

Volume 1, Issue 2, 2006

Portable Executable File Format – A Reverse Engineer View

Goppit
January 2006

Abstract
This tutorial aims to collate information from a variety of sources and present it in a way which is accessible
to beginners. Although detailed in parts, it is oriented towards reverse code engineering and superfluous
information has been omitted.

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

This disclaimer is not meant to sidestep the responsibility for the material we will share
with you, but rather is designed to emphasize the purpose of this CodeBreakers Magazine
feature, which is to provide information for your own purposes. The subjects presented
have been chosen for their educational value. The information contained herein consists of
Secure Software Engineering, Software Security Engineering, Software Management,
Security Analysis, Algorithms, Virus-Research, Software-Protection and Reverse Code
Engineering, Cryptanalysis, White Hat and Black Hat Content, and is derived from authors
of academically institutions, commercials, organizations, as well as private persons. The
information should not be considered to be completely error-free or to include all relevant
information; nor should it be used as an exclusive basis for decision-making. The user
understands and accepts that if CodeBreakers Magazine were to accept the risk of harm to
the user from use of this information, it would not be able to make the information
available because the cost to cover the risk of harms to all users would be too great. Thus,
use of the information is strictly voluntary and at the users sole risk.

The information contained herein is not a license, either expressly or impliedly, to any
intellectual property owned or controlled by any of the authors or developers of
CodeBreakers Magazine. The information contained herein is provided on an "AS IS" basis
and to the maximum extent permitted by applicable law, this information is provided AS IS
AND WITH ALL FAULTS, and the authors and developers of CodeBreakers Magazine hereby
disclaim all other warranties and conditions, either express, implied or statutory, including,
but not limited to, any (if any) implied warranties, duties or conditions of merchantability,
of fitness for a particular purpose, of accuracy or completeness of responses, of results, of
workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the
contribution.

ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH
REGARD TO CODEBREAKERS MAGAZINE.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF CodeBreakers Magazine BE LIABLE TO
ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES,
LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL,
DIRECT, INDIRECT, OR PUNITIVE OR SPECIAL DAMAGES WHETHER UNDER CONTRACT,
TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO CODEBREAKERS MAGAZINE, WHETHER OR NOT SUCH PARTY
HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

© 2006 CodeBreakers Magazine Page 2 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Table of Contents

1 Introduction..4
2 Basic Structure..4
3 The DOS Header..6
4 The PE Header...8
5 The Data Directory...16
6 The Section Table ..18
7 The PE File Sections ...20
8 The Export Section...23
9 The Import Section ..29
10 The Loader ...35
11 Navigating Imports on Disk ...39
12 Adding Code to a PE File ...46
13 Adding Import to an Executable ...53
14 Introduction to Packers...60
15 Infection of PE Files by Viruses ..71
16 Conclusion ..73
17 Relative Virtual Addressing Explained..74
18 References & Bibliography...78
19 Tools Used..79
20 Appendix: Complete PE Offset Reference...80

© 2006 CodeBreakers Magazine Page 3 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

1 Introduction
This tutorial aims to collate information from a variety of sources and present it in a way which is accessible
to beginners. Although detailed in parts, it is oriented towards reverse code engineering and superfluous
information has been omitted. You will see I have borrowed heavily from various published works and all
authors are remembered with gratitude in the reference section at the end.

PE is the native Win32 file format. Every win32 executable (except VxDs and 16-bit DLLs) uses PE file
format. 32bit DLLs, COM files, OCX controls, Control Panel Applets (.CPL files) and .NET executables are all
PE format. Even NT's kernel mode drivers use PE file format.

Why do we need to know about it? 2 main reasons. Adding code to executables (e.g. keygen injection or
adding functionality) and manually unpacking executables. With respect to the latter, most shareware
nowadays comes "packed" in order to reduce size and to provide an added layer of protection.

In a packed executable, the import tables are usually destroyed and data is often encrypted. The packer
inserts code to unpack the file in memory upon execution, and then jumps to the original entry point of the
file (where the original program actually starts executing). If we manage to dump this memory region after
the packer finished unpacking the executable, we still need to fix the sections and import tables before our
app will run. How will we do that if we don’t even know what the PE format is?

The example executable I have used throughout this text is BASECALC.exe, a very useful app from fravia's
site for calculating and converting decimal, hex, binary and octal. It is coded in Borland Delphi 2.0 which
makes it ideal as an example to illustrate how Borland compilers leave the OriginalFirstThunks null (more on
this later).

2 Basic Structure
The picture shows the basic structure of a PE file.

At a minimum, a PE file will have 2 sections; one for code and the other for data. An
application for Windows NT has 9 predefined sections named .text, .bss, .rdata, .data,
.rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need all of these
sections, while others may define still more sections to suit their specific needs.

The sections that are most commonly present in an executable are:

• Executable Code Section, named .text (Micro$oft) or CODE (Borland)

• Data Sections, named .data, .rdata, or .bss (Micro$oft) or DATA (Borland)

• Resources Section, named .rsrc

• Export Data Section, named .edata

• Import Data Section, named .idata

• Debug Information Section, named .debug

The names are actually irrelevant as they are ignored by the OS and are present only for
the convenience of the programmer. Another important point is that the structure of a PE

© 2006 CodeBreakers Magazine Page 4 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

file on disk is exactly the same as when it is loaded into memory so if you can locate info in the file on disk
you will be able to find it when the file is loaded into memory.

However it is not copied exactly into memory. The windows loader decides which parts need mapping in and
omits any others. Data that is not mapped in is placed at the end of the file past any parts that will be
mapped in e.g. Debug information.

Also the location of an item in the file on disk will often differ from its location once loaded into memory
because of the page-based virtual memory management that windows uses. When the sections are loaded
into RAM they are aligned to fit to 4Kb memory pages, each section starting on a new page. Virtual memory
is explained below.

The concept of virtual memory is that instead of letting software directly access physical memory, the
processor and OS create an invisible layer between the two. Every time an attempt is made to access
memory, the processor consults a "page table" that tells the process which physical memory address to
actually use. It wouldn’t be practical to have a table entry for each byte of memory (the page table would be
larger than the total physical memory), so instead processors divide memory into pages. This has several
advantages:

1) It enables the creation of multiple address spaces. An address space is an isolated page table that only
allows access to memory that is pertinent to the current program or process. It ensures that programs are
completely isolated from one another and that an error causing one program to crash is not able to poison
another program's address space.

2) It enables the processor to enforce certain rules on how memory is accessed. Sections are needed in PE
files because different areas in the file are treated differently by the memory manager when a module is
loaded. At load time, the memory manager sets the access rights on memory pages for the different sections
based on their settings in the section header. This determines whether a given section is readable, writable,
or executable. This means each section must typically start on a fresh page.

However, the default page size for Windows is 4096 bytes (1000h) and it would be wasteful to align
executables to a 4Kb page boundary on disk as that would make them significantly bigger than necessary.
Because of this, the PE header has two different alignment fields; Section alignment and file alignment.
Section alignment is how sections are aligned in memory as above. File alignment (usually 512 bytes or

© 2006 CodeBreakers Magazine Page 5 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

200h) is how sections are aligned in the file on disk and is a multiple of disk sector size in order to optimize
the loading process.

3) It enables a paging file to be used on the harddrive to temporarily store pages from the physical memory
whilst they are not in use. For instance if an app has been loaded but becomes idle, its address space can be
paged out to disk to make room for another app which needs to be loaded into RAM. If the situation reverses,
the OS can simply load the first app back into RAM and resume execution where it left off. An app can also
use more memory than is physically available because the system can use the hard drive for secondary
storage whenever there is not enough physical memory.

When PE files are loaded into memory by the windows loader, the in-memory version is known as a module.
The starting address where file mapping begins is called an HMODULE. A module in memory represents all
the code, data and resources from an executable file that is needed for execution whilst the term process
basically refers to an isolated address space which can be used for running such a module.

3 The DOS Header
All PE files start with the DOS header which occupies the first 64 bytes of the file. It's there in case the
program is run from DOS, so DOS can recognize it as a valid executable and run the DOS stub which is
stored immediately after the header. The DOS stub usually just prints a string something like "This program
must be run under Microsoft Windows" but it can be a full-blown DOS program. When building an application
for Windows, the linker links a default stub program called WINSTUB.EXE into your executable. You can
override the default linker behavior by substituting your own valid MS-DOS-based program in place of
WINSTUB and using the -STUB: linker option when linking the executable file.

The DOS header is a structure defined in the windows.inc or winnt.h files. (If you have an assembler or
compiler installed you will find them in the \include\ directory). It has19 members of which magic and lfanew
are of interest:

© 2006 CodeBreakers Magazine Page 6 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

In the PE file, the magic part of the DOS header contains the value 4Dh, 5Ah (The letters "MZ" for Mark
Zbikowsky one of the original architects of MS-DOS) which signifies a valid DOS header. MZ are the first 2
bytes you will see in any PE file opened in a hex editor (See example below.)

As we can see from its definition above, lfanew is a DWORD which sits at the end of the DOS header directly
before the DOS stub begins. It contains the offset of the PE header, relative to the file beginning. The
windows loader looks for this offset so it can skip the DOS stub and go directly to the PE header.

[NOTE: DWORD ("double word") = 4 bytes or 32bit value, WORD = 2 bytes or 16bit value, sometimes you
will also see dd for DWORD, dw for WORD and db for byte]

The definitions are helpful as they tell us the size of each member. This allows us to locate information of
interest by counting the number of bytes from the start of the section or any other identifiable point.

As we said above, the DOS header occupies the first 64 bytes of the file - ie the first 4 rows seen in the
hexeditor in the picture below. The last DWORD before the DOS stub begins contains 00h 01h 00h 00h.
Allowing for reverse byte order this gives us 00 00 01 00h which is the offset where the PE header begins.
The PE header begins with its signature 50h, 45h, 00h, 00h (the letters "PE" followed by two terminating
zeroes).

If in the Signature field of the PE header, you find an NE signature here rather than a PE, you're working with
a 16-bit Windows New Executable file. Likewise, an LE in the signature field would indicate a Windows 3.x
virtual device driver (VxD). An LX here would be the mark of a file for OS/2 2.0.

We will discuss this in the next section.

© 2006 CodeBreakers Magazine Page 7 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

4 The PE Header
The PE header is the general term for a structure named IMAGE_NT_HEADERS. This structure contains
essential info used by the loader. IMAGE_NT_HEADERS has 3 members and is defined in windows.inc thus:

Signature is a DWORD containing the value 50h, 45h, 00h, 00h ("PE" followed by two terminating zeroes).

FileHeader is the next 20 bytes of the PE file and contains info about the physical layout & properties of the
file e.g. number of sections. OptionalHeader is always present and forms the next 224 bytes. It contains info
about the logical layout inside the PE file e.g. AddressOfEntryPoint. Its size is given by a member of
FileHeader. The structures of these members are also defined in windows.inc

FileHeader is defined as follows:

Most of these members are not of use to us but we must modify NumberOfSections if we add or delete any
sections in the PE file. Characteristics contains flags which dictate for instance whether this PE file is an
executable or a DLL. Back to our example in the Hexeditor, we can find NumberOfSections by counting a
DWORD and a WORD (6 bytes) from the start of the PE header (to allow for the Signature and Machine
members):

© 2006 CodeBreakers Magazine Page 8 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

This can be verified by using any number of different (freeware) PE tools. For instance in PEBrowsePro:

Or in LordPE:

© 2006 CodeBreakers Magazine Page 9 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Or even from the "Subsystem" button of PEID:

NOTE: PEID is an extremely useful tool -
its main function is to scan executables
and reveal the packer which has been
used to compress/protect them. It also
has the Krypto ANALyser plugin for
detecting the use of cryptography in the
executable e.g. CRC, MD5, etc. It can also
utilise a user-defined list of packer
signatures. This is the first tool to be used
when embarking on any unpacking
session.

Moving on to OptionalHeader, this takes
up 224 bytes, the last 128 of which
contain the Data Directory. Its definition is
as follows:

AddressOfEntryPoint -- The RVA of the
first instruction that will be executed when
the PE loader is ready to run the PE file. If
you want to divert the flow of execution
right from the start, you need to change
the value in this field to a new RVA and
the instruction at the new RVA will be
executed first. Executable packers usually
redirect this value to their decompression
stub, after which execution jumps back to
the original entry point of the app - the
OEP. Of further note is the Starforce
protection in which the CODE section is not present in the file on disk but is written into virtual memory on
execution. The value in this field is therefore a VA (see appendix for further explanation).

ImageBase -- The preferred load address for the PE file. For example, if the value in this field is 400000h,
the PE loader will try to load the file into the virtual address space starting at 400000h. The word "preferred"

© 2006 CodeBreakers Magazine Page 10 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

means that the PE loader may not load the file at that address if some other module already occupied that
address range. In 99% of cases it is 400000h.

SectionAlignment -- The granularity of the alignment of the sections in memory. For example, if the value in
this field is 4096 (1000h), each section must start at multiples of 4096 bytes. If the first section is at
401000h and its size is 10 bytes, the next section must be at 402000h even if the address space between
401000h and 402000h will be mostly unused.

FileAlignment -- The granularity of the alignment of the sections in the file. For example, if the value in this
field is 512 (200h), each section must start at multiples of 512 bytes. If the first section is at file offset 200h
and the size is 10 bytes, the next section must be located at file offset 400h: the space between file offsets
522 and 1024 is unused/undefined.

SizeOfImage -- The overall size of the PE image in memory. It's the sum of all headers and sections aligned
to SectionAlignment.

SizeOfHeaders -- The size of all headers + section table. In short, this value is equal to the file size minus
the combined size of all sections in the file. You can also use this value as the file offset of the first section in
the PE file.

DataDirectory -- An array of 16 IMAGE_DATA_DIRECTORY structures, each relating to an important data
structure in the PE file such as the import address table. This important structure will be discussed in the
next section.

The overall layout of the PE Header can be seen from the following picture in the hexeditor. Note the DOS
header and the parts of the PE header are always the same size (and shape) when viewed in the hexeditor,
the DOS STUB can vary in size:

© 2006 CodeBreakers Magazine Page 11 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Besides the PE tools mentioned above, our favourite Ollydbg can also parse the PE headers into a meaningful
display. Open our example in Olly and Press the M button or Alt+M to open the memory map - this shows
how the sections of the PE file have been mapped into memory:

Now rightclick on PE header and select Dump in CPU. Next in the hex window, rightclick again and select
special then PE header:

Now you should see this:

© 2006 CodeBreakers Magazine Page 12 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

There are some specific points of interest in the optional header. If the last 2 members are both given bogus
values, eg

 LoaderFlags = ABDBFFDEh
 NumberOfRvaAndSizes = DFFFDDDEh

Olly will determine the binary is a bad image and will eventually run the app without breaking at the entry
point. If you were working with a virus then you would be infected. To avoid this when analyzing malware,
open the app in the hexeditor and check the header first. If the NumberOfRvaAndSizes field alone is changed
back to 10h the problem is solved. A bogus value in this field can also cause some versions of Softice to
reboot.

In addition the SizeOfRawData field in the section header can be given a very high value for one of the
sections. This will then cause difficulties for many debugging and disassembling tools.

Another strange twist exists in the story of the PE header. Some of you may have noticed there is a section
of garbage data between the DOS stub and the PE header in files linked by Micro$ofts Linker. The origin of
this data has been discussed in at least 3 forums and although it is not necessary to know about it, it is
interesting so I will outline the details here.

PE files produced using M$ development tools contain extra bytes in the DOS stub inserted by the linker
Link.exe at compile time. In all cases, the penultimate DWORD is "Rich". This data is not present in files
produced with other linkers (eg Borland, GCC, fasm, etc). This behavior is exhibited by all versions of M$
Link.exe from v5.12.8078 which is part of the MASM32 package, up to v7.10.3077 which ships with the latest
Visual C++ packages.

The data includes encrypted codes which identify the components used to compile the PE file. It is said to
have led to the prosecution of a virus writer as it allowed M$ to prove that the virus was compiled on his PC.

The dword after "Rich" is a key generated by the linker which repeats several times in the garbage data.
When we compile a program the compiler puts the string "@comp.id" followed by a DWORD-sized compiler
ID number in our obj file. When we link our obj file the linker extracts the comp.id number and XORs it with
the key and writes it in the "garbage" as the 2nd DWORD before "Rich".

The "@comp.id" variables are hard coded:

ML.EXE Ver.6.14.8444 -> comp.id is 1220FC (You can search: FC2012)
ML.EXE Ver.7.00.9466 -> comp.id is 4024FA (search: FA2440)
ML.EXE Ver.7.10.2179 -> comp.id is 0F0883 (search: 83080F)
ML.EXE Ver.7.10.3077-> comp.id is 0F0C05 (search: 050C0F)
C++ Optimizing Compiler Version 12.00.8804 for 80x86 ->comp.id is 0B2306

The 1st DWORD before "Rich" is the key XORed with a hard coded constant 536E6144h. If we search
"@comp.id" in our obj file and substitute the DWORD after it with zeroes we'll see that the second DWORD
before "Rich" is equal to the key (DWORD after "Rich").

Here is an example of a simple "hello world" type program coded in MASM32 and open in the hexeditor. The
extra bytes are highlighted:

© 2006 CodeBreakers Magazine Page 13 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Fortunately it is possible to patch the linker to stop this behaviour. There is a utility called SignFinder.exe by
Asterix which allows you to find quickly the code which needs patching in any version of Link.exe. Using
v5.12.8078 from MASM32 as an example:

So open Link.exe in Olly and press Ctrl+G. Enter 0044510C (the address from signfinder above + ImageBase
of Link.exe which is 400000). Then highlight the add instruction as shown, rightclick and select binary>fill
with NOPs:

© 2006 CodeBreakers Magazine Page 14 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

It should look like this:

Finally rightclick again and select copy to executable>all modifications. Then click "copy all" and rightclick in
the new window that pops up and select save file. The other versions of link.exe have the same code
sequence at different locations which is patched in the same way.

If we use the patched linker to recompile the same example program we see the extra bytes have gone:

The only other differences between the 2 files are of course e_lfanew (the offset of the PE header),
TimeDateStamp and SizeOfHeaders (which is effectively the offset of the first section).

© 2006 CodeBreakers Magazine Page 15 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

5 The Data Directory
To recap, DataDirectory is the final 128 bytes of OptionalHeader, which in turn is the final member of the
PE header IMAGE_NT_HEADERS.

As we have said, the DataDirectory is an array of 16 IMAGE_DATA_DIRECTORY structures, 8 bytes
apiece, each relating to an important data structure in the PE file. Each array refers to a predefined item,
such as the import table. The structure has 2 members which contain the location and size of the data
structure in question:

VirtualAddress is the relative virtual address (RVA) of the data structure (see later section).

isize contains the size in bytes of the data structure.

The 16 directories to which these structures refer are themselves defined in windows.inc:

For example, in LordPE the data directory for our example executable contains only 4 members
(highlighted). The 12 unused ones are shown filled with zeros:

© 2006 CodeBreakers Magazine Page 16 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

For example, in the above picture the "import table" fields contain the RVA and size of the
IMAGE_IMPORT_DESCRIPTOR array - the Import Directory. In the hexeditor, the picture below shows the
PE header with the data directory outlined in red. Each box represents one IMAGE_DATA_DIRECTORY
structure, the first DWORD being VirtualAddress and the last being isize.

The Import Directory is highlighted in pink. The first 4 bytes are the RVA 2D000h (NB reverse order). The
size of the Import Directory is 181Eh bytes. As we said above the position of these data directories from the
beginning of the PE header is always the same i.e. the DWORD 80 bytes from the beginning of the PE header
is always the RVA to the Import Directory.

To locate a particular directory, you determine the relative address from the data directory. Then use the
virtual address to determine which section the directory is in. Once you determine which section contains the
directory, the section header for that section is then used to find the exact offset.

© 2006 CodeBreakers Magazine Page 17 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

6 The Section Table
This follows immediately after the PE header. It is an array of IMAGE_SECTION_HEADER structures, each
containing the information about one section in the PE file such as its attribute and virtual offset. Remember
the number of sections is the second member of FileHeader (6 bytes from the start of the PE header). If
there are 8 sections in the PE file, there will be 8 duplicates of this structure in the table. Each header
structure is 40 bytes apiece and there is no "padding" between them. The structure is defined in windows.inc
thus:

Again, not all members are useful. I'll describe only the ones that are really important.

Name1 -- (NB this field is 8 bytes) The name is just a label and can even be left blank. Note this is not an
ASCII string so it doesn't need a terminating zero.

VirtualSize -- (DWORD union) The actual size of the section's data in bytes. This may be less than the size
of the section on disk (Size OfRawData) and will be what the loader allocates in memory for this section.

VirtualAddress -- The RVA of the section. The PE loader examines and uses the value in this field when it's
mapping the section into memory. Thus if the value in this field is 1000h and the PE file is loaded at
400000h, the section will be loaded at 401000h.

SizeOfRawData -- The size of the section's data in the file on disk, rounded up to the next multiple of file
alignment by the compiler.

PointerToRawData -- (Raw Offset) - incredibly useful because it is the offset from the file's beginning to
the section's data. If it is 0, the section's data are not contained in the file and will be arbitrary at load time.
The PE loader uses the value in this field to find where the data in the section is in the file.

Characteristics -- Contains flags such as whether this section contains executable code, initialized data,
uninitialized data, can it be written to or read from (see appendix).

NOTE: When searching for a specific section, it is possible to bypass the PE header entirely and start parsing
the section headers by searching for the section name in the ASCII window of your hexditor.

Back to our example in the hexeditor, our file has 8 sections as we saw in the PE header section.

© 2006 CodeBreakers Magazine Page 18 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

After the section headers we find the sections themselves. In the file on disk, each section starts at an offset
that is some multiple of the FileAlignment value found in OptionalHeader. Between each section's data there
will be 00 byte padding.

When loaded into RAM, the sections always start on a page boundary so that the first byte of each section
corresponds to a memory page. On x86 CPUs pages are 4kB aligned, whilst on IA-64, they are 8kB aligned.
This alignment value is stored in SectionAlignment also in OptionalHeader.

For example, if the optional header ends at file offset 981 and FileAlignment is 512, the first section will start
at byte 1024. Note that you can find the sections via the PointerToRawData or the VirtualAddress, so there is
no need to bother with alignments.

In the picture above, the Import Data Section (.idata) will start at offset 0002AC00h (highlighted pink, NB
reverse byte order) from the start of the file. Its size, given by the DWORD before, will be 1A00h bytes.

© 2006 CodeBreakers Magazine Page 19 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

7 The PE File Sections
The sections contain the main content of the file, including code, data, resources, and other executable
information. Each section has a header and a body (the raw data). The section headers are contained in the
Section Table but section bodies lack a rigid file structure. They can be organized almost any way a linker
wishes to organize them, as long as the header is filled with enough information to be able to decipher the
data.

An application for Windows NT typically has the nine predefined sections named .text, .bss, .rdata, .data,
.rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need all of these sections, while others
may define still more sections to suit their specific needs.

Executable Code

In Windows NT all code segments reside in a single section called .text or CODE. Since Windows NT uses a
page-based virtual memory management system, having one large code section is easier to manage for both
the operating system and the application developer. This section also contains the entry point mentioned
earlier and the jump thunk table (where present) which points to the IAT (see import theory).

Data

The .bss section represents uninitialized data for the application, including all variables declared as static
within a function or source module.

The .rdata section represents read-only data, such as literal strings, constants, and debug directory
information.

All other variables (except automatic variables, which appear on the stack) are stored in the .data section.
These are application or module global variables.

Resources

The .rsrc section contains resource information for a module. The first 16 bytes comprises a header like most
other sections, but this section's data is further structured into a resource tree which is best viewed using a
resource editor. A good one, ResHacker, is free and allows editing, adding, deleting, replacing and copying
resources:

© 2006 CodeBreakers Magazine Page 20 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

This is a powerful tool for cracking purposes as it will quickly display dialog boxes including those concerning
incorrect registration details or nag screens. A shareware app can often be cracked just by deleting the
nagscreen dialog resource in ResHacker.

Export data

The .edata section contains the Export Directory for an application or DLL. When present, this section
contains information about the names and addresses of exported functions. We will discuss these in greater
depth later.

Import data

The .idata section contains various information about imported functions including the Import Directory and
Import Address Table. We will discuss these in greater depth later.

Debug information

Debug information is initially placed in the .debug section. The PE file format also supports separate debug
files (normally identified with a .DBG extension) as a means of collecting debug information in a central
location. The debug section contains the debug information, but the debug directories live in the .rdata
section mentioned earlier. Each of those directories references debug information in the .debug section.

Thread Local Storage

Windows supports multiple threads of execution per process. Each thread has its own private storage, Thread
Local Storage or TLS, to keep data specific to that thread, such as pointers to data structures and resources
that the thead is using. The linker can create a .tls section in a PE file that defines the layout for the TLS
needed by routines in the executable and any DLLs to which it directly refers. Each time the process creates
a thread, the new thread gets its own TLS, created using the .tls section as a template.

Base Relocations

© 2006 CodeBreakers Magazine Page 21 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

When the linker creates an EXE file, it makes an assumption about where the file will be mapped into
memory. Based on this, the linker puts the real addresses of code and data items into the executable file. If
for whatever reason the executable ends up being loaded somewhere else in the virtual address space, the
addresses the linker plugged into the image are wrong. The information stored in the .reloc section allows
the PE loader to fix these addresses in the loaded image so that they're correct again. On the other hand, if
the loader was able to load the file at the base address assumed by the linker, the .reloc section data isn't
needed and is ignored.

The entries in the .reloc section are called base relocations since their use depends on the base address of
the loaded image. Base relocations are simply a list of locations in the image that need a value added to
them. The format of the base relocation data is somewhat quirky. The base relocation entries are packaged in
a series of variable length chunks. Each chunk describes the relocations for one 4KB page in the image.

For example, if an executable file is linked assuming a base address of 0x10000. At offset 0x2134 within the
image is a pointer containing the address of a string. The string starts at physical address 0x14002, so the
pointer contains the value 0x14002. You then load the file, but the loader decides that it needs to map the
image starting at physical address 0x60000. The difference between the linker-assumed base load address
and the actual load address is called the delta. In this case, the delta is 0x50000. Since the entire image is
0x50000 bytes higher in memory, so is the string (now at address 0x64002). The pointer to the string is now
incorrect. The executable file contains a base relocation for the memory location where the pointer to the
string resides. To resolve a base relocation, the loader adds the delta value to the original value at the base
relocation address. In this case, the loader would add 0x50000 to the original pointer value (0x14002), and
store the result (0x64002) back into the pointer's memory. Since the string really is at 0x64002, everything
is fine with the world.

© 2006 CodeBreakers Magazine Page 22 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

8 The Export Section
This section is particularly relevant to DLLs. The following passage from Win32 Programmer's Reference
explains why:

Functions can be exported by a DLL in two ways; "by name" or "by ordinal only". An ordinal is a 16-bit
(WORD-sized) number that uniquely identifies a function in a particular DLL. This number is unique only
within the DLL it refers to. We will discuss exporting by ordinal only later.

If a function is exported by name, when other DLLs or executables want to call the function, they use either
its name or its ordinal in GetProcAddress which returns the address of the function in its DLL. The Win32
Programmer's Reference explains how GetProcAddress works (although in reality there is more to it, not
documented by M$, more on this later). Note the sections I have highlighted:

© 2006 CodeBreakers Magazine Page 23 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

GetProcAddress can do this because the names and addresses of exported functions are stored in a well
defined structure in the Export Directory. We can find the Export Directory because we know it is the first
element in the data directory and the RVA to it is contained at offset 78h from the start of the PE header (see
appendix).

The export structure is called IMAGE_EXPORT_DIRECTORY. There are 11 members in the structure but
some are not important:

© 2006 CodeBreakers Magazine Page 24 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

nName -- The internal name of the module. This field is necessary because the name of the file can be
changed by the user. If that happens, the PE loader will use this internal name.

nBase -- Starting ordinal number (needed to get the indexes into the address-of-function array - see
below).

NumberOfFunctions -- Total number of functions (also referred to as symbols) that are exported by this
module.

NumberOfNames -- Number of symbols that are exported by name. This value is not the number of all
functions/symbols in the module. For that number, you need to check NumberOfFunctions. It can be 0. In
that case, the module may export by ordinal only. If there is no function/symbol to be exported in the first
case, the RVA of the export table in the data directory will be 0.

AddressOfFunctions -- An RVA that points to an array of pointers to (RVAs of) the functions in the module
- the Export Address Table (EAT). To put it another way, the RVAs to all functions in the module are kept in
an array and this field points to the head of that array.

AddressOfNames -- An RVA that points to an array of RVAs of the names of functions in the module - the
Export Name Table (ENT).

AddressOfNameOrdinals -- An RVA that points to a 16-bit array that contains the ordinals of the named
functions - the Export Ordinal Table (EOT).

© 2006 CodeBreakers Magazine Page 25 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Thus the IMAGE_EXPORT_DIRECTORY structures point to three arrays and a table of ASCII strings. The
important array is the EAT, which is an array of function pointers that contain the addresses of exported
functions. The other 2 arrays (EAT & EOT) run parallel in ascending order based on the name of the function
so that a binary search for a function's name can be performed and will result in its ordinal being found in the
other array. The ordinal is simply an index into the EAT for that function.

Since the EOT array exists as the linkage between the names and the addresses, it cannot contain more
elements than the ENT array, i.e. each name can have one and only one associated address. The reverse is
not true: an address may have several names associated with it. If there are functions with "aliases" that
refer to the same address then the ENT will have more elements than the EOT.

© 2006 CodeBreakers Magazine Page 26 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

For example, if a DLL exports 40 functions, it must have 40 members in the array pointed to by
AddressOfFunctions (the EAT) and the NumberOfFunctions field must contain the value 40.

To find the address of a function from its name, the OS first obtains the values of NumberOfFunctions and
NumberOfNames in the Export Directory. Next it walks the arrays pointed to by AddressOfNames (the ENT)
and AddressOfNameOrdinals (the EOT) in parallel, searching for the function name. If the name is found in
the ENT, the value in the associated element in the EOT is extracted and used as the index into the EAT.

For example, in our 40-function-DLL we are looking for functionX. If we find the name functionX (indirectly
via another pointer) in the 39th element in the ENT, we look in the 39th element of the EOT and see the
value 5. We then look at the 5th element of the EAT to find the RVA of functionX.

If you already have the ordinal of a function, you can find its address by going directly to the EAT. Although
obtaining the address of a function from an ordinal is much easier and faster than using the name of the
function, the disadvantage is the difficulty in the maintaining the module. If the DLL is upgraded/updated and
the ordinals of the functions are altered, other programs that depend on the DLL will break.

Exporting by Ordinal Only

NumberOfFunctions must be at least equal to NumberOfNames. However sometimes NumberOfNames is less
than NumberOfFunctions. When a function is exported by ordinal only it doesn't have entries in both ENT and
EOT arrays - it doesn't have a name. The functions that don't have names are exported by ordinal only.

For example, if there are 70 functions but only 40 entries in the ENT, it means there are 30 functions in the
module that are exported by ordinal only. Now how can we find out which functions these are? It's not easy.
You must find out by exclusion, i.e. the entries in the EAT that are not referenced by the EOT contain the
RVAs of functions that are exported by ordinal only.

The programmer can specify the starting ordinal number in a .def file. For example, the tables in the picture
above could start at 200. In order to prevent the need for 200 empty entries first in the array, the nBase
member holds the starting value and the loader subtracts the ordinal numbers from it to obtain the true
index into the EAT.

Export Forwarding

Sometimes functions which appear to exported from a particular DLL actually reside in a completely different
DLL. This is called export forwarding For example, in WinNT, Win2k and XP, the kernel32.dll function
HeapAlloc is forwarded to the RtlAllocHeap function exported by ntdll.dll. NTDLL.DLL also contains the native
API set which is the direct interface with the windows kernel. Forwarding is performed at link time by a
special instruction in the .DEF file.

Forwarding is one technique Microsoft employs to expose a common Win32 API set and to hide the significant
low-level differences between the Windows NT and Windows 9x internal API sets. Applications are not
supposed to call functions in the native API set since this would break compatibility between win9x and
2k/XP. This probably explains why packed executables which have been unpacked and had their imports
reconstructed manually on one OS may not run on the other OS because the API forwarding system or some
other detail has been altered.

When a symbol (function) is forwarded its RVA clearly can't be a code or data address in the current module.
Instead the EAT table contains a pointer to an ASCII string of the DLL and function name to which it is
forwarded. In the prior example it would be NTDLL.RtlAllocHeap

© 2006 CodeBreakers Magazine Page 27 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

If therefore the EAT entry for a function points to an address inside the Exports Section (ie the ASCII string)
rather than outside into another DLL, you know that function is forwarded.

© 2006 CodeBreakers Magazine Page 28 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

9 The Import Section
The import section (usually .idata) contains information about all the functions imported by the executable
from DLLs (see last section for explanation). This information is stored in several data structures. The most
important of these are the Import Directory and the Import Address Table which we will discuss next. In
some executables there may also be Bound_Import and Delay_Import directories. The Delay_Import
directory is not so important to us but we will discuss the Bound_Import directory later.

The Windows loader is responsible for loading all of the DLLs that the application uses and mapping them into
the process address space. It has to find the addresses of all the imported functions in their various DLLs and
make them available for the executable being loaded.

The addresses of functions inside a DLL are not static but change when updated versions of the DLL are
released, so applications cannot be built using hardcoded function addresses. Because of this a mechanism
had to be developed that allowed for these changes without needing to make numerous alterations to an
executable's code at runtime. This was accomplished through the use of an Import Address Table (IAT). This
is a table of pointers to the function addresses which is filled in by the windows loader as the DLLs are
loaded.

By using a pointer table, the loader does not need to change the addresses of imported functions everywhere
in the code they are called. All it has to do is add the correct address to a single place in the import table and
its work is done.

The Import Directory

The Import Directory is actually an array of IMAGE_IMPORT_DESCRIPTOR structures. Each structure is 20
bytes and contains information about a DLL which our PE file imports functions from. For example, if our PE
file imports functions from 10 different DLLs, there will be 10 IMAGE_IMPORT_DESCRIPTOR structures in
this array. There's no field indicating the number of structures in this array. Instead, the final structure has
fields filled with zeros.

As with Export Directory, you can find where the Import Directory is by looking at the Data Directory (80
bytes from beginning of PE header). The first and last members are most important:

The first member OriginalFirstThunk, which is a DWORD union, may at one time have been a set of flags.
However, Microsoft changed its meaning and never bothered to update WINNT.H. This field really contains
the RVA of an array of IMAGE_THUNK_DATA structures.

[By the way, a union is just a redefinition of the same area of memory. The union above doesn't contain 2
DWORDS but only one which could contain either the OriginalFirstThunk data or the Characteristics data.]

© 2006 CodeBreakers Magazine Page 29 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

The TimeDateStamp member is set to zero unless the executable is bound when it contains -1 (see below).
The ForwarderChain member was used for old-style binding and will not be considered here.

Name1 contains the a pointer (RVA) to the ASCII name of the DLL.

The last member FirstThunk, also contains the RVA of an array of DWORD-sized IMAGE_THUNK_DATA
structures - a duplicate of the first array. If the function described is a bound import (see below) then
FirstThunk contains the actual address of the function instead of an RVA to an IMAGE_THUNK_DATA. These
structures are defined thus:

Each IMAGE_THUNK_DATA is a DWORD union that effectively only has one of 2 values. In the file on disk
it either contains the ordinal of the imported function (in which case it will begin with an 8 - see export by
ordinal only below) or an RVA to an IMAGE_IMPORT_BY_NAME structure. Once loaded the ones pointed at
by FirstThunk are overwritten with the addresses of imported functions - this becomes the Import Address
Table.

Each IMAGE_IMPORT_BY_NAME structure is defined as follows:

Hint -- contains the index into the Export Address Table of the DLL the function resides in. This field is for
use by the PE loader so it can look up the function in the DLL's Export Address Table quickly. The name at
that index is tried, and if it doesn't match then a binary search is done to find the name. As such this value is
not essential and some linkers set this field to 0.

Name1 -- contains the name of the imported function. The name is a null-terminated ASCII string. Note
that Name1's size is defined as a byte but it's really a variable-sized field. It's just that there is no way to
represent a variable-sized field in a structure. The structure is provided so that you can refer to it with
descriptive names.

The most important parts are the imported DLL names and the arrays of IMAGE_THUNK_DATA structures.
Each IMAGE_THUNK_DATA structure corresponds to one imported function from the DLL. The arrays pointed
to by OriginalFirstThunk and FirstThunk run parallel and are terminated by a null DWORD. There are
separate pairs of arrays of IMAGE_THUNK_DATA structures for each imported DLL.

Or to put it another way, there are several IMAGE_IMPORT_BY_NAME structures. You create two arrays, then
fill them with the RVAs of those IMAGE_IMPORT_BY_NAME structures, so both arrays contain exactly the
same values (i.e. exact duplicate). Now you assign the RVA of the first array to OriginalFirstThunk and the
RVA of the second array to FirstThunk.

© 2006 CodeBreakers Magazine Page 30 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

The number of elements in the OriginalFirstThunk and FirstThunk arrays depends on the number of functions
imported from the DLL. For example, if the PE file imports 10 functions from user32.dll, Name1 in the
IMAGE_IMPORT_DESCRIPTOR structure will contain the RVA of the string "user32.dll" and there will be 10
IMAGE_THUNK_DATAs in each array.

The 2 parallel arrays have been called by several different names but the commonest are Import Address
Table (for the one pointed at by FirstThunk) and Import Name Table or Import Lookup Table (for the
one pointed at by OriginalFirstThunk).

Why are there two parallel arrays of pointers to the IMAGE_IMPORT_BY_NAME structures? The Import Name
Tables are left alone and never modified. The Import Address Tables are overwritten with the actual function
addresses by the loader. The loader iterates through each pointer in the arrays and finds the address of the
function that each structure refers to. The loader then overwrites the pointer to IMAGE_IMPORT_BY_NAME
with the function's address. The arrays of RVAs in the Import Name Tables remain unchanged so that if the
need arises to find the names of imported functions, the PE loader can still find them.

Although the IAT is pointed to by entry number 12 in the Data Directory, some linkers don't set this directory
entry and the app will run nevertheless. The loader only uses this to temporarily mark the IATs as read-write
during import resolution and can resolve the imports without it.)

This is how the windows loader is able to overwrite the IAT when it resides in a read-only section. At load
time the system temporarily sets the attributes of the pages containing the imports data to read/write. Once
the import table is initialized the pages are set back to their original protected attributes.

© 2006 CodeBreakers Magazine Page 31 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Calls to imported functions take place via a function pointer in the IAT and can take 2 forms, one more
efficient than the other. For example imagine the address 00405030 refers to one of the entries in the
FirstThunk array that's overwritten by the loader with the address of GetMessage in USER32.DLL.

The efficient way to call GetMessage looks like this:

0040100C CALL DWORD PTR [00405030]
The inefficient way looks like this:
0040100C CALL [00402200]
.......
.......

00402200 JMP DWORD PTR [00405030]

i.e. the second method achieves the same but uses 5 additional bytes of code and takes longer to execute
because of the extra jump.

Why are calls to imported functions implemented in this way? The compiler can't distinguish between calls to
ordinary functions within the same module and imported functions and emits the same output for both: CALL
[XXXXXXXX]

where XXXXXXXX has to be an actual code address (not a pointer) to be filled in by the linker later. The
linker does not know the address of the imported function and so has to supply a substitute chunk of code -
the JMP stub seen above.

The optimised form is obtained by using the _declspec(dllimport) modifier to tell the compiler that the
function resides in a DLL. It will then output CALL DWORD PTR [XXXXXXXX].

If _declspec(dllimport) has not been used when compiling an executable there will be a whole collection of
jump stubs for imported functions located together somewhere in the code. This has been known by various
name such as the "transfer area", "trampoline" or "jump thunk table".

Functions Exported by Ordinal Only

As we discussed in the export section, some functions are exported by ordinal only. In this case, there will be
no IMAGE_IMPORT_BY_NAME structure for that function in the caller's module. Instead, the
IMAGE_THUNK_DATA for that function contains the ordinal of the function.

Before the executable is loaded, you can tell if an IMAGE_THUNK_DATA structure contains an ordinal or an
RVA by looking at the most significant bit (MSB) or high bit. If set then the lower 31 bits are treated as an
ordinal value. If clear, the value is an RVA to an IMAGE_IMPORT_BY_NAME. Microsoft provides a handy
constant for testing the MSB of a dword, IMAGE_ORDINAL_FLAG32. It has the value of 80000000h.

For example, if a function is exported by ordinal only and its ordinal is 1234h, the IMAGE_THUNK_DATA for
that function will be 80001234h.

Bound Imports

When the loader loads a PE file into memory, it examines the import table and loads the required DLLs into
the process address space. Then it walks the array pointed at by FirstThunk and replaces the
IMAGE_THUNK_DATAs with the real addresses of the import functions. This step takes time. If somehow the
programmer can predict the addresses of the functions correctly, the PE loader doesn't have to fix the

© 2006 CodeBreakers Magazine Page 32 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

IMAGE_THUNK_DATAs each time the PE file is run as the correct address is already there. Binding is the
product of that idea.

There is a utility named bind.exe that comes with Microsoft compilers that examines the IAT (FirstThunk
array) of a PE file and replaces the IMAGE_THUNK_DATA dwords with the addresses of the import functions.
When the file is loaded, the PE loader must check if the addresses are valid. If the DLL versions do not match
the ones in the PE files or if the DLLs need to be relocated, the PE loader knows that the bound addresses are
stale and it walks the Import Name Table (OriginalFirstThunk array) to calculate the new addresses.

Therefore although the INT is not necessary for an executable to load, if not present the executable cannot
be bound. For a long time Borland's linker TLINK did not create an INT therefore files created by Borland
could not be bound. We will see another consequence of the missing INT in the next section.

The Bound_Import Directory

The information the loader uses to determine if bound addresses are valid is kept in a
IMAGE_BOUND_IMPORT_DESCRIPTOR structure. A bound executable contains a list of these structures, one
for each imported DLL that has been bound:

The TimeDateStamp member must match the TimeDateStamp of the exporting DLL's FileHeader; if it
doesn't match, the loader assumes that the binary is bound to a "wrong" DLL and will re-patch the import
list. This can happen if the version of the exporting DLL doesn't match or if it has had to be relocated in
memory.

The OffsetModuleName member contains the offset (not RVA) from the first
IMAGE_BOUND_IMPORT_DESCRIPTOR to the name of the DLL in null-terminated ASCII.

The NumberOfModuleForwarderRefs member contains the number of IMAGE_BOUND_FORWARDER_REF
structures that immediately follow this structure. These are defined thus:

As you can see they are identical to the previous structure apart from the final member which is reserved in
any case. The reason there are 2 similar structures like this is that when binding against a function which is
forwarded to another DLL, the validity of that forwarded DLL has to be checked at load time too. The
IMAGE_BOUND_FORWARDER_REF contains the details of the forwarded DLLs.

For example the function HeapAlloc in kernel32.dll is forwarded to RtlAllocateHeap in ntdll.dll. If we created
an app which imports HeapAlloc and used bind.exe on the app, there would be an
IMAGE_BOUND_IMPORT_DESCRIPTOR for kernel32.dll followed by an IMAGE_BOUND_FORWARDER_REF for
ntdll.dll.

© 2006 CodeBreakers Magazine Page 33 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

NOTE: the names of the functions themselves are not included in these structures as the loader knows which
functions are bound from the IMAGE_IMPORT_DESCRIPTOR (see above). There was on older style binding
mechanism which differs slightly from this but has been phased out so I have omitted details here.

© 2006 CodeBreakers Magazine Page 34 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

10 The Loader
This section is not essential but is for those who wish to dig a bit deeper into the workings of the OS. It
shows how relevant the material in the last 2 sections is. First a brief overview of the stages involved in the
loading process:

1. Read in the first page of the file with the DOS header, PE header, and section headers.
2. Determine whether the target area of the address space is available, if not allocate another area.
3. Using info in the section headers, map sections of the file to the appropriate places in the allocated
address space.
4. If the file is not loaded at its target address (ImageBase), apply relocation fix-ups.
5. Go through list of DLLs in the imports section and load any that aren't already loaded (recursive).
6. Resolve all the imported symbols in the imports section.
7. Create the initial stack and heap using values from the PE header.
8. Create the initial thread and start the process.

What the loader does

When an executable is run, the windows loader creates a virtual address space for the process and maps the
executable module from disk into the process' address space. It tries to load the image at the preferred base
address but relocates it if that address is already occupied. The loader goes through the section table and
maps each section at the address calculated by adding the RVA of the section to the base address. The page
attributes are set according to the section’s characteristic requirements. After mapping the sections in
memory, the loader performs base relocations if the load address is not equal to the preferred base address
in ImageBase.

The import table is then checked and any required DLLs are mapped into the process address space. After all
of the DLL modules have been located and mapped in, the loader examines each DLL's export section and the
IAT is fixed to point to the actual imported function address. If the symbol does not exist (which is very
rare), the loader displays an error. Once all required modules have been loaded execution passes to the app's
entry point.

The area of particular interest in RCE is that of loading the DLLs and resolving imports. This process is
complicated and is accomplished by various internal (forwarded) functions and routines residing in ntdll.dll
which are not documented by Micro$oft. As we said previously function forwarding is a way for M$ to expose
a common Win32 API set and hide low level functions which may differ in different versions of the OS. Many
familiar kernel32 functions such as GetProcAddress are simply thin wrappers around ntdll.dll exports such as
LdrGetProcAddress which do the real work.

In order to see these in action you will need to install windbg and the windows symbol package (available
free in Debugging Tools For Windows from M$) or another kernel-mode debugger like SoftIce. You can only
view these functions in Olly if you configure Olly to use the M$ symbolserver (search ARTeam forum for notes
on this by Shub), otherwise all you will see is pointers and memory addresses without function names.
However Olly is a user-mode debugger and will only show you what's happening when your app has been
loaded and will not allow you to see the loading process itself. Although the functionality of windbg is poor
compared to Olly it does integrate with the OS well and will show the loading process:

© 2006 CodeBreakers Magazine Page 35 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

The various APIs associated with loading an executable all converge on the kernel32.dll function
LoadLibraryExW which in turn leads to the internal function LdrpLoadDll in ntdll.dll This function directly calls
6 subroutines LdrpCheckForLoadedDll, LdrpMapDll, LdrpWalkImportDescriptor, LdrpUpdateLoadCount,
LdrpRunInitializeRoutines, and LdrpClearLoadInProgress which perform the following tasks:

1. Check to see if the module is already loaded.
2. Map the module and supporting information into memory.
3. Walk the module's import descriptor table (find other modules this one is importing).
4. Update the module's load count as well as any others brought in by this DLL.
5. Initialize the module.
6. Clear some sort of flag, indicating that the load has finished.

© 2006 CodeBreakers Magazine Page 36 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

A DLL may import other modules that start a cascade of additional library loads. The loader will need to loop
through each module, checking to see if it needs to be loaded and then checking its dependencies. This is
where LdrpWalkImportDescriptor comes in. It has two subroutines; LdrpLoadImportModule and LdrpSnapIAT.
First it starts with two calls to RtlImageDirectoryEntryToData to locate the Bound Imports Descriptor and the
regular Import Descriptor tables. Note that the loader is checking for bound imports first - an app which runs
but doesn't have an import directory may have bound imports instead.

Next LdrpLoadImportModule constructs a Unicode string for each DLL found in the Import Directory and then
employs LdrpCheckForLoadedDll to see if they have already been loaded.

Next the LdrpSnapIAT routine examines every DLL referenced in the Import Directory for a value of -1 (ie
again checks for bound imports first). It then changes the memory protection of the IAT to
PAGE_READWRITE and proceeds to examine each entry in the IAT before moving on to the LdrpSnapThunk
subroutine.

LdrpSnapThunk uses a function's ordinal to locate its address and determine whether or not it is forwarded.
Otherwise it calls LdrpNameToOrdinal which uses a binary search on the export table to quickly locate the
ordinal. If the function is not found it returns STATUS_ENTRYPOINT_NOT_FOUND, otherwise it replaces the
entry in the IAT with the API's entry point and returns to LdrpSnapIAT which restores the memory protection
it changed at the beginning of its work, calls NtFlushInstructionCache to force a cache refresh on the memory
block containing the IAT, and returns back to LdrpWalkImportDescriptor.

There is a peculiar difference between windows versions in that win2k insists that ntdll.dll is loaded either as
a bound import or in the regular import directory before allowing an executable to load, whereas win9x and
XP will allow an app with no imports at all to load.

This brief overview is greatly simplified but illustrates how a call to LoadLibrary sets off a cascade of hidden
internal subroutines which are deeply nested and recursive in places. The loader must examine every

© 2006 CodeBreakers Magazine Page 37 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

imported API in order to calculate a real address in memory and to see if an API has been forwarded. Each
imported DLL may bring in additional modules and the process will be repeated over and over again until all
dependencies have been checked.

© 2006 CodeBreakers Magazine Page 38 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

11 Navigating Imports on Disk
Back to our example in the hexeditor, we will navigate the import table to see what we can find. As we said
previously, the RVA of the Import Directory is stored in the DWORD 80h bytes from the PE header which in
our example is offset 180h and the RVA is 2D000h (see Data Directory). We now have to convert that RVA to
a raw offset to peruse the correct area of our file on disk. Check the Section Table to see which section the
address of the Import Directory lies in. In our case, the Import Directory starts at the beginning of the .idata
section and we know that the section table holds the raw offset in the PointerToRawData field. In our
example the offset is 2AC00h (see section table page). Any PE Editor will show this, e.g. LordPE:

The difference between the RVA and Raw Offset is 2D000-2AC00=2400h. Make a note of this as it will be
useful for converting further offsets. See appendix for more info on converting RVAs.

At offset 2AC00 we have the Import Directory - an array of IMAGE_IMPORT_DESCRIPTORs each of 20 bytes
and repeating for each import library (DLL) until terminated by 20 bytes of zeros. In our hexeditor we see at
2AC00h:

Each group of 5 DWORDS represents 1 IMAGE_IMPORT_DESCRIPTOR. The first shows that in this PE file
OriginalFirstThunk, TimeDateStamp and ForwarderChain are set to 0. Eventually we come to a set of 5
DWORDS all set to 0 (also highlighted in red) which signifies the end of the array. We can see we are
importing functions from 8 DLLs.

IMPORTANT NOTE: the OriginalFirstThunk fields in our example are all set to zero. This is common for
executables made with Borland's compiler & linker and is noteworthy for the following reason. In a packed
executable the FirstThunk pointers will have been destroyed but can sometimes be rebuilt by copying the
duplicate OriginalFirstThunks (which many simple packers do not seem to bother removing). There is actually
a utility called First_Thunk Rebuilder by Lunar_Dust which will do this. However, with Borland created files
this is not possible because the OriginalFirstThunks are all zero and there is no INT:

© 2006 CodeBreakers Magazine Page 39 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Back to our example above, the Name1 field of the first IMAGE_IMPORT_DESCRIPTOR contains the RVA 00
02 D5 30h (NB reverse byte order). Convert this to a raw offset by subtracting 2400h (remember above) and
we have 2B130h. If we look there in our PE file we see the name of our DLL:

To continue, the FirstThunk field contains the RVA 00 02 D0 B4h which converts to Raw Offset 2ACB4h.
Remember this is the offset to the array of DWORD-sized IMAGE_THUNK_DATA structures - the IAT. This will
either have its most significant bit set (it will start with 8) and the lower part will contain the ordinal number
of the imported function, or if the MSB is not set it will contain yet another RVA to the name of the function
(IMAGE_IMPORT_BY_NAME).

In our file, the DWORD at 2ACB4h is 00 02 D5 3E:

This is another RVA which converts to Raw Offset 2B13E. This time it should be a null-terminated ASCII
string. In our file we see:

So the name of the first API imported from kernel32.dll is DeleteCriticalSection. You may notice the 2 zero
bytes before the function name. This is the Hint element which is often set to 00 00.

© 2006 CodeBreakers Magazine Page 40 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

All of this can be verified by using PEBrowse Pro to parse the IAT as shown:

If the file had been loaded into memory, dumped and examined with the hexeditor then the DWORD at RVA
2D0B4h which contained 3E D5 02 00 on disk would have been overwritten by the loader with the address of
DeleteCriticalSection in kernel32.dll:

Allowing for reverse byte order this is 7C91188A.

IMPORTANT NOTE: functions in system DLLs always tend to start at the address 7XXXXXXX and stay the
same each time programs are loaded. However they tend to change if you reinstall your OS and differ from
one computer to another.

© 2006 CodeBreakers Magazine Page 41 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

The addresses also differ according to OS, for example:

OS Base of kernel32.dll

Win XP SP1 77E60000H

Win XP SP2 7C000000H

Win 2000 SP4 79430000H

Windows updates also sometimes change the base location of system DLLs. This is why some of you may
have noticed that after taking the time to manually find point-h on your system it is prone to change
unexpectedly since it is in a function inside user32.dll.

Navigating Imports in Memory

Load our example into Olly and again look at the Memory Map:

© 2006 CodeBreakers Magazine Page 42 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Note the address of the .idata section is 42D000 which corresponds to the RVA 2D000 shown at the top of
this page as VOffset. The size has been rounded up to 2000 to fit memory page boundaries.

The main (CPU) window of Olly will only show the IAT if it lies in the executable CODE section (addresses
401000 to 42AFFF in our example), however in most cases it will be in its own section e.g. .idata. You can
view the IAT in Olly's hex-dump window by rightclicking the appropriate section in the memory map and
selecting Dump in CPU. Now rightclick in the hex window and select Long>Address and you will see the IAT in
a readable list:

This makes finding the beginning and end of the IAT easy and is useful when using ImpREC as the IAT
Autosearch function can be inaccurate. It is good to be able to check the beginning and endpoint to avoid
having to type in a large size value which will give many false negatives with IAT Autosearch.

The names window (press Ctrl+N) will show you imported functions:

Rightclicking any of these and selecting Find References to Import will show you the jump thunk stub and the
instances in the code where the function is called (only 1 in this case):

© 2006 CodeBreakers Magazine Page 43 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

NOTE: in the comment column you will see that Olly has determined that the kernel32.dll function
DeleteCriticalSection is actually forwarded to RtlDeleteCriticalSection in ntdll.dll (see export forwarding for
explanation).

Rightclicking and selecting Follow Import in Disassembler will show you the address in the appropriate DLL
where the function's code starts e.g. starts at 7C91188A in ntdll.DLL:

If we look at the call to DeleteCriticalSection at 00401B12 we see this:

This is really "CALL 00401314" but Olly has already substituted the function name for us. 401314 is the
address of the jmp stub pointing to the IAT. Note it is part of a jmp thunk table as described previously:

© 2006 CodeBreakers Magazine Page 44 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

This is really "JMP DWORD PTR DS:[0042D0B4]" but again Olly has substituted the symbolic name for us.
Address 0042D0B4 contains the Image_Thunk_Data structure in the IAT which has been overwritten by the
loader with the actual address of the function in kernel32.DLL: 7C91188A. This is what we found earlier by
rightclicking and selecting Follow Import in Disassembler and also from the dumped file above.

© 2006 CodeBreakers Magazine Page 45 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

12 Adding Code to a PE File
It is often necessary to add code to a program in order to either crack a protection scheme or more usually to
add functionality to it. There are 3 main ways to add code to an executable:

1. Add to an existing section when there is enough space for your code.
2. Enlarge an existing section when there is not enough space.
3. Add an entirely new section.

Adding to an existing section

We need a section in the file that is mapped with execution privileges in memory so the simplest is to try the
CODE section. We then need an area in this section occupied by 00 byte padding. This is the concept of
"caves". To find a suitable cave, look at the CODE Section details in LORDPE:

Here we see that the VirtualSize is slightly less than SizeOfRawData. The virtual size represents the amount
of actual code. The size of raw data defines the amount of space taken up in the file sitting on your hard disk.
Note that the virtual size in this case is lower than that on the hard disk. This is because compilers often have
to round up the size to align a section on some boundary. In the hexeditor at the end of the code section
(just before DATA section begins at 2A400h) we see:

© 2006 CodeBreakers Magazine Page 46 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

This extra space is totally unused and not loaded into memory. We need to ensure that instructions we place
there will be loaded into memory. We do this by altering the size attributes. Right now the virtual size of this
section is only 29E88, because that is all the compiler needed. We need a little more, so in LordPE change
the virtual size of the CODE section all the way up to 29FFF which is the max size we can use (the entire raw
size is only 2A000). To do this rightclick the CODE line and select edit header, make the changes click save
and enter.

Once that is done we have a suitable place to store our patch code. The only thing we have changed is the
VirtualSize DWORD for the CODE section in the Section Table. We could have done this manually with the
hexeditor.

To illustrate this further we will add to our example program a small ASM stub that highjacks the entrypoint
and then just returns execution to the OriginalEntryPoint. We will do this in Olly.

First note in LordPE the EntryPoint is 0002ADB4 and ImageBase is 400000. When we load the app in Olly the
EP will therefore be 0042ADB4. We will add the following lines and then change the entry point to the first
line of code:

MOV EAX,0042ADB4 ; Load in EAX the Original Entry Point (OEP)
JMP EAX ; Jump to OEP

We will put them at 0002A300h as seen above in the hexeditor. To convert this raw offset to an RVA for use
in Olly use the following formula (see appendix):

RVA = raw offset - raw offset of section +virtual offset of section +ImageBase
 = 2A300h - 400h +1000h + 400000h = 42AF00h.

So load the app in Olly and jump to our target section (press Ctrl+G and enter 42AF00). Press space, type in
the first line of code and click assemble. The next line down should now be highlighted so type in the second
line of code and click assemble:

Now rightclick, select copy to executable and all modifications. Click copy all then a new window will open.
Rightclick in the new window and select save file etc. Now back in LordPE (or hexeditor) change the
EntryPoint to 0002AF00 (ImageBase subtracted) click save and then OK. Now run the app to test it and
reopen it in Olly to see your new EntryPoint. In the hexeditor it looks like this - new code is highlighted:

© 2006 CodeBreakers Magazine Page 47 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Although this was only a tiny patch, we actually had room for 368 bytes of new code!

Enlarging an Existing Section

If there is not sufficient space at the end of the text section you will need to extend it. This poses a number
of problems:

1. If the section is followed by other sections then you will need to move the following sections up to make
room
2. There are various references within the file headers that will need to be adjusted if you change the file
size.
3. References between various sections (such as references to data values from the code section) will all
need to be adjusted. This is practically impossible to do without re-compiling and re-linking the original file.

Most of these problems can be avoided by appending to the last section in the exe file. It is not relevant what
that section is as we can make it suit our needs by changing the Characteristics field in the Section Table
either manually or with LordPE.

First we locate the final section and make it readable and executable. As we said earlier the code section is
ideal for a patch because its characteristics flags are 60000020 which means code, executable and readable
(see appendix). However if we were to put code and data into this section we would get a page fault since it is
not writable. To alter this we would need to add the flag 80000000 which gives a new value of E0000020 for
code, executable, readable and writable.

Likewise if the final section is .reloc then the flags will typically be 42000040 for initialised data, discardable
and read-only. In order to use this section we must add code, executable and writable and we must subtract
discardable to ensure that the loader maps this section into memory. This gives us a new value of E0000060.

This can either be done manually by adding up the flags and editing the Characteristics field of the Section
header with your hexeditor or LordPE will do it. In our example the last section is Resources:

© 2006 CodeBreakers Magazine Page 48 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

This gives us a final Characteristics value of F0000060. Above we see the RawSize (on disk) of this section is
8E00 bytes but all of this seems to be in use (the VirualSize is the same). Now edit these and add 100h bytes
to both to extend the section, the new value is 8F00h. There are some other important values which need to
be changed. The SizeOfImage field in the PE header needs to be increased by the same amount from
0003CE00 to 0003CF00h.

There are 2 other fields which are not shown in LordPE which are less critical; SizeOfCode and
SizeOfInitialisedData fields in the Optional Header. The app will still run without these being altered but you
may wish to change them for completeness. We will have to edit these manually. Both are DWORDs at
offsets 1C and 20 from the start of the PE header (see appendix):

© 2006 CodeBreakers Magazine Page 49 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

The values are 0002A000 and 0000DE00 respectively. Add 100h on to these to make 0002A100 and
0000DF00. With reverse byte order the values are: 00 A1 02 00 and 00 00 DF 00. Finally copy and paste
100h of 00 bytes (16 rows in the hexeditor) onto the end of the section and save changes. Run the file to
test for errors.

Adding a New Section

In some circumstances you may need to make a copy of an existing section to defeat self-checking
procedures (such as in SafeDisk) or make a new section to hold code when proprietary information has been
appended to the end of the file (as in Delphi compiled apps).

The first job is to find the NumberOfSections field in the PE header and increase it by 1. Again most of these
changes can be made with LordPE or manually with your trusty hexeditor. Now in your hexeditor copy and
paste 100h of 00 bytes (16 rows) onto the end of the file and make a note of the offset of the first new line.
In our case it is 00038200h. This will be the start of our new section and will go in the RawOffset field of the
section header. While we are here it is probably a good time to increase SizeOfImage by 100h bytes as we
have done before.

Next we need to find the section headers beginning at offset F8 from the PE header. It is not necessary for
these to be terminated by a header full of zeros. The number of headers is given by NumberOfSections and
there is usually some space at the end before the sections themselves start (aligned to the FileAlignment
value). Find the last section and add a new one after it:

The next thing we have to do is decide which Virtual Offset/Virtual Size/Raw Offset and Raw Size our section should have.
To decide this, we need the following values:

© 2006 CodeBreakers Magazine Page 50 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Virtual offset of formerly last section (.rsrc): 34000h
Virtual size of formerly last section (.rsrc): 8E00h
Raw offset of formerly last section (.rsrc): 2F400h
Raw size of formerly last section (.rsrc): 8E00h
Section Alignment: 1000h
File Alignment: 200h

The RVA and raw offset of our new section must be aligned to the above boundaries. The Raw Offset of the
section is 00038200h as we said above (which luckily fits with FileAlignment). To get the Virtual Offset of our
section we have to calculate this: VirtualAddress of .rsrc + VirtualSize of .rsrc = 3CE00h. Since our
SectionAlignment is 1000h we must round this up to the nearest 1000 which makes 3D000h. So let's fill the
header of our section:

The first 8 bytes will be Name1 (max. 8 chars e.g. "NEW" will be 4E 45 57 00 00 00 00 00 (byte order not reversed)
The next DWORD is VirtualSize = 100h (with reverse byte order = 00 01 00 00)
The next DWORD is VirtualAddress = 3D000h (with reverse byte order = 00 D0 03 00)
The next DWORD is SizeOfRawData = 100h (with reverse byte order = 00 01 00 00)
The next DWORD is PointerToRawData = 38200h (with reverse byte order = 00 82 03 00)
The next 12 bytes can be left null
The final DWORD is Characteristics = E0000060 (for code, executable, read and write as discussed above)

In our hexeditor we see:

Save changes, run to test for errors and examine in LordPE:

© 2006 CodeBreakers Magazine Page 51 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

© 2006 CodeBreakers Magazine Page 52 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

13 Adding Import to an Executable
This is most often used in the context of patching a target app where we don't have the API's we need. To
recap, the minimum information needed by the loader to produce a valid IAT is:

1. Each DLL must be declared with an IMAGE_IMPORT_DESCRIPTOR (IID), remembering to close the
Import Directory with a null-filled one.

2. Each IID needs at least Name1 and FirstThunk fields, the rest can be set to 0 (setting OriginalFirstThunk
= FirstThunk i.e. duplicating the RVAs also works).

3. Each entry of the FirstThunk must be an RVA to an Image_Thunk_Data (the IAT) which in turn contains a
further RVA to the API name. The name will be a null terminated ASCII string of variable length and preceded
by 2 bytes (hint) which can be set to 0.

4. If IIDs have been added then the isize field of the Import Table in the Data Directory may need
changing. The IAT entries in Data Directory need not be altered (see import theory section).

Writing new import data in a hexeditor and then pasting into your target can be very time-consuming. There
are tools which can automate this process (e.g. SnippetCreator, IIDKing, Cavewriter - see bottom of page)
but as always an understanding of how to do it manually is much better. The main task is to append a new
IID onto the end of the import table - you need 20 bytes for each DLL used, not forgetting 20 for the null-
terminator. In nearly all cases there will be no space at the end of the existing import table so we will make a
copy and relocate it somewhere there is space.

Step 1 - create space for new a new IID

This involves the following steps:

1) Move all the IIDs to a location where there is plenty of space. This can be anywhere; the end of the
current .idata section or an entirely new section.
2) Update the RVA of the new Import Directory in the Data Directory of the PE header.
3) If necessary, round up the size of the section where you’ve put the new Import Table so everything is
mapped in memory (e.g. VirtualSize of the .idata section rounded up 1000h).
4) Run it and if it works proceed to step 2. If it doesn’t check the injected descriptors are
mapped in memory and that the RVA of the Import Directory is correct...

IMPORTANT NOTE: the IIDs, FirstThunk and OriginalFirstThunk contain RVAs - RELATIVE ADDRESSES -
which means you can cut and paste the Import Directory (IIDs) wherever you want in your PE file (taking
into account the destination has to mapped into memory) and simply changing the RVA (and size if
necessary) of the Import Directory in the Data Directory will make the app work perfectly.

Back to our example in the hexeditor, the first IID and the null terminator are outline in red. As you can see
there is no space after the null IID:

© 2006 CodeBreakers Magazine Page 53 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

However there is a large amount of space at the end of the .idata section before .rdata starts. We will copy
and paste the existing IIDs shown above to offset 2C500h at this new location:

To convert the new offset to an RVA (see appendix):

VA = RawOffset - RawOffsetOfSection + VirtualOffsetOfSection
 = 2C500 - 2AC00 + 2D000 = 2E900h

So change the virtual address of the import table in the data directory from 2D000 to 2E900. Now edit the
.idata section header and make VirtualSize equal to RawSize so the loader will map the whole section in. Run
the app to test it.

© 2006 CodeBreakers Magazine Page 54 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Step 2 - Add the new DLL and function details

This involves the following steps:

1) Add null-terminated ASCII strings of the names of your DLL and function to a free space in the .idata
section. The function name will actually be an Image_Import_By_Name structure preceded by a null WORD
(the hint field).
2) Calculate the RVAs of the above strings.
3) Add the RVA of the DLL name to the Name1 field of your new IID.
4) Find another DWORD sized space and put in it the RVA of the hint/function name. This becomes the
Image_Thunk_Data or IAT of our new DLL.
5) Calculate the RVA of the above Image_Thunk_Data DWORD and add it to the FirstThunk field of your new
IID.
6) Run the app to test...your new API is ready to be called...

In order to fill in our new IID we need at the very least Name1 and FirstThunk fields (the others can be
nulled). As we already know, the Name1 field contains the RVA of the name of the DLL in null-terminated
ASCII. The FirstThunk field contains the RVA of an Image_Thunk_Data structure which in turn contains yet
another RVA of the name of the function in null-terminated ASCII. The name however is preceded by 2 bytes
(Hint) which can be set to zero.

Say for example we want to use the function LZCopy which copies a source file to a destination file. If the
source file is compressed with the Microsoft File Compression Utility (COMPRESS.EXE), this function creates a
decompressed destination file. If the source file is not compressed, this function duplicates the original file.

This function resides in lz32.dll which is not currently used by our app. Therefore we first need to add strings
for the names "lz32.dll" and "LZCopy". Scroll upwards in the hexeditor from your new import table towards
the end of the preexisting data and add the DLL name then the function name onto the end. Note the null
bytes after each string and the null WORD before the function name:

© 2006 CodeBreakers Magazine Page 55 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Now we need to calculate the RVAs of these (see appendix):

RVA = RawOffset - RawOffsetOfSection + VirtualOffsetOfSection + ImageBase

RVA of DLL name = 2C420 - 2AC00 + 2D000 = 2E820h (20 E8 02 00 in reverse)

RVA of function name = 2C430 - 2AC00 + 2D000 = 2E830h (30 E8 02 00 in reverse)

The first one can go into the Name1 field of our new IID but the second must go into an Image_Thunk_Data
structure, the RVA of which we can then put into the FirstThunk field (and OriginalFirstThunk) of our new IID.
We will put the Image_Thunk_Data structure below the function name string at offset 2C440 and calculate
the RVA which we will put in FirstThunk:

RVA of Image_Thunk_Data = 2C440 - 2AC00 + 2D000 = 2E840 (40 E8 02 00 in reverse)

If we fill in the data in the hexeditor we see this:

Finally save changes, run the app to test and re-examine the imported functions in PEBrowse:

© 2006 CodeBreakers Magazine Page 56 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

In order to call your new function, you would use the following code:

CALL DWORD PTR [XXXXXXXX] where XXXXXXXX = RVA of Image_Thunk_Data + ImageBase.

In our example above for LZCopy, XXXXXXXX = 2E840 + 400000 = 42E840 so we would write:

CALL DWORD PTR [0042E840]

FINAL NOTE: even if we had added a function used by a DLL which was already in use eg kernel32.dll, we
would still need to create a new IID for it to enable us to create a new IAT at a convenient location as above.

Just as an addendum to this page, here are a few shots of the automated tools mentioned above:

© 2006 CodeBreakers Magazine Page 57 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Of note, SnippetCreator adds jump-thunk stubs of new imports to your code whereas with the other utilities
you have to do this manually.

© 2006 CodeBreakers Magazine Page 58 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

© 2006 CodeBreakers Magazine Page 59 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

14 Introduction to Packers
In this section we will examine the effect of a simple packer on our example app and cover 2 main ways of
patching a packed executable - either by unpacking first or by inline-patching. We will use UPX1.25 since this
is really an executable compressor and doesn't use any advanced protection mechanisms. In the words of
Marcus & Laszlo (the authors of UPX):

"We will *NOT* add any sort of protection and/or encryption. This only gives people a false feeling of security
because by definition all protectors/compressors can be broken. And don't trust any advertisment of authors
of other executable compressors about this topic - just do a websearch on 'unpackers'..."

First we scan our app with PEID:

Next we pack our app with upx. This is a commandline utility so we open a DOS box where our app is and
type "upx basecalc.exe":

Now we notice file size down from 225Kb to 91 Kb and in PEID we see this:

© 2006 CodeBreakers Magazine Page 60 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

PEBrowse Pro shows that there are now only 3 sections called UPX0, UPX1 and .rsrc The resource section
now contains the import directory but for each DLL there are only one or two imported functions - the others
have disappeared:

© 2006 CodeBreakers Magazine Page 61 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Note the .rsrc section has retained its original name even though the others have changed. Interestingly this
dates back to a bug in the LoadTypeLibEx function in oleaut32.dll in Win95 in which the string "rsrc" was
used to find and load the resource section. This created an error if the section was renamed. Although this
bug has been fixed it seems most packers do not rename the rsrc section for compatibility reasons.

By opening the app in LordPE editor and pressing the compare button we can open an original copy of our
app and see the changes made to the headers:

© 2006 CodeBreakers Magazine Page 62 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

When we open our app in Olly we get a message that the executable is likely packed. Just click OK and we
land at the entrypoint:

 UPX has compressed our app and appended the code with a stub containing the decompression algorithm.
The entrypoint of the app has been changed to the start of the stub and after the stub has done its job,
execution jumps to the original entrypoint to start our now unpacked program.

The rationale for dealing with this is to let the stub decompress our app in memory and then dump the
memory region to a file to get an unpacked copy of the app. However the app will not run straight away
because the dumped file will have its sections aligned to memory page boundaries rather than file alignment
values, the entrypoint will still point to the decompression stub and the Import directory is clearly also wrong
and will need fixing.

Note at our entrypoint in Olly the first instruction we see is PUSHAD. This stands for PUSH All Double and
instructs the CPU to store the contents of all the 32bit (DWORD) registers on the stack, starting with EAX and
ending with EDI. Following this the stub does its job and then ends with a POPAD instruction before jumping
to the OEP. POPAD copies the contents of the registers back from the stack. This means the stub will have
restored everything back the way it was and exited without trace before running the app. Since this method
is ideal in this situation it is common to other simple packers eg ASPack.

From the time of the first PUSHAD instuction, the contents of the stack at that level must remain untouched
until accessed by the final POPAD. If we put a Hardware breakpoint on the first 4 bytes of the stack at the
time of the PUSHAD Olly will break when the same 4 bytes are accessed at the POPAD instruction and we will
be sitting right in front of our JMP to OEP.

First we must execute the PUSHAD instruction so press F7 to single step. Next we will place our breakpoint.
The ESP (Stack Pointer) register always contains the location of the top of the stack so . Rightclick on ESP
and select follow in dump - this puts the stack in the hexdump window:

© 2006 CodeBreakers Magazine Page 63 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Now highlight the first DWORD of the stack, rightclick and select breakpoint, hardware on access, DWORD:

Next run the app by pressing F9 and Olly will break after the PUSHAD directly before the JMP to the OEP. The
OEP shown here has the ImageBase 400000h added onto it so to make it into an RVA we subtract it which
leaves 0002ADB4h:

© 2006 CodeBreakers Magazine Page 64 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

If you want to cheat there is a quick way which always works for upx. Simply scroll to the end of the code in
the CPU window in Olly and just before all the zero padding starts you will see the POPAD instruction shown
above.

NOTE: other packers which use the same simple PUSHAD/POPAD mechanism may jump to the OEP by using
a PUSH instruction to put the value of the OEP onto the top of the stack followed by a RET instruction. The
CPU will think it is returning from a function call and conventionally the return address is left on top of the
stack.

Next we single step once with F7 so we are at the OEP and dump the app using the OllyDump plugin. Just
click on plugins, OllyDump and select dump debugged process. In the next box we will deselect fix raw size
and rebuild imports in order to illustrate some points of interest:

Note that OllyDump has already worked out the base address and size of image (which you could see by
looking in the memory map window) and has offered to correct the entrypoint for us (although we could do

© 2006 CodeBreakers Magazine Page 65 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

this manually in the hexeditor). Press the DUMP button and save the file (eg as basecalc_dmp.exe). Leave
Olly running for now.

Unfortunately we see something is wrong because our file has lost its icon and if we try to run it we get an
error:

This is because of the alignment issues mentioned earlier - the filesize has also increased as a result. Open
the app in LordPE and look at the sections. The raw offset and raw size values are wrong. We will have to
make the Raw values equal the Virtual values for each section for the app to work. Rightclick the UPX0
section and select edit header:

Now make RawOffset equal VirtualAddress and RawSize equal VirtualSize. Repeat for the other sections then
click save and exit (this is what the "fix raw size" checkbox in OllyDump does automatically). Now the icon
has returned and we get a different error when we try to run it: "The application failed to initialize properly".
This is because the imports still need rebuilding.

It is possible to do this manually using a process similar to adding imports which we discussed in a previous
section. However this can be very time-consuming if there are a lot of imported functions and the method
depends on how damaged the import data is. Here we will use ImpREC 1.6F by MackT to do this
automatically. ImpREC needs to attach to a running process and also needs the packed file to find imports.
Start up ImpREC and follow these steps:

1. select basecalc.exe in the box at the top (it should still be running in Olly.)
2. Next enter our OEP (2ADB4) in the appropriate box
3. Press the "IAT AutoSearch" button and click OK on the messagebox
4. Press the "Get Imports" button
5. Press "Show Invalid" - in this case there are none

© 2006 CodeBreakers Magazine Page 66 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

6. Press "Fix Dump" and select basecalc_dmp.exe in the open dialogbox
7. Exit.

ImpREC will save a fixed copy of our dumped file appended with "_" so run basecalc_dmp_.exe to test it. If
we examine this file we will see that size has increased and there is an extra section called "mackt" - this is
where ImpREC puts the new import data:

Since UPX is purely a compressor, it has simply taken the existing import data and stored it in the resource
section without encrypting or damaging it. This is why ImpREC finds all valid imports without resorting to

© 2006 CodeBreakers Magazine Page 67 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

tracing or rebuilding - it has taken the import directory from the packed executable in memory and
transferred it to the new section in the unpacked executable.

Scanning with PEID now reveals:

This illustrates the steps necessary to unpack an executable packed with a simple compressor. More
advanced packers add various protection schemes to this eg antidebugging and anti-tampering tricks,
encryption of code and IAT, stolen bytes, API redirection, etc. which are beyond the scope of this tutorial.

If it is necessary to patch a packed executable, it may be possible to avoid unpacking it first by using a
technique called "inline-patching". This involves patching the code at runtime in memory after the
decompression stub has done its work and then finally jumping to the OEP to run the app. In other words we
wait until the app is unpacked in memory, jump to patching code which we have injected, then finally jump
back to the OEP.

To illustrate this technique we will inject code into the packed executable to pop up a messagebox and let us
know when the app is unpacked in memory. Clicking OK will then jump to the OEP and the app will run
normally.

The first task is to find some free space for our code so open the packed app in the hexeditor and look for a
suitable "cave". Free space at the end of a section is better as it is less likely to be used by the packer and is
extensible by enlarging the section if necessary (see adding code to a PE file.) You can see how efficient UPX is -
there is hardly any free space - but a small cave exists here. Now add the text "Unpacked..." and "Now back
to OEP" in the ASCII column of the hexeditor as shown:

© 2006 CodeBreakers Magazine Page 68 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

This will mark our spot for the patch in Olly without having to worry about calculating VAs. Save changes and
open the app in Olly. Rightclick in the hex window and select search for binary string. Now enter "Unpacked"
and note the VA of the 2 strings. In the CPU window, rightclick and select Goto expression. Enter the address
of the first string and you will see the 2 strings in hexadecimal form. Olly has not analysed this properly so it
displays nonsense code next to it. Highlight the next free row underneath and press the spacebar to
assemble the following instructions:

PUSH 0
PUSH 440C30 [address of first string]
PUSH 440C40 [address of second string]
PUSH 0
CALL MessageBoxA
JMP 42ADB4

Make a note of the address of our first PUSH instruction - 440C4E. Our code should look like this:

© 2006 CodeBreakers Magazine Page 69 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Next rightclick and select copy to executable, selection. In the new window rightclick and select save file etc.
If we check in the hexeditor we see our code has been added:

Finally we need to change the JMP at the end of the UPX stub to go to our code. Find it as shown earlier,
doubleclick the JMP instruction to assemble and change the address to 440C4E. Save changes again and run
the app to test it:

Clicking OK resumes BaseCalc.

© 2006 CodeBreakers Magazine Page 70 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

15 Infection of PE Files by Viruses
This section gives a brief glance at techniques used by viruses to infect PE files. It will be of interest to see
that the methods are exactly the same as those we have discussed earlier for adding code.

Most 32bit windows viruses infect PE files. They achieve this either by adding their own headers or updating
existing headers in order to add their malicious code to the executable. Most viruses will update the
SizeOfImage value as it is checked by the NTLoader but some neglect to change SizeOfCode.

Usually PE sections which are executable are not writable but those added by viruses need to be both since
the code and data of the virus exist in the same section. The virus will therefore alter the Characteristics field
of the section header to allow this.

Overwriting viruses are crude since they simply overwrite the code of the host program rendering it
useless, however they are easily detected as the host app stops working.

Header viruses insert themselves between the PE header and the beginning of the first section. These have
to be very small as the space they occupy is limited by the FileAlignment value (default=512bytes) which
dictates where each section will start. Example Win95/Murky

Prepending viruses attach to the beginning of a PE file so that viral code is executed before the host app's
code. There are 2 modes of action:

1. The virus moves the PE header to the end of the host app and inserts its code into the space.

2. The virus appends the host app to itself.

These viruses may after execution, clean a copy of the host app, launch it and then reinfect it.

Appending viruses add their code to the final section. The section header of this section is patched to
reflect the new size of the file (SizeOfImage, VirtualSize and SizeOfRawData). AddressOfEntryPoint is
modified to point to the viral code and the Characteristics field is modified to be executable and writable. The
NumberOfSections field is not changed. Example Win95/Anxiety

Some viruses of this type avoid modifying the AddressOfEntryPoint field by overwriting the instructions at the
EP with garbage containing a JMP to the start of the viral code. Example Win95/Marburg

Companion viruses do not modify the host file but create a copy of themselves with the same name as the
host file but with a .com extension. The viral .com copy is therefore executed by windows first, followed by
the .exe host file. These viruses use the FindFirstFileA, FindNextFileA, CopyFileA, and CreateProcessA API
functions. Example Win95/SPAWN.4096

Cavity viruses split themselves into tiny fragments which are small enough to occupy the slack-space
between sections of the PE file (which are aligned on 512 byte boundaries as discussed earlier). The
VirtualSize fields in the section table are increased to the same size as the SizeOfRawData values but the
overall size of the file remains the same making these difficult to detect. A tiny piece of viral loader code at
the EP "rebuilds" the virus when executed. Example Win95/CIH

DLL viruses insert their code into a DLL and then patch the RVA of an API function in the DLLs export table
to point to the virus code. This is because there is no AddressOfEntryPoint to redirect as DLLs always start at
a specified DLLEntryPoint. The Checksum field is usually recalculated and patched back into the DLL as this is
checked by the NTLoader. Example Win95/Lorez

© 2006 CodeBreakers Magazine Page 71 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

 Other techniques used by viruses include appending to multiple sections at the same time and shifting
sections to create large caves for the viral code.

© 2006 CodeBreakers Magazine Page 72 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

16 Conclusion
I hope this tutorial has helped to make clear some of the complexities of PE format, particularly those
relevant to RCE. There are areas which I have skirted over briefly and others which I have omitted altogether
to save time and space. For those of you who may not have read all of the above referenced texts or who
need further information on specifics, I will summarise the most important.

First on the must-read list are the 2 parts of "An In-Depth Look..." by Pietrek. These superseded his earlier
article "Peering Inside the PE" which is dated and contains inaccuracies. The articles by O'Leary and Kath do
not add significantly to Pietrek's. PE.TXT by Luevelsmeyer is long and detailed and best used as a reference,
and there are certain details which even he admits unknown. There are sections in several books concerning
PE format eg. Hacker Disassembling Uncovered, Hackproof your software but these are brief and less detailed
than Pietrek's articles. Secrets of Reverse Engineering, however is different and gives a most excellent
overview of the more important concepts of PE format along with reversing in Windows in general.

Second on the must-read list are the excellent set of tutorials by Iczelion which are detailed and also oriented
around writing routines in ASM to parse and manipulate various parts of the PE file including the imports.

Third on the list is the Win32 Programmer's Reference (a must for RCE). The WINNT.h or windows.inc files
which contain all of the definitions of the structures outlined in this tutorial are a useful reference at times.

The next most valuable are the articles published in The CodeBreaker's Journal by Eduardo Labir (aka
Havok). Apart from that listed above there are other titles concerning Asprotect which are very detailed and
should be considered essential reading.

There is also a small collection of articles by Rheingold several of which concentrate on working with the PE
format. Issues 1-4 survive on the internet and can be found here:

http://www.programming journal.com/issue4/

Note there is no root or index page, nor are they indexed by Google.

This knowledge will provide a solid background upon which to understand how executable packers work and
how to defeat them by manual unpacking, inline patching, writing loaders, etc. There are many good tutorials
around concerning these things, especially the ones I have eluded to above from ARTeam and Ricardo
Narvaja. Read everything you can find, take the time to understand it and finally "work well" as +ORC always
said.

© 2006 CodeBreakers Magazine Page 73 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

17 Relative Virtual Addressing Explained
In an executable file or DLL, an RVA is always the address of an item once loaded into memory, with the
base address (ImageBase) of the image file subtracted from it: RVA = VA – ImageBase hence also: VA
= RVA + ImageBase

It's exactly the same thing as file offset but it's relative to a point in virtual address space, not the beginning
of the PE file. E.g. if a PE file loads at 400000h in the virtual address (VA) space and the program starts
execution at the virtual address 401000h, we can say that the program starts execution at RVA 1000h. An
RVA is relative to the starting VA of the module. The RVA of an item will almost always differ from its position
within the file on disk - the offset. This is a pitfall for newcomers to PE programming. Most of the
addresses in the PE file are RVAs and are meaningful only when the PE file is loaded into memory
by the PE loader.

The term "Virtual Address" is used because Windows creates a distinct virtual address space for each
process, independent of physical memory. For almost all purposes, a virtual address should be considered
just an address. As above, a virtual address is not as predictable as an RVA, because the loader might not
load the image at its preferred base address.

Why does the PE file format use RVA? It's to help reduce the load of the loader. Since a module can be
relocated anywhere in the virtual address space, it would be hell for the loader to fix every hardcoded
address in the module. In contrast, if all relocatable items in the file use RVA, there is no need for the loader
to fix anything: it simply relocates the whole module to a new starting VA.

Converting virtual offsets to raw offsets and vice versa (from Rheingold)

Converting raw offsets (the one in a file you see in a HexEditor) to virtual offsets (the one you see in a
debugger) is very useful if you work with the PE header. For this you need to know some values from the PE
header. You need to know the ImageBase, the name of the section in which your offset lies, . Below you see
an example of a PE header from the beginning of the file (where it is actually a MZ header until offset 80h)
until the section definitions end (offset 23Fh). The example is taken from my notepad.exe.

© 2006 CodeBreakers Magazine Page 74 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Example 1 - Converting raw offset 7800h to a virtual offset:

The ImageBase (DWORD value 34h bytes after the PE header begins, in our case B4h) is 40000h. The
Section Table starts F8h bytes after the PE header starts, in our case 178h. It is this part:

© 2006 CodeBreakers Magazine Page 75 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

The colored values tell us the following values:

The Virtual Size and orange coloured values in the hexeditor output above are not of interest for the
conversion but have other functions (see Section Table page).

We want to convert raw offset 7800h. It seems obvious that this offset lies in the .rsrc section because it
starts at 7000h (Raw Offset) and is 6000h bytes long (Raw Size). Offset 7800h is located 800h bytes after
the section starts in the file. Since the sections are copied to the memory just like they are in the file, this
address will be found 800h bytes after the section starts in memory (7000h; Virtual Offset). The offset we
search is at 7800h. This is absolutely not common that the raw offset equals the virtual offset (without
ImageBase). In this case it is only because the sections start at the same offset in memory and in the file.

The general formula is:

RVA = RawOffset_YouHave - RawOffsetOfSection + VirtualOffsetOfSection + ImageBase

(ImageBase = DWORD value 34h bytes after the PE header begins)

The conversion from a virtual offset to a raw offset just goes the other way round. The general formula is:

Raw Offset = RVA_YouHave - ImageBase - VirtualOffsetOfSection + RawOffsetOfSection

For 40A000 that is: 40A000-400000-7000+7000 = A000

There are also automated tools to perform the above conversions. Pressing the "FLC" button on the PE Editor
of LordPE will allow you to convert an RVA to an offset:

© 2006 CodeBreakers Magazine Page 76 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

Offset Calculator also only allows conversion one-way from RVA to Raw Offset:

RVA Calculator allows conversion both ways:

© 2006 CodeBreakers Magazine Page 77 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

18 References & Bibliography
(1) The Portable Executable Format -- Micheal J. O'Leary

(2) The Portable Executable File Format from Top to Bottom -- Randy Kath

(3) Peering Inside the PE: A Tour of the Win32 Portable Executable File Format -- Matt Pietrek

(4) An In-Depth Look into the Win32 Portable Executable File Format (2 parts)-- Matt Pietrek

(5) Windows 95 Programming Secrets -- Matt Pietrek

(6) Linkers and Loaders -- John R Levine

(7) Secrets of Reverse Engineering -- Eldad Eilam

(8) PE.TXT -- Bernd Luevelsmeyer

(9) Converting virtual offsets to raw offsets and vice versa -- Rheingold

(10) PE Tutorial -- Iczelion

(11) The Portable Executable File Format -- KGL

(12) PE Notes, Understanding Imports -- yAtEs

(13) Win32 Programmer's Reference

(14) What Goes On Inside Windows 2000: Solving the Mysteries of the Loader -- Russ Osterlund

(15) Anti Reverse Engineering Uncovered -- Nicolas Brulez, CBJ

(16) Tool Interface Standard (TIS) Formats Specification for Windows

(17) Adding Imports by Hand -- Eduardo Labir (Havok), CBJ

(18) Enhancing functionality of programs by adding extra code -- c0v3rt+

(19) Working Manually with Import Tables -- Ricardo Narvaja

(20) PE File Infection Techniques -- Konstantin Rozinov

(21) All tutorials concerning manual unpacking (especially those from ARTeam, with special reference to
the Beginner Olly series by Shub and Gabri3l.)

© 2006 CodeBreakers Magazine Page 78 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

19 Tools Used
• Hexeditor (any will do)

• PEBrowse Pro http://www.smidgeonsoft.prohosting.com/download/PEBrowse.zip

• PEID http://www.secretashell.com/codomain/peid/download.html

• LordPE http://mitglied.lycos.de/yoda2k/LordPE/LPE-DLX.ZIP (get DLX-b update also)

• HexToText http://www.buttuglysoftware.com/HexToTextMFC.zip

• OllyDbg http://home.t-online.de/home/Ollydbg/odbg110.zip

• OllyDump http://ollydbg.win32asmcommunity.net/stuph/g_ollydump221b.zip

• WinDbg http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.4.7.2.exe

• ResHacker http://delphi.icm.edu.pl/ftp/tools/ResHack.zip

• UPX 1.25 http://upx.sourceforge.net/download/upx125w.zip

• ImpREC http://wasm.ru/tools/6/imprec.zip

• BaseCalc included in this archive ...and mentioned in the text:

• MASM32 http://www.masm32.com/masmdl.htm

• Signature Finder http://wasm.ru/baixado.php?mode=tool&id=244

• Snippet Creator http://win32assembly.online.fr/files/sc.zip

• First_Thunk Rebuilder http://www.angelfire.com/nt/teklord/FirstThunk.zip

• IIDKing http://www.reteam.org/tools/tf23.zip

• Cavewriter http://sandsprite.com/CodeStuff/cavewriter.zip

• RVA Converter http://www.polarhome.com:793/~execution/00/ex-rva11.zip

• Offset Calculator http://protools.reverse-engineering.net/files/utilities/offcal.zip

© 2006 CodeBreakers Magazine Page 79 of 87

http://www.smidgeonsoft.prohosting.com/download/PEBrowse.zip
http://www.secretashell.com/codomain/peid/download.html
http://mitglied.lycos.de/yoda2k/LordPE/LPE-DLX.ZIP
http://www.buttuglysoftware.com/HexToTextMFC.zip
http://home.t-online.de/home/Ollydbg/odbg110.zip
http://ollydbg.win32asmcommunity.net/stuph/g_ollydump221b.zip
http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.4.7.2.exe
http://delphi.icm.edu.pl/ftp/tools/ResHack.zip
http://upx.sourceforge.net/download/upx125w.zip
http://wasm.ru/tools/6/imprec.zip
http://www.masm32.com/masmdl.htm
http://wasm.ru/baixado.php?mode=tool&id=244
http://win32assembly.online.fr/files/sc.zip
http://www.angelfire.com/nt/teklord/FirstThunk.zip
http://www.reteam.org/tools/tf23.zip
http://sandsprite.com/CodeStuff/cavewriter.zip
http://www.polarhome.com:793/%7Eexecution/00/ex-rva11.zip
http://protools.reverse-engineering.net/files/utilities/offcal.zip

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

20 Appendix: Complete PE Offset Reference
While there is a lot of data and various parts of the structure are at varying positions there are still a lot of
useful fixed and relative offsets that will help when disassembling/examining PE files. Resource information
and the such like are omitted - there are good tools available to manipulate these e.g. ResHacker.

The DOS Header

OFFSET SIZE NAME EXPLANATION

00 WORD e_magic Magic DOS signature MZ (4Dh 5Ah)

02 WORD e_cblp Bytes on last page of file

04 WORD e_cp Pages in file

06 WORD e_crlc Relocations

08 WORD e_cparhdr Size of header in paragraphs

0A WORD e_minalloc Minimum extra paragraphs needed

0C WORD e_maxalloc Maximum extra paragraphs needed

0E WORD e_ss Initial (relative) SS value

10 WORD e_sp Initial SP value

12 WORD e_csum Checksum

14 WORD e_ip Initial IP value

16 WORD e_cs Initial (relative) CS value

18 WORD e_lfarlc File address of relocation table

1A WORD e_ovno Overlay number

1C WORD e_res[4] Reserved words

24 WORD e_oemid OEM identifier (for e_oeminfo)

26 WORD e_oeminfo OEM information; e_oemid specific

28 WORD e_res2[10] Reserved words

3C DWORD e_lfanew Offset to start of PE header

© 2006 CodeBreakers Magazine Page 80 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

 The PE Header

Offsets shown are from the beginning of this section.

00 DWORD Signature PE Signature PE.. (50h 45h 00h 00h)

04 WORD Machine
014Ch = Intel 386, 014Dh = Intel 486, 014Eh =
Intel 586, 0200h = Intel 64-bit, 0162h=MIPS

06 WORD NumberOfSections Number Of Sections

08 DWORD TimeDateStamp Date & time image was created by the linker

0C DWORD PointerToSymbolTable Zero or offset of COFF symbol table in older files

10 DWORD NumberOfSymbols Number of symbols in COFF symbol table

14 WORD SizeOfOptionalHeader Size of optional header in bytes (224 in 32bit exe)

16 WORD Characteristics see below

18

START OF OPTIONAL HEADER **************************************

18 WORD Magic
010Bh=32-bit executable image
020Bh=64-bit executable image
0107h=ROM image

1A BYTE MajorLinkerVersion Major version number of the linker

1B BYTE MinorLinkerVersion Minor version number of the linker

1C DWORD SizeOfCode size of code section or sum if multiple code sections

20 DWORD SizeOfInitializedData as above

24 DWORD SizeOfUninitializedData as above

28 DWORD AddressOfEntryPoint
Start of code execution, optional for DLLs, zero
when none present

2C DWORD BaseOfCode RVA of first byte of code when loaded into RAM

30 DWORD BaseOfData RVA of first byte of data when loaded into RAM

© 2006 CodeBreakers Magazine Page 81 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

34 DWORD ImageBase Preferred load address

38 DWORD SectionAlignment Alignment of sections when loaded in RAM

3C DWORD FileAlignment Alignment of sections in file on disk

40 WORD MajorOperatingSystemVersion Major version no. of required operating system

42 WORD MinorOperatingSystemVersion Minor version no. of required operating system

44 WORD MajorImageVersion Major version number of the image

46 WORD MinorImageVersion Minor version number of the image

48 WORD MajorSubsystemVersion Major version number of the subsystem

4A WORD MinorSubsystemVersion Minor version number of the subsystem

4C DWORD Reserved1

50 DWORD SizeOfImage
Amount of memory allocated by loader for image.
Must be a multiple of SectionAlignment

54 DWORD SizeOfHeaders Offset of first section, multiple of FileAlignment

58 DWORD CheckSum
Image checksum (only required for kernel-mode
drivers and some system DLLs).

5C WORD Subsystem 0002h=Windows GUI, 0003h=Windows CUI

5E WORD DllCharacteristics

0001h=per-process library initialization
0002h=per-process library termination
0003h=per-thread library initialization
0004h=per-thread library termination

60 DWORD SizeOfStackReserve Number of bytes reserved for the stack

64 DWORD SizeOfStackCommit Number of bytes actually used for the stack

68 DWORD SizeOfHeapReserve Number of bytes to reserve for the local heap

6C DWORD SizeOfHeapCommit Number of bytes actually used for local heap

70 DWORD LoaderFlags This member is obsolete.

© 2006 CodeBreakers Magazine Page 82 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

74 DWORD NumberOfRvaAndSizes Number of directory entries - usually set to 10h.

78

START OF DATA DIRECTORY **************************************

78 DWORD IMAGE_DATA_DIRECTORY0 RVA of Export Directory

7C DWORD size of Export Directory

80 DWORD IMAGE_DATA_DIRECTORY1 RVA of Import Directory (array of IIDs)

84 DWORD size of Import Directory (array of IIDs)

88 DWORD IMAGE_DATA_DIRECTORY2 RVA of Resource Directory

8C DWORD size of Resource Directory

90 DWORD IMAGE_DATA_DIRECTORY3 RVA of Exception Directory

94 DWORD size of Exception Directory

98 DWORD IMAGE_DATA_DIRECTORY4 Raw Offset of Security Directory

9C DWORD size of Security Directory

A0 DWORD IMAGE_DATA_DIRECTORY5 RVA of Base Relocation Directory

A4 DWORD size of Base Relocation Directory

A8 DWORD IMAGE_DATA_DIRECTORY6 RVA of Debug Directory

AC DWORD size of Debug Directory

B0 DWORD IMAGE_DATA_DIRECTORY7 RVA of Copyright Note

B4 DWORD size of Copyright Note

B8 DWORD IMAGE_DATA_DIRECTORY8 RVA to be used as Global Pointer (IA-64 only)

BC DWORD Not used

C0 DWORD IMAGE_DATA_DIRECTORY9 RVA of Thread Local Storage Directory

© 2006 CodeBreakers Magazine Page 83 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

C4 DWORD size of Thread Local Storage Directory

C8 DWORD IMAGE_DATA_DIRECTORY10 RVA of Load Configuration Directory

CC DWORD size of Load Configuration Directory

D0 DWORD IMAGE_DATA_DIRECTORY11 RVA of Bound Import Directory

D4 DWORD size of Bound Import Directory

D8 DWORD IMAGE_DATA_DIRECTORY12 RVA of first Import Address Table

DC DWORD total size of all Import Address Tables

E0 DWORD IMAGE_DATA_DIRECTORY13 RVA of Delay Import Directory

E4 DWORD size of Delay Import Directory

E8 DWORD IMAGE_DATA_DIRECTORY14 RVA of COM Header (top level info & metadata...

EC DWORD size of COM Header ...in .NET executables)

F0 DWORD ZERO (Reserved) Reserved

F4 DWORD ZERO (Reserved) Reserved

F8

START OF SECTION TABLE *******Offsets shown from here********

00 8 Bytes Name1 Name of first section header

08 DWORD misc (VirtualSize) Actual size of data in section

0C DWORD virtual address RVA where section begins in memory

10 DWORD SizeOfRawData Size of data on disk (multiple of FileAlignment)

14 DWORD pointerToRawData Raw offset of section on disk

18 DWORD pointerToRelocations Start of relocation entries for section, zero if none

1C DWORD PointerToLinenumbers Start of line-no. entries for section, zero if none

© 2006 CodeBreakers Magazine Page 84 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

20 WORD NumberOfRelocations This value is zero for executable images.

22 WORD NumberOfLineNumbers Number of line-number entries for section.

24 DWORD Characteristics see end of page below

00 8 Bytes Name1 Name of second section header

Repeats for rest of sections **************************************

The Export Table

Offsets shown from beginning of table (given at offset 78 from start of PE header). The following 40 Bytes
repeat for each export library (DLL whose functions are imported by the executable) and ends with one full of
zeroes.

OFFSET SIZE NAME EXPLANATION

00 DWORD Characteristics Set to zero (currently none defined)

04 DWORD TimeDateStamp often set to zero

08 WORD MajorVersion user-defined version number, otherwise zero

0A WORD MinorVersion as above

0C DWORD Name RVA of DLL name in null-terminated ASCII

10 DWORD Base First valid exported ordinal, normally=1

14 DWORD NumberOfFunctions Number of entries in EAT

18 DWORD NumberOfNames Number of entries in ENT

1C DWORD AddressOfFunctions RVA of EAT (export address table)

20 DWORD AddressOfNames RVA of ENT (export name table)

24 DWORD
AddressOfNameOrd
inals

RVA of EOT (export ordinal table)

The Import Table

Offsets shown from beginning of table (given at offset 80 from start of PE header). The following 5 DWORDS
repeat for each import library (DLL whose functions are imported by the executable) and ends with one full of
zeroes.

© 2006 CodeBreakers Magazine Page 85 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

OFFSET SIZE NAME EXPLANATION

00 DWORD OriginalFirstThunk RVA to Image_Thunk_Data

04 DWORD TimeDateStamp zero unless bound against imported DLL

08 DWORD ForwarderChain pointer to 1st redirected function (or 0)

0C DWORD Name1 RVA to name in null-terminated ASCII

10 DWORD FirstThunk RVA to Image_Thunk_Data

Image Characteristics Flags

FLAG EXPLANATION

0001 Relocation info stripped from file

0002 File is executable (no unresolved external references)

0004 Line numbers stripped from file

0008 Local symbols stripped from file

0010 Lets OS aggressively trim working set

0020 App can handle >2Gb addresses

0080 Low bytes of machine word are reversed

0100 requires 32-bit WORD machine

0200 Debugging info stripped from file into .DBG file

0400 If image is on removable media, copy and run from swap file

0800 If image is on a network, copy and run from swap file

1000 System file

2000 File is a DLL

4000 File should only be run on a single-processor machine

8000 High bytes of machine word are reversed

Section Characteristics Flags

© 2006 CodeBreakers Magazine Page 86 of 87

PORTABLE EXECUTABLE FILE FORMAT – A REVERSE ENGINEER VIEW

FLAG EXPLANATION

00000008 Section should not be padded to next boundary

00000020 Section contains code

00000040
Section contains initialised data (which will become
initialised with real values before the file is launched)

00000080
Section contains uninitialised data (which will be
initialised as 00 byte values before launch)

00000200 Section contains comments for the linker

00000800 Section contents will not become part of image

00001000 Section contents comdat (Common Block Data)

00008000 Section contents cannot be accessed relative to GP

00100000 to 00800000 Boundary alignment settings

01000000 Section contains extended relocations

02000000 Section can be discarded (e.g. .reloc)

04000000 Section is not cacheable

08000000 Section is pageable

10000000 Section is shareable

20000000 Section is executable

40000000 Section is readable

80000000 Section is writable

© 2006 CodeBreakers Magazine Page 87 of 87

	1 Introduction
	5 The Data Directory

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

