Why Does 2+2=5986%

o

Practical C

Programming

O’REILLY- Steve Oudlline

Practical C Programming, 3rd Edition

By Steve Oualline

3rd Edition August 1997
ISBN: 1-56592-306-5

This new edition of "Practical C Programming" teaches users not only the mechanics or
programming, but also how to create programs that are easy to read, maintain, and
debug. It features more extensive examples and an introduction to graphical

development environments. Programs conform to ANSI C.

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

Table of Contents

Pref ace

How Thi s Book is Organized
Chapter by Chapter

Notes on the Third Edition
Font Conventi ons

Obt ai ni ng Source Code
Comments and Questions

Acknowl edgnent s
Acknow edgnents to the Third Edition

|. Basics

1. What Is C?
How Programm ng Wor ks
Brief History of C
How C Wor ks
How to Learn C

2. Basics of Program Witing
Prograns from Conception to Execution
Creating a Real Program
Creating a Program Using a Comand- Li ne Conpil er
Creating a Program Using an Integrated Devel opnent Environnment
Getting Hel p on UNI X
Getting Help in an Integrated Devel opnent Environment
| DE Cookbooks
Pr ogrammi ng Exerci ses

3. Style
Common Codi ng Practices
Codi ng Religion
I ndent ati on and Code For mat
Clarity
Sinplicity
Sunmmary

4. Basic Declarations and Expressions
El enents of a Program
Basi ¢ Program Structure
Si npl e Expressions
Vari abl es and Storage

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Vari abl e Decl arations

I nt egers

Assi gnment Statenents

printf Function

Fl oati ng Poi nt

Fl oati ng Poi nt Versus |nteger
Characters

Answer s

Programmi ng Exerci ses

Arrays

Strings

Readi ng Strings

Mul tidi mensi onal Arrays
Readi ng Nunbers
Initializing Variables
Types of Integers
Types of Floats

Const ant Decl arati ons

Di vi de

5. Arrays, Qualifiers, and Readi ng Nunbers

Hexadeci mal and Octal Constants
Operators for Perform ng Shortcuts

Side Effects

++X O X++

More Side-Effect Problens
Answer s

Programmi ng Exerci ses

6. Decision and Control Statenents

i f Statement

el se Statement

How Not to Use strcnp
Loopi ng St atenents
whi | e St at enent

break Statenent
continue Statenent

Assi gnment Anywhere Side Effect

Answer
Pr ogrammi ng Exerci ses

7. Progranmm ng Process

Setting Up
Speci fication

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Code Design

Pr ot ot ype

Makefil e

Testing

Debuggi ng

Mai nt enance

Revi si ons

El ect roni ¢ Archaeol ogy
Mar ki ng Up the Program
Usi ng the Debugger

Text Editor as a Browser
Add Conments

Programr ng Exerci ses

Il. Sinple Progranmm ng

8. Modre Control Statenents
for Statenent
swi tch Statenent
switch, break, and continue
Answer s
Pr ogrammi ng Exerci ses

9. Variabl e Scope and Functi ons
Scope and Cl ass
Functi ons
Functions with No Paranmeters
Structured Progranm ng
Recur si on
Answer s
Programmi ng Exerci ses

10. C Preprocessor
#define Statenent
Condi tional Conpil ation
include Files
Par amet eri zed Macr os
Advanced Features
Summary
Answer s
Programmi ng Exerci ses

11. Bit Operations
Bit Operators
The and Operator (&)

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Bitwise or (]|)

The Bitw se Exclusive or (%)

The Ones Conpl enent Operator (Not) (-~)

The Left- and Right-Shift Operators (<<, >>)
Setting, Clearing, and Testing Bits

Bi t mmpped Graphics

Answer s

Programr ng Exerci ses

12. Advanced Types
Structures
Uni ons
typedef
enum Type
Casting
Bit Fields or Packed Structures
Arrays of Structures
Sunmmary
Programmi ng Exerci ses

13. Sinple Pointers
Poi nters as Function Argunents
const Pointers
Poi nters and Arrays
How Not to Use Pointers
Using Pointers to Split a String
Poi nters and Structures
Command- Li ne Argunents
Programmi ng Exerci ses
Answer s

14. File | nput/Cutput
Conversi on Routi nes
Bi nary and ASCI| Files
The End-of-Line Puzzle
Binary 1/0
Buf feri ng Probl ens
Unbuffered 1/0O
Designing File Formats
Answer s
Pr ogrammi ng Exerci ses

15. Debuggi ng and Optini zation
Debuggi ng
I nteractive Debuggers

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Debuggi ng a Binary Search

Runtime Errors

The Confessional Method of Debuggi ng
Optim zation

Answer s

Programr ng Exerci ses

16. Fl oating Point
Fl oat i ng- Poi nt For mat
Fl oati ng Addition/ Subtraction
Mul tiplication
Di vi si on
Overfl ow and Underfl ow
Roundoff Error
Accur acy
M ni m zi ng Roundoff Error
Det er mi ni ng Accur acy
Preci si on and Speed
Power Series
Programmi ng Exerci ses

I11. Advanced Progranm ng Concepts

17. Advanced Pointers
Poi nters and Structures
free Function
Li nked Li st
Structure Pointer Operator
Ordered Linked Lists
Doubl e- Li nked Lists
Trees
Printing a Tree
Rest of Program
Data Structures for a Chess Program
Answer s
Programmi ng Exerci ses

18. Mbdul ar Progranmi ng

Modul es

Public and Private

The extern Modifier

Header s

The Body of the Mdul e

A Programto Use Infinite Arrays

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The Makefile for Multiple Files
Using the Infinite Array

Di viding a Task into Mdul es

Modul e Di vi si on Exanpl e: Text Editor

Conpi | er

Spr eadsheet

Mbdul e Desi gn Gui del i nes
Programmi ng Exerci ses

19. Ancient Conpilers
K&R- Styl e Functions
Li brary Changes
M ssi ng Features
Free/ Mal | oc Changes
lint
Answer s

20. Portability Probl ens
Modul arity
Word Size
Byte Order Problem
Ali gnnent Probl em
NULL Poi nter Probl em
Fi | ename Probl ens
File Types
Summary
Answer s

21. C s Dustier Corners
do/ whi l e
goto
The ?: Construct
The , Operator
volatile Qualifier
Answer

22. Putting It Al Together
Requi renment s
Speci fication
Code Design
Codi ng
Functi onal Description

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Expandabi lity

Testing

Revi si ons

A Final Warning
Program Fil es
Programmi ng Exerci ses

23. Programmi ng Adages
Gener al
Desi gn
Decl ar ati ons
swi tch Statenent
Pr epr ocessor
Style
Compi i ng
Fi nal Note
Answer

IV. O her Language Features

A. ASCI| Table

B. Ranges and Paraneter Passing Conversions

C. (perator Precedence Rul es

D. A Programto Conpute a Sine Using a Power Series

d ossary

| ndex

—_
FlyrHeart.com

TEAM FLY PRESENTS

Preface

This book is devoted to practical C programming. C is currently the
premier language for software developers. That's because it's widely
distributed and standard. Newer languages are available, such as
C++, but these are still evolving. C is still the language of choice for
robust, portable programming.

This book emphasizes the skills you will need to do real-world
programming. It teaches you not only the mechanics of the C
language, but the entire life cycle of a C program as well (including the
program's conception, design, code, methods, debugging, release,
documentation, maintenance, and revision).

Good style is emphasized. To create a good program yo u must do
more than just type in code. It is an art in which writing and
programming skills blend themselves together to form a masterpiece.
True art can be created. A well-written program not only functions
correctly, but is simple and easy to understand. Comments allow the
programmer to include descriptive text inside the program. When
clearly written, a commented program is highly prized.

A program should be as simple as possible. A programmer should
avoid clever tricks. This book stresses simple, practical rules. For
example, there are 15 operator precedence rules in C. These can be
simplified into two rules:

1. Multiply and divide come before add and subtract.
2. Put parentheses around everything else.

Consider two programs. One was written by a clever programmer
using all the tricks. The program contains no comments, but it works.
The other program is well commented and nicely structured, but it
doesn't work. Which program is more useful? In the long run, the
broken one. It can be fixed. Although the clever program works now,
sooner or later all programs have to be modified. The worst thing that
you will ever have to do is to modify a cleverly written program.

This handbook is written for people with no previous programming
experience or programmers who already know C and want to improve
their style and reliability. You should have access to a computer and

—
FlyrHeart.com 4

TEAM FLY PRESENTS

know how to use the basic functions such as a text editor and the
filesystem.

Specific instructions are given for producing and running programs
using the UN IX operating system with a generic cc compiler or the
Free Software Foundation'sgcc compiler. For MS-DOS/Windows users,
instructions are included for Borland C++, Turbo C++, and Microsoft
Visual C++. (These compilers compile both C and C++ code.) The
book also gives examples of using the programming utility make for
automated program production.

How This Book is Organized

You must crawl before you walk. InPart | we teach you how to crawl.
These chapters enable you to write very simple programs. We start
with the mechanics of programming and programming style. Next,
you learn how to use variables and very simple decision and control
statements. In Chapter 7, we take you on a complete tour of the
software life cycle to show you how real programs are created.

Part 1l describes all of the other simple statements and operators that
are used in programming. You'll also learn how to organize these
statements into simple functions.

In Part 111 we take our basic declarations and statements and learn
how they can be used in the construction of advanced types such as
structures, unions, and classes. We'll also introduce the concept of
pointers. Finally, a number of miscellaneous features are described
Part 1V.

Chapter by Chapter

Chapter 1 gives a brief description of the C language and its use. This chapter
includes some background on the history of the language.

Chapter 2 explains the basic programming process and gives you enough
information to write a very simple program.

Chapter 3 discusses programming style. Commenting a program is covered, as well
as writing clear and simple code.

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 4 introduces you to simple C statements. Basic variables and the
assignment statement are covered in detail, along with arithmetic operators +, -, *,
/, and %.

Chapter 5 covers arrays and more co mplex variables. Shorthand operators such as
++ and %= are also described.

Chapter 6 explains simple decision statements including if, else, and for. A
discussion of == versus = is presented.

Chapter 7 takes you through all the necessary steps to create a simple program
from specification through release. Structured programming, fast prototyping, and
debugging are also discussed.

Chapter 8 describes additional control statements. Included arewhile, break, and
continue. The switch statement is discussed in detail.

Chapter 9 introduces local variables, functions, and parameters.

Chapter 10 describes the C preprocessor, which gives the programmer tremendous
flexibility in writing code. The chapter also provides the programmer with a
tremendous number of ways to mess up. Simple rules that help keep the
preprocessor from becoming a problem are described.

Chapter 11 discusses the logical C operators that work on bits.

Chapter 12 explains structures and other advanced types. The sizeof operator and
the enum type are included.

Chapter 13 introduces C pointer variables and shows some of their uses.

Chapter 14 describes both buffered and unbuffered input/output. ASCII and binary
files are discussed, and you are shown how to construct a simple file.

Chapter 15 describes how to de bug a program, as well as how to use an interactive
debugger. You are shown not only how to debug a program, but also how to write a
program so that it is easy to debug. This chapter also describes many optimization
techniques for making your program run faster and more efficiently.

Chapter 16 uses a simple decimal floating-point format to introduce you to the
problems inherent in floating point, such as roundoff error, precision lo ss, overflow,
and underflow.

Chapter 17 describes advanced uses of pointers for constructing dynamic structures
such as linked lists and trees.

10

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 18 shows how to split a program into several files and use modular
programming techniques. The make utility is explained in more detail.

Chapter 19 describes the old, pre-ANSI C language and associated compilers.
Although such compilers are rare today, a lot of code was written for them and there
are still a large number of programs out there that use the old syntax.

Chapter 20 describes the problems that can occur when you port a program (move
it from one machine to another).

Chapter 21 describes the do/while statement, the , operator, and the ? and :
operators.

Chapter 22 details the steps necessary to take a complex program from conception
to completion. Information-hiding and modular programming techniques are
emphasized.

Chapter 23 lists some programming adages that will help you construct good C
programs.

Appendix A lists the octal, hexadecimal, and decimal representations of the ASCII
character set that is now in almost universal use.

Appendix B lists the limits you can expect to come up against in handling numbers
with various sizes of memory allocation.

Appendix C lists those impossible-to-remember rules, to help you when you
encounter code written by rude people who didn't use enough parentheses.

Appendix D, illustrates the manipulation of floating -point (real) numbers, which did
not receive complete attention in the rest of the book.

The Appendix A defines many of the technical terms used throughout the book.

Computer languages are best learned by writing and debugging programs.
Sweating over a broken program at 2:00 in the morning only to find you typed "="
where you should have typed "= =" is a very effective learning experience. There
are many programming examples used throughout this book. Some examples don't
work as expected and are posed as questions for the reader to solve. You are
encouraged to enter each into your computer, run the program, and debug it. These
exercises will introduce you to common errors in short programs so that you will
know how to spot and correct them in larger programs of your own. You will find
answers to questions at the end of each chapter. Also, at the end of many chapters,
you will find a section called "Programming Exercises.”" These sections contain

11

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

exercises that might be used in a programming class to test your knowledge of C
programming.

Notes on the Third Edition

The C language has evolved since the first edition of Practical C Programmingwas
published. Back then, ANSI compilers were rare and compilers that accepted the
K&R syntax were common. Now the reverse is true.

The third edition reflects the industry shift to ANSI compilers. All programs and
examples have been updated to conform to the ANSI standard. In fact, the older
K&R syntax is discussed only in Chapter 19.

Other changes/additions to the book include:

Additional instructions for more compilers including a generic UNIX compiler,
the Free Software Foundations gcc compilers, Borland C++, Turbo C++, and
Microsoft Visual C++.

A completely rewritten Chapter 22. This chapter now uses a statistics
program that should be more relevant to a larger number of readers.

Finally, I am a practical person. | tend to believe that if you know what I mean and
I know what | mean, then the language has served its purpose. Throughout this
book, I use the word "he" to denote a programmer. A few people in the "Politically
Correct" crowd have labeled this practice as sexist. They also have labeled some
passages in the book as being violent or racist.

Please note that when | use "he," | refer to a programmer, with no regard to gender.
Secondly, when | suggest that some bad programmers should be shot, | do not
speak literally.

My style has always been to communicate things clearly, concisely, and with a bit of
humor. | regret any offense that this might cause anyone.

Font Conventions

The following conventions are used in this book:
Italic

is used for directories and filenames, and to emphasize new terms and
concepts when they are introduced. Italic is also used to highlight comments
in examples.

12

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Bold

is used for C keywords.

Constant Width

is used in text for programs and the elements of a program and inexamples
to show the contents of files or the output from commands. A reference in
text to a word or item used in an example or code fragment is also shown in
constantwidth font.

Const ant Bol d

is used in examples to show commands or other text that should be typed
literally by the user. (For example, r m f 0o instructs you to type "rm foo"
exactly as it appears in the text or example.)

Constant Italic

is used in examples to show variables for which a context specific
substitution should be made. (The variablefi | enane, for example, would be

replaced by some actual filename.)

are used to identify system messages or code fragments in explanatory text.

%

is the UNIX shell prompt.

[]

surround optional values in a description of program syntax. (The brackets
themselves should never be typed.)

stands for text (usually computer output) that's been omitted for clarity or to
save space.

The notationCTRL- X or* Xindicates use ofcontrol characters. The notation instructs
you to hold down the "control" key while typing the character "x". We denote other
keys similarly (e.g., RETURN indicates a carriage return).

All examples of command lines are followed by aRETURN unless otherwise indicated.

13

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Obtaining Source Code

The exercises in this book areavailable electronically by FTP and FTPMAIL. Use FTP
if you are directly on the Internet. Use FTPMAIL if you are not on the Internet but

can send and receive electronic mail to Internet sites. (This includes CompuServe
users.)

FTP

If you have an Internet connection (permanent or dialup), the easiest way to use
FTP is via your web browser or favorite FTP client. To get the examples, simply point
your browser to:

tto://t il oublished/oreillv/nutshell/ ical_ca/ I

If you don't have a web browser, you can use the command-line FTP client included
with Windows NT (or Windows 95). If you are on a PC, you can get examples.zip
instead of examples.tar.gz.

%ftp ftp.oreilly.com

Connected to ftp.oreilly.com

220 ftp.oreilly.comFTP server (Version 6.34 Thu Cct 22 14: 32: 01 EDT 1992)
ready.

Name (ftp.oreilly.comusernanme): anonynous

331 Guest login ok, send e-nmil address as password.

Passwor d: user name@ost nane Use your usernanme and host here
230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/practical _c3

250 CWD conmand successful .

ftp> binary

200 Type set to I.

ftp> get exanples.tar.gz

200 PORT command successful .

150 Openi ng Bl NARY node dat a connecti on for exanpl es.tar. gz (xxxx bytes).
226 Transfer conplete. |ocal: exercises renpte: exercises

xXxX bytes received in xxx seconds (xxx Kbytes/s)

ftp> quit

221 Goodbye.

%

14

—
FlyrHeart.com 4

TEAM FLY PRESENTS

FTPMAIL

FTP MAIL is a mail server available to anyone who can send electronic mail to, and
receive electronic mail from, Internet sites. Any company or service provider that
allows email connections to the Internet can access FTPMAIL.

You send mail to ftpmail@online.oreilly.com . In the message body, give the FTP
commands you want to run. The server will run anonymous FTP for you, and mail
the files back to you. To get a complete help file, send a message with no subject
and the single word "help"” in the body. The following is an example mail message
that gets the examples. This command sends you a listing of the files in the selected
directory and the requested example files. The listing is useful if you are interested
in a later version of the examples. If you are on a PC, you can get examples.zip
instead of examples.tar.gz.

Subj ect :

reply-to usernanme@ost name (Message Body) Where you want files
mai | ed

open

cd /published/oreilly/nutshell/practical _c3

dir

node bi nary

uuencode

get exanples.tar.gz

qui t

A signature at the end of the message is acceptable as long as it appears after
"quit."

Comments and Questions

We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472
1-800-998-9938 (in US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

15

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to:

info@oreilly.com (via the Internet)

To ask technical questions or comment on the book, send email to:

bookqguestions@oreilly.com (via the Internet)

We have a web site for the book, where we'll list examples, errata, and any plans for
future editions. You ca n access this page at:

http://www.oreilly.com/catalog/pcp3/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

16

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Acknowledgments

I wish to thank my father for his help in editing and Arthur Marquez for his aid in
formatting this book.

I am grateful to all the gang at the Writers' Haven and Bookstore, Pearl, Alex, and
Clyde, for their continued support. Thanks to Peg Kovar for help in editing. Special
thanks to Dale Dougherty for ripping apart my book and forcing me to put it
together right. My thanks also go to the production group of O'Reilly &
Associates—especially Rosanne Wagger and Mike Sierra—for putting the finishing
touches on this book. Finally, Jean Graham deserves a special credit for putting up

with my writing all these years.

17

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Acknowledgments to the Third Edition

Special thanks to Andy Oram, the technical editor. Thanks also to the production
staff at O'Reilly & Associates. Nicole Gipson Arigo was the project manager.
Clairemarie Fisher O'Leary and Sheryl Avruch performed quality control checks.
Mike Sierra worked with the tools to create the book. Chris Reilley and Robert
Romano fine-tuned the figures. Nancy Priest designed the interior book layout, and
Edie Freedman designed the front cover. Production assistance, typesetting, and
indexing provided by Benchmark Productions, Inc.

18

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Part I: Basics

This part of the book teaches you the basic constructs of the C language. When
you're finished, you'll be able to write well-designed and well-thought-out C
programs. Style is emphasized early so that you can immediately start writing
programs using a good programming style. Although you'll be limited to small
programs throughout this part, they'll be well-written ones.

Chapter 1 gives a brief description of the C language and its use. This chapter
includes some background on the history of the language.

Chapter 2 explains the basic programming process and gives you enough
information to write a very simple program.

Chapter 3 discusses programming style. Commenting a program is covered, as well
as writing clear and simple code.

Chapter 4 introduces you to simple C statements. Basic variables and the
assignment statement are covered in detail, along with arithmetic operators +, -, *,
/, and %.

Chapter 5 covers arrays and more complex variables. Shorthand operators such as
++ and %= are also described.

Chapter 6 explains simple decision statements including if, else, and for. A
discussion of == versus = is presented.

Chapter 7 takes you through all the necessary steps to create a simple program
from specification through release. Structured programming, fast prototyping, and
debugging are also discussed.

19

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Chapter 1. What Is C?

Profanity is the one language that all programmers understand.
—Anon.

The ability to organize and process information is the key to success in
the modern age. Computers are designed to handle and process large
amounts of information quickly and efficiently, but they can't do
anything until someone tells them what to do.

That's where C comes in. C is a programming language that allows a
software engineer to efficiently communicate with a computer.

C is a highly flexible and adaptable language. Since its creation in
1970, it's been used for a wide variety of programs including firmware
for micro-controllers, operating systems, applications, and graphics
programming.

C is one of the most most widely used languages in the world and is
fairly stable. An improved C language called C++ has been invented,
but it is still in development, and its definition is still being worked on.
C++, originally known as C with Classes, adds a number of new
features to the C language, the most important of which is the class.
Classes facilitate code reuse through object-oriented design (OOD).

Which is better, C or C++? The answer depends on who you talk to.
C++ does great things for you behind your back, such as
automatically calling constructors and destructors for variables. This
processing makes some types of programming easy, but it makes
static checking of programs difficult, and you need to be able to tell
exactly what your program is doing if you are working on embedded
control applications. So some people consider C++ the better
language because it does things automatically and C doesn't. Other
people consider C better for precisely the same reason.

Also, C++ is a relatively new language that's still changing. Much
more C code exists than C++ code, and that C code will need to be
maintained and upgraded. So C will be with us for a long time to
come.

20

—
FlyrHeart.com 4

TEAM FLY PRESENTS

1.1 How Programming Works

Communicating with computers is not easy. They require instructions
that are exact and detailed. It would be nice if we could write
programs in English. Then we could tell the computer, "Add up all my
checks and deposits, then tell me the total,” and the machine would
balance our checkbook.

But English is a lousy language when it comes to writing exact
instructions. The language is full of ambiguity and imprecision. Grace
Hopper, the grand old lady of computing, once commented on the
instructions she found on a bottle of shampoo:

Wash
Rinse
Repeat

She tried to follow the directions, but she ran out of shampoo.
(Wash-Rinse-Repeat. Wash-Rinse-Repeat. Wash-Rinse-Repeat...)

Of course, we can try to write in precise English. We'd have to be
careful and make sure to spell everything out and be sure to include
instructions for every contingency. But if we worked really hard, we
could write precise English instructions.

It turns out that there is a group of people who spend their time trying
to write precise English. They're called the government, and the
documents they write are called government regulations.
Unfortunately, in their effort to make the regulations precise, the
government has made them almost unreadable. If you've ever read
the instruction book that comes with your tax forms, you know what
precise English can be like.

Still, even with all the extra verbiage that the government puts in,
problems can occur. A few years ago California passed a law requiring
all motorcycle riders to wear a helmet. Shortly after this law went into
effect, a cop stopped a guy for not wearing one. The man suggested
the policeman take a cbser look at the law.

The law had two requirements: 1) that motorcycle riders have an
approved crash helmet and 2) that it be firmly strapped on. The cop
couldn't give the motorcyclist a ticket because he did have a helmet
firmly strapped on—to his knee.

21

—
FlyrHeart.com 4

TEAM FLY PRESENTS

So English, with all its problems, is out. Now, how do we communicate
with a computer?

The first computers cost millions of dollars, while at the same time a
good programmer cost about $15,000 a year. Programmers were
forced to program in a language in whic h all the instructions were
reduced to a series of numbers, called machine language. This
language could be directly input into the computer. A typical
machine -language program looks like:

1010 1111

0011 0111
0111 0110

and so on for several hundred instructions

While machines "think™ in numbers, people don't. To program these
ancient machines, software engineers would write their programs
using a simple language in which each word in the language stood for
a single instruction. This language was called assembly language
because the programmers had to hand translate, or assemble, each
line into machine code.

A typical program might look like:

Pr ogram Transl ati on
MOV A 47 1 010 1111
ADD A B 0011 0111
HALT 0111 0110

and so on for several hundred instructions

This process is illustrated by Figure 1-1.

Figure 1-1. Assembling a program

Assembly Assembly Machine-Language
Language (Transiation) Frogram

1010 1111
Q011 4111
J111 0114

Mo m, 47
ADD A B
HALT

22

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Translation was a difficult, tedious, and exacting task. One software
engineer decided that this was a perfect job for a computer, so he
wrote a program called an assembler that would do the job
automatically.

He showed his new creation tohis boss and was immediately chewed
out: "How dare you even think of using such an expensive machine for
a mere “clerical' task.” Given the cost of an hour of computer time
versus the cost of an hour of programmer time, this attitude was not
unreasonable.

Fortunately, as time passed the cost of programmers went up and the
cost of computers went down. So letting the programmers write
programs in assembly language and then using a program called an
assembler to translate them into machine language became very cost
effective.

Assembly language organized programs in a way that was easy for
the programmers to understand. However, the program was more
difficult for the machine to use. The program had to be translated
before the machine could execute it. This method was the start of a
trend. Programming languages became more and more convenient
for the programmer to use, and started requiring more and more
computer time for translation into something useful.

Over the years, a series of higher-level languages have been devised.
These languages attempt to let the programmer write in a medium
that is easy for him to understand, and that is also precise and simple
enough for the computer to understand.

Early high-level languages were designed to handle specific types of
applications. FORTRAN was designed for number crunching, COBOL
was for writing business reports, and PASCAL was for student use.
(Many of these languages have far outgrown their initial uses.
Nicklaus Wirth has been rumored to have said, "If I had known that
PASCAL was going to be so successful, | would have been more
careful in its design.")

1.2 Brief History of C

In 1970 a programmer, Dennis Ritchie, created a new language called
C. (The name came about because it superceded the old
programming language he was using: B.) C was designed with one
goal in mind: writing operating systems. The language was extremely

23

—
FlyrHeart.com 4

TEAM FLY PRESENTS

simple and flexible, and soon was used for many different types of
programs. It quickly became one of the most popular programming
languages in the world.

C's popularity was due to two major factors. The first was that the
language didn't get in the way of the programmer. He could do just
about anything by using the proper C construct. (As we will see, this
flexibility is also a drawback, as it allows the program to do things that
the programmer never intended.)

The second reason that C is popular is that a portable C compiler was
widely available. Consequently, people could attach a C compiler for
their machine easily and with little expense.

In 1980, Bjarne Stroustrup started working on a new language, called
"C with Classes.” This language improved on C by adding a number of
new features. This new language was improved and augmented, and
finally became C++.

One of the newest languages, Java, is based on C++. Java was
designed to be "C++ with the bugs fixed." At the time of this writing,
Java has limited use despite being heavily marketed by Sun
Microsystems and others.

1.3 How C Works

C is designed as a bridge between the programmer and the raw
computer. The idea is to let the programmer organize a program in a
way that he can easily understand. The compiler then translates the
language into something that the machine can use.

Computer programs consist of two main parts: data and instructions.
The computer imposes little or no organization on these two parts.
After all, computers are designed to be as general as possible. The
programmer should impose his organization on the computer, not the
other way around.

The data in a computer is stored as a series of bytes. C organizes
those bytes into useful data. Data declarations are used by the
programmer to describe the information he is working with. For
example:

int total; /* Total nunber accounts */

24

—
FlyrHeart.com 4

TEAM FLY PRESENTS

tells C that we want to use a section of the computers memory to
store an integer named t ot al . We let the compiler decide what

particular bytes of memory to use; that decision is a minor
bookkeeping detail that we don't want to worry about.

Our variable t ot al is a simple variable. It can hold only one integer

and describe only one total. A series of integers can be organized into
an array as follows:

i nt bal ance[100]; /* Balance (incents) for all 100 accounts
*/

Again, C will handle the details of imposing that organization on the
computer's memory. Finally, there are more complex data types. For
example, a rectangle might have a width, a height, a color, and a fill
pattern. C lets us organize these four items into one group called a
structure.

struct rectangle {

int wdth; /* Wdth of rectangle in pixels */
i nt height; /* Height of rectangle in pixels */
color _type color; /* Color of the rectangle */

fill _type fill; [* Fill pattern */

}

The point is that structures allow the programmer to arrange the data
to suit his needs no matter how simple or complex that data is.
Translation of this data description into something the computer can
use is the job of the compiler, not the programmer.

But data is only one part of a program. We also need instructions. As
far as the computer is concerned, it knows nothing about the layout of
the instructions. It knows what it's doing for the current instruction
and where to get the next one, but nothing more.

C is a high-level language. It lets us write a high-level statement like:

area = (base * height) / 2.0; /* Conpute area of triangle */

The compiler will translate this statment into a series of cryptic
low-level machine instructions. This sort of statement is called an
assignment statement. It is used to compute and store the value of an
arithmetic expression.

25

—
FlyrHeart.com 4

TEAM FLY PRESENTS

We can also use control statements to control the order of processing.
Statements like the if and switch statements enable the computer to
make simple decisions. Statements can be repeated over and over
again by using looping statements such as while and for.

Groups of statements can be wrapped to form functions. Thus, we
only have to write a general-purpose function to draw a rectangle
once, and then we can reuse it whenever we want to draw a new

rectangle.

C provides the program with a rich set of standard functions that
perform common functions such as searching, sorting, input, and
output.

A set of related functions can be grouped together in a single source
file. Many source files can be compiled and linked together to form a
program.

One of the major goals of the C language is to organize instructions
into reusable components. After all, you can write programs much
faster if you can "borrow" most of your code from somewhere else.
Groups of reusable functions can be combined into a library. In this
manner, when you need, for example, a sort routine, you can grab the

standard functiongsort from the library and link it into your program.

The data declarations, structures and control statements, and other C
language elements, are not for the computer's benefit. The computer
can't tell the difference between a million random bytes and a real
program. All the C language elements are designed to allow the
programmer to express and organize his ideas clearly in a manner
tailored to him, not to the computer.

Organization is the key to writing good programs. For example, in this
book you know that the Table of Contents is in the front and the Index
is in the back. We use this structure because books are organized that
way. Organization makes this book easier to use.

The C language lets you organize your programs using a simple yet
powerful syntax. This book goes beyond the C syntax and teaches you
style rules that enable you to make highly readable and reliable
programs. By combining a powerful syntax with good programming
style, you can create powerful programs that perform complex and
wonderful operations, yet are also organized in a way that makes
them easy for you to understand when change time comes around.

26

—
FlyrHeart.com 4

TEAM FLY PRESENTS

1.4 How to Learn C

Thereisonly one way to learn how to program and that is to write programs. You'll
learn a lot more by writing and debugging programs than you ever will by reading
this book. This book contains many programming exercises. You should try to do as
many of them as possib le. When you do the exercises, keep good programming
style in mind. Always comment your programs, even if you're only doing the
exercises for yourself. Commenting helps you organize your thoughts and keeps
you in practice when you go into the real world.

Don't let yourself be seduced by the idea that "I'm only writing these programs for
myself, so | don't need to comment them." First of all, code that looks obvious to a
programmer as he writes it is often confusing and cryptic when he revisits it a week
later. Writing comments also helps you to get organized before you write the actual
code. (If you can write out an idea in English, you're halfway to writing it in C.)

Finally, programs tend to be around far longer than expected. | once wrote a

program that was designed to work only on the computer at Caltech. The program
was highly system-dependent. Because | was the only one who would ever use it,
the program would print the following message if you got the command line wrong:

?LSTUIT User is a twit

A few years later, | was a student at Syracuse University, and the Secretary at the
School of Computer Science needed a program that was similar to my Caltech listing
program. So | adapted my program for her use. Unfortunately, | forgot about the
error message.

Imagine how horrified | was when | came into the Computer Science office and was
accosted by the Chief Secretary. This lady had so much power that she could make
the Dean cringe. She looked at me and said, "User is a twit, huh!" Luckily she had a
sense of humor, or | wouldn't be here today.

Sprinkled throughout this book are many broken programs. Spend the time to
figure out why they don't work. Often, the problem is very subtle, such as a
misplaced semicolon or the use of = instead of ==. These programs let you learn how
to spot mistakes in a small program. Then, when you make similar mistakes in a big
program, and you will make mistakes, you will be trained to spot them.

27

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Chapter 2. Basics of Program Writing

The first and most important thing of all, at least for writers today, is
to strip language clean, to lay it bare down to the bone.

—Ernest Hemingway

Programs start as a set of instructions written by a human being.
Before they can be used by the computer, they must undergo several
transformations. In this chapter, we'll learn how to enter a program,
transform it into something the machine can use, and run it. Detailed
steps are provided for the most popular UNIX and DOS/Windows
compilers.

2.1 Programs from Conception to Execution

C programs are written in a high-level language using letters,
numbers, and the other symbols you find on a computer keyboard.
Computers actually execute a very low-level language called machine
code (a series of numbers). So, before a program level can be used, it
must undergo several transformations.

Programs start out as an idea in a programmer's head. He uses a text
editor to write his thoughts into a file called a source file, containing
source code. This file is transformed by thecompiler into anobject file.
Next, a program called thelinker takes the object file, combines it
with predefined routines from a standard library, and produces an
executable program (a set of machine-language instructions). In the
following sections, we'll see how these various forms of the program
work together to produce the final program.

Eigure 2-1 shows the steps that must be taken to transform a
program written in a high-level language into a executable program.

28

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 2-1. Transformation of a high-level language

into a program

I High-Level Code ‘

I

[Compiler]

I Assembly Language Program ‘

[Assembler]

: _
I (Object Gode ‘

I Executable Program ‘

2.1.1 Wrappers

Fortunately you don't have to run the compiler, assembler, and linker

individually. Most C compilers use "wrapper" programs that
determine which tools need to be run and then run them.

Some programming systems go even further and provide the
developer with an Integrated Development Environment (IDE). The
IDE contains an editor, compiler, linker, project manager, debugger,
and more in one convenient package. Both Borland and Microsoft
provide IDEs with their compilers.

2.2 Creating a Real Program

Before we can actually start creating our own programs, we need to
know how to use the basic programming tools. In this section, we will
take you step by step through the process of entering, compiling, and
running a simple program.

29

—_
FlyrHeart.com

TEAM FLY PRESENTS

We will describe how to use two different types of compilers. The first
type is the standalone or command-line compiler. This type of
compiler is operated in a batch mode from the command line. In other
words, you type in a command, and the compiler turns your source
code into an executable program.

The other type of compiler is contained in an IDE. The IDE contains an
editor, compiler, project manager, and debugger in one package.

Most UNIX systems use command-line compilers. There are a few IDE
compilers available for UNIX, but they are rare. On the other hand,
almost every compiler for MS-DOS/Windows contains an IDE. For the
command-line die-hards, these compilers do contain a command-line
compiler as well.

2.3 Creating a Program Using a Command-Line

Compiler

In this section, we'll go through the step-by-step process needed to create a
program using a command-ine compiler. Instructions are provided for a generic
UNIX compiler (cc), the Free Software Foundation's gcc compiler, Turbo C++,
Borland C++, and Microsoft Visual C++.11

B ryurbo C++, Borland C++, and Microsoft Visual C++ are all C++ compilers that can also compile C code.

However, if you are using a Borland or Microsoft compiler, you might want to skip
ahead to the section on using the IDE.

2.3.1 Step 1. Create a Place for Your Program

You can more easily manage things if you create a separate directory for each
program that you're working on. In this case, we'll create a directory called hello to
hold our hello program.

On UNIX type:

% nkdir hello
% cd hello

On MS-DOS type:

C. > MKDI R HELLO
C.> CD HELLO

30

—
FlyrHeart.com 4

TEAM FLY PRESENTS

2.3.2 Step 2. Create the Program
A program starts out as a text file. Example 2 -1 shows our program in source form.

Example 2-1. hello/hello.c

[File: hello/hello.c]
#i ncl ude <stdio. h>

int main()

{
printf("Hello Wrld\n");
return (0);

}

Use your favorite text editor to enter the program. Your file should be named
hello.c.

MS-DOS/Windows users should not use a word
= processor such as MS-Word or WordPerfect to write
their programs. Word processors add formatting
codes to files, which confuse the compiler. You must
use atext editor such as the MS-DOS "EDIT" program
that is capable of editing ASCII files.

2.3.3 Step 3. Run the Compiler

The compiler takes the source file you've just made and converts it into an
executable program. Each compiler has a different command line. The commands
for the most popular compilers are listed below.

2.3.3.1 UNIX cc compiler (generic UNIX)

Most UNIX -based compilers follow the same generic standard. The C compiler is
named cc, and to compile our hello program we need the following command:

%cc -g -ohello hello.c

The - g option enables debugging. (The compiler adds extra information to the
program to make the program easier to debug.) The switch - ohel | o tells the
compiler that the program is to be called hel | 0, and the final hel | 0. ¢ is the name
of the source file. See your compiler manual for details on all the possible options.

31

—
FlyrHeart.com 4

TEAM FLY PRESENTS

There are several different C compilers for UNIX, so your command line may be
slightly different.

2.3.3.2 Free Software Foundation's gcc compiler

The Free Software Foundation, the GNU people, publish a number of high-quality

programs. (See the Glossary entry for information on how to get their software.)
Among their offerings is a C compiler calledgcc.

To compile a program using thegcc compiler use the following command line:
% gcc -g -Wall -ohello hello.c
The additional switch -Wal | turns on the warnings.

The GNU compiler contains several extensions to the basic C language. If you want
to turn these features off, use the following command line:

% gcc -g -Wall -ansi -pedantic -ohello hello.c

The switch- ansi turns off features of GNU C that are incompatible with ANSI C. The
- pedant i ¢ switch causes the compiler to issue a warning for any non-ANSI feature

it encounters.
2.3.3.3 Borland's Turbo C++ under MS-DOS

Borland International makes a low-cost MS-DOS C++ compiler called Turbo C++.
This compiler will compile both C and C++ code. We will describe only how to
compile C code. Turbo C++ is ideal for learning. The command line for Turbo C++
is:

C.:>tcc -ml -v -N-w -ehello hello.c

The - m tells Turbo C++ to use the large -memory model. (The PC has a large
number of different memory models. Only expert PC programmers need to know
the difference between the various models. For now, just use the large model until
you know more.)

The - v switch tells Turbo C++ to put debugging information in the program.
Warnings are turned on by - w; stack checking is turned on by - N. Finally - ehel | o
tells Turbo C++ to create a program namedHELLO withhel | 0. ¢ being the name of
the source file. See the Turbo C++ reference manual for a complete list of options.

32

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Windows Programming

You may wonder why we describe MS-DOS programming when
Windows is widely used. We do so because programming in
Windows is much more complex than programming in
MS-DOS.

For example, to print the message "Hello World" in MS-DOS,
you merely print the message.

In Windows, you must create a window, create a function to
handle the messages from that window, select a font, select a
place to put the font, and output the message.

You mustlearn to walk before you can run. Therefore, we limit
you to the MS-DOS or Easy-Win (Simplified Windows)
programs in this book.

2.3.3.4 Borland C++ under MS-DOS and Windows

In addition to Turbo C++, Borland International also makes a full-featured,
profe ssional compiler for MS-DOS/Windows called Borland C++. Its command line
is:

C.>bcc -m -v -N-P -w-ehello hello.c

The command-line options are the same for both Turbo C++ and Borland C++.

2.3.3.5 Microsoft Visual C++

Microsoft Visual C++ is another C++/ compiler for MS-DOS/Windows. To compile,
use the following command line:

C:>cl /AL /Zi /W hello.c

The / AL option tells the program to use the large memory model. Debugging is
turned on with the / Zi option and warnings with the/ W option.

2.3.4 Step 4. Execute the Program
To run the program (on UNIX or MS-DOS/Windows) type:

33

—
FlyrHeart.com 4

TEAM FLY PRESENTS

% hel |l o

and the message:

Hello Worl d

will appear on the screen.

2.4 Creating a Program Using an Integrated

Development Environment

Integrated Development Environments (IDEs) provide a one -stop shop for
programming. They take a compiler, editor, and debugger and wrap them into one
neat package for the program.

2.4.1 Step 1. Create a Place for Your Program

You can more easily manage things if you create a separate directory for each
program that you're working on. In this case, we'll create a directory called HELLO
to hold our hello program.

On MS-DOS type:

C.> MKDIR HELLO
C.> CD HELLO

2.4.2 Step 2. Enter, Compile, and Run Your Program

Using the IDE
Each IDE is a little different, so we've included separate instructions for each one.

2.4.2.1 Turbo C++

1. Start the Turbo C++ IDE with the command:
C.> TC

2. Select the Window|Close All menu item to clear the desktop of any old
windows. We'll want to start clean. The screen should look like Figure 2-2.

34

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 2-2. Clean desktop

Sumten commands and Transd er prograns

3. Select the Options|Compiler|Code Generation menu item to pull up the Code
Generation dialog as seen in Figure 2-3. Change the memory model to
Large.

Figure 2-3. Code Generation dialog

4] Treat enums as ints

[1 Word &l igmment

[1 Duplicate strings merged
[1 Unsigned characters

[] Pre—compiled headers

Lme large memory model (IMb for code, 1Mb for static data)

4. Select the Options|Compiler|Entry/Exit menu item and turn on "Test stack
overflow" as seen inFigure 2 4.

35
—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 2-4. Entry/Exit Code Generation dialog

L=

Bererate standacd S prologeeni log oo

Select the Options|Compiler|Messages|Display menu item to bring up the
Compiler Messages dialog as seen inFigure 2-5. Select All to display all the
warning messages.

Figure 2-5. Compiler Messages dialog

RL_COU TSN Cance L INNNT Help 1)

Eggss-H Stop After

Dsplay all warning messacps

6. Select theOptions|Save menu item to save all the options we've used so far.
7. Select the Project|Open menu item to select a project file. In this case, our
project file is called HELLO.PRJ. The screen should look like Eigure2 -6 when

you're done.

36
—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 2-6. Open Project File dialog

C :“HELLOM . FRJ
.. Directory Sep 20,1980 1Z:16am

Help Enter directory path and ©ile—name mask

8. Press the | NSERT key to add a file to the project. The file we want to add is
HELLO.C as seen in Figure 2-7.

Figure 2-7. Add to Project List dialog

C :~HELLOM= .CPP

Directory Sep 20,1980 12:16am

9. Press ESC to get out of the add-file cycle.
10.Press UP- ARROWto go up one line. The line with HELLO.C should now be
highlighted as seen in Figure 2-8.

37

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 2-8. Hello project

File name Locat ion

Dipt. L v Inz ludes

11.Press ENTER to edit this file.
12.Enter Example 2-2.

Example 2-2. hello/hello.c

[File: hello/hello.c]
#i ncl ude <stdio. h>

int main()

{
printf("Hello World\n");
return (0);

}

The results should look like Figure 2 -9.

38

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 2-9. Finished project

ftinclude <{stdic.h>

printf C"Hello Worldwn''l:

return (8);

6:2 — I
Project: HELLD ———1.
File name Locat ion Lines Code Data
« HELLD.C . A nea oA

F1 Help F2 Save F3 Crpery Alt-F9 Comnpile F9 Make FI10 Menu

13.Select the Run|Run menu item to execute the program.

14.After the program runs, control returns to the IDE. This control change
means that you can't see what your program output. To see the results of
the program you must switch to the user screen by selecting the
Window|User menu item.

To return to the IDE, press any key. Figure 2-10 shows the output of the
program.

Figure 2-10. User screen

f=llo World

39

FlyHeart\.c\};%‘p
TEAM FLY PRESENTS

15.When you are finished, you can save your program by selecting the File|Save
menu item.
16.To exit the IDE, select the File]Quit menu item.

2.4.2.2 Borland C++

1. Create a directory called\HELLO to hold the files for our Hello World program.
You can create a directory using the Windows' File Manager program or by
typing the following command at the MS-DOS prompt:

C.> nmkdir \ HELLO

2. From Windows, double-click on the "Borland C++" icon to start the IDE.
Select the Window|Close all menu item to clean out any old junk. The
program begins execution and displays a blank workspace as seen in Eigure
2-11.

Figure 2-11. Borland C++ initial screen

= Borland C++ Be

Eile Edit Search Yiew Project Debug Tool Options Window Help

Fai =il

3. Select the Project|New Project menu item to create a project for our
program. Fill in the "Project Path and Name:" blank withc:\hello\hello.ide.
For the Target Type, select EasyWin(.exe). The Target Model is set to Large.
The results are shown inFigqure 2-12.

40

—_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 2-12. New Target dialog

—| =
Eile Edit f==
EZI I P -
T Project Path and N o
[e\heBatheBo / e
Tanget Mames:
Cancel
[t x
Taige! Type: Standard Libeaies: 173
v Class Libroay |
txit ¥ Fuantine: ol
Shatse Lahrasay [far _exa] | hik] sad
IEI.&: |Ei|h'.-.'l' ?g]’] Lib] EwWLC fdvancs
m_p-nrt iy [i o
ehp by A ? Help
Codefauand .
Pladfpam: -
Windows 3.x [16] &
Taagel Modek
Lange !l
getexpe I
I T e (e

Click on the Advanced button to bringup the Advanced Options dialog. Clear
the .rc and .def items and set the .c Node items as shown inFigure 2 -13.
Click onOK to return to the New Target dialog. Click onOK again to return to

the main window.

Figure 2-13. Advanced Options dialog

:I— Rirland Cid =
| Eile Edit] = Mew Target
m@ Project Path and Hame:
o vhallohhaella | “ 0K
Taaged N o
Cance
helln x
Tasged Type: m_ m 3
o | Initiad Modes: bowee.
v
con Node =
Static Library |F
Static: Libwary (I # L frbarced .
Import Lty [Ho Soimce Mode xl:’“’
‘Windows Hal .? o
Platha = 2 -
rm: e
Windows Ju el * P
Target Hodel:
|L-nu | !'l

Target Expert

Set an mili S TEITIOTTIE T O O

41

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

6. Press ALT-F10 to bring up the node submenu shown in Figure 2-14.

View ¥
Bdd node

Delete node

Make node

Build node

Link

Special r

TargeiExper...

Edit node attribules..,
Edit local aptions...

View options hierarchy..,

Borland C+# - hello
File Edit Search Yiew Project Debug Tool Qptions

Figure 2-14. Target Options submenu

Window Help

Project : cihellothello.ide

7. Select the Edit node attributes menu item to bring up the dialog shown in

Figure 2-15. In the Style Sheet blank, select the item Debug Info and

Diagnostics. Click on OK to return to the main window.

Figure 2-15. Node Attributes dialog

Borland C+# - hello

File Edit Search VYiew Project Debug Tool QOptions

Window Help

Mode Attribute s for hello

Home

Dezciption: | |
Sipbs Sheat:

Dby Infe amd Disgnostics tl Shyles...
Translator

LinkTaaget 4| Took..
Node Tpe:

v

xterl:zl

?H::

Ed e node description that eppears in tha project window

FT T

42

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

8. Go to the Project Options dialog by selecting theOptions|Project Options
menu item. Go down to the Compiler item and click on the + to expand the
options.

Turn on the Test stack overflow option as seen inFigure 2-16. Click on OK to
save these options.

Figure 2-16. Project Options dialog

= Borland C+# - hello [-]=]

ILogics: Debugging

= Directosies
L3 Eudd_iuurd ¥ Standard stack Frame
=
En;:rlll:‘ ¥ Taat slack oyeilow
= Code Gamnaralion ¥ Dut-af-line inline funclions
* Floating Pois .
+ Compiles Dupust Line pumisors
° Source ¥ Debug mfoamation o OBJs
o

* Pracompiled headers ¥ Biowse refmercs mfematson o DB
a1 6-bit Compiles
1r32-bil Compiles
nres Options
nn [plesarations
M essages
urLinker
= Libwarnan
= Resources
= Build Alributes
= Make

r:l'lur.k foa stack avarflow o un lime | V ok S g::: x[:““ ? Help

w Check for stack overllow at mn tme

T T

9. Click on OK to return to the main window. Press DOAN- ARROWto select the
hello[.C]item in the project as seen in Figure 2-17.

43

) = -
FlyrHeart.com

TEAM FLY PRESENTS

Figure 2-17. Hello project

Hordand C++ - hello
Eile Edit Search Wiew Project Debug Tool Options Window Help

Project : cthellothello.ide

10.Press RETURN to start editing the file hello.c. Type inExample 2 -3.

Example 2-3. hello/hello.c

#i ncl ude <stdio. h>

int main()

{
printf("Hello World\n");
return (0);

}

When you finish, your screen will look like Figure 2-18.

44

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

Figure 2-18. Hello World program

o -

File Edit Search Wiew Project Debug Tool Options Window Help

RS A I S R] B N | AR i I | = e

Ainolude <stdic.h
int maing)
1

LI=]"

printf"Hello Borldin™):
roturn ()

o)

B:2 Inzad keadified

LT]

11.Compile and run the program by selecting theDebug|Run menu item. The
program will run and display "Hello World" in a window as seen in Figure
2-19.

Figure 2-19. Hello World program after

execution
| Horland C++ - hello [=]=
File Edit Search ¥Yiew Project Oebug Tool Options Window Help
[Inactive CYHELLOAHE LLO.EXE] -
Hello World i
int
{
]
DN [+]

Frogram runnag

T

45

—_—
FlyrHeart.com

TEAM FLY PRESENTS

2.4.2.3 Microsoft Visual C++

1. Create adirectory called\HELLO to hold the files for our Hello World program.
You can create a directory using the Windows' File Manager program or by
typing the following command at the MS-DOS prompt:

C:> nkdir \ HELLO
2. From Windows, double-click on the Microsoft Visual C++ to start the IDE.

Clear out any old junk by selecting the Window|Close All menu item. A blank
workspace will be displayed as seen inFigure 2-20.

Figure 2-20. Microsoft Visual C++ initial screen

Microsoft Visual C++
File Edit View Project Browse Debug Tools Options Window Help

[B [B EEE B Creid

R 1]

3. Click on the Project|[New menu item to bring up the New Project dialog as
shown in Figure 2 21.

46

FlyrHeart.com

TEAM FLY PRESENTS

Figure 2-21. New Project dialog

= Microsoft Visual C++ [=]=
File Edit View Project Browse Debug Tools Options Window Help

I 3 B EEE EE) Crekd

Progect Mame: | Whellpbhelln mak | | Browess, . | | 0K I

Project Type: | OuickWin application [EXE] #] | cancel |

Z Use Microsolt Foundation Clazses
For Halp, press Fl T

Fill in the Project Name blank with "\hello\hello.mak". Change the Project
Type to QuickWin application (.EXE).

Visual C++ goes to the Edit dialog to allow you to name the source files in
this project (seeFigure 2 -22). In this case, we have only filehello.c. Click on
Add to put this in the project and Close to tell Visual C++ that there are no

more files in the program.

a7

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

Figure 2-22. Edit Project dialog

= Microsoft Visual C++ - HELLO,MAK, [=]«
File Edit View Project Browse Debug Tools Options Window Help

[[= 3] 5] BT 0] DT

Edit - HELLO. MAK

File Mame: DEeclane::
e

& o

= helia

Ligt Files af Type: Diiwirs:
|Snurcu l'.l:;'.cpp;'.nuull i | l o me-dos_E ﬁ

Drlwte I

5. Select the Options|Project Options menu item to bring up the Project Options
dialog as seen in Figure 2-23.

Figure 2-23. Project Options dialog

- Microsoft Visual C++ - HELLO,MAE, [=]=
File Edit View Project Browse Debug Tools Options Window Help

1 & E) LT el

[Use Microsolt Foundation Classes E]

Customize Build Dptions Build Mode
® o
e

Aogomces...

For Help, press Fi L

Click on the Compiler button to change the compiler options.

48

—_—
FlyrHeart.com

TEAM FLY PRESENTS

6. Go down to the Custom Options menu item under Category and change the
Warning Level to 4 as seen inFigure 2 -24.

Figure 2-24. C/C++ Compiler Options dialog

Buld Options: & Debug Specific) Releaze Spacific) Comson 1o Both

Dptions Skmng:

Irokoge /G2 MM AW A2 AAM O /D =_DEBUG® /FR Fd"HELLD PDE" *

Uze Project Dedasiz

¥

Categoay: [Cateqare Sattngs: Custos Opbons
Cuzsbom O pions [[] Disabde Microsoft Language Extensions
Cusbom O plions [Ce+)
Debug DplEons | Epabde Funclion-Level Linking
Listing Files i i
Memary Model (] QuickWin Suppost
O pimizatsons N) .
P-Coade Gensation] Epmanate Duplicstes Shings
P d Hads . — "
P::r‘.ﬂmm e Waming Level | Level 4 & . Warnangs as Errars
.:E:::L 'lg‘T;T:;fE pllog E Suppress Display of Sigr-0n Bannar

Other Dptsone: | Fd"HELLOD.PDE"

For Halp, press F1 T

7. Select the Memory Model category and change the Model to Large (see
Figure 2-25).

Figure 2-25. Memory Model options

= Microsoft Visual C++ - HELLO,MAE, [=]=
Fi A oj H NIHINEY nls Cptinms I Help

DOptions Stmng:
nodogo /G2 MHg AWA A2 AAL A0d A0 <_DEBUG" JFR AFd"HELLD PDB" | #]

% | Use Project Delasis

Categoay: [Category Sattngs: Mesary Madal

Code Generation

Eu:lnm Epliunl [I: M oalel: 5 A Selup:
wgtom Oplions [Ce+] — .

Debug Dptaons |L"g' Iil 5% — 05 Iil

Listing Files

Optimizatons Mew Segment Dala Size Theeshald: | |
P-Coada [ensation
Procampded Headers
Pregirpoessos

Sepment Names
‘windows Prolon/E pog

D Agsume "autesn’ and Urninshialized Dala Ya”

For Help, press F1 L

49

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

8. Close the dialog by clicking on the OK button. You return to the Project
Options dialog. Click on OK to dismiss this dialog as well.

9. Select the File|[New menu item to start a new program file. Type in Example
2-4.

Example 2-4. hello/hello.c

[File: hello/hello.c]

#i ncl ude <stdio. h>

int main()

{
printf("Hello World\n");
return (0);

Your results should look Figure 2-26.

Figure 2-26. Microsoft Visual C++ with Hello

World entered

Microsoft Visual C++ - HELLD,MAK
File Edit View Project Browse Debug Tools Options Window Help

]) (1] Ei@l

<1 UNTITLED.1*

Finclude {stdio. h>
int maini)

printf|"Hells Vorldw-n®):
return (0]

MU Q0005 D02

10.Use the File]Save As menu item to save the file under the name hello.c.

11.Use the Project|Build menu item to compile the program. The compiler will
output messages as it builds. When the compiler is finished, your screen
should look like Figure 2 -27.

50

) = -
FlyiHeart.com 4

TEAM FLY PRESENTS

Figure 2-27. Microsoft Visual C++ project build

screen

File Edit View Project Browse Debug Tools Options !|!|!Indtm' Help

L

1

i

+

II:IE@I:D

<1 CAHELLOWHELLD.C

-
" Inz r.:Lnl:Lz:L:rg

Cun:u ing.

c:~hellovhello ©

Linking.

Hinding rescurces |

Cymating bxovser dat a'.':-usa.

HELLO ENE = 0 erzocri(s). 0 Uﬂ.nlrg(&.l

el

HELLOLEXE - 0 @rroris), 0 wamngis) READ L Q0008 S04

12.The program cannow be started with theDebug|Go menu item. The results
appear in Figure 2-28.

Figure 2-28. Hello World results

Microsoft Visual C++ [run] - HELLDLEXE

Fil

le Edit View Project Browse Debug Tools Options Window Help

II_I_II_IE@D:DED

<1 CAHELLOWHELLD.C

File Edit View State ‘Window Help

StdinfStdoutfEiderr -
ello Norld

nished |

FL Q000 601

51

—
FlyrHeart.com

TEAM FLY PRESENTS

2.5 Getting Help on UNIX

Most UNIX systems have an online documentation system called the manpages.
These manpages can be read with the man command. (UNIX uses nman as an

abbreviation for manual.) To get information about a particular subject, use the
following command:

man subj ect

For example, to find out about the classes defined in thepri nt f function, you would
type:

man printf

The command also has a keyword search mode:

man -k keyword

To determine the name of manpage with the word "output" in its title, use the
command:

man - k out put

2.6 Getting Help in an Integrated Development

Environment

IDEs such as Turbo C++, Borland C++, and Microsoft C++ have a Help menu item.
This item activates a hypertext-based help system.

2.7 IDE Cookbooks

This section contains a brief summary of the commands used to enter, compile, and
execute a simple program using the three IDEs described in this chapter.

2.7.1 Turbo C++

1. Window]|Close All Clean out any old junk.
> Options|Compiler|Code Generation |For simple program, use large memory
' model.
52

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Memory Model = Large

Options|Compiler|Entry/Exit

Test stack overflow = On

Turn on test for a common programming
error.

ti iler|M Displ . . .
Options|Compiler|Messages|Display Tell compiler that you want all diagnostics

Display warnings = All
5. Options|Save
Project|Open

6.
Project file = program.PRJ
Insert
7.
Add file program.c
8. ESC
UP-ARROW
10.RETURN

11.Type in the program
12.Run|Run
13.Window|User
14.File|Save

15. File]Quit

2.7.2 Borland C++

1. Window]|Close All

Project|New Project

Project Path and Name = c.\
program\program.ide

Target Type = EasyWin(.exe)

Target Model = Large

Click on Advanced button
3. Set .c Node

Clear .rc and .def

4. Click on OK

that it can give you.

Save options.

Create a new project.

Add program file to project.

Get out of "add file" cycle.
Move to program.c line.

Edit program file.

Enter text of program.

Execute program.

Display results of the program.
Save the program.

Exit Turbo C++ IDE.

Clean out any old junk.

Create new project.

Setup a simple C program.

Return to New Target
window.

53

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

5. Click on OK
6. ALT-F10
Edit|Node Attributes

Return to main window.

Select node submenu.

Turn on debugging.

Style Sheet = Debug Info and Diagnostics

8. Click on OK button

Options|Project Options

9. Click on + under Compiler

Test stack overflow = On
10.Click on OK button
11.Click on OK button
12. DOWN-ARROW
13.
14.

15.

RETURN
Type in the program
Debug|Run

2.7.3 Microsoft Visual C++

1. Window|Close All

Project|New

Project Name =
\program\program.mak

Project Type =

QuickWin application (.EXE)
File name = program .c

Click on Add button
5. Click on Close button

6. Options|Project Options
7. Click on Compiler button

Select Custom Options category

Warning Level = 4

Select the Memory Model category

54

Return to main menu.

Turn on valuable run-time
test.

Save options.

Return to main window.
Move to program[.c] line.
Edit program file.

Enter text of program.

Run program.

Clean out any old junk.

Start project.

Set up project.

Click on OK button.

Go to Edit dialog.

Enter program name.
Add program to project.

Tell Visual C++ that there are no more
files.

Get to Project Options dialog.
Go to C|C++ Compiler Options dialog.

Turn on all warnings.

For simple program, use large-memory
model.

—
FlyrHeart.com 4

TEAM FLY PRESENTS

10.
11.
12.
13.
14.
15.
16.

Memory Model = Large

Click on OK button Return to Project Options dialog.
Click on OK button Return to main window.
File|[New Open program file.

Type in the program Edit program file.

File]Save As — File name = program.c|Save file.

Project|Build Compile program.

Debug|Go Execute program.

i These instructions are for version 4.0 of Microsoft
s | Visual C++. Microsoft frequently changes the user

% jnterface from version to version, so these
instructions may require some slight modification.

2.8 Programming Exercises

Exercise 2-1: On your computer, type in the hello program and execute it.

Exercise 2-2: Take several programming examples from any source, enter them
into the computer, and run them.

55

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 3. Style

There is no programming language, no matter how structured, that will prevent
programmers from writing bad programs.

—L. Flon

It is the nobility of their style which will make our writers of 1840 unreadable forty
years from now.

—Stendhal

This chapter discusses how to use good programming style to create a simple,
easy-to-read program. Discussing style before we know how to program might
seem backward, but style is the most important part of programming. Style is what
separates the gems from the junk. It is what separates the programming artist from
the butcher. You must learn good programming style first, before typing in your first
line of code, so that everything you write will be of the highest quality.

Contrary to popular belief, programmers do not spend most of their time writing
programs. Far more time is spent maintaining, upgrading, and debugging existing
code than is ever spent on creating new wo rks. According to Datamation, the
amount of time spent on maintenance is skyrocketing. From 1980 to 1990, the
average number of lines in a typical application went from 23,000 to 1,200,000. The
average system age went from 4.75 to 9.4 years.

What's worse, 74% of the managers surveyed at the 1990 Annual Meeting and
Conference of the Software Maintenance Association reported that they "have
systems in their department, that have to be maintained by specific individuals
because no one else understands them."

Most software is built on existing software. | recently completed the code for 12 new
programs. Only one of these was created from scratch; the other 11 are adaptations
of existing programs.

Some programmers believe that the purpose of a program is only to present the
computer with a compact set of instructions. This concept is not true. Programs
written only for the machine have two problems:

They are difficult to correct because sometimes even the author does not
understand them.

Modifications and upgrades are difficult to make because the maintenance
programmer must spend a considerable amount of time figuring out what
the program does from its code. Ideally, a program serves two purposes:

56

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

first, it presents the computer with a set of instructions, and second, it
provides the programmer with a clear, easy-to-read description of what the
program does.

Example 2 -1 contains a glaring error that many programmers still make, and that
causes more trouble than any other problem. The program contains no comments.

A working but uncommented program is a time bomb waiting to explode. Sooner or
later, someone will have to fix a bug in the program, modify it, or upgrade it, and the
lack of comments will make the job much more difficult. A well-commented, simple
program is a work of art. Learning how to comment is as important as learning how
to code properly.

Comments in C start with a slash asterisk (/ *) and end with an asterisk slash (*/).
Example 3-1 is an improved version of Example 2-1.

Example 3-1. hello2/hello2.c

[File: hello2/hello2.c]

/**

* hello -- programto print out "Hello World". *
* Not an especially earth-shattering program *
* *

* Author: Steve Qualline. *

* *

* Purpose: Denonstration of a sinple program *
* *

* Usage: *

* Runs the program and the nmessage appears. *

**/

#i ncl ude <stdi o. h>

int main()

{
[* Tell the world hello */
printf("Hello Wrld\n");
return (0);

}

In this example, we put the beginning comments in a box of asterisks (*) called a

comment box. This formatting is done to emphasize the more important comments,
much as we use bold characters for the headings in this book. Less important
comments are not boxed. For example:

57

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

/* Tell the world hello */
printf("Hello Werld\n");

In order to write a program, you must have a clear idea of what you are going to do.
One of the best ways to organize your thoughts is to write them down in a language

that is clear andeasy to understand. After the process has been clearly stated, it can
be translated into a computer program.

Understanding what you are doing is the most important part of programming. |
once wrote two pages of comments describing a complex graphics algorithm. The
comments were revised twice before | even started coding. The actual instructions
took only half a page. Because | had organized my thoughts well (and was lucky),
the program worked the first time.

Your program should read like an essay. It should be as clear and easy to
understand as possible. Good programming style comes from experience and
practice. The style described in the following pages is the result of many years of
programming experience. It can be used as a starting point for developingyour own
style. These are not rules, only suggestions. Only one rule exists: make your
program as clear, concise, and simple as possible.

Poor Man's Typesetting

In typesetting, you can use letter size, bold, and italic to make
different parts of your text stand out. In programming, you are limited
to a single, mono-spaced font. However, people have come up with
ingenious ways to get around the limitations of the typeface.

Some of the various commenting tricks are:

/*-k-k-k************************************* kkkkkkkhkkikikkkik*

LRI I b I S b S b R R R S b b S I SRR b S Sk b Ik b I b S R R

*xxxxxxx WARNING This is an exanple of a * ok ok ok ko ok
*ExkkX*k warni ng nmessage that grabs the *ok ok ko ok
xx KKKk Kk ok attention of the progranmer. * ok ok ok ok ok ok

R S S S b Sk S Sk S S Rk S S S S S Rk S kS b S O

**/

[*>>>>>>>>>>>> Mpj or section header <<<<<<<K<<K<KLK<LKLK<LKL<L */

/**************** kkkkhkkhkkkhkhkhkkhkhhkkhkhkkhkhkhkhkhkhkkhkkikhkkhkikkkkhkhkkkkikkk*%

* W& use boxed comments in this book to denote the *

58

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* begi nning of a section or program *

**/

/* __ *\
* This is another way of draw ng boxes. *

* __ */
/*

* This is the beginning of a section.
* NANNNANN NN NNANN NANNNNANNNNANN NN N NANNNNNNN

*

* In the paragraph that follows, we explain what
* the section does and how it works.
*/

/*

* A medium | evel conment explaining the next

* dozen (or so) lines of code. Even though we don't have
* the bold typeface, we can **enphasi ze** words.

*/

/* A sinple comment explaining the next |ine */

At the beginning of the program is a comment block that contains information about
the program. Boxing the comments makes them stand out. The list that follows
contains some of the sections that should be included at the b eginning of your
program. Not all programs will need all sections, so use only those that apply:

Heading. The first comment should contain the name of the program. Also
include a short description of what the program does. You may have the
most amazing program, one that slices, dices, and solves all the world's
problems, but the program is useless if no one knows what it is.

Author. You've gone to a lot of trouble to create this program. Take credit
for it. Also, anyone who has to modify the program can come to you for
information and help.

Purpose. Why did you write this program? What does it do?

Usage. In this section, give a short explanation of how to run the program.
In an ideal world, every program would come with a set of documents
describing howto use it. The world is not ideal. Oualline's law of
documentation states: 90% of the time the documentation is lost. Of the
remaining 10%, 9% of the time the revision of the documentation is
different from the revision of the program and therefore completly useless.
The 1% of the time you actually have documentation and the correct revision
of the documentation, the information will be written in Chinese™ .

59

—
FlyrHeart.com

TEAM FLY PRESENTS

My wife comes from Hong Kong and has a talking electronic translator. It is a very expensive and

complex device, and comes with a 150-page manual, written entirely in Chinese.

To avoid Oualline's law of documentation, put the documentation in the
program.

References. Creative copying is a legitimate form of programming (if you
don't break the copyright laws in the process). In the real world, you needn't
worry about how you get a working program, as long as you get it, but give
credit where credit is due. In this section, you should reference the original
author of any work you copied.

File formats. List the files that your program reads or writes and a short
description of their formats.

Restrictions. List any limits or restrictions that apply to the program, such
as "The data file must be correctly formatted" or "The program does not
check for input errors.”

Revision history. This section contains a list indicating who modified the
program, and when and what changes were made. Many computers have a
source control system (RCS and SCCS on UNIX; PCVS and MKS-RCS on
MS-DOS/Windows) that will keep track of this information for you.

Error handling. If the program detects an error, describe what the program
does with it.

Notes. Include special comments or other information that has not already
been covered.

The format of your beginning comments will depend on what is needed for the
environment in which you are programming. For example, if you are a student, the
instructor may ask you to include in the program heading the assignment number,
your name and student identification number, and other information. In industry, a
project number or part number might be included.

Comments should explain everything the programmer needs to know about the
program, but no more. You can overcomment a program. (This case is rare, but it
does occur.) When deciding on the format for your heading comments, make sure
there is a reason for everything you include.

Inserting Comments—The Easy Way

If you are using the UNIX editor vi , put the following in your .exrc

file to make constructing boxes easier:

:abbr #b

/**

60

—
FlyrHeart.com 4

TEAM FLY PRESENTS

: abbr #e

**/

These two lines define vi abbreviations#b and #e, so thattyping:

#b

at the beginning of a block will cause the string:

/**

to appear (for beginning a comment box). Typing:

#e

will end a box. The number of stars was carefully selected so that
the end of the box is aigned on a tab stop.

Similar macros or related tools are available in most other
editors. For instance, GNU Emacs lets you achieve the a similar
effect by putting the following LISP code in a file named.emacs in
your home directory:

(defun c- begi n-comment - box ()

"I nsert the begi nning of a cooment, foll owed by a string
of asterisks."”

(interactive)

(insert

"/**\n")

(defun c-end-comrent -box ()

"Insert a string of asterisks, followed by the end of
a comment . "

(interactive)

(insert

"**l\n")

61

—
FlyrHeart.com 4

TEAM FLY PRESENTS

(add- hook ' c-node- hook
"(lanmbda ()

(define-key c-node-nmap "\ C-chb"
' c-begi n- conment - box)

(define-key c-node-map "\ G ce" 'c-end-conment - box)

The actual code for your program consists of two parts: variables and executable
instructions. Variables are used to hold the data used by your program. Executable
instructions tell the computer what to do with the data.

3.1 Common Coding Practices

A variable is a place in the computer's memory for storing a value. C identifies that
place by the variable name. Names can be of any length and should be chosen so
their meanings are clear. (Actually, a length limit exists, but it is so large that you
probably will never encounter it.) Every variable in C must be declared. Variable
declarations will be discussed inChapter 9. The following declaration tells C that
we're going to use three integer (int) variables: p, q, andr :

int p,q,r;

But what are these variables for? The reader has no idea. They could represent the
number of angels on the head of a pin or the location and acceleration of a plasma

bolt in a game of Space Invaders. Avoid abbreviations. Exs. abb. are diff. to rd. and
hd. to ustnd. (Excess abbreviations are difficult to read and hard to understand.)

Now consider another declaration:

i nt account _nunber;
i nt bal ance_owed;

Now we know that we're dealing with an accounting program, but we could still use
some more information. For example, is thebal ance_owed in dollars or cents? We

62

FlyHeom_‘Q
TEAM FLY PRESENTS

should have added a comment after each declaration to explain what we were doing.
For example:

i nt account _number; /* Index for account table */
i nt bal ance_owed; /* Total owed us (in pennies)*/

By putting a comment after each declaration, we, in effect, create a mini-dictionary
where we define the meaning of each variable name. Because the definition of each
variable is in a known place, it's easy to look up the meaning of a name.
(Programming tools like editors, cross-referencers, and searching tools such as

gr ep can also help you quickly find a variable's definition.)

Units are very important. | was once asked to modify a plogram that converted plot
data files from one format to another. Many different units of length were used
throughout the program, and none of the variable declarations were commented. |
tried very hard to figure out what was going on, but I could not determine what units
were being used in the program. Finally, I gave up and put the following comment
in the program:

/**

* Note: | have no idea what the input units are, nor *
* do | have any idea what the output units are, *
* but | have discovered that if | divide by 3 *
* the pl ot sizes | ook about right. *

**/

You should take every opportunity to make sure that your program is clear and easy
to understand. Do not be clever. Clever kills. Clever makes for unreadable and
unmaintainable programs. Programs, by their nature, are extremely complex.
Anything that you can to do to cut down on this complexity will make your programs
better. Consider the following code, written by a very clever programmer:&

21 Note that the first version of this code:
while ("\'n' 1= (*p++ = *q++));

It is almost impossible for the reader to tell at a glance what this mess does.
Properly written this should be:

while (1) {
*destination_ptr = *source_ptr;
if (*destination_ptr =="'\n")
br eak; /* Exit the loop if at end of line */
destinati on_ptr++;

source_ptr++;

63

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Although the second version is longer, it is much clearer and easier to understand.®
Even a novice programmer who does not know C well can tell that this program has
something to do with moving data from a source to a destination.

&2 Expert C programmers can spot a slight difference between the two versions, but both do the required job.

The computer doesn't care which version is used. A good compiler will generate the
same machine code for both versions. The programmer is the beneficiary of the
verbose code.

3.2 Coding Religion

Computer scientists have devised many programming styles. These include
structured programming, top-down programming, goto -less programming, and
object-oriented design (OOD). Each of these styles has its own following or cult. |
use the term "religion" because people are taught to follow the rules blindly without
knowing the reasons behind them. For example, followers of the goto dess cult will
never use a goto statement, even when it is natural to do so.

The rules presented in this book result from years of programming experience. |
have discovered that by following these rules, | can create better programs. You do
not have to follow them blindly. If you find a better system, by all means use it. (If
your solution really works, drop me a line. I'd like to use it too.)

3.3 Indentation and Code Format

In order to make programs easier to understand, most programmers indent their
programs. The general rule for a C program is to indent one level for each new block
or conditional. In our previous example, there are three levels of logic, each with its
own indentation level. The while statement is outermost. The statements inside the
while are at the next level. Finally, the statement inside the if (break) is at the
innermost level.

There are two styles of indentation, and a vast religious war is being raged in the
programming community as to which style is better. The first is the short form:

while (! done) {
printf("Processing\n");
next _entry();

}
if (total <= 0) {

64

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("You owe nothing\n");
total = 0;
} else {
printf("You owe % dollars\n", total);
all _totals = all_totals + total;

In this case, curly braces ({}) are put on the same line as the statements. The other
style puts the {} on lines by themselves:

while (! done)

{
printf("Processing\n");
next _entry();
}
if (total <= 0)
{
printf("You owe nothing\n");
total = O;
}
el se
{
printf("You owe % dollars\n", total);
all totals = all _totals + total;
}

Both formats are frequently used. You should use the format you feel most
comfortable with. This book uses the short format because it's more compact and
therefore saves book space.

The amount of indentation is left to the programmer. Two, four, and eight spaces
are common. Studies have shown that a four-space indent makes the code most
readable. However, being consistent in your indentation is far more important than

the indention size you use.

Some editors, like the UNIX Emacs editor, the Turbo C++, Borland C++, and

Microsoft Visual C++ internal editors, contain code that automatically indents your
programs as you create them. Although these editorbased indentation systems are
not perfect, they do go a long way to helping you create properly formatted code.

3.4 Clarity

A program should read like a technical paper. It should be organized into sections
and paragraphs. Procedures form a natural section boundary. (We'll learn about

65

—
FlyrHeart.com 4

TEAM FLY PRESENTS

function inChapter 9.) You must organize your code into paragraphs. You should
begin a paragraph with a topic-sentence comment and separate the comment from
other paragraphs with a blank line. For example:

/* poor progranmm ng practice */
tenp = box_x1;

box_x1 = box_x2;

box_x2 = tenp;

tenp = box_yl1,;

box_yl = box_y2;

box_y2 = tenp;

A better version would be:

/*
* Swap the two corners
*/

/* Swap X coordinate */
tenmp = box_x1,;

box_x1 = box_x2;

box_x2 = tenp;

/* Swap Y coordinate */
tenmp = box_yl;

box_yl = box_y2;

box_y2 = tenp;

3.5 Simplicity
Your program should be simple. Some general rules of thumb are:

A single function should not be longer than two or three pages. (SeeChapter
9.) If the function gets longer, it can probably be split into two simpler
functions. Th is rule comes about because the human mind can only hold so
much in short-term memory. Three pages are about the most that the

human mind can wrap itself around in one sitting.

Also if your function goes beyond the three -page limit, it probably doesn't
define a single operation, or probably contains too much detail.

Avoid complex logic like multiply nested ifs. The more complex your code,
the more indentation levels you will need. When you start running into the

66

—
FlyrHeart.com 4

TEAM FLY PRESENTS

right margin, you should consider splitting your code into multiple
procedures, to decrease the level of complexity.

Did you ever read a sentence, like this one, in which the author went on and
on, stringing together sentence after sentence with the word "and," and
didn't seem to understand the fact that several shorter sentences would do
the job much better, and didn't it bother you? C statements should not go on
forever. Long statements should be avoided. If it looks like an equation or
formula is going to be longer than one or two lines, you should split it into
two shorter equations.

Finally, the most important rule: make your program as simple and easy to
understand as possible, even if you must break some of the rules. The goal
is clarity, and the rules given in this chapter are designed to helpyou
accomplish that goal. If they get in the way, get rid of them. | have seen one
program with a single statement that spanned over 20 pages; however,
because of the specialized nature of the program, this statement was simple
and easy to understand.

3.6 Summary

A program should be concise and easy to read. It must serve as a set of computer
instructions, but also as a reference work describing the algorithms and data used
inside it. Everything should be documented with comments. Comments serve two
purposes. First, they tell the programmer to follow the code, and second, they help
the programmer remember what he did.

Class discussion: Create a style sheet for class assignments. Discuss what
comments should go into the programs and why.

67

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 4. Basic Declarations and

Expressions

A journey of a thousand miles must begin with a single step.
—Lao-zi

If carpenters made buildings the way programmers make programs, the first
woodpecker to come along would destroy all of civilization.

—Weinberg's Second Law

4.1 Elements of a Program

If you are going to construct a building, you need two things: the bricks and a
blueprint that tells you how to put them together. In computer programming, you
need two things: data (variables) and instructions (code or functions). Variables are
the basic building blocks of a program. Instructions tell the computer what to do
with the variables.

Comments are used to describe the variables and instructions. They are notes by
the author documenting the program so that the program isclear and easy to read.
Comments are ignored by the computer.

In construction, before we can start, we must order our materials: "We need 500
large bricks, 80 half-size bricks, and 4 flagstones." Similarly, in C, we must declare
our variables before we can use them. We must name each one of our "bricks" and
tell C what type of brick to use.

After our variables are defined, we can begin to use them. In construction, the basic
structure is a room. By combining many rooms, we form a building. In C, the basic
structure is a function. Functions can be combined to form a program.

An apprentice builder does not start out building the Empire State Building, but
rather starts on a one -room house. In this chapter, we will concentrate on
constructing simple one-function programs.

4.2 Basic Program Structure

The basic elements of a program are the data declarations, functions, and
comments. Let's see how these can be organized into a simple C program.

68

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The basic structure of a one-function program is:

/**

* . ..Headi ng coments. .. *

**/

...Data declarations...

int main()

{
... Executabl e statenents. ..
return (0);

Heading comments tell the programmer about the program, and data declarations
describe the data that the program is going to use.

Our single function is named nai n. The name nai n is special, because it is the first
function called. Other functions are called directly or indirectly from mai n. The
function mai n begins with:

int main()

{

and ends with:

return (0);

}

The linereturn(0); is used to tell the operating system (UNIX or
MS-DOS/Windows) that the program exited normally (Status=0). A nonzero status
indicates an e rror—the bigger the return value, the more severe the error. Typically,
a status of 1 is used for the most simple errors, like a missing file or bad
command-line syntax.

Now, let's take a look at our Hello World program (Example 3-1).

At the beginning of the program is a comment box enclosed in/* and*/ . Following
this box is the line:

#i ncl ude <stdi o. h>

This statement signals C that we are going to use the standard 1/0 package. The
statement is a type of data declaration. Later we use the functionpri nt f from this

package.

m Technically, the statement causes a set of data declarations to be taken from an include file. Chapter 10,

discusses include files.

69

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Our main routine contains the instruction:

printf("Hello Werld\n");

This line is an executable statement instructing C to print the message "Hello World"
on the screen. C uses a semicolon (;) to end a statement in much the same way we
use a period to end a sentence. Unlike line-oriented languages such as BASIC, an
end-of-line does not end a statement. The sentences in this book can span several
lines—the end of a line is treated just like space between words. C works the same
way. A single statement can span several lines. Similarly, you can put several
sentences on the same line, just as you can put several C statements on the same
line. However, most of the time your program is more readable if each statement
starts on a separate line.

The standard function pri ntf is used to output our message. A library routine is a
C procedure or function that has been written and put into a library or collection of
useful functions. Such routines perform sorting, input, output, mathematical
functions, and file manipulation. See your C reference manual for a complete list of
library functions.

Hello World is one of the simplest C programs. It contains no computations; it
merely sends a single message to the screen. It is a starting point. After you have
mastered this simple program, you have done a number of things correctly.

4.3 Simple Expressions

Computers can do more than just print strings—they can also perform calculations.
Expressions are used to specify simple computations. The five simple operatorsin C
are listed in Table 4-1.

Table 4-1. Simple Operators

Operator Meaning
* Multiply
Divide
+ Add
- Subtract
% Modulus (return the remainder after division)

Multiply (*), divide (/), and modulus (%) have precedence over add (+) and subtract
(-). Parentheses, (), may be used to group terms. Thus:

70

FlyrHeart.com

—

>

TEAM FLY PRESENTS

(1 +2) * 4
yields 12, while:
1+2*4
yields 9.

Example 4-1 computes the value of the expression(1 + 2) * 4.

Example 4-1. simple/simple.c

int main()
{
(1 +2) * 4
return (0);
}

Although we calculate the answer, we don't do anything with it. (This program will
generate a "null effect” warning to indicate that there is a correctly written, but
useless, statement in the program.)

Think about how confused a workman would be if we were constructing a building
and said,

"Take your wheelbarrow and go back and forth between the truck and the building
site."

"Do you want me to carry bricks in it?"
"No. Just go back and forth."

We need to store the results of our calculations.

4.4 Variables and Storage

C allows us to store values invariables . Each variable is identified by a variable
name.

In addition, each variable has avariable type. The type tells C how the variable is
going to be used and what kind of numbers (real, integer) it can hold. Names start

with a letter or underscore (_), followed by any number of letters, digits, or
underscores. Uppercase is different from lowercase, so the namessam Sam and SAM

71

—
FlyrHeart.com 4

TEAM FLY PRESENTS

specify three different variables. However, to avoid confusion, you should use
different names for variables and not depend on case differences.

Nothing prevents you from creating a name beginning with an underscore; however,
such names are usually reserved for internal and system names.

Most C programmers use all-lowercase variable names. Some names likeint, while,
for, andfloathave a special meaning to C and are consideredreserved words . They

cannot be used for variable names.

The following is an example of some variable names:
aver age /* average of all grades */
pi /* pi to 6 deci mal places */
nunber _of _students /* nunber students in this class */

The following are not variable names:

3rd_entry /* Begins with a number */

al | $done /* Contains a "$" */
t he end /* Contains a space */
i nt /* Reserved word */

Avoid variable names that are similar. For example, the following illustrates a poor
choice of variable names:

t ot al /* total number of items in current entry */
totals /* total of all entries */

A much better set of names is:

entry_total /* total nunber of items in current entry */
all _total /* total of all entries */

4.5 Variable Declarations

Before you can use a variable in C, it must be defined in adeclaration staement.
A variable declaration serves three purposes:

1. It defines the name of the variable.

2. It defines the type of the variable (integer, real, character, etc.).

3. It gives the programmer a description of the variable. The declaration of a
variable answer can be:

72

—
FlyrHeart.com 4

TEAM FLY PRESENTS

i nt answer; /* the result of our expression */

The keyword int tells C that this variable contains an integer value. (Integers are
defined below.) The variable name isanswer . The semicolon (;) marks the end of
the statement, and the comment is used to define this variable for the programmer.
(The requirement that every C variable declaration be commented is a style rule. C
will allow you to omit the comment. Any experienced teacher, manager, or lead
engineer will not.)

The general form of a variable declaration is:
type nane; /* coment */

where type is one of the C variable types (int, float, etc.) andname is any valid
variable name. This declaration explains what the variable is and what it will be used
for. (In Chapter 9, we will see how local variables can be declared elsewhere.)

Variable declarations appear just before themai n() line at the top of a program.

4.6 Integers

One variable type is integer. Integer numbers have no fractional part or decimal
point. Numbers such as 1, 87, and -222 are integers. The number 8.3 is not an
integer because it contains a decimal point. The general form of an integer
declaration is:

int name; /* coment */

A calculator with an 8-digit display can only handle numbers between 99999999 and
-99999999. If you try to add 1 to 99999999, you will get an overflow error.
Computers have similar limits. The limits on integers are implementation dependent,
meaning they change from computer to computer.

Calculators use decimal digits (0-9). Computers use binary digits (0-1) called bits.
Eight bits make a byte. The number of bits used to hold an integer varies from
machine to machine. Numbers are converted from binary to decimal for printing.

On most UNIX machines, integers are 32 bits (4 bytes), providing a range of
2147483647 (2*-1) t0-2147483648. On the PC, most compilers use only 16 bits (2
bytes), so the range is 32767 (2'°-1) to -32768. These sizes are typical. The
standard header file limits.h defines constants for the various numerical limits. (See
Chapter 18, for more information on header files.)

73

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The C standard does not specify the actual size of numbers. Programs that depend
on an integer being a specific size (say 32 bits) frequently fail when moved to
another machine.

Question 4-1: The following will work on a UNIX machine, but will fail on a PC :

int zip; /* zip code for current address */

Why does this fail? What will be the result when it is run on a PC? (Click here for the
answer Section 4.12)

4.7 Assignment Statements

Variables are given a value through the use of assignment statements. For
example:

answer = (1 + 2) * 4;

is an assignment. The variable answer on the left side of the equal sign (=) is
assigned the value of the expression(1 + 2) * 4 on the right side. The semicolon
(;) ends the statement.

Declarations create space for variables. Figure 4 -1 A illustrates a variable
declaration for the variableanswer. We have not yet assigned it a value so it is
known as anuninitialized variable. The question mark indicates that the value of this
variable is unknown.

74

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 4-1. Declaration of answer and assigning it a

value

0 int answer;

The variable answer has not been assigned a
,, value. Sowe puta “?" in it to indicate that it's
in an unknown state.

n
ANSWEr

O answer = (1+2) * 4;

S\' The variable answer is assigned the value of
4 the expression (1+2) *4. The box is shown
containing the value 12,

- dnswer

Assignment statements are used to give a variable a value. For example:
answer = (1 + 2) * 4;

is an assignment. The variable answer on the left side of the equals operator (=) is
assigned the value of the expression(1 + 2) * 4. So the variableanswer gets the
value 12 as illustrated inFigure 4-1B.

The general form of the assignment statement is:
vari abl e = expression;

The = is used for assignment. It literally means: Compute the expression and assign
the value of that expression to the variable. (In some other languages, such as
PASCAL, the = operator is used to test for equality. In C, the operator is used for
assignment.)

In Example 4-2, we use the variablet er mto store an integer value that is used in
two later expressions.

Example 4-2. term/term.c

[File: termtermc]
int term /* termused in two expressions */
int term2; /* twice term?*/

75

—_
FlyrHeart.com

TEAM FLY PRESENTS

int term3; /* three times term*/
int main()
{

term= 3 * 5

term2 =2 * term

term3 =3 * term

return (0);

A problem exists with this program. How can we tell if it is working or not? We need
some way of printing the answers.

4.8 printf Function

The library function pri ntf can be used to print the results. If we add the
statement:

printf("Twice % is %\ n", term 2 * tern;
the program will print:
Twice 15 is 30

The special characters %d are called the integer conversion specification. When
pri ntf encounters a %, it prints the value of the next expression in the list

following the format string. This is called the parameter list.

The general form of the printf statementis:
printf(format, expression-1, expression-2, ...);

where format is the string describing what to print. Everything inside this string is
printed verbatim except for the % conversions. The value of expression -1 is printed

in place of the first %d, expression 2 is printed in place of the second, and so o n.

Figure 4 -2 shows how the elements of the pri ntf statement work together to

generate the final result.

76

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 4-2. printf structure

int term = 15; A7
printf ("Twice 4 is ﬁ! "o, Iterml, I2*1:.erml:|' i
Formar sechon Exprassion sechion

The format string" Twi ce % i s %@\ n" tellsprintf todisplay Twi ce followed by a
space, the value of the first expression, then a space followed byi s and a space, the
value of the second expression, finishing with an end -of-line (indicated by \ n).

Example 4 -3 shows a program that computest er mand prints it via twopri nt f
functions.

Example 4-3. twice/twice.c

[File: twi ce/tw ce.c]
#i ncl ude <stdio. h>

int term /* termused in two expressions */
int main()
{
term= 3 * 5
printf("Twice %d is %\ n", term 2*term;
printf("Three tines % is %\ n", term 3*tern);
return (0);

The number of % conwersions in the format should exactly match the number of
expressions in thepri nt f. C will not verify this. (Actually, the GNU gcc compiler will
check pri ntf arguments, if you turn on the proper warnings.) If too many
expressions are supplied, the extra ones will be ignored. If there are not enough
expressions, C will generate strange numbers for the missing expressions.

7

—_
FlyrHeart.com

TEAM FLY PRESENTS

4.9 Floating Point

Because of the way they are stored internally, real numbers are also known as
floating-point numbers. The numbers 5.5, 8.3, and-12.6 are all floating point

numbers. C uses the decimal point to distinguish between floating-point numbers
and integers. So 5.0 is a floating point number, while 5 is an integer. Floating-point
numbers must contain a decimal point. Floating-point numbers include: 3.14159,

0.5, 1.0, and 8.88.

Although you could omit digits before the decimal point and specify a number as .5

instead of 0.5, the extra clearly indicates that you are using a floating-point number.
A similar rule applies to 12. versus 12.0. A floating-point zero should be written as

0.0.

Additionally, the number may include an exponent specification of the form:
e + exp

For example, 1.2e34 is a shorthand version of 1.2 x 1034,

The form of a floating-point declaration is:

fl oat vari abl e; /* comrent */

Again, there is a limit on the range of floating-point numbers that the computer can
handle. This limit varies widely from computer to computer. Floating-point accuracy
will be discussed further in Chapter 16.

When a floating-point number usingprintf iswitten, the% conversionisused.
To print the expression 1. 0/ 3. 0, we use this statement:

printf("The answer is %\n", 1.0/3.0);

4.10 Floating Point Versus Integer Divide

The division operator is special. There is a vast difference between an integer divide
and a floating-point divide. In an integer divide, the result is truncated (any
fractional part is discarded). So the value of 19/10 is 1.

If either the d ivisor or the dividend is a floating-point number, a floatingpoint divide
is executed. S0 19.0/10.0 is 1.9. (19/10.0 and 19.0/10 are also floating-point

divides; however, 19.0/10.0 is preferred for clarity.) Several examples appear in
Table 4 -2.

78

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Table 4-2. Expression Examples

Expression Result Result type
1+2 3 Integer
1.0+2.0 3.0 Floating Point
19/ 10 1 Integer
19.0/ 10.0 1.9 Floating Point

C allows the assignme nt of an integer expression to a floating-point variable. C will
automatically perform the conversion from integer to floating point. A similar
conversion is performed when a floating-point number is assigned to an integer. For
example:

i nt integer; /* an integer */
float floating; /* a floating-point nunber */

int main()

{
floating = 1.0/ 2.0; /* assign "floating" 0.5 */
integer =1/ 3; /* assign integer 0 */
floating = (1/ 2) + (1/ 2); /* assign floating 0.0 */
floating = 3.0/ 2.0; /* assign floating 1.5 */
i nteger = floating; /* assign integer 1 */
return (0);

}

Notice that the expression 1 / 2is an integer expression resulting in an integer
divide and an integer result of O.

Question 4-2: Why is the result of Example 4-4 0.0"? What must be done to this
program to fix it? (Click here for the answer Section 4.12)

Example 4-4. q_zero/qg_zero.c

#i ncl ude <stdi o. h>

fl oat answer; /* The result of our calculation */

int main()
{

answer = 1/ 3;

79

—
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("The value of 1/3 is %\n", answer);
return (0);

Question 4-3: Why does 2 + 2 = 59287 (Your results may vary. SeeExample 4 -5.)
(Click here for the answer Section 4.12)

Example 4-5. two/two.c

[File: two/two.c]
#i ncl ude <stdio. h>

/* Variable for conputation results */
int answer;

int main()

{

answer = 2 + 2;

printf("The answer is %\ n");
return (0);

Question 4-4: Why is an incorrect result printed? (See Example 4 -6.) (Click here
for the answer Section 4.12)

Example 4-6. div/div.c

[File: div/div.c]
#i ncl ude <stdi o. h>

float result; /* Result of the divide */

int main()

{
result = 7.0/ 22.0;

printf("The result is %\ n", result);
return (0);

80

—
FlyrHeart.com 4

TEAM FLY PRESENTS

4.11 Characters

The type char represents single characters. The form of a character d eclaration is:

char vari abl e; /* comment */

Characters are enclosed in single quotes (©). ©A©, ©a®, and © ©are character

constants. The backslash character (\) is called the escape character. It is used to
signal that a special character follows. For example, the characters\ " can be used

to put a double quote inside a string. A single quote is represented by \ ©. \ n is the
newline character. It causes the output device to go to the beginning of the next line
(similar to a return key on a typewriter). The characters\\ are the backslash itself.
Finally, characters can be specified by \ nnn, where nnn is the octal code for the
character. Table 4-3 summarizes these special characters. Appendix A contains a
table of ASCII character codes.

Table4-3. Special Characters

Character Name Meaning
\b Backspace Move the cursor to the left by one character
\ f Form Feed Go to top of new page
\n Newline Go to next line
\r Return Go to beginning of current line
\t Tab Advance to next tab stop (eight column boundary)
\© Apostrophe Character ©
\" Double quote |Character ".
\\ Backslash Character \ .
\ nnn Character number nnn (octal)
- While characters are enclosed in single quotes (©), a
ol different data type, the string, is enclosed in double
TSN

quotes ("). A good way to remember the difference

between these two types of quotes is to remember
that single characters are enclosed in single quotes.
Strings can have any number of characters (including
one), and they are enclosed in double quotes.

Characters use the pri ntf conversion % . Example 4 -7 reverses three characters.

81

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 4-7. rev/rev.c

[File: revirev.c]
#i ncl ude <stdio. h>

char char1; /* first character */
char char 2; /* second character */
char char3; [* third character */

int main()
{
charl = "A";
char2 = 'B';
char3 ='C;
printf("%%% reversed is %€%%\n",
char1l, char2, char 3,
char3, char2, charl);
return (0);

When executed, this program prints:

ABC reversed is CBA

4.12 Answers

Answer 4 -1: The largest number that can be stored in anint on most UNIX
machines is 2147483647. When using Turbo C++, the limit is 32767. The zip code
92126 is larger than 32767, so it is mangled, and the result is 26590.

This problem can be fixed by using along int instead of just an int. The various
types of integers will be discussed inChapter 5.

Answer 4 -2 : The problem concerns the division: 1/ 3. The number 1 and the
number 3 are both integers, so this question is an integer divide. Fractions are
truncated in an integer divide. The expression should be written as:

answer = 1.0/ 3.0
Answer 4 -3: The pri nt f statement:

printf("The answer is %\ n");

82

—
FlyrHeart.com 4

TEAM FLY PRESENTS

tells the program to print a decimal number, but there is no variable specified. C
does not check to make sureprintf is given the right number of parameters.
Because no value was specified, C makes one up. The proper pri ntf statement
should be:

printf("The answer is %\ n", answer);

Answer4 -4 : The problem is that in thepri ntf statement, we used a%l to specify
that an integer was to be printed, but the parameter for this conversion was a
floating-point number. Thepri ntf function has no way of checking its parameters
for type. Soif you give the function a floating-point number, but the format specifies
an integer, the function will treat the number as an integer and print unexpected
results.

4.13 Programming Exercises

Exercise 4-1: Write a program to print your name, social security number, and
date of birth.

Exercise 4-2: Write a program to print a block E using asterisks (*), where the E

has a height of seven characters and a width of five characters.

Exercise 4-3: Write a program to compute the area and perimeter of a rectangle
with a width of three inches and a height of five inches. What changes must be made
to the program so that it works for a rectangle with a width of 6.8 inches and a
length of 2.3 inches?

Exercise 4-4: Write a program to print "HELLO" in big block letters; each letter
should have a height of seven characters and width of five characters.

Exercise 4-5: Write a program that deliberately makes the following mistakes:

Prints a floating-point number using the % conversion.
Prints an integer using the % conversion.
Prints a character using the %d conversion.

83

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 5. Arrays, Qualifiers, and

Reading Numbers

That mysterious independent variable of political calculations, Public Opinion.

—Thomas Henry Huxley

5.1 Arrays

In constructing our building, we have identified each brick (variable) by name. That
process is fine for a small number of bricks, but what happens when we want to
construct something larger? We would like to point to a stack of bricks and say,
"That's for the left wall. That's brick 1, brick 2, brick 3..."

Arrays allow us to do something similar with variables. An array is a set of
consecutive memory locations used to store data. Each item in the array is called an
element. The number of elements in an array is called the dimension of the array. A
typical array declaration is:

/* List of data to be sorted and averaged */
i nt data_list[3];

The above example declaresdat a_I| i st to be an array of three elements.
data_list[0],data_list[1], anddata_list[2] are separate variables. To
reference an element of an array, you use a number called the index—the number
inside the square brackets ([]). Cis a funny language that likes to start counting at
0. So, our three elements are numbered to 2.

ol Common sense tells you that when you declare

“' 4. data_|ist tobe three elementslong, data_|ist[3]
would be valid. Common sense is wrong and

data_list[3] isillegal.

Example 5-1 computes the total and average of five numbers.

Example 5-1. array/array.c

[File: array/array.c]

84

—
FlyrHeart.com 4

TEAM FLY PRESENTS

#i ncl ude <stdio. h>

float data[5]; /* data to average and total */
float total; /* the total of the data itens */
fl oat average; /* average of the items */

int main()

{
data[0] = 34.0;
data[1] = 27.0;
data[2] = 45.0;
data[3] = 82.0;
data[4] = 22.0;

total = data[0] + data[l] + data[2] + data[3] + data[4];
average = total / 5.0;

printf("Total 9% Average % \n", total, average);

return (0);

This program outputs:

Total 210.000000 Average 42. 000000

5.2 Strings

Strings are sequences of characters. C does not have a built-in string type; instead,
strings are created out of character arrays. In fact, strings are just character arrays
with a few restrictions. One of these restrictions is that the special character '\ 0'

(NUL) is used to indicate the end of a string.

For example:

char nane[4] ;

int main()

{
nane[0] ="'S';
nane[1] ="'a';
name[2] ='m;
name[3] = "'\0';
return (0);

}

85

—
FlyrHeart.com 4

TEAM FLY PRESENTS

This code creates a character array of four elements. Note that we had to allocate
one character for the end-of-string marker.

String constants consist of text enclosed in double quotes (" "). You may have
noticed that the first parameter topri ntf is a string constant. C does not allow one
array to be assigned to another, so we can't write an assignment of the form:

nane = "Sani'; [* 1llegal */

Instead we must use the standard library function st r cpy to copy the string
constant into the variable. (st r cpy copies the whole string, including the
end-of-string character.) To initialize the variable name to Sam we would write:

#i ncl ude <string. h>

char nane[4] ;

int main()

{
strcpy(nane, "San'); /* Legal */
return (0);

C uses variable 4ength strings. For example, the declaration:

#i ncl ude <string. h>
char string[50];
int main()
{
strcpy(string, " Sam');

creates an array (stri ng) that can contain up to 50 characters. The size of the array
is 50, but the length of the string is 3. Any string up to 49 characters long can be
stored in string. (One character is reserved for the NUL that indicates
end-of-string.)

- String and character constants are very different.

‘! 4. Strings are surrounded by double quotes (") and
characters by single quotes ('). So" X" is a
one-character string, while' Y' is just a single

character. (The string " X" takes up two bytes, one for

86

FlyrHeart.com

—

>

TEAM FLY PRESENTS

the X and one for the end-of-string (\0). The

character ' Y' takes up one byte.)

There are several standard routines that work on string variables, as shown inTable
o-1.

Table5-1. Partial List of String Functions

Function Description
strcpy(stringl, string2) Copy string2 intostringl
strcat(stringl, string2) Concatenate stri ng2 onto the end of stri ngl
length = strlen(string) Get the length of astring

Oif stringl equals string2,
strcemp(stringl, string2)
otherwise nonzero

The pri ntf function uses the conversion % for printing string variables, as shown

in Example 5-2.

Example 5-2. str/str.c

#i ncl ude <string. h>
#i ncl ude <stdio. h>

char nane[30]; /* First nane of soneone */
int main()
{
strcpy(nanme, "Sam'); /* Initialize the nane */

printf("The nane is %\ n", nane);
return (0);

Example 5 -3 takes a first name and a last name and combines the two strings.

The program works by initializing the variablefi r st to the first name (Steve). The
last name (Oualline) is put in the variablel ast . To construct the full name, the first
name is copied intof ul | _nane. Thenstrcat is used to add a space. We callst r cat

again to tack on the last name.

87

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The dimension of the string variable is 100 because we know that no one we are
going to encounter has a name more than 99 characters long. (If we get a name
more than 99 characters long, our program will mess up. What actually happens is
that you write into memory that you shouldn't access. This access can cause your
program to crash, run normally and give incorrect results, or behave in other
unexpected ways.)

Example 5-3. full/full.c

#i ncl ude <string. h>
#i ncl ude <stdio. h>

char first[100]; [* first name */
char | ast[100]; /* last nane */
char full _name[200]; [* full version of first and |ast nane */
int main()
{
strcpy(first, "Steve"); /* Initialize first name */
strcpy(last, "Qualline"); /[* Initialize | ast nane */
strepy(full _nane, first); [* full = "Steve" */
/* Note: strcat not strcpy */
strcat(full _name, " "); [* full = "Steve " */
strcat(full _name, |ast); /* full = "Steve Qualline" */

printf("The full name is %\n", full _nane);
return (0);

The output of this program is:

The full nanme is Steve CQualline

5.3 Reading Strings

The standard function f get s can be used to read a string from the keyboard. The
general form of anf get s call is:

fgets(name, sizeof (nane), stdin);

88

—
FlyrHeart.com 4

TEAM FLY PRESENTS

where name identifies a stringvariable. (f get s will be explained in detail inChapter
14))

The arguments are:
name

is the name of a character array. The line (including the end -of-line character)
is read into this array.

sizeof(name)

indicates the maximum number of characters to read (plus one for the
end-of-string character). Thesi zeof function provides a convenient way of

limiting the number of characters read to the maximum numbers that the
variable can hold. This function will be discussed in more detail in Chapter
14.

stdin

is the file to read. In this case, the file is the standard input or keyboard.
Other files are discussed in Chapter 14.

Example 54 reads a line from the keyboard and reports its length.

Example 5-4. length/length.c

#i nclude <string. h>
#i ncl ude <stdio. h>

char 1ine[100]; /* Line we are |ooking at */

int main()

{
printf("Enter a line: ");
fgets(line, sizeof(line), stdin);

printf("The length of the line is: %\n", strlen(line));
return (0);

When we run this program, we get:

Enter a line: test
The length of the lineis: 5

89

—
FlyrHeart.com 4

TEAM FLY PRESENTS

But the stringt est is only four characters. Where's the extra character coming from?
f get s includes the end-of-line in the string. So the fifth character is newline (\ n).

Suppose we wanted to change our name program to ask the user for his first and
last name. Example 5 -5 shows how we could write the program.

Example 5-5. fulll/fulll.c

#incl ude <stdio. h>
#i ncl ude <string. h>

char first[100]; /* First name of person we are working with */
char last[100]; /* Hs last nane */

/* First and | ast nane of the person (conputed) */
char full[200];

int min() {
printf("Enter first name: ");
fgets(first, sizeof (first), stdin);

printf("Enter |last nane: ");
fgets(last, sizeof(last), stdin);

strepy(full, first);
strcat(full, " ");
strcat (full, last);

printf("The nane is %\n", full);
return (0);

However, when we run this program we get the results:

% nane2

Enter first name: John
Enter | ast nanme: Doe
The nane is John

Doe

%

What we wanted was "John Doe" on the same line. What happened? The f gets
function gets the entire line, includingthe end-of-line. We must get rid of this
character before printing.

90

—
FlyrHeart.com 4

TEAM FLY PRESENTS

For example, the name "John" would be stored as:

first[0O] ="'J

first[1] = "0
first[2] ="'h
first[3] ='n'
first[4] = "\n'
first[5] = '\0O /* end of string */

By settingfirst[4] to NUL ("\0"), we can shorten the string by one character and
get rid of the unwanted newline. This change can be done with the statement:

first[4] = '\0";

The problem is that this method will work only for four-character names. We need a
general algorithm to solve this problem. The length of this string is the index of the
end-of-string null character. The character before it is the one we want to get rid of.
So, to trim the string, we use the statement:

first[strlen(first)-1] = "\0";

Our new program isshown inExample 5-6.

Example 5-6. full2/full2.c

#i ncl ude <stdio. h>
#i ncl ude <string. h>

char first[100]; /* First nane of person we are working with */
char | ast[100]; /* H s | ast name */

/* First and | ast nane of the person (computed) */
char full[200];

int main() {
printf("Enter first nane: ");
fgets(first, sizeof (first), stdin);
/* trimoff last character */
first[strlen(first)-1] = "\0";

printf("Enter |last nane: ");
fgets(last, sizeof(last), stdin);
/* trimoff |last character */
last[strlen(last)-1] = '"\0";

91

—
FlyrHeart.com 4

TEAM FLY PRESENTS

strepy(full, first);
strcat(full, " ");
strcat (full, last);

printf("The nane is %\ n", full);
return (0);

Running this program gives us the following results:
Enter first name: John

Enter last name: Smth
The nanme is John Snmith

5.4 Multidimensional Arrays

Arrays can have more than one dimension. The declaration for a two-dimensional
array is:

type variabl e[sizel][size2]; [/* Comrent */
For example:
int matrix[2][4]; /* a typical matrix */

Notice that C does not follow the notation used in other languages of
mat ri x[10, 12] .

To access an element of the matri x, we use the notation:
matri x[1][2] = 10;

C allows the programmer to use as many dimensions as needed (limited only by the
amount of memory available). Additional dimensions can be tacked on:

four_di mensions[10][12][9][5];

Question 5-1: Why does Example 5 -7 print the wrong answer? (Click here for the
answer Section 5.15)

92

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 5-7. p_array/p_array.c

#i ncl ude <stdi o. h>

int array[3][2];

/[* Array of nunbers */

int main()

{
int x,y; /* Loop indicies */
array[0][0] =0 * 10 + O;
array[0][1] =0 * 10 + 1;
array[1][0] =1 * 10 + O;
array[1][1] =1 * 10 + 1;
array[2][0] =2 * 10 + O;
array[2][1] =2 * 10 + 1;
printf("array[%] ", 0);
printf("% ", array[O0,0]);
printf("% ", array[O0,1]);
printf("\n");
printf("array[%] ", 1);
printf("% ", array[1,0]);
printf("% ", array[1,1]);
printf("\n");
printf("array[%] ", 2);
printf("% ", array[2,0]);
printf("% ", array[2,1]);
printf("\'n");
return (0);

}

5.5 Reading Numbers

So far, we have only read simple strings, but we want more. We want to read
numbers as well. The function scanf works like printf, except that scanf reads
numbers instead of writing them. scanf provides a simple and easy way of reading

numbers that almost never
end-of-line handling, which

works . The function scanf is notorious for its poor
makes scanf useless for all but an expert.

93

FlyrHeart.com 4

TEAM FLY PRESENTS

However, we've found a simple way to get around the deficiencies of scanf —we
don't use it. Instead, we usef get s to read a line of input andsscanf to convert the
text into numbers. (The name sscanf stands for "stringscanf ". sscanf is like
scanf, but works on strings instead of the standard input.)

Normally, we use the variable | i ne for lines read from the keyboard:

char |ine[100]; /* Line of keyboard input */

When we want to process input, we use the statements:

fgets(line, sizeof(line), stdin);
sscanf(line, format, &ariablel, &ariable2 .

Here f get s reads a line and sscanf processes it. formatis a string similar to the
print f format string. Note the ampersand (&) in front of the variable names. This
symbol is used to indicate that sscanf will change the value of the associated

variables. (For information on why we need the ampersand, see Chapter 13.)

If you forget to put & in front of each variable for

sscanf , the result could be a "Segmentation violation

core dumped"” or "lllegal memory access" error. In
some cases a random variable or instruction will be
changed. On UNIX, damage is limited to the current
program; however, on MS-DOS/Windows, with its
lack of memory protection, this error can easily cause

more damage. On MS-DOS/Windows, omitting & can

cause a program or system crash.

In Example 5-8, we use sscanf to get and then double a number from the user.

Example 5-8. double/double.c

[File: double/double.c]
#i ncl ude <stdio. h>

char |ine[100]; /* input line fromconsole */
int val ue; /* a value to double */
int main()
{
94

—
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("Enter a value: ");

fgets(line, sizeof(line), stdin);
sscanf(line, "%l", &val ue);

printf("Twice % is %\ n", value, value * 2);
return (0);

This program reads in a single number and then doubles it. Notice that there is no
\ n at the end of Enter a val ue: . This omission is intentional because we do not
want the computer to print a newline after the prompt. For example, a sample run
of the program might look like:

Enter a value: 12
Twice 12 is 24

If we replaced Enter a val ue: withEnter a val ue:\ n, the result would be:

Enter a val ue:
12
Twice 12 is 24

Question 5-2: Example 5 -9 computes the area of a triangle, given the triangle's
width and height. For some strange reason, the compiler refuses to believe that we
declared the variable wi dt h. The declaration is right there on line 2, just after the

definition of height. Why isn't the compiler seeing it? (Click here for the answer
Section 5.15)

Example 5-9. tri/tri.c

#i ncl ude <stdio. h>
char 1ine[100];/* line of input data */
int height; /* the height of the triangle

int wdth; /* the width of the triangle */

int area; /* area of the triangle (conputed) */
int main()

{

printf("Enter width height? ");

fgets(line, sizeof(line), stdin);
sscanf(line, "% %", &w dth, &height);

95

—
FlyrHeart.com 4

TEAM FLY PRESENTS

area = (width * height) / 2;
printf("The area is %\ n", area);
return (0);

5.6 Initializing Variables

C allows variables to be initialized in the declaration statement. For example, the
following statement declares the integer count er and initializes it to 0 :

int counter = O; /* nunber cases counted so far */

Arrays can also be initialized in this manner. The element list must be enclosed in
curly braces ({}). For example:

/* Product nunbers for the parts we are meking */
int product_codes[3] = {10, 972, 45};

The previous initialization is equivalent to:
product _codes[0] = 10;

972;
45;

product _codes[1]
product _codes|[2]

The number of elements in {} does not have to match the array size. If too many
numbers are present, a warning will be issued. If an insufficient amount of n umbers
are present, C will initialize the extra elements to O.

If no dimension is given, C will determine the dimension from the number of

elements in the initialization list. For example, we could have initialized our variable
product _codes with the state ment:

/* Product nunbers for the parts we are making */
int product_codes[] = {10, 972, 45};

Initializing multidimensional arrays is similar to initializing single-dimension arrays.
A set of brackets ([]) encloses each dimension. The declaration:

int matrix[2][4]; /* a typical matrix */

can be thought of as a declaration of an array of dimension 2 with elements that are
arrays of dimension 4. This array is initialized as follows:

/[* a typical matrix */

96

—
FlyrHeart.com 4

TEAM FLY PRESENTS

int matrix[2][4] =
{
{1, 2, 3, 4},
{10, 20, 30, 40}
I

Strings can be initialized in a similar manner. For example, to initialize the variable
nane to the string "Sam", we use the statement:

char nane[] = {'S, 'a'", 'm, '"\0'};

C has a special shorthand for initializing strings: Surround the string with double
quotes ("") to simplify initialization. The previous example could have been written:

char name[] = "Sanl';

The dimension of nane is 4, because C allocates a place for the '\ 0' character that

ends the string.
The following declaration:

char string[50] = "Sanl;

is equivalent to:

char string[50];

strcpy(string, "Sant');

An array of 50 characters is allocated but the length of the string is 3.

5.7 Types of Integers

C is considered a medium-level language because it allows you to get very close to
the actual hardware of the machine. Some languages, like BASIC & | go to great
lengths to completely isolate the user fro m the details of how the processor works.
This simplification comes at a great loss of efficiency. C lets you give detailed
information about how the hardware is to be used.

[some more advanced versions of BASIC do have number types. However, for this example, we are talking

about basic BASIC.

97

—
FlyrHeart.com 4

TEAM FLY PRESENTS

For example, most machines let you use different length numbers. BASIC provides
the programmer with only one numeric type. Though this restriction simplifies the
programming, BASIC programs are extremely inefficient. C allows the programmer
to specify many different flavors of integers, so that the programmer can make best
use of hardware.

The type specifier int tells C to use the most efficient size (for the machine you are
using) for the integer. This can be two to four bytes depending on the machine.
(Some less common machines use strange integer sizes such as 9 or 40 bits.)

Sometimes you need extra digits to store numbers larger than those allowed in a
normal int. The declaration:

I ong int answer; /* the result of our calculations */

is used to allocate a long integer. The long qualifier informs C that we wish to
allocate extra storage for the integer. If we are going to use small numbers and wish

to reduce storage, we use the qualifier short. For example:
short int year; /* Year including the 19xx part */

C guarantees that the size of storage for short <= int <= long. In actual practice,
shortalmost always allocates two bytes, long four bytes, andinttwo or four bytes.
(See Appendix B, for numeric ranges.)

The type short intusually uses 2 bytes, or 16 bits. 15 bits are used normally for the
number and 1 bit for the sign. This format gives the type a range of -32768 (-2°) to
32767 (2°- 1). Anunsigned short intuses all 16 bits for the number, giving it the
range of to 65535 (2'°). All int declarations default to signed, so that the
declaration:

signed | ong int answer; /* final result */

is the same as:

I ong int answer; /* final result */

Finally, we consider the very short integer of type char. Character variables use 1
byte. They can also be used for numbers in the range of -128 to 127 (signed char)
or to 255 (unsigned char). Unlike integers, they do not default to signed ; the
default is compiler dependent!2 Very short integers may be printed using the
integer conversion (%).

PlTurbo C++ and GNU'sgcc even have acommand -line switch to make the default for typechar either signed

or unsigned.

98

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

You cannot read a very short integer directly. You must read the number into an
integer and then use an assignment statement. For example:

#i ncl ude <stdio. h>

signed char ver_short; /* A very short integer */
char |ine[100]; /* I nput buffer */

int tenp; /* A tenporary number */

int main()

{

/* Read a very short integer */
fgets(line, sizeof(line), stdin);
sscanf(line, "%d", & enp);
very_short = tenp;

Table 5 -2 contains thepri ntf and sscanf conversions for integers.

Table 5-2. Integer printf/sscanf Conversions

%Conversion Uses
9 si gne short int
ohd (signed) sh i
% si gne i nt
d (signed) i
9 si gnhe ong int
A d (signed) long i
% u unsi gned short int
%u unsi gned int
% u unsi gned | ong int

The range of the various flavors of integers is listed in Appendix B.

long int declarations allow the program to explicitly specify extra precision where it

is needed (at the expense of memory). short intnumbers save space but have a

more limited range. The most compact integers have typechar. They also have the

most limited range.

unsigned numbers provide a way of doubling the positive range at the expense of
eliminating negative numbers. They are also useful for things that can never be
negative, like counters and indices.

The flavor of number you use will depend on your program and storage
requirements.

99

FlyrHeart.com

—

>

TEAM FLY PRESENTS

5.8 Types of Floats

The float type also comes in various flavors. float denotes normal precision
(usually 4 bytes). double indicates double precision (usually 8 bytes).

Double-precision variables give the programmer many times the range and
precision of single-precision (float) variables.

The qualifierlong double denotes extended precision. On some systems, this is the
same asdouble; on others, it offers additional precision. All types of floating-point

numbers are a lways signed.

Table 5 -3 contains thepri ntf and sscanf conversions for floating-point numbers.

Table5-3. Float printf/sscanf Conversions

% Conversion Uses Notes
% f | oat printf only.&
% f doubl e scanf only.
o f | ong doubl e Not available on all compilers.

BIThe %f format works for printing double and float because of an automatic conversion built into C's parameter

passing.

On some machines, single-precision, floating-point instructions execute faster (but
less accurately) than double -precision instructions. Double-precision instructions
gain accuracy at the expense of time and storage. In most cases, floatis adequate;
however, if accuracy is a problem, switch todouble. (See Chapter 16.)

5.9 Constant Declarations

Sometimes you want to use a value that does not change, such as . The keyword
const indicates a variable that never changes. For example, to declare a value for
Pl, we use the statement:

const float Pl = 3.1415927; /* The classic circle constant */
- By convention, variable names use only lowercase

s | and constant names use only uppercase. However,

— 4% the language does not require this case structure,

100

—
FlyrHeart.com 4

TEAM FLY PRESENTS

and some exotic coding styles use a different
convention.

Constants must be initialized at declaration time and can never be changed. For
example, if we tried to reset the value of Pl to 3. 0, we would generate an error

message:

PI = 3.0; /* 1llegal */

Integer constants can be used as a size parameter when declaring an array:

/* Max. nunber of elements in the total Iist.*/
const int TOTAL_MAX = 50;
float total _|ist[TOTAL_MAX]; /* Total values for each category */

- This way of specifying the use of integer constants is
«+ J arelatively new innovation in the C language and is
¢ not yet fully supported by all compilers.

5.10 Hexadecimal and Octal Constants

Integer numbers are specified as a string of digits, such as 1234, 88, -123, etc.
These strings are decimal (base 10) numbers: 174 or 17410. Computers deal with
binary (base 2) numbers: 10101110. The octal (base 8) system easily converts to
and from binary. Each group of three digits (23 = 8) can be transformed into a single
octal digit. Thus, 10101110 can be written as 10 101 110 and changed to the octal
256. Hexadecimal (base 16) numbers have a similar conversion; only 4 bits are
used at a time.

The C language has conventions for representing octal and hexade cimal values.
Leading zeros are used to signal an octal constant. For example, 0123 is 123 (octal)
or 83 (decimal). Starting a number with "0Ox" indicates a hexadecimal (base 16)
constant. So, 0x15 is 21 (decimal). Table 5 4 shows several numbers in all three

bases.
Table 5-4. Integer Examples
Base 10 Base 8 Base 16
6 06 0x6
101

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

9 011 0x9
15 017 OxF

5.11 Operators for Performing Shortcuts

C not only provides you with a rich set of declarations, but also gives you a large
number of specialpurpose operators.

Frequently, the programmer wants to increment (increase by 1) a variable. Using a
normal assignment statement, this operation would look like:

total _entries = total _entries + 1;

C provides us with a shorthand for performing this common task. The++ operator is

used for incrementing:

++total _entries;

A similar operator, - -, can be used for decrementing (decreasing by 1) a variable:
--nunber _l eft;

/* is the same as */

nunber | eft = nunber _left - 1;

But suppose that we want to add 2 instead of 1. Then we can use the following
notation:

total _entries += 2;
This notation is equivalent to:
total _entries = total _entries + 2;

Each of the simple operators, as shown in Table 5-5, can be used in this manner.

Table 5-5. Shorthand Operators

Operator Shorthand Equivalent Statement
+= X += 2, X =X + 2
-= X -= 2; X =X - 2;
102

—
FlyrHeart.com 4

TEAM FLY PRESENTS

*= X *= 2; X =X * 2
/= X /= 2; X =x 1/ 2
% X % 2; X = X % 2;

5.12 Side Effects

Unfortunately, C allows the programmer to use side effects. A side effect is an
operation that is performed in addition to the main operation executed by the
statement. For example, the following is legal C code:

size = b5;
result = ++size;

The first statement assigns tosi ze the value of 5. The second statement assigns to
resul t the value of si ze (main operation) and increments si ze (side effect).

Butin what order are these processes performed? There are four possible answers.

1. result is assigned the value of si ze (5), and thensi ze is incremented.
result is5 andsizeis 6.

2. sizeisincremented, and thenresult is assigned the value of si ze (6).
result is 6 andsi zeis 6.

3. The answer is compiler-dependent and varies from computer to computer.

4. If we don't write code like this, then we don't have to worry about such
questions.

The correct answer is number 2: the increment occurs before the assignment.
However, number 4 is a much better answer. Th e main effects of C are confusing
enough without having to worry about side effects.

- Some programmers value compact code very highly.

s This attitude is a holdover from the early days of

& computing when storage cost a significant amount of
money. | believe that the art of programming has
evolved to the point where clarity is much more
valuable than compactness. (Great novels, which a
lot of people enjoy reading, are not written in
shorthand.)

C actually provides two flavors of the++ operator. One isvariablet+ and the other is
++variable. The first:

103

—
FlyrHeart.com 4

TEAM FLY PRESENTS

5;
result = nunber ++;

nunber

evaluates the expressions, and then increments the number; result is 5. The
second:

5;
result = ++nunber;

number

increments the number first, and then evaluates the expression; resul t is 6.
However, using ++ or -- in this way can lead to some surprising code:

The problem with this line is that it looks as if someone wrote Morse code. The
programmer doesn't read this statement, but rather decodes it. If we never use++
or -- as part of any other statement, and instead always put them on lines by
themselves, the difference between the two flavors of these operators will not be
noticeable.

5.13 ++X Oor X+-+

The two forms of the increment operator are called the prefix form (++x) and the
postfix form (x++). Which form should you use? Actually in C your choice doesn't

matter. However, if you use C++ with its overloadable operators, the prefix version
(++x) is more efficient.l So, to develop good habits for learning C++, use the prefix

form. .2
M eor details, see the book Practical C++ Programming (O'Reilly & Associates).

] consider the irony of a language with its name in postfix form (C++) working more efficiently with prefix

forms of the increment and decrement operators. Maybe the name should be ++C.

5.14 More Side-Effect Problems

More complex side effects can confuse even the C compiler. Consider the following
code fragment:

val ue = 1;
result = (value++ * 5) + (value++ * 3);

104

—
FlyrHeart.com 4

TEAM FLY PRESENTS

This expression tells C to perform the following steps:

1. Multiply val ue by 5, and add 1 toval ue.
2. Multiply val ue by 3, and add 1 toval ue.
3. Add the results of the two multiplications together.

Steps 1 and 2 are of equal priority (unlike in the previous e xample) so the compiler

can choose the order of execution. Suppose the compiler executes step 1 first, as
shown in Figure 5-1.

Figure 5-1. Expression evaluation method 1

result = (value++ * 5) + (value++ * 3);

++ OPerat;
Evaluate 18 axprassion Reration -

..-' l"'
' *d A7
L~ . o
) *3
value -
\\\ Evaluate 20 exprossion

o + '

J o

NS
1l

Or suppose the compiler executes step 2 first, as shown in Figure 5-2.

Figure 5-2. Expression evaluation method 2

result = (value++ * 5) + (value++ * 3);

o aparalion
} Evaluate 151 exprassion

Evaluate 2 expression
¥

105

w
FlyrHeart.com

TEAM FLY PRESENTS

By using the first method, we get a result of 11. By using the second method, we get
a result of 13. The result of this expression is ambiguous. Depending on how the
compiler was implemented, the result may be 11 or 13. Even worse, some compilers
change the behavior if optimization is turned on. So what was "working" code may
break when optimized.

By using the operator ++ in the middle of a larger expression, we created a problem.
(This problem is not the only problem that ++ and - - can cause. We will get into
more trouble inChapter 10.)

In order to avoid trouble and keep the program simple, always put ++ and-- on a
line by themselves.

5.15 Answers

Answer 5 -1: The problem is the use of the expressionarray[x,y] in theprintf
statement:

printf("% ", array[x,y]);

Each index to a multidimension arraymust be placed inside its own set of square
brackets ([]). The statement should read:

printf("od ", array[x][y]);

For those of you who want to read ahead a little, the comma operator can be used
to string multiple expressions together. The value of thisoperator is the value of the
last expressions. As aresult x, y is equivalent toy; andarray[y] is actually a
pointer to row y of the array. Because pointers have strange values, thepri nt f
outputs strange results. (SeeChapter 17, and Chapter 21.)

Answer5 -2: The programmer accidentally omitted the end comment (*/) after the
comment for height. The comment continues onto the next line and engulfs the
declaration, as shown in Example 5-10.

106

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 5-10. Comment Answer

#include <stdio.h>
char line[100];/* line of input data */
int height; /* the height of the triangle

int width; /* the width of the triangle */
int area; /* area of the triangle (computed) */
int main()

{
printf ("Enter width height? =*);

fgecs(line, sizecof(line), stdin);
sscanf (line, "%d %d4d", &width, &height});

area = (width * height) / 2;

printf("The area is %d\n", area):
return (0);

Consider another minor problem with this program. If wi dt h and hei ght are both
odd, we get an answer that's slightly wrong. (How would you correct this error?)

5.16 Programming Exercises

Exercise 5-1: Write a program that converts Centigrade to Fahrenheit.

. 9
F=7C+32
5 +

Exercise 5-2: Write a program to calculate the volume of a sphere.
4

£
31!

Exercise 5-3: Write a program that prints the perimeter of a rectangle given its
height and width. perimeter = 2 -(width + height)

Exercise 5-4: Write a program that converts kilometers per hour to miles per hour.
miles = (kilometer -0.6213712

Exercise 5-5: Write a program that takes hours and minutes as input, and then
outputs the total number of minutes. (1 hour 30 minutes = 90 minutes).

Exercise 5-6: Write a program that takes an integer as the number of minutes, and
outputs the total hours and minutes (90 minutes = 1 hour 30 minutes).

107

—_
FlyrHeart.com

TEAM FLY PRESENTS

108

—_—
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 6. Decision and Control

Statements

Once a decision was made, | did not worry about it afterward.
—Harry Truman

Calculations and expressions are only a small part of computer programming.
Decision and control statements are needed. They specify the order in which
statements are to be executed.

So far, we have constructed linear programs, that is, programs that execute in a
straight line, one statement after another. In this chapter, we will see how to
change the control flow of a program with branching statements and looping
statements. Branching statements cause one section of code to be executed or not
executed, depending on aconditional clause. Looping statements are used to repeat

a section of code a number of times or until some condition occurs.

6.1 if Statement

The if statement allows us to put some decision-making into our programs. The
general form of the if statement is:

if (condition)
st at ement;

If the condition is true (nonzero), the statement will be executed. If the condition is
false (0), the statement will not be executed. For example, suppose we are writing
a billing program. At the end, if the customer owes us nothing or has a credit (owes
us a negative amount), we want to print a message. In C, this program is written:

if (total _owed <= 0)
printf("You owe nothing.\n");

The operator <= is a relational operator that represents less than or equal to. This
statement reads "if the t ot al _owed is less than or equal to zero, print the
message." The complete list of relational operators is found inTable 6-1.

109

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Table 6-1. Relational Operators

Operator Meaning
<= Less than or equal to
< Less than
> Greater than
>= Greater than or equal to
== Equai®™
= Not equal

[The equal test (==) is different from the assignment operator (=). One of the most common problems the C

programmer faces is mixing them up.

Multiple statements may be grouped by putting them inside curly braces ({}). For
example:

if (total _owed <= 0) {
++zero_count;
printf("You owe nothing.\n");

For readability, the statements enclosed in {} are usually indented. This allows the
programmer to quickly tell which statements are to be conditionally executed. As we
will see later, mistakes in indentation can result in programs that are misleading and
hard to read.

6.2 else Statement

An alternate form of the if statement is:

if (condition)
st at ement ;
el se
st at ement ;

If the condition is true (nonzero), the first statement is executed. If it is false (0),
the second statement is executed. In our accounting example, we wrote out a
message only if nothing was owed. In real life, we probably would want to tell the
customer how much is owed if there is a balance due:

if (total _owed <= 0)

110

—
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("You owe nothing.\n");
el se
printf("You owe %l dollars\n", total_owed);

Now, consider this program fragment (with incorrect indentation):
if (count < 10) [* i f #1 */

if ((count %4) == 2) [* if #2 */
printf("Condition:\Wite\n");

el se
printf("Condition:Tan\n");
- Note to PASCAL programmers: unlike PASCAL, C
o requires you to put a semicolon at the end of the
—' statement preceding else.

There are two if statements and oneelse. Which if does the else belong to?

1. It belongs toif #1.
2. It belongs toif #2.
3. If you never write code like this, don't worry about this situation.

The correct answer is "c." According to the C syntax rules, the else goes with the
nearest if, so "b" is syntactically correct. But writing code like this violates the KISS
principle (Keep It Simple, Stupid). We should write code as clearly and simply as
possible. This code fragment should be written as:

if (count < 10) { [* 0 f #1 */
if ((count %4) == 2) [* if #2 */
printf("Condition:Wite\n");
el se
printf("Condition: Tan\n");

In our original example, we could not clearly determine which if statement had the
else clause; however, by adding an extra set of braces, we improve readability,
understanding, and clarity.

6.3 How Not to Use strcmp

The function st rcnp compares two strings, and then returns zero if they are equal
or nonzero if they are different. To check if two strings are equal, we use the code:

/* Check to see if stringl == string2 */

111

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

if (strcmp(stringl, string2) == 0)
printf("Strings equal \n");

el se
printf("Strings not equal \n");

Some programmers omit the comment and the==0 clause. These omissions lead to

the following confusing code:

if (strcrmp(stringl, string2))
printf("...... ");

At first glance, this program obviously compares two strings and executes the
pri ntf statement if they are equal. Unfortunately, the obvious is wrong. If the

strings are equal, strcnp returns O, and thepri ntf is not executed. Because of this
backward behavior ofst r cnp, you should be very careful in your use of st r cnp and
always comment its use. (It also helps to put in a comment explaining what you're
doing.)

6.4 Looping Statements

Looping statements allow the program to repeat a section of code any number of
times or until some condition occurs. For example, loops are used to count the
number of words in a document or to count the number of accounts that have
past-due balances.

6.5 while Statement

The while statement is used when the program needs to perform repetitive tasks.
The general form of awhile statement is:

whil e (condition)
st at ement ;

The program will repeatedly execute the statement inside the while until the
condition becomes false (0). (If the condition is initially false, the statement will not
be executed.)

For example, Example 6 -1 later in this chapter will compute all the Fibonacci
numbers that are less than 100. The Fibonacci sequence is:

112358

The terms are computed from the equations:

112

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

1+1
1+2
2 +3

g w N PP
1

In general terms this is:
frn="Fo1+f2

This is a mathematical equation using mathematical variable names (f,).
Mathematicians use this very terse style of naming variables. In programming,
terse is dangerous, so we translate these names into something verbose for C. Table
6-2 shows this translation.

Table 6-2. Math to C Name Trandation

Math-style name C-style name
fo next _numrber
fo1 current _nunber
foo ol d_number

In C code, the equation is expressed as:

next _nunber = current_nunber + ol d_nunber;

We want to loop until our current term is 100 or larger. The while loop:

whil e (current_numnber < 100)

will repeat our computation and printing until we reach this limit.

Figure 6 -1 shows what happens to the variable duringthe execution of the program.
At the beginning, current _nunber andol d_nunber are 1. We print the value of the
current term. Then the variablenext _nunber is computed (value 2). Next we
advance one term by puttingnext _nunber into current _nunber and

current _nunber into ol d_nunber . This process is repeated until we compute the

last term and thewhile loop exits.

113

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 6-1. Fibonacci execution

+——printf({"%d\n",current_number) ;
next_number = current number + old_number;

old

old

This completes the body of the loop. The first two terms of the Fibonacci sequence
are 1l and 1. We initialize our first two terms to these values. Putting it all together,
we get the code in Example 6-1.

Example 6-1. fib/fib.c

#i ncl ude <stdio. h>

i nt ol d_nunber; /* previous Fibonacci nunber */
i nt current _nunber; /* current Fibonacci number */
int next _nunber; /* next nunber in the series */

int main()

{
/* start things out */
ol d_nunber = 1;
current _nunber = 1;

printf("1\n"); /* Print first nunber */
whi l e (current_nunber < 100) {

printf("%\n", current_nunber);
next _nunber = current_nunber + ol d_nunber;

ol d_nunber = current_nunber;
current _nunber = next_numnber;

114

—~_
FlyrHeart.com

TEAM FLY PRESENTS

}

return (0);

6.6 break Statement

We have used awhile statement to compute the Fibonacci numbers less than 100.
The loop exits when the condition after the while becomes false (0). Loops can be
exited at any point through the use of a break statement.

Suppose we want to add a series of numbers, but we don't know how many numbers
are to be added together. We need some way of letting the program know that we
have reached the end of our list. In Example 6-2, we use the number zero (0) to
signal the end-of-list.

Note that the while statement begins with:

while (1) {

Left to its own devices, the program will loop forever because the while will exit
only when the expression 1 is 0. The only way to exit this loop is through a break
statement.

When we see the end of the list indicator (0), we use the statement:

if (item== 0)
br eak;

to exit the loop.

Example 6-2. total/total.c

#i ncl ude <stdio. h>

char 1ine[100];/* line of data for input */
i nt total; /* Running total of all numbers so far */
i nt item /* next itemto add to the list */
int main()
{
total = O;
while (1) {

printf("Enter # to add \ n");
printf(" or O0to stop:");

115

—
FlyrHeart.com 4

TEAM FLY PRESENTS

fgets(line, sizeof(line), stdin);
sscanf(line, "%", & tenm;

if (item==0)
br eak;

total +=item
printf("Total: %\ n", total);

}
printf("Final total %\ n", total);
return (0);

6.7 continue Statement

The continue statement is very similar to the break statement, except that instead
of terminating the loop, continue starts reexecuting the body of the loop from the
top. For example, if we want to modify the previous program to total only numbers
larger than 0, we could write a program such as Example 6-3.

Example 6-3. totalb/totalb.c

[File: total b/totalb.c]
#i ncl ude <stdi o. h>

char 1ine[100]; /* line frominput */
i nt total; /* Running total of all nunbers so far */
i nt item /* next itemto add to the list */

i nt m nus_itens; /* nunber of negative items */

int main()

{
total = O;

m nus_itens = O;

while (1) {
printf("Enter # to add\n");
printf(" or O0to stop:");

fgets(line, sizeof(line), stdin);
sscanf (line, "%", & tem;

if (item==0)
br eak;

116

FlyrHeart.com 4

TEAM FLY PRESENTS

—

if (item< 0) {
++m nus_i t ens;
conti nue;

}
total += item
printf("Total: %\ n", total);

printf("Final total %\ n", total);

printf("with % negative itenms onmitted\ n",
m nus_i tens);

return (0);

6.8 Assignment Anywhere Side Effect

C allows the use of assignment statements almost anywhere. For example, you can
put assignment statements inside assignment statements:

/* don't programlike this */
average = total _value / (nunmber_of _entries = last - first);

This is the equivalent of saying:

[* programlike this */
nunber _of entries = last - first;
average = total _value / nunber_of _entries;

The first version buries the assignment of nunber _of _ent ri esinside the expression.

Programs should be clear and simple and should not hide anything. The most
important rule of programming is keep it simple.

C also allows the programmer to put assignment statements in the while
conditional. For example:

/* do not programlike this */
while ((current_nunmber = |ast_nunber + ol d_nunber) < 100)
printf("Term%\n", current_nunber);

Avoid this type of programming. Notice how much clearer the logic is in the version
below:

[* programlike this */

117

—
FlyrHeart.com 4

TEAM FLY PRESENTS

while (1) {

current _number = | ast_nunber + ol d_nunber;
i f (current_nunber >= 100)
br eak;

printf("Term%\n", current_nunber);

Question 6 -1: For some strange reason, Example 6 -4 thinks that everyone owes a
balance of dollars. Why? (Click here for the answer Section 6.9)

Example 6-4. oweO/owe0.c

#i ncl ude <stdio. h>

char [|ine[80]; /[* input line */

i nt bal ance_owed; /* anmount owed */
int main()

{

printf("Enter nunmber of dollars owed:");
fgets(line, sizeof(line), stdin);
sscanf (line, "%", &bal ance_owed);

i f (bal ance_owed = 0)
printf("You owe nothing.\n");
el se
printf("You owe %l dollars.\n", bal ance_owed);

return (0);

Sample output:

Ent er nunber of dollars owed: 12
You owe O doll ars.

6.9 Answer

Answer 6 -1 : This program illustrates one of the most common and frustrating of C
errors. The problem is that C allows assignment statements inside if conditionals.
The statement:

if (balance_owed = 0)

118

—
FlyrHeart.com 4

TEAM FLY PRESENTS

uses a single equal sign (=) instead of the double equal sign (==). C will assign
bal ance_owed the value and test the result (which is 0). If the result was nonzero

(true), theif clause would be executed. Because the result is (false), the else clause
is executed and the program prints the wrong answer.

The statement:
i f (balance_owed = 0)
is equivalent to:

bal ance_owed = 0;
i f (balanced_owed != 0)

The statement should be written:
i f (bal ance_owed == 0)

This error is the most common error that beginning C programmers make.

6.10 Programming Exercises

Exercise 6-1: Write a program to find the square of the distance between two
points. (For a more advanced problem, find the actual distance. This problem
involves u sing the standard functionsqrt . Use your help system to find out more

about how to use this function.)

Exercise 6-2: A professor generates letter grades using Table 6 -3.

Table 6-3. Grade Values

% Right Grade
0-60 F
61-70 D
71-80 C
81-90 B
91-100 A

Given a numeric grade, print the letter.

119

—
FlyrHeart.com 4

TEAM FLY PRESENTS

i Programmers frequently have to modify code that

s someone else wrote. A good exercise is to take

4 someone else's code, such as the program that
someone wrote for Chapter 6, and then modify it.

Exercise 6-3: Modify the previous program to print a + or - after the letter grade,
based on the last digit of the score. The modifiers are listed in Table 6-4.

Table6-4. Grade M odification Values

Last digit Modifier
1-3 -
4-7 <blank>
8-0 +

For example, 81=B-, 94=A, and 68=D+. Note: An F is only an F. There is no F+ or
F-.

Exercise 6-4: Given an amount of money (less than $1.00), compute the number
of quarters, dimes, nickels, and pennies needed.

Exercise 6-5: A leap year is any year divisible by 4, unless the year is divisible by
100, but not 400. Write a program to tell if a year is a leap year.

Exercise 6-6: Write a program that, given the number of hours an employee
worked and the hourly wage, computes the employee's weekly pay. Count any
hours over 40 as overtime at time and a half.

120

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 7. Programming Process

It's just a simple matter of programming.
—Any boss who has never written a program

Programming is more than just writing code. Software has a life cycle. It is born,
grows up, becomes mature, and finally dies, only to be replaced by a newer,
younger product. Figure 7-1 illustrates the life cycle of a program. Understanding
this cycle is important because, as a programmer, you will spend only a small
amount of time writing new code. Most programming time is spent modifying and
debugging existing code. Software does not exist in a vacuum; it must be
docume nted, maintained, enhanced, and sold. In this chapter, we will take a look at
a small programming project using one programmer. Larger projects that involve
many people will be discussed in Chapter 18. Although our final code is less than
100 lines, the principles used in its construction can be applied to programs with
thousands of lines of code.

121

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Figure 7-1. Software life cycle

B
) Specitication ;; Code Design a!' Coding
k L A
' Testin
NEW |) e , S
N AN () e

‘l] Review ..._______,--- |

: : Mainfenance

' } .;ew'sian

The major steps in making a program are:

Requirements. Programs start when someone gets an idea and starts to
implement it. The requirement document describes, in very general terms,
what is wanted.

Program specification. The specification is a description of what the
program does. In the beginning, a preliminary specification is used to
describe what the program is going to do. Later, as the program becomes
more refined, so does the specification. Finally, when the program is finished,
the specification serves as a complete description of what the program does.
Code design. The programmer does an overall design of the program. The
design should include major algorithms, module definitions, file formats, and

data structures.

122
= _—>
FlyrHeart.com

TEAM FLY PRESENTS

Coding. The next step is writing the program. This step involves first writing
a prototype and then filling it in to create the full program.

Testing. The programmer should design a test plan and then use it to test
his program. When possible, the programmer should have someone else test
the program.

Debugging. Unfortunately, very few programs work the first time. They
must be corrected and tested again.

Release. The program is packaged, documented, and sent out into the
world to be used.

Maintenance. Programs are never perfect. Bugs will be found and will need
correction. This step is the maintenance phase of programming.

Revision and updating. After a program has been working for a while, the

users will want changes, such as more features or more intelligent

algorithms. At this point, a new specification is created and the process

starts again.

7.1 Setting Up

The operating system allows you to group files in directories. Just as file folders
serve as a way of keeping papers together in a filing cabinet, directories serve as a
way of keeping files together. (Windows 95 goes so far as to call its directories

"folders.™) In this chapter, we create a simple calculator program. All the files for

this program are stored in a directory named calc. In UNIX, we create a new

directory under our home directory and then move to it, as shown in the following

example:

% cd ~
% nkdir calc
% cd ~/calc

On MS-DOS type:

C:\> cd \

C:\> nkdir calc
C:\> cd \calc
C:\ CALC>

This directory setup is extremely s imple. As you generate more and more programs,

you will probably want a more elaborate directory structure. More information on

how to organize directories or folders can be found in your operating system

manual.

123

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

7.2 Specification

For this chapter, we assume that we have the requirement to "write a program that
acts like a four-function calculator."” Typically, the requirements that you are given
is vague and incomplete. The programmer refines it into something that exactly
defines the program that he is going to produce. So the first step is to write a
preliminary users’ specification document that describes what your program is
going to do and how to use it. The document does not describe the internal structure
of the program or the algorithm you plan on using. A sample specification for our
four-function calculator appears below inCalc: A Four-Function Calculator.

The preliminary specification serves two purposes. First, you should give it to your
boss (or customer) to make sure that you agree on what each of you said. Second,
you can circulate it among your colleagues and see if they have any suggestions or
corrections.

This preliminary specification was circulated and receved the comments:

How are you going to get out of the program?
What happens when you try to divide by 0?

Calc: A Four-Function Calculator
Prelimnary Specification
Dec. 10, 1989

Steve Qual |l i ne

Warning: This document is a preliminary specification. Any
resemblance to any software living or dead is purely
coincidental.

Calc is a program that allows the user to turn a $2,000
computer into a $1.98 four-function calculator. The program
will add, subtract, multiply, and divide simple integers.

When the program is run, it will zero the result register and
display the register's contents. The user can then type in an
operator and number. The result will be updated and

displayed. The following operators are valid:
Operator Meaning

124

—
FlyrHeart.com 4

TEAM FLY PRESENTS

+ Addition
- Subtraction
* Mu ltiplication

/ Division

For exanple (user input is in boldface):

calc

Result: O

Enter operator and nunmber: + 123
Result: 123

Enter operator and nunber: - 23
Result: 100

Ent er operator and nunber: /[25
Result: 4

Enter operator and nunmber: * 4
Result: 16

0

So, we add a new operator, q for quit, and we add the statement:

"Dividing by Oresults inanerror message and theresult register is left
unchanged. "

IV + IX = X117

A college instructor once gave his students an assignment to
"write a four-function calculator.” One of his students noticed
that this assignment was a very loose specification and decided
to have a little fun. The professor didn't say what sort of
numbers had to be used, so the student created a program
that worked only with Roman numerals (V+ 111 = VIII). The
program came with a complete user manual—written in Latin.

7.3 Code Design

After the preliminary specification has been approved, we can start designing code.
In the code design phase, the programmer plans his work. In large programming
projects involving many people, the code would be broken up into modules, to be
assigned to the programmers. At this stage, file formats are planned, data
structures are designed, and major algorithms are decided upon.

125

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Our simple calculator uses no files and requires no fancy data structures. What's left
for this phase is to design the major algorithm. Outlined in pseudo code, a
shorthand halfway between English and real code, the major algorithm is:

Loop
Read an operator and nunber
Do the cal cul ation
Di splay the result

End- Loop

7.4 Prototype

After the code design is completed, we can begin writing the program. But rather
than try to write the entire program at once and then debug it, we will use a method
called fast prototyping. We implement the smallest portion of the specification that
will still do something. In our case, we will cut our four functions down to a
one-function calculator. After we get this small part working, we can build the rest

of the functions onto this stable foundation. Also, the prototype gives the boss
something to look at and play with, giving him a good idea of the project's direction.

Good communication is the key to good programming, and the more you can show
someone the better. The code for th e first version of our four-function calculator is
found inExample 7 -1.

Example 7-1. calcl/calcl.c

#i ncl ude <stdi o. h>

char 1ine[100];/* line of data fromthe input */

i nt resul t; /* the result of the cal cul ations */
char operator; /* operator the user specified */

i nt val ue; /* val ue specified after the operator */
int main()

{

result = 0; /* initialize the result */

/* Loop forever (or till we hit the break statenent) */
while (1) {
printf("Result: %d\n", result);

printf("Enter operator and nunber: ");

fgets(line, sizeof(line), stdin);
sscanf(line, "% %", &operator, &val ue);

126

FlyrHeart.com

—

>

TEAM FLY PRESENTS

if (operator ="'+") {
result += val ue;
} else {
printf("Unknown operator %\ n", operator);

The program begins by initializing the variableresul t to 0. The main body of the
program is a loop starting with:

while (1) {
This loop will repeat until abreak statement is reached. The code:

printf("Enter operator and nunber: ");
fgets(line, sizeof(line), stdin);
sscanf(line,"% %", &operator, &val ue);

asks the user for an operator and number. These are scanned and stored in the
variables oper at or and val ue. Next, we start checking the operators. If the

operator is a plus sign (+), we perform an addition using the line:

if (operator ="'+") {
result += val ue;

So far, we only recognize the plus (+) operator. As soon as this operator works
correctly, we will add more operators by adding more if statements.

Finally, if an illegal operator is entered, the line:

} else {
printf("Unknown operator %\ n", operator);

writes an error message telling the user that he made a mistake.

7.5 Makefile

After the source has been entered, it needs to be compiled and linked. Up until now
we have been running the compiler manually. This process is somewhat tedious and
prone to error. Also, larger programs consist of many modules and are extremely
difficult to compile by hand. Fortunately, both UNIX and MS-DOS/Windows have a
utility called make that will handle the details of compilation. For now, use this
example as a template and substitute the name of your program in place of "calc."

127

—
FlyrHeart.com 4

TEAM FLY PRESENTS

make will be discussed in detail inChapter 18. The program looks at the file called
Makefile for a description of how to compile your program and runs the compiler for

you.

M Microsoft's Visual C++ calls this utility nmake.

Because the Makefile contains the rules for compilation, it is customized for the
compiler. The following is a setof Makefiles for all of the compilers described in this
book.

7.5.1 Generic UNIX

File: calcl/ makefile.unx

e e I #
Makefile for Unix systens

usi ng a GNU C conpi l er

s R e R R R #
CC=gcc

CFLAGS=-¢g

#

Conpiler flags:

-g - - Enabl e debuggi ng

calcl: calcl.c
$(CC) $(CFLAGS) -0 calcl calcl.c

cl ean:
rm-f calcl
- The make utility is responsible for one of the nastiest
surprises for unsuspecting users. The line:

$(CC) $(CFLAGS) -0 calcl calcl.c

must begin with a tab. Eight spaces won't work. A
space and a tab won't work. The line must start with
a tab. Check your editor and make sure that you can
tell the difference between a tab and bunch of
spaces.

128

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

7.5.2 UNIX with the Free Software Foundation's gcc

Compiler

File: cal cl/makefile.gcc

i I #
Makefile for UNI X systens
using a GNU C conpi l er
T T #
CC=gcc
CFLAGS=-g -D__USE_FI XED PROTOTYPES__ -ansi
Conpi l er fl ags:
-g - - Enabl e debuggi ng
-Val | -- Turn on all warnings (not used since it gives away

the bug in this program
-D__USE_FI XED_PROTOTYPES__
-- Force the conpiler to use the correct headers
- ansi -- Don't use GNU extensions. Stick to ANSI C.

H R OF OH OH K H R

calcl: calcl.c
$(CC) $(CFLAGS) -0 calcl calcl.c

cl ean:
rm-f calcl

7.5.3 Borland C++

[File: calcl/ makefile. bcc]

#

Makefile for Borland' s Borland- C++ conpil er
#

CC=bcc

#

Fl ags

-N -- Check for stack overflow
-v -- Enabl e debugging

-w -- Turn on all warnings

-m -- Large nodel

#

CFLAGS=-N -v -w -ni

calcl.exe: calcl.c

129

—
FlyrHeart.com 4

TEAM FLY PRESENTS

$(CC) $(CFLAGS) -ecalcl calcl.c

cl ean:
erase cal cl. exe

7.5.4 Turbo C++

File: calcl/makefile.tcc

Hm m e e m e e e e e e e e e e e e e e e e e e —a -
Makefil e for DOS systens

using a Turbo C conpiler.

Hoem e
CC=t cc

CFLAGS=-v -w -m

calcl.exe: calcl.c
$(CC) $(CFLAGS) -ecalcl.exe calcl.c

cl ean:
del cal cl. exe

7.5.5 Visual C++

[File: calcl/ makefile. nmsc]

Hm m e e m e e e e e e e e e e e e e e e e e e —a -
Makefil e for DOS systens

using a Mcrosoft Visual C++ conpiler.
g
CC=cl

#

Fl ags

AL -- Conpile for |arge node

Zi -- Enabl e debuggi ng

WL -- Turn on warni ngs

#

CFLAGS=/AL /Zi /W

calcl.exe: calcl.c
$(CC) $(CFLAGS) calcl.c

cl ean:

erase cal cl. exe

130

—
FlyrHeart.com 4

TEAM FLY PRESENTS

To compile the program, just execute themake command. make will determine which
compilation commands are needed and then execute them.

meke uses the modification dates of the files to determine whether or not a compile
is necessary. Compilation creates an object file. The modification date of the object
file is later than the modification date of its source. If the source is edited, the
source's modification date is updated, and the object file is then out of date. nake
checks these dates, and if the source was modified after the object, make recompiles
the object.

7.6 Testing

After the program is compiled without errors, we can move on to the testing phase.
Now is the time to start writing a test plan. This document issimply a list of the steps
we perform to make sure the program works. It is written for two reasons:

If a bug is found, we want to be able to reproduce it.

If we change the program, we will want to retest it to make sure new code
did not break any of the sections of the program that were previously
working.

Our test plan starts out as:

Try the follow ng operations:

+ 123 Result should be 123

+ 52 Result should be 175

x 37 Error nessage shoul d be out put

After we run the program, we get:

Result: O

Ent er operator and nunber: + 123
Result: 123

Enter operator and nunber: + 52
Result: 175

Enter operator and nunber: x 37
Resul t: 212

Something is clearly wrong. The entry x 37 should have generated an error message,

butitdidn't. A bugisin the progra m. So we begin the debugging phase. One of the

advantages of making a small working prototype is that we can isolate errors early.

131

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

7.7 Debugging

First we inspect the program to see if we can detect the error. In such a small
program we can easily spot the mistake. However, let's assume that instead of a

21-line program, we have a much larger program containing 5,000 lines. Such a

program would make inspection more difficult, so we need to proceed to the next

step.

Most systems have C debugging programs; however, each system is different.

Some systems have no debugger. In such a case, we must resort to a diagnostic
print statement. The technique is simple: put aprintf at the points at which you
know the data is good (just to make sure the data isreallygood). Then put apri nt f

at points at which the data is bad. Run the program and keep putting inpri nt f

statements until you isolate the area in the program that contains the mistake. Our

program, with diagnosticpri nt f statements added, looks like:

printf("Enter operator and nunber: ");
fgets(line, sizeof(line), stdin);
sscanf ("% %", &val ue, &operator);
printf("## after scanf %\n", operator);
if (operator ="'+") {
printf("## after if %\ n", operator);
result += val ue;

A

=

statements easy to identify and remove.

The ## at the beginning of eachprintf is used to

indicate a temporary debugging pri ntf . When the

debugging is complete, the ## makes the associated

Running our program again results in:

Result: O
Enter operator and nunber: + 123
Result: 123

Enter operator and number: + 52
after scanf +

after if +
Result: 175

Ent er operator and nunber: x 37
after scanf x
after if +

132

—
FlyrHeart.com

TEAM FLY PRE

>

SENTS

Result: 212

From this example we see that something is going wrong with the if statement.
Somehow, the variable operator is an "x" going in and a "+" coming out. Closer
inspection reveals that we have made the old mistake of using = instead of ==.
After we fix this bug, the program runs correctly. Building on this working
foundation, we add code for the other operators: dash (-), asterisk (*), and slash
(/). The result is shown in Example 7-2.

Example 7-2. calc2/calc2.c

#i ncl ude <stdio. h>
char 1ine[100];/* line of text frominput */

i nt resul t; /* the result of the cal cul ations */
char operator; /* operator the user specified */
i nt val ue; /* val ue specified after the operator */

int main()
{

result =0; /* initialize the result */

/* loop forever (or until break reached) */
while (1) {
printf("Result: %d\n", result);
printf("Enter operator and nunber: ");

fgets(line, sizeof(line), stdin);
sscanf (line, "% %", &operator, &val ue);

if ((operator == 'q') || (operator =="'Q))
br eak;

if (operator =="+") {
result += val ue;
} else if (operator =="-") {
result -= val ue;
} else if (operator == "'"*") {
result *= val ue;
} else if (operator =="'/") {
if (value == 0) {
printf("Error:Divide by zero\n");
printf(" operation ignored\n");
} else

133

—
FlyrHeart.com 4

TEAM FLY PRESENTS

result /= val ue;

} else {
printf("Unknown operator %\n", operator);
}
}
return (0);

We expand our test plan to include the new operators and try it again:

+ 123 Result shoul d be 123

+ 52 Result should be 175

x 37 Error nessage shoul d be out put
- 175 Result shoul d be zero

+ 10 Result should be 10

/ Result should be 2

/ Di vide by zero error

*

8 Result shoul d be 16
Program shoul d exit

o]

While testing the prog ram, we find that, much to our surprise, the program works.
The word "Preliminary" is removed from the specification, and the program, test
plan, and specification are released.

7.7 Debugging

First we inspect the program to see if we can detect the error. In such a small
program we can easily spot the mistake. However, let's assume that instead of a
21-line program, we have a much larger program containing 5,000 lines. Such a
program would make inspection more difficult, so we need to proceed to the next
step.

Most systems have C debugging programs; however, each system is different.
Some systems have no debugger. In such a case, we must resort to a diagnostic
print statement. The technique is simple: put aprintf at the points at which you
know the data is good (just to make sure the dataisreallygood). Then put apri nt f
at points at which the data is bad. Run the program and keep putting inpri nt f
statements until you isolate the area in the program that contains the mistake. Our
program, with diagnostic pri nt f statements added, looks like:

printf("Enter operator and nunber: ");
fgets(line, sizeof(line), stdin);

sscanf ("% %", &val ue, &operator);
printf("## after scanf %\n", operator);

134

—
FlyrHeart.com 4

TEAM FLY PRESENTS

if (operator ="'+") {
printf("## after if %\ n", operator);

result += val ue;

The ## at the beginning of eachprintf is used to

indicate a temporary debugging pri ntf. When the

debugging is complete, the ## makes the associated
statements easy to identify and remove.

Running our program again results in:

Result: O
Ent er operator and nunber: + 123
Result: 123

Ent er operator and nunber: + 52
after scanf +

after if +

Result: 175

Enter operator and nunber: x 37

after scanf x
after if +

Result: 212

From this example we see that something is going wrong with the if statement.
Somehow, the variable operator is an "x" going in and a "+" coming out. Closer
inspection reveals that we have made the old mistake of using = instead of ==.

After we fix this bug, the program runs correctly. Building on this working
foundation, we add code for the other operators: dash (-), asterisk (*), and slash

(/). The result is shown in Example 7-2.

Example 7-2. calc2/calc2.c

#i ncl ude <stdio. h>
char 1ine[100];/* line of text frominput */

i nt result; /* the result of the calcul ations */
char operator; /* operator the user specified */
i nt val ue; /* val ue specified after the operator */

int main()

{

135

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

We expand our test plan to include the new operators and try it again:

X o+ o+

~ ~ 4+

result = 0; /* initialize the result */

/* loop forever (or until break reached) */
while (1) {
printf("Result: %d\n", result);
printf("Enter operator and numnber: ");

fgets(line, sizeof(line), stdin);
sscanf(line, "% %", &operator, &val ue);

if ((operator == "'q") || (operator =='Q))
br eak;

if (operator == "+") {
result += val ue;

} elseif (operator =="-") {
result -= value

} else if (operator =="'*") {

result *= val ue
} else if (operator =="/") {
if (value == 0) {
printf("Error:Divide by zero\n");

printf(" operation ignored\n");
} else
result /= val ue;
} else {
printf("Unknown operator %\ n", operator)
}
}
return (0);

123 Result should be 123
52 Result shoul d be 175
37 Error nessage shoul d be out put
175 Result shoul d be zero
10 Result shoul d be 10
Result should be 2
Di vide by zero error

Result shoul d be 16
Program shoul d exit

136

—
FlyrHeart.com 4

TEAM FLY PRESENTS

While testing the program, we find that, much to our surprise, the program works.
The word "Preliminary" is removed from the specification, and the program, test
plan, and specification are released.

7.8 Maintenance

Good programme rs put each program through a long and rigorous testing process
before releasing it to the outside world. Then the first user tries the program and

almost immediately finds a bug. This step is the maintenance phase. Bugs are fixed,
the program is tested (to make sure that the fixes didn't break anything), and the
program is released again.

7.9 Revisions

Although the program is officially finished, we are not done with it. After the
program is in use for a few months, someone will come to us and ask, "Can you add
a modulus operator?” So we revise the specifications, add the change to the
program, update the test plan, test the program, and then release the program
again.

As time passes, more people will come to us with additional requests for changes.
Soono ur program has trig functions, linear regressions, statistics, binary arithmetic,
and financial calculations. Our design is based on the concept of one-character
operators. Soon we find ourselves running out of characters to use. At this point, our
programis doing work far in excess of what it was initially designed to do. Sooner or
later we reach the point where the program needs to be scrapped and a new one
written from scratch. At that point, we write a preliminary specification and start the
process again.

7.10 Electronic Archaeology

Electronic archeology is the art of digging through old code to discover amazing
things (like how and why the code works).

Unfortunately, most programmers don't start a project at the design step. Instead,
they are immediately thrust into the maintenance or revision stage and must face
the worst possible job: understanding and modifying someone else's code.

Your computer can aid greatly in your search to discover the true meaning of
someone else's code. Many tools are available for examining and formatting code.
Some of these tools include:

137

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Cross references. These programs have names likexr ef , cxref, and
cross. System V Unix has the utilitycscope. A cross reference prints out a
list of variables and indicates where each variable is used.

Program indenters. Programs like cb andi ndent will take a program and
indent it correctly (correct indentation is something defined by the tool
maker).

Pretty printers. A pretty printer such asvgri nd or cpri nt will take the
source and typeset it for printing on a laser printer.

Call graphs. On System V Unix the program cf | owcan be used to analyze
the program. On other systems there is a public-domain utility, cal | s, which
produces call graphs. The call graphs show who calls whom and who is called
by whom.

Which tools should you use? Whichever work for you. Different programmers work
in different ways. Some of the techniques for examining code are listed in the
sections below. Choose the ones that work for you and use them.

7.11 Marking Up the Program

Take a printout of the program and make notes all over it. Use red or blue ink so that
you can tell the difference between the printout and the notes. Use a highlighter to
emphasize important sections. These notes are useful; put them in the program as
comments, then make a new printout and start the process again.

7.12 Using the Debugger

The debugger is a great tool for understanding how something works. Most
debuggers allow the user to step through the program one line at a time, examining
variables and discovering how things really work. After you find out what the code
does, make notes and put them in the program as comments.

7.13 Text Editor as a Browser

One of the best tools for going through someone else's code is your text editor.
Suppose you want to find out what the variable sc is used for. Use the search
command to find the first placesc is used. Search again and find the second time it

is used. Continue searching until you know what the variable does.

Suppose you find out that sc is used as a sequence counter. Because you're already
in the editor, you can easily do a global search and replace to changesc to
sequence_count er. (Disaster warning: Before you make the change, make sure
that sequence_count er is not already defined as a variable. Also, watch out for

138

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

unwanted replacements, such as changing the scin "escape.") Comment the
declaration and you're on your way to creating an understandable program.

7.14 Add Comments

Don't be afraid of putting any information you have, no matter how little, into the
comments. Some of the comments I've used include:

int state; /* Controls sone sort of state machine */
int rnxy; /* Something to do with color correction ? */

Finally, there is a catch-all comment:
int idn; [* 2?22 *]

which means "l have no idea what this variable does." Even though the variable's
purpose is unknown, it is now marked as something that needs more work.

As you go through someone else's code adding comments and improving style, the
structure will become clearer to you. By inserting notes (comments), you make the
code better and easier to understand for future programmers.

For example, suppose we are confronted with the following program written by
someone from "The-Terser-the-Better" school of programming. Our assignment is
to figure out what this code does. First, we pencil in some comments, as shown in

Figure 7 2.

139

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 7-2. A terse program

finclude <stdio.h=

#include <stdlib. he Y’I.R:k.“' "l" AL VAFr nARE
wt 8 Q@n e ST

char line[80]; n?

int maini}) L}ha,
{
while (1} { /
J*Hot Really*/

g = rand(} & 100 + 1;
= . .
ﬁ,: iIEbU ok vars
o = 0;
while (1) {
printf{"Bounds %4 - ®dvn", 1, hj;
printf{“Value[®d]? *, c};

e counter of some sort

fgets(line, sizeof{line}, stdin);
gegcanf {line, "&d4d", &n);

if (n==m
brealk ;
if {n = g) .
1=n: ad just bound €
alse
h = n; L - Lover
: h = higher

printf ("Bingoi\n®);
}
return {(0);

Our mystery program requires some work. After going through it and applying the
principles described in this section, we get a well-commented, easy-to-understand
program, such as Example 7-3.

Example 7-3. good/good.c

/***

* guess -- A sinple guessing gane. *
* *
* Usage: *
* guess *
* *
* A random nunber is chosen between 1 and 100. *
* The player is given a set of bounds and *
* must choose a nunber between them *
* If the player chooses the correct nunber, he wins. *
* Ot herwi se, the bounds are adjusted to reflect *
* the player's guess and the game conti nues. *
* *
* *
* Restrictions: *

140

—~_
FlyrHeart.com

TEAM FLY PRESENTS

* The random numnber i s generated by the statenent *

* rand() % 100. Because rand() returns a numnber *
* 0 <= rand() <= maxint this slightly favors *
* the | ower numbers. *

***/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
i nt nunber _to_guess; /* random nunber to be guessed */

i nt low limt,; /* current lower limt of player's range */
i nt high_limt; /* current upper limt of player's range */
i nt guess_count; /* nunmber of times player guessed */
i nt pl ayer _nunber; /* nunmber gotten fromthe player */
char 1ine[80]; /* input buffer for a single line */
int main()
{

while (1) {

| *

* Not a pure random nunber, see restrictions

*/

nunmber _to_guess = rand() %100 + 1

/*

Initialize variables for [oop */

low limt = 0;
high_limt = 100
guess_count = O;

wh

le (1) {

/* tell user what the bounds are and get his guess */
printf("Bounds % - %\n", low limt, high_limt);
printf("Value[%]? ", guess_count);

++guess_count;

fgets(line, sizeof(line), stdin);
sscanf (line, "9%", &player_nunber);

/* did he guess right? */
i f (player_nunber == numnber_t o_guess)
br eak;

/* adj ust bounds for next guess */

i f (player_nunber < number_to_guess)
low |imt = player_nunber;

el se

141

—
FlyrHeart.com 4

TEAM FLY PRESENTS

high_limt = player_nunber;

}
printf("Bingo\n");

7.15 Programming Exercises

For each of these assignments, follow the software life cycle from specification
through release.

Exercise 7-1: Write a program to convert English units to metric (i.e., miles to
kilometers, gallons to liters, etc.). Include a specification and a code design.

Exercise 7-2: Write a program to perform date arithmetic such as how many days
there are between 6/6/90 and 4/3/92. Include a specification and a code design.

Exercise 7-3: A serial transmission line can transmit 960 characters each second.
Write a program that will calculate the time required to send a file, given the file's
size. Try the program on a 400MB (419,430,400 -byte) file. Use appropriate units.
(A 400MB file takes days.)

Exercise 7 -4: Write a program to add an 8% sales tax to a given amount and round
the result to the nearest penny.

Exercise 7-5: Write a program to tell if a number is prime.

Exercise 7-6: Write a program that takes a series of numbers and counts the
number of positive and negative values.

142

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Part 11: Simple Programming

This part builds on the basics to round out our description of simple C programming.
In this part, we learn the rest of the control statements as well as some more
advanced operations such as bit operations. Finally, we get an introduction to some
more sophisticated programming tasks such as file 1/0 and debugging.

Chapter 8 describes additional control statements. Included are for, break, and
continue. The switch statement is discussed in detail.

Chapter 9 introduces local variables, functions, and parameters.

Chapter 10 describes the C preprocessor, which gives the programmer tremendous
flexibility in writing code. The chapter also provides the programmer with a
tremendous number of ways to mess up. Simple rules that help keep the
preprocessor from becoming a problem are described.

Chapter 11 discusses the logical C operators that work on bits.

Chapter 12 explains structures and other advanced types. The sizeof operator and
the enum type are included.

Chapter 13 introduces C pointer variables and shows some of their uses.

Chapter 14 describes both buffered and unbuffered input/output. ASCII versus
binary files are discussed, and you are shown how to construct a simple file.

Chapter 15 describes how to debug a program, as well as how to use an interactive
debugger. You are shown not only how to debug a program, but also how to write a
program so that it is easy to debug. This chapter also describes many optimization
techniques for making your program run faster and more efficiently.

Chapter 16 uses a simple decimal floating-point format to introduce you to the
problems inherent in floating point, such as roundoff error, precision loss, overflow,
and underflow.

143

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 8. More Control Statements

Grammar, which knows how to control even kings...

—Moliere
8.1 for Statement

The for statement allows the programmer to execute a block of code for a specified
number of times. The general form of thefor statement is:

for (initial-statenment; condition; iteration-statenent)
body- st at enent;

This statement is equivalent to:

initial -statenent;

while (condition) {
body- st at enment ;
iteration-statenent;

For example, Example 8 -1 uses a while loop to add five numbers.

Example 8-1. total5w/totalw.c

#i ncl ude <stdio. h>

int total; /* total of all the nunbers */
int current; /* current value fromthe user */
int counter; /* while | oop counter */

char 1ine[80]; /* Line fromkeyboard */

int main() {
total = 0O;

counter = 0;
while (counter < 5) {
printf("Number? ");

fgets(line, sizeof(line), stdin);

144

FlyrHeart.com

—

>

TEAM FLY PRESENTS

sscanf (line, "%l", ¤t);

total += current;

++count er;
}
printf("The grand total is %\n", total);
return (0);

The same program can be rewritten using afor statement as shown inExample 8 -2.

Example 8-2. total5f/total5f.c

#i ncl ude <stdi o. h>

int total; /* total of all the numbers */
int current; /* current value fromthe user */
int counter; /* for |oop counter */

char Iine[80]; [/* Input from keyboard */

int main() {
total = O;
for (counter = 0; counter < 5; ++counter) {
printf("Nunber? ");

fgets(line, sizeof(line), stdin);

sscanf (line, "%d", ¤t);

total += current;
}
printf("The grand total is %\n", total);
return (0);

Note that count er goes from to 4. Ordinarily, you count five items as 1, 2, 3, 4, 5;
but you will perform much better in C if you change your thinking to zero-based
counting and then count five items as 0, 1, 2, 3, 4. (One-based counting is one of
the main causes of array overflow errors. SeeChapter 5.)

Careful examination of the two flavors of our program reveals the similarities
between the two versions as seen inFigure 8-1.

145

—

FlyHeart.com g4

TEAM FLY PRESENTS

Figure 8-1. Similarities between "while" and "for"

maini} {
£
counter = 0;
while {counter < 5]5[

L .

ncmmtsrr———______&
}
printf(*The grand total .&td ', total);
return (0 ;

)

[;\E\{counur = 0; counter < 5; ++counter) {
F

1

printf(*The grand total is &d\n*, total);

return {0);

Many other programming languages do not allow you to change the control variable
(in this case, count er) inside the loop. Cis not so picky. You can change the control
variable at any time —you can jump into and out of the loop and generally do things
that would make a PASCAL or FORTRAN programmer cringe. (Although C gives you
the freedom to do such insane things, that doesn't mean you should do them.)

Question 8-1: When Example 8 -3 runs, it prints:
Cel sius: 101 Fahrenheit: 213

and nothing more. Why? (Click here for the answer Section 8.4)

Example 8-3. cent/cent.c

#i ncl ude <stdio. h>

/*

* This program produces a Cel sius to Fahrenheit conversion
* chart for the nunmbers 0 to 100.

*/

/* The current Celsius tenperature we are working with */
i nt cel sius;
int main() {
for (celsius = 0; celsius <= 100; ++cel sius);
printf("Celsius: %l Fahrenheit:%\n",

146

—_
FlyrHeart.com

TEAM FLY PRESENTS

celsius, (celsius * 9) / 5 + 32);
return (0);

Question 8-2: Example 8 -4 reads a list of five numbers and counts the number of

3s and 7s in the data. Why does it give us the wrong answers? (Click here for the

answer Section 8.4)

Example 8-4. seven/seven.c

#i ncl ude <stdio. h>

char |ine[100]; /* line of input */

i nt seven_count; /* number of 7s in the data */

i nt data[5]; /* the data to count 3 and 7 in */
int three_count; /* the nunber of 3s in the data */
i nt index; /* index into the data */

int min() {

seven_count = O;

three_count = 0;

printf("Enter 5 numbers\n");

fgets(line, sizeof(line), stdin);

sscanf(line, "% % % % %",
&dat a[1], &data[?2], &data[3],
&dat a[4], &data[5]);

for (index = 1; index <= 5; ++index) {

if (data[index] == 3)
++t hree_count ;

if (data[index] == 7)
++seven_count ;
}
printf("Threes % Sevens %d\n",
three_count, seven_count);
return (0)

When we run this program with the data 3 7 3 0 2, the results are:

Threes 4 Sevens 1

147

FlyHeart.com g4

TEAM FLY PRESENTS

—

(Your results may vary.)

8.2 switch Statement

The switchstatement is similar to a chain of if/else statements. The general form
of a switch statement is:

switch (expression) {
case constantl :
st at enent

break ;

case constant2 :
st at ement

/* Fall through */

defaul t:
st at enent

break ;

case constant3 :
st at ement

break ;

The switch statement evaluates the value of an expression and branches to one of
the case labels. Duplicate labels are not allowed, so only one case will be selected.
The expression must evaluate an integer, character, or enumeration.

The case labels can be in any order and must be constants. Th e default label can
be put anywhere in the switch. No two case labels can have the same value.

When C sees aswitch statement, it evaluates the expression and then looks for a
matching case label. If none is found, the defaultlabel is used. If nodefault is
found, the statement does nothing.

= The switch statement is very similar to the PASCAL
4+ | case statement. The main difference is that while
4! PASCAL allows only one statement after the label, C

148

—
FlyrHeart.com 4

TEAM FLY PRESENTS

allows many. C will keep executing until it hits a
break statement. In PASCAL, you can't fall through
from one case to another, but in C you can.

Another difference between the C Switch and PASCAL
case statements is that PASCAL requires that the
default statement (otherwise statement) appear at
the end. C allows the default statement to appear
anywhere.

Example 8 5 contains a series of if and else statements:

Example 8-5. Syntax for if and else

if (operator == "+") {
result += val ue;

} else if (operator =="'-") {
result -= val ue;

} else if (operator == "*") {

result *= val ue;
} else if (operator =="'/") {
if (value == 0) {
printf("Error:Divide by zero\n");
printf(" operation ignored\n");
} else
result /= val ue;
} else {
printf("Unknown operator %\n", operator);

This section of code can easily be rewritten as a switch statement. In this switch,
we use a differentcase for each operation. The default clause takes care of all the

illegal operators.

Rewriting our program using a switch statement makes it not only simpler, but
easier to read. Our revisedcal ¢ program is shown as Example 8 6.

Example 8-6. calc3/calc3.c

#i ncl ude <stdio. h>
char |ine[100]; /[* line of text frominput */

149

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

int resul t; /* the result of the cal cul ations */

char operator; /* operator the user specified */
i nt val ue; /* val ue specified after the operator */
int main()
{
result = 0; /* initialize the result */

/* loop forever (or until break reached) */
while (1) {
printf("Result: %\n", result);
printf("Enter operator and nunber: ");

fgets(line, sizeof(line), stdin);
sscanf(line, "% %", &operator, &value);

if ((operator =="'q"') || (operator =="'Q))
br eak;
switch (operator) {
case '+':
result += val ue;
br eak;
case ' -'
result -= val ue;
br eak;
case '*'
result *= val ue;
br eak;
case '/’
if (value == 0) {
printf("Error:Divide by zero\n");

printf(" operation ignored\n");
} else
result /= val ue;
br eak;
defaul t:

printf("Unknown operator %\ n", operator);
br eak;

}

return (0);

150

—_
FlyrHeart.com

TEAM FLY PRESENTS

A break statement inside a switch tells the computer to continue execution after
the switch. If abreak statement is not there, execution will continue with the next
statement.

For example:

control = 0;
/* a not so good exanple of progranming */
switch (control) {
case O:
printf("Reset\n");
case 1:
printf("Initializing\n");
br eak;
case 2:
printf("Working\n");

In this case, when control == 0, the program will print:

Reset

Initializing

case 0 does not end with abreak statement. After printingReset , the program falls
through to the next statement (case 1) and printslnitiali zi ng.

A problem exists with this syntax. You cannot determine if the program is supposed
to fall through fromcase 0 tocase 1, orif the programmer forgot to put in abreak
statement. In order to clear up this confusion, acase section should always end
with a break statement or the comment/* Fall through */, as shown in the
following example:

/* a better exanple of progranm ng */
switch (control) {
case O:
printf("Reset\n");
/* Fall through */
case 1:
printf("Initializing\n");
br eak;
case 2:
printf("Working\n");

151

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Becausecase 2 is last, it doesn't need abreak statement. Abreak would cause the
program to skip to the end of the switch, and we're already there.

Suppose we modify the program slightly and add another case to the switch:

/* We have a little problem*/
switch (control) {
case O:
printf("Reset\n");
/* Fall through */
case 1:
printf("Initializing\n");
br eak;
case 2:
printf("Working\n");
case 3:
printf("C osing dow\n");

Now whencontrol == 2, the program prints:

Wor ki ng
Cl osi ng down

This result is an unpleasant surprise. The problem is caused by the fact that case 2
is no longer the last case. We fall through. (Unintentionally—otherwise, we would
have included a/* Fall through */ comment.) A break is now necessary. If we
always put in abreak statement, we don't have to worry about whether or not it is
really needed.

/* Al nost there */
switch (control) {
case 0O:
printf("Reset\n");
/* Fall through */
case 1:
printf("Initializing\n");
br eak;
case 2:
printf("Working\n");
br eak;

152

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Finally, we ask the question: what happens whencontrol == 5? In this case,
because no matching case or default clause exists, the entire switch statement is
skipped.

In this example, the programmer did not include adefault statement because
control will never be anything but O, 1, or 2. However, variables can get assigned
strange values, so we need a little more defensive programming, as shown in the
following example:

/* The final version */
switch (control) {
case O:
printf("Reset\n");
/* Fall through */
case 1:
printf("Initializing\n");
br eak;
case 2:
printf("Working\n");
br eak;
defaul t:
printf(
"I nternal error, control value (%) inpossible\n",
control);
br eak;

Although a default is not required, it should be put in every switch. Even though
the default may be:

defaul t:
/* Do nothing */
br eak;

it should be included. This method indicates, at the very least, that you want to
ignore out-of-range data.

8.3 switch, break, and continue

The break statement has two uses. Used inside a switch, break causes the
program to go to the end of theswitch. Inside a for or while loop, break causes
a loop exit. Thecontinue statement is valid only inside a loop. Continue will cause
the program to go to the top of the loop. Figure 8-2 illustrates both continue and
break inside a switch statement.

153

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The program in Eigure 8 -2 is designed to convert an integer with a number of
different formats into different bases. If you want to know the value of an octal
number, you would enter o (for octal) and the number. The command q is used to
quit the program. For example:

Enter conversion and nunber: o 55
Result is 45
Enter conversion and nunber: q

The hel p command is special because we don't want to print a number after the
command. After all, the result of hel p is a few lines of text, not a number. So a
continue is used inside the switch to start the loop at the beginning. Inside the
switch, the continue statement works on the loop, while the break statement
works on theswitch.

There is one break outside the switch that isdesigned to let the user exit the
program. The control flow for this program can be seen inFigure 8 -2.

154

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 8-2. switch/continue

$include =stdio.hs

int number; /* Humber we are converting */
char type; /* Type of conversion to do */
char line[B80]; f* input line */

int maini{vedid)
while {1} { #===--- - caccaccccccaaaaaon
printf{*Enter conversion and number: *};

fgets{line, sizeof(line), stdin};
sgcanf(line, "%c", &Lypel;

if (ltype == ‘g'} || (type == 'Q°)})
break;

switch (type)

case ‘'of:
cage '0': f* Octal convergion *f -
gacanf{line, "%c %', &Lype, &number}; E
break; =
case "X': =
case "X /* Hexadecimal conversion */ =
i gescanf{line, "%c kx", ELype, Snumber); =
break; =
case ‘d': E _
case 'D: /* Decimal (For completensss) */ 2 B
gacanf{line, "%c %4", &type, Enumber}); - =
break; 2 =
: cage "77: E E
: cazge 'h': f* Help */ 2 =
—_ printf{"Letter Conversionin"); -
= printf{" o Cotalin®) ; E
5 printf{" =x Hexadecimaliyn®}; E
w printf{* d Decimalsn®) ; -
= printf{" g Quit program\n®): i %
2 LT
= f* Don't print the number */ 1
= continue; !
ﬁ default: |
5 printf{"Type ? for helpin*): '
) f* Don't print the number =/ J
continue; = - - - - - e e m - - == = !
S prinkf (*Result is %4\n*, number);
¥
raturn (0} ; -
}

8.4 Answers

Answer 8 -1: The problem lies with the semicolon (;) at the end of the for
statement. The body of the for statement is between the closing parentheses and
the semicolon. In this case, the body does not exist. Even though thepri nt f
statement is indented, it is not part of the for statement. The indentation is
misleading. The C compiler does not look at indentation. The program does nothing
until the expression:

cel sius <= 100

155

—
FlyrHeart.com

TEAM FLY PRESENTS

becomes false (cel sius == 101) . Then the pri ntf is executed.

Answer 8 -2: The problem is that we read the number into dat a[1] through
dat a[5] . In C, the range o f legal array indices is toarray-size-1, or in this case, to
4. dat a[5] is illegal. When we use it, strange things happen; in this case, the
variable t hr ee_count is changed. The solution is to only use dat a[0] todata[4] .

So, we need to change thesscanf line to read:

sscanf(line, "% % % % %",
&dat a[0], &data[1], &data[2], &data[3], &data[4]);

Also, the for loop must be changed from:

for (index = 1; index <= 5; ++index)

to:
for (index = 0; index < 5; ++index)
] Experienced C programmers could look at our broken
«» | forloop and immediately sense that something was

4 wrong. Two clues that something strange is going on
are 1) the for loop starts at 1, and 2) there is a <=
operator in the loop. Most C for loops start at and use
< for termination.

8.5 Programming Exercises

Exercise 8-1: Print a checker board (8-by-8 grid). Each square should be 5 -by-3
characters wide. A 2-by-2 example follows:

R e +
I I I
I I I
I I I
g +oem - +
I I I
I I I
I I I
S P +

Exercise 8-2: The total resistance of n resistors in parallel is:

156

—
FlyrHeart.com 4

TEAM FLY PRESENTS

I Y
| 2 3 n

Suppose we have a network of two resistors with the values 4OOQ and ZOOQ.

Then our equation would be:

+

1 _
[Rk,

JF

Substituting in the value of the resistors we get:

I
R JiM) 200

L _

B~ 400
400

H:

So the total resistance of our two-resistor network is 133.3Q.

Write a program to compute the total resistance for any number of parallel resistors.
Exercise 8-3: Write a program to average n numbers.
Exercise 8-4: Write a program to print out the multiplication table.

Exercise 8-5: Write a program that reads a character and prints out whether or not
it is a vowel or a consonant.

Exercise 8-6: Write a program that converts numbers to words. For example, 895
results in "eight nine five."”

Exercise 8-7: The number 85 is pronounced "eighty-five," not "eight five." Modify
the previous program to handle the numbers through 100 so that all numbers come
out as we really say them. For example, 13 would be "thirteen" and 100 would be
"one hundred.”

157

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 9. Variable Scope and Functions

But in the gross and scope of my opinion
This bodes some strange eruption to our state.
—Shakesp eare [Hamlet, Act 1, Scene 1]

So far, we have been using only global variables. In this chapter, we will learn about
other kinds of variables and how to use them. This chapter also tells you how to
divide your code into functions.

9.1 Scope and Class

All variables have two attributes: scope and class. The scope of a variable is the area
of the program in which the variable is valid. A global variable is valid everywhere
(hence the name global), so its scope is the whole program. Alocal variable has a
scope that is limited to theblock in which it is declared and cannot be accessed
outside that block. Ablock is a section of code enclosed in curly braces ({}). Figure
9-1 shows the difference between local and global variables.

Figure 9-1. Local and global variables

int global; /*a glohal variable*/
main()
{
int local; f*a local variable*/
globhal = 1; f*global can be used here*/
local = 2; f*80 can local*/f
Scope o
of { Scope o /*beginning a new block®/
mlobal of Scope of int wery local f*this 15 lecal ko the bloeck*/

local | vary_local
¥- very_lorcal = globalslocal;

1

/W just closed the bleck*)
fvery_local can not be used*/

You can declare a local variable with the same name as a global variable. Normally,
the scope of the variablecount (first declaration) would be the whole program. The
declaration of a second local count takes precedence over the global declaration

inside the small block in which the local count is declared. In this block, the global
count ishidden . You can also nest local declarations and hide local variables. Fiqure

9-2 illustrates a hidden variable.

158

—_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 9-2. Hidden variables

int total; /*total number of entrisg*/
int count; f*oount of total entriss*y
main()
{

total = O

count = 0 f*zat global counter*/

Scope of int count; i*a local counter*/
global
varialie) cuank=U;
count., Local varialls while (1) 1
count fhidas I (oot > 100
global variable " break: L
count i His
dred. total += oount;
HoURE
}
{
oot
return (0] ;

The variable count is declared as both a local variable and a global variable.
Normally, the scope of count (global) is the entire program; however, when a
variable is declared inside a block, that instance of the variable becomes the active
one for the length of the block. The globalcount has been hidden by the local count

for the scope of this block. The shaded block in the figure shows where the scope of
count (global) is hidden.

A problem exists in that when you have the statement:

count = 1;

you cannot tell easily to whichcount you are referring. Is it the global count, the one
declared at the top of main, or the one in the middle of the while loop? You should
give these variables different names, liket ot al _count ,current _count , and
item count.

The class of a variable may be either permanent or temporary. Global variables are
always permanent. They are created and initialized before the program starts and
remain until it terminates. Temporary variables are allocated from a section of
memory called the stack at the beginning of the block. If you try to allocate too
many temporary variables, you will get a "Stack overflow" error. The space used by
the temporary variables is returned to the stack at the end of the block. Each time
the block is entered, the temporary variables are initialized.

158

—_
FlyrHeart.com

TEAM FLY PRESENTS

The size of the stack depends on the system and compiler you are using. On many
UNIX systems, the program is automaticallyallocated the largest possible stack. On
other systems, a default stack size is allocated that can be changed by a compiler
switch. On MS-DOS/Windows systems, the stack space must be less than 65,536
bytes. This may seem like a lot of space; however, several large arrays can eat it up
quickly. You should consider making all large arrays permanent.

Local variables are temporary unless they are declared static.

static has an entirely different meaning when used
«+ J. with global variables. It indicates that a variable is
%2 local to the current file. See Chapter 18.

Example 9 -1 illustrates the difference between permanent and temporary variables.
We have chosen obvious names: t enpor ary is a temporary variable, while
per manent is permanent. The variablet enpor ary is initialized each time it is

created (at the beginning of thefor statement block). The variable per manent is

initialized only once, at startup time.

In the loop, both variables are incremented. However, at the top of the loop,
tenpor ary is initialized to one, as shown in Example 9-1.

Example 9-1. vars/vars.c

#i ncl ude <stdi o. h>

int main() {
int counter; /* 1 oop counter */
for (counter = 0; counter < 3; ++counter) {
int tenporary = 1; /* A tenporary variable */
static int permanent = 1; /* A permanent variable */

printf("Tenmporary %d Permanent %\ n",
tenporary, pernmanent);

++t enporary;

++per manent ;

}

return (0);

The output of this program is:

160

—
FlyrHeart.com

TEAM FLY PRE

>
SENTS

Tenporary 1 Permanent 1
Tenporary 1 Permanent 2
Tenporary 1 Permanent 3

e Temporary variables are sometimes referred to as

s automatic variables because the space for them is

4 allocated automatically. The qualifier auto can be
used to denote a temporary variable; however, in
practice it is almost never used.

Table 9 -1 describes the different ways in which a variable can be declared.

Table9-1. Declaration Modifiers

Declared Scope Class Initialized
Outside all blocks Global |Permanent |Once
static outside all blocks Globa® |Permanent |Once
Inside a block Local Temporary |Each time block is entered
static inside a block Local Permanent |Once

[A static declaration made outside blocks indicates the variable is local to the file in which it is declared. (See

Chapter 18 for more information on programming with multiple files.)

9.2 Functions

Functions allow us to group commonly used code into a compact unit that can be
used repeatedly. We have already encountered one function, mai n. It is a special

function called at the beginning of the program. All other functions are directly or
indirectly called from n=i n.

Suppose we want to write a program to compute the area of three triangles. We
could write out the formula three times, or we could create a function to do the work.
Each function should begin with a comment block containing the following:

Name
Name of the function
Description

Description of what the function does

161

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Parameters

Description of each of the parameters to the function

Returns

Description of the return value of the function

Additional sections may be added such as file formats, references, or notes. Refer to
Chapter 3, for other suggestions.

Our function to compute the area of a triangle begins with:

/***

* triangle -- Conputes area of a triangle. *
* *

* Paraneters *

* width -- Wdth of the triangle. *
* hei ght -- Height of the triangle. *
* *

* Returns *

* area of the triangle. *

***/

The function proper begins with the line:
float triangle(float width, float height)

float is the function type. The two parameters arew dt h and hei ght . They are of
type float also.

C uses a form of parameter passing called "Call by value". When our procedure
triangl e is called, with code such as:

triangle(1.3, 8.3);

C copies the value of the parameters (in this case 1.3 and 8.3) into the function's
parameters (wi dt h and hei ght) and then starts executing the function's code. With
this form of parameter passing, a function cannot pass data back to the caller using
parameters.2

21 This statement is not strictly true. We can trick C into passing information back through the use of pointers,

as we'll see in Chapter 13.

162

—
FlyrHeart.com 4

TEAM FLY PRESENTS

- The function type is not required by C. If no function
s type is declared, the type defaults toint. However, if
" no type is provided, the maintainer cannot determine
if you wanted to use the default (int) or if you simply
forgot to declare a type. To avoid this confusion,
always declare the function type and do not use the
default.

o

The function computes the area with the statement:
area = width * height / 2.0;

What's left is to give the result to the caller. This step is done with the return
statement:

return (area);

Example 9 -2 shows our full triangle function.

Example 9-2. tri-sub/tri-sub.c

#i ncl ude <stdio. h>

/***'k****'k*********'k*************************

* triangle -- Conputes area of a triangle. *
* *

* Paraneters *

* width -- Wdth of the triangle. *
* hei ght -- Height of the triangle. *
* *

* Returns *

* area of the triangle. *

******'k***'k*'k*******************************/

float triangle(float width, float height)

{
fl oat area; /* Area of the triangle */
area = width * height / 2.0;
return (area);

}

The line:

size = triangle(l1l.3, 8.3);

163

—
FlyrHeart.com 4

TEAM FLY PRESENTS

is a call to the functiontri angl e. C assigns1. 3to the parameterw dt h and8. 3 to

hei ght.

If functions are the rooms of our building, then parameters are the doors between
the rooms. In this case, the value 1. 3 is going through the door markedwi dt h.

Parameters' doors are one way. Things can go in, but they can't go out. Thereturn
statement is how we get data out of the function. In our tri angl e example, the
function assigns the local variablear ea the value5. 4, then executes the statement

return (area);.

The return value of this function is5. 4, so our statement:

size = triangle (1.3, 8.3)
assigns si ze the value 5. 4.

Example 9 -3 computes the area of three triangles.
Example 9-3. tri-prog/tri-prog.c

[File: tri-sub/tri-prog.c]

#i ncl ude <stdi o. h>

/**

* triangle -- Conputes area of a triangle. *
* *

* Paraneters *

* width -- Wdth of the triangle. *
* hei ght -- Height of the triangle. *
* *

* Returns *

* area of the triangle. *

**/

float triangle(float width, float height)
{

fl oat area; /* Area of the triangle */
area = width * height / 2.0;

return (area);

int main()

{

164

—
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("Triangle #1 %\ n", triangle(1.3, 8.3));
printf("Triangle #2 %\n", triangle(4.8, 9.8));
printf("Triangle #3 %\n", triangle(l.2, 2.0));
return (0);

If we want to use a function before we define it, we must declare it just like a
variable to inform the compiler about the function. We use the declaration:

/* Compute a triangle */
float triangle (float width, float height);

for the tri angl e function. This declaration is called the function prototype.

The variable names are not required when declaring a function prototype. Our
prototype could have just as easily been written as:

float triangle(float, float);

However, we use the longer version because it gives the programmer additional
information, and it's easy to create prototypes using the editor's cut and paste
functions.

Strictly speaking, the prototypes are optional for some functions. If no prototype is
specifie d, the C compiler assumes the function returns anintand takes any number
of parameters. Omitting a prototype robs the C compiler of valuable information
that it can use to check function calls. Most compilers have a compile -time switch
that warns the programmer about function calls without prototypes.

9.3 Functions with No Parameters

A function can have any number of parameters, including none. But even when
using a function with no parameters, you still need the parentheses:

val ue = next _i ndex();

Declaiing a prototype for a function without parameters is a little tricky. You can't
use the statement:

i nt next_index();

because the C compiler will see the empty parentheses and assume that this is a
K&R-style function declaration. See Chapter 19, for details on this older style. The
keyword void is used to indicate an empty parameter list. So the prototype for our
next _i ndex function is:

165

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

i nt next_index(void);
void is also used to indicate that a function does not return a value. (Void is similar
to the FORTRAN subroutine or PASCAL procedure.) For example, this function just

prints a result; it does not return a value:

void print_answer(int answer)

{
if (answer < 0) {
printf("Answer corrupt\n");
return;
}
printf("The answer is %\ n", answer);
}

Question 9-1: Example 9 -4 should compute the length of a string.El Instead, it
insists that all strings are of length 0. Why? (Click here for the answer Section 9.6)

B This function performs the same function as the library function strlen.

Example 9-4. len/len.c

/**

* Question: *

* Why does this program al ways report the length *
* of any string as 07? *

* *

* A sanple "main" has been provided. It will ask *
* for a string and then print the Iength. *

**/

#i ncl ude <stdi o. h>

/**

* length -- Conputes the length of a string. *
* *

* Paraneters *

* string -- The string whose | ength we want. *
* *

* Returns *

* the length of the string. *

**/
int length(char string[])

int i ndex; /* index into the string */

166

—
FlyrHeart.com 4

TEAM FLY PRESENTS

/*
* Loop until we reach the end of string character
*/
for (index = 0; string[index] !'="'\0"; ++index)
/* do nothing */
return (index);

}
int main()
{
char |ine[100]; /* Input line fromuser */
while (1) {
printf("Enter line:");
fgets(line, sizeof(line), stdin);
printf("Length (including newine) is: %\ n", length(line));
}
}

9.4 Structured Programming

Computer scientists spend a great deal of time and effort studying how to program.
The result is that they come up with absolutely, positively, the best programming
methodology—a new one each month. Some of these systems include flow charts,
top-down programming, bottom-up programming, structured programming, and
object-oriented design (OOD).

Now that we have learned about functions, we can talk about using structured
programming techniques to design programs. These techniques are ways of
dividing up or structuring a program into small, well -defined functions. They make
the program easy to write and easy to understand. | don't claim that this method is
the absolute best way to program. It happens to be the method that works best for
me. If another system works better for you, use it.

The first step in programming is to decide what you are going to do. This has already
been described inChapter 7 . Next, decide how you are going to structure your data.

Finally, the coding phase begins. When writing a paper, you start with an outline of
each section in the paper described by a single s entence. The details will be filled in
later. Writing a program is a similar process. You start with an outline, and this
becomes your main function. The details can be hidden within other functions. For
example, Example 9-5 solves all the world's problems.

167

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 9-5. Solve the World's Problems

int main()

{
init();
sol ve_probl ens();
finish_up();
return (0);

Of course, some of the details will have to be filled in later.

Start by writing the main function. It should be less than three pages long. If it
grows longer, consider splitting it up into two smaller, simpler functions. After the
main function is complete, you can start on the others.

This type of structured programming is called top-down programming. You start at
the top (mai n) and work your way down.

Another type of coding is called bottom -up programming This method involves
writing the lowest-level function first, testing it, and then building on that working

set. | tend to use some bottom-up techniques when I'm working with a new
standard function that | haven't used before. | write a small function to make sure

that | really know how the function works, and then continue from there. This
approach is used in Chapter 7 to construct the calculator program.

So, in actual practice, both techniques are useful. A mostly top-down, partially

bottom-up technique results. Computerscientists have a term for this methodology:

chaos. The one rule you should follow in programming is "Use what works best."

9.5 Recursion

Recursion occurs when a function calls itself directly or indirectly. Some
programming functions, such as the factorial, lend themselves naturally to recursive
algorithms.

A recursive function must follow two basic rules:

It must have an ending point.
It must make the problem simpler.

A definition of factorial is:

fact(0) =1

168

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

fact(n) = n * fact(n-1)

In C, this definition is:

int fact(int nunber)

{
i f (nunmber == 0)
return (1);
/* else */
return (nunmber * fact(nunber-1));
}

This definition satisfies our two rules. First, it has a definite ending point (when
nunber == 0). Second, it simplifies the problem because the calculation of
fact (nunber -1) is simpler than f act (nunber).

Factorial is legal only for number >= 0. But what happens if we try to compute
fact (-3)? The program will abort with a stack overflow or similar message.
fact(-3) callsfact(-4), which calls fact(-5), etc. No ending point exists. This
error is referred to as an infinite recursion error.

Many things that we do iteratively can be done recursively—for example, summing
up the elements of an array. We define a function to add eleme nts m-n of an array
as follows:

If we have only one element, then the sum is simple.
Otherwise, we use the sum of the first element and the sum of the rest.

In C, this function is:

int sum(int first, int last, int array[])

{
if (first == 1last)
return (array[first]);
/* else */
return (array[first] + sum(first+l, last, array));
}

For example:

Sum(1l 8 3 2) =
1+ Sum(8 3 2) =
8 + Sum(3 2) =
3+ Sum(2) =

169

—
FlyrHeart.com 4

TEAM FLY PRESENTS

3+2=5
8 +5 =13
1+ 13 =14
Answer = 14

9.6 Answers

Answer 9 -1: The programmer went to a lot of trouble to explain that the for loop
did nothing (exceptincrement the index). However, there is no semicolon (;) at the

end of thefor. C keeps on reading until it sees a statement (in this case
return(i ndex)), and then puts that statement in thefor loop. Properly done, this

program should look like Example 9-6.

Example 9-6. len2/len2.c

#i ncl ude <stdi o. h>

int length(char string[])

{
int i ndex; /* index into the string */
/*
* Loop until we reach the end-of-string character
*/
for (index = 0; string[index] !'="'\0"; ++index)
continue; /* do nothing */
return (index);
}
int main()
{
char |ine[100]; /* Input line fromuser */
while (1) {
printf("Enter line:");
fgets(line, sizeof(line), stdin);
printf("Length (including newine) is: %\ n", length(line));
}
}

170

—
FlyrHeart.com 4

TEAM FLY PRESENTS

9.7 Programming Exercises

Exercise 9-1: Write a procedure that counts the number of words in a string. (Your
documentation should describe exactly how you define a word.) Write a program to

test your new procedure.

Exercise 9-2: Write a function begi ns(stringl, string2) that returns true if
stringl begins string2. Write a program to test the function.

Exercise 9-3: Write a functioncount (nunber, array, |ength) that counts the
number of times nunber appears inarray. The array has | engt h elements. The
function should be recursive. Write a test program to go with the function.

Exercise 9-4: Write a function that takes a character array and returns a primitive
hash code by adding up the value of each character in the array.

Exercise 9-5: Write a function that returns the maximum value of an array of
numbers.

Exercise 9-6: Write a function that scans a character array for the character- and

replaces it with _.

171

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 10. C Preprocessor

The speech of man is like embroidered tapestries, since like them this has to be
extended in order to display its patterns, but when it is rolled up it conceals and
distorts them.

—Themistocles

In the early days, when C was still being developed, it soon became apparent that
C needed a facility for handling named constants, macros, and include files. The
solution was to create a preprocessor that recognized these constructs in the
programs before they were passed to the C compiler. The preprocessor is nothing
more than a specialized text editor. Its syntax is completely different from that of C,
and it has no understanding of C constructs.

The preprocessor was very useful, and soon it was merged into the main C compiler.
On some systems, like UNIX, the preprocessor is still a separate program,
automatically execu ted by the compiler wrapper cc. Some of the new compilers, like
Turbo C++ and Microsoft Visual C++, have the preprocessor built in.

10.1 #define Statement

Example 10-1 initializes two arrays (data andtw ce). Each array contains 10
elements. Suppose we wanted to change the program to use 20 elements. Then we
would have to change the array size (two places) and the index limit (one place).
Aside from being a lot of work, multiple changes can lead to errors.

Example 10-1. init2a/Zinit2a.c

i nt data[10]; /* some data */
int twi ce[10]; /* twice some data */
int main()
{
i nt index; /* index into the data */

for (index = 0; index < 10; ++index) {

data[i ndex] = index;

twi ce[index] = index * 2;
}
return (0);

172

FlyrHeart.com

—

>

TEAM FLY PRESENTS

We would like to be able to write a generic program in which we can define a
constant for the size of the array, and then let C adjust the dimensions of our two
arrays. By using the#define statement, we can do just that. Example 10-2 is a new
version of Example 10-1.

Example 10-2. init2b/Zinit2b.c

#define SIZE 20 /* work on 20 el enents */

i nt data[Sl ZE] ; /* some data */
int tw ce[Sl ZE] ; /* twice some data */
int main()
{
i nt index; /* index into the data */

for (index = 0; index < SIZE; ++index) {

dat a[i ndex] = index;

twi ce[index] = index * 2;
}
return (0);

The line#defi ne SI ZE 20 acts as a command to a special text editor to globally
change Sl ZE to 20. This line takes the drudgery and guesswork out of making

changes.

All preprocessor commands begin with a hash mark (#) in column one. Although C
is free format, the preprocessor is not, and it depends on the hash mark's being in
the first column. As we will see, the preprocessor knows nothing about C. It can be
(and is) used to edit things other than C programs.

o You can easily forget that the preprocessor and the C
«» . compile use different syntaxes. One of the most

& common errors new programmers make is to try to
use C constructs in a preprocessor directive.

A preprocessor directive terminates at the end -of-line. This format is different from
that of C, where a semicolon (;) is used to end a statement. Putting a semicolon at

the end of a preprocessor directive can lead to unexpected results. A line may be
continued by putting a backslash (\) at the end.

173

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The simplest use of the preprocessor is to define a replacement macro. For example,
the command:

#defi ne FOO bar

causes the preprocessor to re place the word "FOO" with the word "bar" everywhere
"FOQO" occurs. It is common programming practice to use all uppercase letters for
macro names. This practice makes telling the difference between a variable (all
lowercase) and a macro (all uppercase) very easy.

The general form of a simple define statement is:

#defi ne name substitute-text

where name can be any valid C identifier and substitute-text can be anything. You
could use the following definition:

#define FOR ALL for(i = 0; i < ARRAY_SIZE; i ++)

and use it like this:

| *
* Clear the array
*/

FOR_ALL {

datal[i] = 0;

}

However, defining macros in this manner is considered bad programming practice.
Such definitions tend to obscure the basic control flow of the program. In this
example, a programmer who wants to know what the loop does would have to
search the beginning of the program for the definition of FOR_ALL.

An even worse practice is to define macros that do large scale replacement of basic
C programming constructs. For example, you can define the following:

#define BEG N {
#define END }

if (index == 0)

BEG N
printf("Starting\n");

END

The problem is that you are no longer programming in C, but in a half-C/half-Pascal
mongrel. You can find the extremes to which such mimicry can be taken in the

174

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Bourne shell, which uses preprocessor directives to define a language that looks a
lot like Algol-68.

Here's a sample section of code:

| F (x GREATER_THAN 37) OR (Y LESS_THAN 83) THEN
CASE val ue OF
SELECT 1:
start();
SELECT 3:
backspace();
OTHERW SE
error();
ESAC
Fl

Most programmers encountering this program curse at first, and then use the editor
to turn the source back into a reasonable version of C.

The preprocessor can cause unexpected problems because it does not check for
correct C syntax. For example, Example 10-3 generates an error on line 11.

Example 10-3. big/big.c

1 #define BI G _NUMBER 10 ** 10

2

3 main()

4 {

5 /* index for our calculations */
6 int i ndex;

7

8 i ndex = O;

9

10 /* syntax error on next line */
11 whil e (index < Bl G NUMBER) {

12 i ndex = index * 8;

13 }

14 return (0);

15 }

The problem is in the #define statement on line 1, but the error message points to
line 11. The definition in line 1 causes the preprocessor to expand line 11 to look
like:

175

—
FlyrHeart.com 4

TEAM FLY PRESENTS

while (index < 10 ** 10)
Because ** is an illegal operator, this expansion generates a syntax error.

Question 10-1: Example 104 generates the answer 47 instead of the expected
answer 144. Why? (See the hint below.)

Example 10-4. first/first.c

#i ncl ude <stdi o. h>

#defi ne FlI RST_PART 7
#defi ne LAST_PART 5
#define ALL_PARTS FI RST_PART + LAST_PART

int main() {
printf("The square of all the parts is %\n",

ALL_PARTS * ALL_PARTS);
return (0);

Hint: The answer may not be readily apparent. Luckily, C allows you to run your
program through the preprocessor and view the output. In UNIX, the command:

% cc -E prog.c

will send the output of the preprocessor to the standard output.

In MS-DOS/Windows, the command:

C.> cpp prog.c

will do the same thing.

Running this program through the preprocessor gives us:

#1 "first.c"
1 "/usr/include/stdio.h" 1

listing of data in include file <stdio.h>

2 "first.c" 2

mein() {

176

—
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("The square of all the parts is %d\n",
7+5*7+05);
return (0);

(Click here for the answer Section 10.7 .)

Question 10-2: Example 10-5 generates a warning that count er is used before it
is set. This warning is a surprise to us because the for loop should set it. We also get
a very strange warning, "null effect,” for line 11.

Example 10-5. max/max.c

1 /* warning, spacing is VERY inportant */

2

3 #include <stdio. h>

4

5 #define MAX =10

6

7 int main()

8 {

9 int counter;

10

11 for (counter =MAX; counter > 0; --counter)
12 printf("H there\n");
13

14 return (0);

15 }

Hint: Take a look at the preprocessor output. (Click here for the answer Section
10.7)

Question 10-3: Example 10-6 computes the wrong value for si ze. Why? (Click
here for the answer Section 10.7)

Example 10-6. size/size.c

#i ncl ude <stdi o. h>

#def i ne S| ZE 10;
#define FUDGE SIZE -2;
int main()

{

177

—
FlyrHeart.com 4

TEAM FLY PRESENTS

int size;/* size to really use */

size = FUDGE;
printf("Size is %\ n", size);
return (0);

Question 10-4: Example 10-7 is supposed to print the message "Fatal Error:
Abort" and exit when it receives bad data. But when it gets good data, it exits. Why?

(Click here for the answer Section 10.7)

Example 10-7. die/die.c

1 #include <stdio. h>
2 #include <stdlib. h>

3

4 #define DIE \

5 fprintf(stderr, "Fatal Error:Abort\n");exit(8);
6

7 int main() {

8 /* a randomval ue for testing */
9 int val ue;

10

11 val ue = 1;

12 if (value < 0)

13 DI E;

14

15 printf("We did not die\n");

16 return (0);

17 }

10.1.1 #define vs. const

The const keyword is relatively new. Beforeconst, #define was the only keyword
available to define constants, so most older code uses #define directives.
However,the useof constis preferred over #define for several reasons. First of all,
C checks the syntax of const statements immediately. The#define directive is not
checked until the macro is used. Also const uses C syntax, while the #define has
a syntax all its own. Finally, const follows normal C scope rules, while
constantsdefined by a #define directive continue on forever.

So, in most cases, aconst statementis preferred over #define . Here are two ways
of defining the same constant:

178

—
FlyrHeart.com 4

TEAM FLY PRESENTS

#define MAX 10 /* Define a value using the preprocessor */
/* (This definition can easily cause problens) */

const int MAX = 10; /* Define a C constant integer */
/* (safer) */

- Some compilers will not allow you to use a constant
«+). to define the size of an array. They should, but they
% have not caught up to the standard yet.

The #define directive can only define simple constants. The const statement can
define almost any type of C constant, including things like structure classes. For
example:

struct box {
int width, height; /* Di mensions of the box in pixels */
b
const box pink_box ={1.0, 4.5};/* Size of a pink box to be used for input
*/

The #define directive is, however, essential for things like conditional compilation
and other specialized uses.

10.2 Conditional Compilation

One of the problems programmers have is writing code that can work on many
different machines. In theory, C code is portable; in actual practice, different
operating systems have little quirks that must be accounted for. For example, this

book covers both the MS-DOS/Windows compiler and UNIX C. Although they are
almost the same, there are differences, especially when you must access the more

advanced features of the operating system.

Another portability problem is caused by the fact that the standard leaves some of
the features of the language up to the implementers. For example, the size of an
integer is implementation dependent.

The preprocessor, through the use of conditional compilation, allows the
programmer great flexibility in changing the code generated. Suppose we want to
put debugging code in the program while we are working on it, and then remove it
in the production version. We could do so by including the code in a#ifdef/#endif
section:

#i f def DEBUG
printf("In conpute_hash, value % hash %\n", val ue, hash);

179

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

#endi f /* DEBUG */

You do not have to put the/* DEBUG */ after the

#endi f ; however, the entry is very useful as a

comment.

If the beginning of the program contains the directive:

#def i ne DEBUG /* Turn debugging on */

the pri nt f will be included. If the program contains the directive:

#undef DEBUG /* Turn debugging of f */

the pri ntf will be omitted.

Strictly speaking, the #undef DEBUG is unnecessary. If there is no #defi ne DEBUG
statement, then DEBUGIis undefined. The #undef DEBUGstatement is used to indicate
explicitly that DEBUG is used for conditional compilation and is now turned off.

The directive #ifndef will cause the code to be compiled if the symbol is not
defined:

#i f ndef DEBUG
printf("Production code, no debuggi ng enabl ed\n");
#endi f /* DEBUG */

The #else directive reverses the sense of the conditional. For example:

#i f def DEBUG

printf("Test version. Debugging is on\n");
#el se DEBUG

printf("Production version\n");
#endi f /* DEBUG */

A programmer may wish to remove a section of code temporarily. One common
method is to comment out the code by enclosing itin/* */ . This method can cause
problems, as shown by the following example:

[***** Conment out this section
section_report();
/* Handl e the end of section stuff */

hPwNR

dunp_tabl e();

180

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

5: **** end of commented out section */
This code generates a syntax error for the fifth line. Why?

A better method is to use the#ifdef construct to remove the code:

#i f def UNDEF
section_report();
/* Handl e the end of section stuff */
dunp_t abl e();

#endi f /* UNDEF */

(Of course, the code will be included if anyone defines the symbol UNDEF ; however,
anyone who does so should be shot.)

The compiler switch- Dsynbol allows symbols to be defined on the command line.
For example, the command:

% cc -DDEBUG -g -0 prog prog.c

compiles the program pr og. ¢ and includes all the code in between #i f def DEBUG
and #endi f DEBUGeven though there is no#defi ne DEBUGIn the program.

The general form of the option is - Dsynbol or - Dsynbol =val ue. For example, the
following sets MAX to 10:

% cc -DMAX=10 -0 prog prog.c

Notice that the programmer can override the command-line options with directives
in the program. For example, the directive:

#undef DEBUG
will result in DEBUG being undefined whether or not you use - DDEBUG

Most C compilers automatically define some system-dependent symbols. For
example, Turbo C++ defines the symbols_ _TURBOC_ _ and_ _MSDOS__. The ANSI
Standard compiler defines the symbol _ _STDC_ _. Most UNIX compilers define a
name for the system (i.e., SUN, VAX, Celerity, etc.); however, they are rarely
documented. The symbol _ _uni x_ _ is always defined for all UNIX machines.

10.3 include Files

The #include directive allows the program to use source code from another file.

181

—
FlyrHeart.com 4

TEAM FLY PRESENTS

For example, we have been using the directive:

#i ncl ude <stdi o. h>

in our programs. This directive tells the preprocessor to take the file stdio.h
(Standard 1/0) and insert it in the program. Files that are included in other

programs are calledheader files . (Most #include directives come at the head of the
program.) The angle brackets (<>) indicate that the file is a standard header file. On

UNIX, these files are located in/usr/include. On MS-DOS/Windows, they are located
in whatever directory was specified at the time the compiler was installed.

Standard include files define data structures and macros used by library routines.
For example, pri nt f is alibrary routine that prints data on the standard output. The

FI LEstructure used by printf and its related routines is defined instdio.h.

Sometimes the programmer may want to write her own set of include files. Local
include files are particularly useful for storing constants and data structures when a
program spans several files. They are especially useful for information passing when
a team of programmers is working on a single project. (See Chapter 18.)

Local include files may be specified by using double quotes ("") around the file

name, for example:

#i ncl ude "defs.h"

The filenamedef s. h can be any valid filename. This specification can be a simple
file, def s. h; a relative path, . ./ ../ dat a. h; or an absolute path,
/root/include/const.h. (On MS-DOS/Windows, you should use backslash (\)
instead of slash (/) as a directory separator.)

b Absolute pathnames should be avoided in #include
«+ J_ directives because they make the program very
4 nonportable.

Include files may be nested, and this feature can cause problems. Suppose you
define several useful constants in the file const.h. If the files data.h andio.h both
include const.h and you put the following in your program:

#include "data. h"
#i nclude "io.h"

you will generate errors because the preprocessor will set the definitions inconst.h
twice. Defining a constant twice is not a fatal error; however, defining a data
structure or union twice is a fatal error and must be avoided.

182

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

One way around this problem is to have const.h check to see if it has already been
included and does not define any symbol that has already been defined. The

directive #ifndef symbolis true if the symbol is not defined. The directive is the
reverse of #ifdef.

Look at the following code:

#i f ndef _CONST_H_| NCLUDED _

/* define constants */

#define _CONST_H | NCLUDED
#endif /* _CONST_H_I NCLUDED */

When const.h is included, it defines the symbol _CONST_H | NCLUDED . If that
symbol is already defined (because the file was included earlier), the #ifndef
conditional hides all defines so they don't cause trouble.

- Anything can be put in a header file. This includes not
s only definitions and types, but also code, initialization
~ data, and yesterday's lunch menu. However, good
programming practices dictate that you should limit
header files to types and definitions only.

o

10.4 Parameterized Macros

So far, we have discussed only simple #defines or macros. But macros can take
parameters. The following macro will compute the square of a number:

#define SQR(x) ((x) * (x)) /* Square a nunber */

No spaces must exist between the macro name (SQR)

X
4 and the parenthesis.

When used, the macro will replace x by the text of the following argument:

SQR(5) expands to ((5) * (5))

Always put parentheses, (), around the parameters of a macro. Example 10-8
illustrates the problems that can occur if this rule is not followed.

183

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 10-8. sqr/sqr.c

#i ncl ude <stdio. h>
#define SQR(x) (x * Xx)

int main()

{

i nt counter; /* counter for |oop */

for (counter = 0; counter < 5; ++counter) {
printf("x %, x squared %\n",
counter+1, SQR(counter+1));

}

return (0);

Question 10-5: What does Example 10-8 output? Try running it on your machine.
Why did it output what it did? Try checking the output of the preprocessor. (Click
here for the answer Section 10.7)

The keep-it-simple system of programming tells us to use the increment (++) and
decrement (- -) operators only on line, by themselves. When used in a macro

parameter, they can lead to unexpected results, as illustrated by Example 10-9.
Example 10-9. sgr-i/sqr-i.c

#i ncl ude <stdi o. h>

#define SQR(x) ((x) * (x))

int main()

{

int counter; /* counter for |oop */

counter = 0;

whil e (counter < 5)
printf("x % square %d\n", counter, SQR(++counter));

return (0);

Question 10-6: Why will Example 10-9 not produce the expected output? By how
much will the counter go up each time? (Click here for the answer Section 10.7)

184

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Question 10-7: Example 10-10 tells us that we have an undefined variablenumnber ,
but our only variable name iscount er . (Click here for the answer Section 10.7)

Example 10-10. rec/rec.c

#i ncl ude <stdio. h>
#def i ne RECI PROCAL (nunber) (1.0 / (nunber))

int main()
{

fl oat counter; /* Counter for our table */

for (counter = 1.0; counter < 10.0;
counter += 1.0) {

printf("1/9% = %\n",
counter, RECI PROCAL(counter));
}

return (0);

10.5 Advanced Features

This book does not cover the complete list of C preprocessor directives. Among the
more advanced features are an advanced form of the#if directive for conditional
compilations, and the #pragma directive for inserting compilerdependent
commands into a file. See your C reference manual for more information about
these features.

10.6 Summary

The C preprocessor is a very useful part of the C language. It has a completely
different look and feel, though, and it must be treated apart from the main C
compiler.

Problems in macro definitions often do not show up where the macro is defined, but
result in errors much further down in the program. By following a few simple rules,
you can decrease the chances of having problems:

Put parentheses () around everything. In particular, they should enclose
#define constants and macro parameters.

185

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

When defining a macro with more than one statement, enclose the code in
curly braces {}).

The preprocessor is not C. Don't use= and ; . Finally, if you got this far, be
glad that the worst is over.

10.7 Answers

Answer 10-1: After the program has been run through the preprocessor, the
pri ntf statement is expanded to look like:

printf("The square of all the parts is %d\n",
7+5* 7 +05);

The equation7 +5* 7 +5 evaluates to 47. Put parentheses around all expressions
in macros. If you change the definition of ALL_PARTS to:

#define ALL_PARTS (FI RST_PART + LAST_PART)

the program will execute correctly.

Answer 10-2: The preprocessor is a very simple -minded program. When it defines
a macro, everything past the identifier is part of the macro. In this case, the
definition of MAX is literally = 10. When the for statement is expanded, the resultis:

for (counter==10; counter > 0; --counter)

C allows you to compute a result and throw it away. (This will generate a null- effect
warning in some compilers.) For this statement, the program checks to see if
count er is 10, and then discards the answer. Removing the = from the definition will

correct the problem.

Answer 10-3: As with the previous problem, the preprocessor does not respect C
syntax conventions. In this case, the programmer used a semicolon (;) to end the
statement, but the preprocessor included it as part of the definition for SI ZE. The

assignment statement for SI ZE, when expanded, is:

size = 10; -2;;

The two semicolons at the end do not hurt us, but the one in the middle is the Killer.
This line tells C to do two things:

Assign 10 to size.

Compute the value - 2 and throw it away (this code results in the null -effect
warning). Removing the semicolons will fix the problem.

186

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Answer 10-4: The output of the preprocessor looks like:

void exit();

mai n() {
i nt val ue;
val ue = 1;

if (value < 0)

printf("Fatal Error:Abort\n");exit(8);
printf("We did not die\n");
return (0);

The problem is that two statements follow theif line. Normally, they would be put
on two lines. Let's look at this program properly indented:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

mein() {

int value; /* a randomvalue for testing */

val ue = 1;
if (value < 0)
printf("Fatal Error:Abort\n");

exit(8);

printf("We did not die\n");
return (0);

With this new format, we can easily determine why we always exit. The fact that
there were two statements after theif was hidden from us by using a single
preprocessor macro.

The cure for this problem is to put curly braces ({}) around all multistatement
macros; for example:

#define DI E {printf("Fatal Error:Abort\n");exit(8);}
Answer 10-5: The program prints:

x 1 x squared 1
X 2 X squared 3

187

—
FlyrHeart.com 4

TEAM FLY PRESENTS

X 3 X squared 5
X 4 x squared 7
x 5 x squared 9

The problem is with the SQR(count er +1) expression. Expanding this expression we
get:

SQR(count er +1)
(counter + 1 * counter + 1)

So our SQR macro does not work. Putting parentheses around the parameters
solves this problem:

#define SQR(X) ((x) * (X))

Answer 10-6: The answer is that the counter is incremented by two each time
through the loop. This incrementation occurs because the macro call:

SQR(++count er)
is expanded to:
((++counter) * (++counter))

Answer 10-7: The only difference between a parameterized macro and one
without parameters is the parenthesis immediately following the macro name. In
this case, a space follows the definition of RECI PROCAL, so the macro is not

parameterized. Instead, it is a simple text-replacement macro that will replace
RECI PROCAL with:

(nunmber) (1.0 / nunber)

Removing the space between RECI PROCAL and (nhunber) will correct the problem.

10.8 Programming Exercises

Exercise 10-1: Write a macro that returns TRUE if its parameter is divisible by 10
and FALSE otherwise.

Exercise 10-2: Write a macroi s_di git that returns TRUE if its argument is a
decimal digit.

Exercise 10-3: Write a second macro i s_hex that returns true if its argument is a
hex digit (0-9, A-F, a-f). The second macro should reference the first.

188

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Exercise 10-4: Write a preprocessor macro that swaps two inte gers. (For the real
hacker, write one that does not use a temporary variable declared outside the
macro.)

188

—~_
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 11. Bit Operations

To be or not to be, that is the question
—— Shakespeare, on boolean algebra [Hamlet, Act 3, Scene 1]

This chapter discusses bit-oriented operations. A bit is the smallest unit of
information. Normally, it is represented by the values 1 and 0. (Other
representations include on/off, true/false, and yes/no.) Bit manipulations are used
to control the machine at the lowest level. They allow the programmer to get under
the hood of the machine. Many higherlevel programs will never need bit operations.
Low-level coding, like writing device drivers or pixel-level graphic programming,
requires bit operations.

Eight bits together form a byte, represented by the C data type char.®

m Technically speaking, the C standard does not specify the number of bits in a character. However, onevery

machine | know of, a C character is 8 bits.
A byte might contain the following bits:
01100100

This bit structure can also be written as the hexadecimal number 0x64. (C uses the
prefix "0x" to indicate a hexadecimal (base 16) number.) Hexadecimal is convenient
for representing binary data because each hexadecimal digit represents 4 binary
bits. Table 11-1 gives the hexadecimal-to-binary conversion:

Table 11-1. Hexadecimal and Binary

Hexadecimal Binary Hexadecimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

So the hexadecimal number OXAF represents the binary number 10101111.

190

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The printf format for hexadecimal is %; for octal the format is% . So:

int nunber = OXAF;
printf("Nunber is % % %\ n", nunber, nunber, nunber);

prints:
af 175 257

Many novice programmers get a number confused with itsrepresentation . They ask
questions like, "How does a number know if it's a hexadecimal number or decimal?”

To illustrate the difference between these two concepts, consider a bag of marbles
as illustrated inFigure 11-1.

Figure 11-1. A bag of marbles

Representation| Number of marbles
Hexadecimal 0=11
Dagimal 17
Octal 021
Binary 10001

This bag contains 17 marbles. But is that hexadecimal 0x11, decimal 17, octal 021,
or binary 10001? The answer is that the numberis 17 no matter what. How we

choose torepresent it (octal, decimal, hex, or binary) is up to us. The marbles don't

care how we count them.

11.1 Bit Operators

Bit operators allow the programmer to work on individual bits. For example, a short
integer holds 16 bits (on most machines). The bit operators treat each bit as
independent. By contrast, an add operator treats the 16 bits as a single 16-bit

number.

Bit operators allow the programmer to set, clear, test, and perform other operations
on bits. The bit operators are listed in Table 11-2.

191

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Table 11-2. Bitwise Operator s

Operator Meaning
& Bitwise and
| Bitwise or
n Bitwise exclusive or

~ Complement
<< Shift left
>> Shift right

These operators work on any integer or character data type.

11.2 The and Operator (&)

The and operator compares two bits. If they both are one, the result is one. The
results of the and operator are defined according to Table 11-3.

Table 11-3. and Oper ator

Bitl Bit2 Bitl & Bit2
0 0] 0
0 1 0
1 o (]
1 1 1

When two eight-bit variables (char variables) are "anded" together, theand
operator works on each bit independently. The following program segment
illustrates this operation:

i nt cl, c2;

cl = 0x45;
c2 = 0x71;
printf("Result of % & % = %\n", cl1, c2, (cl & c2));

The output of this program is:
Result of 45 & 71 = 41

192

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

This is because:

cl = 0x45 bi nary 01000101
& c2 = 0x71 bi nary 01110001
= 0x41 bi nary 01000001

The bitwise and (&) is similar to the logical and (&&). In the logical and, if both
operands are true (nonzero), the result is true (1). In the bitwise and (&), if the
corresponding bits of both the operands are true (ones), then the corresponding bits
of the results are true (ones). So, the bitwise and (&) works on each bit
independently while the logical and (&&) works on the operands as a whole.

However & and && are different operators, as Example 11-1 illustrates.

Example 11-1. and/and.c

#i ncl ude <stdi o. h>

int main()

{
int i1, i2; /* two randomintegers */
il =4
i2 =2

/* Nice way of witing the conditional */
if ((il'!'=0) & (i2!'=0))
printf("Both are not zero\n");

/* Shorthand way of doing the same thing */
/* Correct C code, but rotten style */
if (il && i2)

printf("Both are not zero\n");

/* Incorrect use of bitwise and resulting in an error */
if (il &i2)
printf("Both are not zero\n");

return (0);

Question: Why does test #3 fail to print Both are not zero?
Answer: The operator & is a bitwise and. The result of the bitwise andis zero.

193

—
FlyrHeart.com 4

TEAM FLY PRESENTS

i 1=4 00000100
i 2=2 00000010

& 00000000

The result of the bitwise andis O, and the conditional is false. If the programmer had
used the first form:

if ((i1!=0) && (i2!'=0))
and made the mistake of using & instead of &&:
if ((il!'=0) & (i2'!'=0))
the program would still have executed correctly.

(i1 1= 0) is true (result = 1)

(i21=0) is true (result = 1)

1 bitwise and 1 is 1 so the expression is true.&

21 soon after 1 discovered the bug illustrated by this program, | told my office mate, "I now understand the
difference between and and and and,"” and he understood me. How we understand language has always
fascinated me, and the fact that | could utter such a sentence and have someone understand it without trouble

amazed me.

You can use the bitwise andoperator to test if a number is even or odd. In base 2,
the last digit of all even numbers is zero and the last digit of all odd numbers is one.
The following function uses the bitwise andto pick off this last digit. If it is zero (an
even number), the result of the function is true.

int even(const int value)

{
return ((value & 1) == 0);
}
ot This procedure uses a programming technique known
s | by the technical name "a cute trick.” Normally, cute

%" tricks should be avoided whenever possible. Better
programming practice would be to use the modulus
(%) operator in this case. The only reason we've used

the and operator (&) is because we are discussing it
in this section.

194

FlyrHeart.com

—

>

TEAM FLY PRESENTS

11.3 Bitwise or (])

The inclusive or operator (also known as just the or operator) compares its two
operands and if one or the other bitis a one, the resultis a one. Table 114 lists the

truth table for the or operator.

Table 11-4. or Operator

Bitl Bit2 Bitl | Bit2
0 0] 0
0 1 1
1 0] 1
1 1 1

On a byte, this would be:

i 1=0x47 01000111
| i 2=0x53 01010011

= 0x57 01010111

11.4 The Bitwise Exclusive or (M)

The exclusive or (also known as xor) operator results in a one when either of its two
operands is a one, but not both. The truth table for the exclusive or operator is listed
in Table 11-5.

Table 11-5. Exclusive or

Bitl Bit2 Bitl " Bit2
0 0] 0
0 1 1
1 o 1
1 1 (0]

On a byte this would be:

195

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

i 1=0x47 01000111
A1 2=0x53 01010011

= 0x14 00010100
11.5 The Ones Complement Operator (Not)
)

The not operator (also called the invert operator, or bit flip) is a unary operator that
returns the inverse of its operand as shown inTable 11-6.

Table 11-6. not Oper ator

Bit ~Bit

On a byte, this is:

c= 0x45 01000101

~c= OxBA 10111010

11.6 The Left- and Right-Shift Operators (<<,

>>)

The left-shift operator moves the data to the left a specified number of bits. Any bits
that are shifted out the left side disappear. New bits coming in from the right are
zeros. The right shift does the same thing in the other direction. For example:

c=0x1C 00011100
c<<l1 c=0x38 00111000
c>>2 c=0x07 00000111

Shifting left by one (x << 1) is the same as multiplying by 2 (x * 2). Shifting left by
two (x << 2) is the same as multiplying by 4 (x * 4, orx * 22). You can see a pattern
forming here. Shifting left by n places is the same as multiplying by 2n. Why shift
instead of multiply? Shifting is faster than multiplication, so:

196

—
FlyrHeart.com 4

TEAM FLY PRESENTS

i = << 3; /* Multiple j by 8 (2**3) */
is faster than:
i =j * 8

Or it would be faster if compilers weren't smart enough to turn "multiply by power
of two" into "shift."”

Many clever programmers use this trick to speed up their programs atthe cost of
clarity. Don't you do it. The compiler is smart enough to perform the speedup
automatically. The result of putting in a shift gains you nothing at the expense of
clarity.

The left-shift operator multiplies; the right-shift operator divides. So:
qg=1i > 2

is the same as:

Again, this trick is clever but should not be used in modern code.

11.6.1 Right-Shift Details

Right shifts are particularly tricky. When a variable is shifted to the right, C needs to
fill the space on the left-hand side with something. For signed variables, C uses the
value of the sign bit. For unsigned variables, C uses zero. Table 11 -7 illustrates

some typical shifts.

Table11-7. Right-Shift Examples

signed char signed char unsigned char
Expression 9>>2 -8 >>2 248 == 2
Binary Value >> 2 0000 1010 >>=2 |11111000>>2 11111000 >>2
Result ??00 0010 ??11 1110 ??11 1110
Fill Sign Bit (0) Sign Bit (1 Zero
Final Result (Binary) 0000 0010 1111 1110 0011 1110
Final Result (shortint) |2 -2 62

197
e =

TEAM FLY PRESENTS

BlThe ANSI standard specifies that right shifts may be arithmetic (sign bit fill) or logical (zero bit fill). Almost all

compilers use the arithmetic right shift.

11.7 Setting, Clearing, and Testing Bits

A character (char) contains eight bits. Each of these can be treated as a separate
flag.

Bit operations can be used to pack eight single-bit values in a single byte. For
example, suppose we are writing a low-devel communications program. We are
going to store the characters in an 8k buffer for later use. With each character we
will also store a set of status flags. The flags are listed in Table 11-8.

Table 11-8. Communications Status Values

Name Description
ERROR True if any error is set.
FRAM NG_ERROR A framing error occurred for this character.
PARI TY_ERROR Character had the wrong parity.
CARRI ER_LOST The carrier signal went down.
CHANNEL_DOWN Power was lost on the communication device.

We could store each of these flags in its own character variable. That format would
mean that for each character buffered, we would need five bytes of status storage.
For a large buffer, that storage adds up. If we instead assign each status flag its own
bit within an 8-bit status character, we cut our storage requirements down to
one-fifth of our original need.

We assign our flags the bit numbers listed in Table 11-9.

Table 11-9. Bit Assgnments

Bit Name
ERROR
FRAM NG_ERROR
PARI TY_ERROR
CARRI ER_LOST
CHANNEL _DOWN

AW NP O

198

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Bits are numbered 76543210 by convention, as seen inTable 11 9. In the Bit
numbers table, we have bits 4 and 1 set.

Bit numbers
4 3 2 1
0 0 0 1 0 0 1

The constants for each bit are defined in Table 11-10.

Table 11-10. Bit Values

Bit Binary value Hexadecimal constant
7 10000000 0x80
6 01000000 0x40
5 00100000 0x20
4 00010000 0x10
3 00001000 0x08
2 00000100 0x04
1 00000010 0x02
0] 00000001 0x01

The definitions could be:

[* True if any error is set */
const int ERROR = 0x01;

/* A framing error occurred for this character */
const int FRAM NG _ERROR = 0x02;

/* Character had the wong parity */
const int PARI TY_ERROR = 0x04;

/* The carrier signal went down */
const int CARRIER LOST = 0x08;

/* Power was |ost on the comunication device */
const int CHANNEL _DOWN = 0x10;

This method of defining bits is somewhat confusing. Can you tell (without looking at
the table) which bit number is represented by the constant 0x10? Table 11-11
shows how we can use the left-shift operator (<<) to define bits.

199

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Table 11-11. L eft-Shift Operator and Bit Definition

C Representation Base 2 Equivalent Result (Base 2) Bit Number
1<<0 00000001 << O 00000001 Bit O
1<<1 00000001 <<1 00000010 Bit 1
1<<? 00000001 << 2 00000100 Bit 2
1<<3 00000001 << 3 00001000 Bit 3
1<<4 00000001 << 4 00010000 Bit 4
1<<5 00000001 <<5 00100000 Bit 5
1<<6 00000001 << 6 01000000 Bit 6
1<<7 00000001 <<7 10000000 Bit 7

Although you cannot easily tell what bit is represented by 0x10, you can easily tell
what bit is meant by 1<<4.

So our flags can be defined as:

[* True if any error is set */
const int ERROR = (1<<0);

/* A framing error occurred for this character */
const int FRAM NG _ERROR = (1<<1);

/* Character had the wong parity */
const int PARI TY_ERROR = (1<<2);

/* The carrier signal went down */
const int CARRIER LOST = (1<<3);

/* Power was |ost on the comrunication device */
const int CHANNEL DOWN = (1<<4);

Now that we have defined the bits, we can manipulate them. To set a bit, use the |
operator. For example:

char flags = 0; /* start all flags at 0 */

flags | = CHANNEL_DOWN; /* Channel just died */

To test a bit, we use the & operator to mask out the bits:

200

—
FlyrHeart.com 4

TEAM FLY PRESENTS

if ((flags & ERROR) !'= 0)
printf("Error flag is set\n");
el se
printf("No error detected\n");

Clearing a bit is a harder task. Suppose we want to clear the bit PARI TY_ERROR. In
binary this bit is 00000100. We want to create a mask that has all bits set except for
the bit we want to clear (11111011). This step is done with the not operator (—).
The mask is then anded with the number to clear the bit.

PARI TY_ERROR 00000100
~PARI TY_ERROR 11111011
flags 00000101

fl ags & ~PARI TY_ERROR 00000001

In C, you should use:
flags & ~PARI TY_ERROR; /* \Who cares about parity */

Question 11-1: In Example 11-2, the H GH_SPEED flag works , but the
DI RECT_CONNECT flag does not. Why? (Click here for the answer Section 11.9)

Example 11-2. high/Zhigh.c

#i ncl ude <stdio. h>
const int H GH SPEED = (1<<7); /* nobdemis running fast */

/* we are using a hardw red connection */
const int DI RECT_CONNECT = (1<<8);

char flags = 0; /* start with nothing */
int main()
{
flags | = H GH_SPEED,; /* we are running fast */

flags | = DI RECT_CONNECT; /* because we are wi red together */

if ((flags & HI GH_SPEED) != 0)
printf("H gh speed set\n");

if ((flags & DI RECT_CONNECT) != 0)
printf("Direct connect set\n");

201

—
FlyrHeart.com 4

TEAM FLY PRESENTS

return (0);

11.8 Bitmapped Graphics

More and more computers now have graphics. For the PC, there are graphics
devices like EGA and VGA cards. UNIX offers the X windowing system.

In bitmapped graphics, each pixel on the screen is represented by a single bit in
memory. For example, Figure 11-2 shows a 14-by-14 bitmap as it appears on the
screen, and enlarged so that you can see the bits.

Figure 11-2. Bitmap, actual size and enlarged

Bitmap

Enlarged bilmap

Suppose we have a small graphic device—a 16 -by-16-pixel black-and-white display.
We want to set the bit at 4,7. The bitmap for this device is shown as an array of bits

in Figure 11-3.

202

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 11-3. Array of bits

D1 2 3 4

5 & 7 8B 9 10 1 12 13 14 15

e I

e =

&n

Pixel (4.7] sef in a T6x16 array of bits

But we have a problem. No data type exists for an array of bits in C. The closest we
can come is an array of bytes. Our 16-by-16 array of bits now becomes a 2-by-16
array of bytes, as shown inFigure 11-4.

Figure 11-4. Array of bytes

I T T

[T e]

Byte 0

s

Byte 1

b2 3 456 7 012345 B 7

Same pixgl zet in g 2x18 array of bytes

Let's see what we need to do to transform our x, y index to abyte_x, byte_y,

bit_index, andbit.

203

—_—
FlyrHeart.com

TEAM FLY PRESENTS

The byte_y index is the same as the y index. That transformation is simple:
byte_y =y;

A byte contains 8 bits. So, in the X direction, our byte index is eight times our bit
index. This transformation leaves us with the code:

byte x = x [/ 8;

Now we need the bit index. The index starts out at O, goes to 7, and then goes back
to 0. This change gives us the code:

bit_index = x % 8;

Now to specify the bit itself. A bit index of zero indicates the left-most bit or the bit
represented by 1000 0000, 0r 0x80. A bit index of 1 indicates the

next-to-the-left-most bit 0100 00002 0r 0x80 >> 1. So the bit we want is given by
the expression:

bit = 0x80 >> bit _index;

The full algorithm looks like:

byte_y =vy;

byte x = x [/ 8;

bit_index = x %8;

bit = 0x80 >> bit_index;
graphics[byte_x][byte_y] |= bit;

This algorithm can be condensed into a single macro:

#define set_bit(x, y) graphics[(x)/8][y] |= (0x80 >> ((x)%8))

For example, to set the pixel at bit number 4,7, we need to set the fourth bit of byte
0,7. Our macro would generate the statement:

bit array[0][7] |= (Ox80 >> (4));

Example 11-3 draws a diagonal line across the graphics array and then prints the
array on the terminal.

Example 11-3. graph/graph.c

#i ncl ude <stdio. h>

204

—
FlyrHeart.com 4

TEAM FLY PRESENTS

#define X_SIZE 40 /* size of array in X direction */
#define Y_SIZE 60 /* size of array in Y direction */
/*

* W use X _SIZE/ 8 because we pack 8 bits per byte

*/

char graphics[X_SIZE / 8][Y_SI ZE]; /* the graphics data */

#define SET_BIT(x,y) graphics[(x)/8][y] |= (0x80 >>((x)uB))
int main()
{

i nt | oc; /* current location we are setting */

void print_graphics(void); /* print the data */

for (loc = 0; loc < X_SIZE; ++l oc)
SET_BI T(l oc, |oc);

print _graphics();

return (0);

}
/**
* print_graphics -- Prints the graphics bit array *

* as a set of Xand .'s. *

**/

voi d print_graphics(void)

{
int x; /* current x BYTE */
int vy; /* current y location */
unsigned int bit; /* bit we are testing in the current byte */
for (y =0; y < Y_SIZE, ++y) {
/* Loop for each byte in the array */
for (x = 0; x < X_SIZE/ 8; ++x) {
/* Handl e each bit */
for (bit = 0x80; bit > 0; bit = (bit > 1)) {
if ((graphics[x][y] & bit) !'=0)
printf("X")
el se
printf(".");
}
}
printf("\n");
}
}

205

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The program defines a bitmapped graphic array:

char graphics[X_SIZE / 8][Y_SI ZE]; /* the graphics data */

The constant X_SI ZE/ 8 is used because we have X_SI ZE bits across, which
translates to X_SI ZE/ 8 bytes.

The main for loop:

for (loc = 0; loc < X_SIZE;, ++l oc)
set _bit(loc, loc);

draws a diagonal line across the graphics array.

Because we do not have a bitmapped graphics device, we will simulate it with the
subroutine pri nt _gr aphi cs.

The loop:

for (y =0; y < Y_SIZE, ++y) {

prints each row. The loop:

for (x = 0; x < X SIZE/ 8; ++x) {

goes through every byte in the row. There are eight bits in each byte handled by the
loop:

for (bit = 0x80; bit > 0; bit = (bit >> 1))
which uses an unusual loop counter. This loop causes the variable bi t to start with

bit 7 (the left-most bit). For each iteration of the loop, the bit is moved to the right
one bitbybit = (bit >> 1) . When we run out of bits, the loop exits.

The loop counter cycles through:

Binary Hex
0000 0000 1000 0000 0x80
0000 0000 0100 0000 0x40
0000 0000 0010 0000 0x20
0000 0000 0001 0000 0x10
0000 0000 0000 1000 0x08
206

—
FlyrHeart.com 4

TEAM FLY PRESENTS

0000 0000 0000 0100 0x04
0000 0000 0000 0010 0x02
0000 0000 0000 0001 0x01

Finally, at the heart of the loops is the code:
if ((graphics[x][y] & bit) !'= 0)
printf("X");
el se
printf(".");

This code tests an individual bit and writes an "X" if it is set or a "." if it is not.

Question 11-2: In Example 11 -4 the first loop works, but the second one fails. Why?
(Click here for the answer Section 11.9)

Example 11-4. loop/loop.c

#i ncl ude <stdi o. h>

int main()
{
short int i; /* Loop counter */
si gned char ch; /* Loop counter of another kind */
/* Works */
for (i =0x80; i '=0; i = (i > 1)) {
printf("i is % (%)\n", i, i);
}
/* Fails */
for (ch = 0x80; ch !'=0; ch = (ch >> 1)) {
printf("chis % (%)\n", ch, ch);
}
return (0);
}

11.9 Answers

Answer 11-1: DI RECT_CONNECT is defined to be bit number 8 by the expression
(1<<8); however, the eight bits in a character variable are numbered 76543210.
Bit number 8does not exist. A solution to this problem is to make f | ags a short

integer with 16 bits.

207

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Answer 11-2: The problem is that ch is a character (8 bits). The value 0x80
represented in 8 bits is 1000 0000,. The first bit, the sign bit, is set. When a right
shift is done on this variable, the sign bit is used for fill. So, 1000 0000,>>1 is1100
0000,.

The variablei works even though it is signed because it is 16 bits long. So0x80 in
16 bits is 0000 0000 1000 0000,. Notice that the set bit is not near the sign bit.

The solution to our problem is to declarech as an unsigned variable.

11.10 Programming Exercises

Exercise 11-1: Write a set of parameterized macros,cl ear _bit andtest_bit, to
go with the set _bit operation defined in Example 11-3. Write a main program to
test these macros.

Exercise 11-2: Write a program to draw a 10-by-10 bitmapped square. You can
borrow the code from Example 11-3 to print the results.

Exercise 11-3: Change Example 11-3 so that it draws a white line across a black
background.

Exercise 11-4: Write a program that counts the number of bits set in an integer.
For example, the number 5 (decimal), which is 0000000000000101 (binary), has

two bits set.

Exercise 11-5: Write a program that takes a 32 -bit integer (long int) and splits it
into eight 4-bit values. (Be careful of the sign bit.)

Exercise 11-6: Write a program that will take the bits in a number and shift them
to the left end. For example, 01010110 (binary) would become 11110000 (binary).

208

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 12. Advanced Types

Total grandeur of a totd edifice, Chosen by an inquisitor of structures.
—Wallace Stevens

C provides the programmer with a rich set of data types. Through the use of
structures, unions, and enumerated types, the programmer can extend the
language with new types.

12.1 Structures

Suppose we are writing an inventory program for a warehouse. The warehouse is
filled with bins that contain various parts. All the parts in a bin are identical, so we
don't have to worry about mixed bins.

For each bin, we need to know:

The name of the patr it holds (string 30 characters long)
The quantity on hand (integer)
The price (integer cents)

In previous chapters, we have used arrays for storing a group of similar data types.

However, in this example, we have a mixed bag: two integers and a string.

Instead of an array, we will use a new data type called a structure. In an array, all
the elements are of the same type and are numbered. In a structure, each element
or field is named and has its own data type.

The general form of a structure definition is:
struct structure-nane {
field-type field-nanme; /* comrent */
field-type field-nane; /* comrent */

} vari abl e- nane;

For example, we want to define a bin to hold printer cables. The structure definition
is:

struct bin {

char nane[30] ; /* name of the part */

i nt quantity; /* how many are in the bin */

i nt cost; /* The cost of a single part (in cents) */
209

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

} printer_cabl e_bin; /* where we put the print cables */

This definition actually tellsC two things. The first is what astruct bi n looks like.
This statement defines a new data type that can be used in declaring other variables.
The variable pri nt er _cabl e_bi n is also declared by this statement. Because the
structure of a bi n has been defined, we can use it to declare additional variables:

struct bin term nal _cable_box; /* Place to put term nal cables */

The structure-name part of the definition may be omitted:

struct {

char nane[30] ; /* nane of the part */

i nt quantity; /* how many are in the bin */

i nt cost; /* The cost of a single part (in cents) */
} printer_cabl e_bin; /* where we put the print cables */

The variable pri nt er _cabl e_bi n has been defined, but no data type has been
created. In other words, pri nt er _cabl e_bi n is the only variable of this structure
you want in the program. The data type for this variable is ananonymous structure.

The variable -name may also be omitted. The following example would define a
structure type, but no variables:

struct bin {

char name[30] ; /* nanme of the part */
i nt quantity; /* how many are in the bin */
i nt cost; /* The cost of a single part (in cents) */

}s

You can now use the new data type (struct bin) to define variables such as
printer_cabl e_bin.

In an extreme case, both thevariable-name and the structure-name may be
omitted. This syntax creates a section of correct, but totally useless code.

We have defined the variablepri nt er _cabl e_bi n containing three named fields:
name, quantity, and cost . To access them, we use the syntax:

variable. field

For example, if we just found out that the price of the cables went up to $12.95, we
would do the following:

printer_cabl e_bin.cost = 1295; /* $12.95 is the new price */

210

—
FlyrHeart.com 4

TEAM FLY PRESENTS

To compute the value of everything in the bin, we can use the following:

total _cost = printer_cable_bin.cost * printer_cable_bin.quantity;

Structures may be initialized at declaration time by putting the list of elements in
curly braces ({ }):

| *
* Printer cables
*/
struct bin {

char name[30] ; /* name of the part */

i nt quantity; /* how many are in the bin */

i nt cost; /* The cost of a single part (in cents) */
} printer_cable_bin = {

"Printer Cables", /* Nane of the itemin the bin */

0, /[* Start with enpty box */

1295 /* cost -- $12.95 */

}s

12.2 Unions

A structure is used to define a data type with several fields. Each field takes up a
separate storage location. For exa mple, the structure:

struct rectangle {
int width;
i nt height;

b

appears in memory. Aunion is similar to a structure; however, it defines a single
location that can be given many different field names:

uni on val ue {
long int i_value; /* integer version of value */
float f_val ue; /* floating version of value */

b
The fieldsi _val ue and f _val ue share the same space.

You might think of a structure as a large box divided up into several different
compartments, each with its own name. A union is a box, not divided at all, with
several different labels placed on the single compartment inside.

211

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Eigure 12-1 illustrates a structure with two fields. Each field is assigned a different
section of the structure. A union contains only one compartment, which is assigned

different names.

Figure 12-1. Layout of structure and union

Strueture layoul
width
height
rectangle
Union layout
i_wvalue/f_wvalue
value

In a structure, the fields do not interact. Changing one field does not change any
others. In a union, all fields occupy the same space, so only one may be active at a
time. In other words, if you put something ini _val ue, assigning something to

f _val ue wipes out the old value of i _val ue.

Example 12-1 shows how a union can be used.

Example 12-1. Using a Union

/*

* Define a variable to hold an integer or
* a real nunber (but not both)

*/

uni on val ue {

long int i_val ue; /* The real nunber */
float f_val ue; /* The fl oati ng-point nunber */
} data;
int i; /* Random i nt eger */
float f; /* Random f | oati ng- poi nt nunber */
mai n()
{
data.f_value = 5.0;
data.i_value = 3; /* data.f_value overwitten */
i = data.i_val ue; /* legal */

f = data.f_value; /* not legal, will generate unexpected results */

212

—_
FlyrHeart.com

TEAM FLY PRESENTS

data.f_value = 5.5; /* put sonething in f_val ue/cl obber i_val ue */
i =data.i_value; [/* not legal, will generate unexpected results */
return(0);

Unions are frequently used in the area of communications. For example, suppose we
have a remote tape and we want to send it four messages: open, close, read, and
write. The data contained in these four messages is vastly different depending on
the message.

The open message needs to contain the name of the tape; the write message needs
to contain the data to write; the read message needs to contain the maximum
number of characters to read; and the close message needs no additional
information.

#def i ne DATA_MAX 1024 /* Maxi mum anmpount of data for a read and wite */

struct open_nsg {
char nane[30] ; /* Nanme of the tape */

}s

struct read_nsg {
i nt | ength; /* Max data to tranfer in the read */

}s

struct wite_nsg {
int | ength; /* Nunber of bytes to wite */
char data[DATA_MAX]; /* Data to wite */

b

struct close_nsg {

b

const i nt OPEN_CODE=0; /* Code indicating an open message */
const int READ_CODE=1; /* Code indicating a read nessage */

const int WRI TE_CODE=2; /* Code indicating a wite nessage */
const int CLOSE_CODE=3; /* Code indicating a close nessage */

struct msg {
int nsg; /* Message type */
uni on {
struct open_nsg open_dat a;
struct read_nsg read_dat a;
struct wite_nsg wite_data;
struct close_nsg cl ose_data

213

—
FlyrHeart.com 4

TEAM FLY PRESENTS

} nsg_dat a;

b
12.3 typedef

C allows the programmer to define her own variable types through the typedef
statement. This statement provides a way for the program to extend C's basic types.
The general form of the typedefstatement is:

typedef type-declaration;

where type-declaration is the same as a variable declaration except that a type
name is used instead of a variable -name. For example:

typedef int count;

defines a new type count that is the same as an integer.
So the declaration:

count flag;

is the same as:

int flag;

At first glance, this statement is not much different from:

#define count int
count flag;

However, typedef can be used to define more complex objects that are beyond
the scope of a simple #define statement. For example:

typedef int group[10];

A new type named gr oup now exists, denoting an array of ten integers:

mai n()
{
typedef int group[10]; /* Create a new type "group" */
group totals; /* Use the new type for a variable */
for (i =0; i < 10; i++)
totals[i] = 0;
return (0);

214

—
FlyrHeart.com 4

TEAM FLY PRESENTS

One frequent use of typedef's is in the definition of a new structure. For example:

struct conpl ex_struct {
doubl e real;
doubl e i mag;

b

typedef struct conpl ex_struct conpl ex;

conpl ex voltagl = {3.5, 1.2};

12.4 enum Type

The enumerated data type is designed for variables that contain only a limited set of
values. These values are referenced by name (tag). The compiler assigns each tag

an integer value internally. Consider an application, for example, in which we want

a variable to hold the days of the week. We could use theconst declaration to
create values for the week_days, as follows:

typedef int week_day; /* define the type for week_days */

const int SUNDAY = 0;
const i nt MONDAY = 1;
const int TUESDAY = 2;
const int WEDNESDAY = 3;
const int THURSDAY = 4;
const int FRI DAY = 5;
const int SATURDAY = 6;

/* nowto use it */
week_day today = TUESDAY;

This method is cumbersome. A better method is to use the enum type:

enum week_day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRI DAY, SATURDAY};

/* now use it */

enum week_day today = TUESDAY;

The general form of an enum statement is:

enum enum-nane { tag-1, tag-2, . . .} variable-nane

Like structures, the enum-name or the variable-name may be omitted. The tags
may be any valid C identifier; however, they are usually all uppercase.

215

—
FlyrHeart.com 4

TEAM FLY PRESENTS

C implements theenum type as compatible with integer. So in C, itis perfectly legal
to say:

today = 5; /* 5is not a week_day */

although some compilers will issue a warning when they see this line. In C++,
enum is a separate type and is not compatible with integer.

12.5 Casting

Sometimes you must convert one type of variable to another type. This is
accomplished through the cast or typecast operation. The general form of a cast is:

(type) expression
This operation tells C to compute the value of theexpression, and then convert it to

the specifiedtype. This operation is particularly useful when you work with integers
and floating-point numbers:

int won, |ost; /* # ganmes won/lost so far */

fl oat ratio; /* win/lose ratio */

won = 5;

lost = 3;

ratio = won / lost; /* ratio will get 1.0 (a wong val ue) */
/* The following will conmpute the correct ratio */

ratio = ((float) won) / ((float) lost);

Another common use of this operation is for converting pointers from one type to
another.

12.6 Bit Fields or Packed Structures

Packed structures allow us to declare structures in a way that takes up a minimum
amount of storage. For example, the following structure takes up six bytes (on a
16-bit machine).

struct item {

unsigned int list; /* true if itemis inthe list */
unsi gned int seen; /* true if this item has been seen */
unsi gned i nt nunber; [* item nunber */

}s

The storage layout for this structure can be seen inEigure 12-2. Each structure uses
six bytes of storage (two bytes for each integer).

216

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 12-2. Unpacked structure

a 1 2 3 4 5 & 7 & 9 W 1 12 1@ 14 13

list |

E8en

However, the fieldsl i st andseen can only have two values, and 1, so only one bit
is needed to represent them. We never plan on having more than 16383 items
(Ox3f ff or 14 bits). We can redefine this structure using bit fields, so that it takes
only two bytes, by following each field with a colon and the number of bits to be used
for that field:

struct item/{
unsigned int list:1; /* true if itemis in the list */
unsi gned int seen: 1; /* true if this itemhas been seen */
unsi gned int nunber:14; /* item nunber */

}s

In this example, we tell the compiler to use one bit for | i st , one bit for seen, and
14 bits for nunber . Using this method, we can pack our data into only two bytes, as

seen in Figure 12-3.

Figure 12-3. Packed structure

a 1 2 3 4 5 & 7 & 9 w1 o1z 13 14 15

ligt number
eean

Packed structures should be used with care. The code to extract data from bit fields
is relatively large and slow. Unless storage is a problem, packed structures should
not be used.

In Chapter 10, we needed to store character data and five status flags for 8,000
characters. In this case, using a different byte for each flag would eat up a lot of
storage (five bytes for each incoming character). We used bitwise operations to
pack the five flags into a single byte. Alternatively, a packed structure could have
accomplished the same thing:

struct char_and_status {

217

—_
FlyrHeart.com

TEAM FLY PRESENTS

char character; /* Character fromdevice */

int error:1; /* True if any error is set */

int framng_error:1;/* Fram ng error occurred */

int parity_error:1; /* Character had the wong parity */
int carrier_lost:1; /* The carrier signal went down */

i nt channel _down:1; /* Power was |ost on the channel */

}s

Using packed structures for flags is clearer and less error prone than using bitwise
operators. However, bitwise operators give the programmer additional flexibility.
You should use the one that is clearest and easiest for you to use.

12.7 Arrays of Structures

Structures and arrays can be combined. For example, suppose we want to record
the time a runner completes each lap of a four-lap race. We define a structure to
store the time:

struct tine {
i nt hour; /* hour (24 hour clock) */
int minute; /* 0-59 */
int second; /* 0-59 */
b
const int MAX_LAPS = 4; /* we will have only 4 laps */
/* the tinme of day for each |ap*/
struct tinme |ap[MAX_LAPS];

We can use this structure as follows:

/*
* Runner just passed the timng point
*/

| ap[count]. hour = hour;

|l ap[count].m nute = m nute;

| ap[count].second = second;

++count ;

This aray can also be initialized at run time.

Initialization of an array of structures is similar to the initialization of
multi-dimensional arrays:

struct time start_stop[2] = {
{10, 0, 0},

218

—
FlyrHeart.com 4

TEAM FLY PRESENTS

{12, 0, 0}
}s

Suppose we want to write a program to handle a mailing list. Mailing labels are 5
lines high and 60 characters wide. We need a structure to store names and

addresses. The mailing list will be sorted by name for most printouts, and sorted in
zip code order for actual mailings. Our mailing list structure looks like this:

struct nmiling {
char name[60]; /* Last nanme, first nanme */
char address1[60];/* Two |ines of street address */
char address2[60];
char city[40];
char state[2]; /* Two character abbreviation */
I ong int zip; /* Numeric zip code */

b
We can now declare an array to hold our mailing list:

/[* Qur mailing list */
struct mailing |ist[MAX_ENTRIES];

The state field is two elements because it is designed to hold two characters. The
field is not a string because we have not allocated enough space for the end of string
character (\0').

12.8 Summary

Structures and unions are some of the more powerful features of the C language. No
longer are you limited to C's built-in data types—you can create your own. As we will
see in later chapters, structures can be combined with pointers to create very
complex and powerful data structures.

12.9 Programming Exercises

Exercise 12-1: Design a structure to hold the data for a mailing list. Write a
function to print out the data.

Exercise 12-2: Design a structure to store time and date. Write a function to find
the difference between two times in minutes.

Exercise 12-3: Design an airline reservation data structure that contains the
following data:

218

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Flight number

Originating airport code (three characters)
Destination airport code (three characters)
Starting time

Arrival time

Exercise 12-4: Write a program that lists all the planes that leave from two
airports specified by the user.

220

—_
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 13. Simple Pointers

The choice of a point of view is the initial act of culture.
—JoseéOrtega y Gasset

There are things and pointers to things. Knowing the difference between the two is
very important. This concept is illustrated in Eigure 13-1.

Figure 13-1. A thing and a pointer to a thing

(1000
thing_ptr
(x1000
A thing A pointer

In this book, we use a box to represent a thing. The name of the variable is written
on the bottom of the box. In this case, our variable is namedt hi ng. The value of the
variable is 6.

The address of t hi ng is 0x1000 . Addresses are automatically assigned by the C
compiler to every variable. Normally, you don't have toworry about the addresses
of variables, but you should understand that they're there.

Our pointer (t hi ng_pt r) points to the variablet hi ng. Pointers are also called
address variables because they contain the addresses of other variables. In this

case, our pointer contains the address 0x1000. Because this is the address of t hi ng,
we say that t hi ng_ptr points tot hi ng.

Variables and pointers are much like street addresses and houses. For example,
your address might be "214 Green Hill Lane." Houses come in many different shapes
and sizes. Addresses are approximately the same size (street, city, state, and zip).
So, while "1600 Pennsylvania Ave." might point to a very big white house and "8347
Undersea Street" might be a one-room shack, both addresses are the same size.

The same is true in C. While things may be big and small, pointers come in one size
(relatively small).2

[This statement is not strictly t rue for MS-DOS/Windows compilers. Because of the strange architecture of the
8086, these compilers are forced to use both near pointers (16 bits) and far pointers (32 bits). See your C

compiler manual for details.

221

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Many novice programmers get pointers and their contents confused. In order to
limit this problem, all pointer variables in this book end with the extension_ptr. You

might want to follow this convention in your own programs. Although this notation
is not as common as it should be, it is extremely useful.

Many different address variables can point to the same thing. This concept s true for
street addresses as well. Table 13-1 lists the location of important servicesin a
small town.

Table 13-1. Directory of Ed's Town USA

Service (variable name) Address (address value) Building (thing)
Fire Department 1 Main Street City Hall
Police Station 1 Main Street City Hall
Planning office 1 Main Street City Hall
Gas Station 2 Main Street Ed's Gas Station

In this case, we have a government building that serves many functions. Although
it has one address, three different pointers point to it.

As we will see in this chapter, pointers can be used as a quick and simple way to

access arrays. In later chapters, we will discover how pointers can be used to create
new variables and complex data structures such as linked lists and trees. As you go
through the rest of the book, you will be able to understand these data structures as

well as create your own.

A pointer is declared by putting an asterisk (*) in front of the variable name in the

declaration statement:

i nt thing; /* define a thing */
int *thing_ptr; /* define a pointer to a thing */

Table 13-2 lists the operators used in conjunction with pointers.

Table 13-2. Pointer Operators

Operator Meaning
* Dereference (given a pointer, get the thing referenced)
& Address of (given a thing, point to it)
222

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The operator ampersand (&) returns the address of a thing which is a pointer. The
operator asterisk (*) returns the object to which a pointer points. These operators
can easily cause confusion. Table 13-3 shows the syntax for the various pointer
operators.

Table 13-3. Pointer Operator Syntax

C Code Description
t hi ng Simple thing (variable)
&t hi ng Pointer to variablet hi ng

thi ng_ptr |Pointer to an integer (may or may not be specific integer t hi ng)

*thing_ptr |Integer

Let's look at some typical uses of the various pointer operators:

int thing; /* Declare an integer (a thing) */
thing = 4;

The variable t hi ng is a thing. The declarationi nt t hi ng does not contain an *, so
t hi ng is not a pointer:

int *thing_ptr; /* Declare a pointer to a thing */

The variablet hi ng_ptr is a pointer. The * in the declaration indicates this is a
pointer. Also, we have put the extension_ptr onto the name:

thing_ptr = &hing; /* Point to the thing */

The expression &t hi ng is a pointer to a thing. The variable t hi ng is an object. The
& (address of operator) gets the address of an object (a pointer), so &t hi ng is a
pointer. We then assign this tot hi ng_pt r, also of type pointer:

thing_ptr = 5; / Set "thing" to 5 */
/* We may or may not be pointing */
/* to the specific integer "thing" */

The expression*t hi ng_pt r indicates a thing. The variable t hi ng_ptr is a pointer.
The * (dereference operator) tells C to look at the data pointed to, not the pointer
itself. Note that this points to any integer. It may or may not point to the specific
variable t hi ng.

These pointer operations are summarized in Figure 13-2.

223

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Figure 13-2. Pointer operations

) thing ptr = &thing;

Octopg D) Assigns thing's address
thing_ptr Fers {0 thing ptr
" 1 D00

@ other = *thing ptr;

’/[—} Assigns 10 other the

tun’f;gﬂg?r value al the address
ither thing . thing ptr Carries.
01004 021000

0 *thing ptr = 6;

g
[

(1000 Assigns 1o a value to what
thing_ptr thing ptr pointsto

‘thing
(1000

The following examples show how to misuse the pointer operations:
*thing

is illegal. It asks C to get the object pointed to by the variablet hi ng.
Because t hi ng is not a pointer, this operation is invalid.

&thing_ptr
is legal, but strange. t hi ng_ptr is a pointer. The & (address of operator)
gets a pointer to the object (in this case t hi ng_ptr). The result is a pointer

to a pointer.

Example 13-1 illustrates a simple use of pointers. It declares one object, onet hi ng,
and a pointer, t hi ng_pt r . t hi ng is set explicitly by the line:

thing = 2;
The line:

thing_ptr = &thing;

224

FlyrHeart.com

TEAM FLY PRESENTS

causes C to sett hi ng_ptr to the address of t hi ng. From this point on, t hi ng and

*t hi ng_ptr are the same.

Example 13-1. thing/thing.c

#i ncl ude <stdio. h>

int main()

{
i nt thing_var; /* define a variable for thing */
int *thing_ptr; /* define a pointer to thing */

thing_var = 2; /* assigning a value to thing */
printf("Thing %\ n", thing_var);

thing_ptr = & hing_var; /* make the pointer point to thing */
thing_ptr = 3; / thing_ptr points to thing_var so */

/* thing_var changes to 3 */
printf("Thing %\ n", thing_var);

/* anot her way of doing the printf */

printf("Thing %\ n", *thing_ptr);
return (0);

Several pointers can point to the same thing:

first_ptr = &sonet hing;
second_ptr = first_ptr;

1: i nt sonet hi ng;

2:

3: i nt *first_ptr; /* one pointer */

4. i nt *second_ptr; /* anot her pointer */

5:

6: somet hing = 1; /* give the thing a value */
7:

8:

9:

In line 8, we use the& operator to changesonet hi ng, a thing, into a pointer that can
be assigned tofirst_ptr. Because first_ptr and second_ptr are both pointers,

we can do a direct assignment in line 9.

After executing this program fragment, we have the situation shown inFigure 13-3.

225

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 13-3. Two pointers and a thing

first_ptr second_pir
01000 | 0x1000
_somathing
01000

You should note that while we have three variables, there is only one integer
(son®et hi ng). The following are all equivalent:

sonmet hing = 1;

*first_ptr = 1;
*second_ptr = 1;

13.1 Pointers as Function Arguments

C passes parameters using "call by value.” That is, the parameters go only one way
into the function. The only result of a function is a single return value. This concept
is illustrated in Figure 134.

Figure 13-4. Function call

=3

Parameters %'{
8 ;

: H!y’ -

Fu nr:l_ian ‘

Return value

226

w
FlyrHeart.com

TEAM FLY PRESENTS

However, pointers can be used to get around this restriction.

Imagine thatthere are two people, Sam and Joe, and whenever they meet, Sam can
only talk and Joe can only listen. How is Sam ever going to get any information from
Joe? Simple: all Sam has to do is tell Joe, "l want you to leave the answer in the
mailbox at 335 West 5 th Street.”

C uses a similar trick to pass information from a function to its caller. InExample
13-2, mai n wants the functioni nc_count to increment the variablecount .

Passing it directly would not work, so a pointer is passed instead ("Here's the
address of the variable I want you to increment"). Note that the prototype for
i nc_count contains anint * . This format indicates that the single parameter given

to this functionis a pointer to an integer, not the integer itself.

Example 13-2. call/call.c

#i ncl ude <stdio. h>
void inc_count(int *count_ptr)

{
(*count _ptr) ++;
}
int main()
{
int count = 0; /* nunber of tinmes through */
while (count < 10)
inc_count (&count);
return (0);
}

This code is represented graphically in Figure 13-5. Note that the parameter is not
changed, but what it points to is changed.

227

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 13-5. Call of inc_count

while (count < 10)
inc_count (&count);

el I 00 i
. i Calls the function
{{‘i}J e ine_count, Sending
st B &Count @54 parameter.
0x1000 RIS N count ‘= aldress in now
P in the function

vold inc_count(int *count ptr)

]
i
el

0x1000

Declaration of the
function, giving the local
name count_ptr to
the parameter fcount

(S

vold ine count (int *count ptr)

Increments the value at
thie addrass that
count_ptr, CArmes.

0x1000

Finally, there is a special pointer calledNULL. It points to nothing. (The actual
numeric value is 0.) The standard include file, locale.h, defines the constant NULL.

(This file is usually not directly included, but is usually brought in by the include files
stdio.h or stdlib.h.) The NULL pointer is represented graphically in Figure 13-6.

Figure 13-6. NULL

13.2 const Pointers

Declaring constant pointers is a little tricky. For example, the declaration:

const int result = 5;

228

FlyrHeart.com

TEAM FLY PRESENTS

tells C that resul t is a constant so that:

result = 10; /* 1llegal */

is illegal. The declaration:

const char *answer_ptr = "Forty-Two";

does not tell C that the variableanswer _ptr is a constant. Instead, it tells C that the
data pointed to by answer _ptr is a constant. The data cannot be changed, but the
pointer can. Again we need to make sure we know the difference between "things"
and "pointers to things."

What's answer _ptr ? A pointer. Can it be changed? Yes, it's just a pointer. What
does it point to? A const char array. Can the data pointed to by answer _ptr be
changed? No, it's constant.

In C this is:
answer_ptr = "Fifty-One"; /* Legal (answer_ptr is a variable) */
answer _ptr ="'X; / I'llegal (*answer_ptr is a constant) */

If we put the const after the * we tell C that the pointer is constant.
For example:

char *const name_ptr = "Test";

What's nanme_pt r ? Itis a constant pointer. Can it be changed? No. What does it point
to? A character. Can the data we pointed to by nane_ptr be changed? Yes.

nane_ptr = "New'; /* 1llegal (name_ptr is constant) */
name_ptr = 'B'; / Legal (*name_ptr is a char) */

Finally, we can put constin both places, creating a pointer that cannot be changed
to a data item that cannot be changed:

const char *const title_ptr = "Title";

13.3 Pointers and Arrays

C allows pointer arithmetic (addition and subtraction). Suppose we have:

char array[5];
char *array_ptr = &array[O0];

228

—
FlyrHeart.com 4

TEAM FLY PRESENTS

In this example, *array_ptr is the same asarray[0] ,*(array_ptr+1) is the same
asarray[1] ,*(array_ptr+2) is the same asarray[2], and soon. Note the use of

parentheses. Pointer arithmetic is represented graphically in Figure 13-7.

Figure 13-7. Pointers into an array

0000 o) 05000 pravio)
array_pir
0500 apray(1] 0001 aravi)
g R
2
o e (amay_pirsz) AR
066003 prrayis) 065003 ppayia)
BS004 grrayia) BE0M - amayia)

However, (*array_ptr) +1 isnot the same asarray[1]. The +1 is outside the
parentheses, so it is added after the dereference. So(*array_ptr) +1 is the same

as array[0] +1.

At first glance, this method may seem like a complex way of representing simple
array indices. We are starting with simple pointer arithmetic. In later chapters we
will use more complex pointers to handle more difficult functions efficiently.

The elements of an array are assigned to consecutive addresses. For example,
array[0] may be placed at address 0xf f 000024. Thenarray[1] would be placed at
address 0xf f 000025, and so on. This structure means that a pointer can be used to
find each element of the array. Example 13-3 prints out the elements and addresses
of a simple character array.

Example 13-3. array-p/array-p.c

#i ncl ude <stdi o. h>
#def i ne ARRAY_SI ZE 10

char array[ARRAY_SIZE + 1] = "0123456789";

int main()
{
int index ;
printf("&array[index] (array+i ndex) array[index]\n");

230

—_
FlyrHeart.com

TEAM FLY PRESENTS

for (i ndex=0;index < ARRAY_SI ZE; ++i ndex)
printf("0x% 10p 0x% 10p Ox¥%\n",,
&array[index], (array+i ndex), array[index]);

return O;
}
o
il When printing pointers, the special conversion %p
wh o
4" should be used.

When run, this program prints:

&array[index] (array+i ndex) array[index]

0x20a50 0x20a50 0x30
0x20a51 0x20a51 0x31
0x20a52 0x20a52 0x32
0x20a53 0x20a53 0x33
0x20a54 0x20a54 0x34
0x20a55 0x20a55 0x35
0x20a56 0x20a56 0x36
0x20a57 0x20a57 0x37
0x20a58 0x20a58 0x38
0x20a59 0x20a59 0x39

Characters use one byte, so the elements in a character array will be assigned
consecutive addresses. Ashort i nt font uses two bytes, soin an array ofshort i nt,

the addresses increase by two. Does this mean that ar r ay+1 will not work for

anything other than characters? No. C auto matically scales pointer arithmetic so
that it works correctly. In this case, array+1 will point to element number 1.

C provides a shorthand for dealing with arrays. Rather than writing:

array_ptr = &array[0];

we can write:
array_ptr = array;

C blurs the distinction between pointers and arrays by treating them in the same
manner in many cases. Here we use the variable array as a pointer, and C
automatically does the necessary conversion.

231

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 13-4 counts the number of elements that are nonzero and stops when a
zero is found. No limit check is provided, so there must be at least one zero in the
array.

Example 13-4. ptr2/ptr2.c

#i ncl ude <stdi o. h>

int array[] = {4, 5, 8 9, 8 1, 0, 1, 9, 3};

i nt index;
int main()
{
i ndex = 0;
while (array[index] != 0)
++i ndex;
printf("Nunber of elements before zero %\n",
i ndex) ;
return (0);
}

Example 13-5 is a version of Example 134 that uses pointers.

Example 13-5. ptr3/ptr3.c

#i ncl ude <stdi o. h>

int array[] = {4, 5 8, 9, 8 1, 0, 1, 9, 3};
int *array_ptr;

int main()
{
array_ptr = array;
while ((*array_ptr) !'= 0)
++array_ptr;
printf("Nunber of elements before zero %\n",
array_ptr - array);
return (0);
}

232

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Notice that when we wish to examine the data in the array, we use the dereference
operator (*). This operator is used in the statement:

while ((*array_ptr) !'= 0)

When we wish to change the pointer itself, no other operator is used. For example,
the line:

++array _ptr;

increments the pointer, not the data.

Example 13-4 uses the expression(array[i ndex] ! =0). This expression requires
the compiler to generate an index operation, which takes longer than a simple
pointer dereference, ((*array_ptr) != 0).

The expression at the end of this program, array_ptr - array, computes how far
array_ptr isinto the array.

When passing an array to a procedure, C will automatically change the array into a

pointer. In fact, if you put & before the array, C will issue a warning. Example 13-6
illustrates the various ways in which an array can be passed to a subroutine.

Example 13-6. init-aZinit-a.c

#define MAX 10 /* Size of the array */

/**

* init_array_1 -- Zeroes out an array. *
* *

* Paraneters *

* data -- The array to zero out. *

**/

void init_array_1(int data[])

int index;
for (index = 0; index < MAX; ++index)
dat a[i ndex] = 0;
/**
* init_array_2 -- Zeroes out an array. *
* *
* Paraneters *
233

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* data_ptr -- Pointer to array to zero. *
******'k**************'k**********************************/
void init_array_2(int *data_ptr)

{

int index;

for (index = 0; index < MAX; ++i ndex)
*(data_ptr + index) = 0;
}
int main()
{
int array[MAX];

void init_array_1();
void init_array_2();

/* one way of initializing the array */
init_array_1(array);

/* another way of initializing the array */
init_array_1(&array[0]);

/* works, but the conpiler generates a warning */
init_array_1(&array);

/* Simlar to the first nethod but */
/* function is different */
init_array_2(array);

return (0);

13.4 How Not to Use Pointers

The major goal of this book is to teach you how to create clear, readable,
maintainable code. Unfortunately, not everyone has read this book and some
people still believe that you should make your code as compact as possible. This
belief can result in programmers using the ++ and— operators inside other
statements.

Example 13-7 shows several examples in which pointers and the increment
operator are used together.

234

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 13-7. Bad Pointer Usage

/* This programshows programm ng practices that should **NOT™** be used
*/
/* Unfortunately, too many programmers use them */
int array[10]; /* An array for our data */
int main()
{
int *data_ptr; /* Pointer to the data */
i nt val ue; /* A data val ue */

data_ptr = &array[0];/* Point to the first elenment */
value = *data_ptr++; /* Get elenment #0, data_ptr points to el ement
#1 */
val ue = *++data_ptr; /* Get elenment #2, data_ptr points to el ement
#2 */
val ue = ++*data_ptr; /* Increnent elenment #2, return its value */
/* Leave data_ptr alone */

To understand each of these statements, you must carefully dissect each expression
to discover its hidden meaning. When | do maintenance programming, | don't want
to have to worry about hidden meanings, so please don't code like this, and shoot
anyone who does.

These statements are dissected in Figure 13-8.

235

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 13-8. Pointer operations dissected

obtain the value pointad fo by
data_ptr

I 1
value = *data ptr++;

increment data
data_ptr
increment data |

data_ptr I !
value = *++data ptr;

! 1

Deveference the pointer and refur Obiain the valie painted to by

ihe data in the array data_ptr aferincremantation

I | 1
value = ++*data ptr;

Increment the data in the
Array

This example is a little extreme, but it illustrates how side effects can easily become
confusing.

Example 13-8 is a n example of the code you're more likely to run into. The program
copies a string from the source () to the destination (p).

Example 13-8. Cryptic Use of Pointers

void copy_string(char *p, char *q)

{
while (*p++ = *q++);

Given time, a good programme r will decode this. However, understanding the

program is much easier when we are a bit more verbose, as in Example 13-9.

Example 13-9. Readable Use of Pointers

/********'k****************'k******************************

* copy_string -- Copies one string to another. *

* *

* Paraneters *

* dest -- Were to put the string *
236

—_
FlyrHeart.com

TEAM FLY PRESENTS

* source -- Were to get it *

'k'k'k*'k**********'k*'k************************************/

voi d copy_string(char *dest, char *source)

{
while (1) {
*dest = *source;

/* Exit if we copied the end of string */
if (*dest == '\0")
return;

++dest ;

++source,

13.5 Using Pointers to Split a String

Suppose we are given a string of the form "Last/First."” We want to split this into two
strings, one containing the first name and one containing the last name.

We need a function to find the slash in the name. The standard functionstrchr

performs this job for us. In this program, we have chosen to duplicate this function
to show you how it works.

This function takes a pointer to a string (stri ng_pt r) and a character to find (fi nd)
as its arguments. It starts with a while loop that will continue until we find the
character we are looking for (or we are stopped by some other code below).

while (*string_ptr !'=find) {

Next we test to see if we've run out of string. In this case, our pointer (stri ng_ptr)

points to the end -ofstring character. If we have reached the end of string before
finding the character, we returnNULL:

if (*string_ptr == "\0")
return (NULL);

If we get this far, we have not found what we are looking for, and are not at theend

of the string. So we move the pointer to the next character, and return to the top of
the loop to try again:

++string_ptr;

}

237

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Our main program reads in a single line, stripping the newline character from it. The
function ny_strchr is called to find thelocation of the slash (/).

At this point, | ast _pt r points to the first character of the last name andfirst_ptr
points to slash. We then split the string by replacing the slash (/) with an end of
string (NUL or\ 0). Now| ast _ptr points to just the last nameand fi r st _pt r points
to a null string. Movingfirst_ptr to the next character makes it point to the
beginning of the first name.

The sequence of steps in splitting the string is illustrated in Figure 13-9.

Figure 13-9. Splitting a string

After After After
strchr *first ptr = '\0'; Eirst_ptr++;

last_ptr 5 last_ptr 5 last_ptr 5

m m m

i i i

1 | 1

h h h
first_ptr “first_plr "

J |7 J first_ptr J

o o o

h h h

n n n

Example 13-10 contains the full program, which demonstrates how pointers and
character arrays can be used for simple string processing.

Example 13-10. split/split.c

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

/**

* my_strchr -- Finds a character in a string. *

* Duplicate of a standard library function, *

* put here for illustrative purposes *

* *

* Paraneters *

* string_ptr -- String to | ook through. *
238

—_
FlyrHeart.com

TEAM FLY PRESENTS

*

*

* %

find -- Character to find. *

Ret urns *
pointer to 1st occurrence of character *
in string or NULL for error. *

**/

char *ny_strchr(char * string_ptr, char find)

{

i nt

while (*string_ptr !'=find) {

/* Check for end */

if (*string_ptr =="'\0")
return (NULL); /* not found */

++string_ptr;

}

return (string_ptr); /* Found */

mai n()

char |ine[80]; /* The input line */

char *first_ptr; /* pointer to the first name */
char *last_ptr; /* pointer to the |last name */

fgets(line, sizeof(line), stdin);

/[* CGet rid of trailing newline */

line[strlen(line)-1] = '\0';
last _ptr = line; /* last nanme is at beginning of line */
first_ptr = nmy_strchr(line, '/"); /* Find slash */

/* Check for an error */
if (first_ptr == NULL) {
fprintf(stderr
"Error: Unable to find slash in %\n", |ine);
exit (8);

first_ptr ='\0"; [/ Zero out the slash */

238

—_
FlyrHeart.com

TEAM FLY PRESENTS

++first_ptr; /* Move to first character of nane */
printf("First: % Last:%\n", first_ptr, last_ptr);

return (0);

Question 13-1: Example 13-11 is supposed to print out (Click here for the answer
Section 13.9):

Name: tnpl

but instead, we get:

Nane: ! _@#ds80

(Your results may vary.) Why?

Example 13-11. tmp-name/tmp-name.c

#i ncl ude <stdio. h>
#i ncl ude <string. h>

/***'k****'k****************'k******************************

* tnp_name -- Return a tenporary fil enane. *
* *

* Each time this function is called, a new nane wll *
* be returned. *

* *

* Returns *

* Pointer to the new fil enane. *

**/
. .
char *tnp_nanme(void)

{

char nane[30]; /* The name we are generating */
static int sequence = 0; /* Sequence nunber for last digit */

++sequence; /* Move to the next filenane */

strcpy(name, "tnp");

/* But in the sequence digit */
nane[3] = sequence + '0';

/* End the string */

240

—
FlyrHeart.com 4

TEAM FLY PRESENTS

return(nane);

}

int main()

{
char *tnp_nane(void); /* Get nane of tenporary file */
printf("Name: %\ n", tnp_nane());
return(0);

}

13.6 Pointers and Structures

In Chapter 12, we defined a structure for a mailing list:

struct mailing {
char nane[60]; /* last nane, first nanme */
char address1[60];/* two |ines of street address */
char address2[60];
char city[40];
char state[2]; /* two-character abbreviation */
I ong int zip; /* numeric zip code */
} list][MAX_ENTRI ES] ;

Mailing lists must frequently be sorted by name and zip code. We could sort the

entries themselves, but each entry is 226 bytes long. That's a lot of data to move
around. One way around this problem is to declare an array of pointers, and then

sort the pointers:

/* Pointer to the data */
struct mailing *list_ptrs[MAX_ENTRI ES] ;
int current; /* current mailing list entry */

for (current = 0; current = nunber_of _entries; ++current)
list_ptrs[current] = &l ist[current];
/* Sort |list_ptrs by zip code */

Now, instead of having to move a 226-byte structure around, we are moving 4 -byte
pointers. Our sorting is much faster. Imagine that you had a warehouse full of big
heavy boxes and yo u needed to locate any box quickly. You could put them in

alphabetical order, but that would require a lot of moving. Instead, you assign each

241

—
FlyrHeart.com 4

TEAM FLY PRESENTS

location a number, write down the name and number on index cards, and sort the
cards by name.

13.7 Command-Line Arguments

The procedure nmai n actually takes two arguments. They are called argc and
argvia :

21 actually, they can be named anything. However, in 99.9% of programs, they are named ar gc and ar gv.
When most programmers encounter the other 0.1%, they curse loudly, and then change the names toar gc and

argv.

mai n(i nt argc, char *argv[])

{

(If you realize that the arguments are in alphabetical order, you can easily
remember which one comes first.)

The parameter ar gc is the number of arguments on the command line (including the
program name). The arrayar gv contains the actual arguments. For example, if the
program ar gs were run with the command line:

args this is a test

then:

argc = 5

argv[0] = "args"

argv[1l] = "this"

argv[2] = "is"

argv[3] = "a"

argv[4] = "test"

argv[5] = NULL
- The UNIX shell expands wildcard characters like *, ?,
©w 4. and [] before sending the command line to the

program. See your sh or csh manual for details.

Turbo C++ and Borland C++ expand wildcard
characters if the file WILDARG.OBJ is linked with your
program. See the manual for details.

242

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Almost all UNIX commands use a standard command-line format. This standard has
carried over into other environments. A standard UNIX command has the form:

command options filel filel file3 ...
Options are preceded by a dash (-) and are usually a single letter. For example, the
option - v might turn on verbose mode for a particular command. If the option takes

a parameter, it follows the letter. For example, the option- mL024 sets the maximum
number of symbols to 1024 and- oout fi | e sets the output filename to outfile.

Let's look at writing a program that can read the command-line arguments and act
accordingly. This program formats and prints files. Part of the documentation for the
program is given here:

print_file [-v] [-Ilength] [-oname] [filel] [file2]

where:

specifies verbose options; turns on a lot of progress information messages
-llength

sets the page size to length lines (default = 66)
-oname

sets the output file to name (default = print.out)
filel, file2, ...

is a list of files to print. If no files are specified, the file print.in is printed.

We can use a while loop to cycle through the command-line options. The actual
loop is:

while ((argc > 1) && (argv[1][0] == "-")) {

One argument always exists: the program name. The expression (ar gc > 1) checks

for additional arguments. The first one is numbered 1. The first character of the first
argument isargv[1] [0] . If this is a dash, we have an option.

At the end of the loop is the code:

--argc;

243

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

++ar gv;

This consumes an argument. The number of arguments is decremented to indicate
one less option, and the pointer to the first option is incremented, shifting the list to
the left one place. (Note: after the first increment, ar gv[0] no longer points to the

program name.)

The switch statement is used to decode the options. Character of the argument is
the dash (-). Character 1 is the option character, so we use the expression:

switch (argv[1][1]) {

to decode the option.

The option- v has no arguments; it just causes a flag to be set.

The option - o takes a filename. Rather than copy the whole string, we set the
character pointer out _fi | e to point to the name part of the string. By this time we
know the following:

argv[1][0] =" -
argv[1][1] ='o
argv[1] [2] = first character of the fil enane

We set out _fil e to point to the string with the statement:

out file = &argv[1][2];

The address of operator (&) is used to get the address of the first character in the

output filename. This process is appropriate because we are assigning the address
to a character pointer namedout _fil e.

The - | option takes an integer argument. The library function at oi is used to
convert the string into an integer. From the previous example, we know that

argv[1] [2] is the first character of the string containing the number. This string is
passed to at oi .

Finally, all the options are parsed and we fall through to the processing loop. This
merely executes the functiondo_fi | e for each file argument. Example 13-12

contains the pri nt program.

This is one way of parsing the argument list. The use of thewhile loop andswitch
statement is simple and easy to understand. This method does have a limitation.
The argument must immediately follow the options. For example, - odat a. out will

244

—
FlyrHeart.com 4

TEAM FLY PRESENTS

work, but - o dat a. out” will not. An improved parser would make the program
more friendly, but the techniques described here work for simple programs.

Example 13-12. print/print.c

[File: print/print.c]

/**

* Program Print *

* *

* Pur pose: *

* Formats files for printing. *
* *

* Usage: *

* print [options] file(s) *
* *

* Options: *

* -V Produces verbose nmessages. *
* -o<file> Sends output to afile *
* (defaul t=print.out). *
* -1 <lines> Sets the nunber of |ines/page *
* (def aul t =66) . *

**/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

int verbose = 0; /* verbose npde (default = fal se) */
char *out_file = "print.out"; /* output filename */

char *program nane; /* name of the program (for errors) */
int line_mx = 66; /* nunmber of |ines per page */

/**

* do_file -- Dumy routine to handle a file. *
* *

* Par anmet er *

* name -- Nanme of the file to print. *

**/

void do_file(char *name)

{
printf("Verbose % Lines % | nput % Cutput %\n",
verbose, |ine_max, name, out_file);
}
/***
* usage -- Tells the user how to use this programand *
* exit. *
245

—
FlyrHeart.com 4

TEAM FLY PRESENTS

**/

voi d usage(void)

{

nt

fprintf(stderr, "Usage

is % [options] [file-list]\n"
pr ogr am_nane) ;

fprintf(stderr,"Options\n");

fprintf(stderr," -v
fprintf(stderr,"”
fprintf(stderr,"
exit (8);

mai n(i nt argc,

- | <nunber >
- o<nane>

ver bose\n");
Nunber of |ines\n");
Set output filenane\n");

char *argv[])

/* save the program name for future use */

program name = argv[O0];

/*

* | oop for each option

* Stop if we run out

*

of arguments

or we get an argunent without a dash

*/
while ((argc > 1) && (argv[1][0] =="-")) {
/*
* argv[1l][1] is the actual option character
*/
switch (argv[1][1]) {
/*
* -v verbose
*/
case 'v':
ver bose = 1;
break;
| *
* -o<nane> output file
* [0] is the dash
* [1] is the "o"
* [2] starts the nane
*/
case '0':
out_file = &argv[1][2];
break;
/*
* -] <nunber> set max nunber of |ines
*/

246

—_
FlyrHeart.com

TEAM FLY PRESENTS

case '’
line_max = atoi (&argv[1][2]);

br eak;
defaul t:
fprintf(stderr,"Bad option %\n", argv[1]);
usage();
}
/*

* move the argunment |ist up one

* nmove the count down one

*/
++ar gv;
--argc;
}
/ *

* At this point, all the options have been processed.
* Check to see if we have no files in the |ist.
* | f nofiles exist, we need to process just standard i nput stream
*/
if (argc == 1) {
do_file("print.in");
} else {
while (argc > 1) {
do_file(argv[1]);

++ar gv;
--argc;
}
}
return (0);

13.8 Programming Exercises

Exercise 13-1: Write a program that uses pointers to set each element of an array

to zero.

Exercise 13-2: Write a function that takes a single string as its argument and
returns a pointer to the first nonwhite character in the string.

247

—
FlyrHeart.com 4

TEAM FLY PRESENTS

13.9 Answers

Answer 13-1: The problem is that the variable nane is a temporary variable. The
compiler allocates space for the name when the function is entered and reclaims the
space when the function exits. The function assignsnanme the correct value and
returns a pointer to it. However, the function is over, so nanme disappears and we
have a pointer with an illegal value.

The solution is to declarenane static. In this manner, name is a permanent variable

and will not disappear at the end of the function.

Question 13-2: After fixing the function, we try using it for two filenames. Example
13-13 should print out:

Name: tnpl
Nanme: tnp2

but it doesn't. What does it print and why? (Look below for the answer)

Example 13-13. tmp2/tmp2.c

#i ncl ude <stdio. h>
#include <string. h>

/**

* tnp_nane -- Returns a tenporary fil enane. *
* *

* Each tinme this function is called, a new name wll *
* be returned. *

* *

* Warning: There should be a warning here, but if we *

* put it in, we would answer the question. *
* *

* Returns *

* Pointer to the new fil enane. *

-k'k*******'k*'k*'k*'k*'k*'k**********************************/

char *tnp_nane(voi d)
static char nane[30]; /* The nane we are generating */
static int sequence = 0; /* Sequence nunber for last digit */

++sequence; /* Move to the next filenane */

248

—
FlyrHeart.com 4

TEAM FLY PRESENTS

strcpy(name, "tmp");

/* But in the squence digit */
nanme[3] = sequence + '0';

/* End the string */
name[4] = "'\0';

return(nane);

}

int main()

{
char *tnp_name(void); /* get nane of tenporary file */
char *nanel; /* name of a temporary file */
char *nane2; /* nane of a tenporary file */
nanmel = tnp_nane();
nane2 = tnp_nane();
printf("Nanmel: %\n", nanel);
printf("Nanme2: %\n", nane2);
return(0);

}

Answer 13-2: The first call tot np_nane returns a pointer tonane. There is only one
name. The second call tot np_nane changes nane and returns a pointer to it. So we
have two pointers, and they point to the same thing, nane.

Several library functions return ponters to static strings. A second call to one of
these routines will overwrite the first value. A solution to this problem is to copy the
values as shown below:

char nanel[100];
char nanme2[100];
strcpy(nanmel, tnp_name());
strcpy(nanme2, tnp_nane());

This problem is a good illustration of the basic meaning of a pointer; it doesn't
create any new space for data, but just refers to data that is created elsewhere.

This problem is also a good example of a poorly designed function. The problem is
that the function is tricky to use. A better design would make the code less risky to
use. For example, the function could take an additional parameter: the string in
which the filename is to be constructed:

248

—
FlyrHeart.com 4

TEAM FLY PRESENTS

void tnp_nanme(char *nane_to_return);

250

—
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 14. File Input/Output

I the heir of all the ages, in the foremost files of time.

—Alfred, Lord Tennyson

A file is a collection of related data. C treats a file as a series of bytes. Many files
reside on disk; however, devices like terminals, printers, and magnetic tapesare
also considered files.

The C library contains a large number of routines for manipulating files. The
declarations for the structures and functions used by the file functions are stored in

the standard include file<st di 0. h>. Before doing anything with files, you must put
the line:

#i ncl ude <stdio. h>

at the beginning of your program.

The declaration for a file variable is:

FI LE *fil e-variable; /* comment */
For example:

#i ncl ude <stdio. h>
FILE *in_file; [/* file containing the input data */

Before a file can be used, it must be opened using the functionf open.f open returns
a pointer to the file structure for the file. The format for f open is:

file-variable = fopen(nanme, node);
where:
file-variable
is a file variable. A value of NULL is returned on error.
name
is the actual name of the file (data.txt, temp.dat, etc.).

mode

251

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

indicates if the file is to be read or written. mode is"w' for writing and"r" for
reading. The flag "b" can be added to indicate a binary file. Omitting the
binary flag indicates an ASCII (text) file. (See Section 14.2 for a description
of ASCII and binary files.)

Flags can be combined. So "wb" is used to write a binary file.

The function returns a file handle that will be used in subsequent 1/0 operations. If
there is an 1/0 error, then the value NULL is returned:

FILE *in_file; /* File to read */

in_file = fopen("input.txt", "r"); /* Open the input file */

if (in_file == NULL) { /* Test for error */
fprintf(stderr, "Error: Unable to input file "input.txt'\n");
exit (8);

The function f cl ose will close the file. The format of f cl ose is:

status = fclose(file-variable);

or:

fclose(file-variable);

The variable status is zero if the f cl ose was successful or nonzero for an error. If
you don't care about the status, the second form closes the file and discards the
return value.

C provides three pre -opened files. These are listed inTable 14-1.

Table 14-1. Standard Files

File Description
stdin Standard input (open for reading)
st dout Standard output (open for writing)
stderr Standard error (open for writing)

The functionf get ¢ reads a single character from a file. If no more data exists in the
file, the function will return the constant EOF (EOF is defined instdio.h). Note that
f get ¢ returns an integer, not a character. This return is necessary because the EOF

flag must be a noncharacter value.

252

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 14-1 counts the number of characters in the file input.txt.
Example 14-1. copy/copy.c

[File: copy/copy.c]
#i ncl ude <stdio. h>
const char FILE_NAME[] = "input.txt";
#i ncl ude <stdlib. h>

int main()

{
i nt count = 0; /* nunber of characters seen */
FI LE *in_file; /[* input file */

/* character or EOF flag frominput */
i nt ch;

in_file = fopen(FILE_NAME, "r");
if (in_file == NULL) {
printf("Cannot open %\n", FILE_NAME);

exit(8);
}
while (1) {
ch = fgetc(in_file);
if (ch == EOF)
br eak;
++count ;
}

printf("Nunmber of characters in % is %\ n",
FILE_NAME, count);

fclose(in_file);
return (0);

A similar function, f put ¢, exists for writing a single character. Its format is:

fputc(character, file);

The functionsf gets andf put swork on one line at a time. The format of thef get s
call is:

string_ptr = fgets(string, size, file);

253

—
FlyrHeart.com 4

TEAM FLY PRESENTS

where:
string_ptr

is equal to string if the read was successful, orNULL if end -of-file or an error
is detected.

string
is a character array in which the function places the string.
size

is the size of the character array. f get s reads until it gets a line (complete
with ending \ n) or it reads size -1 characters. It then ends the string with a
null \0).

Problems can occur if the size specified is too big. C provides a convenient way of
making sure that the size parametr is just right through the use of thesi zeof

operator.
The si zeof operator returns the size of its argument in bytes. For example:

long int array[10]; /* (Each el enent contains 4 bytes) */
char string[30];

Then si zeof (string) is 30. This size is not the same as the length. The length of
string can be anywhere from to 29 characters. The si zeof function returns the
number of bytes instri ng (used or not). Along int takes up 4 bytes so

si zeof (array) is 40.

The si zeof operator is particularly useful when you use thef get s routine. By using
si zeof , you don't have to worry about how big a string is or, worse, what happens

if someone changes the dimension of the string.
For example:

char string[100];

%g;etls(stri ng, sizeof(string), in_file);

f puts is similar to f get s except that it writes a string instead of reading it. The
format of the f put s function is:

string_ptr = fputs(string, file);

254

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The parameters to f put s are similar to the ones for f get s. f put s needs no size
because it gets the size of the line to write from the length of the string. (It keeps
writing until it hits a null, ' \ 0" .)

14.1 Conversion Routines

So far we have just discussed writing characters and strings. In this section, we will
discuss some of the more sophisticated 1/0 operations and conversions.

In order to write a number to a printer or terminal, you must convert it to characters.
The printer understands only characters, not numbers. For example, the number

567 must be converted to the three characters 5, 6, and 7 in order to be printed.

The function f pri ntf converts data and writes it to a file. The general form of the
fprintf functionis:

count = fprintf(file, format, paraneter-1, paraneter-2, ...);
where:
count

is the number of characters sent or -1 if an error occurred.
format

describes how the arguments are to be printed.
parameter-1, parameter-2, ...

are parameters to be converted and sent.

fprintf has two sister functions: printf andsprintf.printf() has been seen
often in this book, and is equivalent tof pri nt f with a first argument of st dout .
sprintf issimilar tofprintf, except that the first argument is a string. For

example:
char string[40]; /* the filename */
int file_nunber = 0; /* current file nunber for this segnment */

sprintf(string, "file. %", file_nunber);
++fi | e_nunber;
out_file = fopen(string, "w');

scanf has similar sister functions: f scanf and sscanf. The format forf scanf is:

255

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

nunber = fscanf(file, format, ¶nmeter-1, ...);
where:
number

is the number of parameters successfully converted. If there was input but
nothing could be converted, a zero is returned. If no data is present, EOF is

returned.
file
is a file opened for reading.
format
describes the data to be read.
parameter-1
is the first parameter to be read.
sscanf is similar to f scanf , except that a string is scanned instead of a file.

scanf is very fussy about where the end -of-line characters occur in the input.
Frequently, the user has to type extra returns to get scanf unstuck.

We have avoided this problem by using f get s to read a line from the file and then
using sscanf to parse it. f get s almost always gets a single line without trouble.

Example 14-2 shows a program that attempts to read two parameters from the
standard input (the keyboard). It then prints a message based on the number of
inputs actually found.

Example 14-2. Using the sscanf Return Value

char |ine[100]; /* Line fromthe keyboard */
int count, total; /* Nunber of entries & total value */
i nt scan_count; /* Number of paraneters scanned */

fgets(line, sizeof(line), stdin);
scan_count = sscanf(line, "% %", &count, &t otal);

switch (scan_count) {
case ECF:

256

—
FlyrHeart.com 4

TEAM FLY PRESENTS

case O
printf("Didn't find any number\n");
br eak;
case 1:
printf("Found 'count' (%), but not 'total'\n", count);
br eak;
case 2:
printf("Found both 'count' (%) and '"total' (%)\n", count, total);
br eak;
defaul t:
printf("This should not be possible\n");
br eak;

Question 14-1: No matter what filename we give Example 14-3, our program can't
find it. Why? (Click here for the answer Section 14.8)

Example 14-3. fun-file/fun-file.c

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

int main()
{
char nanme[100]; /* name of the file to use */
FI LE *in_file; /* file for input */
printf("Name? ");
fget s(nane, sizeof (name), stdin);
in_file = fopen(name, "r");
if (in_file == NULL) {
fprintf(stderr, "Could not open file\n");
exit(8);
}
printf("File foundin");
fclose(in_file);
return (0);
}

257

—
FlyrHeart.com 4

TEAM FLY PRESENTS

14.2 Binary and ASCII Files

We have been working with ASCII files. ASCII stands for American Standard Code
for Information Interchange. It is a set of 95 printable characters and 33 control

codes. ASCII files are readab le text. When you write a program, theprog.c file is in
ASCII.

Terminals, keyboards, and printers deal with character data. When you want to
write a number like 1234 to the screen, it must be converted to four characters (" 1' ,
'2',"3",and"' 4") and written. Similarly, when you read a number from the

keyboard, the data must be converted from characters to integers. This is done by
the sscanf routine.

The ASCII character' 0' has the value of 48, ' 1' has the value of 49, and so on.
When you want to convert a single digit from ASCII to integer, you must subtract
this number. For example:

i nt integer;
char ch;

ch ='5";
i nteger = ch - 48;
printf("Integer %\ n", integer);

Rather than remember that ' 0' is 48, you can just subtract' 0' :
integer = ch - '0';

Computers work on binary data. When reading numbers from an ASCII file, the
program must process the character data through a conversion routine likesscanf .
This is expensive. Binary files require no conversion. They also generally take up
less space thanASCII files. The drawback is that they cannot be directly printed on
a terminal or printer. (If you've ever seen a long printout coming out of the printer
displaying pages with a few characters at the top that look like
"IE#(@$% @ NAaNAANIHC %N X, then you know what happens when you try to
print a binary file.)

ASCII files are portable (for the most part). They can be moved from machine to
machine with very little trouble. Binary files are almost certainly nonportable.
Unless you are an expert programmer, you will find it almost impossible to make a
portable binary file.

Which file type should you use? In most cases, ASCII. If you have small-to- medium
amounts of data, the conversion time will not seriously affect the performance of

258

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

your program. (Who cares if it takes 0.5 seconds to start up instead of 0.3?) ASCII
files allow you to easily check the data for correctness.

Only when you are using large amounts of data will the space and performance
problems force you to use the binary format.

14.3 The End-of-Line Puzzle

Back in the dark ages BC (Before Computers), a magical device called a Teletype
Model 33 existed. This amazing machine contained a shift register made out of a
motor, with a rotor, and a keyboard ROM consisting solely of levers and springs. It
contained a keyboard, a printer, and a paper tape reader/punch. It could transmit
messages over the phones using a modem at the rate of 10 characters a second.

The Teletype had a problem. It took two-tenths of a second to move the printhead
from the right side to the left. Two-tenths of a second is two character times. If a
second character came while the printhead was in the middle of a return, that
character was lost.

The Teletype people solved this problem by making end-of-line two characters:
<RETURN=> to position the printhead at the left margin and <LINE FEED> to move
the paper up one line.

When the early computers came out, some designers realized that using two
characters for end-of-line wasted storage (at this time, storage was very expensive).
Some picked <LINE FEED=> for their end-of-line, some <RETURN>. Some of the
diehards stayed with the two character sequence.

UNIX uses <LINE FEED> for end-of-line. The newline character, \ n, is code Ox0A
(LF or <LINE FEED>). MS-DOS/Windows uses the two characters: <LINE
FEED><RETURN=>. Apple uses <RETURN>.

MS-DOS/Windows compiler designers had a problem. What do we do about the old
C programs that thought that newline was just <LINE FEED>? The solution was to
add code to the 1/0 library that stripped out the <RETURN=> characters from ASCII
input files and changed <LINE FEED> to <LINE FEED> <RETURN=> on output.

In MS-DOS/Windows, it makes a difference whether or not a file is opened as ASCII
or binary. The flag b is used to indicate a binary file:

/* open ASCI| file for reading */
ascii _file = fopen("nane", "r");

/* open binary file for reading */

258

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

bi nary_file = fopen("nane", "rb");

If you open a file that contains text as a binary file under MS-DOS/Windows, you
have to handle the carriage returns in your program. If you open it as ASCII, the
carriage returns are automatically removed by the read routines.

Question 14-2: The routine f put ¢ can be used to write out a single byte of a binary
file. Example 14-4 writes out numbers to 127 to a file called test.out. It works just
fine on UNIX, creating a 128-byte-long file; however, on MS-DOS/Windows, the file
contains 129 bytes. Why?

Example 14-4. wbin/wbin.c

[File: wbhin/wbin.c]
#incl ude <stdio. h>
#i ncl ude <stdlib. h>
#i f ndef _ MSDOS
#i ncl ude <uni std. h>
#endi f _ MSDOS__

int main()

{
int cur_char; /* current character to wite */
FILE *out _file; /* output file */

out_file = fopen("test.out", "w');

if (out_file == NULL) {
fprintf(stderr,"Cannot open output file\n");
exit (8);

for (cur_char = 0; cur_char < 128; ++cur_char) {
fputc(cur_char, out_file);

}

fclose(out _file);

return (0);

Hint: Here is a hex dump of the MS-DOS/Windows file:

000: 0001 0203 0405 0607 0809 0dOa ObOc 0dOe
010: 0f 10 1112 1314 1516 1718 191a 1blc 1dle
020: 1f 20 2122 2324 2526 2728 292a 2b2c 2d2e
030: 2f 30 3132 3334 3536 3738 393a 3b3c 3d3e

260

—
FlyrHeart.com 4

TEAM FLY PRESENTS

040: 3f 40 4142 4344 4546 4748 494a 4b4c 4d4e
050: 4f 50 5152 5354 5556 5758 595a 5b5c 5dbe
060: 5f 60 6162 6364 6566 6768 696a 6b6C 6d6e
070: 6f 70 7172 7374 7576 7778 797a 7b7c 7d7e
080: 7f

(Click here for the answer Section 14.8)

UNIX programmers don't have to worry about the C library automatically fixing their
ASCII files. In UNIX, afile is a file and ASCII is no different from binary. In fact, you
can write a half-ASCII, half-binary file if you want to.

14.4 Binary 1/0

Binary 1/0is accomplished through two routines:fread andfwite. The syntax for
freadis:

read_size = fread(data_ptr, 1, size, file);
where:
read_size

is the size of the data that was read. If this value is less than size, then an
end-of-file or error was encountered.

data_ptr

is the pointer to the data to be read. This pointer must be cast to a character
point (char *) if the data is any type other than a character.

size
is the number of bytes to be read.
file
is the input file.
For example:
struct {
i nt wi dt h;

i nt hei ght ;
} rectangl e;

261

—
FlyrHeart.com 4

TEAM FLY PRESENTS

int read_size;

read_size = fread((char *)&rectangle, 1, sizeof(rectangle), in_file);

if (read_size != sizeof(rectangle)) {
fprintf(stderr,"Unable to read rectangle\n");
exit (8);

}

In this example, we are reading in the structure rectangle. The & operator makes it
into a pointer. Thesi zeof operator is used to determine how many bytes toread in,

as well as to check that the read was successful.

fwrite has a calling sequence similar to fread:

wite size = fwite(data_ptr, 1, size, file);

e In order to make programming simpler and easier,

! 4. we always use one as the second parameter tof r ead

[1A

and fwit e. Actually, fread and fwrite are designed

to read an array of objects. The second parameter is
the size of the object and the third parameter is the
number of objects. For a full description of these
functions, see your C reference manual.

14.5 Buffering Problems

Buffered 1/0 does not write immediately to the file. Instead, the data is kept in a
buffer until there is enough for a big write, or until it is flushed. The following
program is designed to print out a progress message as each section is finished:

printf("Starting");

do_step_1();
printf("Step 1 conplete");

do_step_2();
printf("Step 2 conplete");

do_step_3();
printf("Step 3 conplete\n");

262

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Instead of writing the messages as each step is completed, thepri ntf function puts
them in a buffe r. Only when the program is finished does the buffer get flushed and
all the messages come spilling out at once.

The routine f f | ush will force the flushing of the buffers. Properly written, our
example should be:

printf("Starting");
fflush(stdout);

do_step_1();
printf("Step 1 conplete");
fflush(stdout);

do_step_2();
printf("Step 2 conplete");
fflush(stdout);

do_step_3();
printf("Step 3 conplete\n");
fflush(stdout);

14.6 Unbuffered 170

In buffered 1/0, data is buffered and then sent to the file. In unbuffered 1/0, the
data is immediately sent to the file.

If you drop a number of paper clips on the floor, you can pick them up in buffered or
unbuffered mode. In buffered mode, you use your right hand to pick up a paper clip
and transfer it to your left hand. The process is repeated until your left hand is full,

and then you dump a handful of paper clips into the box on your desk.

In unbuffered mode, you pick up a paper clip and dump it immediately into the box.
There is no left-hand buffer.

In most cases, buffered 1/0 should be used instead of unbuffered. In unbuffered 1/0,
each read or write requires a system call. Any call to the operating system is
expensive. Buffered I/0 minimizes these calls.

Unbuffered 1/0 should be used only when reading or w riting large amounts of binary
data or when direct control of a device or file is required.

263

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Back to our paper clip example—if we were picking up small items like paperclips,
we would probably use a left-hand buffer. But if we were picking up cannonballs
(which are much larger), no buffer would be used.

The open system call is used for opening an unbuffered file. The macro definitions
used by this call differ from system to system. We are using both UNIX and
MS-DOS/Windows, so we have used conditional compilation (#ifdef/#endif) to
bring in the correct files:

#i f ndef _ MSDOS_ /* if we are not MS DOS */
#define __UNI X__ /* then we are UNI X */
#endi f __ MSDOS

#ifdef __ UNIX__

#i nclude <sys/types.h> /* file defines for UNIX fil esystem*/
#incl ude <sys/stat.h>

#i ncl ude <fcntl. h>

#endi f __UNI X__

#ifdef __ MSDOS__

#i ncl ude <stdlib. h>

#i ncl ude <fcntl. h> /* file defines for DOS fil esystem */
#i ncl ude <sys\stat.h>

#i ncl ude <i o. h>

#endi f __MSDOS__

i nt file_descriptor;

file_descri ptor = open(nanme, flags); /* existing file */
file_descriptor = open(nane, flags, node); /*newfile */
where:

file_descriptor

is an integer that is used to identify the file for the read, write, and close calls.
If file descriptor is less than zero, an error occurred.

name

is the name of the file.

flags

are defined in thefcntl.h header file. Flags are described in Table 14-2.

264

—
FlyrHeart.com 4

TEAM FLY PRESENTS

mode

is the protection mode for the file. Normally, this is 0644 for most files.

Table 14-2. Open Flags

Flag Meaning
O_RDONLY Open for reading only
O VRONLY |Open for writing only
O_RDVWR Open for reading and writing
O_APPEND |Append new data at the end of the file
O_CREAT Create file (mode is required when this flag is present)
O TRUNC If the file exists, truncate it to zero length
O EXCL Fail if file exists
O _BI NARY |Open in binary mode (MS-DOS/Windows only)
O _TEXT Open in text mode (MS-DOS/Windows only)

For example, to open the existing file data.txt in text mode for reading, we use the
following:

data_fd = open("data.txt", O_RDONLY);
The next example shows how to create a file calledoutput.dat for writing only:
out_fd = open("output.dat", O CREAT| O WRONLY, 0644);

Notice that we co mbined flags using the or operator (]). This is a quick and easy way
of merging multiple flags.

When any program is initially run, three files are already opened. These are
described in Table 14-3.

Table 14-3. Standard Unbuffered Files

File number Symbolic name Description
0 STDI N_FI LENO Standard in
1 STDOUT_FI LENO Standard out
2 STDERR_FI LENO Standard err
265

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The symbolic names are defined in the header file unistd.h. These are a relatively
new part of the language and are very rarely used. (You really should use the
symbolic names, but most people don't.)

The format of ther ead call is:

read_size = read(file_descriptor, buffer, size);

where:

read_size

is the number of bytes read. Zero indicates end-of-file, and a negative
number indicates an error.

file_descriptor

is the file descriptor of an open file.

buffer

is the pointer to the place to read the data.

size

is the size of the data to be read.

The format of awrite callis:

wite size = wite(file_descriptor, buffer, size);

where:

write_size

is the number of bytes written. A negative number indicates an error.

file_descriptor

is the file descriptor of an open file.

buffer

is the pointer to the data to be written.

size

266

—
FlyrHeart.com 4

TEAM FLY PRESENTS

is the size of the data to be written.
Finally, the cl ose call closes the file:
flag = close(file_descriptor)
where:
flag
is zero for success, negative for error.
file_descriptor
is the file descriptor of an open file.
Chapter 14 copies a file. Unbuffered 1/0 is used because of the large buffer size.

Using buffered 1/0 to read 1K of data into a buffer and then transfer it into a 16K
buffer makes no sense.

Example 14-5. copy2/copy?2.c

[File: copy2/copy2.c]

/**

* copy -- Copies one file to another. *
* *

* Usage *

* copy <frone <to> *

* *

* <fronp -- The file to copy from *
* <to> ~-- The file to copy into. *

**/

#i ncl ude <stdio. h>

#i f ndef __ MSDOS /* if we are not MS DCS */
#define __UNI X__ /* then we are UNI X */
#endi f /* __ _MSDOS__ */

#i ncl ude <stdlib. h>

#ifdef _ UNIX__

#i nclude <sys/types.h> /[/* file defines for UNIX fil esystem */
#i ncl ude <sys/stat. h>

#i nclude <fcntl. h>

#i ncl ude <unistd. h>

267

—
FlyrHeart.com 4

TEAM FLY PRESENTS

#endif /* __UNIX__ */

#i fdef __MSDOS__

#i nclude <fcntl.h> /* file defines for DOS fil esystem */
#i ncl ude <sys\stat.h>

#i ncl ude <io. h>

#endi f __ MSDOS__

#i f ndef O_BI NARY
#defi ne O_BI NARY 0 /* Define the flag if not defined yet */
#endi f /* O _BI NARY */

#define BUFFER SI ZE (16 * 1024) /* use 16K buffers */

int main(int argc, char *argv[])

{
char buffer[BUFFER_SI ZE]; [/* buffer for data */
i nt in_file; /* input file descriptor */
i nt out _file; /* output file descriptor */
i nt read_si ze; /* nunmber of bytes on last read */

if (argc !'= 3) {
fprintf(stderr, "Error: Wong nunber of argunents\n");
fprintf(stderr, "Usage is: copy <fronr <to>\n");
exit(8);

}

in_file = open(argv[1l], O _RDONLY| O_BI NARY);

if (in_file <0) {
fprintf("Error:Unable to open %\n", argv[1]);
exit(8);

}

out _file = open(argv[2], O WRONLY| O TRUNC| O CREAT| O _BI NARY, 0666);

if (out_file < 0) {
fprintf("Error:Unable to open %\n", argv[2]);
exit(8);

}

while (1) {
read_size = read(in_file, buffer, sizeof(buffer));

if (read_size == 0)
br eak; /* end of file */

if (read_size < 0) {
fprintf(stderr, "Error: Read error\n");

268

—
FlyrHeart.com 4

TEAM FLY PRESENTS

exit(8);
}
wite(out_file, buffer, (unsigned int) read_size);
}
close(in_file);
cl ose(out _file);
return (0);

Question 14-3: Why does Example 14-5 dump core instead of printing an error
message, if it can't open the input file? (Click here for Section 14.8)

Several things should be noted about this program. First of all, the buffer size is
defined as a constant, so it is easily modified. Rather than have to remember that
16K is 16384, the programmer used the expression (16 * 1024). This form of the
constant is obviously 16K.

If the user improperly uses the program, an error message results. To help get it
right, the message tells how to use the program.

We may not read a full buffer for the last read. Consequently, read_size is used to
determine the number of bytes to write.

14.7 Designing File Formats

Suppose you are designing a program to produce a graph. The height, width, limits,
and scales are to be defined in a graph configuration file. You are also assigned to
write a user-friendly program that asks the operator questions and then writes a
configuration file so that he does not have to learn the text editor. How should you
design a configuration file?

One way would be as follows:

hei ght (in inches)

width (in inches)

x lower limt
upper limt
lower limt

X
y

y upper limt
X scal e

y

scal e

A typical plotter configuration file might look like:

268

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

10.0
7.0
0
100
30
300
0.5
2.0

This file does contain all the data, but in looking at it, you have difficulty telling what,
for example, is the value of the y lower limit. A solution is to comment the file. That
is, to have the configuration program write out not only the data, but a string
describing the data.

10.0 height (in inches)
7.0 width (in inches)
0 x lower limt

100 x upper limt

30 y lower [imt

300 vy upper limt

0.5 x scale

2.0 vy scale

Now the file is user readable. But suppose that one of the users runs the plot
program and types in the wrong filename, and the program gets the lunch menu for
today instead of a plot configuration file. The program is probably going to get very
upsetwhen it tries to construct a plot whose dimensions are "BLT on white" versus
"Meatloaf and gravy."

The result is that you wind up with egg on your face. There should be some way of
identifying this file as a plot configuration file. One method of doing so is to put the
words "Plot Configuration File" on the first line of the file. Then, when someone tries
to give your program the wrong file, the program will print an error message.

This solution takes care of the wrong-file problem, but what happens when youare
asked to enhance the programs and add optional logarithmic plotting? You could
simply add another line to the configuration file, but what about all those old files?
You cannot reasonably ask everyone to throw them away. The best thing to do
(from a user's point of view) is to accept old format files. You can make this task
easier by putting a version number in the file.

A typical file now looks like:

Pl ot Configuration File V1.0
| og Logarithm c or Normal pl ot

270

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

10.0 hei ght (in inches)
7.0 wi dth (in inches)

0 x lower limt
100 X upper limt
30 y lower limt

300 y upper limt
0.5 x scal e
2.0 y scal e

In binary files, you usually put an identification number in the first four bytes of the
file. This number is called themagic number. The magic number should be different
for each type of file.

One method for choosing a magic number is to start with the first four letters of the
program name (i.e.,list) and then convert them to hexadecimal: 0x6c607374. Then,
add 0x80808080 to the number, producing a magic number of OXECEOF3F4 .

This algorithm generates a magic number that is probably unique. The high bit is set
on each byte to make the byte non-ASCII and avoid confusion between ASCII and
binary files.

When read ing and writing a binary file containing many different types of structures,
a programmer can easily get lost. For example, you might read a name structure
when you expected a size structure. This error is usually not detected until later in
the program. In order to locate this problem early, the programmer can put magic
numbers at the beginning of each structure.

Now, if the program reads the name structure and the magic number is not correct,

it knows something is wrong.

Magic numbers for structures do not need to have the high bit set on each byte.
Making the magic number just four ASCII characters allows you to easily pick out
the beginning of structures in a file dump.

14.8 Answers

Answer 14-1: The problem is that f get s gets the entire line includingthe newline
character (n). If you have a file named sam, the program will readsam \n and try

to look for a file by that name. Because there is no such file, the program reports an
error.

The fix is to strip the newline character from the name:

nane[strlen(nane)-1] = '\ 0'; /* get rid of last character */

271

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The error message in this case is poorly designed. True, we did not open the file, but
the programmer could supply the user with more information. Are we trying to open
the file for input or output? What is the name of the file we are trying to open? We
don't even know if the message we are getting is an error, a warning, or just part of
the normal operation. A better error message is:

fprintf(stderr,"Error: Unable to open % for input\n", nane);

Notice that this message would also help us detect the programming error. When
we typed in sam, the error would be:

Error: Unable to open sam
for input

This message clearly shows us that we are trying to open a file with a newline in its
name.

Answer 14-2: The problem is that we are writing an ASCII file, but we wanted a
binary file. On UNIX, ASCII is the same as binary, so the program runs fine. On
MS-DOS/Windows, the end-of-line problem causes us problems. When we write a
newline character (0x0a) to the file, a ca rriage return (Ox0D) is added to it.
(Remember that end-of-line on MS-DOS/Windows is <RETURN> <LINE FEED>, or
0x0d, Ox0a.) Because of this editing, we get an extra carriage return (0x0d) in the
output file.

In order to write binary data (without output editing), we need to open the file with
the binary option:

out_file = fopen("test.out", "wbh");

Answer 14-3: The problem is with the f pri ntf call. The first parameter of an
fprintf should be a file; instead, it is the format string. Trying to use a format

string when the program is expecting a file causes a core dump.

14.9 Programming Exercises

Exercise 14-1: Write a program that reads a file and then counts the number of
lines in it.

Exercise 14-2: Write a program to copy a file, expanding all tabs to multiple
spaces.

Exercise 14-3: Write a program that reads a file containing a list of numbers, and
then writes two files, one with all numbers divisible by three and another containing
all the other numbers.

272

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Exercise 14-4: Write a program that reads an ASCII file containing a list of
numbers and writes a binary file containing the same list. Write a program that goes
the other way so that you can check your work.

Exercise 14-5: Write a program that copies a file and removes all characters with
the high bitset (((ch & 0x80) != 0)).

Exercise 14-6: Design a file format to store a person's name, address, and other
information. Write a program to read this file and produce a set of mailing labels.

273

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 15. Debugging and Optimization

Bloody instructions which, being learned, return to plague the inventor.

—Shakespeare, on debugging [Macbeth, Act 1, Scene 7].

15.1 Debugging

The hardest part of creating a program is not its design and writing, but its
debugging phase. In this phase, you find out how your program really works
(instead of how you think it works).

In order to eradicate a bug, you need two things: a way of reproducing it and
information from the program that lets you locate and correct the problem.

In some cases, finding the bug is easy. You discover the bug yourself, the test
department produces a clear and easy test plan that displays the bug, or else the
output always comes out bad.

In some cases, especially with interactive programs, reproducing the bug may be
90% of the problem. This statement is especially true when you deal with bug
reports sent in by users in the field. A typical call from a user might be:

User:
That database program you gave me is broken.
Programmer:
What's wrong?
User:
Sometimes, when I'm doing a sort, it gets things in the wrong order.
Programmer:
What command were you using?
User:

The sort command.

Programmer (patiently):

274

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Tell me exactly what you typed, keystroke by keystroke, to get it to fail.

User:

I don't remember it exactly. | was doing a lot of sorts.
Programmer:

If I come over can you show me the bug?
User:

Of course.

Two minutes later, the programmer is in the user's office and utters the fatal words,
"Show me." The user types away and the program stubbornly works, no matter
what the user does to it.

The programmer gives up and goes back to her office only to find a message from
the user: "It failed five minutes after you left."

Example 15-1 is a short database lookup program. It asks the user for input and
checks the input against a hardcoded list of names. Although very simple, the
program'’s structure is typical of much larger and more complex interactive
programs.

Example 15-1. base/base.c

/**

* Dat abase -- A very sinple database programto *
* | ook up names in a hardcoded |i st. *

* *

* Usage: *

* dat abase *

* Programwi || ask you for a nane. *

* Enter the nane; it will tell you if *
* the nane is in the list. *

* *

* A bl ank name term nates the program *

**/

#defi ne STRI NG_LENGTH 80 /* Length of typical string */
#i ncl ude <stdio. h>
#i ncl ude <string. h>

275

—
FlyrHeart.com 4

TEAM FLY PRESENTS

int main()

{
char nane[STRI NG_LENGTH] ; /* a name to | ookup */
int | ookup(char const *const nane); /* | ookup a nane */
while (1) {
printf("Enter name: ");
f get s(nane, sizeof(nane), stdin);
/* Check for blank name */
/* (remenber 1 character for new ine) */
if (strlen(name) <= 1)
br eak;
/* Get rid of newine */
name[strlen(name)-1] = "\0";
if (lookup(nane))
printf("% is in the list\n", nane);
el se
printf("% is not inthe list\n", nane);
}
return (0);
}
/****************~k*********~k****~k************************
* | ookup -- Looks up a nane in a list. *
* *

* Paraneters

* name -- Name to | ook up. *
* *

* Returns *

* 1 -- Nane in the list. *
* 0 -- Nane not in the list. *

**/

i nt |1 ookup(char const *const nane)
{
/* List of people in the database */
/* Note: Last name is a NULL for end of list */
static char *list[] = {
"John",
"Jint,
"Jane",
" yde",

276

—_
FlyrHeart.com

TEAM FLY PRESENTS

NULL

}s
i nt index; /* index into list */
for (index = 0; list[index] !'= NULL; ++index) {
if (strenp(list[index], nane) == 0)
return (1);
}
return (0);

A typical execution of this program is:

Ent er nane: Sam
Samis not in the |ist
Enter name: John

John is in the list
Ent er nane:

When we release this program, of course, the users immediately start complaining
about mysterious problems that go away whenever the programmer is around.
Wouldn't it be nice to have a little gremlin that sits on the shoulder, copying down
everything the user types? Unfortunately, gremlins are not available; however, we
can change this program so that it produces asave file that contains every
keystroke that the user typed in.

Our program uses the statement:
fgets(name, sizeof(nane), stdin);
to read the user's data.

Let's write a new routine, ext ended_f get s, and use it instead of f get s. It not only
gets a line, but also saves the user's response in a save file. Example 15-2 is a
revision of Example 15-1 that includes ext ended_f gets.

Example 15-2. xgets/xgets.c

#i ncl ude <stdio. h>

/*

* The main programopens this file if -Sis on
* the command Iine.

*/

277

—
FlyrHeart.com 4

TEAM FLY PRESENTS

FI LE *save_file = NULL;

/*******'k*********'k*'k*************************************

*

*

*

*

*

*

*

extended_fgets -- Gets a line fromthe input file *
and records it in a save file if needed. *

*

Par anet ers *
line -- The line to read. *
size -- sizeof (line) -- maxi mum nunber of *

characters to read. *
file-- File to read data from *
(normal Iy stdin). *
*

Ret ur ns *

NULL -- error or end-of-file in read *
otherwise line (just like fgets). *

***/

char *extended_fgets(char *line, int size, FILE *file)

{

char *result; /* result of fgets */
result = fgets(line, size, file);

/* Did soneone ask for a save file?? */

if (save_file !'= NULL)

fputs(line, save_file); /* Save line in file */

return (result);

We also change our main program to handle a new option, - Sfi | e, to specify asave

file. (Typically, uppercase letters are used for debugging and other less used
options.) Our new main program is shown in Example 15-3.

Example 15-3. base2/base2.c

[File: base2/base2.c]

/************ LR I O R R S I O

*

*

*

*

*

*

Dat abase -- A very sinple database programto *
| ook up nanes in a hardcoded |ist. *
*
Usage: *
dat abase [-S<fil e>] *
*
278

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* -S<file> Speci fies save file for *

* debuggi ng pur poses *

* *

* Programwi || ask you for a nane. *

* Enter the nane; programwll tell you if *
* it isinthelist. *

* *

* A bl ank name term nates the program *

'k**********'k***************'k*************************/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

FILE *save_file = NULL; /* Save file if any */
char *extended_fgets(char *, int, FILE *);

int main(int argc, char *argv[])
{
char name[80]; /* a name to | ookup */
char *save_file_name; /* Nane of the save file */

int | ookup(char const *const nane); /* | ookup a nane */

while ((argc > 1) && (argv[1l][0] =="-")) {
switch (argv[1][1]) {
/* -S<file> Specify a save file */
case 'S':
save_file_name = &argv[1][2];
save_file = fopen(save_file_nane, "w');
if (save_file == NULL)
fprintf(stderr,
"War ni ng: Unabl e to open save file %\n",
save_fil e_nane);

br eak;
defaul t:
fprintf(stderr,"Bad option: %\n", argv[1]);
exit (8);
}
--argc;
++argv;
}
while (1) {

printf("Enter name: ");

278

—
FlyrHeart.com 4

TEAM FLY PRESENTS

ext ended_f get s(name, sizeof (nanme), stdin);

/* ... Rest of program... */

Now we have a complete record of what the user typed. Looking at the input, we see
that the user typed:

Sam
John

The second name begins with a space and although "John" is in the list,
"<space=>John" is not. In this case, we found the error by inspecting the input;

however, more complex programs have much more complex input. We could type
all that in when debugging, or we could add another feature toext ended_f get s that

would add playback file to it. When enabled, input will not be taken from the
keyboard, but instead will be taken from the file. Example 15-4 contains the revised
ext ended_f get s.

Example 15-4. xgets2/xgets2.c

#i ncl ude <stdi o. h>

FILE *save_file = NULL; /* Save input in this file */
FI LE *pl ayback_file = NULL; /* Playback data fromthis file */
[k R Kk Kk k K ko ko Kk Kk Kok ko Kk Kk Kok Kok Kk Kk Kk Kk K ko Kk Kk
* extended_fgets -- Gets aline fromthe input file *

* and records it in a save file if needed. *

* *

* Paraneters *

* line -- The line to read. *

* size -- sizeof(line) -- maxi mum nunber of *

* characters to read. *

* file-- File to read data from *

* (normal ly stdin). *

* *

* Returns *

* NULL -- error or end-of-file in read *

* otherwise line (just like fgets). *

***/
char *extended_fgets(char *line, int size, FILE *file)
{
extern FILE *save file; /* file to save strings in */
extern FILE *playback_file; /* file for alternate input */

280

—
FlyrHeart.com 4

TEAM FLY PRESENTS

char *result; /* result of fgets */

if (playback file !'= NULL) {
result = fgets(line, size, playback file);
/* echo the input to the standard out so the user sees it */
fputs(line, stdout);
} else
/* Get the line normally */
result = fgets(line, size, file);

/* Did someone ask for a save file? */
if (save_file !'= NULL)
fputs(line, save file); /* Save the linein a file */
return (result);
We also add a playback option to the command line- Pfi | e. This option allows us to

automatically type the commands that caused the error. Our main program, revised
to support the - P option, isExample 15-5.

Example 15-5. base3/base3.c

/***

* Dat abase -- A very sinple database programto *
* | ook up nanes in a hardcoded |ist. *
* *

* Usage: *

* dat abase [-S<file>] [-P<file>] *
* *

* -S<file> Specifies save file for *
* debuggi ng pur poses. *

* *

* -P<file> Speci fies playback file for *
* debuggi ng or denonstrati on. *

* *

* *

* Programwi || ask you for a nane. *
* Enter the name; the programwi ll tell *
* youif it isinthe list. *
* *

* A bl ank nane term nates the program *

***/

281

—
FlyrHeart.com 4

TEAM FLY PRESENTS

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

FILE *save_file = NULL; /* Save file if any */
FI LE *pl ayback_file = NULL; /* Playback file if any */
char *extended_fgets(char *, int, FILE *);

int main(int argc, char *argv[])
{
char nane[80]; /* a Nanme to | ook up */
char *save file_nane; /* Name of the save file */
char *playback_file_name; /* Nane of the playback file */

int | ookup(char const *const nane); /* | ookup a nane */

while ((argc > 1) && (argv[1l][0] == "-")) {
switch (argv[1][1]) {
/* -S<file> Specify save file */
case 'S':
save_file_name = &argv[1][2];
save_file = fopen(save_file_nane, "w');
if (save_file == NULL)
fprintf(stderr,
"War ni ng: Unabl e to open save file %\n",
save_fil e_nane);
br eak;
/* -P<file> Specify playback file */
case 'P':
pl ayback_file_name = &argv[1][2];
pl ayback_file = fopen(playback_file_nane, "r");
if (playback_file == NULL) {
fprintf(stderr,
"Error:Unable to open playback file %\n",
pl ayback_fil e_name);
exit (8);
}
br eak;
defaul t:
fprintf(stderr,"Bad option: %\n", argv[1]);
exit (8);
}
--argc;
++ar gv;

282

—
FlyrHeart.com 4

TEAM FLY PRESENTS

/* */

return (0);

rest of program. ..

Now, when a user calls up with an error report, we can tell him, "Try it again with the
save-file feature enabled, and then send me a copy of your files." The user then runs

the program and saves the input into the file save.txt:

% dat abase -Ssave.t xt
Ent er nane: Sam
Samis not in the |ist
Enter name: John

John is in the list

Enter

nane:

He sends us the file save.txt, and we run the program with the playback option

enabled:

% dat abase -Psave.t xt
Enter nane: Sam
Samis not in the |ist
Enter nane: John
John is in the list

Ent er name:

We now have a reliable way of reproducing the problem. In many cases, that's half
the battle. After we can reproduce the problem, we can proceed to find and fix the
bugs.

A Copy Flip-Flop

Once a programmer asked a user to send him a copy of his
floppy. A next-day air package arrived at the programmer's
desk containing a photocopy of the floppy. The user was not
completely computer illiterate. He knew it was a two-sided
floppy, so he had photocopied both sides.

Before you start debugging, save the old, "working" copy of your program in a safe
place. (If you are using a source control system like SCCS or RCS, your last working
version should be checked in.) Many times while you are searching for a problem,

you may find it necessary to try out different solutions or to add temporary
debugging code. Sometimes you find you've been barking up the wrong tree and

need to start over. That's when the last working copy becomes invaluable.

283

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

After you have reproduced the problem, you must determine what caused it to
happen. There are several methods for doing this, as described in the following

sections.

15.1.1 Divide and Conquer

The divide-and-conquer method has already been briefly discussed in Chapter 6.
This method consists of putting inpri ntf statements where you know the data is

good (to make sure it is really good), where the data is bad, and at several points in
between. In this manner you can start zeroing in on the section of code that
contains the error. More pri ntf statements can further reduce the scope of the
error until the bug is finally located.

15.1.2 Debug-Only Code

The divide-and -conquer method uses temporary pri nt f statements. They are put

in as needed and taken out after they are used. The preprocessor conditional
compilation directives can be used to put in and take out debugging code. For

example:

#i f def DEBUG
printf("Wdth % Height %\n", width, height);
#endi f /* DEBUG */

The program can be compiled with DEBUG undefined for normal use; you can define
it when debugging is needed.

15.1.3 Debug Command-Line Switch

Rather than using a compile-time switch to create a special version of the program,
you can permanently include the debugging code and add a special program switch
that will turn on the debugging output. For example:

i f (debug)
printf("Wdth % Height %\n", w dth, height);

In the debug example, debug is a variable that is set if - D is present on the

command line.

This method has the advantage that only a single version of the program exists. Also,
the customer can turn on this switch in the field, save the output, and send it to you
for analysis. The method has a disadvantage, though: a larger executable file. The

284

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

runtime switch should always be used instead of conditional compilation unless
there is some reason that you do not want the customer to be able to get at the
debugging information.

Some programs use the concept of a debug level. Level outputs only minimal
debugging information, level 1 more information, and so on up to level 9, which
outputs everything.

The ghost scri pt liL program by Aladdin Enterprises implements the idea of
debugging letters. The command option - Zxxx sets the debugging flags for each
type of diagnostic output wanted. For example, f is the code for the fill algorithm,

while p is the code for the path tracer. If | wanted to trace both these sections, |
would specify - Zf p.

m ghost scri pt is a PostScriptlike interpreter available from the Free Software Foundation for a minimal
copying charge. They can be reached at: Free Software Foundation, Inc., 675 Massachusetts Avenue,

Cambridge, MA 02139 (617) 876-3296. Their ftp site is prep.ai.mit.edu:/pub/gnu.

The option is implemented by the following code:

/*
* Even though we only used one zero, Cwll fill in the
* rest of the arrays with zeros.
*/
char debug[128] = {0}; /* the debugging flags */
mai n(i nt argc, char *argv[])
{
while ((argc > 1) && (argv[1][0] =="-")) {
switch (argv[1][1]) {
/* ... normal switch */
/* Debug switch */
case 'Z':
debug_ptr = argv[1][2];
/* 1 oop for each letter */
whil e (*debug_ptr '="\0") {
debug[*debug_ptr] = 1;
debug_ptr++;

}

br eak;
}
argc--;
ar gv++;

}

/* rest of program*/

285

—
FlyrHeart.com 4

TEAM FLY PRESENTS

This is used inside the program by:

if (debug['p'])
printf("Starting new path\n");

ghost scri pt is alarge program (some 25,000 lines) and rather difficult to debug.

This form of debugging allows the user to get a great deal of information easily.

15.1.4 Going Through the Output

Enabling the debug printout is a nice way of getting information, but at many times,
there is so much data that the information you want can easily get lost.

C allows you toredirect to a file what would normally go to the screen. For example:
buggy - D9 >t np. out

runs the program buggy with a high level of debugging and sends the output to the

file tmp.out.

The text editor on your system makes a good file browser. You can use its search
capabilities to look for the information you want to find.

15.2 Interactive Debuggers

Most compiler manufacturers provide you with an interactive debugger. These
debuggers give you the ability to stop the program at any point, examine and
change variables, and "single step" through the program. Because each debugger is
different, a detailed discussion is not possible.

However, we are going to discuss one debugger, dbx. This program is available on
many UNIX machines running the BSD versions of UNIX. On LINUX in particular and
other UNIX systems, the Free Software Foundations gdb debugger is popular.
SYSTEM-V UNIX uses the debugger sdb, while on HP -UX, the utility cdb is used.
Each MS-DOS/Windows compiler has its own debugger. Some compilers actually
come with multiple debuggers. For example, Borland C++ comes with a integrated
debugger that runs under Windows, a stand-alone debugger that runs under
MS-DOS, and a remote debugger that runs on another machine.

Although the exact syntax used by your debugger may be different, the principles
shown here will work for all debuggers.

The basic list of dbx commands are:

286

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

run

Start execution of a program.

stopat |ine- nunber

Insert a breakpoint at the given line number. When a running program
reaches a breakpoint, execution stops and control returns to the debugger.

stopin function- name

Insert a breakpoint at the first line of the named function. Commonly, the
command stop in main is used to stop at the beginning of the program.

cont

Continue execution after a breakpoint.

print expression

Display the value of an expression.

step
Execute a single line in the program. If the current statement calls a function,
the function is single-stepped.

next
Execute a single line in the program, but treat function calls as a single line.
This command is used to skip over function calls.

list
List the source program.

where

Print the list of currently active functions.

We have a program that should count the number of threes and sevens in a series
of numbers. Unfortunately, it keeps getting the wrong answer for the number of
sevens. Our program is shown in Example 15-6. Your results may vary.

287

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Example 15-6. seven/seven.c

1 #include <stdio. h>

2 char 1ine[100]; /[* line of input */

3 int seven_count; /* number of sevens in the data */
4 int data[5]; /* the data to count 3 and 7 in */
5 int three_count; /* the nunber of threes in the data */
6 int index; /* index into the data */
7

8 int main() {

9

10 seven_count = 0;

11 three_count = 0;

12 get _dat a(dat a) ;

13

14 for (index = 1; index <= 5; ++index) {
15

16 if (data[index] == 3)

17 ++t hree_count;

18

19 if (data[index] == 7)

20 ++seven_count;

21 }

22

23 printf("Threes % Sevens %\ n",

24 three_count, seven_count);

25 return (0);

26 }

27

28 void get_data(int data)

29 {

30

31 printf("Enter 5 nunmbers\n");

32 fgets(line, sizeof(line), stdin);

33 sscanf(line, "% % % % %",

34 &dat a[1], &data[2], &data[3],

35 &dat a[4], &data[5]);

36 }

When we run this program with the data 7 3 7 02, the results are:

Threes 1 Sevens 4

288

—
FlyrHeart.com 4

TEAM FLY PRESENTS

We start by invoking the debugger (dbx) with the name of the program we are going
to debug (seven). The debugger initializes itself, outputs the prompt (dbx), and

waits for a command:

% dbx seven

Readi ng symbolic information...
Read 72 synbol s

(dbx)

We don't know where the variable is getting changed, so we'll start at the beginning
and work our way through until we get an error. At every step, we'll display the
variable seven_count just to make sure it's OK.

We need to stop the program at the beginning so that we can single -step through it.
The command st op i n mai n tells dbx to set a breakpoint at the first instruction of
the function mai n. The command r un tells dbx to start the program and run until it
hits the first breakpoint:

(dbx) stop in main
(2) stop in main

The number (2) is used by dbx to identify the breakpoint. Now we need to start the
program:

(dbx) run

Runni ng: seven

stopped in main at line 10 in file "/usr/sdo/seven/seven.c"
10 seven_count = 0;

The message "stopped in main..." indicates that the program encountered a
breakpoint and the debugger now has control.

We have reached the point whereseven_count is initialized. The command next
will execute a single statement, treating function calls as one statement. (The
names of the command for your debugger may be different.) We go past the
initialization and check to see if it worked:

(dbx) next
stopped in main at line 11 in file "/usr/sdo/seven/seven.c"
11 three_count = 0;

(dbx) print seven_count
seven_count = 0

It did. We try the next few lines, checking all the time:

(dbx) next

288

—
FlyrHeart.com 4

TEAM FLY PRESENTS

stopped in main at line 12 in file "/usr/sdo/seven/seven.c"
12 get _data(data);

(dbx) print seven_count

seven_count = 0

(dbx) next

Ent er 5 nunbers

37302

stopped in main at line 14 in file "/usr/sdo/seven/seven.c"
14 for (index = 1; index <= 5; index++) {

(dbx) print seven_count
seven_count = 2

seven_count somehow changed value to2. The last statement we executed was
get _dat a(dat a), so something is going on in that function. We add a breakpoint at
the beginning of get _dat a and start the program over with the run command:

(dbx) stop in get_data

(4) stop in get_data

(dbx) run

Runni ng: seven

stopped in main at line 10 in file "/usr/sdo/seven/seven.c"
10 seven_count = 0;

We are at the beginning of mai n. We want to go onto the next breakpoint, so we
issue the cont command to continue execution:

(dbx) cont

Runni ng: seven

stopped in get _data at line 31 in file "/usr/sdo/seven/seven.c"
31 printf("Enter 5 numbers\n");

We now start single stepping again until we find the error:

(dbx) print seven_count

seven_count = 0

(dbx) next

Enter 5 nunbers

stopped in get_data at line 32 in file "/usr/sdo/seven/seven.c"
32 fgets(line, sizeof(line), stdin);

(dbx) print seven_count

seven_count = 0

(dbx) next

12345

stopped in get _data at line 33 in file "/usr/sdo/seven/seven.c"
35 &dat a[4], &data[5]);

290

—
FlyrHeart.com 4

TEAM FLY PRESENTS

(dbx) print seven_count

seven_count = 0

(dbx) next

stopped in get _data at line 36 in file "/usr/sdo/seven/seven.c"
36 }

(dbx) print seven_count

seven_count =5
(dbx) list 30,40
30
31 printf("Enter 5 nunbers\n");
32 fgets(line, sizeof(line), stdin);
33 sscanf(line, "% % % % %",
34 &dat a[1], &data[2], &datal3],
35 &dat a[4], &data[5]);
36 }
(dbx) quit

At line 32, the data was good, but when we reached line 36, the data was bad, so the
error is located at line 33 ofthe program, thesscanf. We've narrowed the problem

down to one statement. By inspection we can see that we are using dat a[5] , an
illegal member of the array dat a.

The computer happened to store seven_count after thedat a array, so that is why
(confusingly enough) the problem turned up there. It would be nice if we could get
a clear error message whenever we step outside the declared array, but bounds
checking is time consuming and difficult in C. There are some specialized debugging
tools such as Bounds-Checker by Nu-Mega (MS-DOS/ Windows) and Purify by Pure
Software (UNIX).

15.3 Debugging a Binary Search

The binary search algorithm is fairly simple. You want to see if a given number isin
an ordered list. Check your number against the one in the middle o f the list. If it is
the number, you were lucky -- stop. If your number was bigger, then you might find
it in the top half of the list; try the middle of the top half. If it was smaller, try the
bottom half. Keep trying and dividing the list in half untilyou find the number or the
list gets down to a single number.

Example 15-7 uses a binary search to see if a number can be found in the file
numbers.dat .

291

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Example 15-7. search/searchl.c

[File: search/searchl. c]

/**

* search -- Searches a set of nunbers. *
* *

* Usage: *

* search *

* You wi Il be asked nunbers to | ook up. *
* *

* Files: *

* nunbers. dat -- Nunbers 1 per line to search *
* (nunbers nmust be ordered). *

**/

#i ncl ude <stdio. h>
#def i ne MAX_NUMBERS 1000 /* Max nunbers in file */
const char DATA FILE[] = "nunbers.dat"; /* File with nunbers */

int datal MAX_NUMBERS]; /* Array of nunbers to search */

i nt max_count; /* Nunber of valid elenents in data */
int main()
{

FILE *in_file; /[* Input file */

i nt mddle; /* Mddle of our search range */

int |ow high; /* Upper/ | ower bound */

int search; /* Number to search for */

char 1ine[80]; /* Input line */

in_file = fopen(DATA FILE, "r");
if (in_file == NULL) {
fprintf(stderr,"Eror:Unable to open %\ n", DATA FILE);

exit (8);
}
/*
* Read in data
*/

max_count = O;
while (1) {
if (fgets(line, sizeof(line), in_file) == NULL)
br eak;

292

—
FlyrHeart.com 4

TEAM FLY PRESENTS

/* convert nunber */
sscanf (1ine, "%l", data[mx_count]);
++max_count ;

while (1) {
printf("Enter nunber to search for or -1 to quit:");
fgets(line, sizeof(line), stdin);
sscanf (line, "%l", &search);

if (search == -1)
br eak;

| ow = O;
hi gh = max_count;

while (1) {
mddle = (low + high) / 2

if (data[m ddl e] == search) {
printf("Found at index %d\n", m ddle);

if (low == high) {
printf("Not found\n");
br eak;

if (data[m ddl e] < search)
| ow = m ddl e;

el se
hi gh = m ddl e;

}

return (0);

Our data file, numbers.dat, contains:

4
6

14
16

17

293

—_
FlyrHeart.com

TEAM FLY PRESENTS

When we run this program, the results are:

% search
Segnentation fault (core dunped)

These results are not good. They mean that something went wrong in our program
and it tried to read memory that wasn't there. A file called core was created when
the error occurred. It contains a snapshot of our executing program. The debugger
dbx can read this file and help us determine what happened:

% dbx search

Readi ng synmbolic information...

Read 79 synbol s

warning: core file read error: address not in data space

warning: core file read error: address not in data space

warning: core file read error: address not in data space

program term nated by signal SEGY (no mapping at the fault address)
(dbx)

The message "warning: core file..." is the debugger's way of telling you that the
temporary variable space (the stack) has been trashed and contains bad data. The
wher e command tells you which function is calling which function (also known as a
stack trace). The current function is printed first, then the function that called it, and
so on until we reach the outer functionmai n:

(dbx) where

nunber () at Oxdd7d87a

_doscan() at 0xdd7d329

sscanf (Oxdf f fadc, 0x200e3, 0x0) at Oxdd7ce7f

mai n(0x1, Oxdfffb58, Oxdfffb60), line 41 in "search.c"
(dbx)

The above example tells us that mai n calledsscanf . The call was made from line 41
of mai n. sscanf called _doscan. Becausesscanf is a standard library routine, we
cannot get line-number information. The instruction number isOxdd7ce7f ; however,
this information is not very useful to us. The procedure _doscan called nunber.
number was what tried to perform the illegal memory access.

This information does not mean that there is a bug innunber . The problem could be
caused by the parameters passed to number by _doscan, which could have gotten
parameters from sscanf , which got parameters from mai n. Any one of the functions
along this chain could contain an error that caused a bad pointer to be passed to
another function.

294

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Usually the standard library has been debugged, so we should probably look for the
error in our code. Looking at the stack trace, we see that the last line of our program
to be executed was line 41 of mai n.

Using the | i st command, we can examine that line:

(dbx) list 41
41 sscanf(line, "%", data[max_count]);
(dbx)

This line caused the problem.

Another way of finding the problem is to single-step the program until the error
occurs. First, we list a section of the program to find a convenient place to put the
breakpoint, then start the execution and the single step process:

(dbx) list 26,31

22 int |ow, high; /* Upper/| ower bound */

23 int search; /* Nunber to search for */

24 char 1ine[80]; /* Input line */

25

26 in_file = fopen(DATA_FILE, "r");

27 if (in_file == NULL) {

28 fprintf(stderr,"Error:Unable to open %\n",
DATA_FI LE);

29 exit (8);

30 }

31

(dbx) stop at 26
(1) stop at "search.c":26
(dbx) run

Runni ng: search
stopped in nain at line 26 in file "search.c"

26 in_file = fopen(DATA_FILE, "r");

(dbx) step

stopped in main at line 27 in file "search.c"
27 if (in_file == NULL) {

(dbx) step

stopped in main at line 35 in file "search.c"
35 max_count = 0;

(dbx) step

stopped in nain at line 37 in file "search.c"
37 if (fgets(line, sizeof(line), in_file) == NULL)

(dbx) step

stopped in main at line 41 in file "search.c"

295

FlyHeart.com g4

TEAM FLY PRESENTS

—

41 sscanf(line, "%l", data[max_count]);

(dbx) step

signal SEGVY (no mapping at the fault address) in nunber at Oxdd7d87a
number +0x520: mov| a6@ Ox1c), a0

(dbx) quit

This method also points at line 41 as the culprit. On inspection, we notice that we
forgot to put an ampersand (&) in front of the variable forsscanf. So we change line

41 from:

sscanf (line, "9%l", data[max_count]);

to:

sscanf(line, "%l", &data[max_count]);

and try again. The first number in our list is 4, so we try it. This time our output looks
like:

Enter nunmber to search for or -1 to quit: 4
Found at index O

Found at index O

Not found

Enter nunmber to search for or -1 to quit: ~C

The program should find the number, let us know it's at index 0, and then ask for
another number. Instead, we get two "found" messages and one "not found"
message. We know that everything is running smoothly up until we get the first
"found" message. After that point, things go downhill. So we have at least one more
bug in our program.

Getting back into the debugger, we use thel i st command to locate the found
message and put a breakpoint there:

% dbx search

Readi ng synbolic information...
Read 79 synbol s

(dbx) list 58,60

58

59 if (data[m ddl e] == search) {

60 printf("Found at index %\ n", niddle);
61 }

62

63 if (low==high) {

64 printf("Not found\ n");

296

—
FlyrHeart.com 4

TEAM FLY PRESENTS

65 br eak;
66 }
67

(dbx) stop at 60

(3) stop at "search.c":60

(dbx) run
stopped in nain at line 60 in file "search.c"

60 printf("Found at index %\ n", niddle);
(dbx)

Now we start single -stepping to see what happens:

60 printf("Found at index %\n", mddle);
(dbx) step

Found at index O

stopped in main at line 63 in file "search.c"

63 if (low == high) {

(dbx) step

stopped in main at line 68 in file "search.c"
68 if (data[m ddl e] < search)

(dbx) step

stopped in main at line 71 in file "search.c"
71 hi gh = m ddl e;

(dbx) step

stopped in main at line 57 in file "search.c"
57 m ddle = (low + high) / 2

(dbx) quit

The program doesn't exit the loop. Instead, it continues with the search. Because
the number has already been found, in strange behavior results. We are missing a
break after the printf.

We need to change:

if (data[m ddl e] == search) {
printf("Found at index %\n", niddle);

to:

if (data[m ddle] == search) {
printf("Found at index %\n", niddle);
br eak;

297

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Making this fix, we try our program again:

% search

Ent er nunber to search for

Found at index O

Enter nunber to search for

Found at index 1

Enter nunber to search for

Not found

Enter nunmber to search for

... program continues forever or until we abort it.

or -1 to quit: 4

or -1 toquit:6

or -1 to quit:3

or -1 to quit:5

We have a runaway program. This time, instead of setting a breakpoint, we just

start running the program. After a few seconds pass and we believe that we are

stuck in the infinite loop, we stop the program with a CTRL-C to return to the shell

prompt. Because we are running with the debugger, control returns to dbx :

% dbx search

Readi ng synmbolic information...

Read 80 synbol s
(dbx) run
Runni ng: search

Enter nunmber to search for or -1 to quit:5

rC

interrupt in main at line 70 in file "search.c"
70 | ow = mi ddl e;

Now we can use the single -step command to step through our infinite loop, looking

at key values along the way:

70 | ow = m ddl e;

(dbx) step

stopped in nmain at line 57 in file "search.c"

57 m ddl e
(dbx) step

(low + high) / 2;

stopped in main at line 59 in file "search.c"
59 if (data[m ddl e] == search) {

(dbx) print mddle
mddle = 0

(dbx) print data[m ddl e]
data[nmiddle] = 4

(dbx) print search
search = 5

(dbx) step

stopped in main at line 64 in file "search.c"

298

—
FlyrHeart.com 4

TEAM FLY PRESENTS

64

(dbx) step

st opped in
69

(dbx) step

stopped in
70

(dbx) step

stopped in
57

(dbx) step

stopped in
59

(dbx) step

st opped in
64

(dbx) step

stopped in
69

(dbx) step

stopped in
70

(dbx) step

st opped in
57

(dbx) step

stopped in
59

(dbx) step

stopped in
64

(dbx) step

st opped in
69

(dbx) print

low =0

mddle = 0

high =1

at

at

at

at

at

at

at

at

at

at

at

if (1ow == high) {

line 69 in file "search.c"
if (data[m ddl e] < search)

line 70 in file "search.c"
low = nmiddle

line 57 in file "search.c"
m ddle = (low + high) / 2;

line 59 in file "search.c"
if (data[m ddl e] == search) {

line 64 in file "search.c"
if (low==high) {

line 69 in file "search.c"
if (data[m ddl e] < search)

line 70 in file "search.c"
low = m ddl e

line 57 in file "search.c"
m ddle = (low + high) / 2;

line 59 in file "search.c"
if (data[m ddl e] == search) {

line 64 in file "search.c"
if (low == high) {

line 69 in file "search.c"
if (data[middle] < search)

| ow, m ddl e, hi gh

(dbx) print search

search = 5

(dbx) print data[0], data[1]

dat a[0]
dat a[1]
(dbx) quit

4
6

298

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The problem is that we have reached a point where:

| ow= 0
nmddle= 0
hi gh= 1

The item we are seeking (value 5) falls between element (value 4) and element 1
(value 6). Our algorithm has an off-by-one error. This type of error occurs when one
variable in a program is just one off the value it should have. In this case, the
variable is our index i ddl e.

We have narrowed our search to the interval to 1. We then take the middle of this
interval. But our algorithm is flawed. Because the interval is so small, the "middle"
works out to be element 1. So we "narrow" our search from to 1 to the new interval
to 1, and start over. Because this interval is what we started out with, we have an
infinite loop.

To solve this problem, we look at the code.If the middle element matches, we print
out a "found"” message and exit. That fact means that we don't need to search the
middle element again. So, we adjust our code from:

if (data[m ddl e] < search)
| ow = m ddl e;

el se
hi gh = m ddl e;

to:

if (data[m ddle] < search)
low = niddl e +1;
el se
high = mddle -1;

The full version of our corrected program is shown inExample 15-8.

Example 15-8. search/search4.c

[File: search/search4.c]

/**

* search -- Searches a set of nunbers. *

* *

* Usage: *

* search *

* You wi Il be asked nunmbers to | ook up. *
300

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* *

*

* Files:
* nunbers. dat -- Nunmbers 1 per line to search *
* (Numbers nmust be ordered). *

**/

#i ncl ude <stdio. h>
#def i ne MAX_NUMBERS 1000 /* Max nunmbers in file */
const char DATA FILE[] = "nunbers.dat"; /* File with nunbers */

int datal MAX_NUMBERS]; /* Array of nunbers to search */

i nt nmax_count; /* Nunber of valid elenents in data */
int main()
{

FILE *in_file; /* Input file */

i nt mddle; /* Mddle of our search range */

int |ow high; /* Upper/| ower bound */

int search; /* nunmber to search for */

char 1ine[80]; /* Input line */

in_file = fopen(DATA FILE, "r");
if (in_file == NULL) {
fprintf(stderr,"Error:Unable to open %s\n", DATA FILE)

exit (8);
}
/*
* Read in data
*/

max_count =0
while (1) {
if (fgets(line, sizeof(line), in_file) == NULL)
br eak;

/* convert nunber */
sscanf (line, "%l", &data[nax_count]);

++max_count ;

while (1) {
printf("Enter nunber to search for or -1 to quit:");
fgets(line, sizeof(line), stdin);
sscanf (line, "%l", &search);

301

—
FlyrHeart.com 4

TEAM FLY PRESENTS

if (search == -1)
br eak;

low = O;
hi gh = max_count;

while (1) {
if (low >= high) {
printf("Not found\n");
br eak;

mddle = (low + high) / 2;

if (data[m ddl e] == search) {
printf("Found at index %d\n", m ddle);
br eak;

if (data[m ddl e] < search)
| ow = m ddl e +1;

el se
high = middle -1;

}

return (0);

Interactive debuggers work well for most programs. Sometimes they need a little
help. Consider Example 15-9. We try to debug it and find it fails whenpoi nt _numnber
is 735. We want to put a breakpoint before the calculation is made. When the
debugger inserts a breakpoint into a program, the program will execute normally
until it hits the breakpoint, then control will return to the debugger. This allows the
user to examine and change variables as well as perform other debugging
commands. When acont i nue command is typed, the program will continue
execution as if nothing had happened. The problem is that there are 734 points
before the one we want, and we don't want to stop for each of them.

Example 15-9. cstop/cstop.c

extern float |ookup(int index);

float point_color(int point_nunber)

{

302

—
FlyrHeart.com 4

TEAM FLY PRESENTS

float correction; /* color correction factor */
extern float red, green, blue;/* current colors */

correction = | ookup(poi nt _nunber);

return (red*correction * 100.0 +
bl ue*correction * 10.0 +
green*correction);

How do we force the debugger to stop only when part _nunmber == 735? We can do
this by adding the following temporary code:

48 i f (point_nunmber == 735) [* ### Tenp code ### */
49 poi nt _nunber = poi nt_numnber; [* ### Line to stop on ### */

Line 49 does nothing useful except serve a line that the debugger can stop on. We
can put a breakpoint on that line with the command st op at 49. The program will
process the first 734 points, then execute line 49, hitting the breakpoint. (Some
debuggers have a conditional breakpoint. The advanced dbx command st op at 49
i f poi nt _nunber == 735 would also work; however, your debugger may not have
such advanced features.)

15.4 Runtime Errors

Runtime errors are usually the easiest to fix. Some types of runtime errors are:

Segmentation Violation. This error indicates that the program tried to
dereference a pointer containing a bad value.

Stack Overflow. The program tried to use too many temporary variables.
Sometimes, stack overflow happens because the program is too big or is
using too many big temporary arrays, but most of the time this is due to
infinite recursion problems. Almost all UNIX systems automatically check for
this error. Turbo C++ and Borland C++ check for stack overflow only if the
compile -time option- Nis used.

Divide by O . Divide by is an obvious error. UNIX masks the problem by
reporting an integer divide by zero with the error message "Floating
exception (core dumped).”

All these errors stop program execution. On UNIX, an image of the running program,
called acore file, is written out.

One problem with runtime errors is that when they occur, the program execution
stops immediately. The buffers for buffered files are not flushed. This can lead to
some unexpected surprises. Consider Example 15-10.

303

—
FlyrHeart.com

TEAM FLY PRESENTS

Example 15-10. flush/flush.c

#i ncl ude <stdi o. h>

int main()
{
int i,j; /* two randomintegers */
i =1;
j =0;
printf("Starting\n");
printf("Before divide...");
i =i [/ j; [* divide by zero error */
printf("After\n");
return(0);
}

When run, this program outputs the following:

Starting
Fl oati ng exception (core dunped)

This program might lead you to think the divide had never started, when in fact it
had. What happened to the message "Before divide..."? Thepri ntf statement
executed and put the message in a buffer, and then the program died. The buffer
never got a chance to be emptied.

By putting explicit flush buffer commands inside the code, we get a truer picture of
what is happening. See Example 15-11.

Example 15-11. flush2/flush2.c

[File: flush2/flush2.c]
#i ncl ude <stdio. h>

int main()

{

int i,j; /* two randomintegers */

i =1;
j =0;

printf("Starting\n");
fflush(stdout);

304

—
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("Before divide...");
fflush(stdout);

/[j; [I* divide by zero error */

printf("After\n");
fflush(stdout);
return(0);

The f 1 ush statement makes the 1/0 less efficient, but more current.

15.5 The Confessional Method of Debugging

The confessional method of debugging is one in which the programmer explains the
program to someone: an interested party, an uninterested party, a wall—the actual
recipient is not important, as long the programmer talks about the program.

A typical confessional session goes like this: "Hey Bill, could you take a look at this.
My program has a bug in it. The output should be 8.0 and I'm getting-8.0. The
output is computed using this formula and I've checked out the payment value and
rate, and the date must be correct unless there is something wrong with the leap
year code, which—Thank you, Bill, you've found my problem." Bill never says a
word.

This type of debugging is also called a "walkthrough." Getting other people involved
brings a fresh point of view to the process, and frequently, other people can spot
problems that you have overlooked.

15.6 Optimization

Optimization is the art of going through a program and making the code more
efficient so that it runs faster. Most compilers have a command-line switch that

causes them to generate optimized code. This efficiency comes at the cost of
compile time; the compiler takes a lot longer to generate code when optimization is
turned on.

The other type of optimization occurs when a programmer modifies a program to
use a more efficient algorithm. This sedion discusses this second type of
optimization.

305

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

And now aword on optimization: don't. Most programs do not need to be optimized.
They run fast enough. Who cares if an interactive program takes 0.5 seconds to
start up instead of 0.2?

The simplest way to get your program to run faster is to get a faster computer. Many
times buying a more powerful machine is cheaper than optimizing a program, and
possibly introducing new errors into your code. Don't expect miracles from
optimization. Usually most programs can be sped up by only 10% to 20%.

Still, to give you an idea what you can accomplish, I'll optimize a sample function.
Example 15-12 initializes a matrix (two-dimensional array).

Example 15-12. matrix/matrixl1.c

[File: matrix/matrixl.c]
#defi ne X_SIZE 60
#define Y_SIZE 30

/* A random matrix */
int matrix[X_SIZE][Y_SI ZE] ;

/**

*init_matrix -- Sets every elenment of matrix to -1. *

**/

void init_matrix(void)

{
int x,y; /* current element to zero */
for (x = 0; x < X_SIZE;, ++x) {
for (y = 0; y < Y_SIZE, ++y) {
matrix[x][y] =-1,
}
}
}

How can this function be optimized? First, we notice that we are using two local
variables. By using the qualifier r egi st er on these variables, we tell the compiler
that they are frequently used and should be placed in fast registers instead of
relatively slow main memory. The number of registers varies from computer to
computer. Slow machines like the PC have two registers, most UNIX systems have
about 11, and supercomputers can have as many as 128. You can declare more

register variables than you have registers. C will put the extra variables in main
memory.

306

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Our program now looks like Example 15-13.
Example 15-13. matrix/matrix2.c

[File: matrix/ matrix2.c]
#define X_SIZE 60
#define Y_SIZE 30

int matrix[X_S|ZEJ[Y_SI ZE] ;

/***'k****'k****************'k******************************

* init_matrix -- Sets every elenent of matrix to - 1. *

**/

void init_matrix(void)

{
register int x,y; /* current elenent to zero */
for (x = 0; x < X_SIZE;, ++x) {
for (y =0; y < Y_SIZE, ++y) {
matri x[x][y] =-1;
}
}
}

The outer loop is executed 60 times. This means that the overhead associated with
starting the inner loop is executed 60 times. If we reverse the order of the loops, we
will have to deal with the inner loop only 30 times.

In general, loops should be ordered so that the innermost loop is the most complex

and the outermost loop is the simplest, as in Example 15-14.

Example 15-14. matrix/matrix3.c

[File: matrix/matrix3.c]
#define X _SI ZE 60
#define Y_SIZE 30

int matrix[X_SIZE][Y_SI ZE] ;

/********** EEEREEEEEEEEEREEEEEEEEEEEEEREEREREEREREEEEEEEEEEEE

*init_matrix -- Sets every element of matrix to -1. *

****'k*'k*************************'k*'k*********************/

void init_matrix(void)

307

—
FlyrHeart.com 4

TEAM FLY PRESENTS

register int x,y; /* current elenment to zero */

for (y =0;, y < Y_SIZE;, ++y) {
for (x = 0; x < X_SIZE;, ++x) {
matri x[x][y] =-1;

15.6.1 The Power of Powers of 2

Indexing an array requires a multiply. Look at the following line from the previous
example:

matrix[x][y] = -1;

To get the location where the-1 will be stored, the program must perform the
following steps:

Get the address of the matrix.
Compute x * Y_SI ZE.
Computey.

PN R

Add up all three parts to form the address.

In C, this code looks like:

*(matrix + (x * Y_SIZE) +vy) = -1;

However, we typically don't write a matrix access this way because C handles the
details. But being aware of the details can help us generate more efficient code.

Almost all C compilers will convert multiples by a power of 2 (2, 4, 8, ...) into shifts,
thus taking an expensive operation (multiply) and changing it into an inexpensive
operation (shift).

For example:

i =32 %

is compiled as:

i =] << 5 [* 2¢*5 == 32 ¥/

308

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Y_SI ZE is 30, which is not a power of 2. By increasing it to 32, we waste some
memory, but get a faster program, as shown in Example 15-15.

Example 15-15. matrix/matrix4.c

[File: matrix/ matrix4.c]
#defi ne X_SIZE 60
#define Y_SIZE 32

int matrix[X_SI ZE][Y_SI ZE] ;

/**

*init_matrix -- Sets every elenment of matrix to -1. *

**/

void init_matrix(void)

{
register int x,vy; /* current element to zero */
for (y =0; y < Y_SIZE, ++y) {
for (x =0; x < X_SIZE; ++x) {
matri x[x][y] =-1;
}
}
}

Because we are initializing consecutive memory locations, we can initialize the
matrix by starting at the first location and storing a-1 in the next X_SI ZE* Y_SI ZE
elements. (See Example 15-16.) Using this method, we cut the number of loops
down to one. The indexing of the matrix has changed from a standard index
(matrix[x][y]), requiring a shift and add to a pointer dereference (*matri x_ptr),

and an increment (mat ri x_pt r ++).

Example 15-16. matrix/matrix5.c

[File: matrix/matrix5.c]
#defi ne X_SIZE 60
#define Y_SIZE 30

int matrix[X_SIZE][Y_SI ZE] ;

/**

*init_matrix -- set every elenment of matrix to -1 *

308

—
FlyrHeart.com 4

TEAM FLY PRESENTS

**/

void init_matrix(void)

{
regi ster int index; /* el ement counter */
register int *matrix_ptr;
matrix_ptr = &matrix[0][0];
for (index = 0; index < X_SIZE * Y_SI ZE; ++i ndex) {
*matrix_ptr = -1;
++matrix_ptr;
}
}

But why have both a loop counter and amat ri x_pt r? Couldn't we combine thetwo?
In fact, we can, as shown in Example 15-17.

Example 15-17. matrix/matrix6.c

[File: matrix/ matrix6. c]
#defi ne X_SIZE 60
#define Y_SI ZE 30

int matrix[X_SI ZE] [Y_SI ZE] ;

/**

* init_matrix -- Sets every elenent of matrix to - 1. *

**/

void init_matrix(void)

{
register int *matrix_ptr;
for (matrix_ptr = &matrix[0][0];
matrix_ptr <= &matrix[X_SI ZE-1][Y_SI ZE-1];
++mat ri x_ptr) {
*matrix_ptr = -1;
}
}

The function is now well optimized. The only way we could make it better is to
hand -code it into assembly language. This change might make the function faster;
however, assembly language is highly nonportable and very error-prone.

310

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The library routine nenset can be used to fill a matrix or an array with a single
character value. As shown inExample 15-18, we can use it to initialize the matrix in

this program. Frequently used library subroutines like mrenset are often coded into
assembly language and may make use of special processordependent tricks to do
the job faster than could be done in C.

Example 15-18. matrix/matrix7.c

[File: matrix/ matrix7.c]

#i ncl ude <menory. h> /* Gets definition of nenset */
#define X _SI ZE 60

#define Y_SIZE 30

int matrix[X_SIZE][Y_SI ZE] ;

/**

* jnit_mtrix -- Sets every elenent of matrix to - 1. *

**/
void init_matrix(void)

{

menset (matrix, -1, sizeof (matrix));

Now our function consists of only a single function call. Having to call a function just
to call another function seems a shame. We have to pay for the overhead of two
function calls. Instead we should call nenset from the main function. Why don't we

tell the user to rewrite his code using nenset instead ofi nit _matri x? Because he
has several hundredinit _nmatri x calls and doesn't want to do all that editing.

If we redefine our function as a macro, we have aninit_matri x that looks like a
function call. But, because it is a macro, it is expanded inline, avoiding all the extra
overhead associated with a function call. Look at Example 15-19.

Example 15-19. matrix/matrix8.c

#define X _SI ZE 60
#define Y_SIZE 30

int matrix[X_SIZE]J[Y_SI ZE] ;

/**

*init_matrix -- Sets every element of matrix to -1. *

****'k*'k*************************'k*'k*********************/

#define init_matrix() \

311

—
FlyrHeart.com 4

TEAM FLY PRESENTS

menset (matrix, -1, sizeof(matrix));
Question 15-1: Why doesnenset successfully initialize the matrix to -1, but when

we try to use it to set every element to 1 in Example 15-20, we fail? (Click here for
the answer Section 15.7)

Example 15-20. matrix/matrix9.c

#defi ne X_SIZE 60
#define Y_SIZE 30

int matrix[X_S|ZEJ[Y_SI ZE] ;

#define init_matrix() \
menset (matrix, 1, sizeof (matrix));

15.6.2 How to Optimize

Our matrix initialization function illustrates several optimizing strategies. These are:
Loop ordering

Nested loops should be ordered with the simplest loop outermost and the
most complex loops innermost.

Reduction in strength

This phrase is a fancy way of saying you should use cheap operations instead
of expensive ones. Table 15-1 lists the relative cost of common operations.

Table 15-1. Relative Cost of Operations

Operation Relative cost

printf and scanf 1000
mal | ocand free 800

trigonometric functions (sin, cos...) 500

floating point (any operation) 100

integer divide 30

integer multiple 20

function call 10

312
R, —

TEAM FLY PRESENTS

simple array index
shifts

add/subtract
pointer dereference

bitwise and, or, not

R RN O OO

logical and, or, not

A

Formatting functions likepri nt f ,scanf, andsscanf

4% are extremely costly because they have to go through
the format string one character at a time, looking for

a format conversion character (%9. Then they have to

do a costly conversion between a character string and
a number. These functions should be avoided in
time-critical sections of code.

Powers of 2

Use a power of 2 when doing integer multiply or divide. Most compilers
substitute a shift for the operation.

Pointers

Using pointers is faster than indexing an array. Pointers are, however, more
tricky to use.

Macros

Using a macro eliminates the overhead associated with a function call. It also
makes the code bigger and a little more difficult to debug.

Case Study: Macros Versus Functions

I once worked on writing a word processing program for alarge
computer manufacturer. We had a function, next _char, that

was used to get the next character from the current file. It was
used in thousands of places throughout the program. When we

first tested the program with next _char written as a function,

the program was unacceptably slow. Analyzing our program,

313

—
FlyrHeart.com 4

TEAM FLY PRESENTS

we found that 90% of our time was spent innext _char . So we

changed the function to a macro. The speed doubled, but, our
code size went up 40% and required a memory expansion card
to work. So the speed was all right, but the size was still
unacceptable. We finally had to write the routine as a function
in hand-optimized assembly language to get both the size and
the speed to acceptable levels.

Case Study: Optimizing a Color
Rendering Algorithm

I was once asked to optimize a program that did color
rendering for a large picture. The problem was that the
program took eight hours to process a single picture. This
sluggishness limited us to doing one run a day.

The first thing | did was to run the program on a machine with
a floating-point accelerator. This brought the time down to
about six hours. Next, | got permission to use a high-speed
RISC computer that belonged to another project, but was now
sitting idle. That reduced the time to two hours.

I saved six hours solely by using faster machines. No code had
changed yet.

Two fairly simple functions were being called only once from
the innermost loop. Rewriting these functions as macros saved
me about 15 minutes.

Next, I changed all applicable floating-point operations to
integer operations. The savings amounted to 30 minutes out of
an hour and 45 minutes of runtime.

I noticed the program was spending about five minutes
reading an ASCII file containing a long list of floating-point

numbers used in the conversion process. Knowing that scanf

is an extremely expensive function, | cut the initialization
process down to almost nothing by making the file binary.
Total runtime was now down to one hour and ten minutes.

By carefully inspecting the code and using every trick | knew, |

314

—
FlyrHeart.com 4

TEAM FLY PRESENTS

saved another five minutes, leaving me five minutes short of
my goal of an hour per run.

At this point, my project was refocused and the program putin
mothballs for use at some future date.

15.7 Answers

Answer 15-1: The problem is that menset is a character fill routine. An integer
consists of 2 or 4 bytes (characters). Each byte is assigned the value 1. So a 2 -byte
integer will receive the value:

i nteger = 0x0101;

The 1-byte hex value for -1 is OxFF. The two-byte hex value of -1 is OXFFFF. So we
can take two single byte-1 values, put them together, and come out with-1. This
method also works for 0. Any other number will produce the wrong answer. For
example, 1 is 0x01. Two bytes of this is 0x0101, or 257.

15.8 Programming Exercises

Exercise 15-1: Take one of your previous programs and run it using the interactive
debugger to examine several intermediate values.

Exercise 15-2: Write a matrix multiply function. Create a test program that not
only tests the function, but times it as well. Optimize it using pointers and determine
the time savings.

Exercise 15-3: Write a program to sum the elements in an array. Optimize it.

Exercise 15-4: Write a program that counts the number of bits in a character array.
Optimize it through the use of register integer variables. Time it on several different
arrays of different sizes. How much time do you save?

Exercise 15-5: Write your own version of the library function mencpy. Optimize it.
Most implementations of mencpy are written in assembly language and take
advantage of a ll the quirks and tricks of the processor. How does your nmencpy
compare with others?

315

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 16. Floating Point

1 is equal to 2 for sufficiently large values of 1.
—Anonymous

Computers handle integers very well. The arithmetic is simple, exact, and fast.
Floating-point arithmetic is the opposite. Computers do floating-point arithmetic
only with great difficulty.

This chapter discusses some of the problems that can occur with floating-point. In
order to understand the principles involved in floating-point arithmetic, we have
defined a simple decimal floating-point format. We suggest you put aside your
computer and work through these problems using pencil and paper so that you can
see firsthand the problems and pitfalls that occur.

The format used by compute rs is very similar to the one defined in this chapter,
except that instead of using base 10, computers use base 2, 8, or 16. However, all
the problems demonstrated here on paper can occur in a computer.

16.1 Floating-Point Format

Floating-point numbers consist of three parts: a sign, a fraction, and an exponent.

Our fraction is expressed as a 4 -digit decimal. The exponent is a single-decimal digit.

So, our format is:

+
HEAFFX 10

where:

I+

is the sign (plus or minus).
f.fff

is the 4 digit fraction.

is the single -digit exponent with sign.
Zero is +0.000 x 10™°, We represent these numbers in "E" format: #0.000 E =e.

316

FlyrHeart.com

—

>

TEAM FLY PRESENTS

This format is similar to the floating-point format used in many computers. The IEEE
has defined a floating-point standard (#754), but not all machines use it.

Table 16-1 shows some typical floating point numbers.

Table 16-1. Floating-Point Examples

Notation Number
+1.000E+0 1.0
+3.300E+4 33000.0
-8.223E-3 -0.008223
+0.000E+0 0.0

The floating-point operations defined in this chapter follow a rigid set of rules. In
order to minimize errors, we make use of aguard digit. That is an extra digit added

to the end of our fraction during computation. Many computers use a guard digit in
their floating-point units.

16.2 Floating Addition/Subtraction

To add two numbers like 2.0 and 0.3, you must perform the following steps.

=

Start with the numbers:
+2. 000E+0 The nunber is 2.0.

+3. 000E-1The number is 0. 3.

N

3. Add guard digits to both numbers:
4. +2. 0000E+0 The number is 2.0.

+3. 0000E 1 The nunber is 0.3.

5. Shift the number with the smallest exponent to the right one digit, and then
increment its exponent. Continue until the exponents of the two numbers

match:
6. +2. 0000E+0 The nunber is 2.0.
+0. 3000E-0 The numnber is 0.3.

7. Add the two fractions. The result has the same exponent as the two

numbers:
8. +2. 0000E+0 The nunber is 2.0.
9. +0. 3000E- 0 The nunber is 0.3.
10.

317

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

+2. 3000E+0 The result is 2.3.

11.Normalize the number by shifting it left or right until there is just one
non-zero digit to the left of the decimal point. Adjust the exponent
accordingly. A number like +0.1234E+0 would be normalized to +1.2340E-1.
Because the number +2.3000E+0 is already normalized, we do nothing.

12.Finally, if the guard digit is greater than or equal to 5, round the next digit up;
otherwise, truncate the number:

13. +2. 3000E+0 Round the last digit.

14.
+2.300E+0The result is 2. 3.

For floating-point subtraction, change the sign of the second operand and add.

16.3 Multiplication

When we want to multiply two numbers such as 0.12 x 11.0, the following rules
apply.

1. Add the guard digit:
2. +1. 2000E- 1 The nunber is 0.12.
+1. 1000E+1 The nunber is 11.0.

3. Multiply the two fractions and add the exponents, (1.2x1.1=1.32) (-1 + 1

= 0):
4. +1. 2000E 1 The nunber is 0.12.
5. +1. 1000E+1 The nunber is 11.0.
6.

+1. 3200E+0 The result is 1.32.

7. Normalize the result.

If the guard digit is greater than or equal to 5, round the next digit up.
Otherwise, truncate the number:

+1. 3200E+0 The nunber is 1.32.

Notice that in multiplying, you didn't have to go through all that shifting. The rules
for multiplication are a lot shorter than those for addition. Integer multiplication is a
lot slower than integer addition. In floating-point arithmetic, multiplication speed is
a lot closer to that of addition.

318

—
FlyrHeart.com 4

TEAM FLY PRESENTS

16.4 Division

To divide numbers like 100.0 by 30.0, we must perform the following steps.

1. Add the guard digit:
2. +1. 0000E+2 The nunber is 100.0.
+3. 0000E+1 The nunber is 30.0.
3. Divide the fractions and subtract the exponents:
4. +1. 0000E+2 The nunmber is 100. 0.
5. +3. 0000E+1 The nurber is 30.0.
6.
+0. 3333E+1 The result is 3.333.

7. Normalize the result:

+3. 3330E+0 The result is 3.333.

8. If the guard digit is greater than or equal to 5, round the next digit up.
Otherwise, truncate the number:

+3.333E+0The result is 3.333.

16.5 Overflow and Underflow

There are limits to the size of the number that a computer can handle. What are the
results of the following calculation?

9. 000E+9 x 9. 000E+9
Multiplying it out, we get:
8.1 x 10 *°

However, we are limited to a single-digit exponent, too small to hold 19. This
example illustrates overflow (sometimes called exponent overflow). Some
computers generate a trap when this overflow occurs, thus interrupting the
program and causing an error message to be printed. Other computers are not so
nice and generate a wrong answer (like 8.100E+9). Computers that follow the IEEE
floating-point standard generate a special value called +I nfi ni ty.

Underflow occurs when the numbers become too small for the computer to handle.
For example:

318

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

1. 000E-9 x 1.000E-9

The result is:

1.0 x 10 8

Because -18 is too small to fit into one digit, we have underflow.

16.6 Roundoff Error

Floating-point arithmetic is not exact. Everyone knows that 1+1 is 2, but did you
know that 1/3 + 1/3 does not equal 2/3?

This result can be shown by the following floating-point calculations:

2/3 as floating -point is 6.667E-1.
1/3 as floating -point is 3.333-1.

+3. 333E-1
+3. 333E-1
+6. 666E-1 or 0.6666

which is not:

+6. 667E-1

Every computer has a similar problem with its floating point. For example, the
number 0.2 has no exact representation in binary floating-point.

Floating-point arithmetic should never be used for money. Because we are used to
dealing with dollars and cents, you might be tempted to define the amount of $198
as:

fl oat ampbunt = 1.98;

However, the more calculations you do with floating point arithmetic, the bigger the
roundoff error. Banks, credit card companies, and the IRS tend to be very fussy
about money. Giving the IRS a check that's almost right is not going to make them
happy. Money should be stored as an integer number of pennies.

320

—
FlyrHeart.com 4

TEAM FLY PRESENTS

16.7 Accuracy

How many digits of the fraction are accurate? At first glance you might be tempted
to say all four digits. Those of you who have read the previous section on roundoff

error might be tempted to change your answer to three.

The answer is: the accuracy depends on the calculation. Certain operations, like
subtracting two numbers that are close to each other, generate inexact results. For
example, consider the following equation:

1-1/3- 1/3 - 1/3
1. 000E+0

3.333E1
3.333E1
3.333E1

or:

1. 000E+0
0. 333E+0

0. 333E+0
0. 333E+0

0. 0010E+0 or 1.000E-3

The correct answer is 0.000E+0 and we got 1.000E-3. The very first digit of the
fraction is wrong. This error is an example of the problem called "roundoff error”
that can occur during floating point operations.

16.8 Minimizing Roundoff Error

There are many techniques for minimizing roundoff error. Guard digits have already
been discussed. Another trick is to use double instead of float. This solution gives

you approximately twice the accuracy as well as an enormously greater range. It
also pushes away the minimization problem twice as far. But roundoff errors still can
creepin.

Advanced techniques for limiting the problems caused by floating point can be found
in books on numerical analysis. They are beyond the scope of this text. The purpose
of this chapter is to give you some idea of the sort of problems that can be
encountered.

321

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Floating-point by its very nature is not exact. People tend to think of computers as
very accurate machines. They can be, but they also can give wildly wrong results.
You should be aware of the places where errors can slip into your program.

16.9 Determining Accuracy

There is a simple way of determining how accurate your floating point is (for simple
calculations). The method used in the following program is to add 1.0+0.1,
1.0+0.01, 1.0+0.001, and so on until the second number gets so small that it
makes no difference in the result.

The C language specifies that all floating-point numbers are to be done in double .
This method means that the expression:

fl oat nunber1, nunber?2;

while (nunberl + number2 != nunberl)

is equivalent to:

whi | e (doubl e(nunmber 1) + doubl e(nunmber2) != doubl e(nunber1l))

When using the 1+0.001 trick, the automatic conversion of float to double may
give a distorted picture of the accuracy of your machine. (In one case, 84 bits of
accuracy were reported for a 32-bit format.) Example 16-1 computes both the
accuracy of floating-point numbers as used in equations and floating-point numbers
as stored in memory. Note the trick used to determine the accuracy of the
floating-point numbers in storage.

Example 16-1. float/float.c

#i ncl ude <stdio. h>
int main()
{
/* two numbers to work with */
fl oat nunmberl, nunber?2;
float result; /* result of calculation */
i nt counter; /* | oop counter and accuracy check */

number 1 1.0;
number 2

I
=
L

322

FlyrHeart.com

—

>

TEAM FLY PRESENTS

counter = 0;

whil e (number1 + number2 != nunberl) {
++count er;
nunber2 = nunber2 / 10. O;

}

printf("9%®Rd digits accuracy in cal culations\n", counter);

number 2 1.0;

counter 0;

while (1) {
result = numberl + nunber?2;
if (result == nunberl)
br eak;
++count er;
nunber2 = nunber2 / 10.0;
}

printf("9%d digits accuracy in storage\n", counter);
return (0);

Running this on a Sun-3/50 with a MC68881 floating -point chip, we get:

20 digits accuracy in calcul ations
8 digits accuracy in storage

This program gives only an approximation of the floating point precision arithmetic.
A more precise definition can be found in the standard include file float.h.

16.10 Precision and Speed

A variable of typedouble has about twice the precision of a normal floatvariable.
Most people assume that double-precision arithmetic takes longer than single-
precision arithmetic. This statement is not always true. Remember that C requires
that all the arithmetic must be done indouble.

For the equation:
fl oat answer, nunberl, nunber?2;
answer = nunberl1l + nunber2;

C must perform the following steps:

323

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Convert numberl from single to double precision.

Convert number2 from single to double precision.
Double-precision add.

Convert result into single-precision arithmetic and store inanswer .

A

If the variables were of type double , C would only have to perform these steps:

1. Carry out a double -precision add.
2. Store result in answer .

As you can see, the second form is a lot simpler, requiring three fewer conversions.
In some cases, converting a program from single-precision arithmetic to double -
precision arithmetic makes it run faster.

Many computers, including the PC and Sun series machines, have a floating-point
processor that does all the floating point arithmetic. Actual tests using the Motorola

68881 floating-point chip (which is used in the Sun/3) as well as the floating-point
on the PC show that single precision and double precision run at the same speed.

16.11 Power Series

Many trigonometry functions are computed using a power series. For example, the
series for sine is:

sin(x) = x— _, + 5, =5+ ..

The question is: how many terms do we need to get 4-digit accuracy? Table 16 -2
contains the terms for the sin(/2).

Table 16-2. Termsfor the sin(/2)

Term Value Total

1 X 1.571E+0

y 3
2 “_r 6.462E -1 9.248E -1

-.-‘I .

x.'i.
3 - 7.974E -2 1.005E+0

31

324

—
FlyrHeart.com 4

TEAM FLY PRESENTS

4 = 4.686E-3 9.998E -1
7
o9
5 o 1.606E 4 1.000E+0
1
6 |X 3.604E -6 1.000E+0

Il

From this, we conclude that five terms are needed. However, if we try to compute
the sin(), we get the values in Table 16-3.

Table 16-3. Termsfor thesin()

Term Value Total
1 X 3.142E+0
x3
2 "_F 5.170E+0 -2.028E+0
Al
xﬁ
3 ; 2.552E-0 5.241E-1
K‘i‘
4 - 5.998E -1 -7.570E-2
it
3[9
5 ; 8.224E -2 6.542E -3
11
6 X 7.381E-3 -8.388E-4
L1!
13
7 o 4.671E-4 3.717E-4
13!
x15
8 - 2.196E-5 -3.937E-4
15!
a
9 7.970E-7 -3.929E-4
17!
x19
10 2.300E-8 -3.929E-4
19!
325

—_—
FlyrHeart.com

TEAM FLY PRESENTS

needs nine terms. So different angles require a different number of terms. (A
program for computing the sine to four-digit accuracy showing intermediate terms

is included in Appendix D.)

Compiler designers face a dilemma when it comes to designing a sine function. If
they know ahead of time the number of terms to use, they can optimize their
algorithms for that number of terms. However, they lose accuracy for some angles.
So a compromise must be struck between speed and accu racy.

Don't assume that because the number came from the computer, it is accurate. The
library functions can generate bad answers—especially when you work with
excessively large or small values. Most of the time, you will not have any problems
with these functions, but you should be aware of their limitations.

Finally there is the question of what is sin(1000000)? Our floating-point format is
good for only four digits. The sine function is cyclical. That is, sin(0) = sin(2) =
sin(4). ... So sin(1000000) is the same as sin(1000000 mod 2).

Note that our floating-point format is good to only four digits, so sin(1000000) is
actually sin(1000000 + 1000). Because 1000 is bigger than 2, the error renders
meaningless the result of the sine.

How Hot Is It?

| attended a physics class at Caltech that was taught by two
professors. One was giving a lecture on the sun when he said,
"... and the mean temperature of the inside of the sun is

13,000,000 to 25,000,000 degrees." At this point, the other
instructor broke in and asked "lIs that Celsius or Kelvin

(absolute zero or Celsius-273)?"

The lecturer turned to the board for a minute, then said,
"What's the difference?" The moral of the story is that when

your calculations have a possible error of 12,000,000, a
difference of 273 doesn't mean very much.

16.12 Programming Exercises

Exercise 16-1: Write a program that uses strings to represent floating -point
numbers in the format used in this chapter. A typical string might look like
"+1. 333E+2" . The program should have functions to read, write, add, subtract,

multiply, and divide floating-point numbers.

326

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Exercise 16-2: Create a set of functions to handle fixed-point numbers. A fixed-
point number has a constant (fixed) number of digits to the right of the decimal
point.

327

—~_
FlyrHeart.com

TEAM FLY PRESENTS

Part 111: Advanced Programming

Concepts

In this part we explore the advanced features of C as well as advanced programming
tasks such as modular programming and program porting. Finally we explore
little-used features such as the ancient K&R C syntax and some of C's darker
corners.

Chapter 17 describes advanced uses of pointers for constructing dynamic structures
such as linked lists and trees.

Chapter 18 shows how to split a program into several files and use modular
programming techniques. The make utility is explained in more detail.

Chapter 19 describes the old, pre-ANSI C language. Although such compilers are
rare today, a lot of code was written for them and there are still a large number of
programs out there that use the old syntax.

Chapter 20 describes the problems that can occur when you port a program (move

it from one machine to another).

Chapter 21 describes thedo/while statement,the comma operator, and the ? and :

operators.
Chapter 22 details the steps necessary to take a complex program from conception
to completion. Information-hiding and modular programming techniques are

emphasized.

Chapter 23 lists some programming adages that will help you construct good C
programs.

328

—

FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 17. Advanced Pointers

A race that binds

Its body in chains and calls them Liberty,
And calls each fresh link progress.
—Robert Buchanan

One of the more useful and complex features of C is its use of pointers. With pointers,
you can create complex data structures like linked lists and trees. Figure 17-1
illustrates some of these data structures.

Figure 17-1. How pointers may be used

firs1_ptr ﬁmmr : Anm-.'utr E @
data -data data
Liniked fist

0x5000 emon

Ll
.. Dmaviol o o

(rea0m array[1]
apple .-Irelar
5002 amay(2] & ot .
B . “u

5 arrayl3]
grape arange plurm
05004 arrayl4] il 17 T

gaa @ g a
Array Tree

Up to now, all of our data structures have been allocated by the compiler as either
permanent or temporary variables. With pointers, we can create and allocate

dynamic data structures that can grow or shrink as needed. In this chapter, you will
leam how to use some of the more common dynamic data structures.

328

w
FlyrHeart.com

TEAM FLY PRESENTS

17.1 Pointers and Structures

Structures can contain pointers, even a pointer to another instance of the same
structure. In the following example:

struct node {

struct node *next_ptr; /* Pointer to the next node */
i nt val ue; /* Data for this node */

the structurenode is illustrated in Figure 17-2. This structure contains two fields,
one namedval ue, shown here as the section containing the number 2. The other is

a pointer to another structure. The field next _ptr is shown as an arrow.

Figure 17-2. Node

[nexow

J
)
value
node

The question is: how do we createnodes ? We could declare them explicitly:

struct node *node_1;
struct node *node_2;

and so on. The problem with this structure is that we can declare only a limited
number of nodes. What we need is a procedure to which we can say, "l want a new
node," and then have the procedure create the node for us.

The procedure mal | oc does the job. It allocates storage for a variable and then
returns a pointer. It is used to create new things out of thin air (actually out of an
area of memory called the heap). Up to now, we've used pointers solely to point to
named variables. So if we used a statement like:

i nt dat a;
i nt *number _ptr;
nunber _ptr = &dat a;

330

—_
FlyrHeart.com

TEAM FLY PRESENTS

the thing that we are pointing to has a name (dat a). The functionnal | oc creates a
new, unnamed variable and returns a pointer to it. The "things" created by mal | oc

can be referenced only through pointers, never by name.
The definition of mal | oc is:
void *mal |l oc(unsigned int);

The function nal | oc takes a single argument: the number of bytes to allocate. If
mal | oc runs out of memory, it returns a null pointer.

In the declaration, voi d * is used to indicate that mal | oc returns a generic pointer
(a pointer that can point to any type of thing). So C uses void for two purposes:

When used as a type in a function declaration, void indicates that the
function returns no value.
When used in a pointer declaration, void defines a generic pointer.

We will start usingmal | oc by allocating space for simple structures. As we go on, we
will see how to create bigger structures and link them together to form very complex
data structures. Example 17-1 allocates storage for a character string 80 bytes long
('\ 0" included). The variablestri ng_ptr points to this storage.

Example 17-1. Allocating Memory for a String

[#i ncl ude <stdlib. h>]
mai n()
{

/* Pointer to a string that will be allocated fromthe heap */
char *string_ptr;

string_ptr = malloc(80);

Suppose we are working on a complex database that contains (among other things)
a mailing list. The structure per son is used to hold the data for each person:

struct person {

char nane[30] ; /* nane of the person */
char addr ess[30] ; /* where he lives */
char city state_zip[30]; /* Part 2 of address */
i nt age; /* his age */
fl oat hei ght ; /* his height in inches */
}
331

—
FlyrHeart.com 4

TEAM FLY PRESENTS

We could use an array to hold our mailing list, but an aray is an inefficient use of
memory. Every entry takes up space, whether or not it is used. What we need is a
way to allocate space for only those entries that are used. We can use nal | oc to
allocate space on an as-needed basis.

To create a new person, we use the code:

/* Pointer to a person structure to be allocated fromthe heap */
struct person *new_itemptr;

new_itemptr = nalloc(sizeof (struct person));

We determine the number of bytes to allocate by using the expression
si zeof (struct person) . Without thesi zeof operator, we would have to count the

number of bytes in our structure, a difficult and error-prone operation.

The size of the heap, although large, is finite. Whenmal | oc runs out of room, it will
return aNULL pointer. Good programming practice tells you to check the return

value of each malloc call to ensure that you really got the memory.

new itemptr = malloc(sizeof(struct person));

if (new_itemptr == NULL) ({
fprintf(stderr, "OQut of menory\n");
exit (8);

Although checking the re turn value of malloc is good programming practice, far too
often the check is omitted and the programmer assumes that he got the memory
whether on not he really did. The result is that far too many programs crash when
they run out of memory.

The problem has gotten so bad that when C++ was designed, it contained a special
error handling mechanism for out-of-memory conditions.

17.2 free Function

The functionmal | oc gets memory from the heap. To free that memory after you are
done with it, use the functionf ree. The general form of thefree function is:

free(pointer);
poi nter = NULL;

where pointeris a pointer previously allocated by mal | oc. (We don't have to set
pointer to NULL ; however, doing so prevents us from trying to used freed memory.)

332

FlyrHeart.com

—

>

TEAM FLY PRESENTS

The following is an example that usesmal | oc to get storage andfr ee to dispose of
it:

const int DATA SIZE = (16 * 1024); /* Nunmber of bytes in the buffer */
voi d copy(void)

{
char *data_ptr; /* Pointer to |arge data buffer */
data_ptr = mal | oc(DATA_SI ZE) ; /* Get the buffer */
[*
* Use the data buffer to copy a file
*/
free(data_ptr);
data_ptr = NULL;
}

But what happens if we forget to free our pointer? The buffer becomes dead. That s,
the memory management system thinks that the buffer is being used, but no one is
using it. If the fr ee statement was removed from the functioncopy, then each
successive call would eat up another 16K of memory. Do this often enough and your
program will run out of memory.

The other problemthat can occur is using memory that has been freed. Whenf r ee
is called, the memory is returned to the memory pool and can be reused. Using a
pointer after afree call is similar to an outof-bounds error for an index to an array.
You are using memory that belongs to someone else. This error can cause
unexpected results or program crashes.

17.3 Linked List

Suppose you are writing a program that displays a series of flash cards as a teaching
drill. The problem is that you don't know ahead of time how many cards the user will
supply. One solution is to use a linked-list data structure. In that way, the list can
grow as more cards are added. Also, as we will see later, linked lists may be
combined with other data structures to handle extremely complex data.

Alinked list is a chain of items in which each item points to the next one in the chain.
Think about the treasure hunt games you played when you were a kid. You were
given a note that said, "Look in the mailbox." Racing to the mailbox you found your
next clue, "Look in the big tree in the back yard," and so on until you found your
treasure (or you got lost). In a treasure hunt, each clue points to the next one i

MA woman was having a treasure hunt at her house for her daughter's Girl Scout troop when the doorbell rang.

It was the mailman. "Lady," he said, "I've looked behind the big tree, and I've looked in the birdhouse, and I've

even looked under the mat, but I still can't find your letter."

333

FlyrHeart.com

—

>

TEAM FLY PRESENTS

A linked list is shown in Eigure 17-3.

Figure 17-3. Linked list

e A

data ~data ~data

The structure declarations for a linked list are:

struct linked_list {
char dat a[30] ; /* data in this element */
struct linked_list *next_ptr; /* pointer to next elenent */

b
struct linked |ist *first_ptr = NULL;

The variable first_ptr points to the first element of the list. In the beginning,
before we insert any elements into the list (the list is empty), this variable is
initialized to NULL.

In Figure 17-4, a new element is created and then inserted at the beginning of an
existing list. To insert a new element into a linked list in C, we execute the following
steps:

1. Create a structure for the item.

new_ itemptr = malloc(sizeof(struct linked_list));

2. Store the item in the new element.

(*new_itemptr).data = item

3. Make the first element of the list point to the new element.

(*new_itemptr).next_ptr = first_ptr;

4. The new element is now the first element.

first_ptr = new_.itemptr;

334

—_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 17-4. Adding new element to beginning of list

nemt_ptr ﬂ

i2m f
')

data

2m f

data

&

old first elament.

first_per
&

Enm:t_ptr

nn'nf

data

€ Create new glement.
@ Store item in new eiement.

€) Make next_prr point fo the first element

A

Enaxt_mr

data

~data

&

O Change £irst_prtr 1o point to the new element,
thug breaking the link between £irst per and the

E‘mﬂ_ptr

Pt _pl

Enm_ptr

data

data

data

Enm_ptr

~data

;

The code for the actual program is:

voi d add_Ilist(char

{

/* pointer tot

*item

he next

itemin the

struct linked_list *new_.itemptr;

new itemptr =

mal | oc(si zeof (struct

strcpy((*new_itemptr).data, item;
(*new_itemptr).next_ptr = first_ptr;
first_ptr = new_itemptr;

335

|ist

*/

linked_list));

) = -
FlyrHeart.com

TEAM FLY PRESENTS

To see if the name is in the list, we must search each element of the list until we
either find the name or run out of data. Example 17-2 contains the fi nd program,

which searches through the items in the list.

Example 17-2. find/find.c

[File: find/find.c]
#i ncl ude <stdio. h>
#i ncl ude <string. h>

struct linked_list {
struct |inked_list *next_ptr; /* Next itemin the list */
char *dat a; /* Data for the list */

}s

struct linked_list *first_ptr;

/**

* find -- Looks for a data itemin the list. *
* *

* Paraneters *

* name -- Nanme to | ook for in the list. *
* *

* Returns *

* 1if nane is found. *

* Oif nanme is not found. *

**/

int find(char *nane)

{
/* current structure we are | ooking at */
struct linked_list *current_ptr;
current _ptr = first_ptr;
while ((strcnp(current_ptr->data, nanme) != 0) &&
(current_ptr !'= NULL))
current_ptr = (*current_ptr)->next_ptr;
/*
* |f current_ptr is null, we fell off the end of the list and
* didn't find the name
*/
return (current_ptr != NULL);
}

336

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Question 17-1: Why does running this program sometimes result in a bus error?
Other times, it will return "1" for an item that is not in the list. (Click here for the
answer Section 17.11)

17.4 Structure Pointer Operator

In our fi nd program, we had to use the cumbersome notation
(*current _ptr). data to access the data field of the structure. C provides a

shorthand for this construct using the structure pointer (- >) operator. The dot (.)
operator indicates the field of a structure. The- > indicates the field of a structure
pointer.

The following two expressions are equivalent:

(*current _ptr).data = val ue;
current _ptr->data = val ue;

17.5 Ordered Linked Lists

So far, we have added new elements only to the head of a linked list. Suppose we
want to add elements in order. Figure 17 -5 is an example of an ordered linked list.

Figure 17-5. Ordered list

- O i (1 S (A7)

=

data data data

=

The subroutine inExample 17-3 implements this function. The first step is to locate
the insert point. head_pt r points to the first element of the list. The program moves
the variable bef or e_ptr along the list until it finds the proper place for the insert.
The variableaft er _ptr is set to point to the element that follows the insertion. The
new element will be inserted between these elements.

337

—_
FlyrHeart.com

TEAM FLY PRESENTS

Example 17-3. list/list.pl

void enter(struct item*first_ptr, const int val ue)

{
struct item*before_ptr; /* Itembefore this one */
struct item*after_ptr; /* [temafter this one */
struct item*new_itemptr; /* Itemto add */

/* Create newitemto add to the list */

before_ptr = first_ptr; /* Start at the beginning */
after_ptr = before_ptr->next_ptr;
while (1) {
if (after_ptr == NULL)
br eak;

if (after_ptr->value >= val ue)
br eak;

/* Advance the pointers */
after_ptr = after_ptr->next_ptr;
before_ptr = before_ptr->next_ptr;

In Figure 17-6, we have positioned bef or e_ptr so that it points to the element
before the insert point. The variableaft er _ptr points to the element after the
insert. In other words, we are going to put our new element in betweenbef ore_ptr
and after_ptr.

Now that we have located the proper insert point, all we have to do is create the new
element and link it in:

[File: list/list.p2]
new_ itemptr = malloc(sizeof(struct item);
new_item ptr->val ue = val ue; /* Set value of item?*/

before_ptr->next_ptr = new_itemptr;
new_item ptr->next_ptr = after_ptr;

Our new element must now be linked in. The first link we make is between the
element pointed to by bef ore_ptr (number 45) and our new element,

new_i tem ptr (number 53). This is done with the statement:

338

—
FlyrHeart.com 4

TEAM FLY PRESENTS

before_ptr->next_ptr = new_itemptr;

Figure 17-6. Ordered list insert

before_ptr points o the slements before the insertion polnt, after_ptxr poinis [o the
element after the inserficn point.

head_pir E‘mn pir E‘IE:‘.‘I pitr E g
Jl ';

- =
-
-
S
—
P
-
e

before_ptr after_ptr

O Creats new slement.

next_ptr U

53

newi_ptr
© Make the next_ptr of the new element point to the same element as after_ptr.

@ Link the element pointed to by before_ptx o our new slement by changing

bafore_ptr—:next_ptr.
s [(A

head_ptr

before_ptr after_ptr
rgw_pkr

Next, we must link the new element, new_i t em ptr (number 53), to the element
pointed to by after _ptr (number 89). This is accomplished with the code:

new_item ptr->next_ptr = after_ptr;

17.6 Double-Linked Lists

A double-linked list contains two links. One link points forward to the next element;
the other points backward to the previous element.

338

' ~ -
FlyrHeart.com

TEAM FLY PRESENTS

The structure for a double -linked list is:

struct double_list {
i nt data; /* data item™*/
struct double_list *next_ptr; [* forward |ink */
struct double_list *previous_ptr;/* backward Iink */

}s

A double-linked list is illustrated in Figure 17-7. This is very similar to the

single -linked list, except that there are two links: one forward and one backward.
The four steps required to insert a new element into the list are illustrated later in
Figure 17-8, Figure 179, Figure 17-10, and Figure 17-11.

Figure 17-7. Double-linked list

haad_ptr E‘mﬂ_ptr Enuut_ptr Enm_ptr

. B - W -
. l ‘ 1]) “:
@ } previoug_ptr previoug_ptr previouf_ptr tall_ptr

[, &

insert_ptr

The code to insert a new element in this list is:

voi d doubl e_enter(struct double_list *head_ptr, int item

{
struct list *insert_ptr; /* insert before this elenment */
/*
* Warning: This routine does not take
* care of the case in which the elenment is

* inserted at the head of the Iist
* or the end of the |ist
*/
insert_ptr = head_ptr;
while (1) {
insert_ptr = insert_ptr->next;

/* have we reached the end */
if (insert_ptr == NULL)
br eak;
/* have we reached the right place */

340

—~_
FlyrHeart.com

TEAM FLY PRESENTS

if (item>= insert_ptr->data)

br eak;
}
Let's examine this in detail. First we set up the forward link of our new element with
the code:
new_item ptr->next_ptr = insert_ptr;

This is illustrated in Figure 17-8.

Figure 17-8. Double-linked list insert, part 1

new_ptr-»next_ptr = insert ptr;
next_pir
next_pir
Previous_ptr
inseri_pir
previous_pir
new_pir

Now we need to take care the backward pointer (new_i t em pt r- >previ ous_ptr).
This is accomplished with the statement:

new_item ptr->previous_ptr = insert_ptr->previous_ptr;

Note that unlike the single -linked list, we have no bef ore_ptr to point to the

element in front of the insert point. Instead, we use the value of
insert_ptr->previous_ptr to point to this element. Our linked list now looks like

Figure 17-9.

341

—~_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 17-9. Double-linked list insert, part 2

new ptr->*previous ptr = insert ptr-:preavious_ptr;
next_pir
next_ptr
PrEvious_pir
)
3 inserf_pir
prEvious_ptr
new_plr

We've set up the proper links in our new element; however, the links of the old
elements (numbers 11 and 36) still need to be adjusted. We first adjust the field
next _ptr in element 11. Getting to this element requires a little work. We start at
i nsert_ptr (element 36) and follow the linkpr evi ous_ptr toelement11. We want
to change the field next _ptr in this element. The code for this is:

i nsert_ptr->previous_ptr->next_ptr = new_ptr;

Our new link is illustrated in Figure 17-10.

342

—_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 17-10. Double-linked list insert, part 3

insert ptr-:previous ptr->next ptr = new ptr;
next_pfir
next_ptr
previous_pir
insart_pir
prEvious_ptr
new_plr

We have three out of four links done. The final link is previ ous_ptr of element 36.
This is set with code:

insert_ptr->previous_ptr = new_itemptr;

The final version of our double link is illustrated in Figure 17-11.

343

—~_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 17-11. Double-linked list insert, part 4

insert ptr-:previous ptr = new ptr;
next_pir
next_ptr
inserf_pir
prEvious_ptr
previcus_ptr

ra

new_plr

17.7 Trees

Suppose we want to create an alphabetized list of the words that appear in a file. We
could use a linked list; however, searching a linked list is slow because we must

check each element until we find the correct insertion point. By using a data type
called atree, we can cut the number of compares down tremendously. A binary tree
structure is shown in Figure 17-12.

344

—_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 17-12. Tree

lemion | -
left l . ,
/ ‘.vght
gl “pear |
%) YL{J]’)L]'Efr'/ \:ight
__!J:‘SPE ,ur'j‘irlue pilum
b3 @O 2]

Each box is called anode of the tree. The box at the top is theroot, and the boxes
at the bottom are the leaves. Each node contains two pointers, a left pointer and a
right pointer, that point to the left and right subtrees.

The structure for a tree is:

struct node {

char *dat a; /* word for this tree */
struct node *left; /* tree to the left */
struct node *right; /* tree to the right */

}s

Trees are often used for storing asymbol table, alist of variables used in a program.
In this chapter, we will use a tree to store a list of words and then print the list
alphabetically. The advantage of a tree over a linked list is that searching a tree
takes considerably less time.

In this example, eat node stores a single word. The left subtree stores all words
less than the current word, and the right subtree stores all the words greater than
the current word.

For example, Figure 17-13 shows how we descend the tree to look for the word
"orange." We would start at the root "lemon." Because "orange" > "lemon," we
would descend to the right link and go to "pear." Because "orange" < "pear," we
descend to the left link andwe have "orange."

345

—_
FlyrHeart.com

TEAM FLY PRESENTS

Figure 17-13. Tree search

{roat node) e £
lEf‘:// \:i ght
e TR
G \:ight]eﬂ-”/ \:ighr_
(leaf nodes) -""'.Tpax. . m_rge. g p!i’m.
oD 7] a2

Recursion is extremely useful with trees. Our rules for recursion are:

1. The function must make things simpler. This rule is satisfied by trees,
because as you descend the hierarchy there is less to search.

2. There must be some endpoint. A tree offers two endpoints, either you find a
match, or you reach a null node.

The algorithm for inserting a word in a tree is:

1. If thisis a null tree (or subtree), create a one-node tree with thisword in it.

2. If the current node contains the word, do nothing.

3. Otherwise, perform a recursive call to "insert word" to insert the word in the
left or right subtree, depending on the value of the word.

To see how this algortithm works, consider what happens when we insert the word
"fig" into the tree as shown in Figure 17-13. First, we check the word "fig" against
"lemon." "Fig" is smaller, so we go to "apple.” Because "fig" is bigger, we go to

"grape." Because "fig" is smaller than "grape," we try the left link. It isNULL, so we

create a new node. The function to enter a value into a tree is:

void enter(struct node **node, char *word)

{
int result; /* result of strcnp */
char *save_string(); /* save a string on the heap */
voi d nenory_error(); /* tell user no nore room*/
/*
* |f the current node is null, then we have reached the bottom
346

—_
FlyrHeart.com

TEAM FLY PRESENTS

* of the tree and nust create a new node
*/
if ((*node) == NULL) {

/* Allocate menory for a new node */
(*node) = mal |l oc(sizeof (struct node));
if ((*node) == NULL)

menory_error();

/* Initialize the new node */
(*node)- >l eft = NULL;
(*node)->right = NULL;
(*node)->word = save_string(word);
return;

/* Check to see where our word goes */
result = strcnp((*node) ->word, word);

/* The current node
* already contains the word,
* no entry necessary */
if (result == 0)
return;

/* The word nust be entered in the left or right subtree */
if (result < 0)

enter (& *node) ->ri ght, word);
el se

enter (& *node) ->l eft, word);

This function is passed a pointer to the root of the tree. If the root isNULL , it creates
the node. Because we are changing the value of a pointer, we must pass a pointer
to the pointer. (We pass one level of pointer because that's the variable type outside
the function; we pass the second level because we have to change it.)

17.8 Printing a Tree

Despite the complex nature of a tree structure, it is easy to print. Again, we use
recursion. The printing algorithm is:

1. For the null tree, print nothing.

347

—
FlyrHeart.com 4

TEAM FLY PRESENTS

2. Print the data that comes before this node (left tree), then print this node
and print the data that comes after this node (right tree).

The code for print _tree is:

void print_tree(struct node *top)

{
if (top == NULL)
return; /* short tree */
print_tree(top->left);
printf("%\n", top->word);
print_tree(top->right);
}

17.9 Rest of Program

Now that we have defined the data structure, all we need to complete the program
is a few more functions.

The mai n function checks for the correct number of arguments and then calls the
scanner and the pri nt _tree routine.

The scan function reads the file and breaks it into words. It uses the standard macro
i sal pha. This macro, defined in the standard header filectype.h, returns nonzero if

its argument is a letter and otherwise. The macro is defined in the standard include
file ctype.h. After a word is found, the function ent er is called to put it in the tree.

save_string create s the space for a string on the heap, then returns the pointer to
it.

menory_error is called if anmal | oc fails. This program handles the outof-memory
problem by writing an error message and quitting.

Example 17-4 is a listing of words.c.

Example 17-4. words/words.c

[File: words/words. c]

/**

* words -- Scan a file and print out a |ist of words *
* in ASA | order. *
* *
* Usage: *
* words <file> *
348

—

FlyrHeart.com 4

TEAM FLY PRESENTS

**/

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

struct node {

struct node *left; /* tree to the left */
struct node *right; /* tree to the right */
char *wor d; /* word for this tree */

}s

/* the top of the tree */
static struct node *root = NULL

/**

* menory_error -- Wites error and di es. *

****'k**************'k*'k**********************************/

voi d nenory_error(void)

{
fprintf(stderr, "Error:Qut of nenmory\n");
exit(8);
}
/***'k****'k****************'k******************************
* save_string -- Saves a string on the heap. *
* *
* Paraneters *
* string -- String to save. *
* *
* Returns *
* poi nter to malloc-ed section of menory with *
* the string copiedintoit. *

**/
char *save_string(char *string)

{

char *new_string; /* where we are going to put string */

new string = malloc((unsigned) (strlen(string) + 1));

if (new_string == NULL)
menory_error();

strcpy(new_string, string);

348

—_
FlyrHeart.com

TEAM FLY PRESENTS

return (new_string);

/****************~k***************************************
* enter -- Enters a word into the tree. *

* *

* Paraneters *

* node -- Current node we are | ooking at. *

* word -- Word to enter. *

****'k***************************'k*'k*********************/

voi d enter(struct node **node, char *word)
{

int result; /* result of strcnmp */

char *save_string(char *); /* save a string on the heap */

/*

*

If the current node is null, we have reached the bottom

* of the tree and nust create a new node

*/
if ((*node) == NULL) {

/* Allocate nmenory for a new node */
(*node) = mall oc(sizeof (struct node));
if ((*node) == NULL)

menory_error();

/* Initialize the new node */
(*node)- >l eft = NULL;
(*node)->right = NULL;
(*node)->word = save_string(word);
return;

}

/* Check to see where the word goes */

result = strcnp((*node) ->word, word);

/* The current node al ready contains the word, no entry necessary */
if (result == 0)
return;

/* The word rmust be entered in the left or right subtree */
if (result < 0)

ent er (& *node) ->ri ght, word);
el se

enter (& *node) ->l eft, word);

350

—_
FlyrHeart.com

TEAM FLY PRESENTS

}
/

EE R I I R R R R O I I O S R O I R R I I I O O I I S R I I S I I O I R S
* scan -- Scans the file for words. *

* *

* Par anmet ers *

* name -- Nanme of the file to scan. *

**/

voi d scan(char *name)

{

char word[100]; /* word we are working on */
int index; /* index into the word */

int ch; /* current character */

FILE *in_file; [* input file */

in_file = fopen(nanme, "r");
if (in_file == NULL) {
fprintf(stderr, "Error:Unable to open %\n", nane);

exit(8);
}
while (1) {
/* scan past the whitespace */
while (1) {
ch = fgetc(in_file);
if (isalpha(ch) || (ch == EOF))
br eak;
}
if (ch == EOF)
br eak;
word[0] = ch;
for (index = 1; index < sizeof(word); ++index) {
ch = fgetc(in_file);
if (!isal pha(ch))
br eak;
wor d[i ndex] = ch;
}
/* put a null on the end */
word[index] ="'\0";
enter (& oot, word);
}

fclose(in_file);

351

—_
FlyrHeart.com

TEAM FLY PRESENTS

}

/***'k****'k****************'k******************************

* print_tree -- Prints out the words in a tree. *
* *

* Paraneters *

* top -- The root of the tree to print. *

**/

void print_tree(struct node *top)
{
if (top == NULL)
return; /* short tree */

print_tree(top->left);
printf("%\n", top->word);
print_tree(top->right);

int main(int argc, char *argv[])

if (argc '=2) {
fprintf(stderr, "Error: Wong nunber of paraneters\n");
fprintf(stderr, " on the conmand |ine\n");
fprintf(stderr, "Usage is:\n");
fprintf(stderr, " words "file'\'n");
exit(8);

}

scan(argv[1]);

print_tree(root);

return (0);

Question 17-2: | once made a program that read the dictionary into memory using
a tree structure, and then used the structure in a program that searched for
misspelled words. Although trees are supposed to be fast, this program was so slow
that you would think I used a linked list. Why?

Hint: Graphically construct a tree using the words "able," "baker," "cook," "delta,"
and "easy," and look at the result. (Click here for the answer Section 17.11)

17.10 Data Structures for a Chess Program

One of the classic problems in artificial intelligene is the game of chess. As this
book goes to press, the Grandmaster who beat the world's best chess-playing
computer last year has lost to the computer this year (1997).

352

—
FlyrHeart.com 4

TEAM FLY PRESENTS

We are going to design a data structure for a chess-playing program. In chess, you
have several possible moves that you can make. Your opponent has many
responses to which you have many answers, and so on, back and forth, for several
levels of moves.

Our data structure is beginning to look like a tree. This structure is not a binary tree
because we have more than two branches for each node, as shown inFigure 17-14.

Figure 17-14. Chess tree

Your 15t move

11

Opponent’s 15t move

'll
)

tormimon - Sl o

55 gobbd Jobbb

We are tempted to use the following data structure:

struct chess {
struct board board; /* Current board position */
struct next {
struct nove; /* Qur next nove */
struct *chess_ptr; /* Pointer to the resulting position */
} next [MAX_MOVES] ;
b

The problem is that the number of moves from any given position can vary
dramatically. For example, in the beginning you have lots of pieces running
around.? Things like rooks, queens, and bishops can move any number of squares
in a straight line. When you reach the end game (in an evenly matched game), each
side probably has only a few pawns and one major piece. The number of possible
moves has been greatly reduced.

PITrivia question: What are the 21 moves that you can make in chess from the starting position? You can move
each pawn up one (8 moves) or two (8 more), and the knights can move out to the left and right (4 more:

8+8+4=20). What's the 21st move?

353

—_
FlyrHeart.com

TEAM FLY PRESENTS

We want to be as efficient in our storage as possible, because a chess program will
stress the limits of our machine. We can reduce our storage requirements by
changing the next-move array into a linked list. Our resulting structure is:

struct next {

struct nove this_node; /* Qur next nove */
struct *chess_ptr; /* Pointer to the resulting position */
s
struct chess {
struct board board; /* Current board position */
struct next *list_ptr; /* List of noves we can nake fromhere */
struct nove this_nove; /* The nove we are maki ng */

}s

This is shown graphically in Figure 17-15.

Figure 17-15. Revised chess structure

Your 15t move

Opponent’s 15t move

o 1 -

Your 2nd move

\
06668 96068 09666 596668

The new version adds a little complexity, but saves a great deal of storage. In the
first version, we must allocate storage for pointers to all possible moves. If we have
only a few possible moves, we waste a lot of storage for pointers to unused moves.
Using a linked list, we allocate storage on an on-demand basis. So if there are 30
possible moves, o ur list is 30 long; but if there are only 3 possible moves, our list is
3 long. The list grows only as needed, resulting in a more efficient use of storage.

17.11 Answers

Answer 17-1: The problem is with the statement:

while ((strcnp(current_ptr->data, name) != 0) &&
(current_ptr !'= NULL))

354

—_
FlyrHeart.com

TEAM FLY PRESENTS

current _ptr->dat a is checked before we check to see ifcurrent _ptr is a valid
pointer (1= NULL). If the pointer isNULL, we can easily check a random memory
location that could contain anything. The solution is to check current _ptr before
checking what it is pointing to:

while (current_ptr != NULL) {
if (strcnp(current_ptr->data, nanme) == 0)
br eak;

Answer 17-2: The problem was that because the first word in the dictionary was
the smallest, every other word used the right-hand link. In fact, because the entire
list was ordered, only the right-hand link was used. Although this structure was
defined as a tree structure, the result was a linked list, as shown inFigure 17-16.
Some of the more advanced books on data structures, like Niklaus Wirth's book
Algorithms + Data Structures = Programs, discuss ways of preventing this error by
balancing a binary tree.

Figure 17-16. An imbalanced tree

able
I
<
S
baker
|
I‘/
] kY
cook
5 |
a "y
delta
|
{,
& Y
Basy
E |
¥ "
@ @

Trivia Answer: You give up. That's right; the 21st move is to resign.

17.12 Programming Exercises

Exercise 17-1: Write a cross-reference program.

355

—_
FlyrHeart.com

TEAM FLY PRESENTS

Exercise 17-2: Write a function to delete an element of a linked list.

Exercise 17-3: Write a function to delete an element of a double -linked list.

Exercise 17-4: Write a function to delete an element of a tree.

356

—_
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 18. Modular Programming

Many hands make light work.
—John Heywood

All along, we have been dealing with small programs. As programs grow larger and
larger, it is more desirable to split them into sections or modules. C allows programs
to be split into multiple files, compiled separately, and then combined (linked) to
form a single program.

In this chapter, we will go through a programming example, discussing the C
techniques needed to create good modules. You will be shown how to use make to
put these modules together to form a pro gram.

18.1 Modules

A module is a collection of functions that perform related tasks. For example, a
module could exist to handle database functions such as | ookup, ent er, and sort .

Another module could handle complex numbers, and so on.

Also, as programming problems get bigger, more and more programmers are
needed to finish them. An efficient way of splitting up a large project is to assign
each programmer a different module. In this manner, each programmer only
worries about the internal details of a particular module.

In this chapter, we will discuss a module to handleinfinite arrays. The functions in
this package allow the user to store data into an array without worrying about its
size. The infinite array grows as needed (limited only by the amount of memory in
the computer). The array will be used to store data for a histogram, but can be used
to store things like line numbers from a cross-reference program or other types of
data.

18.2 Public and Private

Modules are divided into two parts: public and private. The public part tells the user
how to call the functions in the module. It contains the definition of data structures
and functions that are to be used outside the module. These definitions are putin a
header file, and the file must be includedin any program that depends on that
module. In our infinite array example, we have put the public declarations in the file
ia.h, which we will look at shortly. Figure 18-1 illustrates the relationship between
the various parts of the infinite array package.

357

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 18-1. Definition, implementation, and use of

the infinite array

Public | 2.5

Definitions imported throwgh - .
finelude "ia.h” directive ~—| Definition of ia

e

i

hist.c)},f

/ Private | fa.c

Implemenianion of ia

Use ofia f#——

Anything that is internal to the module is private. Everything that is not directly
usable by the outside world should be kept private.

One of the advantages of C++ over C is that you can explicitly declare what is public
and what is private, and prevent unauthorized modification of private data.

18.3 The extern Modifier

The extern modifier is used to indicate that a variable or function is defined outside
the current file. For example, look at the contents of two files, main.c and count.c.

File main.c

#i ncl ude <stdio. h>
/* nunber of tinmes through the [oop */
extern int counter;

/* routine to increnent the counter */

extern void inc_counter(void);

mai n()

{

int i ndex; /* loop index */

for (index = 0; index < 10; index++)
inc_counter();
printf("Counter is %\n", counter);

358

—_
FlyrHeart.com

TEAM FLY PRESENTS

return (0);

File count.c

/* number of times through the |oop */

int counter = 0;

/[* trivial exanple */

voi d i nc_counter(void)
{

++counter;
}

In this example, the function nai n uses the variable count er. The extern
declaration is used by main.c to indicate that count er is declared outside the
function; in this case, counter is defined in the file counter.c. The modifierextern s
not used in counter.c because it contains the "real” declaration of the variable.

There are three modifiers that can be used to indicate where a variable is defined, as
shown in Table 18-1.

Table18-1. Modifiers

Modifier Meaning
extern |Variable/function is defined in another file.

Variable/function is defined in this file (public) and can be used in other

none .
files.

static |Variable/function is local to this file (private).

Notice that the word static has two meanings. For data defined globally, static
means "private to this file." For data defined inside a function, it means "variable is
allocated from static memory (instead of the temporary stack)."

C is very liberal in its use of the rules for the static and extern modifiers. You can
declare a variable extern at the beginning of a program and later define it with no
modifier:

extern sam
int sam= 1; /* this is legal */

358

—
FlyrHeart.com 4

TEAM FLY PRESENTS

This method is useful when you have all of your external variables defined in a
header file. The program includes the header file (and defines the variables as
extern), then defines the variable for real.

Another problem concerns declaring a variable in two different files:

File main.c

i nt flag = 0; /* flag is of f */
mai n()

{

printf("Flag is %\ n", flag);

}

File sub.c

i nt flag = 1; /[* flag is on */

What happens in this case?

1. flag will be initialized to because nai n. c is loaded first.

2. fl agwill be initialized to 1 because the entry in sub.c will overwrite the one
in main.c.

3. The compiler will very carefully analyze both programs, then pick out the
value that is most likely to be wrong.

There is only one global variable f | ag, and it will be initialized to either 1 or
depending on the whims of the compiler. Some of the more advanced compilers will
issue an error message when a global is declared twice, but most compilers will
silently ignore this error. It is entirely possible for the program nmai n to print out:

flag is 1

even though we initialized flag to and did not change it before printing. To avoid the
problem of hidden initializations, use the keyword static to limit the scope of each
variable to the file in which it is declared.

If we had written:

File main.c

static int flag = 0; [* flag is off */
mai n()

{
printf("Flag is %\n", flag);

360

—
FlyrHeart.com 4

TEAM FLY PRESENTS

File sub.c
static int flag = 1; /* flag is on */

then fl ag in main.c is an entirely different variable from f | ag in sub.c. However,
you should still give the variables different names to avoid confusion.

18.4 Headers

Information that is shared between modules should be put in a header file. By
convention, all header filenames end with.h. In our infinite array example, we use
the file ia.h.

The header should contain all the public information, such as:

A comment section describing clearly what the module does and what is
available to the user

Common constants

Common structures

Prototypes of all the public functions

extern declarations for public variables

In our infinite array example, over half of the fileia.h is devo ted to comments. This
level of comment is not excessive; the real guts of the coding are hidden in the
program fileia.c. Theia.h file serves both as a program file and as documentation to
the outside world.

Notice there is no mention in the ia.h comments about how the infinite array is
implemented. At this level, we don't care about how something is done; we just
want to know what functions are available. Look through the file ia.h (see Example
18-1).

Example 18-1. File ia.h

/**

* Definitions for the infinite array (ia) package. *

* *

* An infinite array is an array whose size can grow *

* as needed. Adding nore elenments to the array *

* will just cause it to grow *

K o o e e e e e e e e e e e e e e e e m e — - - *

* struct infinite_array *

* Used to hold the information for an infinite *
361

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* o *
* Routines *

* *

* ia_init -- Initializes the array. *

* ia_store -- Stores an elenment in the array. *

* ia_get -- Gets an elenment fromthe array. *

**/

/* nunber of elements to store in each cell of the infinite array */
#define BLOCK_SI ZE 10

struct infinite_array {
/* the data for this block */
fl oat dat a[BLOCK_SI ZF] ;

/* pointer to the next array */
struct infinite_array *next;

}s

/**

* ja_init -- Initializes the infinite array. *
* *

* Paraneters *

* array_ptr -- The array to initialize. *

**/

#define ia_init(array_ptr) {(array_ptr)->next = NULL;}

/**

* ja_get -- Gets an elenment froman infinite array. *
* *

* Paraneters *

* array_ptr -- Pointer to the array to use. *
* index -- Index into the array. *

* *

* Returns *

* The val ue of the el enent. *

* *

* Note: You can get an el ement that *
* has not previously been stored. The val ue *
* of any uninitialized elenent is zero. *

**/

extern int ia_get(struct infinite_array *array_ptr, int index);

362

—
FlyrHeart.com 4

TEAM FLY PRESENTS

/**

* ja_store -- Store an elenent in an infinite array. *
* *

* Paraneters *

* array_ptr -- Pointer to the array to use. *
* index -- index into the array. *

* store_data -- Data to store. *

**/

extern void ia_store(struct infinite_array * array_ptr,
int index, int store_data);

A few things should be noted about this file. Three functions are documented:
ia_get,ia_store,andia_init.ia_init isn'treally afunction, butis a macro. For
the most part, people using this module do not need to know if a function is really a
function or only a macro.

The macro is bracketed in curly braces ({}), so it will not cause syntax problems
when used in something like anif/else sequence. The code:

if (flag)
ia_init(&array);
el se

ia_store(&array, 0, 1.23);

will work as expected.

Everything in the file is a constant definition, a data structure definition, or an
external definition. No code or storage is defined.

18.5 The Body of the Module

The body of the module contains all the functions and data for that module. Private
functions that will not be called from outside the module should be declaredstatic.
Variables declared outside of a function that are not used outside the module are

declared static.

18.6 A Program to Use Infinite Arrays

The program uses a simple linked list to store the elements of the array, as shown
in Figure 18-2. A linked list can grow longer as needed (until we run out of room).
Each list element or bucket can store 10 numbers. To find element 38, the program
starts at the beginning, skips past the first three buckets, then extracts element 8
from the data in the current bucket.

363

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 18-2. Infinite array structure

D D HIET 0] m
1 1 1 11 1 21
2 2 2 i2 I
3 3 | 1 I
4 4 4 14 4 24
5 5 5| s S
B B B 16 -] o
7 7 7 7 | =
B B CRIED E
5 5 3| 1 a | =
next |} next |l next |y
——\ %
elemenis 0-9 elemenis 10-19 elemenis 20-29

The code for the moduleia.c is shown as Example 18-2.

Example 18-2. a/Zia.c

/******************'k*************************************

* infinite-array -- routines to handle infinite arrays *
* *

* An infinite array is an array that grows as needed. *
* There is no index too large for an infinite array *

* (unl ess we run out of nenory). *
**/
#i ncl ude "ia.h" /* get common definitions */
#i ncl ude <menory. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

/**

* ja_locate -- Gets the location of an infinite array *

* el enent . *

* *

* Paraneters *

* array_ptr -- Pointer to the array to use. *

* index -- Index into the array. *

* current_index -- Pointer to the index into this *

* bucket (returned). *

* *

* Returns *

* pointer to the current bucket *
364

w
FlyrHeart.com

TEAM FLY PRESENTS

**/

static struct infinite_array *ia_l ocate(
struct infinite_array *array_ptr, int index,
int *current _index_ptr)

/* pointer to the current bucket */
struct infinite_array *current_ptr;

current_ptr = array_ptr
*current _i ndex_ptr = index;

whil e (*current_i ndex_ptr >= BLOCK_SI ZE) ({
if (current_ptr->next == NULL) {

current _ptr->next = malloc(sizeof(struct infinite_array));

if (current_ptr->next == NULL) {
fprintf(stderr, "Error: Qut of menory\n")
exit(8);

}

menset (current _ptr->next, '\0', sizeof(struct

infinite_array));

}
current_ptr = current_ptr->next;
*current _i ndex_ptr -= BLOCK_Sl ZE;
return (current_ptr);
}
/**
* ja_store -- Stores an elenment into an infinite array.*
* *

* Paraneters

* array_ptr -- Pointer to the array to use. *
* index -- Index into the array. *
* store_data -- Data to store. *

**/

void ia_store(struct infinite_array * array_ptr,
int index, int store_data)

/* pointer to the current bucket */
struct infinite_array *current_ptr;
i nt current _i ndex; /* index into the current bucket */

365

—_
FlyrHeart.com

TEAM FLY PRESENTS

current _ptr = ia_locate(array_ptr, index, ¤t_index);

current _ptr->datafcurrent _i ndex] = store_data;
/**
* ja_get -- Gets an elenment froman infinite array. *
* *
* Paraneters *
* array_ptr -- Pointer to the array to use. *
* index -- Index into the array. *
* *
* Returns *
* t he val ue of the el enent *
* *
* Note: You can get an el enment that *
* has not previously been stored. The val ue *
* of any uninitialized elenent is zero. *

**/

int ia_get(struct infinite_array *array_ptr, int index)

{
/* pointer to the current bucket */
struct infinite_array *current_ptr;
i nt current _i ndex; /* index into the current bucket */
current _ptr = ia_locate(array_ptr, index, ¤t_index);
return (current_ptr->datalcurrent_index]);

}

This program uses an internal routine, i a_| ocat e. Because this routine is not used
outside the module, it is defined as static. The routine is also not put in the header
ia.h.

18.7 The Makefile for Multiple Files

The program nmeke is designed to aid the programmer in compiling and linking
programs. Beforenmake, the user had to explicitly type in compile commands for
every change in the program. For example:

%cc -g -ohello hello.c

As programs grow, the number of commands needed to create them grows. Typing
a series of 10 or 20 commands can be tiresome and error prone, so programmers
started writing shell scripts (or .BAT files on MS-DOS.) All the programmer had to
type was a script name such asdo-i t, and the computer would compile everything.

366

—
FlyrHeart.com 4

TEAM FLY PRESENTS

This method can be overkill, however, because all the files are recompiled whether
or not they need to be.

As the number of files in a project grows, so does the time required for a recompile.
Making changes in one small file, starting the compilation, and then having to wait
until the next day while the computer executes several hundred compile commands
can be frustrating, especially when only one compile was really needed.

The programmake was created to make compilation dependent upon whether a file
has been updated since the last compilation. The program allows you to specify the
dependencies of the program file and the source file, and the command that
generates the program from its source.

The file Makefile (case sensitivity is important in UNIX) contains the rules used by
make to decide how to build the program.

The Makefile contains the following sections:

Comments
Macros
Explicit rules
Default rules

Any line beginning with a hash mark (#) is a comment.

A macro has the format:

nane = data

where name is any valid identifier and data is the text that will be substituted
whenever make sees $(name).

For example:

#

Very sinple Makefile
#

MACRO=Doi ng Al |

all:
echo $(MACRO)

Explicit rules tellmake what commands are needed to create the program. They can
take several forms. The most common of these is:

target: source [source2] [source3]
conmmand

367

—
FlyrHeart.com 4

TEAM FLY PRESENTS

[command]
[command]

where target is the name of a file to create. It is "made" or created out of the source
file source. If the target is created out of several files, they are all listed. This list

should include any header files included by the source file. The commandthat
generates the target is specified on the next line. Sometimes you need more than
one command to create the target. Commands are listed one per line. Each is
indented by a tab.

For example , the rule:

hello: hello.c
cc -g -ohello hello.c

tells make to create the file hello from the file hello.c using the command:
cc -g -ohello hello.c

make will create helloonly if necessary. The files used in the creation of hello,
arranged in chronological order (by modification times), are shown in Table 18-2.

Table18-2. Sequencefor Building Executable File

UNIX MS-DOS/Windows

hello.c HELLO.C (oldest)
hello.o HELLO.OBJ (old)
hello HELLO.EXE (newest)

If the programmer changes the source filehello.c, its modification time will be out of
date with respect to the other files. make will recognize that and re-create the other
files.

Another form of the explicit rule is:

sour ce:
command
[comand]

In this case, the commands are unconditionally executed each timemake is run. If
the commands are omitted from an explicit rule, make will use a set of built-in rules
to determine what command to e xecute. For example, the rule:

368

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

hist.o: ia.h hist.c

tells make to create hist.o from hist.c andia.h, using the standard suffix rule for
making file.o from file.c. This rule is:

$(CC) $(CFLAGS) -c file.c

(meke predefines the macros $(CC) and $(CFLAGS) .)

We are going to create a main program hist.c that calls functions in the moduleia.c.
Both files include the header ia.h, so they depend on it. The UNIX Makefile that
creates the program hist from hist.c and ia.c is:

CFLAGS = -g
OBJ=ia.o0 hist.o

all: hist

hi st: $(OBJ)
$(CC) $(CFLAGS) -0 hist $(0BJ)

hist.o:ia.h hist.c

ia.oia.hia.c

The macroOBJ is a list of all the object (.0) files. The lines:

hist: $(0BJ)
$(CC) $(CFLAGS) -0 hist $(0BJ)

tell make to createhist from the object files. If any of the object files are out of date,
make will re-create them.

The line:
hist.o:hist.c ia.h

tells make to createhist.o fromia.h and hist.c. Because no command is specified, the

default is used.
The Makefile for MS-DOS, using Turbo C++, is:

#

SRCS=hist.c ia.c
OBJS=hi st. obj i a.obj
CFLAGS=-m -g -w -A

368

—
FlyrHeart.com 4

TEAM FLY PRESENTS

CC=tcc

ia: $(0BJS)
$(CC) $(CFLAGS) -ehist.exe $(0OBIS)

hist.obj: hist.c ia.h
$(CC) $(CFLAGS) -c hist.c

ia.obj: ia.c ia.h
$(CC) $(CFLAGS) -c ia.c

This file is similar to the UNIX Makefile except that the Turbo C++ nake does not
provide any default rules.

One big drawback exists withmake. It checks to see only if the files have changed,
not the rules. If you have compiled all of your program with CFLAGS=- g for
debugging and need to produce the production version (CFLAGS=- O), nake will not
recompile.

The command t ouch changes the modification date of a file. (It doesn't change the
file, it just makes the operating system think that it did.) If yout ouch a source file
such as hello.c and then run nmeke, the program will be re -created. This feature is

useful if you have changed the compile-time flags and want to force arecompilation.

make provides you with a rich set of commands for creating programs. Only a few
have been discussed here .2

m If you are going to create programs that require more than 10 or 20 source files, read the Nutshell Handbook

Managing Projects with make, by Andy Oram and Steve Talbott.

18.8 Using the Infinite Array

The histogram program, hi st , is designed to use the infinite array package. (A
histogram is a graphic representation of the frequency with which data items recur.)
It takes one file as its argument. The file contains a list of numbers from to 99. Any
number of entries can be used. The program prints a histogram showing how many
times each number appears.

A typical line of output from our program looks like:

5 (6) R Rk Ik Sk Ik S S I kA kI O

The first number (5) is the line index. In our sample data, there are six entries with

the value 5. The line of asterisks graphically represents our six entries.

370

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Some data fall out of range and are not represented in our histogram. Such data are
counted and listed at the end of the printout. Here is a sample printout:

1 (9) R R Ok R R R S
2 (15) EE I R R S S S S
3 (9) R Sk o Sk O R SRRk R
4 (19) Rk Sk Sk Sk Sk kR R ok
5 (13) Rk kR Rk I kR G O
6 (14) LSRRk Sk S R R O O R o
7 (14) ESE Rk Sk Rk S R Gk S
8 (14) LSRRk Ok S R R O A Rk R O
9 (20) KRRk Sk Sk R Rk Ok ok ik Sk ok Sk kR R R R R R R R
10 (13) Rk Sk R R R Rk kI R AR I Rk O Rk
11 (14) EE Rk S ok S O R R kS S R R o Sk o Rk Ok o o o
12 (9) R b ok S I IR b I
13 (13) R S S S S O I S S O R S R
14 (12) R Rk S ko R G Ik kS kR
15 (14) Rk S I S I SR I O S S I R
16 (16) Rk Sk Ok Sk Sk Rk kS Sk S S R R kO O kO O
17 (9) R b Sk R R R I
18 (13) EE Rk Sk Sk ok Sk Rk Sk Sk Rk O Ok Ok ok
19 (15) Rk S kR o I R AR Rk
20 (11) R S S S S O
21 (22):
R S O O O O S O R R R S O O
22 (14) Rk Sk kR Rk o o S R Gk S R
23 (9) R b S S O R T
24 (10) R R R KRk Sk ok Sk Sk Sk
25 (15) Rk R ok R R R S R R Rk O R ok S R R
26 (10) EE R S Rk Sk kS
27 (12) R Rk R b o R IR Ik R
28 (14) R S S S O S R O O I O R S
29 (15) Rk kT R SR o R G
30 (9) R b S S O O R O

104 items out of range

The program uses the library routine nenset to initialize thecount er s array. This
routine is highly efficient for setting all values of an array to 0. The line:

menset (counters, '\0', sizeof(counters));

zeroes out the entire array counters.

The si zeof (count er s) makes sure that all of the array is zeroed. Example 18-3
contains the full listing of hist.c.

371

—_
FlyrHeart.com

TEAM FLY PRESENTS

Example 18-3. iaZhist.c

/**
* hist -- Generates a histogramof an array of nunbers.*
* *

*

* Usage
* hist <file> *
* *
* \Wher e *

* file is the nane of the file to work on. *
**/

#i ncl ude "ia.h"

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <nmenory. h>

/*

* Define the number of lines in the histogram

*/

#defi ne NUMBER _OF_LI NES 30 /* Nunber of lines in the histogram*/
const int DATA MN = 1; /* Nunber of the smallest item*/
const int DATA MAX = 30; /* Number of the largest item?*/

/*

* WARNI NG The nunber of itens from DATA_M N to DATA_MAX (i ncl usive)
* nust match the nunmber of |ines.
*/

/* number of characters wi de to nake the histogram */
const int WDTH = 60;

static struct infinite_array data_array;
static int data_itemns;

int main(int argc, char *argv[])
{
/* Function to read data */
voi d read_data(const char nane[]);

/* Function to print the histogram?*/
void print_histogran(void);

if (argc '=2) {
fprintf(stderr, "Error: Wong nunber of argunments\n");
fprintf(stderr, "Usage is:\n");

372

—
FlyrHeart.com 4

TEAM FLY PRESENTS

fprintf(stderr, " hist <data-file>\n");
exit(8);

}

ia_init(&data_array);

data_items = 0;

read_data(argv[1]);
print_hi stogram();

return (0);

}
/***'k****'k****-k**
* read_data -- Reads data fromthe input file into *

* the data_array. *

* *

* Paraneters *

* nane -- The nane of the file to read. *

**/

void read_data(const char nane[])

{
char 1ine[100]; /* line frominput file */
FILE *in_file; /* input file */
i nt data; /* data frominput */

in_file = fopen(nanme, "r");
if (in_file == NULL) {
fprintf(stderr, "Error:Unable to open %\n", nanme);
exit(8);
}
while (1) {
if (fgets(line, sizeof(line), in_file) == NULL)
br eak;

if (sscanf(line, "%", &data) !'= 1) {
fprintf(stderr,
"Error: Input data not integer nunber\n");
fprintf(stderr, "Line: %", |ine);
}
ia_store(&data_array, data_itens, data);
++data_itens;
}
fclose(in_file);
}

/***'k****'k****************'k******************************

* print_histogram-- Prints the histogram output. *

373

—_
FlyrHeart.com

TEAM FLY PRESENTS

**/

void print_histogram void)

{
/* upper bound for printout */
i nt count er s[NUMBER_OF LI NES] ;
i nt

out _of _range = 0;/* nunber of itens out of bounds */
int max_count = 0;/* biggest counter */

fl oat scal e; /* scale for outputting dots */
i nt i ndex;

/* index into the data */

menset (counters, '\ 0', sizeof(counters));

for (index = 0; index < data_itens; ++index) {
int data;/* data for this point */

data = ia_get(&data_array, index);

if ((data < DATAMN) ||
++out _of _range;

el se {

(data > DATA_MAX))

++counters[data - DATA M N;

if (counters[data - DATA_MN] > max_count)

max_count = counters[data - DATA M N];

scale = ((float) max_count) / ((float) W DTH)

for (index = 0; index < NUVMBER OF_LINES; ++index) {
/* index for outputting the dots */

int char _i ndex;

i nt nunber _of _dot s; /* nunber of * to output */
printf("%@2d (%d): ", index + DATA_M N, counters[index]);

nunber _of _dots =

(int) (((float) counters[index]) / scale);
for (char_index = 0;

char i ndex < nunber_of dots;
++char _i ndex) {
printf("*");
}

printf("\n");

374

—
FlyrHeart.com 4

TEAM FLY PRESENTS

printf("%l itens out of range\n", out_of_range);

18.8.1 Makefile for UNIX Generic C

e e I #
Makefile for UNI X systens

usi ng a GNU C conpi l er.

s R e R R R #
CC=cc

CFLAGS=-g¢g

#

Conpiler flags:

-g - - Enabl e debuggi ng

ia: ia.c

$(CC) $(CFLAGS) -oiaia.c

cl ean:
rm-f ia

18.8.2 Makefile for Free Software Foundation's gcc

[File: ialmkefile.gcc]

LT LT TP #
Makefile for UNI X systens

using a GNU C conpi |l er.
T T #
CC=gcc

CFLAGS=-g -Wal| -D__USE_FI XED_PROTOTYPES__ -ansi

all: hi st

hist: hist.o ia.o
$(CC) $(CFLAGS) -0 hist hist.oia.o

hist.o: hist.c ia.h

ia.o0: ia.c ia.h

cl ean:
rm-f hist hist.oia.o

375

—
FlyrHeart.com 4

TEAM FLY PRESENTS

18.8.3 Makefile for Turbo C++

LT LT TP #
Makefil e for DOS systens

using a Turbo C++ conpil er.

e o e e oo #
CC=t cc

CFLAGS=-v -w -m
al | : hi st . exe

hi st.exe: hist.obj ia.obj ia.h
$(CC) $(CFLAGS) -ehist hist.obj ia.obj

hist.obj: hist.c ia.h
$(CC) $(CFLAGS) -c hist.c

ia.obj: ia.c ia.h
$(CC) $(CFLAGS) -c ia.c

cl ean:
del hist.exe hist.obj ia.obj

18.8.4 Makefile for Borland C++

[File: ialmakefile.bcc]

B e o e oo #
Makefil e for DOS systens

using a Borland C++ conpiler.

Fhm o m e e e eeeaaaaa #
CC=bcc

CFLAGS=-v -w -m

al |l : hi st . exe

hi st.exe: hist.obj ia.obj ia.h
$(CC) $(CFLAGS) -ehist hist.obj ia.obj

hist.obj: hist.c ia. h
$(CC) $(CFLAGS) -c hist.c

ia.obj: ia.c ia.h

376

—
FlyrHeart.com 4

TEAM FLY PRESENTS

$(CC) $(CFLAGS) -c ia.c
cl ean:
del hist. exe

del hist. obj
del ia.obj

18.8.5 Makefile for Microsoft Visual C++

[File: ialmakefile.nmsc]

R e e I I #
Makefil e for DOS systens

M crosoft Visual C++ Conpiler.
T T #
#

CC=cl

#

Fl ags

AL -- Conpile for |arge nodel

Zi -- Enabl e debugging

WL - - Turn on warni ngs

#

CFLAGS=/ AL /Zi /W
SRC=hi st.c ia.cpp
OBJ=hi st. obj ia.obj

all: hist.exe

hi st. exe: $(0BJ)
$(CO $(CFLAGS) $(0BJ)

hist.obj: ia.h hist.c
$(CC) $(CFLAGS) -c hist.c

ia.obj: ia.hia.c
$(CC) $(CFLAGS) -c ia.c

cl ean:
erase hist.exe io.0bj hist.obj

377

—
FlyrHeart.com 4

TEAM FLY PRESENTS

18.9 Dividing a Task into Modules

Unfortunately, computer programming is more of an art than a science. There are
no hard and fast rules that tell you how to divide a task into modules. Knowing what

makes a good module and what doesn't comes with experience and practice.

This section describes some general rules for module division and how they can be
applied to real-world programs. The techniques described here have worked well for
me. You should use whatever works for you.

Information is a key part of any program. The key to any program is deciding what
information is being used and what processing you want to perform on it.
Information flow should be analyzed before the design begins.

Modules should be designed to minimize the amount of information that has to pass
between them. If you look at the organization of an army, you'll see that it is divided
up into modules. There is the infantry, artillery, tank corps, and so on. The amount
of information that passes between these modules is minimized. For example, an

infantry sergeant who wants the artillery to bombard an enemy position calls u p the
artillery command and says, "There's a pillbox at location Y-94. Get rid of it."

The artillery commander handles all the details of deciding which battery is to be
used, how much fire power to allocate based on the requirements of other fire
missions, keeping the guns supplied, and many more details 2

PlThisis a very general diagram of the chain of command for an ideal army. The system used by the United

States Army is more complex and so highly classified that even the army commanders don't know how it works.

Programs should be organized in the same way. Information hiding is key to good
programming. A module should make public only the minimum number of functions
and data needed to do the job. The smaller the interface, the simpler the interface.
The simpler the interface, the easier it is to use. Also, a simple interface is less risky
and less error prone than a complex one.

Small, simple interfaces are also easier to design, test, and maintain. Data hiding
and good interface design are key to making good modules.

18.10 Module Division Example: Text Editor

You are already familiar with using atext editor. It is a program that allows the user
to display and change text files. Most editors are display oriented and continually
display about 25 lines of the current file on the screen. The text editor must also
interpret commands that are typed in by the user. This information must be parsed

378

—
FlyrHeart.com 4

TEAM FLY PRESENTS

so that the computer can understand it and act accordingly. The individual
commands are small and perform similar functions ("delete line" is very much like
"delete character™). Imposing a standard structure on the command execution
modules improves readability and reliability.

The different modules that form a text editor are illustrated in Figure 18-3.

Figure 18-3. Text editor modules

Complex user
commands

Command Decoder _—TT ;

File Handler

Display Module

Minimal communication exists between the modules. The display manager needs to
know only two things: where the cursor is and what the file currently looks like. All
the file handler needs to do is read the file, write the file, and keep track of changes.
Even the work involved in making changes can be minimized. All editing commands,
no matter how complex, can be broken down into a series of inserts and deletes.
The command module must take complex usercommands and turn them into
simple inserts and deletes that the file handler can process.

The information passing between the modules is minimal. In fact, no information
passes between the command decoder and the display manager.

A word processor is justa fancy text editor. Where a simple editor only has to worry
about ASCII characters (one font, one size), a word processor must be able to
handle many different sizes and shapes.

378

—_
FlyrHeart.com

TEAM FLY PRESENTS

18.11 Compiler

In a compiler, the information being processed is C code. The job of the compiler is
to transform that information from C source to machine-dependent object code.

Several stages comprise this process. First, the code is run through the
preprocessor to expand macros, take care of conditional compilation, and read
include files. Next, the processed file is passed to the first stage of the compiler, the
lexical analyzer.

The lexical analyzer takes as its input a stream of characters and returns a series of
tokens. A token is a word or operator. For example, let's look at the English
command:

Open the door.

There are 14 characters in this command. Lexical analysis would recognize three
words and a period. These tokens are then passed to the parser, where they are
assembled into sentences. At this stage, a symbol table is generated so that the
parser can have some idea of what variables are being used by the program.

Now the compiler knows what the program is supposed to do. The optimizer looks at

the instructions and tries to figure out how to make them more efficient. This step
is optional and is omitted unless the - Oflag is specified on the command line.

The code generator turns the high-level statements into machine-specific assembly
code. In assembly language, each assembly language statement corresponds to
one machine instruction. The assembler turns assembly language into binary code
that can be executed by the machine.

The general information flow of a compiler is shown in Figure 18-4.

380

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Figure 18-4. Compiler modules

include files
e
Preprocessor -
charactars
Lexical Analyzer
Farser
Optimizer
Code Generator
- w L2
£ & g, assembly code
Assembler N ya
I binary coda
\)

One of the contributing factors to C popularity is the ease with which a C compiler
can be created for a new machine. The Free Software Foundation distributes the
source to a C compiler (gcc). Because the source is written in modular fashion, you
can port it to a new machine by changing the code generator and writing a new
assembler. Both of these are relatively simple tasks (see the quote at the beginning

of Chapter 7).

Lexical analysis and parsing are very common and used in a wide variety of
programs. The utility | ex generates the lexical analyzer module for a program,
given a description of the tokens used by the program. Another utility,yacc, can be

used to generate the parser module &

Bleor descriptions of these programs, see the Nutshell Handbooklex & yacc, by John Levine, Tony Mason, and

Doug Brown.

381

FlyrHeart.com

TEAM FLY PRESENTS

18.12 Spreadsheet

A simple spreadsheet takes a matrix of numbers and equations and displays the
results on the screen. This program manages equations and data.

The core of a spreadsheet is its set of equations. To change the equations into
numbers, we need to go through lexical analysis and parsing, just like a compiler.
But unlike a compiler, we don't generate machine code; instead, we interpretthe
equations and compute the results.

These results are passed off to the display manager, which puts them on the screen.
Add to this an input module that allows the user to edit and change the equations
and you have a spreadsheet, as shown inFigure 18-5.

Figure 18-5. Spreadsheet modules

Input Module (AN
Expression Editor i
o, T
.
_— [~
Lexical Analyzer
L
e,
..//}'I - .
Parser
y &
RN
Display Manager

382

—_
FlyrHeart.com

TEAM FLY PRESENTS

18.13 Module Design Guidelines

There are no hard and fast rules when it comes to laying out the modules for a
program. Some general guidelines are:

The number of public functions in a module should be small.

The information passed between modules should be limited.
All the functions in a module should perform related jobs.

18.14 Programming Exercises

Exercise 18-1: Write a module that will handle page formatting. It should contain
the following functions:

open_file(char *name) Open print file.

defi ne_header (char *headi ng) Define heading text.
print_line(char *line) Send line to file.
page(voi d) Start new page.
close_file(void) Close printer file.

Exercise 18-2: Write a module calledsear ch_open that is given an array of

filenames, searches until it finds one file that exists, and then opens the file.

Exercise 18-3: Write a symbol table program consisting of the following functions:

voi d enter(char *nane) Enter name into symbol table.

Return 1 if name is in table;
i nt | ookup(char *name)

return O otherwise.

voi d del ete(char *name) Remove name from symbol table.

Exercise 18-4: Take thewor ds program fromChapter 17, and combine it with the
infinite array module to create a cross-reference program. (As an added bonus,
teach it about C comments and strings to create a C cross-referencer.)

383

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 19. Ancient Compilers

Almost in every kingdom the most ancient families have been at first princes'
bastards....

—Robert Burton

C has evolved over the years. In the beginning, it was something thrown together
by a couple of hackers (Brian Kernigham and Dennis Ritchie) so that they could use
a computer in the basement. Later the C compiler was refined and released as the
"Portable C Compiler."” The major advantage of this compiler was that you could port
it from machine to machine. All you had to do was write a device configuration. True,
writing one was extremely difficult, but the task was a lot easier than writing a
compiler from scratch.

The Portable C Compiler was widely distributed and soon became the most widely
used C compiler around. Because there were no official standards around at the
time, whatever the Portable C Compiler could compile became the "official”
standard.

This chapter describes that "standard.” The Portable C Compiler didn't have many of
the features that were later defined in the ANSI standard. Many of these new
features were added to make C programs safer and more reliable. Programming in
ANSI C is difficult enough. Programing in the old Portable C is like walking a
tightrope with no net—blindfolded.

19.1 K&R-Style Functions

K&R-style C compilers use an older style of declaring functions. For example, the
ANSI C function declaration:

int process(int size, float data[], char *how)
in K&R C would be:

int process(size, data, how)
int size;

float data[];

char *how,

{

/* Rest of the function */

384

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

Strictly speaking, we don't need the declaration "i nt size" because all parameter
types default to int automatically. However, we put it there because declaring
everything and not letting things default is a good idea.

19.1.1 Function Prototypes

Functions prototypes are not required in K&R-style C and can be omitted. For
example, suppose you use the functiondr awwithout declaring a prototype:

drawm(1, 8, 2, 20);
C will automatically define this function as a function that returns anintand has an

unknown number of parameters of an unknown type. Obviously, the type checking
of parameters cannot be done. So it is entirely possible to write a program like

Example 19-1.
Example 19-1. areaZarea.c

#i ncl ude <stdi o. h>

float area(w dth, height)

int width;

float height;

{
return (width * height);

}

int main()

{
float size = area(3.0, 2);
printf("Area is %\n", size);
return (0);

}

Question 19-1: What will the program inExample 19-1 output when it is run? Why?
(Click here for the answer Section 19.6)

K&R-style C does allow for function prototypes, but only the return type can be
declared. The parameter list must be (). For example:

extern float atof();

385

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Again, the () indicates that this function takes an unknown number of parameters of

an unknown type.

Question 19-2: What doesExample 19-2 print and why? (Click here for the answer

Section 19.6)

Example 19-2. ret/ret.c

#i ncl ude <stdio. h>

int main()

{
/* Get the square of a nunber */
int i = square(5);

printf("i is %\n", i);
return (0);

float squar e(s)
int s;
{

return (s * s);

Question 19-3: What doesExample 19-3 print and why? (Click here for the answer

Section 19.6)

Example 19-3. sum/sum.c

#i ncl ude <stdi o. h>

int sun(il, i2, i3)

{
int i1;
int i2;
int i3;
return (il +i2 +i3);
}
int main()
{

386

—_
FlyrHeart.com

TEAM FLY PRESENTS

printf("Sumis %\n", sum(l, 2, 3));
return (0);

Question 19-4: Example 194 prints John' =(3 instead of John Doe. Why? (Your
results may vary.) (Click here for the answer Section 19.6)

Example 19-4. scat/scat.c

#i ncl ude <stdio. h>
#i ncl ude <string. h>

char first[100]; /* First name of person */
char last[100]; /* Last nane of person */

/* First and | ast nanme conbi ned */
char full[100];

int main() {
strcpy(first, "John");
strcpy(last, "Doe");

strepy(full, first);
strcat(full, ' ");
strcat (full, last);

printf("The nane is %\ n", full);
return (0);

Prototypes are an extremely valuable diagnostic tool for the C compiler. Without
them, all sorts of errors can happen without the programmer knowing it. For this
reason, prototypes were borrowed from C++ and put in C.

19.2 Library Changes

Like the language, the library has evolved as well. The "standard" C library used to
be whatever came with the UNIX operating system. Then, the UNIX operating
system split into two families: BSD-UNIX and System V UNIX. The standard library

split as well.

When ANSI standardized C, it standardized the library as well. However, you will still
find code out there with the old library calls. The main differences are:

387

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The old K&R C had no stdlib.h or unistd.h headers.
A number of the older functions have been renamed or replaced. Table 19-1

lists the functions that have been updated.

Table19-1. K& R Versus ANSI Functions

) ANSI

K&R function . Notes
equivalent

bcopy mencpy Copies an array or structure.
bzero menset Sets memory to zero.
bcrmp mencnp Compares two sections of memory.
i ndex strchr Finds character in a string.
ri ndex strrchr Finds character starting at end of a string.
char int sprintf The K&R function returns pointer to string. The ANSI
*sprintf standard one returns number of items converted.

19.3 Missing Features

As we've said before, the C language has been evolving for some time. Some of the
earlier compilers may not have the latest features. Some of these features include:

void type

const qualifier

volatile qualifier (SeeChapter 21)

The stdlib.h header file or unistd.h header file
enum types

19.4 Free/Malloc Changes

In ANSI C, thenal | oc function is defined as:
void *mal |l oc(unsigned long int size);

Because voi d * indicates "universal pointer,” the return value of mal | oc matches

any pointer type:
struct person *person_ptr; /* Define a pointer to a person */
/[* This is legal in ANSI C */

388

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

person_ptr = mall oc(sizeof (struct person))
Because some K&R C compilers don't have a void type, nal | oc is defined as:
char *mall oc(unsigned long int size)

In order to get the compiler to stop complaining about the different pointer types,
the output of malloc must be cast to make it the proper type:

struct person *person_ptr; /* Define a pointer to a person */

/* This will generate a warning or error in K& C */
person_ptr = malloc(sizeof (struct person));

/[* This will fix that problem*/
person_ptr = (struct person *)nall oc(sizeof(struct person));

The same problem occurs with free. While ANSI C definesfree as:
int free(void *);

K&R defines it as:

int free(char *);

So you need to cast the parameter to a character pointer to avoid warnings.

19.5lint

The old C compilers lacked much of the error checking we take for granted now. This
deficiency made programming very difficult. To solve this problem, a program called
lintll was written. This program checks for common errors such as calling functions
with the wrong parameters, inconsistent function declarations, attempts to use a
variable before it is initialized, and so on.

11 For more information, see the Nutshell handbook Checking C Programs with lint, by Jan F. Darwin.

To run lint on your program, execute the command:

%lint -hpx prog.c

Option -h turns on some heuristic checking, option-p checks for possible portability
problems, and option-x checks for variables declaredextern but never used. Note:
On System V UNIX systems, the function of the-h option is reversed, so you should
omit it on these systems.

388

—
FlyrHeart.com 4

TEAM FLY PRESENTS

19.6 Answers

Answer 19-1: The problem is that our area function takes as its arguments an
integer and a floating-point number:

float area(w dth, height)

int width;
fl oat height;

But we call it witha floating-point number and an integer:
float size = area(3.0, 2);
We have our types reversed: function(float, int)—call(int, float). But C has no way

of identifying this reversal because we are using K&R-style C. The result is that
when the program passesthe parameters frommai n toar ea, they get mangled and

our outputis garbled.

Question 19-5: Example 19-5 contains our "fixed" program. We now use two
floating-point parameters, "3.0" and "2.0", but we still get the wrong answer? Why?

Example 19-5. param2/param?2.c

#i ncl ude <stdio. h>

float area(w dth, height)
float wi dth;

fl oat height;

{
return (width * height);

}

int main()

{
float size = area(3.0 * 2.0);
printf("Area is %\n", size);
return (0);

}

Answer 19-2: The result is garbled. A typical output might look like:

i is 1103626240

390

—
FlyrHeart.com 4

TEAM FLY PRESENTS

which is a little large for 52. The problem is that we have no prototype, even a
K&R-style prototype, for squar e . The result is that C assumes the default definition:

a function returning an integer that takes any number of parameters.

But the function returns a floating point number. Because we return a float at a
point at which C thinks we are receiving anint, we get garbage. The problem can be
fixed by putting a K&R-style prototype at the beginning of the program:

float square();

An even better solution is to turn this program into ANSI C by adding a real
prototype and fixing up the function header.

Answer 19-3: This program prints out a random number based on the sum of three
uninitialized variables.

The problem is with the function header:

int sum(il, i2, i3)

{
int i1;
int i2;
int i3;

Parameter type declaration occurs just before the first curly brace ({) of the function.
In this case, we have no braces, so the typesi 1,i 2, andi 3 default to integer.

But then we have the declaration ofi 1,i 2, andi 3 at the beginning of the function.
These declarations define local variables that have nothing to do with the
parametersi l,i 2, andi 3. But, because these variables have the same names as
the parameters, they cause the parameters to become hidden variables. These
three uninitialized variables are summed and this random result is returned to the
caller.

ANSI has outlawed this type of silliness, but many compilers still accept this code.

Answer 19-4: The function st rcat takes two strings as its arguments. In the
statementstrcat (full, ' '), the firstargument, ful | , is a string; the second, '

, is a character. Using a character instead of a string is illegal. Old style C compilers

do not type-check parameters, so this error gets by the compiler. The character

should be replaced by the string "
Answer 19-5: The problem is that we wrote:

float size = area(3.0 * 2.0);

391

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

when we should have written:

float size = area(3.0, 2.0);

The first version passes the expression "3.0 * 2.0" or "6.0" as the first parameter.
No second parameter exists. C doesn't check the number of parameters so it made
up a random value for the second parameter.

392

—_
FlyrHeart.com

TEAM FLY PRESENTS

Chapter 20. Portability Problems

Wherein | spake of most disastrous changes,

Of moving accidents by flood and field,

Of hair-breath 'scapes i' the imminent deadly breath...
—Shakespeare, on program porting [Othello, Act 1, Scene I11]

You've just completed work on your great masterpiece, a ray-tracing program that
renders complex three -dimensional shaded graphics on a Cray supercomputer
using 300MB of memory and 50GB of disk space. What do you do when someone
comes in and asks you to port this program to an IBM PC with 640K of memory and
100MB of disk space? Killing him is out; not only is it illegal, but it is considered
unprofessional. Your only choice is to whimper and start the port. During this
process, you will find that your nice, working program exhibits all sorts of strange
and mysterious problems.

C programs are supposed to be portable; however, C contains many
machine-dependent features. Also, because of the vast difference between UNIX
and MS-DOS/Windows, system deficiencies can frequently cause portability
problems with many programs.

This chapter discusses some of the problems associated with writing truly portable
programs as well as some of the traps you might encounter.

20.1 Modularity

One of the tricks to writing portable programs is to put all the nonportable code into
a separate module. For example, screen handling differs greatly on
MS-DOS/Windows and UNIX. To design a portable program, you'd have to write
machine-specific modules that update the screen.

For example, the HP-98752A terminal has a set of function keys labeled F1 to F8.
The PC terminal also has a set of function keys. The problem is that they don't send
out the same set of codes. The HP terminal sends "<esc>p<return=" for F1 and the
PC sends "<NULL>;". In this case, you would want to write aget _code routine that
gets a character (or function-key string) from the keyboard and translates function
keys. Because the translation is different for both machines, a machine-dependent
module would be needed for each one. Forthe HP machine, you would put together
the program with main.c and hp-tty.c, while for the PC you would usemain.c and
pc-tty.c.

393

FlyrHeart.com

—

>

TEAM FLY PRESENTS

20.2 Word Size

Along intis 32 bits, ashort intis 16 bits, and a normal intcan be 16 or 32 bits,
depending on the machine. This disparity can lead to some unexpected problems.

For example, the following code works on a 32-bit UNIX system, but fails when
ported to MS-DOS/Windows:

int zip;
Zip = 92126;
printf("Zip code %d\n", zip);

The problem is that on MS-DOS/Windows, zi p is only 16 bits—too small for 92126.
To fix the problem, we declare zi p as a 32-bitinteger:

long int zip;
zip = 92126;
printf("Zip code %\n", zip);

Now zi p is 32 bits and can hold 92126.

Question 20-1: Why do we still have a problem? zi p does not print correctly on a
PC. (Click here for the answer Section 20.9)

20.3 Byte Order Problem

A short intconsists of 2 bytes. Consider the number 0x1234. The 2 bytes have the
values 0x12 and 0x34. Which value is stored in the first byte? The answer is
machine dependent.

This uncertainty can cause considerable trouble when you are trying to write
portable binary files. The Motorola 68000 -series machines use one type of byte
order (ABCD), while Intel and Digital Equipment Corporation machines use another
(BADC).

One solution to the problem of portable binary files is to avoid them. Put an option
in your program to read and write ASCII files. ASCII offers the dual advantages of
being far more portable and human readable.

The disadvantage is that text files are larger. Some files may be too big for ASCII.
In that case, the magic number at the beginning of a file may be useful. Suppose the
magic number is 0x11223344 (a bad magic number, but a good example). When
the program reads the magic number, it can check against the correct number as

394

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

well as the byte swapped version (0x22114433). The program can automatically fix
the file problem:

const long int MAG C = 0x11223344L /* file identification nunber*/
const long int SWAP_MAGQ C = 0x22114433L /* magi c-nunber byte swapped */

FILE *in_file; /* file containing binary data */
| ong i nt magic; /* magi c number fromfile */

in_file = fopen("data", "rb");
fread((char *)&mgic, sizeof(magic), 1, in_file);
switch (magic) {
case MAG C
/* No problem?*/
br eak;
case SWAP_MAG C.
printf("Converting file, please wait\n");
convert _file(in_file);
br eak;
defaul t:
fprintf(stderr,"Error:Bad nmagi c nunber % x\n", magic);
exit (8);

20.4 Alignment Problem

Some computers limit the address that can be used for integers and other types of
data. For example, the 68000 series require that all integers start on a 2-byte
boundary. If you attempt to access an integer using an odd address, you will
generate an error. Some processors have no alignment rules, while some are even
more restrictive—requiring integers to be aligned on a 4-byte boundary.

Alignment restrictions are not limited to integers. Floating-point numbers and
pointers must also be aligned correctly.

C hides the alignment restrictions from you. For example, if you declare the
following structure on a 68000 series:

struct funny ({
char flag; /* type of data follow ng */
long int value; /* value of the paraneter*/

}s

395

—
FlyrHeart.com 4

TEAM FLY PRESENTS

C will allocate storage for this structure as shown on the left in Eigure 20-1.

Figure 20-1. Structure on 68000 and 8086

architectures
flag flag
value value :
| |
68000 8086

On an 8086-class machine with no alignment restrictions, this storage will be
allocated as shown on the right in Figure 20-1. The problem is that the size of the
structure changes from machine to machine. On a 68000, the structure size is 6
bytes, and on the 8086 it is 5 bytes. So if you write a binary file containing 100
records on a 68000, it will be 600 bytes long, while on an 8086, it will be only 500
bytes long. Obviously, the file is not written the same way on both machines.

One way around this problem is to use ASCII files. Aswe have said before, there are
many problems with binary files. Another solution is to explicitly declare a pad byte:

struct new funny {
char flag; /* type of data foll ow ng */
char pad; /* not used */

long int value; /* value of the parameter*/

}s

The pad character makes the field value align correctly on a 68000 machine while
making the structure the correct size on an 8086-class machine.

Using pad characters is difficult and error prone. For example, although new_f unny
is portable between machines with 1 -and 2 -byte alignment for 32-bit integers, it is
not portable to any machine with a 4-byte integer alignment such as a Sun SPARC
system.

396

—_
FlyrHeart.com

TEAM FLY PRESENTS

20.5 NULL Pointer Problem

Many programs and utilities were written using UNIX on VAX computers. On this
computer, the first byte of any program is 0. Many programs written on this

computer contain a bug—they use the null pointer as a string.
For example:

#i f ndef NULL
#define NULL ((char *)O0)
#endi f NULL

char *string;

string = NULL;
printf("String is '%'\n", string);

This code is actually an illegal use of st ri ng. Null pointers should never be

dereferenced. On the VAX, this error causes no problems. Because byte of the
program is O, st ri ng points to a null string. This result is due to luck, not design.

On a VAX, the following result is produced:
String is "'

On a Celerity computer, the first byte of the program is a 'Q'. When this program is
run on a C1200, it produces:

String is 'Q

On other computers, this type of code can generate unexpected results. Many of the
utilities ported from a VAX to a Celerity exhibited the 'Q bug.

Many of the newer compilers will now check for NULL and print:
String is (null)

This message does not mean that printing NULL is not an error. It means that the
error is so common that the compiler makers decided to give the programmer a
safety net. The idea is that when the error occurs, the program prints something
reasonable instead of crashing.

397

—
FlyrHeart.com 4

TEAM FLY PRESENTS

20.6 Filename Problems

UNIX specifies files as /root/sub/file, while MS-DOS/Windows specifies files as
\root \sub\file. When porting from UNIX to MS -DOS/Windows, filenames must be

changed. For example:

#i f ndef _ MSDOS

#incl ude <sys/stat.h> /* UNI X version of the file */
#el se __ MSDOS_

#i ncl ude <sys\stat.h> /* DOS version of the file */
#endi f _ MSDOS_

Question 20-2: The following program works on UNIX, but when we run it on
MS-DOS/Windows, we get the following message (Click here for the answer Section
20.9):

oot
ew abl e: file not found.

FILE *in_file;

#i f ndef __MSDOS__
const char NAME[]
#el se __MSDOS__

const char NAME]
#endi f __MSDOS__

"/root/ new table";

"\root\ newtable";

in_file = fopen(NAME, "r");

if (in_file == NULL) {
fprintf(stderr,"%: file not found\ n", NAME);
exit(8);

20.7 File Types

In UNIX there is only one file type. In MS -DOS/Windows there are two: text and
binary. The flags O Bl NARY and O _TEXT are used in MS -DOS/Windows to indicate file
type. These flags are not defined for UNIX.

When you port from MS-DOS/Windows to UNIX, you will need to do something
about the flags. One solution is to use the preprocessor to define them if they have
not already been defined:

398

—
FlyrHeart.com 4

TEAM FLY PRESENTS

#i f ndef O_BI NARY /* If we don't have a flag al ready */
#defi ne O_BI NARY 0O /* Define it to be a harm ess val ue */
#define O TEXT O /* Define it to be a harnl ess val ue */
#endi f /* O _BI NARY */

This method allows you to use the same opens for both UNIX and MS-DOS/Windows.

However, going the other way may present some problems. In UNIX a file is a file.
No additional flags are needed. Frequently none are supplied. However, when you
get to MS-DOS/Windows, you need the extra flags and will have to put themin.

20.8 Summary

You can write portable programs in C. However, because C runs on many different
types of machines that use different operating systems; making programs portable
is not easy. Still, if you keep portability in mind when creating the code, you can
minimize the problems.

20.9 Answers

Answer 20-1: The variable zi p is along int. Thepri ntf specification %l is for a
normal int, not along int. The correct specification is %4 d to indicate along:

printf("Zip code “dd\n", zip);

Answer 20-2: The problem is that C uses the backslash (\) as an escape character.
The character \ r is a carriage return,\ n is newline, and\'t is a tab. What we really
have for a name is:

<r et ur n>o00t <newl i ne>ew<t ab>abl e

The name should be specified as:

const char NAME[] = "\\root\\new\table";

i The #include uses a filename, not a C string. While
#s |, youmustuse double backslashes (\\) in a C string, in

4! an #include file, you use single backslashes (\). The
following two lines are both correct: const char
NAME[] = "\\root\\new\\table"; #include

"\root\new \defs.h"

398

FlyrHeart.com

—

>

TEAM FLY PRESENTS

Chapter 21. C's Dustier Corners

There be of them that have left a name behind them.
—Ecclesiasticus 44:8
This chapter describes the few remaining features of C that have not been described

in any of the previous chapters. It is titled C's Dustier Corners because these
statements are hardly ever used in real programming.

21.1 do/while

The do/while statement has the following syntax:

do {
st at ement
st at ement
} while (expression);

The program will loop, test the expression, and stop if the expression is false (0).

o This construct will always execute at least once.

s
»,
W e

do/while is not frequently used in C. Most programmers prefer to use a
while/break combination.

21.2 goto

Every sample program in this book was coded without using a singlegoto . In actual
practice, | find a goto statement useful about once every other year.

For those rare times that agoto is necessary, the correct syntax is:
goto | abel;

where label is a statement label. Statement labels follow the same naming
convention as variable names. Labeling a statement is done as follows:

400

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

| abel : statenent

For example:

for (x = 0; x < X_LIMT,; x++) {
for (y =0; vy < Y.LIMT, y++) {
if (data[x][y] == 0)
got o found;

}
printf("Not found\n");

exit(8);

found:

printf("Found at (%, %)\ n", x, y);

Question 21-1: Why does Example 21-1 not print an error message when an

incorrect command is entered?

Hint: We put this in the goto section. (Click here for the answer Section 21.6)

Example 21-1. def/def.c

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

int main()
{

char line[10];

while (1) {

printf("Enter add(a), delete(d), quit(q):

fgets(line, sizeof(line), stdin);

switch (1ine[0]) {

case 'a':
printf("Add\ n");
br eak;

case 'd':
printf("Delete\n");
br eak;

case 'q':
printf("Quit\n");

401

—_
FlyrHeart.com

TEAM FLY PRESENTS

exit(0);

defual t:
printf("Error:Bad conmand %\n", line[0]);
br eak;

}

21.3 The ?: Construct

The question mark (?) and colon (:) operators work in a manner similar to that of
if/then/else. Unlike if/then/else, the ?: construct can be used inside of an

expression. The general form of ?: is:
(expression) ? valuel : val ue2

For example, the following construct assigns to anount _owed the value of the

balance or zero, depending on the amount of the balance:

amount _owed = (balance < 0) ? 0 : bal ance;

The following macro returns the minimum of its two arguments:

#define mn(x,y) ((x) < (y) ? (x) : (y))

21.4 The , Operator

The comma (,) operator can be used to group statements. For example:

if (total < 0) {
printf("You owe nothing\n");
total = 0;

can be written as:

if (total < 0)
printf("You owe nothing\n"),total = 0;

In most cases, curly braces ({}) should be used instead of a comma. About the only
place the comma operator is useful is in a for statement. The following for loop
increments two counters, two andt hree, by 2 and 3:

for (two = 0, three = 0;

402

—
FlyrHeart.com 4

TEAM FLY PRESENTS

two < 10;
two += 2, three += 3)
printf("%l %\n", two, three);

21.5 volatile Qualifier

The volatile keyword is used to indicate a variable whose value might change at
any moment. The keyword is used for variables such as memory -mapped 1/0

devices or in real-time control applications where variables can be changed by an
interrupt routine.

Things like memory -mapped device drivers, interrupt routines, and real-time
control are extremely advanced subjects. You will be programming at a level far
beyond the scope of this book before you will need to use the volatile keyword.

21.6 Answer

Answer 21-1: The compiler didn't see our default line because we misspelled
"default" as "defualt.”" This mistake was not flagged as an error because "defualt:" is

a valid goto label.

403

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 22. Putting It All Together

For there isn't a job on the top of the earth the beggar don't know, nor do.
—Rudyard Kipling

In this chapter, we create a complete program. Every step of the process is covered
from setting forth the requirements to testing the result.

22.1 Requirements

Before we start, we need to decid e what we are going to do. This step is very
important and is left out of far too many programming cycles.

This chapter's program must fulfill several requirements. First, it must be long
enough to demonstrate modular programming, but at the same time be short
enough to fit inside a single chapter. It must be complex enough to demonstrate a
wide range of C features, but be simple enough for a novice C programmer to
understand.

Finally, the program must be useful. Usefulness is not simple to define. What's
useful to one person might not be useful to another. We decided to refine this

requirement and restate it as "The program must be useful to C programmers."

The program we have selected reads C source files and generates simple statistics
on the nesting of parentheses, and in the ratio of comments to code lines.

22.2 Specification

The specification for our statistics program is shown in the following sidebar:

Preliminary Specification for a C

Statistics Gathering Program

Steve Oualline
February 10, 1996

The program stat gathers statistics about C source files and prints

404

—
FlyrHeart.com 4

TEAM FLY PRESENTS

them. The command line is:

stat <files..>

Where <files..> is a list of source files. The following shows the

output of the program on a short test file.

[File: stat/stat.out]

1(0 {0
2 (0 {0

[%%

/**

* Name: Cal cul ator (Version 2).

3 (0 {0

*

4 (0 {0

*

5(0 {0

*

6 (0 {0

cal cul at or.

7 (0 {0

*

8 (0 {0

*

9 (0 {0

*

10 (0 {O
*

11 (0 {O
current *
12 (0 {O

*

13 (0 {0

*

14 (0 {0

*

15 (0 {0

*

16 (0 {0

*

17 (0 {0

*

18 (0 {0

*

*

Pur pose:

Act like a sinple four-function

* Usage:

*

*

* Not es:

*

Run t he program

Type in an operator (+- * /) and a nunber.

The operation will

be perforned on the

result, and a newresult will be displ ayed.

Type 'Q to quit.

stat enent .

Li ke version 1 but wittenwith a swtckt

**/

19 (0 {0

[*+*]

405

FlyHeom_‘Q
TEAM FLY PRESENTS

20 (0 {0 #include <stdio.h>

21 (0 {0 char 1ine[100]; /* line of text frominput */
22 (0 {O

23 (0 {0 int resul t; /[* the result of the

cal cul ations */

24 (0 {0 char operator; [* operator the user specified
*/

25 (0 {0 int val ue; /* val ue specified after the
operator */

26 (0 {0 int main()

27 (0 {1 {

28 (0 {1 result = 0; /* initialize the result */
29 (0 {1

30 (0 {1 /* loop forever (or until break reached) */
31 (0 {2 while (1) {

32 (0 {2 printf("Result: %\n", result);

33 (0 {2 printf("Enter operator and nunber: ");
34 (0 {2

35 (0 {2 fgets(line, sizeof(line), stdin);

36 (0 {2 sscanf(line, "% %", &operator, &val ue);
37 (0 {2

38 (0 {2 if ((operator =="'q") || (operator =="'Q))
39 (0 {2 br eak;

40 (0 {3 switch (operator) {

41 (0 {3 case '+':

42 (0 {3 result += val ue;

43 (0 {3 br eak;

44 (0 {3 case ' -'

45 (0 {3 result -= val ue;

46 (0 {3 br eak;

47 (0 {3 case '*':

48 (0 {3 result *= val ue;

49 (0 {3 br eak;

50 (0 {3 case '/’

51 (0 {4 if (value == 0) {

52 (0 {4 printf("Error:D vide by zero\n");
53 (0 {4 printf(" operation ignored\n");
54 (0 {3 } else

55 (0 {3 result /= val ue;

56 (0 {3 br eak;

57 (0 {3 def aul t:

58 (0 {3 printf("Unknown operator %\n",
operator);

59 (0 {3 br eak;

406

—
FlyrHeart.com 4

TEAM FLY PRESENTS

60 (0 {2 }

61 (0 {1 }
62 (0 {1 return (0);
63 (0 {0 }

Total nunber of lines: 63
Maxi mum nesting of () : 2
Maxi mum nesting of {} : 4

Nunber of blank lines 4
Nunmber of comment only lines 20
Nunber of code only lines 34

Nunmber of lines with code and comments 5
Comment to code ratio 64.1%

22.3 Code Design

Several schools of code design exist. In structured programming, you divide the
code into modules, then divide the modules into submodules, then divide the

sub-modules into subsubmodules, and so on. Other approaches exist, such as state
tables and transition diagrams.

All have the same basic principle at heart: "Arrange the program's information in
the clearest and simplest way possible, and then try to turn it into C code."

Our program breaks down into several logical modules. First, we have a token
scanner, which reads raw C code and turns it into tokens. This subdivides into three
smaller modules. The first reads the inputfile, the second determines what type of
character we have, and finally, the third assembles this information into a token. A
token is a group of characters that form a single word, number, or symbol.

The main module consumes tokens and output statistics. Again, this module breaks
down into smaller submodules: ado_fi |l e procedure to manage each file and a
submodule for each statistic.

22.3.1 Token Module

Our program scans C source code and uses the tokens to generate statistics. For
example, the line:

answer = (123 + 456) / 89; [/* Compute some sort of result */
consists of the tokens:

TID The word "answer"

407

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

T_OPERATOR The character "=

T_L_PAREN Left parenthesis
T_NUMBER The number 123
T_OPERATOR The character "+"
T_NUMBER The nunber 456

T_R _PAREN The right parenthesis
T_OPERATOR The di vi de operator
T_NUMBER The nunber 89

T_OPERATOR The semi col on

T_COMMENT The comment

T _NEW LI NE The end-of -1ine character

So how do we identify a token? Most of the time, we simply have to look at the first
character. For example, the * character signals an operator token, while the A

character starts an identifier. But some characters are ambiguous. For example, the
/ character could be the divide operator, or it could be the start of a /* comment. In
order to identify this character, we need to look ahead one character. So one of the
requirements for our input module is that it allow us to peek ahead one character.

The token module builds tokens from groups of characters. For example, an
identifier is defined as a letter or underscore, followed by any number of letters or
digits. So our tokenizer needs to contain the pseudo code:

if the current character is a letter, then
scanuntil we get acharacter that'snot aletter or digit.

As you can see from the pseudo code, our tokenizer depends a great deal on
character types, so we need a module to help us with the type information.

22.3.2 Input Module

The input module needs to do two things: first, it needs to provide the current and
next charaders to the token module, and second, it needs to buffer the entire line
for display at a later time.

22.3.2.1 How not to design an input module

Sometimes a software design will undergo several revisions before it is finally coded,
as was the case with the input module. I carefully designed the module, reviewed
my design, and decided to throw it away.

However, nothing written is completely wasted, so | am including the first design as
a example of how things go wrong and what can be done to improve them.

408

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

The first design consisted of a public structure:

struct input_file {

FILE *file; /* File we are reading */

char line[LINE_MAX];/* Current line */

char *char_ptr; /* Current character on the line */
int cur_char; /* Current character (can be EOF) */
i nt next_char; /* Next character (can be EOF) */

}s

and functions that operated on the structure:

extern void in_open(struct input_file *in_file, const char nane[]);
extern void in_read_char(struct input_file *in_file);
extern void in_flush(struct input_file *in_file);

To use this package, the caller needs to calli n_open to open the file and then check
in_file.fil etoseeifthefileisopened. InC, these operations are done as follows:

struct input_file in_file; /* File for input */
[* o0 *
in_open(& n_file, name);
if (in_file.file == NULL) {
fprintf(stderr,"Error: Could not open input file: %s\n", nane);

The token module needs to look at the current and next character. For example,
when it sees a slash (/) and a star (*), it knows that it's looking at a comment. The
current character is stored inin_fil e. cur_char and the next character is in
in_file.next_char. The C code to check for a comment might look like:

if ((in_file.cur_char =="'/") && (in_file.next_char == "'*")) {
/* Handl e a conment */

To move up a character, the user callsi n_read_char to advance the input by one
character.

Finally, when the file is finished, the user closes the file with the statement:

fclose(in_file.file);

In a good module design:

The amount of information needed by the people who use the module should
be minimized.

408

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The number rules that the users of the module must follow in order to use
the module properly should be small.
The module should be easily expandable.

The design of the input module requires that the user know an awful lot about how
the module is designed. In order to open a file, the user must know to call the

i n_open function, then check thefil e field of thei n_fil e structure for errors.
Consequently, the user mustbe aware of thei n_fil e structure and, what's worse,
the internal workings of thei n_fil e structure.

There are other cases for which the user needs to know about the internals of
struct i n_fil e, such as when accessing the current character (cur _char) or next
character (next _char). Also, the user must manually close the file using yet

another member of our data structure.

So this design requires that the user know a great deal about the internal workings
of our module and access things properly. A better design would demand much less
from the user.

22.3.2.2 A better input module

Our new module design eliminates thei n_fi | e structure (as far as the user is
concerned) and provides the following functions:

extern int in_open(const char nane[]);
extern void in_cl ose(void);

extern void in_read_char(void);

extern int in_cur_char(void);

extern int in_next_char(void);

extern void in_flush(void);

These functions hide all the bookkeeping necessary to handle the input file. Also, the
opening of a file is simpler. We canopen the file and check for errors in one function
call.

The big win in this design is that the caller does not need to know about the
structure of the input file. In fact, the structure has been removed from the header
entirely. This design tremendously s implifies the information that the caller needs in
order to use the module.

This design has a couple of drawbacks. The module has a lot more functions than
our previous design. Also, the module allows us to have only one file open at a time.
This restriction exists because the structure we removed from the head is being

placed in the module itself. The one-file restriction limits our flexibility. However, we

410

FlyrHeart.com

—

>

TEAM FLY PRESENTS

don't need to open multiple files, so we don't need this feature at this time. In this
case, we decided that the gain of simplifying the interface was well worth the
decrease in flexibility.

22.3.3 Character Type Module

The purpose of the character type module is to read characters and decode their
types. Some types overlap. For example, the C_ALPHA_NUMERI Cincludes the

C_NUMERI C character set.

This module stores most of the type information in an array, and requires only a
little logic to handle the special types likeC_ALPHA_NUMERI C.

The functions in this module are:

extern int is_char_type(int ch, enum CHAR _TYPE ki nd);
extern enum CHAR TYPE get char _type(int ch);

One question comes up: how do we initialize the character array? We could require
the user to initialize it before he calls any of the functions, such as:

mai n() {
Y
init_char_type();

I oo, */
type_info = ch_to_type(ch);

Another solution is to put a check at the beginning of each function to initialize the
array if needed:

int is_char_type(int ch, enum CHAR TYPE ki nd)
if (!ch_setup) {
init_char_type();
ch_setup = 0;

The second method requires a little more code. But it has several advantages. First,
it makes life simpler for the user. He doesn't have to remember to initialize the
character type module. Also, mistakes are harder to make. If the user doesn't have
to do the initialization, he can't forget to do it. Finally, this method hides an internal
bookkeeping matter inside the character type module so that the user doesn't have
to worry about it.

411

FlyrHeart.com

—

>

TEAM FLY PRESENTS

22.3.4 Statistics Submodules

Each of our statistics submodules looks at the token stream and produces statistics
about it. For example, the parentheses counter counts the nesting of parentheses.
Some statistics are reported on a line-by-line basis, such as the current parentheses
nesting. Others are reported at the end-offile, such as the maximum nesting of
parentheses.

We collect four statistics, a count of the number of lines, the parentheses () nesting,
the curly-brace {} nesting, and a count of the lines with comments versus the lines
without comments. Because each of our static submodules performs similar
functions, we give the procedures in each of them similar names: (xx is the
sub-module identifier listed below).

X X_init

Initializes the statistic. This function is called at the beginning of each file.
xx_take_token

Receives a token and updates the statistic based on it.
xx_line_start

Writes out the value of the statistic that's output at the beginning of each line.
In some cases, this may be nothing.

xx_eof
Writes out the statistical information that goes at the end of the file.

The xx part of the identifier is the submodule identifier. It is:

Ic

Line counter submodule
pc

Parentheses counter submodule
bc

Brace counter submodule

412

—
FlyrHeart.com 4

TEAM FLY PRESENTS

cC

Comment / not-comment line counter submodule

22.4 Coding

The coding process was fairly simple. The only problem that came up was getting
the end -of-line right.

22.5 Functional Description

This section describes all modules and major functions in our program. For a more
complete and detailed description, take a look at the listings at the end of this
chapter.

22.5.1 ch_type Module

The ch_t ype module computes the type of a character. For the most part, this
computation is done through a table namedt ype_i nfo. Some types like
C_ALPHA_NUMERI C, for example,include two different types of characters, C_ALPHA
and C_DI A T. So, in addition to our table, we need a little code for the special cases.

22.5.2 in_file Module

This modules reads data from the input file one character at a time. It buffers up a
line and on demand writes it to the output.

22.5.3 token Module

We want an input stream of tokens. But what we have to start with is an input
stream consisting of characters. The main function of this class, next _t oken, turns

characters into tokens. Actually, our tokenizer is rather simple, because we don't
have to deal with most of the details that a full C tokenizer must handle.

The coding for this function is fairly straightforward, except for the fact that it breaks
up multiline comments into a series of T_COMVENT and T_NEW LI NE tokens.

413

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

22.5.4 Line Counter Submodule (Ic)

The simplest statistic we collect is a count of the number of lines processed so far.
This concept is done through the line_counter submodule. The only token it cares
about isT_NEW LI NE. At the beginning of each line, it outputs the line number (the
current count of theT_NEW LI NE tokens). At the end-of-file, this submodule outputs
nothing. We define al c_eof function for consistency’'s sake, but the function does
absolutely nothing.

22.5.5 Brace Counter Submodule (bc)

This submodule keeps track of the nesting level of the curly braces {}. We feed the
submodule a stream of tokens through the bc_t ake_t oken function. This function
keeps track of the left and right curly braces and ignores everything else:

voi d bc_take_t oken(enum TOKEN_TYPE t oken) {
switch (token) {

case T_L_CURLY:
++bc_cur_l evel ;
if (bc_cur_level > bc_max_Ievel)

bc_max_I| evel = bc_cur_l evel;

br eak;

case T_R CURLY:
--bc_cur_l evel;
br eak;

defaul t:
/* lgnore */
br eak;

The results of this statistic are printed in two places. The first is at the beginning of
each line. The second is at the end-of-file. We define two functions to print these
statistics:

static void bc_line_start(void) {
printf("{%2d ", bc_cur_level);

static void bc_eof (void) {
printf("Maxi mum nesting of {} : %\n", bc_max_Ilevel);

414

—
FlyrHeart.com 4

TEAM FLY PRESENTS

22.5.6 Parentheses Counter Submodule (pc)

This submodule is very similar to the brace counter submodule. As a matter of fact,
it was created by copying the brace counter submodule and performing a few simple
edits.

We probably should combine the Parentheses Counter submodule and the Brace
Counter submodule into one submodule that uses a parameter to tell it what to
count. Oh well, something for the next version.

22.5.7 Comment Counter Submodule (cc)

In these functions, we keep track of lines with comments in them, lines with code in
them, lines with both, and lines with none. The results are printed at the end-of-file.

22.5.8 do_file Procedure

The do_fi | e procedure reads each file one token at a time, and sends each token to
the t ake_t oken routine for every statistic class:

while (1) {
cur _token = next _t oken();

| c_take_t oken(cur_t oken);
pc_take_token(cur_token);
bc_t ake_t oken(cur _t oken);
cc_t ake_t oken(cur_token);

22.6 Expandability

One thing to keep in mind when designing any software is expandability. In other
words, what must someone do to add to our program? Suppose someone wants to
add a new statistic to our program. What must they do?

Suppose they are adding a Word Count submodule (wc). They need to define four
procedures: wc_init, wc_t ake_token,wc_I|ine_start, andwc_eof .

We need to call these procedures at the proper point. But how do they know where
to put the procedure calls? The answer is that they can use the editor to look for
every place that a Comment Counter submodule procedure is used and clone the
Comment Counter calls. This method is not exactly the best way of doing things,

415

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

especially if the calls are spread across several files. But, the method is the best that
we can come up with given the limitations of C.

C++ has no such limitations. In the book Practical C++ Programming, we design a
similar program using C++ classes. The result is that instead of having multiple lists
of procedure classes, we have one class list. The single list makes expandability and
maintainability much easier.

22.7 Testing

To test this program, we came up with a small C program that contains every
different type of possible token. The results are shown in Example 22-1.

Example 22-1. stat/test.out

(0 {0 /* This is a single line conment */

(0 {0 /*

(0 {0 * Thisis amltiline

(0 {0 * comment.

(0 {0 */

(0 {0 int main()

(0 {1 {

(0 {1 /* A procedure */

(0 {1 int i; /* Comment / code line */
(0 {1 char foo[10];

(0 {1

(0 {1 strcpy(foo, "abc"); /[* String */
(0 {1 strcpy(foo, "a\"bc"); /* String with special character

© 0O NOoO OB~ W DN PR

*
R N
IN W N kO

(0 {1

(0 {1 f oo[0]
(0 {1 foo[1]
(0 {1

(0 {1 i =3/ 2; /* Slash that's not a comment */
(0 {1 i =3 /* Normal nunber */

(0 {1 i = 0x123ABC, /* Hex number */

(0 {1

(1 {1 i =((1+2) * /* Nested () */

(0 {1 (3 +4));

(0 {1

(0 {2 {

(0 {2 int j; /* Nested {} */

(0 {1 }

=
al

/* Character */
/* Character with escape */

NN D NN NN PP P P
O 0~ WN B O © 0N O
non
)

N
~

416

—
FlyrHeart.com 4

TEAM FLY PRESENTS

28 (0 {1 return (0);
29 (0 {0 }

30 (0 {0

Total number of lines: 30
Maxi mum nesting of () : 2
Maxi mum nesting of {} : 2

Nurmber of blank lines 6
Nurmber of conmment only lines 6
Number of code only lines 8

Nunmber of lines with code and conments 10
Conment to code ratio 88. 9%

22.8 Revisions

Currently, the program collects a very limited set of statistics. You could add things
like average identifier size and tracking statistics for each procedure. One thing we
kept in mind when we designed our program was the need for expandability.

We stopped our statistics collection at four types of statistics because we had
fulfilled our mission to demonstrate a reasonably advanced set of C constructs. We
didn't add more because the program would be too complex to fit in the chapter. On
the whole, the program does its job well.

22.9 A Final Warning

Just because you can generate a statistic doesn't mean that it's useful.

22.10 Program Files

22.10.1 The in_file.h File

/**

* input_file -- Data fromthe input file. *

* *

* The current two characters are stored in *

* cur _char and next_char. *

* Lines are buffered so that they can be output to *

* the screen after a line is assenbl ed. *

* *

* Functi ons: *

* in_open -- Opens the input file. *
417

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* in_close -- Closes the input file. *

* read_char -- Reads the next character. *
* i n_char_char -- Returns the current character. *
* i n_next_char -- Returns the next character. *
* in_flush -- Sends line to the screen. *

**/

/**

* in_open -- Opens the input file. *

* *

* Paraneters *

* name -- Nanme of disk file to use for input. *
* *

* Returns *

* 0 -- Open succeeded. *

* nonzero -- Open fail ed. *

**/

extern int in_open(const char nane[]);

/**

* in_close -- Closes the input file. *

**/

extern void in_close(void);

/***'k****'k****************'k******************************

* in_read_char -- Read the next character fromthe *

* input file. *

**/

extern void in_read_char(void);

/**

* in_cur_char -- Gets the current input character. *
* *

* Returns *

* current character. *

**/

extern int in_cur_char(void);

/**

* in_next_char -- Peeks ahead one character. *
* *

* Returns *

* next character. *

**/

418

—_
FlyrHeart.com

TEAM FLY PRESENTS

extern int in_next_char(void);

/**

* in_flush -- Flushes the buffered input line to the *
* screen. *

**/

extern void in_flush(void);

22.10.2 The in_file.c File

/***'k****'k****************'k******************************

* infile nodul e *

* Handl es openi ng, reading, and display of *

* data fromthe input file. *

* *

* Functi ons: *

* in_open -- Opens the input file. *

* in_close -- Closes the input file. *

* read_char -- Reads the next character. *
* in_char_char -- Returns the current character. *
* i n_next_char -- Returns the next character. *
* in_flush -- Sends line to the screen. *

**/

#i ncl ude <stdi o. h>
#i ncl ude <errno. h>

#include "in_file.h"

#defi ne LI NE_MAX 500 /* Longest possible |ine */

struct input_file {

FI LE *fil e; /* File we are reading */

char line[LINE_MAX];/* Current line */

char *char_ptr; /* Current character on the |line */
int cur_char; /* Current character (can be EOCF)*/
i nt next_char; /* Next character (can be EOF) */

}s

/[* Input file that we are reading */
static struct input _file in_file = {

NULL, [* file */
"y /[* line */
NULL, /* char_ptr */

418

—
FlyrHeart.com 4

TEAM FLY PRESENTS

"\0', [* cur_char */
"\O' /* next_char */

/**

* in_open -- Opens the input file. *
* *

* Paraneters *

* name -- Name of disk file to use for input. *
* *

* Returns *

* 0 -- Open succeeded. *

* nonzero -- Open fail ed. *

**/

nt i n_open(const char nane[])

{
in_file.file = fopen(name, "r");
if (in_file.file == NULL)
return (errno);
| *
* Initialize the input file and read the first two
* characters
*/
in_file.cur_char = fgetc(in_file.file);
in_file.next_char = fgetc(in_file.file);
in_file.char_ptr = in_file.line
return (0);
}

/**

* in_close -- Closes the input file. *

****'k***************************'k*'k*********************/

void in_close(void)

{
if (in_file.file !'= NULL) {
fclose(in_file.file);
in file.file = NULL
}

}
/********'k***
* in_cur_char -- Gets the current input character. *

420

—_
FlyrHeart.com

TEAM FLY PRESENTS

* *

* Returns *
* current character. *

**/
int in_cur_char(void)

{

return (in_file.cur_char);

/**

* in_next_char -- Peeks ahead one character. *
* *

* Returns *

* next character. *

**/

int in_next_char(void)

{
return (in_file.next_char);
/**
* in_flush -- Flushes the buffered input line to the *
* screen. *

**/

void in_flush(void)

{
in_file.char_ptr ="'\0"; / End the line */
fputs(in_file.line, stdout); /* Send the line */
in_file.char_ptr =in_file.line; /* Reset the line */
}
/**
* in_read_char -- Reads the next character fromthe *
* input file. *

'k*/

void in_read_char(void)

{
*in_file.char_ptr = in_file.cur_char;
++in_file.char_ptr;
in file.cur_char = in_file.next_char
in_file.next_char = fgetc(in_file.file);
b

421

—_
FlyrHeart.com

TEAM FLY PRESENTS

22.10.3 The ch_type.h File

/**

* char_type -- Character type nodul e. *
Rk k Ak kR R kK kK Kk Kk ko ko Kok Kok kR kR Rk kK kK kK kK Kk ko k ok ok kK Kk
enum CHAR TYPE ({
C_EOF, /* End of file character */
C_VHI TE, /* Wi tespace or control character */
C_NEWINE, /* A newine character */
C_ALPHA, /* A Letter (includes) */
CDAT, /* A Nunmber */
C_OPERATOR, /* Random operator */
C _SLASH, /* The character '/' */
C L_PAREN, /* The character '(' */
C R PAREN, [/* The character ')' */
C L _CURLY, [* The character '{' */
C R CURLY, [* The character '}' */
C_SI NGLE, /* The character '"\'' */
C_DOUBLE, /* The character """ */
/* End of sinple types, nore conplex, derrived types follow */
C HEX DIG T,/* Hexideciml digit */
C_ALPHA _NUMERI C/ * Al pha nuneric */

b
/**
* is_char_type -- Determines if a character belongs to *
* a given character type. *

* *

* Paraneters *

* ch -- Character to check. *

* kind -- Type to check it for. *

* *

* Returns: *

* 0 -- Character is not of the specified kind. *
* 1 -- Character is of the specified kind. *

**/

extern int is_char_type(int ch, enum CHAR TYPE ki nd);

/**

* get_char_type -- Gven a character, returns its type.*
* *

* Note: We return the sinple types. Conposite types *
* such as C HEX_ DIA T and C_ALPHA NUMERI C are not *

422

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* returned. *

* *

* Paraneters: *

* ch -- Character having the type we want. *
* *

* Returns *

* character type. *

**/

extern enum CHAR_TYPE get _char_type(int ch);

22.10.4 The ch_type.c File

/**

* ch_type package *

* *

* This nmodule is used to determ ne the type of *
* various characters. *

* *

* Public functions: *

* init_char_type -- Initializes the table. *

* is_char_type -- Is a character of a given type? *
* get _char _type -- G ven char, returns type. *

**/

#i ncl ude <stdi o. h>

#include "ch_type. h"

/* Define the type information array */
static enum CHAR _TYPE type_i nfo[256];
static int ch_setup = O; /* True if character type info setup */

/**

* fill_range -- Fills in a range of types for the *

* character type cl ass. *

* *

* Paraneters *

* start, end -- Range of itens to fill in. *

* type -- Type to use for filling. *

**/
static void fill _range(int start, int end, enum CHAR TYPE type)
{

int cur_ch; /* Character we are handling now */

for (cur_ch = start; cur_ch <= end; ++cur_ch) {
type_i nfo[cur_ch] = type
423

—
FlyrHeart.com 4

TEAM FLY PRESENTS

/***

* init_char_type --

***/

Initializes the char type table.

static void init_char_type(void)

{

fill_range(0, 255, C WH TE);

fill_range('A'
fill _range('a',

type_i

fill _range('0',

type_i

nfo[' ']

nfol['!"]

type_info['#']

type_i
type_i
type_i
type_i
type_i

nfo['$']
nfol[' %]
nfo[' "]
nfol' &]
nfo['*"]

type_info['-"]

type_i
type_i
type_i
type_i
type_i
type_i
type_i
type_i
type_i
type_i

type_i

type_info['\n']

type_i
type_i

type_i
type_i

nfo['+']
nfol' =
nfo[']|"
nfo['~
nfo[',

]

]
"1
"1
nfo[':"]
nfol['?"]
nfo['."]
nfo['<']
nfol['>"]

nfo['/"]
nfol' (']
nfo[')"]

nfol'{"]
nfo["}"]

"Z', C_ALPHA);
"z', C_ALPHA);

C_ALPHA;

'9', CDIAT):;

C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR
C_OPERATOR;
C_OPERATOR
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR
C_OPERATOR;
C_OPERATOR
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;

C SLASH;
C_NEWLI NE;

C_L_PAREN;
C_R_PAREN;

C L_CURLY;
C R CURLY;

424

*

—
FlyrHeart.com 4

TEAM FLY PRESENTS

type_info['""] = C_DOUBLE;
type_info['\''] = C_SINGLE;

}
/**
* is_char_type -- Determines if a character belongs to *
* a given character type. *
* *
* Paraneters *
* ch -- Character to check. *
* kind -- Type to check it for. *
* *
* Returns: *
* 0 -- Character is not of the specified kind. *
* 1 -- Character is of the specified kind. *

**/

int is_char_type(int ch, enum CHAR_TYPE ki nd)

{
if ('ch_setup) {
init_char_type();
ch_setup = 1;
}
if (ch == EOF) return (kind == C_EOF);
switch (kind) {
case C HEX DIGT:
if (type_info[ch] == C_DIGT)
return (1);
if ((ch>="A) & (ch <="'F"))
return (1);
if ((ch>="a") & (ch <="'1"))
return (1);
return (0);
case C_ALPHA NUMERI C:
return ((type_info[ch] == C_ALPHA) ||
(type_info[ch] == C D AT));
defaul t:
return (type_info[ch] == kind);
}
b
[H R Rk ko Kk kK Kk Rk ok Kk Kk Kok Rk kK Rk kK ok ok kK kR ko kK ko
* get_char_type -- Gven a character, returns its type.*
425

—_
FlyrHeart.com

TEAM FLY PRESENTS

* *

* Note: We return the sinple types. Conposite types *
* such as C HEX_ DIG@ T and C_ALPHA_NUMERI C are not *
* returned. *

* Paraneters: *
* ch -- Character having the type we want. *

* Returns *
* character type. *

****'k***************************'k*'k*********************/

enum CHAR TYPE get _char_type(int ch) {
if ('ch_setup) {
init_char_type();
ch_setup = 1;

if (ch == EOF) return (C_EOF);

return (type_info[ch]);

22.10.5 The token.h File

/***'k****'k****************'k******************************

* token -- Token handling nodul e. *

* *

* Functi ons: *

* next _token -- Gets the next token fromthe input.*

**/

/*

* Define the enunerated |ist of tokens.

*/

enum TOKEN_TYPE {
T_NUMBER, /* Sinple nunber (floating point or integer */
T_STRI NG, /* String or character constant */

T_COMVENT, /* Conment */
T_NEWLI NE, /* Newl i ne character */
T_OPERATOR, /* Arithmetic operator */
T _L_PAREN, /* Character "(" */
T_R_PAREN, /* Character ")" */
T L_CURLY, /* Character "{" */
T_R _CURLY, /* Character "}" */

426

—
FlyrHeart.com 4

TEAM FLY PRESENTS

T_I D, /* ldentifier */
T _EOF /* End of File */
b

/*

* We use #define here instead of "const int" because so many old

* software packages use #define. W nust have picked

* up a header file that uses #define for TRUE/ FALSE. Consequently,
* we protect against double defines as well as against using #define
* oursel ves.

*/

#i f ndef TRUE
#define TRUE 1 /* Define a sinple TRUE/ FALSE val ues */
#defi ne FALSE 0O
#endi f /* TRUE */

/***

* next_token -- Reads the next token in an input stream?®
* *

* Paraneters *

* in_file -- File to read. *

* *

* Returns *

* next token. *

'k**********'k***************'k*************************/

extern enum TOKEN_TYPE next _t oken(voi d);

22.10.6 The token.c File

/***

* token -- Token handling nodul e. *

* *

* Functi ons: *

* next _token -- Gets the next token fromthe input.*

'k**********'k***/

#i ncl ude <stdio. h>
#include <stdlib. h>

#i nclude "ch_type. h"
#include "in_file.h"
#i ncl ude "token.h"

static int in_coment = FALSE, /* True if we're in a coment */

427

—
FlyrHeart.com 4

TEAM FLY PRESENTS

/***

* read_coment -- Reads in a comment. *
* *

* Returns *

* Token read. Can be a T_COMMENT or T_NEW LI NE, *
* dependi ng on what we read. *

* *

* Multiline comrents are split into nultiple *
* t okens. *

***/

static enum TOKEN_TYPE r ead_comrent (voi d)
{
if (in_cur_char() =="'\n") {
in_read_char();
return (T_NEW.I NE)

}

while (1) {
in_conmrent = TRUE
if (in_cur_char() == EOF) {

fprintf(stderr
return (T_EOF);

Error: EOF inside conment\n");

}

if (in_cur_char() =="'\n")
return (T_COMVENT)

if ((in_cur_char() =="*") &&
(in_next_char() =="'/")) {
in_comment = FALSE
/* Skip past the ending */
in_read_char();
in_read_char();
return (T_COMVENT)

}

in_read_char();

}

/***

* next_token -- Reads the next token in an input stream?®
* *

* Returns *

* next token. *
***/

enum TOKEN_TYPE next _t oken(voi d)
{

if (in_conment)

428

—_
FlyrHeart.com

TEAM FLY PRESENTS

return (read_comment());

while (is_char_type(in_cur_char(), CWITE)) {
in_read_char();

}

if (in_cur_char() == EOF)
return (T_EOF);

switch (get_char_type(in_cur_char())) {
case C_NEW.I NE:
in_read_char();
return (T_NEW.I NE);
case C_ALPHA:
while (is_char_type(in_cur_char(), C_ALPHA NUMERI C))
i n_read_char ();
return (T_ID);
case C_DIGT:
in_read_char();
if ((in_cur_char() =="X") || (in_cur_char() == "'x")) {
i n_read_char ();
while (is_char_type(in_cur_char(), CHEX DI GT))
in_read_char();
return (T_NUMBER);
}
while (is_char_type(in_cur_char(), CDAdT))
i n_read_char ();
return (T_NUMBER);
case C_SLASH:
/* Check for '/', "*' characters */
if (in_next_char() =="*") {
return (read_comment ());
}
/* Fall through */
case C_OPERATOR
in_read_char();
return (T_OPERATOR);
case C_L_PAREN:
in_read_char();
return (T_L_PAREN);
case C_R _PAREN:
in_read_char();
return (T_R_PAREN);
case C L_CURLY:
in_read_char();

428

—
FlyrHeart.com 4

TEAM FLY PRESENTS

return (T_L_CURLY);
case C_ R CURLY
in_read_char();
return (T_R_CURLY)
case C_DOUBLE
while (1) {
i n_read_char ();
/* Check for end of string */
if (in_cur_char() ==""")
br eak;

/* Escape character, then skip the next character */
if (in_cur_char() == "\\")
in_read_char();
}
in_read_char();
return (T_STRI NG ;
case C_SINGLE
while (1) {
in_read_char();
/* Check for end of character */
if (in_cur_char() =="\"")
br eak;

/* Escape character, then skip the next character */
if (in_cur_char() =="\\")
in_read_char();

}

in_read_char();
return (T_STRING) ;

defaul t:
fprintf(stderr, "Internal error: Very strange character\n");
abort();
}
fprintf(stderr, "Internal error: We should never get here\n");
abort();
return (T_EOF); /* Shoul d never get here either */

/* But we put in the return to avoid a conpiler */
/* warning. */

22.10.7 The stat.c File

/**

430

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* stat *

* Produces statistics about a program *
* *

* Usage: *

* stat [options] <file-list> *

* *

**/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <nenory. h>
#i nclude "ch_type. h"
#include "in_file.h"
#i ncl ude "token. h"

/**
R I o R I I S

EEEEE SRR S EE SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEES

* line_counter -- Handles line nunber / |ine count *
* stat. *

* *

* Counts the nunmber of T_NEW.LINE tokens seen and *
* outputs the current |ine nunber at the begi nning *
* of the line. *

* *

* At EOF, it will output the total nunber of Iines. *

****'k***************************'k*'k*********************/

static int cur_line; /* Current |ine nunber */

/**

* Jc_init -- Initializes the Iine counter vari abl es. *

**/
static void lc_init(void)

{

cur_line = 0;

}s

/**

* | c_take_token -- Consunes tokens and | ooks for *
* end-of-1ine tokens. *

* *

* Paraneters *

* token -- The token conming in fromthe input *
* stream *

431

—_
FlyrHeart.com

TEAM FLY PRESENTS

**/

static void | c_take_token(enum TOKEN_TYPE token) {
if (token == T_NEWLI NE)
++cur _l i ne;

/**

* lc_line_start -- Qutputs the per-line statistics, *
* nanely the current |ine nunber. *
**/
static void Ic_line_start(void) {

printf("9%d ", cur_line);

/**

* | c_eof -- Qutputs the eof statistics. *
* In this case, the nunber of I|ines. *

******'k*'k*'k*'k***/

static void |l c_eof (void) {
printf("Total number of lines: %\n", cur_line);

/**
EE I I I I S S R I I I S R I I I I
EIE R R R I I I R R S S R R R R I R R I I I I R O I R I R I O
* paren_count -- Counts the nesting level of (). *
* *

* Counts the nunmber of T_L_PAREN vs T_R_PAREN t okens *
* and wites the current nesting |evel at the beginning*

* of each line. *
* *
* Also keeps track of the maxi mum nesting |evel. *

**/

static int pc_cur_|level;
static int pc_max_|evel;

/***'k*********************'k******************************

* pc_init -- Initializes the () counter variabl es. *
**/
void pc_init(void) {

pc_cur _level = 0;
0;

pc_max_| evel

}s

432

—_
FlyrHeart.com

TEAM FLY PRESENTS

/**

* pc_take_token -- Consumes tokens and | ooks for *
* () tokens. *

* *

* Paraneters *

* token -- The token coming in fromthe input *
* stream *

**/

voi d pc_take_token(enum TOKEN_TYPE token) {
switch (token) {

case T_L_PAREN:
++pc_cur _| evel ;
if (pc_cur_level > pc_nmax_|evel)

pc_max_Il evel = pc_cur_level;

br eak;

case T_R PAREN:
--pc_cur_l evel;
br eak;

defaul t:
/* lgnore */
br eak;

/***'k****'k****************'k******************************

* pc_line_start -- Qutputs the per-line statistics, *
* nanely the current () nesting. *

**/
static void pc_line_start(void) {
printf("(%2d ", pc_cur_level);

/**

* pc_eof -- Qutputs the eof statistics. *
* In this case, the max nesting of (). *
**/
void pc_eof (void) {

printf("Mxi numnesting of () : %\n", pc_max_|evel);

/**
R R I S S O kR Rk kb O R O

EEEEE SRS S EE SRS SRR EE SR EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEES

* brace_counter -- Counts the nesting |level of {}. *

433

—_
FlyrHeart.com

TEAM FLY PRESENTS

* *

* Counts the nunber of T L _CURLY vs T_R CURLY tokens *
* and wites the current nesting | evel at the beginni ng*

* of each line. *

* *

* Al'so, keeps track of the maxi num nesting |evel. *
* *

* Note: brace_counter and paren_counter should *

* probably be comnbi ned. *
**/
static int bc_cur_|evel; /* Current nesting |level */
static int bc_max_| evel; /* Maxi mum nesting | evel */

/**

* pc_init -- Initialize the {} counter variabl es. *
**/
void bc_init(void) {

bc_cur | evel 0;

bc_max_| evel 0;

}s

/**

* pc_take_token -- Consunes tokens and | ooks for *
* {} tokens. *

* *

* Paraneters *

* token -- The token coming in fromthe input *
* stream *

**/

voi d bc_take_t oken(enum TOKEN_TYPE t oken) {
switch (token) {

case T_L _CURLY:
++bc_cur _| evel ;
if (bc_cur_level > bc_max_Ilevel)

bc_max_I| evel = bc_cur_l evel;

br eak;

case T_R CURLY:
--bc_cur_l evel;
br eak;

defaul t:
/* lgnore */
br eak;

434

—_
FlyrHeart.com

TEAM FLY PRESENTS

/***'k****'k****************'k******************************

* bc_line_start -- Qutputs the per-line statistics, *
* nanely the current {} nesting. *
**/
static void bc_line_start(void) {

printf("{%2d ", bc_cur_level);

/**

* bc_eof -- Qutputs the eof statistics. *
* In this case, the max nesting of {}. *
**/
static void bc_eof (void) {

printf("Mxi numnesting of {} : %\n", bc_max_|evel);

/***'k****'k****************'k******************************
R Rk I bk o Rk I b kS Rk R R bk O

EIE R R I S I O I I R I I R I R I O I R I

* comment _counter -- Counts the nunber of |ines *
* with and without commrents. *
* *

* Qutputs nothing at the begi nning of each |ine, but *

* will output aratio at the end of file. *
* *

* Note: This class nmakes use of two bits: *
* CF_COWENT -- a conment was seen *
* CF_CODE -- code was seen *

* to collect statistics. *

* *

* These are conbined to forman index into the counter *

* array so the value of these two bits is very *

* jnportant. *
**/

static const int CF_COMVENT = (1<<0); /* Line contains comment */
static const int CF_CODE = (1<<1); /* Line contains code */

/* These bits are conbined to formthe statistics */

/* 0 -- [0] Blank line */

/* CF_COMVENT -- [1] Comment-only line */

/* CF_CODE -- [2] Code-only line */

/* CF_COMMENT| CF_CODE -- [3] Conments and code on this line */
435

—
FlyrHeart.com 4

TEAM FLY PRESENTS

static int counters[4]; /* Count of various types of stats.

static int flags; /* Flags for the current line */

/**

* cc_init -- Initializes the conment counter variables.*
**/
static void cc_init(void) {

menset (counters, '\0', sizeof(counters));

flags = 0;
/**
* cc_take_token -- Consunes tokens and | ooks for *
* comment s t okens. *
* *
* Paraneters *
* token -- The token coming in fromthe input *
* stream *

**/

voi d cc_t ake_t oken(enum TOKEN_TYPE t oken) {
switch (token) {
case T_COMMENT:
flags | = CF_COMVENT;
br eak;
defaul t:

flags | = CF_CODE;

br eak;

case T_NEW.I NE:
++counters[fl ags];
flags = 0;
br eak;

/***'k*********************'k******************************

* cc_line_start -- Qutputs the per-line statistics. *

**/

static void cc_line_start(void)

/* Do nothing */
/***'k****'k****************'k******************************
* cc_eof -- Qutputs the eof statistics. *

436

*/

—_
FlyrHeart.com

TEAM FLY PRESENTS

* In this case, the comment/code ratios. *
Ak Ak kK k ok Kk Rk kK k kK kR kK kK k kAR kKK KK kKA kA h kA kK
static void cc_eof (void) {
printf("Nunber of blank lines %d\ n",
counters[0]);
printf("Nunber of comrent only lines %\ n",
counters[1]);
printf("Nunber of code only lines %\ n",
counters[2]);
printf("Nurmber of lines with code and comments %\n",
counters[3]);
printf("Comrent to code ratio 3. 1f %94 n",
(float)(counters[1l] + counters[3]) /
(float)(counters[2] + counters[3]) * 100.0);

/**

* do_file -- Processes a single file. *
* *

* Paraneters *

* nanme -- The nanme of the file to process. *

**/

static void do_file(const char *const nane)

{
enum TOKEN_TYPE cur _token; /* Current token type */

/ *
* Initialize the counters
*/
lc_init();
pc_init();
bc_init();
cc_init();

if (in_open(name) !'=0) {
printf("Error: Could not open file % for readi ng\n", nane);
return;

}
while (1) {
cur _token = next _token();

| c_take_t oken(cur_token);
pc_take_t oken(cur_token);
bc_take_t oken(cur_token);

437

—_
FlyrHeart.com

TEAM FLY PRESENTS

cc_t ake_t oken(cur _t oken);

switch (cur_token) {

case T_NEW.I NE:
lc_line_start();
pc_line_start();
bc_line_start();
cc_line_start();
in_flush();
br eak;

case T_EOF
I c_eof ();
pc_eof () ;
bc_eof ();
cc_eof ();
in_close();
return;

defaul t:
/* Do not hing */
br eak;

int main(int argc, char *argv[])

{

char *prog_nane = argv[0]; /* Name of the program*/

if (argc == 1) {
printf("Usage is % [options] <file-list>n", prog_nane);
exit (8);

for (/* argc set */; argc > 1; --argc) {
do_file(argv[1]);
++ar gv;

}

return (0)

22.10.8 UNIX Makefile for CC (Generic Unix)
File: stat/makefile.unx

438

—_
FlyrHeart.com

TEAM FLY PRESENTS

#

Makefile for the UNI X standard cc conpiler
#

CC=cc

CFLAGS=-g

OBJS= stat.o ch_type.o token.o in_file.o

all: stat.out stat test.out

test.out: test.c stat
stat test.c >test. out

This generates a test output based on another exanple
in this book.
stat.out: stat

stat ../calc3/cal c3.c >stat. out

stat: $(OBJS)
$(CC) $(CFLAGS) -0 stat $(OBIS)

stat.o: stat.c token.h
$(CC) $(CFLAGS) -c stat.c

ch_type.o: ch_type.c ch_type.h
$(CC) $(CFLAGS) -c ch_type.c

token.o: token.c token.h ch_type.h in_file.h
$(CC) $(CFLAGS) -c token.c

in_file.o: in_file.c in_file.h
$(CC) $(CFLAGS) -c in_file.c

cl ean:
rm-f stat stat.o ch_type.o token.o in_file.o

22.10.9 UNIX Makefile for gcc

File: stat/makefile.gcc

#

Makefile for the Free Software Foundati ons g++ conpiler
#

CC=gcc

CFLAGS=-g -Wall| -D__USE_FI XED PROTOTYPES__

438

—
FlyrHeart.com 4

TEAM FLY PRESENTS

OBJS= stat.o ch_type.o token.o in_file.o
all: stat.out stat test.out

test.out: test.c stat
stat test.c >test. out

This generates a test output based on anot her exanple
in this book.
stat.out: stat

stat ../calc3/cal c3.c >stat. out

stat: $(OBJIS)
$(CC) $(CFLAGS) -0 stat $(0BJIS)

stat.o: stat.c token.h
$(CC) $(CFLAGS) -c stat.c

ch_type.o: ch_type.c ch_type.h
$(CC) $(CFLAGS) -c ch_type.c

token. o: token.c token.h ch_type.h in_file.h
$(CC) $(CFLAGS) -c token.c

in file.o: in file.c in_file.h
$(CC $(CFLAGS) -c in_file.c

cl ean:
rm-f stat stat.o ch_type.o token.o in_file.o

22.10.10 Turbo C++ Makefile

File: stat/ mkefile.tcc

#

Makefile for Borland' s Borl and- C++ conpil er
#

CC=t cc

#

Fl ags

-N -- Check for stack overfl ow.

-v -- Enabl e debuggi ng.

-w -- Turn on all warnings.

-m -- Large nodel .

440

—
FlyHeart.com g4

TEAM FLY PRESENTS

#
CFLAGS=-N -v -w -ni
OBJS= stat.obj ch_type.obj token.obj in_file.obj

all: stat.out stat.exe test.out

test.out: test.c stat.exe
stat test.c >test. out

This generates a test output based on another exanple
in this book.
stat.out: stat.exe

stat ..\calc3\calc3.c >stat.out

stat.exe: $(0BIS)
$(CC) $(CFLAGS) -estat $(0BJIS)

stat.obj: stat.c token.h
$(CC) $(CFLAGS) -c stat.c

in_file.obj: in_file.c in_file.h
$(CC) $(CFLAGS) -c in_file.c

ch_type.obj: ch_type.c ch_type.h
' $(CC) $(CFLAGS) -c ch_type.c

token. obj: token.c token.h ch_type.h
$(CC) $(CFLAGS) -c token.c

cl ean:
erase stat.exe
erase stat. obj
erase ch_type. obj
erase in_file.obj
erase token. obj

22.10.11 Borland C++ Makefile

File: stat/ makefile. bcc

#
Makefile for Borland's Borland C++ conpiler
#

441

—
FlyrHeart.com 4

TEAM FLY PRESENTS

CC=bcc

#

Fl ags

-N -- Check for stack overflow.
-v -- Enabl e debuggi ng.

-w -- Turn on all warnings.

-ml -- Large nodel.

#

CFLAGS=-N -v -w -m
OBJS= stat.obj ch_type.obj token.obj in_file.obj

all: stat.out stat.exe test.out

test.out: test.c stat.exe
stat test.c >test. out

This generates a test output based on another exanple
in this book.
stat.out: stat.exe

stat ..\calc3\calc3.c >stat.out

stat.exe: $(0BJIS)
$(CC) $(CFLAGS) -estat $(0BJIS)

stat.obj: stat.c token.h
$(CC) $(CFLAGS) -c stat.c

in_file.obj: in_file.c in_file.h
$(CC) $(CFLAGS) -c in_file.c

ch_type.obj: ch_type.c ch_type.h
$(CCO $(CFLAGS) -c ch_type.c

token. obj: token.c token.h ch_type.h
$(CC) $(CFLAGS) -c token.c

cl ean:
erase stat.exe
erase stat. obj
erase ch_type. obj
erase in_file.obj
erase token. obj

442

—_
FlyrHeart.com

TEAM FLY PRESENTS

22.10.12 Microsoft Visual C++ Makefile

File: stat/ makefile. nmsc

#

Makefile for Mcrosoft Visual C++
#

CC=cl

#

Fl ags

AL -- Conpile for large nodel.
Zi -- Enabl e debuggi ng.

WL -- Turn on warnings.

#

CFLAGS=/AL /zZi /W
OBJS= stat.obj ch_type.obj token.obj in_file.obj

all: stat.out stat.exe test.out

test.out: test.c stat.exe
stat test.c >test. out

This generates a test output based on another exanple

in this book.
stat.out: stat.exe
stat ..\calc3\calc3.c >stat. out

stat.exe: $(OBIS)
$(CC) $(CCFLAGS) $(0BIS)

stat.obj: stat.c token.h
$(CC) $(CCFLAGS) -c stat.c

ch_type.obj: ch_type.c ch_type.h
$(CC) $(CCFLAGS) -c ch_type.c

token. obj: token.c token.h ch_type.h
$(CC) $(CCFLAGS) -c token.c

in_file.obj: in_file.c
$(CC) $(CCFLAGS) -c in_file.c

cl ean:

443

—
FlyrHeart.com 4

TEAM FLY PRESENTS

erase stat.exe
erase stat. obj
erase ch_type. obj
erase token. obj
erase in_file.obj

22.11 Programming Exercises

Exercise 22-1: Write a program that checks a text file for doubled words (for
example, "in the the file").

Exercise 22-2: Write a program that removes four-letter words from a file and
replaces them with more acceptable equivalents.

Exercise 22-3: Write a mailing list program. This program will read, write, sort,
and print mailing labels.

Exercise 22-4: Update the statistics program presented in this chapter, adding a
cross-reference capability.

Exercise 22-5: Write a program that takes a text file and splits long lines into two
smaller lines. The split point should be at the end of a sentence if possible, or at the

end of a word if a sentence is too long.

444

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Chapter 23. Programming Adages

Second thoughts are ever wiser.

—Euripides

23.1 General

Comment, comment, comment. Put a lot of comments in your program.
They tell other programmers what you did. They also tell you what you did.
Use the "KISS" principle. (Keep It Simple, Stupid.) Clear and simple is better
than complex and wonderful.
Avoid side effects. Use++ and - - on lines by themselves.
Use the prefix version of ++ and- - (++x, - - x) instead of the postfix version
(x++, x- -). This adage does nothing for you in C, but will serve you well when
you move to C++.
Never put an assignment inside a conditional.
Never put an assignment inside any other statement.
Know the difference between= and ==. Using = for == is a very common
mistake and is difficult to find.
Never do "nothing" silently.

/* Don't programlike this */

for (index = 0; data[index] < key; ++index);
/* Did you see the semicolon at the end of the last |ine? */

Always put in a comment or statement.

for (index = 0; data[index] < key; ++i ndex)
conti nue;

23.2 Design

When designing your program, keep in mind "The Law of Least
Astonishment," which states that your program should behave in a way that
least astonishes the user.

Make the user interface as simple and consistent as possible.

Give the user as much help as you can.

Clearly identify all error messages with the word "error," and try to give the
user some idea of how to correct his problem.

445

— >
FlyrHeart.com 4

TEAM FLY PRESENTS

23.3 Declarations

Put one variable declaration per line, and comment them.
Make variable-names long enough to be easily understood, but not so long

that they are difficult to type in. Two or three words is usually enough.
Never usedefault declarations. If a function returns an integer, declare it as
type int.
All parameters to a function should be declared and commented. Never use
default declarations.
Always declare mai n as:

i nt mai n(voi d) /* Correct declaration */
int main(int argc, char *argv[]) /* Also correct */

Never declare nai n as:

voi d main() /* never programlike this */
void mai n(int ac, char *av[]) /* never use nanmes like this */

23.4 switch Statement

Always put a default case in a switch statement. Even if the case does
nothing, put it in.
switch (expression) {
[* .00
defaul t:
/* do nothing */

Every case in a switch should end with abreak or/* Fall through */

comment.

23.5 Preprocessor

Always put parentheses around each constant expression defined by a
preprocessor #define directive.

#defi ne BOX_SIZE (3*10) /* size of the box in pixels */

Use const declarations instead of #define wherever possible.
Put () around each argument of a parameterized macro.

#define SQUARE(X) ((x) * (X))

446

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Surround macros that contain complete statements with curly braces ({ }).
/* A fatal error has occurred. Tell user and abort */

#define DI E(msg) {printf(msg);exit(8);}

When using the#ifdef/#endif construct for c onditional compilation, put the
#define and#undef statements near the top of the program and comment
them.

23.6 Style

A single block of code enclosed in {} should not span more than a couple of
pages. Anything much bigger than that should probably be split up into

several smaller, simpler procedures.
When your code starts to run into the right margin, you should split the
procedure into several smaller, simpler procedures.

23.7 Compiling

Always create a Makefile so that others will know how to compile your
program.
Turn on all the warning flags, then make your program warning free.

23.8 Final Note

Just when you think you've discovered all of the things that C can do to you—think
again. There are still more surprises in store for you.

Question 23-1: Why does Example 23-1 think everything is two? (This inspired the
last adage.) (Click here for the answer Section 23.9

Example 23-1. not2/not2.c

#i ncl ude <stdio. h>
int main()
{
char |ine[80];
int nunber;

printf("Enter a number: ");

fgets(line, sizeof(line), stdin);

447

—
FlyrHeart.com 4

TEAM FLY PRESENTS

sscanf(line, "%", &nunber);

if (number =! 2)
printf("Nunmber is not two\n");
el se

printf("Nunber is two\n");

return (0);

23.9 Answer

Answer 23-1: The statement (nunmber =! 2) is not a relational equation, but an
assignment statement. It is equivalent to:

nunber = (!2);
Because 2 is nonzero, ! 2 is zero.

The programmer accidentally reversed the not equals, ! =, so it became=! . The
statement should read:

if (nunber !'= 2)

448

—_
FlyrHeart.com

TEAM FLY PRESENTS

Part 1V: Other Language Features

The appendixes fill in some of the more arcane information that this book has
referred to, but that is more appropriate to include as reference material.

- Appendix A lists the octal, hexadecimal, and decimal representations of
the ASCII character set that is now in almost universal use.

- Appendix B lists the limits you can expect to come up against in
handling numbers with various sizes of memory allocation.

- Appendix C lists those impossible-to-remember rules, to help you when
you encounter code written by rude people who didn't use enough
parentheses.

- Appendix D illustrates the manipulation of floating point (real)
numbers, which did not receive complete attention in the rest of the
book.

- The Glossary defines many of the technical terms used throughout the
book.

449

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Appendix A. ASCII Table

TableA-1. ASCI| Character Chart

Dec Oct Hex Char
0 000 00 NUL
1 001 01 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EOT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL
8 010 08 BS
9 011 09 HT
10 012 OA NL
11 013 0B VT
12 014 0oC NP
13 015 oD CR
14 016 OE SO
15 017 OF SI
16 020 10 DLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 1A SuUB
27 033 1B ESC
28 034 1C FS
29 035 1D GS

450

—_—
FlyrHeart.com

TEAM FLY PRESENTS

30 036 1E RS
31 037 1F us
32 040 20 SP
33 041 21 !
34 042 22 "
35 043 23 #
36 044 24 $
37 045 25 %
38 046 26 &
39 047 27)
40 050 28 (
41 051 29)
42 052 2A *
43 053 2B +
44 054 2C ,
45 055 2D -
46 056 2E

47 057 2F /
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9
58 072 3A

59 073 3B ;
60 074 3C <
61 075 3D =
62 076 3E >
63 077 3F ?
64 100 40 @
65 101 41 A
66 102 42 B

451

‘—1.
FlyrHeart.com

TEAM FLY PRESENTS

67 103 43 c
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 I

74 112 4A J

75 113 4B K
76 114 4c L
77 115 4D M
78 116 AE N
79 117 AF o)
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 s
84 124 54 T
85 125 55 U
86 126 56 v
87 127 57 w
88 130 58 X
89 131 59 Y
90 132 5A z
91 133 5B [

92 134 5C \

93 135 5D]

94 136 5E ~
95 137 5F B
96 140 60 :
97 141 61 a
98 142 62 b
99 143 63 c
100 144 64 d
101 145 65 e
102 146 66 f

103 147 67 g

452

—_—
FlyrHeart.com

TEAM FLY PRESENTS

104 150 68 h
105 151 69 i
106 152 6A j
107 153 6B k
108 154 6C |
109 155 6D m
110 156 6E n
111 157 6F o
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 s
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 X
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C I
125 175 7D }
126 176 7E ~
127 177 7F DEL

453

—_—
FlyrHeart.com

TEAM FLY PRESENTS

B.1 Ranges

Table B-1 and Table B-2 list the ranges of various variable types.

Name
int
short int
long int
unsigned int
unsigned short int
unsigned long int
char
unsigned char
float
double

long double

Bits
32
16
32
32
16
32

32
64
64

Low value
2147483648
-32768
2147483648
0]

0]

0]

System Dependent
0]

-3.4E+38
-1.7E+308
-1.7E+308

TableB-1. 32-Bit UNIX Machine

High value
2147483647
32767
2147483647
4294967295
65535
4294967295

255
3.4E+38
1.7E+308
1.7E+308

Accuracy

6 digits
15 digits
15 digits

TableB-2 Turbo C++, Borland C++, and Most Other 16-bit Systems

Name
int
short int
long int
unsigned int
unsigned short int
unsigned long int
char
unsigned char
float
double

long double

High value

Bits Low value

16 -32768

16 -32768

32 -2147483648

16 0O

16 0

32 0

8 -128

8 0

32 |-3.4E+38

64 |-1.7E+308

80 |-3.4E+4932
454

32767
32767
2147483647
65535
65535
4294967295
127

255
3.4E+38
1.7E+308
3.4E+4932

Accuracy
6 digits
15 digits
17 digits
FlyHeom_‘Q

TEAM FLY PRESENTS

B.2 Automatic Type Conversions to Use When

Passing Parameters

In order to eliminate some of the problems that may occur when passing
parameters to a function, C performs the following automatic conversions to
function arguments as shown inTable B-3.

char

short int
int

long int
float
double
long double

array

TableB-3. Automatic Conversions

Type

Converted to
int
int
int
long int
double
double
long double

pointer

455

—
FlyrHeart.com 4

TEAM FLY PRESENTS

C.1 Standard Rules

Operators listed in Table C -1 near the top a re evaluated before those below.

TableC-1. C Precedence Rules

Precedence Operator

1. O [] ->

2. ! -~ ++ | — (type)
- (unary) * (dereference)
& (address of) sizeof

3 * (multiply) / %

4 + -

5 << >>

6. < <= > >=

7 == 1=

8 & (bitwise and)

9 ~

10. |

11. &&

12. 1

13. ?

14. = += -= etc.

15.

C.2 Practical Subset

Table C-2. Precedence Rules, Practical Subset

Precedence Operator

* (multiply)

%

2. +

456

—_—
FlyrHeart.com

TEAM FLY PRESENTS

Put parentheses around everything else.

457

—_—
FlyrHeart.com

TEAM FLY PRESENTS

Appendix D. A Program to Compute a Sine

Using a Power Series

This program is desighed to compute thesinefunction using a power series. A very
limited floating-point format is used to demonstrate some of the problems that can
occur when using floating-point.

The program is invoked by:

sine val ue

where valueis an angle in radians.

The program computes each term in the power series and displays the result. It
continues computing terms until the last term is so small that it doesn't contribute

to the final result.

For comparison purposes, the result of the library function si n is displayed as well
as the computed sine.

D.1 The sine.c Program

Example D-1. sine/sine.c

[File: sinelsine.c]

/**

* sine -- Conputes sine using very sinple floating *

* arithmetic. *

* *

* Usage: *

* si ne <val ue> *

* *

* <val ue> is an angle in radi ans *

* *

* Format used in f.fffe+X *

* *

* f.fff is a 4-digit fraction *

* +is asign (+ or -) *

* Xis asingle digit exponent *

* *

* sine(x) = x - X**3 + x**5 - x**7 *
458

FlyrHeart.com

—

>

TEAM FLY PRESENTS

* 3! 5! 7! *

* *

* Warning: This programis intended to show sone of the *

* problems with floating-point. It is not intended *
* to be used to produce exact val ues for the *
* si ne function. *

* *

* Note: Even though we specify only one digit for the *

* exponent, two are used for sone cal cul ati ons. *
* We have to do this because printf has no *
* format for a single digit exponent. *

**/

#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
#i ncl ude <stdi o. h>

/***'k****'k****'k***********'k****'k***************************

* float_2_ascii -- Turns a floating-point string *
* into ascii. *

* *

* Paranmeters *

* nunber -- Number to turn into ascii. *
* *

* Returns *

* Pointer to the string containing the nunber. *
* *

* Warning: Uses static storage, so later calls *
* overwrite earlier entries. *

**/

static char *float_2_ascii(float nunber)

{
static char result[10]; /*place to put the number */
sprintf(result,"%8.3E", nunber);
return (result);

}

/**

* fix_float -- Turns high-precision nunmbers into *

* | ow- preci sion nunbers to sinulate a *

* very dumb floating- point structure. *

* *

* Paraneters *

* nunber -- Nunber to take care of. *

459

—
FlyrHeart.com 4

TEAM FLY PRESENTS

* Returns *
* Nurmber accurate to five places only. *
* *

* Note: This works by changing a nunber into ascii and *
* back. Very slow, but it works. *

**/

float fix_float(float numnber)

{
fl oat result; /* result of the conversion */
char ascii[10]; /* ascii version of nunber */
sprintf(ascii,"%8.4e", nunber);
sscanf (ascii, "%", &result);
return (result);

}
/**
* factorial -- Conputes the factorial of a nunber. *

* *

* Paraneters *

* nunber -- Nunber to use for factorial. *

* *

* Returns *

* Factori al (nunber) or nunber! *

* *

* Note: Even though this is a floating-point routine, *
* usi ng nunmbers that are not whol e nunbers *

* does not make sense. *

**/

float factorial (float nunber)

{
if (number <= 1.0)
return (number);
el se
return (number *factorial (nunber - 1.0));
}

int main(int argc, char *argv[])

f | oat total; /* total of series so far */

fl oat new total ;/* newer version of total */
fl oat termtop;/* top part of term?*/

fl oat termbottom/* bottomof current term*/
fl oat term /* current term?*/

460

—
FlyrHeart.com 4

TEAM FLY PRESENTS

fl oat exp; /* exponent of current term?*/

fl oat sign; /* +1 or -1 (changes on each term */
fl oat value; /* value of the argunent to sin */

i nt index; [/* index for counting terns */

if (argc !'=2) {
fprintf(stderr,"Usage is:\n");

fprintf(stderr,"” sine <value>\n");
exit (8);
}
value = fix_float(atof (&rgv[1][0]));
total = 0.0;
exp = 1.0;
sign = 1.0;

for (index = 0; /* take care of below */ ; ++index) {
termtop = fix_fl oat(pow(val ue, exp));
termbottom= fix_float(factorial (exp));
term=fix_float(termtop / termbotton);

printf("x**o%d %\ n", (int)exp,
float_2_ascii(termtop));
printf("%d! %\ n", (int)exp,

float_2 ascii(termbottom);
printf("x**o%d/ %d! %\n", (int)exp, (int)exp,
float_2_ascii(term);
printf("\n");

new total = fix _float(total + sign * term;
if (new_total == total)
br eak;
total = new total;
sign = -sign;

exp = exp + 2.0;

printf(" total %\ n", float_2 ascii(total));

printf("\n");
}
printf("%l termconputed\n”, index+1);
printf("sin(%)=\n", float_2_ascii(value));
printf(" 9%\n", float_2 ascii(total));
printf("Actual sin(%=%\n",

atof (&argv[1][0]), sin(atof (&argv[1][0])));

return (0);

461

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Glossary

%

&&

The logical NOT operator.

Not-equal relational operator.

See Double quote.

The modulus operator.

1) The bitwise AND operator.

2) A symbol used to precede a variable name (as in &x). Means the address
of the named variable (address of x). Used to assign a value to a pointer
variable.

The logical AND operator (used in comparison operations).

See Single quote.

462

—_
FlyrHeart.com

TEAM FLY PRESENTS

++

1) The MULTIPLY operator.

2) A symbol used to p recede a pointer variable name that means "get the
value stored at the address pointed to by the pointer variable.” (*x means
"get the value stored at x"). Sometimes known as the dereferencing
operator or indirect operator.

The ADD operator.

The incrementation operator.

The comma character is an obscure C operator that can be used to connect
two statements together as one.

The subtract operator.

The decrementation operator.

Used to obtain a member from a class or structure pointer.

463

—
FlyHeart.com g4

TEAM FLY PRESENTS

<<

>>

The divide operator.

Less than relational operator.

The left shift operator.

Less than or equal relational operator.

Equal relational operator.

Greater than relational operator.

Greater than or equal relational operator.

The right shift operator.

464

—_
FlyrHeart.com

TEAM FLY PRESENTS

\b

\ f

\'n

18

C operators to allow a conditional inside an expression. Rarely used.

The bitwise exclusive OR operator.

Character used in strings to signal a special character.

Backspace character (moves the cursor back one on most output devices).

Form feed character. (On most printers, this character will eject a page. On
many terminals, this character will clear the screen.)

New-line character. Moves the cursor to the beginning of the next line.

See curly braces.

The bitwise OR operator.

465

—_
FlyrHeart.com

TEAM FLY PRESENTS

The logical OR operator.

Bitwise complement operator. Inverts all bits.

|\o|

End-of-string character (the NULL character).

#define

A C preprocessor directive that defines a substitute text for a name.

Hendif

The closing bracket to a preprocessor macro section that began with an
#ifdefdirective.

#ifdef

Preprocessor directive that checks to see if a macro name is defined. If
defined, the code following it is included in the source.

#ifndef

Preprocessor directive that checks to see if a macro name is undefined. If
undefined, the code following it is included in the macro expansion.

#include

466

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A preprocessor directive that causes the named file to be inserted in place of
the #include.

#H#undef

A preprocessor directive that cancels a#define.

_btr
A convention used in this book. All pointer variables end with the extension
_ptr.

Accuracy
A quantitative measurement of the error inherent in the representation of a
real number.

Address
A value that identifies a storage location in memory.

and
A Boolean operation that yields if either operand is 0, and 1 if both operands
are 1.

ANSI-C
Any version of C that conforms to the specifications of the American National
Standards Institute committee X3J.

ANSI-C++

467

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Any version of C++ that conforms to the specification of the American
National Standards Institute. At the time of this writing, the standards exist
only in draft form and a lot of details must still be worked out.

API
Application Programming Interface. A set of function calls provided by a
system to programmers. Frequently used in context with MS-DOS/Windows
programming.

Archive
See library.

Array
A collection of data elements arranged to be indexed in one or more
dimensions. In C, arrays are stored in contiguous memory.

ASCII

American Standard Code for Information Interchange. A code to represent
characters.

Assignment statement

An operation that stores a value in a variable.

auto

A C keyword used to create temporary variables. Rarely used because, by
default, variables are considered automatic.

468

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Automatic variable

See temporary variable.

Base

See radix.

Bit

Binary digit; either of the digits O or 1.

Bit field

A group of contiguous bits taken together as a unit. A C language feature

that allows the access of individual bits.

Bit flip

The inversion of all bits in an operand. See complement.

Bit-mapped graphics

Computer graphics where each pixel in the graphic output device is
controlled by a single bit or a group of bits.

Bit operators

See bitwise operator.

Bitwise operator

468

—
FlyrHeart.com 4

TEAM FLY PRESENTS

An operator that performs Boolean operations on two operands treating each
bit in an operand as individual bits, and performing the operation bit by bit
on corresponding bits.

Block

A section of code enclosed in curly braces.

Boolean

An operation or value that can return either a true or false result.

Borland C++

A version of the C++ language for personal computers developed by Borland.
This is the high -end version of Borland's Turbo C++ product. This pro duct
will handle both C and C++ code.

Boxing (a comment)

The technique of using a combination of asterisks, vertical and horizontal
rules, and other typographic characters to draw a box around a comment in
order to set it off from the code.

break

A statement that terminates the innermost execution of for, while, switch,
and do/while statements.

Breakpoint

A location in a program where normal execution is suspended and control is
turned over to the debugger.

470

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Buffered 170

Input/Output where intermedia te storage (a buffer) is used between the
source and destination of an 1/0 stream.

Byte
A group of eight bits.

C
A general-purpose computer programming language developed in 1974 at
Bell Laboratories by Dennis Ritchie. C is considered to be a
medium-to-high-level language.

C++
A language based on C invented in 1980 by Bjarne Stroustrup. First called "C
with classes," it has evolved into its own language.

C code

Computer instructions written in the C language.

C compiler

Software that translates C source code into machine code.

C syntax.

See syntax.

Call by value

471

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A procedure call in which the parameters are passed by passing the values of
the parameters.

case
Acts as a label for one of the alternatives in a switch statement.
Cast
To convert a variable from one type to another type by explicitly indicating
the type conversion.
CGA
Color graphics adaptor. A common color graphics card for the IBM PC.
char

A C keyword used to declare variables that represent characters or small
integers.

Class (of a variable)

See storage class.

Clear a bit

The operation of setting an individual bit to zero. This operation is not a
defined operation in C.

Code design

472

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A document that describes in general terms how the program is to perform
its function.

Coding

The act of writing a program in a computer language.

Command-line options

Options to direct the course of a program such as a compiler, entered from
the computer console.

Comment
Text included in a computer program for the sole purpose of provid ing

information about the program. Comments are a programmer's notes to
himself and future programmers. The text is ignored by the compiler.

Comment block

A group of related comments that convey general information about a
program or a section of program.

Compilation

The translation of source code into machine code.

Compiler

A system program that does compilation.

Complement

473

—
FlyrHeart.com 4

TEAM FLY PRESENTS

An arithmetic or logical operation. A logical complement is the same as an
INVERT or NOT operation.

Computer language

See programming language.

Conditional compilation

The ability to selectively compile parts of a program based on the truth of
conditions tested in conditional directives that surround the code.

continue

A flow control statement that causes the next execution of a loop to begin.

Control statements

A statement that determines which statement is to be executed next based
on a conditional test.

Control variable

A variable that is systematically changed during the execution of the loop.
When the variable reach es a predetermined value, the loop is terminated.

Conversion specification

A C string used by thepri ntf family of functions to specify how a variable is
to be printed.

Curly braces

474

—
FlyHeart.com g4

TEAM FLY PRESENTS

One of the characters { or }. They are used in C to delimit groups of elements
to treat them as a unit.

Debugging

The process of finding and removing errors from a program.

Decision statement

A statement that tests a condition created by a program and changes the
flow of the program based on that decision.

Declaration

A specification of the type and name of a variable to be used in a program.

default

Serves as a case label if no case value match is found within the scope of a
switch.

Define statement

See #define.

Dereferencing operator

The operator that indicates access to the value pointed to by a pointer
variable or an addressing expression. See also * .

Directive

475

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A command to the preprocessor (as opposed to a statement to produce
machine code).

double

A C language key word used to declare a variable that contains a real number.
The number usually requires twice as much storage as type float.

Double linked list

A linked list with both forward and backward pointers. See also linked list.

Double quote (')

ASCII character 34. Used in C to delimit character strings.

EGA
Enhanced Graphics Adaptor. A common graphics card for the IBM PC.

else
A clause in anif statement specifying the action to take in the event that the
statement following the if conditional is false.

enum

A C keyword that defines an enumeration data type.

Enumerated data type

A data type consisting of a named set of values. The C compiler assigns an
integer to each member of the set.

476

—
FlyrHeart.com 4

TEAM FLY PRESENTS

EOF

End-of-file character defined in stdio.h.

Escape character

A special character used to change the meaning of the character(s) that
follow. This character is represented in C by the backslash character \.

Exclusive OR

A Boolean operation that yields if both operands are the same and 1 if they
are different.

Executable file

A file containing machinecode that has been linked and is ready to be run on
a computer.

Exponent

The component of a floating-point number that represents the integer power
to which the number base is raised.

Exponent overflow

A condition resulting from a floating-point operation in which the result is an
exponent too large to fit within the bit field allotted to the exponent.

Exponent underflow

477

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A condition resulting from a floating-point operation in which the resultis an
exponent too large in negative value to fit within the bit field allotted to the

exponent.

extern

C keyword used to indicate that a variable or function is defined outside the
current file.

Fast prototyping

A top-down programming technique that consists of writing the smallest
portion of a specification that can be implemented and still do something.

fclose

A function that closes a file.

fflush

A routine that forces the flushing of a buffer.

fgetc

A function that reads a single character.

fgets

A stream input library function that reads a single line.

FI LE

A macro definition in stdio.h that declares a file variable.

478

—
FlyrHeart.com 4

TEAM FLY PRESENTS

File

A group of related records treated as a unit.

float

A C keyword to declare a variable that can hold a real number.

Floating point

A numbering system represented by a fraction and an exponent. The system
handles very large and very small numbers.

Floating-point exception (core dumped)

An error caused by a divide by or other illegal arithmetic operation. The
exception is a somewhat misleading error because it is caused by integer as

well as floatingpoint errors.

Floating-point hardware

Circuitry that can perform floating-point operations directly without
resorting to software. In personal computers, the circuitry is found in the
math coprocessor. More advanced processors such as the 80486 have
floating-point units built in.

fopen

A function that opens a file for stream 1/0.

fprintf

479

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A function that converts binary data to character data and then writes the
data to a file.

fputc

A function that writes a single character.

fputs

A function that writes a single line.

fread

A binary 1/0 input function.

free

A C function that returns data to the memory pool.

Free Software Foundation

A group of programmers who create and distribute high -quality software for
free. Among their products are the editor emacs and the C compiler gcc:
Free Software Foundation, Inc., 675 Mass Ave., Cambridge, MA 02139 (617)
876-3296. Their ftp site is prep.ai.mit.edu:/pub/gnu. They can be found on
the World Wide Web at http://www.gnu.org.

f scanf

An input routine similar to scanf that reads from a file.

function

480

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A procedure that returns a value.

fwite

A binary 1/0 output function.

Generic pointer

A pointer that can point to any variable without restriction as to type of
variable. A pointer to storage without regard to content.

ghostscript

A PostScript(TM)-like interpreter that is freely available from the Free
Software Foundation.

Global variable

A variable known throughout an entire program.

Guard digit

An extra digit of precision used in floating-point calculations to ensure
against loss of accuracy.

Header file

See Include file.

Heap

A portion of memory used by nal | oc to allocate space to new structures and
arrays. Space is returned to this pool by using thefree function.

481

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Hexadecimal number

A base-16 number.

High-level language

A level of computer language that is between machine language and natural
(human) language.

1/0 manipulators

Functions that when "output" or "input"” cause no 1/0, but set various
conversion flags or parameters.

IEEE floating-point standard

IEEE standard 754, which standardizes floating-point format, precision, and

certain non-numerical values.

A statement that allows selective execution of parts of a program based on
the truth of a condition.

Implementation dependence

The situation in which the result obtained from the operation of computer or
software is not standardized because of variability among computer systems.
A particular operation may yield different results when run on another
system.

include file

482

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A file that is merged with source code by invocation of the preprocessor
directive #include. Also called a header file.

Inclusive OR

See OR.

Index

A value, variable, or expression that selects a particular element of an array.

Indirect operator

See dereferencing operator.

Information hiding
A code design system that tries to minimize the amount of information that
is passed between modules. The idea is to keep as much information as

possible hidden inside the modules and only make information public if
absolutely necessary.

Instruction

A group of bits or characters that defines an operation to be performed by
the computer.

int

C keyword for declaring an integer.

Integer

483

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A whole number.

Interactive debugger

A program that aids in the debugging of programs.

Invert operator

A logical operator that performs a not.

Left shift

The operation of moving the bits in a bit field left by a specified amount and
filling the vacated positions with Os.

Library

A collection of files usually containing object code for linking into programs.
Also called an archive.

Linked list

A collection of data nodes. Each node consists of a value and a pointer to the
next item in the list.

Local include files

Files from a private library that can be inserted by the preprocessor at the
directive #include "fil ename" .

Local variable

A variable whose scope is limited to the block in which it is declared.

484

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Logical AND

A Boolean operation that returns true if its two arguments are both true.

Logical operator

A C operator that performs a logical operation on its two operands and
returns a true or a false value.

Logical OR

A Boolean operation that returns true if any one of its two arguments are
true.

long

A qualifier to specify a data type with greater-than-normal range.

Machine code

Machine instructions in a binary format that can be recognized directly by the
machine without further translation.

Machine language

See machine code.

Macro

A short piece of text, or text template, that can be expanded into a longer
text.

485

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Macro processor

A program that generates code by placing values into positions in a defined
template.

Magnitude of the number

The value of a number without regard to sign.

Maintenance (of a program)

Modification of a program because of changing conditions external to the
computer system.

make
A utility in both UNIX and MS-DOS/Windows that manages the compilation
of programs.

Makefile
The file that contains the commands for the utility make.

mal | oc
A C procedure that manages a memory heap.

Mask
A pattern of bits for controlling the retention or elimination of another group
of bits.

member

486

—
FlyrHeart.com 4

TEAM FLY PRESENTS

An element of structure. Also called a field.

Module

One logical part of a pro gram.

MS-DOS

An operating system for IBM personal computers developed by Microsoft.

Newline character

A character that causes an output device to go to the beginning of a new line.
C\n").

Nonsignificant digits

Leading digits that do not affect the value of a number (Os for a positive
number, 1s for a negative number in complement form).

Normalization

The shifting of a floating-point fraction (and adjustment of the exponent) so
that there are no leading nonsignificant digits in the fraction.

NOT

A Boolean operation that yields the logical inverse of the operand. Not 1
yields a O, not yields a 1.

Not a number

487

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A special value defined in IEEE 754 to signal an invalid result from a
floating-point operation.

NULL

A constant of value O that points to nothing.

Null pointer

A pointer whose bit pattern is all zeroes. This pattern indicates that the
pointer does not point to valid data.

Object-Oriented Design

A design methodology by which the programmer bases a design on data
objects (classes) and the connections between them. Not used much for C
programs, but better suited to the C++ language.

Octal number

A base 8 number.

Ones complement

An operation that flips all the bits in a integer. Ones become zeroes and
zeroes become ones.

Operator

A symbol that represents an action to be performed.

OR

488

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A Boolean operation that yields a 1 if either of the operands is a 1, or yields
a zero if both of the operands are 0.

Overflow error

An arithmetic error caused by the result of an arithmetic operation's being
greater than the space the computer provides to store the result.

Packed structure

A data structure technique whereby bit fields are only as large as needed,
regardless of word boundaries.

Pad byte

A byte added to a structure whose sole purposeis to ensure memory
alignment.

Parameter

A data item to which a value may be assigned. Often means the arguments
that are passed between a caller and a called procedure.

Parameterized macro

A macro consisting of a template with insertion points for the introduction of
parameters.

Parameters of a macro

The values to be inserted into the parameter positions in the definition of a
macro. The insertion occurs during the expansion of the macro.

488

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Permanent variables

A variable that is created and initialized before the program starts, and that
retains its memory during the entire execution of the program.

Pixel
The smallest element of a display that can be individually assigned intensity
and color. From Picture Element.

Pointer

A data type that holds the address of a location in memory.

Pointer arithmetic
C allows three arithmetic operations on pointers. 1) A numeric value can be

added to a pointer. 2) A numeric value can be subtracted from a pointer. 3)
One pointer can be subtracted from another pointer.

Portable C compiler

A C compiler written by Stephen Johnson that is easily adapted to different
computer architectures.

Precision

A measure of the ability to distinguish between nearly equal values.

Preprocessor

A program that performs preliminary processing with the purpose of
expanding macro code templates to produce C code.

490

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Preprocessor directive

A command to the preprocessor.

printf

A C library routine that produces formatted output.

Procedure

A program segment that can be invoked from d ifferent parts of a program or
programs. It does not return a value (function of type void).

Program

A group of instructions that cause a computer to perform a sequence of
operations.

Program header

The comment block at the beginning of the program.

Programmer

An individual who writes programs for a computer.

Programming (a computer)

The process of expressing the solution to a problem in a language that
represents instructions for a computer.

Programming language

A scheme of formal notation used to prepare computer programs.

491

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Program specification

A written document that states what a program is to do.

Pseudo code

A coding technique by which precise descriptions of procedures are written in
easy-to-read language constructs without the bother of precise attention to
syntax rules of a computer language.

Qualifier

A word used to modify the meaning of a data declaration.

Radix

The positive integer by which the weight of the digit place is multiplied to
obtain the weight of the next higher digit in the base of the numbering
system.

Real number

A number that may be represented by a finite or infinite numeral in a
fixed-radix numbering system.

Recursion

Recursion occurs when a function calls itself directly or indirectly. (For a
recursive definition, see Recursion).

Redirect

492

—
FlyHeart.com g4

TEAM FLY PRESENTS

The command-line option ">file" allows the user to direct the output of a
program into a file instead of the screen. A similar option, <file, exists for
input, taking input from the file instead of the keyboard.

Reduction in strength

The process of substituting cheap (fast) operations for expensive (slow)
ones.

Relational operator

An operator that compares two operands and reports either true or false
based on whether the relationship is true or false.

Release

The completion of a programming project to the point at which it is ready for
general use.

Replay file

A file that is used instead of the standard input for keyboard data.

Return statement

A statement that signals the completion of a function and causes control to
return to the caller.

Revision

The addition of significant changes to the program.

Right shift

493

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The operation of moving the bits in a bit field right by a specified amount.

Round

To delete or omit one or more of the least significant digits in a p ositional
representation and adjust the part retained in accordance with some specific
rule, e.g., to minimize the error.

Rounding error

An error due to truncation in rounding.

Save file

A debugging tool with which all the keystrokes typed by the user are saved
in a file for future use. See also Replay file.

scanf

A library input function that reads numbers directly from the keyboard. Hard
to use. In most cases af get s/sscanf combination is used.

Scope

The portion of a program in which the name of the variable is known.

Segmentation violation

An error caused by a program trying to access memory outside its address
space. Caused by dereferencing a bad pointer.

Set a bit

494

—
FlyrHeart.com 4

TEAM FLY PRESENTS

The operation of setting a specified bit to one. This operation is not a defined
operation in C.

Shift

The operation of moving the bits in a bit field either left or right.

short

An arithmetic data type that is the same size, or smaller, than an integer.

Side effect
An operation performed in addition to the main operation of a statement

such as incrementing a variable in an assignment statement: result =

begi n++- end; .

Significand

The most significant digits of a floating-point number without regard to
placement of the radix point.

Significant digits

A digit that must be kept to preserve a given accuracy.

Single quote (%)

ASCII character 39. Used in C to delimit a single character.

sizeof

Operator that returns the size, in bytes, of a data type of variable.

495

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Source code

Symbolic coding in its original form before beingtranslated by a computer.

Source file

A file containing source code.

Specification

A document that describes what the program does.

sprintf

Similar to f pri nt f except that it uses a string output.

sscanf

A library input routine.

Stack

An area of memory used to hold a list of data and instructions on a
temporary basis.

Stack variable

See Temporary variable.

Stack overflow

496

—_
FlyrHeart.com

TEAM FLY PRESENTS

An error caused by a program using too much temporary space (stack space)
for its variables. Caused by a big program or by in finite recursion.

static
A storage class attribute. Inside a set of curly braces, it indicates a

permanent variable. Outside a set of curly braces, it indicates a file -local
variable.

stderr

Predefined standard error file.

stdin

Predefined input source.

stdio.h

The C standard 1/0 package.

st dout

Predefined standard output.

Storage class

An attribute of a variable definition that controls how the variable will be
stored in memory.

String

A sequence or array of characters.

497

—
FlyrHeart.com 4

TEAM FLY PRESENTS

struct

A C keyword that identifies a structure data type.

Structure

A hierarchical set of names that refers to an aggregate of data items that
may have different attributes.

Style sheet

A document that describes the style of programming used by a particular
company or institution.

Sunview

A graphics and windowing system available on SUN workstations.

switch

A multiway branch that transfers control to one of several case statements
based on the value of an index expression.

Syntax

Rules that govern the construction ofstatements.

Syntax error

An error in the proper construction of a C expression.

Temporary variable

498

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A variable whose storage is allocated from the stack. It is initialized each
time the block in which it is defined is entered. It exists only during the
execution of that block.

Test a bit

The operation of determining if a particular bit is set. This operation is not
defined in C.

Test plan

A specification of the tests that a program must undergo.

Text editor

Software used to create or alter text files.

Translation

Creation of a new program in an alternate language logically equivalent to an
existing program in a source language.

Tree

A hierarchical data structure.

Truncation

An operation on a real number whereby any fractional part is discarded.

Turbo C++

498

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A version of the C++ language for personal computers developed by
Borland.

Typecast

See Cast.

typedef

A operator used to create new types from existing types.

typing statement

A statement that establishes the characteristics of a varia ble.

Unbuffered 170

Each read or write results in a system call.

union

A data type that allows different data names and data types to be assigned
to the same storage location.

UNIX

A popular multiuser operating system first developed by Ken Thompsonand
Dennis Ritchie of the Bell Telephone Laboratories.

unsigned

A qualifier for specifyingint andchar variables that do not contain negative
numbers.

500

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Upgrading

Modification of a program to provide improved performance or new features.

value

A quantity assigned to a constant.

Variable
A name that refers to a value. The data represented by the variable name

can, at different times during the execution of a program, assume different
values.

Variable name

The symbolic name given to a section of memory used to store a variable.

Version

A term used to identify a particular edition of software. A customary practice
is to include a version number. Whole numbers indicate major rewrites.
Fractions indicate minor rewrites or corrections of problems.

void
A data type in C. When used as a parameter in a function call, it indicates
that there is no return value. voi d * indicates that a generic pointer value is
returned.

volatile

501

—
FlyrHeart.com 4

TEAM FLY PRESENTS

A C keyword that indicates that the value of a variable or constant can be
changed at any time. This attribute is used for memory mapped 1/0, shared
memory applications, and other advanced programming.

while

An iterative statement that repeats a statement as long as a given condition
is true.

Windows

Also knows as MS -Windows. An operating system developed for personal
computers by Microsoft Corporation. Also a new operating system with a
similar user interface and API such as Windows NT and Windows 95.

X Window System

A graphics and windowing system available from the X Consortium that is
currently running on many computing systems.

Zero-based counting

A system of counting by which the first object is given the count zero rather
than one.

502

—
FlyrHeart.com 4

TEAM FLY PRESENTS

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal featured on the cover of Practical C Programmingis a Jersey cow. The
Jersey, one of the many breeds of modern cows, originated from a now extinct stock
of wild cattle that inhabited western Asia, North Africa, and continental Europe.
Cows were first introduced into the western hemisphere by Christopher Columbus
on his second voyage in 1493.

Jerseys, bred on the British isle of Jersey since 1789, were first introduced to
America in the 1850s. Smallest of the modern dairy cows, this fawn-colored beast
typically weighs between 1000 and 1500 pounds. As a milk producer, Jerseys are
the least prolific of any American dairy cow. However, their milk is creamier than
that of any other breed.

Edie Freedman designed the cover of this book, using a 19th-century engraving
from the Dover Pictorial Archive. The cover layout was produced with Quark XPress
3.32 using the ITC Garamond font.

The inside layout was designed by Nancy Priest and implemented in FrameMaker
5.0 by Mike Sierra. The text and heading fonts are ITC Garamond Light and
Garamond Book. The illustrations that appear in the book were created in
Macromedia Freehand 5.0 by Chris Reilley and updated by Robert Romano. This
colophon was written by Michael Kalantarian.

503

FlyrHeart.com

—

>

TEAM FLY PRESENTS

	sample.pdf
	sterling.com
	Welcome to Sterling Software

