi; # Replace all WILMAs

Answers to Chapter 9 Exercises | 275



s/\n/Wilma/g; # Replace the placeholder
print OUT "$ \n";
}

This replaces the loop from the previous program, of course. To do this kind of a
swap, we need to have some “placeholder” string, which doesn’t otherwise appear
in the data. By using chomp (and adding the newline back for the output) we ensure
that a newline (\n) can be the placeholder. (You could choose some other unlikely
string as the placeholder. Another good choice would be the NUL character, “\0”.)

4. Here’s one way to do it:

$°I = ".bak"; # make backups
while (<>) {
if (/1)) { # is it the shebang line?
$_ .= "##f Copyright (C) 20XX by Yours Truly\n";
}
print;
}

Invoke this program with the filenames you want to update. For example, if you’ve
been naming your exercises ex01-1, ex01-2, and so on, so that they all begin with
ex. .., you would use:

./fix_my_copyright ex*

5. To keep from adding the copyright twice, we have to make two passes over the
files. First, we make a “set” with a hash where the keys are the filenames and the
values don’t matter (although we’ll use 1 for convenience):

my %do_these;
foreach (@ARGV) {

$do_these{$_} = 1;
}

Next, we’ll examine the files, and remove from our to-do list any file that already
contains the copyright. The current filename is in $ARGV, so we can use that as the
hash key:
while (<>) {
if (/™M Copyright/) {
delete $do_these{$ARGV};

}
}

Finally, it’s the same program as before, once we’ve reestablished a reduced list of
names in @ARGV:

@ARGV = sort keys %do_these;

$°1 = ".bak"; # make backups
while (<>) {
if (/1)) { # is it the shebang line?
$ .= "## Copyright (c) 20XX by Yours Truly\n";
}

276 | AppendixA: Exercise Answers



print;

}

Answers to Chapter 10 Exercises

1. Here’s one way to do it:

my $secret = int(1 + rand 100);
# This next line may be uncommented during debugging
# print "Don't tell anyone, but the secret number is $secret.\n";

while (1) {
print "Please enter a guess from 1 to 100: ";
chomp(my $guess = <STDIN>);
if ($guess =~ /quit|exit|~\s*$/i) {
print "Sorry you gave up. The number was $secret.\n";
last;
} elsif ($guess < $secret) {
print "Too small. Try again!\n";
} elsif ($guess == $secret) {
print "That was it!\n";
last;
} else {
print "Too large. Try again!\n";
}
}

The first line picks out our secret number from 1 to 100. Here’s how it works. First,
rand is Perl’s random number function, so rand 100 gives us a random number in
the range from O up to (but not including) 100. That is, the largest possible value
of that expression is something like 99.999.” Adding one gives a number from 1 to
100.999, then the int function truncates that, giving a result from 1 to 100, as we
needed.

The commented-out line can be helpful during development and debugging, or if
you like to cheat. The main body of this program is the infinite while loop. That
will keep asking for guesses until we execute last.

It’s important that we test the possible strings before the numbers. If we didn’t, do
you see what would happen when the user types quit? That would be interpreted
as a number (probably giving a warning message, if warnings were turned on), and
since the value as a number would be zero, the poor user would get the message
that his guess was too small. We might never get to the string tests, in that case.

Another way to make the infinite loop here would be to use a naked block with
redo. It’s no more or less efficient; it’s merely another way to write it. Generally, if

" The actual largest possible value depends upon your system; see http://www.cpan.org/doc/FMTEYEWTK/
random if you really need to know.

Answers to Chapter 10 Exercises | 277


http://www.cpan.org/doc/FMTEYEWTK/random
http://www.cpan.org/doc/FMTEYEWTK/random

you expect to mostly loop, it’s good to write while, since that loops by default. If
looping will be the exception, a naked block may be a better choice.

2. This program is a slight modification to the previous answer. We want to print the
secret number while we are developing the program, so we print the secret number
if the variable $Debug has a true value. The value of $Debug is either the value that
we already set as an environment variable, or 1 by default. By using the // operator,
we won’t set it to 1 unless the $ENV{DEBUG} is undefined:

use 5.010;
my $Debug = $ENV{DEBUG} // 1;
my $secret = int(1 + rand 100);

print "Don't tell anyone, but the secret number is $secret.\n"
if $Debug;

To do this without a Perl 5.10 feature, we just have to do a little more work:
my $Debug = defined $ENV{DEBUG} ? $ENV{DEBUG} : 1;
3. Here’s one way to do it, which steals from the answer to exercise 3 in Chapter 6:

At the top of the program, we set some environment variables. The keys ZERO and
EMPTY have false but defined values, and the key UNDEFINED has no value.

Later, in the printf argument list, we use the // operator to select the string
(undefined) only when $ENV{$key} is not a defined value:

use 5.010;
$ENV{ZERO} = 0;
$ENV{EMPTY} =
$ENV{UNDEFINED} = undef;

my $longest = 0;
foreach my $key ( keys %ENV )
{

my $key length = length( $key );
$longest = $key length if $key length > $longest;
}

foreach my $key ( sort keys %ENV )
{

printf "%-${longest}s %s\n", $key, $ENV{$key} // "(undefined)";
}

By using // here, we don’t disturb false values such as those in the keys ZERO and
EMPTY.

To do this without Perl 5.10, we use the ternary operator instead:

printf "%-${longest}s %s\n", $key,
$ENV{$key} ? $ENV{$key} : "(undefined)";

278 | AppendixA: Exercise Answers



Answer to Chapter 11 Exercise

1. This answer uses a hash reference (which you’ll have to read about in Intermediate
Perl (O’Reilly), but we gave you the part to get around that. You don’t have to
know how it all works as long as you know it does work. You can get the job done
and learn the details later.

Here’s one way to do it:

#!/usr/bin/perl
use Module::Corelist;
my %modules = %{ $Module::CoreList::version{5.006} };

print join "\n", keys %modules;

Answers to Chapter 12 Exercises

1. Here’s one way to do it:

foreach my $file (@ARGV) {
my $attribs = 8attributes($file);
print "'$file’ $attribs.\n";

}

sub attributes {
# report the attributes of a given file
my $file = shift @_;
return "does not exist" unless -e $file;

my @attrib;

push @attrib, "readable" if -r $file;
push @attrib, "writable" if -w $file;
push @attrib, "executable" if -x $file;
return "exists" unless @attrib;

is ' . join " and ", @attrib; # return value
}

In this one, once again it’s convenient to use a subroutine. The main loop prints
one line of attributes for each file, perhaps telling us that 'cereal-killer' is
executable or that 'sasquatch' does not exist.

The subroutine tells us the attributes of the given filename. Of course, if the file
doesn’t even exist, there’s no need for the other tests, so we test for that first. If
there’s no file, we’ll return early.

If the file does exist, we’ll build a list of attributes. (Give yourself extra credit points
if you used the special _ filehandle instead of $file on these tests, to keep from
calling the system separately for each new attribute.) It would be easy to add ad-
ditional tests like the three we show here. But what happens if none of the attributes
is true? Well, if we can’t say anything else, at least we can say that the file exists,

Answer to Chapter 11 Exercise | 279



so we do. The unless clause uses the fact that @attrib will be true (in a Boolean
context, which is a special case of a scalar context) if it’s got any elements.

But if we’ve got some attributes, we’ll join them with "and" and put "is " in front,
to make a description like is readable and writable. This isn’t perfect however;
if there are three attributes, it says that the file is readable and writable and
executable, which has too many ands, but we can get away with it. If you wanted
to add more attributes to the ones this program checks for, you should probably
fix it to say something like is readable, writable, executable, and nonempty. If
that matters to you.

Note that if you somehow didn’t put any filenames on the command line, this
produces no output. This makes sense; if you ask for information on zero files, you
should get zero lines of output. But let’s compare that to what the next program
does in a similar case, in the discussion below.

2. Here’s one way to do it:

die "No file names supplied!\n" unless @ARGV;
my $oldest name = shift @ARGV;
my $oldest age = -M $oldest_name;

foreach (@ARGV) {
my $age = -M;
($oldest_name, $oldest age) = ($_, $age)
if $age > $oldest age;

printf "The oldest file was %s, and it was %.1f days old.\n",
$oldest_name, $oldest age;

This one starts right out by complaining if it didn’t get any filenames on the com-
mand line. That’s because it’s supposed to tell us the oldest filename—and there
ain’t one if there aren’t any files to check.

Once again, we’re using the “high-water-mark” algorithm. The first file is certainly
the oldest one seen so far. We have to keep track of its age as well, so that’s in
$oldest_age.

For each of the remaining files, we’ll determine the age with the -M file test, just as
we did for the first one (except that here, we’ll use the default argument of $_for
the file test). The last-modified time is generally what people mean by the “age” of
a file, although you could make a case for using a different one. If the age is more
than $oldest_age, we’ll use a list assignment to update both the name and age. We
didn’t have to use a list assignment, but it’s a convenient way to update several
variables at once.

We stored the age from -M into the temporary variable $age. What would have
happened if we had simply used -M each time, rather than using a variable? Well,
first, unless we used the special _ filehandle, we would have been asking the op-
erating system for the age of the file each time, a potentially slow operation (not

280 | AppendixA: Exercise Answers



that you’d notice unless you have hundreds or thousands of files, and maybe not
even then). More importantly, though, we should consider what would happen if
someone updated a file while we were checking it. That is, first we see the age of
some file, and it’s the oldest one seen so far. But before we can get back to use -M
a second time, someone modifies the file and resets the timestamp to the current
time. Now the age that we save into $oldest_age is actually the youngest age pos-
sible. The result would be that we’d get the oldest file among the files tested from
that point on, rather than the oldest overall; this would be a tough problem to
debug!

Finally, at the end of the program, we use printf to print out the name and age,
with the age rounded off to the nearest tenth of a day. Give yourself extra credit if
you went to the trouble to convert the age to a number of days, hours, and minutes.

. Here’s one way to do it:

use 5.010;
say "Looking for my files that are readable and writable";
die "No files specified!\n" unless @ARGV;

foreach my $file ( @ARGV ) {
say "$file is readable and writable" if -o -r -w $file;

}

To use stacked file test operators, we need to use Perl 5.10, so we start with the
use statement to ensure that we have the right version of Perl. We die if there are
no elements in @ARGV, and go through them with foreach otherwise.

We have to use three file test operators: -o to check whether we own the file, -r to
check that it’s readable, and -w to check whether it is writable. Stacking them as -
0 -T -wcreates a composite test that only passes if all three of them are true, which
is exactly what we want.

If we wanted to do this with a version before Perl 5.10, it’s just a little more code.
The says become prints with added newlines, and the stacked file tests become
separate tests combined with the &8 short-circuit operator:

print "Looking for my files that are readable and writable\n";
die "No files specified!\n" unless @ARGV;
foreach my $file ( @ARGV ) {

print "$file is readable and writable\n"
if( -w $file 88 -r _ 8% -0 _ );
}

Answers to Chapter 12 Exercises | 281



Answers to Chapter 13 Exercises

1. Here’s one way to do it, with a glob:

print "Which directory? (Default is your home directory) ";
chomp(my $dir = <STDIN>);
if ($dir =~ /~\s*$/) { # A blank line
chdir or die "Can't chdir to your home directory: $!";
} else {
chdir $dir or die "Can't chdir to '$dir': $!";

}

my @files = <*>;
foreach (@files) {
print "$ \n";

}
First, we show a simple prompt and read the desired directory, chomping it as
needed. (Without a chomp, we’d be trying to head for a directory that ends in a
newline—legal in Unix, and therefore cannot be presumed to simply be extraneous
by the chdir function.)

Then, if the directory name is nonempty, we’ll change to that directory, aborting
on a failure. If empty, the home directory is selected instead.

Finally, a glob on “star” pulls up all the names in the (new) working directory,
automatically sorted in alphabetical order, and they’re printed one at a time.

2. Here’s one way to do it:

print "Which directory? (Default is your home directory) ";
chomp(my $dir = <STDIN>);

if ($dir =~ /"\s*$/) { # A blank line
chdir or die "Can't chdir to your home directory:
g1ms
} else {
chdir $dir or die "Can't chdir to '$dir': $!";
}
my @files = <.* *>; ## now includes .*
foreach (sort @files) { ## now sorts
print "$ \n";

Two differences from the previous one: first, the glob now includes “dot star”,
which matches all the names that do begin with a dot. And second, we now must
sort the resulting list because some of the names that begin with a dot must be
interleaved appropriately, either before or after the list of things, without a begin-
ning dot.

3. Here’s one way to do it:

print "Which directory? (Default is your home directory) ";
chomp(my $dir = <STDIN>);
if ($dir =~ /"\s*$/) { # A blank line

282 | AppendixA: Exercise Answers



chdir or die "Can't chdir to your home directory:
g1ms
} else {

chdir $dir or die "Can't chdir to '$dir': $!";

}

opendir DOT, or die "Can't opendir dot: $!";
foreach (sort readdir DOT) {
# next if /~\./; ## if we were skipping dot files
print "$ \n";

Again, same structure as the previous two programs, but now we’ve chosen to open
a directory handle. Once we’ve changed the working directory, we want to open
the current directory, and we’ve shown that as the DOT directory handle.

Why DOT? Well, if the user asks for an absolute directory name, like /etc, there’s
no problem opening it. But if the name is relative, like fred, let’s see what would
happen. First, we chdir to fred, and then we want to use opendir to open it. But
that would open fred in the new directory, not fred in the original directory. The
only name we can be sure will mean “the current directory” is “.”, which always
has that meaning (on Unix and similar systems, at least).

The readdir function pulls up all the names of the directory, which are then sorted
and displayed. If we had done the first exercise this way, we would have skipped
over the dot files, and that’s handled by uncommenting the commented-out line
in the foreach loop.

You may find yourself asking, “Why did we chdir first? You can use readdir and
friends on any directory, not merely on the current directory.” Primarily, we wanted
to give users the convenience of being able to get to their home directory with a
single keystroke. But this could be the start of a general file-management utility
program; maybe the next step would be to ask the users which of the files in this
directory should be moved to offline tape storage, say.

4. Here’s one way to do it:

unlink @ARGV;

...or, if you want to warn the user of any problems:

foreach (@ARGV) {
unlink $ or warn "Can't unlink '$ _': $!, continuing...\n";

}

Here, each item from the command-invocation line is placed individually into $_,
which is then used as the argument to unlink. If something goes wrong, the warning
gives the clue about why.

5. Here’s one way to do it:

use File::Basename;
use File::Spec;

Answers to Chapter 13 Exercises | 283



my($source, $dest) = @ARGV;

if (-d $dest) {

my $basename = basename $source;

$dest = File::Spec->catfile($dest, $basename);
}

rename $source, $dest
or die "Can't rename '$source’ to '$dest': $!\n";

The workhorse in this program is the last statement, but the remainder of the
program is necessary when we are renaming into a directory. First, after declaring
the modules we’re using, we name the command-line arguments sensibly. If
$dest is a directory, we need to extract the basename from the $source name and
append it to the directory ($dest). Finally, once $dest is patched up if needed, the

rename does the deed.
6. Here’s one way to do it:
use File::Basename;
use File::Spec;

my($source, $dest) = @ARGV;

if (-d $dest) {

my $basename = basename $source;

$dest = File::Spec->catfile($dest, $basename);
}

link $source, $dest
or die "Can't link '$source' to '$dest': $!\n";

As the hint in the exercise description said, this program is much like the previous
one. The difference is that we’ll 1ink rather than rename. If your system doesn’t

support hard links, you might have written this as the last statement:
print "Would link '$source' to '$dest'.\n";
7. Here’s one way to do it:

use File::Basename;
use File::Spec;

my $symlink = $ARGV[0] eq '-s';
shift @ARGV if $symlink;

my($source, $dest) = @ARGV;
if (-d $dest) {

my $basename = basename $source;

$dest = File::Spec->catfile($dest, $basename);
}

if ($symlink) {
symlink $source, $dest
or die "Can't make soft link from '$source' to '$dest': $!\n";
} else {

284 | AppendixA: Exercise Answers



link $source, $dest
or die "Can't make hard link from '$source' to '$dest': $!\n";
}

The first few lines of code (after the two use declarations) look at the first command-
line argument, and if it’s -s, we’re making a symbolic link, so we note that as a true
value for $symlink. If we see -s, we then need to get rid of it (in the next line). The
next few lines are cut-and-pasted from the previous exercise answers. Finally, based
on the truth of $symlink, we’ll choose either to create a symbolic link or a hard link.
We also updated the dying words to make it clear which kind of link we were
attempting.
8. Here’s one way to do it:
foreach (<.* *>) {
my $dest = readlink $ ;

print "$_-> $dest\n" if defined $dest;
}

Each item resulting from the glob ends up in$_one by one. If the item is a symbolic
link, then readlink returns a defined value, and the location is displayed. If not,
then the condition fails, and we skip over it.

Answers to Chapter 14 Exercises

1. Here’s one way to do it:

my @numbers;

push @numbers, split while <>;

foreach (sort { $a <=> $b } @numbers) {
printf "%20g\n", $_;

}

That second line of code is too confusing, isn’t it? Well, we did that on purpose.
Although we recommend that you write clear code, some people like writing code
that’s as hard to understand as possible,” so we want you to be prepared for the
worst. Someday, you’ll need to maintain confusing code like this.

Since that line uses the while modifier, it’s the same as if it were written in a loop

like this:

while (<>) {
push @numbers, split;

}

" Well, we don’t recommend it for normal coding purposes, but it can be a fun game to write confusing code,
and it can be educational to take someone else’s obfuscated code examples and spend a weekend or two
figuring out just what they do. If you want to see some fun snippets of such code and maybe get a little help
with decoding them, ask around at the next Perl Mongers’ meeting. Or search for JAPHs on the Web, or see
how well you can decipher the example obfuscated code block near the end of this chapter’s answers.

Answers to Chapter 14 Exercises | 285



That’s better, but maybe it’s still a little unclear. (Nevertheless, we don’t have a
quibble about writing it this way. This one is on the correct side of the “too hard
to understand at a glance” line.) The while loop is reading the input a line at a time
(from the user’s choice of input sources, as shown by the diamond operator), and
split is, by default, splitting that on whitespace to make a list of words—or, in
this case, a list of numbers. The input is just a stream of numbers separated by
whitespace, after all. Either way that you write it, then, that while loop will put all
of the numbers from the input into @numbers.

The foreach loop takes the sorted list and prints each one on its own line, using
the %20g numeric format to put them in a right-justified column. You could have
used %20s instead. What difference would that make? Well, that’s a string format,
so it would have left the strings untouched in the output. Did you notice that our
sample data included both 1.50 and 1.5, and both 04 and 4? If you printed those
as strings, the extra zero characters will still be in the output; but %20g is a numeric
format, so equal numbers will appear identically in the output. Either format could
potentially be correct, depending upon what you’re trying to do.

2. Here’s one way to do it:

# don't forget to incorporate the hash %last name,
# either from the exercise text or the downloaded file

my @keys = sort {
"\L$last_name{$a}" cmp "\L$last name{$b}" # by last name
or
"\L$a" cmp "\L$b" # by first name
} keys %last_name;

foreach (@keys) {
print "$last name{$_}, $ \n"; # Rubble,Bamm-Bamm
}

There’s not much to say about this one; we put the keys in order as needed, then
print them out. We chose to print them in last-name-comma-first-name order just
for fun (the exercise description left that up to you).

3. Here’s one way to do it:

"

print "Please enter a string: ";
chomp(my $string = <STDIN>);

print "Please enter a substring: ";
chomp(my $sub = <STDIN>);

my @places;
for (my $pos = -1; ; ) { # tricky use of three-part for loop
$pos = index($string, $sub, $pos + 1); # find next position

last if $pos == -1;
push @places, $pos;

print "Locations of '$sub' in '$string' were: @places\n";

286 | AppendixA: Exercise Answers



This one starts out simply enough, asking the user for the strings and declaring an
array to hold the list of substring positions. But once again, as we see in the for
loop, the code seems to have been “optimized for cleverness,” which should be
done only for fun, never in production code. But this actually shows a valid tech-
nique, which could be useful in some cases, so let’s see how it works.

The my variable $pos is declared private to the scope of the for loop, and it starts
with a value of -1. So as not to keep you in suspense about this variable, we’ll tell
you right now that it’s going to hold a position of the substring in the larger string.
The test and increment sections of the for loop are empty, so this is an infinite
loop. (Of course, we’ll eventually break out of it, in this case with last).

The first statement of the loop body looks for the first occurrence of the substring
at or after position $pos + 1. That means that on the first iteration, when $pos is
still -1, the search will start at position 0, the start of the string. The location of the
substring is stored back into $pos. Now, if that was -1, we’re done with the for
loop, so last breaks out of the loop in that case. If it wasn’t -1, then we save the
position into @places and go around the loop again. This time, $pos + 1 means
that we’ll start looking for the substring just after the previous place where we
found it. And so we get the answers we wanted and the world is once again a happy
place.

If you didn’t want that tricky use of the for loop, you could accomplish the same
result as shown here:

{
my $pos = -1;
while (1) {
. # Same loop body as the for loop used above
}

}

The naked block on the outside restricts the scope of $pos. You don’t have to do
that, but it’s often a good idea to declare each variable in the smallest possible
scope. This means we have fewer variables “alive” at any given point in the pro-
gram, making it less likely that we’ll accidentally reuse the name $pos for some new
purpose. For the same reason, if you don’t declare a variable in a small scope, you
should generally give it a longer name that’s thereby less likely to be reused by
accident. Maybe something like $substring_position would be appropriate in this
case.

On the other hand, if you were trying to obfuscate your code (shame on you!), you
could create a monster like this (shame on us!):

for (my $pos = -1; -1 I=
($pos = index
+$string,
+$sub,
+$pos
+1

)

Answers to Chapter 14 Exercises | 287



push @places, ((((+$pos))))) {
"for ($pos != 1; # ;$pos++) {
print "position $pos\n";#;';#' } pop @places;
}

That even trickier code works in place of the original tricky for loop. By now, you
should know enough to be able to decipher that one on your own, or to obfuscate
code in order to amaze your friends and confound your enemies. Be sure to use
these powers only for good, never for evil.

Oh, and what did you get when you searched for t in This is a test.? It’s at
positions 10 and 13. It’s not at position 0; since the capitalization doesn’t match,
the substring doesn’t match.

Answers to Chapter 15 Exercises

1. Here’s one way to rewrite the number-guessing program from Chapter 10. We
don’t have to use a smart match, but we do use given:

use 5.010;
my $Verbose = $ENV{VERBOSE} // 1;
my $secret = int(1 + rand 100);

print "Don't tell anyone, but the secret number is $secret.\n"
if $Verbose;

LOOP: {

print "Please enter a guess from 1 to 100: ";
chomp(my $guess = <STDIN>);

my $found_it = o;

given( $guess ) {

when( ! /M\d+$/ ) { say "Not a number!" }
when( $_ > $secret ) { say "Too high!" }
when( $_ < $secret ) { say "Too low!" }
default { say "Just right!"; $found it++ }
}
last LOOP if $found it;
redo LOOP;

}

In the first when, we check that we have a number before we go any further. If there
are nondigits, or even just the empty string, we head off any warnings in the nu-
meric comparisons.

288 | AppendixA: Exercise Answers



Notice that we don’t put the last inside the default block. We actually did that
first, but it causes a warning with Perl 5.10.0 (but maybe that warning will go away
in future versions).

2. Here’s one way to do it:

use 5.010;

for (1 .. 105) {
my $what = '";
given (3.) {
when (not $_ % 3) { $what .= ' fizz'; continue }
when (not $_ % 5) { $what .= ' buzz'; continue }

when (not $_ % 7) { $what .= ' sausage' }

}
say "$_$what";
}

3. Here’s one way to do it:

use 5.010;

for( @ARGV )
{

say "Processing $ ";

when( ! -e ) { say "\tFile does not exist!" }
when( -r _ ) { say "\tReadable!"; continue }
when( -w _ ) { say "\tWritable!"; continue }
when( -x _ ) { say "\tExecutable!"; continue }

}

We don’t have to use the given because we can put the when directly in the for
block. First, we check that the file exists, or, actually, that the file does not exist.
If we execute that first when block, we’ll report that the file does not exist and rely
on the implicit break to keep us from going through the rest of the when tests.

In the second when, we test that the file is readable using -r. We also use the special
virtual filehandle _ that uses the cached information from the last file stat (which
is how the file tests get their information). You could have left off the _and the
program would work the same but do a little more work. At the end of that when
block we use continue so we try the next when too.

4. Here’s one way to do it with given and smart matching:

use 5.010;
say "Checking the number <$ARGV[0]>";

given( $ARGV[0] ) {
when( ! /"\d+$/ ) { say "Not a number!" }

my @divisors = divisors( $_);

my @empty;

Answers to Chapter 15 Exercises | 289



when( @divisors ~~ @empty ) { say "Number is prime" }

default { say "$_is divisible by @divisors" }

sub divisors {
my $number = shift;

my @divisors = ();
foreach my $divisor ( 2 .. $number/2 ) {
push @divisors, $divisor unless $number % $divisor;

}

return @divisors;

}

We first report which number we’re working with. It’s always good to let ourselves
know that the program is running. We put the $ARGV[0] in angle brackets to set it
apart from the rest of the string.

In given, we have a couple when blocks, with some other statements around them.
The firstwhen checks that we have a number by trying a regular expression to match
only digits. If that regular expression fails, we want to run that block of code to
say, “Notanumber!” Thatwhen has an implicit break that stops the given structure.
If we get past that point, we’ll call divisors(). We could have done this outside
the given, but if we didn’t have a number (perhaps we had 'Fred"), Perl would have
issued a warning. Our way avoids the warning by using the when as a guard
condition.

Once we have the divisors, we want to know if there is anything in the @divisors
array. We could just use the array in scalar context to get the number of elements,
but we have to use smart matching. We know that if we compare two arrays, they
have to have the same elements in the same order. We create an empty array,
@empty, that has nothing in it. When we compare that to @divisors, the smart match
only succeeds if there were no divisors. If that is true, we’ll run the when block,
which also has an implicit break.

Finally, if the number is not prime, we run the default block, which reports the
list of divisors.

Here’s a bit of a bonus that we shouldn’t really talk about in Learning Perl because
we don’t talk about references until Intermediate Perl. We did extra work to check
if @divisors is empty by creating an empty named array to compare it to. We could
do this with an anonymous array and skip the extra step:

when( @divisors ~~ []1 ) { ... }
5. Here’s one way to do it, based on the answer to the previous exercise:

use 5.010;

say "Checking the number <$ARGV[0]>";

290 | AppendixA: Exercise Answers



my $favorite = 42;

given( $ARGV[0] ) {
when( ! /"\d+$/ ) { say "Not a number!" }

my @divisors = divisors( $ARGV[O] );

when( @divisors ~~ 2 ) { # 2 is in @divisors
say "$ 1is even";
continue;

}

when( !( @divisors ~~ 2 ) ) { # 2 isn't in @divisors
say "$_ is odd";
continue;

}

when( @divisors ~~ $favorite ) {
say "$_ is divisible by my favorite number";
continue;

}

when( $favorite ) { # $_ ~~ $favorite
say "$_is my favorite number";
continue;

}

my @empty;
when( @divisors ~~ @empty ) { say "Number is prime" }

default { say "$_ is divisible by @divisors" }

sub divisors {
my $number = shift;

my @divisors = ();
foreach my $divisor ( 2 .. ($ARGV[0]/2 + 1) ) {
push @divisors, $divisor unless $number % $divisor;

}

return @divisors;

}

This extension of the previous exercise adds more when blocks to handle the addi-
tional reporting situations. Once we have @divisors, we use the smart match op-
erator to see what’s in it. If 2 is in divisors, then it’s an even number. We report
that and use an explicit continue so given tries the next when too. For odd numbers,
we do the same smart match but negate the result. To see if our favorite number
is in @divisors, we do the same thing. We can even check if the number is exactly
our favorite number.

Answers to Chapter 15 Exercises | 291



Answers to Chapter 16 Exercises

1. Here’s one way to do it:

chdir "/" or die "Can't chdir to root directory: $!";
exec "ls", "-1" or die "Can't exec 1ls: $!";

The first line changes the current working directory to the root directory, as our
particular hardcoded directory. The second line uses the multiple-argument exec
function to send the result to standard output. We could have used the single-
argument form just as well, but it doesn’t hurt to do it this way.

2. Here’s one way to do it:

open STDOUT, ">ls.out" or die "Can't write to ls.out: $!";
open STDERR, ">ls.err" or die "Can't write to ls.err: $!";
chdir "/" or die "Can't chdir to root directory: $!";
exec "ls", "-1" or die "Can't exec ls: $!";

The first and second lines reopen STDOUT and STDERR to a file in the current directory
(before we change directories). Then, after the directory change, the directory list-
ing command executes, sending the data back to the files opened in the original
directory.

Where would the message from the last die go? Why, it would go into Is.err, of
course, since that’s where STDERR is going at that point. The die from chdir would
go there, too. But where would the message go if we can’t reopen STDERR on the
second line? It goes to the old STDERR. If reopening the three standard filehandles
—STDIN, STDOUT, and STDERR—Hails, the old filehandle is still open.

3. Here’s one way to do it:

if (“date’ =~ /~S/) {

print "go play!\n";

} else {
print "get to work!\n";

Well, since both Saturday and Sunday start with an S, and the day of the week is
the first part of the output of the date command, this is pretty simple. Just check
the output of the date command to see if it starts with S. There are many harder
ways to do this program, and we’ve seen most of them in our classes.

If we had to use this in a real-world program, though, we’d probably use the pat-
tern /~(Sat|Sun)/. It’s a tiny bit less efficient, but that hardly matters; besides, it’s
so much easier for the maintenance programmer to understand.

292 | AppendixA: Exercise Answers



Answer to Chapter 17 Exercise

1. Here’s one way to do it:

my $filename = 'path/to/sample text';
open FILE, $filename
or die "Can't open '$filename’: $!";
chomp(my @strings = <FILE>);
while (1) {
print "Please enter a pattern: ";
chomp(my $pattern = <STDIN>);
last if $pattern =~ /*\s*$/;
my @matches = eval {
grep /$pattern/, @strings;

b
if ($0) {
print "Error: $@";
} else {
my $count = @matches;
print "There were $count matching strings:\n",
map "$_\n", @matches;

print "\n";
}
This one uses an eval block to trap any failure that might occur when using the

regular expression. Inside that block, a grep pulls the matching strings from the
list of strings.

Once the eval is finished, we can report either the error message or the matching
strings. Note that we “unchomped” the strings for output by using map to add a
newline to each string.

Answer to Chapter 17 Exercise | 293






APPENDIX B
Beyond the Llama

We’ve covered a lot in this book, but there’s even more. In this appendix, we’ll tell you
a little more about what Perl can do and give you some references on where to learn
the details. Some of what we mention here is on the bleeding edge and may have
changed by the time you’re reading this book, which is one reason why we frequently
send you to the documentation for the full story. We don’t expect many readers to read
every word of this appendix, but we hope you’ll at least skim the headings so that you’ll
be prepared to fight back when someone tells you, “You just can’t use Perl for project
X because Perl can’tdo Y.”

The most important thing to keep in mind (so that we’re not repeating it in every
paragraph) is that the most important part of what we’re not covering here is covered
in Intermediate Perl (O’Reilly), also know as “the Alpaca.” You should definitely read
the Alpaca, especially if you’ll be writing programs that are longer than 100 lines (either
alone, or with other people), and especially if you’re tired of hearing about Fred and
Barney, and want to move on to another fictional universe, featuring seven people” who
got to spend a lot of time on an isolated island after a cruise!

After the Alpaca, you’ll be ready to move on to Mastering Perl (O’Reilly), also know as
“the Vicunas.” It covers the everyday tasks that you’ll want to do while programming
Perl, such as benchmarking and profiling, program configuration, and logging. It also
goes through the work you’ll need to do to deal with code written by other people and
how to integrate that into your own applications.

Further Documentation

The documentation that comes with Perl may seem overwhelming at first. Fortunately,
you can use your computer to search for keywords in the documentation. When
searching for a particular topic, it’s often good to start with the perltoc (table of
contents) and perlfaq (frequently asked questions) sections. On most systems, the
perldoc command should be able to track down the documentation for Perl, installed

" Call them “castaways.”

295



modules, and related programs (including perldoc itself). You can read the same doc-
umentation online at http://perldoc.perl.org, although that is always for the latest ver-
sion of Perl.

Regular Expressions

Yes, there’s even more about regular expressions than we mentioned. Mastering Reg-
ular Expressions by Jeffrey Friedl (O’Reilly) is one of the best technical books we’ve
ever read.” It’s half about regular expressions in general, and half about Perl’s regular
expressions. It goes into great detail about how the regular expression engine works
internally, and why one way of writing a pattern may be much more efficient than
another. Anyone who is serious about Perl should read this book. Also see the perlre
manpage (and its companion manpages perlretut and perlrequick in newer versions of
Perl). And, there’s more about regular expressions in the Alpaca as well.

Packages

PackagesT allow you to compartmentalize namespaces. Imagine that you have 10 pro-
grammers all working on one big project. If you use the global names $fred, @barney,
%betty, and 8wilma in your part of the project, what happens when I accidentally use
one of those same names in my part? Packages let us keep them separate; I can access
your $fred, and you can access mine, but not by accident. Packages are needed to make
Perl scalable so that we can manage large programs. Packages are covered in great detail
in the Alpaca.

Extending Perl’s Functionality

One of the most common pieces of good advice heard in the Perl discussion forums is
that you shouldn’t reinvent the wheel. Other folks have written code that you can put
to use. The most frequent way to add to what Perl can do is by using a library or module.
Many of these come with Perl, while others are available from CPAN. Of course, you
can even write your own libraries and modules.

* And we’re not just saying that because it’s also published by O’Reilly. It’s really a great book.

T The name “package” is perhaps an unfortunate choice, in that it makes many people think of a packaged-up
chunk of code (in Perl, that’s a module or a library). All that a package does is define a namespace (a collection
of global symbol names, like $fred or 8wilma). A namespace is not a chunk of code.

296 | AppendixB: Beyond the Llama


http://perldoc.perl.org

Libraries

Many programming languages offer support for libraries much as Perl does. Libraries
are collections of (mostly) subroutines for a given purpose. In modern Perl, though, it’s
more common to use modules than libraries.

Modules

A module is a “smart library.” A module will typically offer a collection of subroutines
that act as if they were built in functions, for the most part. Modules are smart in that
they keep their details in a separate package, only importing what you request. This
keeps a module from stomping on your code’s symbols.

Although many useful modules are written in pure Perl, others are written using a
language like C. For example, the MD35 algorithm is sort of like a high-powered check-
sum.” It uses a lot of low-level bit-twiddling that could be done in Perl, but hundreds
of times more slowly;T it’s an algorithm that was designed to be efficiently implemented
in C. So, the Digest: :MD5 module is made to use the compiled C code. When you use
that module, it’s as if your Perl had a built-in function to calculate MD5 digests.

Finding and Installing Modules

Maybe your system already has the module you need. But how can you find out which
modules are installed? You can use the program inside, which you should be able to
download from CPAN at http://www.cpan.orglauthors/id/P/PH/PHOENIX/.

If none of the modules already available on your system suits your needs, you can search
for Perl modules on CPAN at http://search.cpan.org/. To install a module on your sys-
tem, see the perlmodinstall manpage.

When using a module, you’ll generally put the required use directives at the top of your
program. That makes it easy for someone who is installing your program on a new
system to see at a glance which modules it needs.

Writing Your Own Modules

In the rare case that there’s no module to do what you need, an advanced programmer
can write a new one, either in Perl or in another language (often C). See the perlmod

" It’s not really a checksum, but that’s good enough for this explanation.

T The module Digest: :Perl: :MD5 is a pure Perl implementation of the MD5 algorithm. Although your mileage
may vary, we found it to be about 280 times slower than the Digest: :MD5 module on one sample data set.
Remember that many of the bit-twiddling operations in the C algorithm compile down to a single machine
instruction; thus, entire lines of code can take a mere handful of clock cycles to run. Perl is fast, but let’s not
be unrealistic.

Extending Perl’s Functionality | 297


http://www.cpan.org/authors/id/P/PH/PHOENIX/
http://search.cpan.org/

and perlmodlib manpages for more information. The Alpaca covers how to write, test,
and distribute modules.

Some Important Modules

We describe some of the most important features” of the most important modules™ in
this section. The modules that we discuss here should generally be found on every
machine that has Perl, except where noted otherwise. You can always get the latest
ones from CPAN.

The CGl Modules

Many people use Perl to write programs that a web server will run, generally called CGI
programs. The CGI module comes with Perl. We showed a simple example in Chap-
ter 11, and you can read more later in this appendix.

The Cwd Module

Sometimes you need to know what the current working directory’s name is. (Well, you
could often use ., but maybe you need to save the name so that you can change back
to this directory later.) The Cwd module—which comes with Perl—provides the cwd
function, which you can use to determine the current working directory:

use Cwd;

my $directory = cwd;

The Fatal Module

If you get tired of writing "or die" after every invocation of open or chdir, then maybe
the Fatal module is for you. Just tell it which functions to work with, and those will
be automatically checked for failure, as if you’d written "or die" and a suitable message
after each one. This won’t affect such calls in someone else’s package (that is, code
contained within a module you’re using, for example), so don’t use this to fix up poorly
written code. It’s just a timesaver, mostly for simple programs in which you don’t need
direct control over the error message itself. For example:

use Fatal qu/ open chdir /;

chdir '/home/merlyn'; # "or die" is now supplied automatically

" We're including here merely the most important features of each module; see the module’s own
documentation to learn more.

T To be sure, there are other important modules whose use is too complex for most readers of this book,
typically because using the module requires understanding Perl’s references or objects.

298 | AppendixB: Beyond the Llama



The File::Basename Module

We covered this module in Chapter 11. It’s primary use is to portably pull the basename
or directory name from a full filename:

use File::Basename;

for (@ARGV) {
my $basename = basename $_;
my $dirname = dirname $_;
print "That's file $basename in directory $dirname.\n";

}

The File::Copy Module

When you need to copy or move files, the File::Copy module is for you. (It’s often
tempting to simply call a system program to do these things, but that’s not portable.)
This module provides the functions move and copy, which may be used much as the
corresponding system programs would be used:

use File::Copy;

copy("source", "destination")
or die "Can't copy 'source' to 'destination’': $!";

The File::Spec Module

When you need to manipulate a filename (more formally called a “file specification”),
it’s generally more portable and reliable to use the File::Spec module than to do the
work yourself from Perl. For example, you can use the catfile function to put together
a directory name and a filename to produce a long filename (as we saw in Chap-
ter 11), but you don’t have to know whether the system your program is running on
uses a forward slash or some other character to separate those. Or you could use the
curdir function to get the name of the current directory (., on Unix systems).

The File::Spec module is object-oriented, but you don’t need to understand objects
to use it. Just call each function (“method,” really) by using File::Spec and a small
arrow before the function’s name, like this:

use File::Spec;
my $current directory = File::Spec->curdir;

opendir DOT, $current directory
or die "Can't open current directory '$current_directory': $!";

The Image::Size Module

When you have an image file, you’ll often want to know what its height and width are.
(This is handy for making programs that write HTML if you wish for an IMG tag to
indicate the image’s dimensions.) The Image::Size module, which is available from

Some Important Modules | 299



CPAN, understands the common GIF, JFIF (JPEG), and PNG image types, and some
others. For example:

use Image::Size;

# Get the size of fred.png
my($fred_height, $fred width) = imgsize("fred.png");
die "Couldn't get the size of the image"

unless defined $fred height;

The Net::SMTP Module

If you want your program to be able to send email through an SMTP server (which is
the way most of us send email these days, whether you knew that or not), you may use
the Net: : SMTP module to do the work.” This module, which is available from CPAN, is
object-oriented, but you may simply follow the syntax to use it. You will need to change
the name of your SMTP host and the other items to make this work on your system.
Your system administrator or local expert can tell you what to use. For example:

use Net::SMTP;

my $from = 'YOUR_ADDRESS_GOES_HERE'; # maybe fred@bedrock.edu
my $site = 'YOUR_SITE_NAME_GOES_HERE'; # maybe bedrock.edu

my $smtp_host = 'YOUR_SMTP_HOST GOES HERE'; # maybe mail or mailhost
my $to = 'president@whitehouse.gov';

my $smtp = Net::SMTP->new($smtp_host, Hello => $site);

$smtp->mail($from);
$smtp->to($to);
$smtp->data( );

$smtp->datasend("To: $to\n");

$smtp->datasend("Subject: A message from my Perl program.\n");
$smtp->datasend("\n");

$smtp->datasend("This is just to let you know,\n");

$smtp->datasend("I don't care what those other people say about you,\n");
$smtp->datasend("I still think you're doing a great job.\n");
$smtp->datasend("\n");

$smtp->datasend("Have you considered enacting a law naming Perl \n");
$smtp->datasend("the national programming language?\n");

$smtp->dataend( ); # Not datasend!
$smtp->quit;

" Yes, this means that you are now able to use Perl to send spam. Please don’t.

300 | AppendixB: Beyond the Llama



The POSIX Module

If you need access to the POSIX (IEEE Std 1003.1) functions, the POSIX module is for
you. It provides many functions that C programmers may be used to, such as trigono-
metric functions (asin, cosh), general mathematical functions (floor, frexp), character-
identification functions (isupper, isalpha), low-level I/O functions (creat, open), and
some others (asctime, clock). You’ll probably want to call each of these with its “full”
name; that is, with POSIX and a pair of colons as a prefix to the function’s name:

use POSIX;

"

print "Please enter a number: ";
chomp(my $str = <STDIN>);

$! = 0; # Clear out the error indicator
my($num, $leftover) = POSIX::strtod($str);

if ($streq '') {
print "That string was empty!\n";
} elsif ($leftover) {
my $remainder = substr $str, -$leftover;
print "The string '$remainder' was left after the number $num.\n";
} elsif ($!) {
print "The conversion function complained: $!\n";
} else {
print "The seemingly-valid number was $num.\n";

}

The Sys::Hostname Module

The Sys: :Hostname module provides the hostname function, which will be the network
name of your machine if that can be determined. (If it can’t be determined, perhaps
because your machine is not on the Internet or not properly configured, the function
will die automatically; there’s no point in using or die here.) For example:

use Sys::Hostname;

my $host = hostname;
print "This machine is known as '$host'.\n";

The Text::Wrap Module

The Text: :Wrap module supplies the wrap function, which lets you implement simple
word-wrapping. The first two parameters specify the indentation of the first line and

the others, respectively; the remaining parameters make up the paragraph’s text:
use Text::Wrap;
my $message = "This is some sample text which may be longer "
"than the width of your output device, so it needs to "
"be wrapped to fit properly as a paragraph. ";
$message x= 5;

Some Important Modules | 301



print wrap("\t", "", "$message\n");

The Time::Local Module

If you have a time (for example, from the time function) that needs to be converted to
a list of year, month, day, hour, minute, and second values, you can do that with Per!l’s
built-in localtime function in a list context.” (In a scalar context, that gives a nicely
formatted string representing the time, which is more often what you’d want.) But if
you need to go in the other direction, you may use the timelocal function from the
Time: : Local module instead. It’s important to note that the value of $mon and $year for
March 2008 are not 3 and 2008 as you might expect, so be sure to read the documen-
tation before you use this module. For example:

use Time::Local;

my $time = timelocal($sec, $min, $hr, $day, $mon, $year);

Pragmas

Pragmas are special modules that come with each release of Perl and tell Perl’s internal
compiler something about your code. You’ve already used the strict pragma. The
pragmas available for your release of Perl should be listed in the perlmodlib manpage.

You use pragmas much like you’d use ordinary modules, with a use directive. Some
pragmas are lexically scoped, like lexical (my) variables are, and they therefore apply to
the smallest enclosing block or file. Others may apply to the entire program or to the
current package. (If you don’t use any packages, the pragmas apply to your entire
program.) Pragmas should generally appear near the top of your source code. The
documentation for each pragma should tell you how it’s scoped.

The constant Pragma

If you’ve used other languages, you’ve probably seen the ability to declare constants in
one way or another. Constants are handy for making a setting just once, near the be-
ginning of a program, but that can easily be updated if the need arises. Perl can do this
with the package-scoped constant pragma, which tells the compiler that a given iden-
tifier has a constant value, which may thus be optimized wherever it appears. For
example:

use constant DEBUGGING => 0;
use constant ONE_YEAR => 365.2425 * 24 * 60 * 60;

if (DEBUGGING) {

" The actual return value of localtime in a list context is a little different than you might expect; see the
documentation.

302 | AppendixB: Beyond the Llama



# This code will be optimized away unless DEBUGGING is turned on

The diagnostics Pragma

Perl’s diagnostic messages often seem somewhat cryptic, at least the first time you see
them. But you can always look them up in the perldiag manpage to find out what they
mean, and often a little about what’s likely to be the problem and how to fix it. But you
can save yourself the trouble of searching that manpage if you use the diagnostics
pragma, which tells Perl to track down and print out the related information for any
message. Unlike most pragmas, though, this one is not intended for everyday use, as it
makes your program read the entire perldiag manpage just to get started. (This is po-
tentially a significant amount of overhead, both in terms of time and memory.) Use this
pragma only when you’re debugging and expecting to get error messages you don’t yet
understand. It affects your entire program. The syntax is:

use diagnostics;

The lib Pragma

It’s nearly always best to install modules in the standard directories so that they’re
available for everyone, but only the system administrator can do that. If you install your
own modules, you’ll have to store them in your own directories—so, how will Perl
know where to find them? That’s what the 1ib pragma is all about. It tells Perl that the
given directory is the first place to look for modules. (That means that it’s also useful
for trying out a new release of a given module.) It affects all modules loaded from this
point on. The syntax is:

use 1lib '/home/rootbeer/experimental’;

Be sure to use a nonrelative pathname as the argument, since there’s no telling what
will be the current working directory when your program is run. This is especially
important for CGI programs (that is, programs run by a web server).

The strict Pragma

You’ve been using use strict for a while already without having to understand that
it’s a pragma. It’s lexically scoped, and it enforces some good programming rules. See
its documentation to learn what restrictions are available in your release of Perl. The
Alpaca talks about other things that the strict module actually performs.

Pragmas | 303



The vars Pragma

In the rare case that you truly need a global variable while use strict is in effect, you
may declare it with the vars pragma.” This package-scoped pragma tells Perl that you
are intentionally using one or more global variables:

use strict;
use vars quw/ $fred $barney /;

$fred = "This is a global variable, but that's all right.\n";

This is covered in greater deal in the Alpaca.

The warnings Pragma

Starting in Perl version 5.6, you may choose to have lexically scoped warnings with the
warnings pragma.T That is, rather than using the -w option crudely to turn warnings on
or off for the entire program at once, you may specify that you want no warnings about
undefined values in just one section of code, while other warnings should be available.
This also serves as a signal to the maintenance programmer that says, “I know that this
code would produce warnings, but I know what I'm doing anyway.” See the docu-
mentation for this pragma to learn about the categories of warnings available in your
release of Perl.

Databases

If you've got a database, Perl can work with it. This section describes some of the
common types of databases. We’ve already seen the DBI module briefly in Chapter 11.

Direct System Database Access

Perl can directly access some system databases, sometimes with the help of a module.
These are databases like the Windows Registry (which holds machine-level settings),
or the Unix password database (which lists which username corresponds to which
number, and related information), as well as the domain-name database (which lets
you translate an IP number into a machine name, and vice versa).

" If your program will never be used with a version of Perl prior to 5.6, you should use the our keyword instead
of the vars pragma.

T If your program may be used with a version of Perl prior to 5.6, you should not use the warnings pragma.

304 | AppendixB: Beyond the Llama



Flat-file Database Access

If you’d like to access your own flat-file databases from Perl, there are modules to help
you with doing that (seemingly a new one every month or two, so any list here would
be out-of-date).

Other Operators and Functions

Yes, there are more operators and functions than we can fit here, from the scalar ..
operator to the scalar , operator, from wantarray to goto(!), from caller to chr. See the
perlop and perlfunc manpages.

Transliteration with tr///

The tr/// operator looks like a regular expression, but it’s really for transliterating one
group of characters into another. It can also efficiently count selected characters. See
the perlop manpage.

Here Documents

Here documents are a useful form of multiline string quoting; see the perldata manpage.

Mathematics

Perl can do just about any kind of mathematics you can dream up.

Advanced Math Functions

All of the basic mathematical functions (square root, cosine, logarithm, absolute value,
and many others) are available as built-in functions; see the perlfunc manpage for de-
tails. Some others (like tangent or base-10 logarithm) are omitted, but those may be
easily created from the basic ones, or loaded from a simple module that does so. (See
the POSIX module for many common math functions.)

Imaginary and Complex Numbers

Although the core of Perl doesn’t directly support them, there are modules available
for working with complex numbers. These overload the normal operators and func-
tions so that you can still multiply with * and get a square root with sqrt, even when
using complex numbers. See the Math: : Complex module.

Other Operators and Functions | 305



Large and High-Precision Numbers

You can do math with arbitrarily large numbers with an arbitrary number of digits of
accuracy. For example, you could calculate the factorial of 2,000, or determine 1T to
10,000 digits. See the Math: :BigInt and Math: :BigFloat modules.

Lists and Arrays

Perl has a number of features that make it easy to manipulate an entire list or array.

map and grep

We mentioned (in Chapter 17) the map and grep list-processing operators. They can do
more than we could include here; see the perlfunc manpage for more information and
examples. And check out the Alpaca for more ways to use map and grep.

The splice Operator

With the splice operator, you can add items to the middle of an array, or remove them,
letting the array grow or shrink as needed. (Roughly, this is like what substr lets you
do with strings.) This effectively eliminates the need for linked lists in Perl. See the
perlfunc manpage.

Bits and Pieces

You can work with an array of bits (a bitstring ) with the vec operator, setting bit number
123, clearing bit number 456, and checking to see the state of bit 789. Bitstrings may
be of arbitrary size. The vec operator can also work with chunks of other sizes, as long
as the size is a small power of two, so it’s useful if you need to view a string as a compact
array of nybbles, say. See the perlfunc manpage.

Formats

Perl’s formats are an easy way to make fixed-format template-driven reports with au-
tomatic page headers. In fact, they are one of the main reasons Larry developed Perl in
the first place, as a Practical Extraction and Report Language. But, alas, they’re limited.
The heartbreak of formats happens when someone discovers that he or she needs a
little more than what formats provide. This usually means ripping out the program’s
entire output section and replacing it with code that doesn’t use formats. Still, if you’re
sure that formats do what you need, all that you’ll need, and all that you’ll ever need,
they are pretty cool. See the perlform manpage.

306 | AppendixB: Beyond the Llama



Networking and IP(

If there’s a way that programs on your machine can talk with others, Perl can probably
do it. This section shows some common ways.

System V IPC

The standard functions for System V IPC (interprocess communication) are all sup-
ported by Perl, so you can use message queues, semaphores, and shared memory. Of
course, an array in Perl isn’t stored in a chunk of memory in the same way that an array
is stored in C, so shared memory can’t share Perl data as-is. But there are modules that
will translate data, so that you can pretend that your Perl data is in shared memory. See
the perlfunc manpage and the perlipc module.

Sockets

Perl has full support for TCP/IP sockets, which means that you could write a web server
in Perl, or a web browser, Usenet news server or client, finger daemon or client, FTP
daemon or client, SMTP or POP or SOAP server or client, or either end of pretty much
any other kind of protocol in use on the Internet. Of course, there’s no need to get into
the low-level details yourself; there are modules available for all of the common pro-
tocols. For example, you can make a web server or client with the LWP module and one
or two lines of additional code.T The LWP module (actually, a tightly integrated set of
modules that together implement nearly everything that happens on the Web) is also
a great example of high-quality Perl code, if you’d like to copy from the best. For other
protocols, search for a module with the protocol’s name.

Security

Perl has a number of strong security-related features that can make a program written
in Perl more secure than the corresponding program written in C. Probably the most
important of these is data-flow analysis, better known as taint checking. When this is
enabled, Perl keeps track of which pieces of data seem to have come from the user or
environment (and are therefore untrustworthy). Generally, if any such piece of so-called
“tainted” data is used to affect another process, file, or directory, Perl will prohibit the

" In fact, it would generally be a lie to say that a Perl array is stored in “a chunk of memory” at all, as it’s almost
certainly spread among many separate chunks.

T Although LWP makes it easy to make a simple “web browser” that pulls down a page or image, actually
rendering that to the user is another problem. You can drive an X11 display with Tk or Gtk widgets though,
or use curses to draw on a character terminal. It’s all a matter of downloading and installing the right modules
from CPAN.

Networkingand IPC | 307



operation and abort the program. It’s not perfect, but it’s a powerful way to prevent
some security-related mistakes. There’s more to the story; see the perlsec manpage.

Debugging

There’s a very good debugger that comes with Perl and supports breakpoints, watch-
points, single-stepping, and generally everything you’d want in a command-line Perl
debugger. It’s actually written in Perl (so, if there are bugs in the debugger, we’re not
sure how they get those out). But that means that, in addition to all of the usual debugger
commands, you can actually run Perl code from the debugger—calling your subrou-
tines, changing variables, even redefining subroutines—while your program is running.
See the perldebug manpage for the latest details. The Alpaca gives a detailed walk-
through of the debugger.

Another debugging tactic is to use the B::Lint module, which can warn you about
potential problems that even the -w switch misses.

The Common Gateway Interface (CGI)

One of the most popular uses for Perl on the Web is writing CGI programs. These run
on a web server to process the results of a form, perform a search, produce dynamic
web content, or count the number of accesses to a web page.

The CGI module, which comes with Perl, provides an easy way to access the form pa-
rameters and to generate some HTML in responses. It may be tempting to skip the
module and simply copy-and-paste one of the snippets of code that purport to give
access to the form parameters, but nearly all of these are buggy.” When writing CGI
programs, though, there are several big issues to keep in mind. These make this topic
too broad to fully include in this book:T

Security, security, security
We can’t overemphasize security. Somewhere around half of the successful attacks
on computers around the world involve a security-related bug in a CGI program.

Concurrency issues
It’s easy to have several processes that are concurrently trying to access a single file
or resource.

" There are some details of the interface that these snippets don’t support. Trust us; it’s better to use a module.

T Several of the reviewers who looked over a draft of this book for us wished we could cover more about CGI
programming. We agree, but it wouldn’t be fair to the reader to give just enough knowledge to be dangerous.
A proper discussion of the problems inherent in CGI programming would probably add at least 50% to the
size (and cost) of this book.

308 | AppendixB: Beyond the Llama



Standards compliance
No matter how hard you try, you probably won’t be able to test your program
thoroughly with more than about 1 or 2% of the web browsers and servers that are
in use today.” That’s because there are literally thousands of different programs
available, with new ones popping up every week. The solution is to follow the
standards, so your program will work with all of them.T

Troubleshooting and debugging
Since the CGI program runs in a different environment than you’re likely to be able
to access directly, you’ll have to learn new techniques for troubleshooting and
debugging.

Security, security, security!
There, we’ve said it again. Don’t forget security—it’s the first and last thing to think
about when your program is going to be available to everyone in the world who
wants to try breaking it.

And that list didn’t even mention URI encoding, HTML entities, HTTP and response
codes, Secure Sockets Layer (SSL), Server-Side Includes (SSI), here documents, creating
graphics on the fly, programmatically generating HTML tables, forms, and widgets,
hidden form elements, getting and setting cookies, path info, error trapping, redirec-
tion, taint checking, internationalization and localization, embedding Perl into HTML
(or the other way around), working with Apache and mod_perl, and using the LWP mod-
ule.¥ Most or all of those topics should be covered in any good book on using Perl with
the Web. CGI Programming with Perl by Scott Guelich et al. (O’Reilly) is mighty nice
here, as is Lincoln Stein’s Network Programming with Perl (Addison-Wesley).

Command-Line Options

There are many different command-line options available in Perl; many let you write
useful programs directly from the command line. See the perlrun manpage.

Built-in Variables

Perl has dozens of built-in variables (like ARGV and $0), which provide useful informa-
tion or control the operation of Perl itself. See the perlvar manpage.

" Remember that every new release of each brand of browser on each different platform counts as a new one
that you’re probably not going to be able to test. We really chuckle when we hear someone tested a web site
with “both browsers” or when they say, “I don’t know if it works with the other one.”

T At the very least, following the standards lets you put the blame squarely on the other programmer, who
didn’t.

¥ Do you see why we didn’t try to fit all of that into this book?

Command-Line Options | 309



Syntax Extensions

There are more tricks you could do with Perl syntax, including the continue block and
the BEGIN block. See the perlsyn and perlmod manpages.

References

Perl’s references are similar to C’s pointers, but in operation, they’re more like what
you have in Pascal or Ada. A reference “points” to a memory location, but because
there’s no pointer arithmetic or direct memory allocation and deallocation, you can be
sure that any reference you have is a valid one. References allow object-oriented pro-
gramming and complex data structures, among other nifty tricks. See the perlreftut and
perlref manpages. The Alpaca covers references in great detail.

Complex Data Structures

References allow us to make complex data structures in Perl. For example, suppose
you want a two-dimensional array. You can do that,” or you can do something much
more interesting, like have an array of hashes, a hash of hashes, or a hash of arrays of
hashes.T See the perldsc (data-structures cookbook) and perllol (lists of lists) manpages.
Again, the Alpaca covers this quite thoroughly, including techniques for complex data
manipulation, like sorting and summarizing.

Object-Oriented Programming

Yes, Perl has objects; it’s buzzword compatible with all of those other languages.
Object-oriented (OO) programming lets you create your own user-defined data types
with associated abilities, using inheritance, overriding, and dynamic method look-
up.¥ Unlike some object-oriented languages, though, Perl doesn’t force you to use ob-
jects. (Even many object-oriented modules can be used without understanding objects.)
But if your program is going to be larger than N lines of code, it may be more efficient
for the programmer (if a tiny bit slower at runtime) to make it object-oriented. No one
knows the precise value of N, but we estimate it’s around a few thousand or so. See the
perlobj and perlboot manpages for a start, and Damian Conway’s excellent Object-
Oriented Perl (Manning Press) for more advanced information. The Alpaca book covers
objects thoroughly as well.

" Well, not really, but you can fake it so well that you’ll hardly remember that there’s a difference.

T Actually, you can’t make any of these things; these are just verbal shorthands for what’s really happening.
What we call “an array of arrays” in Perl is really an array of references to arrays.

# OO0 has its own set of jargon words. In fact, the terms used in any one OO language aren’t even the same
ones that are typically used in another.

310 | AppendixB: Beyond the Llama



Anonymous Subroutines and Closures

Odd as it may sound at first, it can be useful to have a subroutine without a name. Such
subroutines can be passed as parameters to other subroutines, or they can be accessed
via arrays or hashes to make jump tables. Closures are a powerful concept that comes
to Perl from the world of Lisp. A closure is (roughly speaking) an anonymous subroutine
with its own private data. Again, covered in the Alpaca book.

Tied Variables

A tied variable may be accessed like any other, but using your own code behind the
scenes. So you could make a scalar that is really stored on a remote machine, or an
array that always stays sorted. See the perltie manpage.

Operator Overloading

You can redefine operators like addition, concatenation, comparison, or even the im-
plicit string-to-number conversion with the overload module. This is how a module
implementing complex numbers (for example) can let you multiply a complex number
by 8 to get a complex number as a result.

Dynamic Loading

The basic idea of dynamic loading is that your program decides at runtime that it needs
more functionality than what’s currently available, so it loads it up and keeps running.
You can always dynamically load Perl code, but it’s even more interesting to dynami-
cally load a binary extension.” This is how non-Perl modules are made.

Embedding

The reverse of dynamic loading (in a sense) is embedding.

Suppose you want to make a really cool word processor, and you start writing it in (say)
C++.T Now, you decide you want the users to be able to use Perl’s regular expressions
for an extra powerful search-and-replace feature, so you embed Perl into your program.
Then you realize that you could open up some of the power of Perl to your users. A

" Dynamic loading of binary extensions is generally available if your system supports that. If it doesn’t, you
can compile the extensions statically—that is, you can make a Perl binary with the extension built in, ready
for use.

T That’s probably the language we’d use for writing a word processor. Hey, we love Perl, but we didn’t swear
an oath in blood to use no other language. When language X is the best choice, use language X. But often, X
equals Perl.

Tied Variables | 311



power user could write a subroutine in Perl that could become a menu item in your
program. Users can customize the operation of your word processor by writing a little
Perl. Now you open up a little space on your web site where users can share and ex-
change these Perl snippets, and you’ve got thousands of new programmers extending
what your program can do at no extra cost to your company. And how much do you
have to pay Larry for all this? Nothing—see the licenses that come with Perl. Larry is
a really nice guy. You should at least send him a thank-you note.

Although we don’t know of such a word processor, some folks have already used this
technique to make other powerful programs. One such example is Apache’s
mod_perl, which embeds Perl into an already-powerful web server. If you’re thinking
about embedding Perl, you should check out mod_perl; since it’s all open source, you
can see just how it works.

Converting Other Languages to Perl

If you’ve got old sed and awk programs that you wish were written in Perl, you’re in
luck. Not only can Perl do everything that those can do, there’s also a conversion pro-
gram available, and it’s probably already installed on your system. Check the docu-
mentation for s2p (for converting from sed) or a2p (for converting from awk).” Since
programs don’t write programs as well as people do, the results won’t necessarily be
the best Perl—but it’s a start, and it’s easy to tweak. The translated program may be
faster or slower than the original, too. But after you’ve fixed up any gross inefficiencies
in the machine-written Perl code, it should be comparable.

Do you have C algorithms you want to use from Perl? Well, you’ve still got some luck
on your side; it’s not too hard to put C code into a compiled module that can be used
from Perl. In fact, any language that compiles to make object code can generally be
used to make a module. See the perlxs manpage, and the Inline module, as well as the
SWIG system.

Do you have a shell script that you want to convert to Perl? Your luck just ran out.
There’s no automatic way to convert shell to Perl. That’s because the shell hardly does
anything by itself; it spends all of its time running other programs. Sure, we could make
a program that would mostly just call system for each line of the shell, but that would
be much slower than just letting the shell do things in the first place. It really takes a
human level of intelligence to see how the shell’s use of cut, rm, sed, awk, and grep can
be turned into efficient Perl code. It’s better to rewrite the shell script from scratch.

" If you’re using gawk or nawk or some other variant, a2p may not be able to convert it. Both of these conversion
programs were written long ago and have had few updates except when needed to keep working with new
releases of Perl.

312 | AppendixB: Beyond the Llama



Converting find Command Lines to Perl

A common task for a system administrator is to recursively search the directory tree for
certain items. On Unix, this is typically done with the find command. We can do that
directly from Perl, too.

The find2perl command, which comes with Perl, takes the same arguments that find
does. Instead of finding the requested items, however, the output of find2perl is a Perl
program that finds them. Since it’s a program, you can edit it for your own needs. (The
program is written in a somewhat odd style.)

One useful argument that’s available in find2perl but not in the standard find is the
-eval option. This says that what follows it is actual Perl code that should be run each
time that a file is found. When it’s run, the current directory will be the directory in
which some item is found, and $_ will contain the item’s name.

Here’s an example of how you might use find2perl. Suppose that you're a system
administrator on a Unix machine, and you want to find and remove all of the old files
in the /tmp directory.” Here’s the command that writes the program to do that:

$ find2perl /tmp -atime +14 -eval unlink >Perl-program

That command says to search in /tmp (and recursively in subdirectories) for items whose
atime (last access time) is at least 14 days ago. For each item, the program should run
the Perl code unlink, which will use $_ by default as the name of a file to remove. The
output (redirected to go into the file Perl-program) is the program that does all of this.
Now you merely need to arrange for it to be run as needed.

Command-Line Options in Your Programs

If you’d like to make programs that take command-line options (like Perl’s own -w for
warnings, for example), there are modules that let you do this in a standard way. See
the documentation for the Getopt: :Long and Getopt: : Std modules.

Embedded Documentation

Perl’s own documentation is written in pod (plain-old documentation) format. You can
embed this documentation in your own programs, and it can then be translated to text,
HTML, or many other formats as needed. See the perlpod manpage. The Alpaca book
covers this, too.

" This is a task typically done by a cron job at some early-morning hour each day.

Converting find Command Lines to Perl | 313



More Ways to Open Filehandles

There are other modes to use in opening a filehandle; see the perlopentut manpage.

Locales and Unicode

It’s a small world, after all. In order to work properly in places where even the alphabet
is different, Perl has support for locales and Unicode.

Locales tell Perl how things are done locally. For example, does the character @ sort at
the end of the alphabet, or between S and (E? And what’s the local name for the third
month? See the perllocale manpage (not to be confused with the perllocal manpage).

See the perlunicode manpage for the latest on how your version of Perl deals with Uni-
code. As of this writing, each new release of Perl has many new Unicode-related
changes, but we hope things will settle down soon.

Threads and Forking

Perl now has support for threads. Although this is experimental (as of this writing), it
can be a useful tool for some applications. Using fork (where it’s available) is better
supported; see the perlfork and perlthrtut manpages.

Graphical User Interfaces (GUIs)

A large and powerful module set is Tk, which lets you make onscreen interfaces that
work on more than one platform. See Mastering Perl/Tk by Nancy Walsh and Steve
Lidie (O’Reilly).

And More...

If you check out the module list on CPAN, you’ll find modules for even more purposes,
from generating graphs and other images to downloading email, from figuring the
amortization of a loan to figuring the time of sunset. New modules are added all the
time, so Perl is even more powerful today than it was when we wrote this book. We
can’t keep up with it all, so we’ll stop here.

Larry himself says he no longer keeps up with all of the development of Perl because
the Perl universe is big and keeps expanding. And because he can always find another
corner of this ever-expanding universe, he can’t get bored with Perl, and, we suspect,
neither will we. Thank you, Larry!

314 | AppendixB: Beyond the Llama



Symbols
! (exclamation mark)
I= (not equal) operator, 33
not operator, 34
"" (quotes, double)
interpolation into patterns, 122
in string literals, 22
# (pound sign), in comments, 14
#!(shebang) line in programs, 14
$ (dollar sign)
$!, in error messages, 87
$$ variable, 204
$& match variable, 128
$' match variable, 128
$1, $2 match variables, 123
$~1 variable, 144
$_ default, 48, 226
$* match variable, 128
end-of-string anchor in regular expressions,
120, 130
escaping in double-quoted strings, 104
in scalar variable names, 27
scalar context, 259
scalar context slices, 257
% (percent sign)
hash slices and, 259
modulus operator, 22, 252
printing with printf, 80
referring to an entire hash, 98
%f conversion, 80
& (ampersand)
&& (logical AND) operator, 164
bitwise and operator, 189
omitting in subroutine calls, 66

Index

in subroutine names, 55
"' (quotes, single)
escaping shell metacharacters, 234
in string literals, 22
() (parentheses)
capturing, 123
in file tests, 183
grouping in regular expression patterns,
110
non-capturing (?:), 125
optional, for print, 78
precedence in regular expressions, 130
* (asterisk)
** (exponentiation) operator, 22
*? (nongreedy) quantifier, 142
multiplication operator, 22
quantifier in regular expressions, 109
+ (plus sign)
++ (autoincrement) operator, 154
+? (non-greedy) quantifier, 141
addition operator, 22
quantifier in regular expressions, 110
, (comma), using big arrow (=>) for, 100
- (hyphen), specifying ranges in a character
class, 113
- (minus sign)
- - (autodecrement) operator, 154
subtraction operator, 22
-> (small arrow), 175
. (dov)
. (dot) and .. (dot-dot) in directory handles,
194, 199
. (dot star) parameter, glob operator, 192
.. (range) operator, 42
counting downward, 48

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

315




./ (dotand slash), current working directory,
13
.= (concatenation and assignment)
operator, 29
regular expression metacharacter, 109
string concatenation operator, 24
using with /s to match newlines, 118
/ (slash)
// (defined-or) operator, 165
enclosing patterns, 108
in pattern matches, 117
; (semicolon)
ending statements, 15
omitting at end of Perl code blocks, 60
< (less than) operator, 33, 228
<< (bitwise shift left) operator, 189
<= (less than or equal to) operator, 33
<=> (spaceship) comparison operator, 216
<> (diamond) operator, 73
in-place editing of files, 144
use of @ARGYV array, 75
using with print, 77
<>, filehandle reading and globbing, 193
= (equals sign)
== (equal) operator, 33
=~ (binding) operator, 121, 137
using with substr, 211
=> (big arrow), 100
quoting hash keys, 254
> (greater than) operator, 33, 228
> (greater than) sign, creating a new file for
input, 84
>= (greater than or equal to) operator, 33
>> (bitwise shift right) operator, 189
? (question mark)
?: (ternary) operator, 162
using as control structure, 167
?? non-greedy quantifier, 142
regular expression quantifier, 110
@ (at sign)
escaping in double-quoted strings, 104
list context, 259
list context slices, 256
references to arrays, 44
interpolation of arrays into strings, 46
@ARGYV array, 75
@_ array variable
checking for correct number of arguments,
61

storing subroutine arguments, 58
[ ] (square brackets)
array operator, 256
arrays interpolated into strings, 47
enclosing character classes, 113
\ (backslash)
escapes in double-quoted string literals, 23
escaping qw lists in strings, 43
escaping regular expression metacharacters,
109
escaping when passing to the shell, 238
in back references, 110
~ (caret)
bitwise-xor operator, 189
negating character classes, 114, 115
start-of-string anchor in regular expressions,
120, 130
_ (underscore)
in variable names, 64
virtual filehandle, 184
** (backquotes), 17
using in list context, 240
using to capture output, 238241
{ } (curly braces)
delimiting variable names, 30
enclosing code blocks, 34
enclosing subroutine body, 55
hash element access, 97
in hashes, 258
m// (pattern match) delimiter, 117
regular expression quantifiers, 130
{ }? nongreedy quantifier, 142
| (vertical bar)
alternation in regular expression pattern
matching, 112
alternation in regular expressions, 130
bitwise-or operator, 189
pipe character, 241
|| (logical OR) operator, 164
~ (tilde)
bitwise negation operator, 189
~~ (smart match) operator, 221-229

A

Access Control Lists (ACLs), 181

ActivePerl, xi

ActiveState port of Perl, 171

anchors, regular expression, 120
precedence, 130

316 | Index



and operator, 167
AND operator && (logical AND), 164
anonymous subroutines, 311
Apache web server, mod_perl, 312
arguments
invocation, for a program, 73
subroutine, 58
ARGV, 82
ARGVOUT, 82
arrays
accessing elements, 40
@ARGYV array, 75
of bits (bitstrings), 306
comparing, 222
features to manipulate an entire array, 306
finding index for an element, 65
indexing, avoiding by using operators, 45
interpolating into strings, 46, 76
use of quotation marks, 91
and lists, answers to exercises, 264
of strings, 44
printf operator and, 81
slicing elements from, 256
special indices, 41
as state variables, 69
ASCII mode, 12
ASCII, sorting, 49
assignment, 28
binary operators, 28
hashes, 99
list to a hash, 100
list values, 43—-46
to lists and arrays, context, 51
associativity, operator, 31
atoms in regular expressions, precendence of,
131
autodecrement operator (- -), 154
autoincrement operator (++), 154

B

\B (nonword-boundary) anchor, 121
\b (word boundary) anchor, 120
back references, 110
precedence in regular expressions, 131
relative, xv
background processes, 234
backquotes (see * *, under Symbols)
barewords, 100
unquoted hash keys, 254

basename, 171
File::Basename module, 172
basename function, 172
big arrow (=>), 100, 254
binary files, 182
binding operator (=~), 121, 137
using with substr, 211
bitstrings, 189, 306
bitwise operators, 188
blank lines, matching with regular expressions,
120
blocks
labeled, 162
types in Perl, 159
blogs, Perl-related posts, 11
body of a subroutine, 55
Boolean values, 34
hash used as, 101
Bourne Shell, 234
buffering output, 77
bugs, 9
reporting, 11
Build module, 170
bytes, file size in, 187

C

C language, 9
control structures, 167
converting C code to Perl, 312
operators, 162
switch statement, 225
C shell, 235
captures
named, 126
non-capturing parentheses, 125
case
in string comparisons, 33
variable names, 28
case shifting, 137
case statement, emulating, 154
case-insensitive (/i) matching, 118
cat command, 78
cd command, 191
CGI (Common Gateway Interface), 308
CGI modules, 298
CGlI scripting, 8
CGIl.pm module, 175
character classes, 113
precedence in regular expressions, 131

Index | 317




shortcuts, 114
characters, precedence in regular expressions,
131
chdir operator, 191
chmod command, 13
chmod function, 205
chomp command, removing newlines from
array holding list of lines, 53
chomp operator, 35
chown function, 205
closures, 311
cmp operator, 216
comma (,), using big arrow (=>) for, 100
comma-separated values (CSV), list literals, 41
command line
in-place editing from, 145
starting up CPAN.pm, 170
command-line options, 309
in your programs, 313
commands (external), output of, 17
comments, 14
included in whitespace in a pattern, 119
qw lists and, 42
comp.lang.perl* newsgroups, 10
comparison operators, 32
comparisons
in regular matching, 228
in smart matching, 225
compilation of programs, 15
complex numbers, 305
CONFIG filehandle, 84
connect method (DBI module), 177
constant pragma, 302
constants in list literals, 42
context, 49-53
forcing scalar context, 52
scalar-producing expressions in list context,
52
continue statement, using at end of when
statements, 227
control structures, 149-168
answers to exercises, 277
autoincrement and autodecrement, 154
connection between foreach and for, 157
elsif clause, 153
expression modifiers, 151
for, 155
given-when, 225
labeled blocks, 162

logical operators, 164-168
loop controls, 158-162
naked block, 152
partial-evaluation operators, 166
ternary operator (?:), 162
unless, 149
until, 150
Control-D, indicating end-of-file on Unix-
based systems, 52
Control-Z, indicating end-of-file on Windows
systems, 53
conversions (printf format string), 79
CPAN (Comprehensive Perl Archive Network),
9,169-177, 169, 314
(see also modules)
finding modules, 169
cpan script, 170
CPAN.pm module, 170
ctime value, 206
currency figures, formatting with sprintf, 212
current working directory, 13
Cwd module, 298

D

\d (digit) character class, 114
\D (nondigit) character, matching in regular
expressions, 115
DATA, 82
data structures, 310
databases, 304
date and time values
changing timestamps, 206
Time::Local module, 302
timestamps, 187
date command, 144, 233
DBI (Database Interface) module, 177
debugging, 308
declarations, module, 172
defaults, 5
$_,48
defined function, 37, 205
defined-or (//) operator, 165
delete function, 103
delimiters
nonpaired, 117
qw lists, 42
s/// (substitution) operator, 136
device number (files), 186
diagnostics pragma, 26, 303

318 | Index



diamond operator (see <>, under Symbols) Epoch, 187

die function, 86 errors
directories, 191 fatal errors with die function, 86
changing ownership of files, 205 standard error stream (STDERR), 83
changing timestamps, 206 trapping with eval, 249
creating and removing, 203 eval statements
directory handles, 194 answers to exercises, 293
filename globbing, 192 trapping errors, 249
links and files, 198-203 exceptions to rules in Perl, 2
modifying permissions, 205 exec function, 236
moving around directory tree, 191 executable programs, 13
names on different operating systems, 171 exercises and their answers, 2
operations, answers to exercises, 282 exists function, 103
recursive listing, 195 exit status, 86
removing files, 196 exit values (Unix), 236
renaming files, 197 exiting loop blocks, 159
specifying for module installation, 170 exponentiation operator, 22
dirname function, 173 export tag, 176
discussion groups, 11 expression modifiers, 151
documentation, 295 expressions
displaying with perldoc command, 17 context, 50-53
embedding into programs, 313 list-producing, using in scalar context, 50
modules, 169 extensions, 296
double-quote interpolation, 30 Perl syntax, 310
double-quoted string literals, 23 extensions (file), Perl programs and, 13
double-quoted strings external commands, output of, 17
case shifting in, 138
interpolating arrays into, 46 F

interpolation of a hash element, 104
downloads for this book, xiii
dynamic loading, 311

Fatal module, 298

file tests, 179-190
answers to exercises, 279
bitwise operators, 188

E listed, with their meanings, 180

-e (executable) command-line option, 146 localtime function, 187

each function, 101 Istat function, 187

echo command, 192 stacked file test operators, 184

elements, array and list, 40 stat function, 186

else clause, unless statement, 150 testing several attributes of a file, 183

else keyword, 33 File::Basename module, 172, 299

elsif clause, 153 File::Basename::dirname function, 174

emacs, 12 File::Copy module, 299

email addresses in double-quoted strings, 46 File::Find module, 195

email, Net::SMTP module, 300 File::Path module, 204

embedding Perl into applications, 311 File::Spec module, 174, 299

empty strings, 30 filehandles, 81

end-of-file, 71 changing default output filehandle, 89
indicating for keyboard input, 52 closing, 85

%ENYV hash, 104, 237 opening, 83

environment variables, 104, 237 other ways to open, 314

Index | 319




processes as, 241
reading from, globbing versus, 193
standard, reopening, 90
using, 88
using with print or printf functions, 89
using with say, 91
_ (underscore), virtual filehandle, 184
filenames, 171
globbing, 192
for Perl programs, 13
files, 206
(see also directories)
renaming, 197
find command (Unix), 313
find2perl command, 313
flags, 118
flat-file databases, 305
floating-point numbers, 20
rounding off, 80
for loop, 155
connection with foreach, 158
exiting with last operator, 159
foreach control structure, 47
wrapping given-when structure, 229
foreach loop
exiting with last operator, 159
iterating over a return value split, 160
foreach modifier, 152
forking, 243
threads and, 314
formats, 306
functions
built into Perl, 153
default, 5
documentation, 305
for hashes, 100
mathematical, 305
user-defined (see subroutines)
using only some from a module, 173

G

/g (global) modifier
using with m// (pattern match) operator,
140
using with s/// (substitution) operator, 136
getgrnam function, 205
getpwnam function, 205
gid (group-1D), 187
given-when control structure, xvi, 225-230

answers to exercises, 289

when clauses with many items, 229
glob operator, 192

using with unlink, 196
global variables within subroutine body, 56
globbing, 192
globs, 108
glue string, 139
gmtime function, 188
graphical user interfaces (GUIs), 314
grep command, 108
grep operator, 306

picking items from a list, 252
group-1D (gid), 187
grouping in patterns, 110
GUISs (graphical user interfaces), 314

H

\ h (horizontal) whitespace, 115
hashes, 93-105
accessing an element, 96
answers to exercises, 269
assignment, 99
defined, 93
%ENV hash, 104
example of typical use, 103
functions for, 100
interpolation of an element into a string,
104
pairing up keys and values with => (the big
arrow), 100
referring to the entire hash, 98
slicing elements from, 258
sorting by multiple keys, 218
sorting by value, 217
as state variables, 69
unquoted keys, 254
uses of, 95
Haskell, Perl 6 in (Pugs), 7
"Hello, world" program, 12
using say instead of print, 13
Here documents, 305
high-level languages, 6
high-precision numbers, 306
high-water mark algorithm, 61
home directory, 191
hostname function, 301
HTML, 176

320 | Index



/1 (case-insensitive) matching, 118
-1 command-line option, 146
if control structure, 33, 149
if loop, exiting with last operator, 159
if modifier, 151
if-elseif-else statement, 226
Image::Size module, 299
imaginary numbers, 305
import lists, 173
indentation in programs, 14
index function, 209
using with substr, 211
indices
array and list, starting at zero, 39
array, not using, 45
special array indices, 41
substring, 211
indirect filehandle reads, 193
infinite loops, 157
inodes, 198
chantes to, 182
for new files in a directory, 199
number for a file, 186
input and output, 71
answers to exercises, 267
arrays and printf function, 81
capturing output using backquotes, 238—
241
changing default output filehandle, 89
closing filehandles, 85
creating warning messages with warn
function, 88
filehandles, 81
formatted output with printf, 79
getting input from users, 34
input from standard input, 71
input from the diamond operator (<>), 73
keyboard input, indicating end-of-file, 52
opening filehandles, 83
output to standard output, 76
output with print, 29
output with say, 90
standard filehandle, reopening, 90
using filehandles for input, 88
integer literals, 20
nondecimal, 21
integers, 20
using bitwise operators with, 189

interpolation
hash element into a double-quoted string,
104
into patterns, 122
interpreter
compiling and running programs, 15
Parrott, 7
perl, 4
interrupt signals, 244
invocation arguments, 73, 75
IPC (interprocess communications), 307
items, types of, on Unix filesystem, 181
iteration, 47

J

join function, 139

K

keys function, 100

L

\L (lowercase) escape, 137
labels, 162
large numbers, 306
last operator, 159
lexical variables, 60, 63
lib pragma, 303
libraries, 297
licenses for Perl, 8
line breaks, 115
(see also newlines)
matching in regular expressions, 115
line-input operators, 37
(see also <STDIN> operator)
<> (diamond) operator, 74
<STDIN>, 34
link count, 199
link function, 200
links, 198-203
number of hard links to a file or directory,
186
removing, 203
symbolic, 201
list context, 50
backquotes in, 240
calling subroutines in, 67
example expressions providing, 51
list slice, 256

Index | 321




m// (pattern match) operator used in, 140

using scalar-producing expressions in, 52
lists, 39
and arrays, answers to exercises, 264
assignment, 43—46
converting between a hash and, 98
features to manipulate an entire list, 306
literals, 41
selecting items with grep, 252
slicing items from, 254
transforming list items using map, 253
literals
floating-point, 20
integer, 20
list, 41
nondecimal integer, 21
string, 22
loading, dynamic, 311
locales, 314
localtime function, 144, 187, 302
logical operators, 164-168
and operator, 167
defined-or (//), 165
or operator, 167
using as control structures, 167
value of a short-circuit operator, 164
loop controls, 158
last operator, 159
next operator, 159
redo operator, 161
loops, 17, 36, 47
(see also control structures)
foreach, iteration through, 47
Istat function, 187
LWP module, 307

M

/m (multiple line) regular expression option,
143
m// (pattern match) operator, 117
in list context, 140
mailing lists, 10
MakeMaker module, 170
map operator, 253, 306
match variables, 123
persistence of, 124
mathematics, 305
memory
persistence in pattern matching, 124

triggering in pattern matching, 123
metacharacters, 109
precedence in regular expressions, 130
shell, 234
methods, 175
mkdir function, 203
modes, file, 186
Module::Build, 170
modules, 67, 169-177, 297-302
CGlI, 298
CGLpm, 175
CPAN, 314
Cwd, 298
DBI (Database Interface), 177
exercise, answer to, 279
Fatal module, 298
File::Basename, 172, 299
File::Copy, 299
File::Spec, 174, 299
finding, 169
Image::Size, 299
installing, 170
Net::SMTP, 300
POSIX, 301
Sys::Hostname, 301
Text::Wrap, 301
Time::Local, 302
using only some functions, 173
using simple modules, 171
writing your own, 297
modulus operator (%), 22
mod_perl module (Apache), 312
money numbers, formatting with sprintf, 212
mounted volume, 198
my namespace, 226
my operator, 60, 63
my variables, 180

N

-n command line option, 146
naked block, 152

exiting with last operator, 159
names

filehandles, 81

hash, 97

subroutine, 55
namespaces, subroutines, 55
Net::SMTP module, 300
networking, 307

322 | Index



newlines
ending error messages, 87
matching in regular expressions, 115
printing and, 76
removing with chomp operator, 35
\n (newline character), 15

in string literals, 23

newsgroups, 10

next operator, 159

nonpaired delimiters, 117

not operator, 167

not operator (!), 34

NUL character, 22

numbers, 19
in arrays, 40
automatic conversion between strings, 25
comparison operators, 33
conversions by printf format string, 80
floating-point literals, 20
integer literals, 20
internal format, 20
nondecimal integer literals, 21
numeric operators, 21

numeric operators, 22

0
object-oriented (OO) modules, 174
object-oriented (OO) programming, 310
oct function, 204
operating systems
#! (shebang) line, 14
environment variables, 105
file and directory names, 171
Perl on, 9
working directory, 191
operators
binary assignment, 28
bitwise, 188
chomp, 35
documentation, 305
file test, 179
logical, 164-168
numeric, 21
overloading, 311
partial-evaluation operators, 166
precedence and associativity, 31
string, 24
ternary (?:) operator, 162
option modifiers, 118

combining, 119
documentation, 119
substitutions, 137
or operator, 167
OR operator || (logical OR), 164
or operator, defined-or, 165
output (see input and output)
overloading, operator, 311
ownership, changing for files, 205

P

-p command-line option, 146
packages, 296
parameter lists
empty, 62
variable length, 60
parent directory, 199
Parrott (interpreter), 7
partial-evaluation operators, 166
pattern match (m//) operator, 117
in list context, 140
pattern matching, 221
(see also regular expressions)
smart matching, 221-230
patterns, 107
(see also regular expressions)
test program for, 132
Perl
compilation of programs, 15
converting other languages to, 312
creating programs, 12
example program, 16
exceptions to the rules, 2
finding on different systems, 14
limitations of, 8
maintenance and support, 9
obtaining and installing, 8
recent developments, 7
situations for use of, 7
transferring programs among different
machines, 12
uses of, 4
Perl 5 Porters, 7
Perl 5.10, xi
new features, xv
using say instead of print command, 14
Perl Mongers, 10
Perl Package Manager (PPM), 171
perldoc, 17, 169, 295

Index | 323




perlfac, 295
permission bits, 181
$mode variable, 186
permission values, 203
permissions, modifying, 205
persistent, private variables in subroutines, 68
pipelines, 82
.pm (Perl module) file extension, 170
pop operator, 45
portability, 2
ports of Perl to non-Unix systems, 9
POSIX module, 301
postdecrement, 155
postincrement, 155
pragmas, 302
diagnostics, 26
strict-clean, 68
use strict, 64
warnings, 26, 85
precedence
operator, 31, 167
in regular expressions, 130
in smart matching, 224
predecrement, 155
preincrement, 154
print command, 13
print operator, 29
output to standard output, 76
printf function, 81
printf operator, 79
procedures, 55
processes, 233-246
avoiding use of the shell, 235
background, 234
as filehandles, 241
forking, 243
launching a child process with system
function, 233
management of, answers to exercises, 292
sending and receiving signals, 244
programming concepts, basic, xi
programming languages, converting to Perl,
312
programs, contents and formatting, 14
prototypes, subroutine, 67
Pugs, 7
push operator, 45

Q

quantifiers, 109

general, 129
non-greedy, 141
precedence in regular expressions, 130

quotation marks

unquoted hash keys, 254
using with interpolated arrays, 91

qw (quoted words) shortcut, 42

R

\R (line breaks), matching in regular

expressions, 115

range operator ( . .)

returning list of values, reversed order, 67

range operator (. .), 42
readdir operator, 195
readline operator, 194
readlink function, 203

redo operator, 161
references, 310

regular expressions, 107-116

anchors, 120

answers to exercises, 272

automatic match variables, 128

binding operator (=~), 121

character classes, 113

documentation, 131

globs versus, 108

interpolating into patterns, 122

join function, 139

m// (pattern match) operator in list context,
140

match variables, 123

matching multiple lines of text, 143

matching with,answers to exercises, 273

named captures, 126

non-capturing parentheses, 125

non-greedy quantifiers, 141

option modifiers, 118, 137

pattern test program, 132

processing text, answers to exercises, 275

quantifiers, 109, 129

regular pattern matching, 228

resources for further information, 296

smart matching, 221

split operator, 138

substitutions with s/// operator, 135-138

324 | Index



updating many files, 143
using simple patterns, 108
relative back references, xv, 112

rename function, 197

reports, templates for, 306

return operator, 65

return values, subroutine, 56

reverse operator, 48
descending order sorts, 216
returns in list and scalar context, 51

rindex function, 210

rmdir function, 196, 204

rmtree function, 204

rounding numbers, 212

S

\S (nonwhitespace) character, matching in
regular expressions, 115
\s (space) character class, 114
/s modifier, matching any character with, 118
s/// (substitution) operator, 135-138
case shifting, 137
changing delimiters, 136
changing target with =~ (binding) operator,
137
global replacements with /g, 136
using in multiline string, 143
say command, 13
say function, 90
scalar context, 50
example expressions providing, 51
forcing, 52
list slice, 256
using list-producing expressions, 50
scalar values, 19-38
answers to exercises, 261
assignment for variables, 28
interpolation of variables into strings, 29
numbers, 19
operator precedence and associativity, 31
printing program output, 29
subroutine returns, non-scalar values, 67
using scalar-producing expressions in list
context, 52
variables, 27
scope
match variables, 124
my namespace, 226
my variable, 180

temporary lexical variables, 153
security, 307
CGI programs, 308
sequence in regular expressions, 130
shell prompt, 13
shell scripts, converting to Perl, 312
shells
avoiding use of, 235
environment variables, 105
filename matching patterns (globs), 108
metacharacters, 234
working directory, 191
shift operator, 46
short-circuit logical operators, 164
shortcuts, 5
side effects of controlled expressions, 166
signals, sending and receiving, 244
single-quoted string literals, 22
single-quoted strings
interpolation of assigned lists, 46
qw lists within, 43
size in bytes (files), 187
slices, 254-259
array, 256
hash, 258
list items, 254
small arrow (->), 175
smart match operator (~~), 221-227
smart matching, 221
answers to exercises, 288
mixing with dumb matching, 228
order of operands, 223
situations in which it isn't used, 229
using with given-when control structure,
225
sockets, 307
soft links, 201
(see also symbolic links)
sort command, 78
sort operator, 49
context, 51
sorting, 214-220
a hash by multiple keys, 218
a hash by value, 217
using sort subroutine, 214
splice operator, 306
split operator, 138
sprintf function, 212
formatting currency figures, 212

Index | 325




stacking file test operators, 184 invoking, 56

standard error stream (STDERR), 83 lexical (my) variables, 63
standard input stream (STDIN), 82 non-scalar return values, 67
standard output stream (STDOUT), 82 omitting ampersand in calls, 66
stat function, 186 persistent, private variables, 68
state variables, 68 private variables in, 60
statements, 15 return operator, 65
STDERR, 82 return values, 56
<STDIN> operator, 34, 82 use strict pragma, 64
in list context, 52 variable-length parameter lists, 60
returning undef value, 37 substitution operator (see s///)
STDOUT, 82 substr operator, 210
strict-clean pragma, 68 substrings
string concatenation operator (.), 24 finding, using an index, 209
string repetition operator (x), 24 manipulating with substr, 210
strings, 22-25, 209 support for Perl, 9
in arrays, 40 switch statement, xvi
arrays of, 44 emulating, 154
bitstrings, 189 symbolic links, 201
comparing, operators for, 32 getting information on, 187
comparison operators, 33 implementation on non-Unix systems, 203
conversions between numbers and, 25 symbols, import lists, 174
conversions by printf format string, 80 symlink function, 201
double-quoted string literals, 23 Sys::Hostname module, 301
finding a substring using and index, 209 system databases, 304
formatting with sprintf, 212 system function, 233
hash key, 93 System V IPC, 307
interpolating array slices into, 257
interpolating arrays into, 46 T

interpolating hash slices into, 259
interpolation of scalar variables, 29
joining pieces into a single string, 139
literals, 22
multiline quoting (Here documents), 305
octal representation, 204
operators for, 24
shell metacharacters, escaping, 234
single-quoted string literals, 22
sorting, 214, 285
splitting, 138
substrings, manipulating, 210
structured programming languages, 158
stty command, 52
sub keyword, 55
subroutines, 55-70
anonymous, 311
answers to exercises, 265
arguments, 58
defining, 55

ternary operator (?:), 162
using as control structure, 167
text editors, 12
text files, 182
text mode, 12
text processing with regular expressions, 135—
146
answers to exercises, 275
Text::Wrap module, 301
threads, 314
tied variables, 311
time function, 188, 206
Time::Local module, 302
timelocal function, 302
timestamps, 187
changing, 206
converting to human-readable form, 187
Tk modules, 314
toolbox for Unix, xi
tr/// (transliteration) operator, 305

326 | Index




truth value, 36

U

\U (uppercase) escape, 137
undef values, 36
in arrays, 40
context and, 52
creating, 38
items assigned to a list, 255
in list assignment, 44
Unicode, 314
Universal Time, 188
Unix
#! (shebang) line, 14
file and directory model, 198
marking executable programs, 13
text editors for programming, 12
toolbox, xi
unless loop, 149
else clause, 150
unlink function, 203
unlink operator, 196
unshift operator, 46
until loop, 150
unwinding a hash, 98
use directive, 172
use strict pragma, 64, 303
use warnings pragma, 79
Usenet newsgroups, 10
user input, 34
user-defined functions (see subroutines)
user-1D (uid), 187
users' groups, 10
utime function, 206

v

\v (vertical) whitespace, 115
values function, 100
variable interpolation, 29
variable-interpolated string literals, 24
variable-length parameter lists, 60
variables, 27

automatic match, 128

built-in, 309

declaration of, 15

default, 5

lexical, 63

list values assigned to, 43

match, 123
naming, 27
persistent, private variables, 68
private, in subroutines, 60
scalar, 27
scope of, 153
tied, 311
use strict pragma with, 64
vars pragma, 304
vec operator, 306
vi, 12
void context, 45

]

-w (warnings) command-line option, 79, 85
\W (nonword) character, matching in regular
expressions, 115
-w (warnings) command-line option, 146
\w (word character), matching in regular
expressions, 114
Wall, Larry, 7
warning messages, creating with warn function,
88
warnings, 196
built into Perl, 26
warnings pragma, 85, 304
web applications, 307
web communities, Perl discussions, 11
web site for this book, xiii
Web, Perl and, 8
when clauses
given statement, 225
with many items, in given-when statement,
229
mixed smart and dumb matching, 228
while loop, 36, 152
exiting with last operator, 159
reading lines of input from diamond
operator, 160
whitespace
adding to a pattern with /x, 118
in character classes, 114
character classes in Perl 5.10, 115
collapsing, 136
leading whitespace in filehandles, 84
quoted by whitespace (qw) shortcut, 42
\s (space) character class, 114
stripping leading and trailing whitespace,
136

Index | 327




Windows systems

ActivePerl, xi

filename globbing, 193

indicating end-of-file with Control-Z, 53
word anchors (regular expression), 120
word processors, 12

X

x (string repetition) operator, 24, 81

/x modifier, adding whitespace to a pattern,
118

xor operator, 189

328 | Index



About the Authors

Randal L. Schwartz is a two-decade veteran of the software industry. He is skilled in
software design, system administration, security, technical writing, and training. Ran-
dal has coauthored the “must-have” standards: Programming Perl, Learning Perl,
Learning Perl for Win32 Systems, and Effective Perl Learning, and is a regular columnist
for WebTechniques, PerformanceComputing, SysAdmin, and Linux Magazine.

He is also a frequent contributor to the Perl newsgroups, and has moderated
comp.lang.perl.announce since its inception. His offbeat humor and technical mastery
have reached legendary proportions worldwide (but he probably started some of those
legends himself). Randal’s desire to give back to the Perl community inspired him to
help create and provide initial funding for The Perl Institute. He is also a founding board
member of the Perl Mongers (perl.org), the worldwide Perl grassroots advocacy
organization. Since 1985, Randal has owned and operated Stonehenge Consulting
Services, Inc. Randal can be reached for comment at merlyn@stonehenge.com, and
welcomes questions on Perl and other related topics.

Tom Phoenix has been working in the education field since 1982. After more than
thirteen years of dissections, explosions, work with interesting animals, and high-
voltage sparks during his work at a science museum, he started teaching Perl classes
for Stonehenge Consulting Services, where he’s worked since 1996. Since then, he has
traveled to many interesting locations, so you might see him soon at a Perl Mongers
meeting. When he has time, he answers questions on Usenet’s comp.lang.perl.misc and
comp.lang.perl.moderated newsgroups, and contributes to the development and use-
fulness of Perl. Besides his work with Perl, Perl hackers, and related topics, Tom spends
his time on amateur cryptography and speaking Esperanto. He lives in Portland,
Oregon.

brian d foy has been an instructor for Stonehenge Consulting Services since 1998, a
Perl user since he was a physics graduate student, and a die-hard Mac user since he first
owned a computer. He founded the first Perl user group, the New York Perl Mongers,
as well as the Perl advocacy nonprofit Perl Mongers, Inc., which helped form more than
200 Perl user groups across the globe. He maintains the perlfaq portions of the core
Perl documentation, several modules on CPAN, and some standalone scripts. He’s the
publisher of The Perl Review, a magazine devoted to Perl, and is a frequent speaker at
conferences including the Perl Conference, Perl University, MarcusEvans Biolnformat-
ics 02, and YAPC. His writings on Perl appear in The O’Reilly Network, The Perl
Journal, Dr. Dobbs, and The Perl Review, on use.perl.org, and in several Perl Usenet
groups.

Colophon

The animal on the cover of Learning Perl, Fifth Edition is a llama (Lama glama), a
relation of the camel native to the Andean range. Also included in this llamoid group




is the domestic alpaca and their wild ancestors, the guanaco and the vicufia. Bones
found in ancient human settlements suggest that domestication of the alpaca and the
llama dates back about 4,500 years. In 1531, when Spanish conquistadors overran the
Inca Empire in the high Andes, they found both animals present in great numbers.
These llamas are suited for high mountain life; their hemoglobin can take in more
oxygen than that of other mammals.

Llamas can weigh up to 300 pounds and are mostly used as beasts of burden. A pack-
train may contain several hundred animals and can travel up to 20 miles per day. Llamas
will carry loads up to 50 pounds, but have a tendency to be short-tempered and resort
to spitting and biting to demonstrate displeasure. To other people of the Andes, llamas
also provide meat, wool for clothing, hides for leather, and fat for candles. Their wool
can also be braided into ropes and rugs, and their dried dung is used for fuel.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.



	Table of Contents
	Preface
	Typographical Conventions
	How to Contact Us
	Using Code Examples
	Safari® Enabled
	History of This Book
	Acknowledgments

	Chapter 1. Introduction
	Questions and Answers
	Is This the Right Book for You?
	Why Are There So Many Footnotes?
	What About the Exercises and Their Answers?
	What Do Those Numbers at the Start of the Exercise Mean?
	What If I’m a Perl Course Instructor?

	What Does “Perl” Stand For?
	Why Did Larry Create Perl?
	Why Didn’t Larry Just Use Some Other Language?
	Is Perl Easy or Hard?
	How Did Perl Get to Be So Popular?
	What’s Happening with Perl Now?
	What’s Perl Really Good For?
	What Is Perl Not Good For?

	How Can I Get Perl?
	What Is CPAN?
	How Can I Get Support for Perl?
	Are There Any Other Kinds of Support?
	What If I Find a Bug in Perl?

	How Do I Make a Perl Program?
	A Simple Program
	What’s Inside That Program?
	How Do I Compile Perl?

	A Whirlwind Tour of Perl
	Exercises

	Chapter 2. Scalar Data
	Numbers
	All Numbers Have the Same Format Internally
	Floating-Point Literals
	Integer Literals
	Nondecimal Integer Literals
	Numeric Operators

	Strings
	Single-Quoted String Literals
	Double-Quoted String Literals
	String Operators
	Automatic Conversion Between Numbers and Strings

	Perl’s Built-in Warnings
	Scalar Variables
	Choosing Good Variable Names
	Scalar Assignment
	Binary Assignment Operators

	Output with print
	Interpolation of Scalar Variables into Strings
	Operator Precedence and Associativity
	Comparison Operators

	The if Control Structure
	Boolean Values

	Getting User Input
	The chomp Operator
	The while Control Structure
	The undef Value
	The defined Function
	Exercises

	Chapter 3. Lists and Arrays
	Accessing Elements of an Array
	Special Array Indices
	List Literals
	The qw Shortcut

	List Assignment
	The pop and push Operators
	The shift and unshift Operators

	Interpolating Arrays into Strings
	The foreach Control Structure
	Perl’s Favorite Default: $_
	The reverse Operator
	The sort Operator

	Scalar and List Context
	Using List-Producing Expressions in Scalar Context
	Using Scalar-Producing Expressions in List Context
	Forcing Scalar Context

	<STDIN> in List Context
	Exercises

	Chapter 4. Subroutines
	Defining a Subroutine
	Invoking a Subroutine
	Return Values
	Arguments
	Private Variables in Subroutines
	Variable-Length Parameter Lists
	A Better &max Routine
	Empty Parameter Lists

	Notes on Lexical (my) Variables
	The use strict Pragma
	The return Operator
	Omitting the Ampersand

	Nonscalar Return Values
	Persistent, Private Variables
	Exercises

	Chapter 5. Input and Output
	Input from Standard Input
	Input from the Diamond Operator
	The Invocation Arguments
	Output to Standard Output
	Formatted Output with printf
	Arrays and printf

	Filehandles
	Opening a Filehandle
	Bad Filehandles
	Closing a Filehandle

	Fatal Errors with die
	Warning Messages with warn

	Using Filehandles
	Changing the Default Output Filehandle

	Reopening a Standard Filehandle
	Output with say
	Exercises

	Chapter 6. Hashes
	What Is a Hash?
	Why Use a Hash?

	Hash Element Access
	The Hash As a Whole
	Hash Assignment
	The Big Arrow

	Hash Functions
	The keys and values Functions
	The each Function

	Typical Use of a Hash
	The exists Function
	The delete Function
	Hash Element Interpolation

	The %ENV hash
	Exercises

	Chapter 7. In the World of Regular Expressions
	What Are Regular Expressions?
	Using Simple Patterns
	About Metacharacters
	Simple Quantifiers
	Grouping in Patterns
	Alternatives

	Character Classes
	Character Class Shortcuts
	Negating the Shortcuts

	Exercises

	Chapter 8. Matching with Regular Expressions
	Matches with m//
	Option Modifiers
	Case-Insensitive Matching with /i
	Matching Any Character with /s
	Adding Whitespace with /x
	Combining Option Modifiers
	Other Options

	Anchors
	Word Anchors

	The Binding Operator, =~
	Interpolating into Patterns
	The Match Variables
	The Persistence of Memory
	Noncapturing Parentheses
	Named Captures
	The Automatic Match Variables

	General Quantifiers
	Precedence
	Examples of Precedence
	And There’s More

	A Pattern Test Program
	Exercises

	Chapter 9. Processing Text with Regular Expressions
	Substitutions with s///
	Global Replacements with /g
	Different Delimiters
	Option Modifiers
	The Binding Operator
	Case Shifting

	The split Operator
	The join Function
	m// in List Context
	More Powerful Regular Expressions
	Nongreedy Quantifiers
	Matching Multiple-Line Text
	Updating Many Files
	In-Place Editing from the Command Line

	Exercises

	Chapter 10. More Control Structures
	The unless Control Structure
	The else Clause with unless

	The until Control Structure
	Expression Modifiers
	The Naked Block Control Structure
	The elsif Clause
	Autoincrement and Autodecrement
	The Value of Autoincrement

	The for Control Structure
	The Secret Connection Between foreach and for

	Loop Controls
	The last Operator
	The next Operator
	The redo Operator
	Labeled Blocks

	The Ternary Operator, ?:
	Logical Operators
	The Value of a Short-Circuit Operator
	The defined-or Operator
	Control Structures Using Partial-Evaluation Operators

	Exercises

	Chapter 11. Perl Modules
	Finding Modules
	Installing Modules
	Using Simple Modules
	The File::Basename Module
	Using Only Some Functions from a Module
	The File::Spec Module
	CGI.pm
	Databases and DBI

	Exercise

	Chapter 12. File Tests
	File Test Operators
	Testing Several Attributes of the Same File
	Stacked File Test Operators

	The stat and lstat Functions
	The localtime Function
	Bitwise Operators
	Using Bitstrings

	Exercises

	Chapter 13. Directory Operations
	Moving Around the Directory Tree
	Globbing
	An Alternate Syntax for Globbing
	Directory Handles
	Recursive Directory Listing
	Manipulating Files and Directories
	Removing Files
	Renaming Files
	Links and Files
	Making and Removing Directories
	Modifying Permissions
	Changing Ownership
	Changing Timestamps
	Exercises

	Chapter 14. Strings and Sorting
	Finding a Substring with index
	Manipulating a Substring with substr
	Formatting Data with sprintf
	Using sprintf with “Money Numbers”

	Advanced Sorting
	Sorting a Hash by Value
	Sorting by Multiple Keys

	Exercises

	Chapter 15. Smart Matching and given-when
	The Smart Match Operator
	Smart Match Precedence
	The given Statement
	Dumb Matching

	when with Many Items
	Exercises

	Chapter 16. Process Management
	The system Function
	Avoiding the Shell

	The exec Function
	The Environment Variables
	Using Backquotes to Capture Output
	Using Backquotes in a List Context

	Processes as Filehandles
	Getting Down and Dirty with Fork
	Sending and Receiving Signals
	Exercises

	Chapter 17. Some Advanced Perl Techniques
	Trapping Errors with eval
	Picking Items from a List with grep
	Transforming Items from a List with map
	Unquoted Hash Keys
	Slices
	Array Slice
	Hash Slice

	Exercise

	Appendix A. Exercise Answers
	Answers to Chapter 2 Exercises
	Answers to Chapter 3 Exercises
	Answers to Chapter 4 Exercises
	Answers to Chapter 5 Exercises
	Answers to Chapter 6 Exercises
	Answers to Chapter 7 Exercises
	Answers to Chapter 8 Exercises
	Answers to Chapter 9 Exercises
	Answers to Chapter 10 Exercises
	Answer to Chapter 11 Exercise
	Answers to Chapter 12 Exercises
	Answers to Chapter 13 Exercises
	Answers to Chapter 14 Exercises
	Answers to Chapter 15 Exercises
	Answers to Chapter 16 Exercises
	Answer to Chapter 17 Exercise

	Appendix B. Beyond the Llama
	Further Documentation
	Regular Expressions
	Packages
	Extending Perl’s Functionality
	Libraries
	Modules
	Finding and Installing Modules
	Writing Your Own Modules

	Some Important Modules
	The CGI Modules
	The Cwd Module
	The Fatal Module
	The File::Basename Module
	The File::Copy Module
	The File::Spec Module
	The Image::Size Module
	The Net::SMTP Module
	The POSIX Module
	The Sys::Hostname Module
	The Text::Wrap Module
	The Time::Local Module

	Pragmas
	The constant Pragma
	The diagnostics Pragma
	The lib Pragma
	The strict Pragma
	The vars Pragma
	The warnings Pragma

	Databases
	Direct System Database Access
	Flat-file Database Access

	Other Operators and Functions
	Transliteration with tr///
	Here Documents

	Mathematics
	Advanced Math Functions
	Imaginary and Complex Numbers
	Large and High-Precision Numbers

	Lists and Arrays
	map and grep
	The splice Operator

	Bits and Pieces
	Formats
	Networking and IPC
	System V IPC
	Sockets

	Security
	Debugging
	The Common Gateway Interface (CGI)
	Command-Line Options
	Built-in Variables
	Syntax Extensions
	References
	Complex Data Structures
	Object-Oriented Programming
	Anonymous Subroutines and Closures

	Tied Variables
	Operator Overloading
	Dynamic Loading
	Embedding
	Converting Other Languages to Perl
	Converting find Command Lines to Perl
	Command-Line Options in Your Programs
	Embedded Documentation
	More Ways to Open Filehandles
	Locales and Unicode
	Threads and Forking
	Graphical User Interfaces (GUIs)
	And More…

	Index



