
Visual Studio, Microsoft Portable
Executable and Common Object
File Format Specification
Revision 8.0 - May 16, 2006

Abstract
This specification describes the structure of executable (image) files and object files
under the Microsoft® Windows® family of operating systems. These files are
referred to as Portable Executable (PE) and Common Object File Format (COFF)
files, respectively.

Note
This document is provided to aid in the development of tools and applications for
Microsoft Windows but is not guaranteed to be a complete specification in all
respects. Microsoft reserves the right to alter this document without notice.

This revision of the Microsoft Portable Executable and Common Object File Format
Specification replaces Revision 6.0 of this specification.

The current version of this specification is maintained on the Web at:
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 2

Legal Notice

Microsoft Portable Executable and Common Object File Format Specification
Microsoft Corporation
Revision 8.0

Note: This specification is provided to aid in the development of certain development tools for the
Microsoft Windows platform. However, Microsoft does not guarantee that it is a complete specification in
all respects, and cannot guarantee the accuracy of any information presented after the date of
publication. Microsoft reserves the right to alter this specification without notice.

Microsoft will grant a royalty-free license, under reasonable and non-discriminatory terms and conditions,
to any Microsoft patent claims (if any exist) that Microsoft deems necessary for the limited purpose of
implementing and complying with the required portions of this specification only in the software
development tools known as compilers, linkers, and assemblers targeting Microsoft Windows.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights
under copyright, no part of this specification may be reproduced, stored in or introduced into a retrieval
system, modified or used in a derivative work, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft.

Microsoft may have intellectual property rights covering subject matter in this specification. Except as
expressly provided in any written license agreement from Microsoft, the furnishing of this specification
does not give you any license to any intellectual property rights, and no other rights are granted by
implication, estoppel, or otherwise.

© 2006 Microsoft Corporation. All rights reserved.

This specification is provided “AS IS.” Microsoft makes no representations or warranties,
express, implied, or statutory, as (1) to the information in this specification, including any
warranties of merchantability, fitness for a particular purpose, non-infringement, or title; (2) that
the contents of this specification are suitable for any purpose; nor (3) that the implementation of
such contents will not infringe any third party patents, copyrights, trademarks, or other rights.

Microsoft will not be liable for any direct, indirect, special, incidental, or consequential damages
arising out of or relating to any use or distribution of this specification.

Microsoft, MS-DOS, MSDN, Visual Studio, Visual C++, Win32, Windows, Windows NT, Windows Server,
and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The foregoing names and trademarks may not be used in any manner, including advertising or publicity
pertaining to this specification or its contents without specific, written prior permission from the respective
owners.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 3

Contents
1 General Concepts ... 5
2 Overview ... 6
3 File Headers .. 7

4 MS - DOS Stub (Image Only) ... 7
5 Signature (Image Only) .. 7
6 COFF File Header (Object and Image) .. 7

7 Machine Types ... 8
8 Characteristics .. 10

9 Optional Header (Image Only) ... 12
10Optional Header Standard Fields (Image Only) .. 13
11 Optional Header Windows-Specific Fields (Image Only) ... 14
12 Optional Header Data Directories (Image Only) ... 17

13 Section Table (Section Headers) .. 18
14 Section Flags ... 20
15 Grouped Sections (Object Only) .. 22

16 Other Contents of the File ... 23
17 Section Data ... 23
18 COFF Relocations (Object Only) ... 23

19 Type Indicators ... 24
20 COFF Line Numbers (Deprecated) .. 34
21 COFF Symbol Table .. 35

22 Symbol Name Representation ... 36
23 Section Number Values .. 37
24 Type Representation .. 37
25 Storage Class ... 38

26 Auxiliary Symbol Records .. 41
27 Auxiliary Format 1: Function Definitions ... 41
28 Auxiliary Format 2: .bf and .ef Symbols .. 41
29 Auxiliary Format 3: Weak Externals ... 42
30 Auxiliary Format 4: Files ... 43
31 Auxiliary Format 5: Section Definitions ... 43
32 COMDAT Sections (Object Only) ... 43
33 CLR Token Definition (Object Only) ... 45

34 COFF String Table ... 45
35 The Attribute Certificate Table (Image Only) .. 45

36 Certificate Data ... 46
37 Delay-Load Import Tables (Image Only) .. 46

38 The Delay-Load Directory Table .. 46
39 Attributes .. 47
40 Name .. 47
41 Module Handle ... 47
42 Delay Import Address Table ... 47
43 Delay Import Name Table .. 47
44 Delay Bound Import Address Table and Time Stamp .. 47
45 Delay Unload Import Address Table .. 47

46 Special Sections ... 47
47 The .debug Section .. 50

48 Debug Directory (Image Only) .. 50
49 Debug Type .. 51
50 .debug$F (Object Only) .. 52
51 .debug$S (Object Only) .. 52
52 .debug$P (Object Only) .. 52
53 .debug$T (Object Only) .. 52
54 Linker Support for Microsoft Debug Information ... 52

55The .drectve Section (Object Only) ... 53
56 The .edata Section (Image Only) ... 53

57 Export Directory Table .. 54
58 Export Address Table ... 54
59 Export Name Pointer Table .. 55
60 Export Ordinal Table .. 55
61 Export Name Table .. 56

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 4

62 The .idata Section .. 56
63 Import Directory Table .. 56
64 Import Lookup Table .. 57
65 Hint/Name Table .. 57
66 Import Address Table ... 58

67 The .pdata Section ... 58
68 The .reloc Section (Image Only) .. 59

69 Base Relocation Block ... 59
70 Base Relocation Types .. 60

71 The .tls Section .. 60
72 The TLS Directory .. 62
73 TLS Callback Functions ... 62

74 The Load Configuration Structure (Image Only) .. 63
75 Load Configuration Directory .. 63
76 Load Configuration Layout ... 63

77 The .rsrc Section .. 65
78 Resource Directory Table ... 66
79 Resource Directory Entries .. 66
80 Resource Directory String .. 66
81 Resource Data Entry .. 67

82The .cormeta Section (Object Only) .. 67
83The .sxdata Section ... 67

84 Archive (Library) File Format .. 67
85 Archive File Signature .. 68
86 Archive Member Headers .. 68
87 First Linker Member ... 69
88 Second Linker Member .. 70
89 Longnames Member .. 71

90 Import Library Format ... 71
91 Import Header .. 72
92 Import Type .. 72
93 Import Name Type ... 73

Appendix A: Calculating Authenticode PE Image Hash ... 74
A.1 What is an Authenticode PE Image Hash? ... 74
A.2 What is Covered in an Authenticode PE Image Hash? .. 74

References ... 75

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 5

1 General Concepts
This document specifies the structure of executable (image) files and object files
under the Microsoft® Windows® family of operating systems. These files are
referred to as Portable Executable (PE) and Common Object File Format (COFF)
files, respectively. The name “Portable Executable” refers to the fact that the format
is not architecture specific.

Certain concepts that appear throughout this specification are described in the
following table:
Name Description
attribute certificate A certificate that is used to associate verifiable statements

with an image. A number of different verifiable statements can
be associated with a file; one of the most useful ones is a
statement by a software manufacturer that indicates what the
message digest of the image is expected to be. A message
digest is similar to a checksum except that it is extremely
difficult to forge. Therefore, it is very difficult to modify a file to
have the same message digest as the original file. The
statement can be verified as being made by the manufacturer
by using public or private key cryptography schemes. This
document describes details about attribute certificates other
than to allow for their insertion into image files.

date/time stamp A stamp that is used for different purposes in several places in
a PE or COFF file. The format of each stamp is the same as
that used by the time functions in the C run-time library.

file pointer The location of an item within the file itself, before being
processed by the linker (in the case of object files) or the
loader (in the case of image files). In other words, this is a
position within the file as stored on disk.

linker A reference to the linker that is provided with Microsoft Visual
Studio®.

object file A file that is given as input to the linker. The linker produces
an image file, which in turn is used as input by the loader. The
term “object file” does not necessarily imply any connection to
object-oriented programming.

reserved, must be
0

A description of a field that indicates that the value of the field
must be zero for generators and consumers must ignore the
field.

RVA Relative virtual address. In an image file, the address of an
item after it is loaded into memory, with the base address of
the image file subtracted from it. The RVA of an item almost
always differs from its position within the file on disk (file
pointer).
In an object file, an RVA is less meaningful because memory
locations are not assigned. In this case, an RVA would be an
address within a section (described later in this table), to
which a relocation is later applied during linking. For simplicity,
a compiler should just set the first RVA in each section to
zero.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 6

Name Description
section The basic unit of code or data within a PE or COFF file. For

example, all code in an object file can be combined within a
single section or (depending on compiler behavior) each
function can occupy its own section. With more sections, there
is more file overhead, but the linker is able to link in code
more selectively. A section is similar to a segment in Intel
8086 architecture. All the raw data in a section must be
loaded contiguously. In addition, an image file can contain a
number of sections, such as .tls or .reloc, which have special
purposes.

VA virtual address. Same as RVA, except that the base address
of the image file is not subtracted. The address is called a
“VA” because Windows creates a distinct VA space for each
process, independent of physical memory. For almost all
purposes, a VA should be considered just an address. A VA is
not as predictable as an RVA because the loader might not
load the image at its preferred location.

2 Overview
Figure 1 illustrates the Microsoft PE executable format:

MS-DOS 2.0 Compatible
EXE Header

Base of Image Header

unused
OEM Identifier

OEM Information

Offset to
PE Header

MS-DOS 2.0 Section
(for MS-DOS compatibility only)

MS-DOS 2.0 Stub Program
 and

Relocation Table
unused

PE Header
(aligned on 8-byte

boundary)

Section Headers

Image Pages:
import info
export info

base relocations
resource info

Figure 1. Typical Portable EXE File Layout

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 7

Figure 2 illustrates the Microsoft COFF object-module format:

Microsoft COFF Header

Section Headers

Raw Data:
code
data

debug info
relocations

Figure 2. Typical COFF Object Module Layout

3 File Headers
The PE file header consists of a Microsoft MS-DOS® stub, the PE signature, the
COFF file header, and an optional header. A COFF object file header consists of a
COFF file header and an optional header. In both cases, the file headers are
followed immediately by section headers.

4 MS-DOS Stub (Image Only)
The MS-DOS stub is a valid application that runs under MS-DOS. It is placed at the
front of the EXE image. The linker places a default stub here, which prints out the
message “This program cannot be run in DOS mode” when the image is run in
MS-DOS. The user can specify a different stub by using the /STUB linker option.

At location 0x3c, the stub has the file offset to the PE signature. This information
enables Windows to properly execute the image file, even though it has an
MS-DOS stub. This file offset is placed at location 0x3c during linking.

5 Signature (Image Only)
After the MS-DOS stub, at the file offset specified at offset 0x3c, is a 4-byte
signature that identifies the file as a PE format image file. This signature is “PE\0\0”
(the letters “P” and “E” followed by two null bytes).

6 COFF File Header (Object and Image)
At the beginning of an object file, or immediately after the signature of an image file,
is a standard COFF file header in the following format. Note that the Windows
loader limits the number of sections to 96.
Offse
t

Size Field Description

 0 2 Machine The number that identifies the type of target
machine. For more information, see section
3.3.1, “Machine Types.”

 2 2 NumberOfSections The number of sections. This indicates the
size of the section table, which immediately
follows the headers.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 8

Offse
t

Size Field Description

 4 4 TimeDateStamp The low 32 bits of the number of seconds
since 00:00 January 1, 1970 (a C run-time
time_t value), that indicates when the file
was created.

 8 4 PointerToSymbolTa
ble

The file offset of the COFF symbol table, or
zero if no COFF symbol table is present.
This value should be zero for an image
because COFF debugging information is
deprecated.

12 4 NumberOfSymbols The number of entries in the symbol table.
This data can be used to locate the string
table, which immediately follows the symbol
table. This value should be zero for an
image because COFF debugging
information is deprecated.

16 2 SizeOfOptionalHead
er

The size of the optional header, which is
required for executable files but not for
object files. This value should be zero for an
object file. For a description of the header
format, see section 3.4, “Optional Header
(Image Only).”

18 2 Characteristics The flags that indicate the attributes of the
file. For specific flag values, see section
3.3.2, “Characteristics.”

7 Machine Types
The Machine field has one of the following values that specifies its CPU type. An
image file can be run only on the specified machine or on a system that emulates
the specified machine.
Constant Value Description
IMAGE_FILE_MACHINE_UNKNOW
N

0x0 The contents of this field are
assumed to be applicable to any
machine type

IMAGE_FILE_MACHINE_AM33 0x1d3 Matsushita AM33
IMAGE_FILE_MACHINE_AMD64 0x866

4
x64

IMAGE_FILE_MACHINE_ARM 0x1c0 ARM little endian
IMAGE_FILE_MACHINE_EBC 0xebc EFI byte code
IMAGE_FILE_MACHINE_I386 0x14c Intel 386 or later processors and

compatible processors
IMAGE_FILE_MACHINE_IA64 0x200 Intel Itanium processor family
IMAGE_FILE_MACHINE_M32R 0x904

1
Mitsubishi M32R little endian

IMAGE_FILE_MACHINE_MIPS16 0x266 MIPS16
IMAGE_FILE_MACHINE_MIPSFPU 0x366 MIPS with FPU
IMAGE_FILE_MACHINE_MIPSFPU
16

0x466 MIPS16 with FPU

IMAGE_FILE_MACHINE_POWERP
C

0x1f0 Power PC little endian

IMAGE_FILE_MACHINE_POWERP 0x1f1 Power PC with floating point

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 9

Constant Value Description
CFP support
IMAGE_FILE_MACHINE_R4000 0x166 MIPS little endian
IMAGE_FILE_MACHINE_SH3 0x1a2 Hitachi SH3
IMAGE_FILE_MACHINE_SH3DSP 0x1a3 Hitachi SH3 DSP
IMAGE_FILE_MACHINE_SH4 0x1a6 Hitachi SH4
IMAGE_FILE_MACHINE_SH5 0x1a8 Hitachi SH5
IMAGE_FILE_MACHINE_THUMB 0x1c2 Thumb
IMAGE_FILE_MACHINE_WCEMIP
SV2

0x169 MIPS little-endian WCE v2

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 10

8 Characteristics
The Characteristics field contains flags that indicate attributes of the object or image
file. The following flags are currently defined:

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 11

Flag Value Description
IMAGE_FILE_RELOCS_STRIPPED 0x000

1
Image only, Windows CE, and
Microsoft Windows NT® and later.
This indicates that the file does
not contain base relocations and
must therefore be loaded at its
preferred base address. If the
base address is not available, the
loader reports an error. The
default behavior of the linker is to
strip base relocations from
executable (EXE) files.

IMAGE_FILE_EXECUTABLE_IMAG
E

0x000
2

Image only. This indicates that the
image file is valid and can be run.
If this flag is not set, it indicates a
linker error.

IMAGE_FILE_LINE_NUMS_STRIPP
ED

0x000
4

COFF line numbers have been
removed. This flag is deprecated
and should be zero.

IMAGE_FILE_LOCAL_SYMS_STRIP
PED

0x000
8

COFF symbol table entries for
local symbols have been
removed. This flag is deprecated
and should be zero.

IMAGE_FILE_AGGRESSIVE_WS_T
RIM

0x001
0

Obsolete. Aggressively trim
working set. This flag is
deprecated for Windows 2000
and later and must be zero.

IMAGE_FILE_LARGE_ADDRESS_
AWARE

0x002
0

Application can handle > 2-GB
addresses.

0x004
0

This flag is reserved for future
use.

IMAGE_FILE_BYTES_REVERSED_
LO

0x008
0

Little endian: the least significant
bit (LSB) precedes the most
significant bit (MSB) in memory.
This flag is deprecated and
should be zero.

IMAGE_FILE_32BIT_MACHINE 0x010
0

Machine is based on a 32-bit-
word architecture.

IMAGE_FILE_DEBUG_STRIPPED 0x020
0

Debugging information is
removed from the image file.

IMAGE_FILE_REMOVABLE_RUN_
FROM_SWAP

0x040
0

If the image is on removable
media, fully load it and copy it to
the swap file.

IMAGE_FILE_NET_RUN_FROM_S
WAP

0x080
0

If the image is on network media,
fully load it and copy it to the swap
file.

IMAGE_FILE_SYSTEM 0x100
0

The image file is a system file, not
a user program.

IMAGE_FILE_DLL 0x200
0

The image file is a dynamic-link
library (DLL). Such files are
considered executable files for
almost all purposes, although they
cannot be directly run.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 12

Flag Value Description
IMAGE_FILE_UP_SYSTEM_ONLY 0x400

0
The file should be run only on a
uniprocessor machine.

IMAGE_FILE_BYTES_REVERSED_
HI

0x800
0

Big endian: the MSB precedes the
LSB in memory. This flag is
deprecated and should be zero.

9 Optional Header (Image Only)
Every image file has an optional header that provides information to the loader. This
header is optional in the sense that some files (specifically, object files) do not have
it. For image files, this header is required. An object file can have an optional
header, but generally this header has no function in an object file except to increase
its size.

Note that the size of the optional header is not fixed. The SizeOfOptionalHeader
field in the COFF header must be used to validate that a probe into the file for a
particular data directory does not go beyond SizeOfOptionalHeader. For more
information, see section 3.3, “COFF File Header (Object and Image).”

The NumberOfRvaAndSizes field of the optional header should also be used to
ensure that no probe for a particular data directory entry goes beyond the optional
header. In addition, it is important to validate the optional header magic number for
format compatibility.

The optional header magic number determines whether an image is a PE32 or
PE32+ executable:
Magic number PE format
0x10b PE32
0x20b PE32+
PE32+ images allow for a 64-bit address space while limiting the image size to
2 gigabytes. Other PE32+ modifications are addressed in their respective sections.

The optional header itself has three major parts:
Offset
(PE32/PE32
+)

Size (PE32/
PE32+)

Header part Description

0 28/24 Standard fields Fields that are defined for all
implementations of COFF,
including UNIX.

28/24 68/88 Windows-
specific fields

Additional fields to support specific
features of Windows (for example,
subsystems).

96/112 Variable Data
directories

Address/size pairs for special
tables that are found in the image
file and are used by the operating
system (for example, the import
table and the export table).

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 13

10Optional Header Standard Fields (Image Only)
The first eight fields of the optional header are standard fields that are defined for
every implementation of COFF. These fields contain general information that is
useful for loading and running an executable file. They are unchanged for the
PE32+ format.
Offset Size Field Description
 0 2 Magic The unsigned integer that identifies the

state of the image file. The most
common number is 0x10B, which
identifies it as a normal executable file.
0x107 identifies it as a ROM image,
and 0x20B identifies it as a PE32+
executable.

 2 1 MajorLinkerVersion The linker major version number.
 3 1 MinorLinkerVersion The linker minor version number.
 4 4 SizeOfCode The size of the code (text) section, or

the sum of all code sections if there are
multiple sections.

 8 4 SizeOfInitializedData The size of the initialized data section,
or the sum of all such sections if there
are multiple data sections.

12 4 SizeOfUninitializedD
ata

The size of the uninitialized data
section (BSS), or the sum of all such
sections if there are multiple BSS
sections.

16 4 AddressOfEntryPoint The address of the entry point relative
to the image base when the executable
file is loaded into memory. For program
images, this is the starting address. For
device drivers, this is the address of the
initialization function. An entry point is
optional for DLLs. When no entry point
is present, this field must be zero.

20 4 BaseOfCode The address that is relative to the
image base of the beginning-of-code
section when it is loaded into memory.

PE32 contains this additional field, which is absent in PE32+, following
BaseOfCode:
Offset Size Field Description
24 4 BaseOfData The address that is relative to the

image base of the beginning-of-data
section when it is loaded into memory.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 14

11 Optional Header Windows-Specific Fields (Image Only)
The next 21 fields are an extension to the COFF optional header format. They
contain additional information that is required by the linker and loader in Windows.
Offset
(PE32
/
PE32+
)

Size
(PE32/
PE32+)

Field Description

28/24 4/8 ImageBase The preferred address of the first
byte of image when loaded into
memory; must be a multiple of
64 K. The default for DLLs is
0x10000000. The default for
Windows CE EXEs is
0x00010000. The default for
Windows NT, Windows 2000,
Windows XP, Windows 95,
Windows 98, and Windows Me is
0x00400000.

32/32 4 SectionAlignment The alignment (in bytes) of
sections when they are loaded
into memory. It must be greater
than or equal to FileAlignment.
The default is the page size for
the architecture.

36/36 4 FileAlignment The alignment factor (in bytes)
that is used to align the raw data
of sections in the image file. The
value should be a power of 2
between 512 and 64 K, inclusive.
The default is 512. If the
SectionAlignment is less than the
architecture’s page size, then
FileAlignment must match
SectionAlignment.

40/40 2 MajorOperatingSystemVers
ion

The major version number of the
required operating system.

42/42 2 MinorOperatingSystemVers
ion

The minor version number of the
required operating system.

44/44 2 MajorImageVersion The major version number of the
image.

46/46 2 MinorImageVersion The minor version number of the
image.

48/48 2 MajorSubsystemVersion The major version number of the
subsystem.

50/50 2 MinorSubsystemVersion The minor version number of the
subsystem.

52/52 4 Win32VersionValue Reserved, must be zero.
56/56 4 SizeOfImage The size (in bytes) of the image,

including all headers, as the
image is loaded in memory. It
must be a multiple of
SectionAlignment.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 15

Offset
(PE32
/
PE32+
)

Size
(PE32/
PE32+)

Field Description

60/60 4 SizeOfHeaders The combined size of an
MS-DOS stub, PE header, and
section headers rounded up to a
multiple of FileAlignment.

64/64 4 CheckSum The image file checksum. The
algorithm for computing the
checksum is incorporated into
IMAGHELP.DLL. The following
are checked for validation at load
time: all drivers, any DLL loaded
at boot time, and any DLL that is
loaded into a critical Windows
process.

68/68 2 Subsystem The subsystem that is required to
run this image. For more
information, see “Windows
Subsystem” later in this
specification.

70/70 2 DllCharacteristics For more information, see “DLL
Characteristics” later in this
specification.

72/72 4/8 SizeOfStackReserve The size of the stack to reserve.
Only SizeOfStackCommit is
committed; the rest is made
available one page at a time until
the reserve size is reached.

76/80 4/8 SizeOfStackCommit The size of the stack to commit.
80/88 4/8 SizeOfHeapReserve The size of the local heap space

to reserve. Only
SizeOfHeapCommit is committed;
the rest is made available one
page at a time until the reserve
size is reached.

84/96 4/8 SizeOfHeapCommit The size of the local heap space
to commit.

88/10
4

4 LoaderFlags Reserved, must be zero.

92/10
8

4 NumberOfRvaAndSizes The number of data-directory
entries in the remainder of the
optional header. Each describes
a location and size.

Windows Subsystem
The following values defined for the Subsystem field of the optional header
determine which Windows subsystem (if any) is required to run the image.
Constant Valu

e
Description

IMAGE_SUBSYSTEM_UNKNOWN 0 An unknown subsystem

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 16

Constant Valu
e

Description

IMAGE_SUBSYSTEM_NATIVE 1 Device drivers and native
Windows processes

IMAGE_SUBSYSTEM_WINDOWS_GU
I

 2 The Windows graphical user
interface (GUI) subsystem

IMAGE_SUBSYSTEM_WINDOWS_CUI 3 The Windows character
subsystem

IMAGE_SUBSYSTEM_POSIX_CUI 7 The Posix character subsystem
IMAGE_SUBSYSTEM_WINDOWS_CE
_GUI

 9 Windows CE

IMAGE_SUBSYSTEM_EFI_APPLICATI
ON

10 An Extensible Firmware Interface
(EFI) application

IMAGE_SUBSYSTEM_EFI_BOOT_
SERVICE_DRIVER

11 An EFI driver with boot services

IMAGE_SUBSYSTEM_EFI_RUNTIME_
DRIVER

12 An EFI driver with run-time
services

IMAGE_SUBSYSTEM_EFI_ROM 13 An EFI ROM image
IMAGE_SUBSYSTEM_XBOX 14 XBOX

DLL Characteristics
The following values are defined for the DllCharacteristics field of the optional
header.
Constant Value Description

0x0001 Reserved, must be
zero.

0x0002 Reserved, must be
zero.

0x0004 Reserved, must be
zero.

0x0008 Reserved, must be
zero.

IMAGE_DLL_CHARACTERISTICS_
DYNAMIC_BASE

0x0040 DLL can be relocated
at load time.

IMAGE_DLL_CHARACTERISTICS_
FORCE_INTEGRITY

0x0080 Code Integrity checks
are enforced.

IMAGE_DLL_CHARACTERISTICS_
NX_COMPAT

0x0100 Image is NX
compatible.

IMAGE_DLLCHARACTERISTICS_
NO_ISOLATION

0x0200 Isolation aware, but
do not isolate the
image.

IMAGE_DLLCHARACTERISTICS_
NO_SEH

0x0400 Does not use
structured exception
(SE) handling. No SE
handler may be
called in this image.

IMAGE_DLLCHARACTERISTICS_
NO_BIND

0x0800 Do not bind the
image.

0x1000 Reserved, must be
zero.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 17

Constant Value Description
IMAGE_DLLCHARACTERISTICS_
WDM_DRIVER

0x2000 A WDM driver.

IMAGE_DLLCHARACTERISTICS_
TERMINAL_SERVER_AWARE

0x8000 Terminal Server
aware.

12 Optional Header Data Directories (Image Only)
Each data directory gives the address and size of a table or string that Windows
uses. These data directory entries are all loaded into memory so that the system
can use them at run time. A data directory is an 8-byte field that has the following
declaration:
typedef struct _IMAGE_DATA_DIRECTORY {
 DWORD VirtualAddress;
 DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The first field, VirtualAddress, is actually the RVA of the table. The RVA is the
address of the table relative to the base address of the image when the table is
loaded. The second field gives the size in bytes. The data directories, which form
the last part of the optional header, are listed in the following table.

Note that the number of directories is not fixed. Before looking for a specific
directory, check the NumberOfRvaAndSizes field in the optional header.

Also, do not assume that the RVAs in this table point to the beginning of a section
or that the sections that contain specific tables have specific names.
Offset
(PE/PE32
+)

Siz
e

Field Description

 96/112 8 Export Table The export table address and size. For
more information see section 6.3, “The
.edata Section (Image Only).”

104/120 8 Import Table The import table address and size. For
more information, see section 6.4, “The
.idata Section.”

112/128 8 Resource Table The resource table address and size. For
more information, see section 6.9, “The
.rsrc Section.”

120/136 8 Exception Table The exception table address and size. For
more information, see section 6.5, “The
.pdata Section.”

128/144 8 Certificate Table The attribute certificate table address and
size. For more information, see section 5.7,
“The Attribute Certificate Table (Image
Only).”

136/152 8 Base Relocation
Table

The base relocation table address and size.
For more information, see section 6.6, "The
.reloc Section (Image Only)."

144/160 8 Debug The debug data starting address and size.
For more information, see section 6.1,
“The .debug Section.”

152/168 8 Architecture Reserved, must be 0

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 18

Offset
(PE/PE32
+)

Siz
e

Field Description

160/176 8 Global Ptr The RVA of the value to be stored in the
global pointer register. The size member of
this structure must be set to zero.

168/184 8 TLS Table The thread local storage (TLS) table
address and size. For more information,
see section 6.7, “The .tls Section.”

176/192 8 Load Config
Table

The load configuration table address and
size. For more information, see section 6.8,
“The Load Configuration Structure (Image
Only).”

184/200 8 Bound Import The bound import table address and size.
192/208 8 IAT The import address table address and size.

For more information, see section 6.4.4,
“Import Address Table.”

200/216 8 Delay Import
Descriptor

The delay import descriptor address and
size. For more information, see section 5.8,
“Delay-Load Import Tables (Image Only).”

208/224 8 CLR Runtime
Header

The CLR runtime header address and size.
For more information, see section 6.10,
“The .cormeta Section (Object Only).”

216/232 8 Reserved, must be zero
The Certificate Table entry points to a table of attribute certificates. These
certificates are not loaded into memory as part of the image. As such, the first field
of this entry, which is normally an RVA, is a file pointer instead.

13 Section Table (Section Headers)
Each row of the section table is, in effect, a section header. This table immediately
follows the optional header, if any. This positioning is required because the file
header does not contain a direct pointer to the section table. Instead, the location of
the section table is determined by calculating the location of the first byte after the
headers. Make sure to use the size of the optional header as specified in the file
header.

The number of entries in the section table is given by the NumberOfSections field in
the file header. Entries in the section table are numbered starting from one (1). The
code and data memory section entries are in the order chosen by the linker.

In an image file, the VAs for sections must be assigned by the linker so that they
are in ascending order and adjacent, and they must be a multiple of the
SectionAlignment value in the optional header.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 19

Each section header (section table entry) has the following format, for a total of 40
bytes per entry:
Offse
t

Size Field Description

 0 8 Name An 8-byte, null-padded UTF-8 encoded
string. If the string is exactly 8 characters
long, there is no terminating null. For longer
names, this field contains a slash (/) that is
followed by an ASCII representation of a
decimal number that is an offset into the
string table. Executable images do not use a
string table and do not support section
names longer than 8 characters. Long
names in object files are truncated if they
are emitted to an executable file.

 8 4 VirtualSize The total size of the section when loaded
into memory. If this value is greater than
SizeOfRawData, the section is zero-padded.
This field is valid only for executable images
and should be set to zero for object files.

12 4 VirtualAddress For executable images, the address of the
first byte of the section relative to the image
base when the section is loaded into
memory. For object files, this field is the
address of the first byte before relocation is
applied; for simplicity, compilers should set
this to zero. Otherwise, it is an arbitrary
value that is subtracted from offsets during
relocation.

16 4 SizeOfRawData The size of the section (for object files) or
the size of the initialized data on disk (for
image files). For executable images, this
must be a multiple of FileAlignment from the
optional header. If this is less than
VirtualSize, the remainder of the section is
zero-filled. Because the SizeOfRawData
field is rounded but the VirtualSize field is
not, it is possible for SizeOfRawData to be
greater than VirtualSize as well. When a
section contains only uninitialized data, this
field should be zero.

20 4 PointerToRawData The file pointer to the first page of the
section within the COFF file. For executable
images, this must be a multiple of
FileAlignment from the optional header. For
object files, the value should be aligned on a
4-byte boundary for best performance.
When a section contains only uninitialized
data, this field should be zero.

24 4 PointerToRelocation
s

The file pointer to the beginning of relocation
entries for the section. This is set to zero for
executable images or if there are no
relocations.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 20

Offse
t

Size Field Description

28 4 PointerToLinenumbe
rs

The file pointer to the beginning of line-
number entries for the section. This is set to
zero if there are no COFF line numbers.
This value should be zero for an image
because COFF debugging information is
deprecated.

32 2 NumberOfRelocation
s

The number of relocation entries for the
section. This is set to zero for executable
images.

34 2 NumberOfLinenumb
ers

The number of line-number entries for the
section. This value should be zero for an
image because COFF debugging
information is deprecated.

36 4 Characteristics The flags that describe the characteristics of
the section. For more information, see
section 4.1, “Section Flags.”

14 Section Flags
The section flags in the Characteristics field of the section header indicate
characteristics of the section.
Flag Value Description

0x0000000
0

Reserved for future use.

0x0000000
1

Reserved for future use.

0x0000000
2

Reserved for future use.

0x0000000
4

Reserved for future use.

IMAGE_SCN_TYPE_NO_PAD 0x0000000
8

The section should not be
padded to the next boundary.
This flag is obsolete and is
replaced by
IMAGE_SCN_ALIGN_1BYTE
S. This is valid only for object
files.

0x0000001
0

Reserved for future use.

IMAGE_SCN_CNT_CODE 0x0000002
0

The section contains
executable code.

IMAGE_SCN_CNT_INITIALIZED_D
ATA

0x0000004
0

The section contains initialized
data.

IMAGE_SCN_CNT_UNINITIALIZE
D_ DATA

0x0000008
0

The section contains
uninitialized data.

IMAGE_SCN_LNK_OTHER 0x0000010
0

Reserved for future use.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 21

Flag Value Description
IMAGE_SCN_LNK_INFO 0x0000020

0
The section contains
comments or other
information. The .drectve
section has this type. This is
valid for object files only.

0x0000040
0

Reserved for future use.

IMAGE_SCN_LNK_REMOVE 0x0000080
0

The section will not become
part of the image. This is valid
only for object files.

IMAGE_SCN_LNK_COMDAT 0x0000100
0

The section contains
COMDAT data. For more
information, see section 5.5.6,
“COMDAT Sections (Object
Only).” This is valid only for
object files.

IMAGE_SCN_GPREL 0x0000800
0

The section contains data
referenced through the global
pointer (GP).

IMAGE_SCN_MEM_PURGEABLE 0x0002000
0

Reserved for future use.

IMAGE_SCN_MEM_16BIT 0x0002000
0

Reserved for future use.

IMAGE_SCN_MEM_LOCKED 0x0004000
0

Reserved for future use.

IMAGE_SCN_MEM_PRELOAD 0x0008000
0

Reserved for future use.

IMAGE_SCN_ALIGN_1BYTES 0x0010000
0

Align data on a 1-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_2BYTES 0x0020000
0

Align data on a 2-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_4BYTES 0x0030000
0

Align data on a 4-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_8BYTES 0x0040000
0

Align data on an 8-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_16BYTES 0x0050000
0

Align data on a 16-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_32BYTES 0x0060000
0

Align data on a 32-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_64BYTES 0x0070000
0

Align data on a 64-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_128BYTES 0x0080000
0

Align data on a 128-byte
boundary. Valid only for object
files.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 22

Flag Value Description
IMAGE_SCN_ALIGN_256BYTES 0x0090000

0
Align data on a 256-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_512BYTES 0x00A0000
0

Align data on a 512-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_1024BYTES 0x00B0000
0

Align data on a 1024-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_2048BYTES 0x00C000
00

Align data on a 2048-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_4096BYTES 0x00D000
00

Align data on a 4096-byte
boundary. Valid only for object
files.

IMAGE_SCN_ALIGN_8192BYTES 0x00E0000
0

Align data on an 8192-byte
boundary. Valid only for object
files.

IMAGE_SCN_LNK_NRELOC_OVF
L

0x0100000
0

The section contains extended
relocations.

IMAGE_SCN_MEM_DISCARDABL
E

0x0200000
0

The section can be discarded
as needed.

IMAGE_SCN_MEM_NOT_CACHE
D

0x0400000
0

The section cannot be cached.

IMAGE_SCN_MEM_NOT_PAGED 0x0800000
0

The section is not pageable.

IMAGE_SCN_MEM_SHARED 0x1000000
0

The section can be shared in
memory.

IMAGE_SCN_MEM_EXECUTE 0x2000000
0

The section can be executed
as code.

IMAGE_SCN_MEM_READ 0x4000000
0

The section can be read.

IMAGE_SCN_MEM_WRITE 0x8000000
0

The section can be written to.

IMAGE_SCN_LNK_NRELOC_OVFL indicates that the count of relocations for the
section exceeds the 16 bits that are reserved for it in the section header. If the bit is
set and the NumberOfRelocations field in the section header is 0xffff, the actual
relocation count is stored in the 32-bit VirtualAddress field of the first relocation. It is
an error if IMAGE_SCN_LNK_NRELOC_OVFL is set and there are fewer than 0xffff
relocations in the section.

15 Grouped Sections (Object Only)
The “$” character (dollar sign) has a special interpretation in section names in
object files.

When determining the image section that will contain the contents of an object
section, the linker discards the “$” and all characters that follow it. Thus, an object
section named .text$X actually contributes to the .text section in the image.

However, the characters following the “$” determine the ordering of the
contributions to the image section. All contributions with the same object-section
name are allocated contiguously in the image, and the blocks of contributions are

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 23

sorted in lexical order by object-section name. Therefore, everything in object files
with section name .text$X ends up together, after the .text$W contributions and
before the .text$Y contributions.

The section name in an image file never contains a “$” character.

16 Other Contents of the File
The data structures that were described so far, up to and including the optional
header, are all located at a fixed offset from the beginning of the file (or from the PE
header if the file is an image that contains an MS-DOS stub).

The remainder of a COFF object or image file contains blocks of data that are not
necessarily at any specific file offset. Instead, the locations are defined by pointers
in the optional header or a section header.

An exception is for images with a SectionAlignment value of less than the page size
of the architecture (4 K for Intel x86 and for MIPS, and 8 K for Itanium). For a
description of SectionAlignment, see section 3.4, "Optional Header (Image Only)."
In this case, there are constraints on the file offset of the section data, as described
in section 5.1, "Section Data." Another exception is that attribute certificate and
debug information must be placed at the very end of an image file, with the attribute
certificate table immediately preceding the debug section, because the loader does
not map these into memory. The rule about attribute certificate and debug
information does not apply to object files, however.

17 Section Data
Initialized data for a section consists of simple blocks of bytes. However, for
sections that contain all zeros, the section data need not be included.

The data for each section is located at the file offset that was given by the
PointerToRawData field in the section header. The size of this data in the file is
indicated by the SizeOfRawData field. If SizeOfRawData is less than VirtualSize,
the remainder is padded with zeros.

In an image file, the section data must be aligned on a boundary as specified by the
FileAlignment field in the optional header. Section data must appear in order of the
RVA values for the corresponding sections (as do the individual section headers in
the section table).

There are additional restrictions on image files if the SectionAlignment value in the
optional header is less than the page size of the architecture. For such files, the
location of section data in the file must match its location in memory when the
image is loaded, so that the physical offset for section data is the same as the RVA.

18 COFF Relocations (Object Only)
Object files contain COFF relocations, which specify how the section data should be
modified when placed in the image file and subsequently loaded into memory.

Image files do not contain COFF relocations because all referenced symbols have
already been assigned addresses in a flat address space. An image contains
relocation information in the form of base relocations in the .reloc section (unless
the image has the IMAGE_FILE_RELOCS_STRIPPED attribute). For more
information, see section 6.6, "The .reloc Section (Image Only)."

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 24

For each section in an object file, an array of fixed-length records holds the
section’s COFF relocations. The position and length of the array are specified in the
section header. Each element of the array has the following format:
Offse
t

Size Field Description

0 4 VirtualAddress The address of the item to which relocation is
applied. This is the offset from the beginning
of the section, plus the value of the section’s
RVA/Offset field. See section 4, “Section
Table (Section Headers).” For example, if the
first byte of the section has an address of
0x10, the third byte has an address of 0x12.

4 4 SymbolTableIndex A zero-based index into the symbol table.
This symbol gives the address that is to be
used for the relocation. If the specified symbol
has section storage class, then the symbol’s
address is the address with the first section of
the same name.

8 2 Type A value that indicates the kind of relocation
that should be performed. Valid relocation
types depend on machine type. See section
5.2.1, “Type Indicators.”

If the symbol referred to by the SymbolTableIndex field has the storage class
IMAGE_SYM_CLASS_SECTION, the symbol’s address is the beginning of the
section. The section is usually in the same file, except when the object file is part of
an archive (library). In that case, the section can be found in any other object file in
the archive that has the same archive-member name as the current object file. (The
relationship with the archive-member name is used in the linking of import tables,
that is, the .idata section.)

19 Type Indicators
The Type field of the relocation record indicates what kind of relocation should be
performed. Different relocation types are defined for each type of machine.

x64 Processors
The following relocation type indicators are defined for x64 and compatible
processors:
Constant Value Description
IMAGE_REL_AMD64_ABSOL
UTE

0x000
0

The relocation is ignored.

IMAGE_REL_AMD64_ADDR6
4

0x000
1

The 64-bit VA of the relocation target.

IMAGE_REL_AMD64_ADDR3
2

0x000
2

The 32-bit VA of the relocation target.

IMAGE_REL_AMD64_ADDR3
2NB

0x000
3

The 32-bit address without an image
base (RVA).

IMAGE_REL_AMD64_REL32 0x000
4

The 32-bit relative address from the
byte following the relocation.

IMAGE_REL_AMD64_REL32_
1

0x000
5

The 32-bit address relative to byte
distance 1 from the relocation.

IMAGE_REL_AMD64_REL32_
2

0x000
6

The 32-bit address relative to byte
distance 2 from the relocation.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 25

Constant Value Description
IMAGE_REL_AMD64_REL32_
3

0x000
7

The 32-bit address relative to byte
distance 3 from the relocation.

IMAGE_REL_AMD64_REL32_
4

0x000
8

The 32-bit address relative to byte
distance 4 from the relocation.

IMAGE_REL_AMD64_REL32_
5

0x000
9

The 32-bit address relative to byte
distance 5 from the relocation.

IMAGE_REL_AMD64_SECTIO
N

0x000
A

The 16-bit section index of the section
that contains the target. This is used to
support debugging information.

IMAGE_REL_AMD64_SECRE
L

0x000
B

The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information and
static thread local storage.

IMAGE_REL_AMD64_SECRE
L7

0x000
C

A 7-bit unsigned offset from the base of
the section that contains the target.

IMAGE_REL_AMD64_TOKEN 0x000
D

CLR tokens.

IMAGE_REL_AMD64_SREL32 0x000
E

A 32-bit signed span-dependent value
emitted into the object.

IMAGE_REL_AMD64_PAIR 0x000
F

A pair that must immediately follow
every span-dependent value.

IMAGE_REL_AMD64_SSPAN
32

0x001
0

A 32-bit signed span-dependent value
that is applied at link time.

ARM Processors
The following relocation type indicators are defined for ARM processors:
Constant Value Description
IMAGE_REL_ARM_ABSOL
UTE

0x000
0

The relocation is ignored.

IMAGE_REL_ARM_ADDR3
2

0x000
1

The 32-bit VA of the target.

IMAGE_REL_ARM_ADDR3
2NB

0x000
2

The 32-bit RVA of the target.

IMAGE_REL_ARM_BRANC
H24

0x000
3

The 24-bit relative displacement to the
target.

IMAGE_REL_ARM_BRANC
H11

0x000
4

The reference to a subroutine call. The
reference consists of two 16-bit
instructions with 11-bit offsets.

IMAGE_REL_ARM_SECTIO
N

0x000
E

The 16-bit section index of the section that
contains the target. This is used to support
debugging information.

IMAGE_REL_ARM_SECRE
L

0x000
F

The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information and static
thread local storage.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 26

Hitachi SuperH Processors
The following relocation type indicators are defined for SH3 and SH4 processors.
SH5-specific relocations are noted as SHM (SH Media):
Constant Value Description
IMAGE_REL_SH3_ABSOLUTE 0x000

0
The relocation is ignored.

IMAGE_REL_SH3_DIRECT16 0x000
1

A reference to the 16-bit location
that contains the VA of the target
symbol.

IMAGE_REL_SH3_DIRECT32 0x000
2

The 32-bit VA of the target
symbol.

IMAGE_REL_SH3_DIRECT8 0x000
3

A reference to the 8-bit location
that contains the VA of the target
symbol.

IMAGE_REL_SH3_DIRECT8_WOR
D

0x000
4

A reference to the 8-bit instruction
that contains the effective 16-bit
VA of the target symbol.

IMAGE_REL_SH3_DIRECT8_LONG 0x000
5

A reference to the 8-bit instruction
that contains the effective 32-bit
VA of the target symbol.

IMAGE_REL_SH3_DIRECT4 0x000
6

A reference to the 8-bit location
whose low 4 bits contain the VA of
the target symbol.

IMAGE_REL_SH3_DIRECT4_WOR
D

0x000
7

A reference to the 8-bit instruction
whose low 4 bits contain the
effective 16-bit VA of the target
symbol.

IMAGE_REL_SH3_DIRECT4_LONG 0x000
8

A reference to the 8-bit instruction
whose low 4 bits contain the
effective 32-bit VA of the target
symbol.

IMAGE_REL_SH3_PCREL8_WORD 0x000
9

A reference to the 8-bit instruction
that contains the effective 16-bit
relative offset of the target symbol.

IMAGE_REL_SH3_PCREL8_LONG 0x000
A

A reference to the 8-bit instruction
that contains the effective 32-bit
relative offset of the target symbol.

IMAGE_REL_SH3_PCREL12_WOR
D

0x000
B

A reference to the 16-bit
instruction whose low 12 bits
contain the effective 16-bit relative
offset of the target symbol.

IMAGE_REL_SH3_STARTOF_SEC
TION

0x000
C

A reference to a 32-bit location
that is the VA of the section that
contains the target symbol.

IMAGE_REL_SH3_SIZEOF_SECTI
ON

0x000
D

A reference to the 32-bit location
that is the size of the section that
contains the target symbol.

IMAGE_REL_SH3_SECTION 0x000
E

The 16-bit section index of the
section that contains the target.
This is used to support debugging
information.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 27

Constant Value Description
IMAGE_REL_SH3_SECREL 0x000

F
The 32-bit offset of the target from
the beginning of its section. This
is used to support debugging
information and static thread local
storage.

IMAGE_REL_SH3_DIRECT32_NB 0x001
0

The 32-bit RVA of the target
symbol.

IMAGE_REL_SH3_GPREL4_LONG 0x001
1

GP relative.

IMAGE_REL_SH3_TOKEN 0x001
2

CLR token.

IMAGE_REL_SHM_PCRELPT 0x001
3

The offset from the current
instruction in longwords. If the
NOMODE bit is not set, insert the
inverse of the low bit at bit 32 to
select PTA or PTB.

IMAGE_REL_SHM_REFLO 0x001
4

The low 16 bits of the 32-bit
address.

IMAGE_REL_SHM_REFHALF 0x001
5

The high 16 bits of the 32-bit
address.

IMAGE_REL_SHM_RELLO 0x001
6

The low 16 bits of the relative
address.

IMAGE_REL_SHM_RELHALF 0x001
7

The high 16 bits of the relative
address.

IMAGE_REL_SHM_PAIR 0x001
8

The relocation is valid only when it
immediately follows a REFHALF,
RELHALF, or RELLO relocation.
The SymbolTableIndex field of the
relocation contains a
displacement and not an index
into the symbol table.

IMAGE_REL_SHM_NOMODE 0x800
0

The relocation ignores section
mode.

IBM PowerPC Processors
The following relocation type indicators are defined for PowerPC processors:
Constant Value Description
IMAGE_REL_PPC_ABSOL
UTE

0x000
0

The relocation is ignored.

IMAGE_REL_PPC_ADDR6
4

0x000
1

The 64-bit VA of the target.

IMAGE_REL_PPC_ADDR3
2

0x000
2

The 32-bit VA of the target.

IMAGE_REL_PPC_ADDR2
4

0x000
3

The low 24 bits of the VA of the target.
This is valid only when the target symbol is
absolute and can be sign-extended to its
original value.

IMAGE_REL_PPC_ADDR1
6

0x000
4

The low 16 bits of the target’s VA.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 28

Constant Value Description
IMAGE_REL_PPC_ADDR1
4

0x000
5

The low 14 bits of the target’s VA. This is
valid only when the target symbol is
absolute and can be sign-extended to its
original value.

IMAGE_REL_PPC_REL24 0x000
6

A 24-bit PC-relative offset to the symbol’s
location.

IMAGE_REL_PPC_REL14 0x000
7

A 14-bit PC-relative offset to the symbol’s
location.

IMAGE_REL_PPC_ADDR3
2NB

0x000
A

The 32-bit RVA of the target.

IMAGE_REL_PPC_SECRE
L

0x000
B

The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information and static
thread local storage.

IMAGE_REL_PPC_SECTIO
N

0x000
C

The 16-bit section index of the section that
contains the target. This is used to support
debugging information.

IMAGE_REL_PPC_SECRE
L16

0x000
F

The 16-bit offset of the target from the
beginning of its section. This is used to
support debugging information and static
thread local storage.

IMAGE_REL_PPC_REFHI 0x001
0

The high 16 bits of the target’s 32-bit VA.
This is used for the first instruction in a
two-instruction sequence that loads a full
address. This relocation must be
immediately followed by a PAIR relocation
whose SymbolTableIndex contains a
signed 16-bit displacement that is added to
the upper 16 bits that was taken from the
location that is being relocated.

IMAGE_REL_PPC_REFLO 0x001
1

The low 16 bits of the target’s VA.

IMAGE_REL_PPC_PAIR 0x001
2

A relocation that is valid only when it
immediately follows a REFHI or
SECRELHI relocation. Its
SymbolTableIndex contains a
displacement and not an index into the
symbol table.

IMAGE_REL_PPC_SECRE
LLO

0x001
3

The low 16 bits of the 32-bit offset of the
target from the beginning of its section.

IMAGE_REL_PPC_GPREL 0x001
5

The 16-bit signed displacement of the
target relative to the GP register.

IMAGE_REL_PPC_TOKEN 0x001
6

The CLR token.

Intel 386 Processors
The following relocation type indicators are defined for Intel 386 and compatible
processors:
Constant Value Description
IMAGE_REL_I386_ABSOL
UTE

0x000
0

The relocation is ignored.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 29

Constant Value Description
IMAGE_REL_I386_DIR16 0x000

1
Not supported.

IMAGE_REL_I386_REL16 0x000
2

Not supported.

IMAGE_REL_I386_DIR32 0x000
6

The target’s 32-bit VA.

IMAGE_REL_I386_DIR32N
B

0x000
7

The target’s 32-bit RVA.

IMAGE_REL_I386_SEG12 0x000
9

Not supported.

IMAGE_REL_I386_SECTIO
N

0x000
A

The 16-bit section index of the section that
contains the target. This is used to support
debugging information.

IMAGE_REL_I386_SECRE
L

0x000
B

The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information and static
thread local storage.

IMAGE_REL_I386_TOKEN 0x000
C

The CLR token.

IMAGE_REL_I386_SECRE
L7

0x000
D

A 7-bit offset from the base of the section
that contains the target.

IMAGE_REL_I386_REL32 0x001
4

The 32-bit relative displacement to the
target. This supports the x86 relative
branch and call instructions.

Intel Itanium Processor Family (IPF)
The following relocation type indicators are defined for the Intel Itanium processor
family and compatible processors. Note that relocations on instructions use the
bundle’s offset and slot number for the relocation offset:
Constant Value Description
IMAGE_REL_IA64_ABSOLUT
E

0x000
0

The relocation is ignored.

IMAGE_REL_IA64_IMM14 0x000
1

The instruction relocation can be
followed by an ADDEND relocation
whose value is added to the target
address before it is inserted into the
specified slot in the IMM14 bundle. The
relocation target must be absolute or the
image must be fixed.

IMAGE_REL_IA64_IMM22 0x000
2

The instruction relocation can be
followed by an ADDEND relocation
whose value is added to the target
address before it is inserted into the
specified slot in the IMM22 bundle. The
relocation target must be absolute or the
image must be fixed.

IMAGE_REL_IA64_IMM64 0x000
3

The slot number of this relocation must
be one (1). The relocation can be
followed by an ADDEND relocation
whose value is added to the target
address before it is stored in all three
slots of the IMM64 bundle.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 30

Constant Value Description
IMAGE_REL_IA64_DIR32 0x000

4
The target’s 32-bit VA. This is supported
only for /LARGEADDRESSAWARE:NO
images.

IMAGE_REL_IA64_DIR64 0x000
5

The target’s 64-bit VA.

IMAGE_REL_IA64_PCREL21
B

0x000
6

The instruction is fixed up with the 25-bit
relative displacement to the 16-bit
aligned target. The low 4 bits of the
displacement are zero and are not
stored.

IMAGE_REL_IA64_PCREL21
M

0x000
7

The instruction is fixed up with the 25-bit
relative displacement to the 16-bit
aligned target. The low 4 bits of the
displacement, which are zero, are not
stored.

IMAGE_REL_IA64_PCREL21
F

0x000
8

The LSBs of this relocation’s offset must
contain the slot number whereas the rest
is the bundle address. The bundle is
fixed up with the 25-bit relative
displacement to the 16-bit aligned target.
The low 4 bits of the displacement are
zero and are not stored.

IMAGE_REL_IA64_GPREL22 0x000
9

The instruction relocation can be
followed by an ADDEND relocation
whose value is added to the target
address and then a 22-bit GP-relative
offset that is calculated and applied to
the GPREL22 bundle.

IMAGE_REL_IA64_LTOFF22 0x000
A

The instruction is fixed up with the 22-bit
GP-relative offset to the target symbol’s
literal table entry. The linker creates this
literal table entry based on this
relocation and the ADDEND relocation
that might follow.

IMAGE_REL_IA64_SECTION 0x000
B

The 16-bit section index of the section
contains the target. This is used to
support debugging information.

IMAGE_REL_IA64_SECREL2
2

0x000
C

The instruction is fixed up with the 22-bit
offset of the target from the beginning of
its section. This relocation can be
followed immediately by an ADDEND
relocation, whose Value field contains
the 32-bit unsigned offset of the target
from the beginning of the section.

IMAGE_REL_IA64_SECREL6
4I

0x000
D

The slot number for this relocation must
be one (1). The instruction is fixed up
with the 64-bit offset of the target from
the beginning of its section. This
relocation can be followed immediately
by an ADDEND relocation whose Value
field contains the 32-bit unsigned offset
of the target from the beginning of the
section.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 31

Constant Value Description
IMAGE_REL_IA64_SECREL3
2

0x000
E

The address of data to be fixed up with
the 32-bit offset of the target from the
beginning of its section.

IMAGE_REL_IA64_DIR32NB 0x001
0

The target’s 32-bit RVA.

IMAGE_REL_IA64_SREL14 0x001
1

This is applied to a signed 14-bit
immediate that contains the difference
between two relocatable targets. This is
a declarative field for the linker that
indicates that the compiler has already
emitted this value.

IMAGE_REL_IA64_SREL22 0x001
2

This is applied to a signed 22-bit
immediate that contains the difference
between two relocatable targets. This is
a declarative field for the linker that
indicates that the compiler has already
emitted this value.

IMAGE_REL_IA64_SREL32 0x001
3

This is applied to a signed 32-bit
immediate that contains the difference
between two relocatable values. This is
a declarative field for the linker that
indicates that the compiler has already
emitted this value.

IMAGE_REL_IA64_UREL32 0x001
4

This is applied to an unsigned 32-bit
immediate that contains the difference
between two relocatable values. This is
a declarative field for the linker that
indicates that the compiler has already
emitted this value.

IMAGE_REL_IA64_PCREL60
X

0x001
5

A 60-bit PC-relative fixup that always
stays as a BRL instruction of an MLX
bundle.

IMAGE_REL_IA64_PCREL60
B

0x001
6

A 60-bit PC-relative fixup. If the target
displacement fits in a signed 25-bit field,
convert the entire bundle to an MBB
bundle with NOP.B in slot 1 and a 25-bit
BR instruction (with the 4 lowest bits all
zero and dropped) in slot 2.

IMAGE_REL_IA64_PCREL60
F

0x001
7

A 60-bit PC-relative fixup. If the target
displacement fits in a signed 25-bit field,
convert the entire bundle to an MFB
bundle with NOP.F in slot 1 and a 25-bit
(4 lowest bits all zero and dropped) BR
instruction in slot 2.

IMAGE_REL_IA64_PCREL60I 0x001
8

A 60-bit PC-relative fixup. If the target
displacement fits in a signed 25-bit field,
convert the entire bundle to an MIB
bundle with NOP.I in slot 1 and a 25-bit
(4 lowest bits all zero and dropped) BR
instruction in slot 2.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 32

Constant Value Description
IMAGE_REL_IA64_PCREL60
M

0x001
9

A 60-bit PC-relative fixup. If the target
displacement fits in a signed 25-bit field,
convert the entire bundle to an MMB
bundle with NOP.M in slot 1 and a 25-bit
(4 lowest bits all zero and dropped) BR
instruction in slot 2.

IMAGE_REL_IA64_IMMGPRE
L64

0x001
a

A 64-bit GP-relative fixup.

IMAGE_REL_IA64_TOKEN 0x001
b

A CLR token.

IMAGE_REL_IA64_GPREL32 0x001
c

A 32-bit GP-relative fixup.

IMAGE_REL_IA64_ADDEND 0x001
F

The relocation is valid only when it
immediately follows one of the following
relocations: IMM14, IMM22, IMM64,
GPREL22, LTOFF22, LTOFF64,
SECREL22, SECREL64I, or
SECREL32. Its value contains the
addend to apply to instructions within a
bundle, not for data.

MIPS Processors
The following relocation type indicators are defined for MIPS processors:
Constant Value Description
IMAGE_REL_MIPS_ABSOLUT
E

0x000
0

The relocation is ignored.

IMAGE_REL_MIPS_REFHALF 0x000
1

The high 16 bits of the target’s 32-bit
VA.

IMAGE_REL_MIPS_REFWOR
D

0x000
2

The target’s 32-bit VA.

IMAGE_REL_MIPS_JMPADDR 0x000
3

The low 26 bits of the target’s VA. This
supports the MIPS J and JAL
instructions.

IMAGE_REL_MIPS_REFHI 0x000
4

The high 16 bits of the target’s 32-bit
VA. This is used for the first instruction
in a two-instruction sequence that loads
a full address. This relocation must be
immediately followed by a PAIR
relocation whose SymbolTableIndex
contains a signed 16-bit displacement
that is added to the upper 16 bits that
are taken from the location that is being
relocated.

IMAGE_REL_MIPS_REFLO 0x000
5

The low 16 bits of the target’s VA.

IMAGE_REL_MIPS_GPREL 0x000
6

A 16-bit signed displacement of the
target relative to the GP register.

IMAGE_REL_MIPS_LITERAL 0x000
7

The same as
IMAGE_REL_MIPS_GPREL.

IMAGE_REL_MIPS_SECTION 0x000
A

The 16-bit section index of the section
contains the target. This is used to
support debugging information.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 33

Constant Value Description
IMAGE_REL_MIPS_SECREL 0x000

B
The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information and
static thread local storage.

IMAGE_REL_MIPS_SECRELL
O

0x000
C

The low 16 bits of the 32-bit offset of
the target from the beginning of its
section.

IMAGE_REL_MIPS_SECRELH
I

0x000
D

The high 16 bits of the 32-bit offset of
the target from the beginning of its
section. An IMAGE_REL_MIPS_PAIR
relocation must immediately follow this
one. The SymbolTableIndex of the
PAIR relocation contains a signed 16-
bit displacement that is added to the
upper 16 bits that are taken from the
location that is being relocated.

IMAGE_REL_MIPS_JMPADDR
16

0x001
0

The low 26 bits of the target’s VA. This
supports the MIPS16 JAL instruction.

IMAGE_REL_MIPS_REFWOR
DNB

0x002
2

The target’s 32-bit RVA.

IMAGE_REL_MIPS_PAIR 0x002
5

The relocation is valid only when it
immediately follows a REFHI or
SECRELHI relocation. Its
SymbolTableIndex contains a
displacement and not an index into the
symbol table.

Mitsubishi M32R
The following relocation type indicators are defined for the Mitsubishi M32R
processors:
Constant Value Description
IMAGE_REL_M32R_ABSOL
UTE

0x000
0

The relocation is ignored.

IMAGE_REL_M32R_ADDR3
2

0x000
1

The target’s 32-bit VA.

IMAGE_REL_M32R_ADDR3
2NB

0x000
2

The target’s 32-bit RVA.

IMAGE_REL_M32R_ADDR2
4

0x000
3

The target’s 24-bit VA.

IMAGE_REL_M32R_GPREL
16

0x000
4

The target’s 16-bit offset from the GP
register.

IMAGE_REL_M32R_PCREL
24

0x000
5

The target’s 24-bit offset from the
program counter (PC), shifted left by 2
bits and sign-extended

IMAGE_REL_M32R_PCREL
16

0x000
6

The target’s 16-bit offset from the PC,
shifted left by 2 bits and sign-extended

IMAGE_REL_M32R_PCREL
8

0x000
7

The target’s 8-bit offset from the PC,
shifted left by 2 bits and sign-extended

IMAGE_REL_M32R_REFHA
LF

0x000
8

The 16 MSBs of the target VA.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 34

Constant Value Description
IMAGE_REL_M32R_REFHI 0x000

9
The 16 MSBs of the target VA, adjusted
for LSB sign extension. This is used for
the first instruction in a two-instruction
sequence that loads a full 32-bit address.
This relocation must be immediately
followed by a PAIR relocation whose
SymbolTableIndex contains a signed 16-
bit displacement that is added to the
upper 16 bits that are taken from the
location that is being relocated.

IMAGE_REL_M32R_REFLO 0x000
A

The 16 LSBs of the target VA.

IMAGE_REL_M32R_PAIR 0x000
B

The relocation must follow the REFHI
relocation. Its SymbolTableIndex contains
a displacement and not an index into the
symbol table.

IMAGE_REL_M32R_SECTIO
N

0x000
C

The 16-bit section index of the section
that contains the target. This is used to
support debugging information.

IMAGE_REL_M32R_SECRE
L

0x000
D

The 32-bit offset of the target from the
beginning of its section. This is used to
support debugging information and static
thread local storage.

IMAGE_REL_M32R_TOKEN 0x000
E

The CLR token.

20 COFF Line Numbers (Deprecated)
COFF line numbers are no longer produced and, in the future, will not be
consumed.

COFF line numbers indicate the relationship between code and line numbers in
source files. The Microsoft format for COFF line numbers is similar to standard
COFF, but it has been extended to allow a single section to relate to line numbers in
multiple source files.

COFF line numbers consist of an array of fixed-length records. The location (file
offset) and size of the array are specified in the section header. Each line-number
record is of the following format:
Offse
t

Size Field Description

0 4 Type (*) This is a union of two fields: SymbolTableIndex
and VirtualAddress. Whether
SymbolTableIndex or RVA is used depends on
the value of Linenumber.

4 2 Linenumber When nonzero, this field specifies a one-based
line number. When zero, the Type field is
interpreted as a symbol table index for a
function.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 35

The Type field is a union of two 4-byte fields: SymbolTableIndex and
VirtualAddress:
Offse
t

Size Field Description

0 4 SymbolTableInd
ex

Used when Linenumber is zero: index to symbol
table entry for a function. This format is used to
indicate the function to which a group of line-
number records refers.

0 4 VirtualAddress Used when Linenumber is non-zero: the RVA of
the executable code that corresponds to the
source line indicated. In an object file, this
contains the VA within the section.

A line-number record can either set the Linenumber field to zero and point to a
function definition in the symbol table or it can work as a standard line-number entry
by giving a positive integer (line number) and the corresponding address in the
object code.

A group of line-number entries always begins with the first format: the index of a
function symbol. If this is the first line-number record in the section, then it is also
the COMDAT symbol name for the function if the section’s COMDAT flag is set.
See section 5.5.6, “COMDAT Sections (Object Only).” The function’s auxiliary
record in the symbol table has a pointer to the Linenumber field that points to this
same line-number record.

A record that identifies a function is followed by any number of line-number entries
that give actual line-number information (that is, entries with Linenumber greater
than zero). These entries are one-based, relative to the beginning of the function,
and represent every source line in the function except for the first line.

For example, the first line-number record for the following example would specify
the ReverseSign function (SymbolTableIndex of ReverseSign and Linenumber set
to zero). Then records with Linenumber values of 1, 2, and 3 would follow,
corresponding to source lines as shown:
// some code precedes ReverseSign function

int ReverseSign(int i)
1: {
2: return -1 * i;
3: }

21 COFF Symbol Table
The symbol table in this section is inherited from the traditional COFF format. It is
distinct from Microsoft Visual C++® debug information. A file can contain both a
COFF symbol table and Visual C++ debug information, and the two are kept
separate. Some Microsoft tools use the symbol table for limited but important
purposes, such as communicating COMDAT information to the linker. Section
names and file names, as well as code and data symbols, are listed in the symbol
table.

The location of the symbol table is indicated in the COFF header.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 36

The symbol table is an array of records, each 18 bytes long. Each record is either a
standard or auxiliary symbol-table record. A standard record defines a symbol or
name and has the following format:
Offse
t

Size Field Description

 0 8 Name (*) The name of the symbol, represented by a
union of three structures. An array of 8 bytes
is used if the name is not more than 8 bytes
long. For more information, see section
5.4.1, “Symbol Name Representation.”

 8 4 Value The value that is associated with the symbol.
The interpretation of this field depends on
SectionNumber and StorageClass. A typical
meaning is the relocatable address.

12 2 SectionNumber The signed integer that identifies the section,
using a one-based index into the section
table. Some values have special meaning,
as defined in section 5.4.2, “Section Number
Values.”

14 2 Type A number that represents type. Microsoft
tools set this field to 0x20 (function) or 0x0
(not a function). For more information, see
section 5.4.3, “Type Representation.”

16 1 StorageClass An enumerated value that represents
storage class. For more information, see
section 5.4.4, “Storage Class.”

17 1 NumberOfAuxSymb
ols

The number of auxiliary symbol table entries
that follow this record.

Zero or more auxiliary symbol-table records immediately follow each standard
symbol-table record. However, typically not more than one auxiliary symbol-table
record follows a standard symbol-table record (except for .file records with long file
names). Each auxiliary record is the same size as a standard symbol-table record
(18 bytes), but rather than define a new symbol, the auxiliary record gives additional
information on the last symbol defined. The choice of which of several formats to
use depends on the StorageClass field. Currently-defined formats for auxiliary
symbol table records are shown in section 5.5, “Auxiliary Symbol Records.”

Tools that read COFF symbol tables must ignore auxiliary symbol records whose
interpretation is unknown. This allows the symbol table format to be extended to
add new auxiliary records, without breaking existing tools.

22 Symbol Name Representation
The ShortName field in a symbol table consists of 8 bytes that contain the name
itself, if it is not more than 8 bytes long, or the ShortName field gives an offset into
the string table. To determine whether the name itself or an offset is given, test the
first 4 bytes for equality to zero.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 37

By convention, the names are treated as zero-terminated UTF-8 encoded strings.
Offse
t

Size Field Description

0 8 ShortNam
e

An array of 8 bytes. This array is padded with nulls on
the right if the name is less than 8 bytes long.

0 4 Zeroes A field that is set to all zeros if the name is longer than
8 bytes.

4 4 Offset An offset into the string table.

23 Section Number Values
Normally, the Section Value field in a symbol table entry is a one-based index into
the section table. However, this field is a signed integer and can take negative
values. The following values, less than one, have special meanings:
Constant Valu

e
Description

IMAGE_SYM_UNDEFIN
ED

 0 The symbol record is not yet assigned a
section. A value of zero indicates that a
reference to an external symbol is defined
elsewhere. A value of non-zero is a common
symbol with a size that is specified by the value.

IMAGE_SYM_ABSOLU
TE

-1 The symbol has an absolute (non-relocatable)
value and is not an address.

IMAGE_SYM_DEBUG -2 The symbol provides general type or debugging
information but does not correspond to a
section. Microsoft tools use this setting along
with .file records (storage class FILE).

24 Type Representation
The Type field of a symbol table entry contains 2 bytes, where each byte represents
type information. The LSB represents the simple (base) data type, and the MSB
represents the complex type, if any:
MSB LSB
Complex type: none, pointer, function,
array.

Base type: integer, floating-point, and
so on.

The following values are defined for base type, although Microsoft tools generally
do not use this field and set the LSB to 0. Instead, Visual C++ debug information is
used to indicate types. However, the possible COFF values are listed here for
completeness.
Constant Valu

e
Description

IMAGE_SYM_TYPE_NULL 0 No type information or unknown base type.
Microsoft tools use this setting

IMAGE_SYM_TYPE_VOID 1 No valid type; used with void pointers and
functions

IMAGE_SYM_TYPE_CHA
R

 2 A character (signed byte)

IMAGE_SYM_TYPE_SHO
RT

 3 A 2-byte signed integer

IMAGE_SYM_TYPE_INT 4 A natural integer type (normally 4 bytes in
Windows)

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 38

Constant Valu
e

Description

IMAGE_SYM_TYPE_LON
G

 5 A 4-byte signed integer

IMAGE_SYM_TYPE_FLOA
T

 6 A 4-byte floating-point number

IMAGE_SYM_TYPE_DOU
BLE

 7 An 8-byte floating-point number

IMAGE_SYM_TYPE_STRU
CT

 8 A structure

IMAGE_SYM_TYPE_UNIO
N

 9 A union

IMAGE_SYM_TYPE_ENU
M

10 An enumerated type

IMAGE_SYM_TYPE_MOE 11 A member of enumeration (a specific value)
IMAGE_SYM_TYPE_BYTE 12 A byte; unsigned 1-byte integer
IMAGE_SYM_TYPE_WOR
D

13 A word; unsigned 2-byte integer

IMAGE_SYM_TYPE_UINT 14 An unsigned integer of natural size
(normally, 4 bytes)

IMAGE_SYM_TYPE_DWO
RD

15 An unsigned 4-byte integer

The most significant byte specifies whether the symbol is a pointer to, function
returning, or array of the base type that is specified in the LSB. Microsoft tools use
this field only to indicate whether the symbol is a function, so that the only two
resulting values are 0x0 and 0x20 for the Type field. However, other tools can use
this field to communicate more information.

It is very important to specify the function attribute correctly. This information is
required for incremental linking to work correctly. For some architectures, the
information may be required for other purposes.
Constant Value Description
IMAGE_SYM_DTYPE_NULL 0 No derived type; the symbol is a simple

scalar variable.
IMAGE_SYM_DTYPE_POINT
ER

1 The symbol is a pointer to base type.

IMAGE_SYM_DTYPE_FUNCT
ION

2 The symbol is a function that returns a
base type.

IMAGE_SYM_DTYPE_ARRAY 3 The symbol is an array of base type.

25 Storage Class
The StorageClass field of the symbol table indicates what kind of definition a
symbol represents. The following table shows possible values. Note that the
StorageClass field is an unsigned 1-byte integer. The special value -1 should
therefore be taken to mean its unsigned equivalent, 0xFF.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 39

Although the traditional COFF format uses many storage-class values, Microsoft
tools rely on Visual C++ debug format for most symbolic information and generally
use only four storage-class values: EXTERNAL (2), STATIC (3), FUNCTION (101),
and STATIC (103). Except in the second column heading below, “Value” should be
taken to mean the Value field of the symbol record (whose interpretation depends
on the number found as the storage class).
Constant Value Description/interpretation of

the Value field
IMAGE_SYM_CLASS_END_OF_FUNCTI
ON

-1
(0xFF
)

A special symbol that
represents the end of
function, for debugging
purposes.

IMAGE_SYM_CLASS_NULL 0 No assigned storage class.
IMAGE_SYM_CLASS_AUTOMATIC 1 The automatic (stack)

variable. The Value field
specifies the stack frame
offset.

IMAGE_SYM_CLASS_EXTERNAL 2 A value that Microsoft tools
use for external symbols. The
Value field indicates the size
if the section number is
IMAGE_SYM_UNDEFINED
(0). If the section number is
not zero, then the Value field
specifies the offset within the
section.

IMAGE_SYM_CLASS_STATIC 3 The offset of the symbol
within the section. If the
Value field is zero, then the
symbol represents a section
name.

IMAGE_SYM_CLASS_REGISTER 4 A register variable. The Value
field specifies the register
number.

IMAGE_SYM_CLASS_EXTERNAL_DEF 5 A symbol that is defined
externally.

IMAGE_SYM_CLASS_LABEL 6 A code label that is defined
within the module. The Value
field specifies the offset of the
symbol within the section.

IMAGE_SYM_CLASS_UNDEFINED_LAB
EL

 7 A reference to a code label
that is not defined.

IMAGE_SYM_CLASS_MEMBER_OF_ST
RUCT

 8 The structure member. The
Value field specifies the nth
member.

IMAGE_SYM_CLASS_ARGUMENT 9 A formal argument
(parameter) of a function.
The Value field specifies the
nth argument.

IMAGE_SYM_CLASS_STRUCT_TAG 10 The structure tag-name entry.
IMAGE_SYM_CLASS_MEMBER_OF_UNI
ON

 11 A union member. The Value
field specifies the nth
member.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 40

Constant Value Description/interpretation of
the Value field

IMAGE_SYM_CLASS_UNION_TAG 12 The Union tag-name entry.
IMAGE_SYM_CLASS_TYPE_DEFINITIO
N

 13 A Typedef entry.

IMAGE_SYM_CLASS_UNDEFINED_STA
TIC

 14 A static data declaration.

IMAGE_SYM_CLASS_ENUM_TAG 15 An enumerated type tagname
entry.

IMAGE_SYM_CLASS_MEMBER_OF_EN
UM

 16 A member of an
enumeration. The Value field
specifies the nth member.

IMAGE_SYM_CLASS_REGISTER_PARA
M

 17 A register parameter.

IMAGE_SYM_CLASS_BIT_FIELD 18 A bit-field reference. The
Value field specifies the nth
bit in the bit field.

IMAGE_SYM_CLASS_BLOCK 100 A .bb (beginning of block) or
.eb (end of block) record. The
Value field is the relocatable
address of the code location.

IMAGE_SYM_CLASS_FUNCTION 101 A value that Microsoft tools
use for symbol records that
define the extent of a
function: begin function (.bf),
end function (.ef), and lines in
function (.lf). For .lf records,
the Value field gives the
number of source lines in the
function. For .ef records, the
Value field gives the size of
the function code.

IMAGE_SYM_CLASS_END_OF_STRUCT 102 An end-of-structure entry.
IMAGE_SYM_CLASS_FILE 103 A value that Microsoft tools,

as well as traditional COFF
format, use for the source-file
symbol record. The symbol is
followed by auxiliary records
that name the file.

IMAGE_SYM_CLASS_SECTION 104 A definition of a section
(Microsoft tools use STATIC
storage class instead).

IMAGE_SYM_CLASS_WEAK_EXTERNAL 105 A weak external. For more
information, see section
5.5.3, “Auxiliary Format 3:
Weak Externals.”

IMAGE_SYM_CLASS_CLR_TOKEN 107 A CLR token symbol. The
name is an ASCII string that
consists of the hexadecimal
value of the token. For more
information, see section
5.5.7, “CLR Token Definition
(Object Only).”

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 41

26 Auxiliary Symbol Records
Auxiliary symbol table records always follow, and apply to, some standard symbol
table record. An auxiliary record can have any format that the tools can recognize,
but 18 bytes must be allocated for them so that symbol table is maintained as an
array of regular size. Currently, Microsoft tools recognize auxiliary formats for the
following kinds of records: function definitions, function begin and end symbols (.bf
and .ef), weak externals, file names, and section definitions.

The traditional COFF design also includes auxiliary-record formats for arrays and
structures. Microsoft tools do not use these, but instead place that symbolic
information in Visual C++ debug format in the debug sections.

27 Auxiliary Format 1: Function Definitions
A symbol table record marks the beginning of a function definition if it has all of the
following: a storage class of EXTERNAL (2), a Type value that indicates it is a
function (0x20), and a section number that is greater than zero. Note that a symbol
table record that has a section number of UNDEFINED (0) does not define the
function and does not have an auxiliary record. Function-definition symbol records
are followed by an auxiliary record in the format described below:

Offse
t

Size Field Description

 0 4 TagIndex The symbol-table index of the
corresponding .bf (begin function) symbol
record.

 4 4 TotalSize The size of the executable code for the
function itself. If the function is in its own
section, the SizeOfRawData in the section
header is greater or equal to this field,
depending on alignment considerations.

 8 4 PointerToLinenumber The file offset of the first COFF line-number
entry for the function, or zero if none exists.
For more information, see section 5.3,
“COFF Line Numbers (Deprecated).”

12 4 PointerToNextFunctio
n

The symbol-table index of the record for the
next function. If the function is the last in the
symbol table, this field is set to zero.

16 2 Unused

28 Auxiliary Format 2: .bf and .ef Symbols
For each function definition in the symbol table, three items describe the beginning,
ending, and number of lines. Each of these symbols has storage class FUNCTION
(101):

• A symbol record named .bf (begin function). The Value field is unused.
• A symbol record named .lf (lines in function). The Value field gives the
number of lines in the function.
• A symbol record named .ef (end of function). The Value field has the same
number as the Total Size field in the function-definition symbol record.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 42

The .bf and .ef symbol records (but not .lf records) are followed by an auxiliary
record with the following format:
Offse
t

Size Field Description

 0 4 Unused
 4 2 Linenumber The actual ordinal line number (1, 2, 3,

and so on) within the source file,
corresponding to the .bf or .ef record.

 6 6 Unused
12 4 PointerToNextFunctio

n (.bf only)
The symbol-table index of the next .bf
symbol record. If the function is the last in
the symbol table, this field is set to zero. It
is not used for .ef records.

16 2 Unused

29 Auxiliary Format 3: Weak Externals
“Weak externals” are a mechanism for object files that allows flexibility at link time.
A module can contain an unresolved external symbol (sym1), but it can also include
an auxiliary record that indicates that if sym1 is not present at link time, another
external symbol (sym2) is used to resolve references instead.

If a definition of sym1 is linked, then an external reference to the symbol is resolved
normally. If a definition of sym1 is not linked, then all references to the weak
external for sym1 refer to sym2 instead. The external symbol, sym2, must always
be linked; typically, it is defined in the module that contains the weak reference to
sym1.

Weak externals are represented by a symbol table record with EXTERNAL storage
class, UNDEF section number, and a value of zero. The weak-external symbol
record is followed by an auxiliary record with the following format:
Offse
t

Size Field Description

0 4 TagIndex The symbol-table index of sym2, the symbol to be
linked if sym1 is not found.

4 4 Characteristic
s

A value of
IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY
indicates that no library search for sym1 should be
performed.
A value of
IMAGE_WEAK_EXTERN_SEARCH_LIBRARY
indicates that a library search for sym1 should be
performed.
A value of
IMAGE_WEAK_EXTERN_SEARCH_ALIAS
indicates that sym1 is an alias for sym2.

8 10 Unused
Note that the Characteristics field is not defined in WINNT.H; instead, the Total Size
field is used.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 43

30 Auxiliary Format 4: Files
This format follows a symbol-table record with storage class FILE (103). The
symbol name itself should be .file, and the auxiliary record that follows it gives the
name of a source-code file.
Offse
t

Size Field Description

0 18 File Name An ANSI string that gives the name of the source
file. This is padded with nulls if it is less than the
maximum length.

31 Auxiliary Format 5: Section Definitions
This format follows a symbol-table record that defines a section. Such a record has
a symbol name that is the name of a section (such as .text or .drectve) and has
storage class STATIC (3). The auxiliary record provides information about the
section to which it refers. Thus, it duplicates some of the information in the section
header.
Offse
t

Size Field Description

 0 4 Length The size of section data; the same as
SizeOfRawData in the section header.

 4 2 NumberOfRelocations The number of relocation entries for the
section.

 6 2 NumberOfLinenumbe
rs

The number of line-number entries for the
section.

 8 4 CheckSum The checksum for communal data. It is
applicable if the
IMAGE_SCN_LNK_COMDAT flag is set
in the section header. For more
information, see section 5.5.6, “COMDAT
Sections (Object Only).”

12 2 Number One-based index into the section table for
the associated section. This is used when
the COMDAT selection setting is 5.

14 1 Selection The COMDAT selection number. This is
applicable if the section is a COMDAT
section.

15 3 Unused

32 COMDAT Sections (Object Only)
The Selection field of the section definition auxiliary format is applicable if the
section is a COMDAT section. A COMDAT section is a section that can be defined
by more than one object file. (The flag IMAGE_SCN_LNK_COMDAT is set in the
Section Flags field of the section header.) The Selection field determines the way in
which the linker resolves the multiple definitions of COMDAT sections.

The first symbol that has the section value of the COMDAT section must be the
section symbol. This symbol has the name of the section, the Value field equal to
zero, the section number of the COMDAT section in question, the Type field equal
to IMAGE_SYM_TYPE_NULL, the Class field equal to
IMAGE_SYM_CLASS_STATIC, and one auxiliary record. The second symbol is
called “the COMDAT symbol” and is used by the linker in conjunction with the
Selection field.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 44

The values for the Selection field are shown below.
 Constant Value Description
IMAGE_COMDAT_SELECT_NODUPLIC
ATES

1 If this symbol is already
defined, the linker issues a
"multiply defined symbol"
error.

IMAGE_COMDAT_SELECT_ANY 2 Any section that defines the
same COMDAT symbol can
be linked; the rest are
removed.

IMAGE_COMDAT_SELECT_SAME_SIZE 3 The linker chooses an
arbitrary section among the
definitions for this symbol. If
all definitions are not the
same size, a "multiply defined
symbol" error is issued.

IMAGE_COMDAT_SELECT_EXACT_MA
TCH

4 The linker chooses an
arbitrary section among the
definitions for this symbol. If
all definitions do not match
exactly, a "multiply defined
symbol" error is issued.

IMAGE_COMDAT_SELECT_ASSOCIATI
VE

5 The section is linked if a
certain other COMDAT
section is linked. This other
section is indicated by the
Number field of the auxiliary
symbol record for the section
definition. This setting is
useful for definitions that have
components in multiple
sections (for example, code in
one and data in another), but
where all must be linked or
discarded as a set. The other
section with which this
section is associated must be
a COMDAT section; it cannot
be another associative
COMDAT section (that is, the
other section cannot have
IMAGE_COMDAT_SELECT_
ASSOCIATIVE set).

IMAGE_COMDAT_SELECT_LARGEST 6 The linker chooses the
largest definition from among
all of the definitions for this
symbol. If multiple definitions
have this size, the choice
between them is arbitrary.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 45

33 CLR Token Definition (Object Only)
This auxiliary symbol generally follows the IMAGE_SYM_CLASS_CLR_TOKEN. It
is used to associate a token with the COFF symbol table’s namespace.
Offse
t

Size Field Description

0 1 bAuxType Must be
IMAGE_AUX_SYMBOL_TYPE_TOKEN_DEF
(1).

1 1 bReserved Reserved, must be zero.
2 4 SymbolTableInd

ex
The symbol index of the COFF symbol to which
this CLR token definition refers.

6 12 Reserved, must be zero.

34 COFF String Table
Immediately following the COFF symbol table is the COFF string table. The position
of this table is found by taking the symbol table address in the COFF header and
adding the number of symbols multiplied by the size of a symbol.

At the beginning of the COFF string table are 4 bytes that contain the total size (in
bytes) of the rest of the string table. This size includes the size field itself, so that
the value in this location would be 4 if no strings were present.

Following the size are null-terminated strings that are pointed to by symbols in the
COFF symbol table.

35 The Attribute Certificate Table (Image Only)
Attribute certificates can be associated with an image by adding an attribute
certificate table. There are a number of different types of attribute certificates. The
most commonly used attribute certificate is the Authenticode signature.

The attribute certificate table contains one or more fixed length table entries that
can be found through the Certificate Table field of the optional header data
directories list (offset 128). Each entry of this table identifies the beginning location
and length of a corresponding certificate. There is one certificate table entry for
each certificate that is stored in this section. The number of entries in the certificate
table can be calculated by dividing the size of the certificate table (found in offset
132) by the size of an entry in the certificate table (8). Note that the size of the
certificate table includes only the table entries, not the actual certificates to which
the table entries point.

The format of each table entry is:
Offse
t

Size Field Description

0 4 Certificate Data The file pointer to the certificate data. This
always points to an address that is aligned
to a multiple of 8 bytes (the low-order 3
bits are always zero).

0 4 Size of Certificate An unsigned integer that identifies the size
(in bytes) of the certificate.

Notice that certificates always start on an octaword boundary. If a certificate is not
an even number of octawords long, it is zero-padded to the next octaword
boundary. However, the length of the certificate does not include this padding, so

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 46

any certificate navigation software must round up to the next octaword to locate
another certificate.

36 Certificate Data
This is the binary data that represents an attribute certificate. The certificate starting
location and length are specified by an entry in the certificate table. Each certificate
is represented by a single certificate table entry.

37 Delay-Load Import Tables (Image Only)
These tables were added to the image to support a uniform mechanism for
applications to delay the loading of a DLL until the first call into that DLL. The layout
of the tables matches that of the traditional import tables that are described in
section 6.4, "The .idata Section." Only a few details are discussed here.

38 The Delay-Load Directory Table
The delay-load directory table is the counterpart to the import directory table. It can
be retrieved through the Delay Import Descriptor entry in the optional header data
directories list (offset 200). The table is arranged as follows:
Offse
t

Size Field Description

 0 4 Attributes Must be zero.
 4 4 Name The RVA of the name of the DLL to be loaded.

The name resides in the read-only data section
of the image.

 8 4 Module Handle The RVA of the module handle (in the data
section of the image) of the DLL to be delay-
loaded. It is used for storage by the routine that
is supplied to manage delay-loading.

12 4 Delay Import
Address Table

The RVA of the delay-load import address
table. For more information, see section 5.8.5,
"Delay Import Address Table (IAT)."

16 4 Delay Import
Name Table

The RVA of the delay-load name table, which
contains the names of the imports that might
need to be loaded. This matches the layout of
the import name table. For more information,
see section 6.4.3, "Hint/Name Table."

20 4 Bound Delay
Import Table

The RVA of the bound delay-load address
table, if it exists.

24 4 Unload Delay
Import Table

The RVA of the unload delay-load address
table, if it exists. This is an exact copy of the
delay import address table. If the caller unloads
the DLL, this table should be copied back over
the delay import address table so that
subsequent calls to the DLL continue to use the
thunking mechanism correctly.

28 4 Time Stamp The timestamp of the DLL to which this image
has been bound.

The tables that are referenced in this data structure are organized and sorted just
as their counterparts are for traditional imports. For details, see section 6.4, "The
.idata Section."

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 47

39 Attributes
As yet, no attribute flags are defined. The linker sets this field to zero in the image.
This field can be used to extend the record by indicating the presence of new fields,
or it can be used to indicate behaviors to the delay or unload helper functions.

40 Name
The name of the DLL to be delay-loaded resides in the read-only data section of the
image. It is referenced through the szName field.

41 Module Handle
The handle of the DLL to be delay-loaded is in the data section of the image. The
phmod field points to the handle. The supplied delay-load helper uses this location to
store the handle to the loaded DLL.

42 Delay Import Address Table
The delay import address table (IAT) is referenced by the delay import descriptor
through the pIAT field. The delay-load helper updates these pointers with the real
entry points so that the thunks are no longer in the calling loop. The function
pointers are accessed by using the expression pINT->u1.Function.

43 Delay Import Name Table
The delay import name table (INT) contains the names of the imports that might
require loading. They are ordered in the same fashion as the function pointers in the
IAT. They consist of the same structures as the standard INT and are accessed by
using the expression pINT->u1.AddressOfData->Name[0].

44 Delay Bound Import Address Table and Time Stamp
The delay bound import address table (BIAT) is an optional table of
IMAGE_THUNK_DATA items that is used along with the timestamp field of the
delay-load directory table by a post-process binding phase.

45 Delay Unload Import Address Table
The delay unload import address table (UIAT) is an optional table of
IMAGE_THUNK_DATA items that the unload code uses to handle an explicit
unload request. It consists of initialized data in the read-only section that is an exact
copy of the original IAT that referred the code to the delay-load thunks. On the
unload request, the library can be freed, the *phmod cleared, and the UIAT written
over the IAT to restore everything to its preload state.

46 Special Sections
Typical COFF sections contain code or data that linkers and Microsoft Win32®
loaders process without special knowledge of the section contents. The contents
are relevant only to the application that is being linked or executed.

However, some COFF sections have special meanings when found in object files or
image files. Tools and loaders recognize these sections because they have special
flags set in the section header, because special locations in the image optional
header point to them, or because the section name itself indicates a special function
of the section. (Even if the section name itself does not indicate a special function of
the section, the section name is dictated by convention, so the authors of this
specification can refer to a section name in all cases.)

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 48

The reserved sections and their attributes are described in the table below, followed
by detailed descriptions for the section types that are persisted into executables and
the section types that contain metadata for extensions.
Section
Name

Content Characteristics

.bss Uninitialized data (free
format)

IMAGE_SCN_CNT_UNINITIALIZED_DA
TA | IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.cormeta CLR metadata that
indicates that the object file
contains managed code

IMAGE_SCN_LNK_INFO

.data Initialized data (free format) IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.debug$F Generated FPO debug
information (object only,
x86 architecture only, and
now obsolete)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_DISCARDABLE

.debug$P Precompiled debug types
(object only)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_DISCARDABLE

.debug$S Debug symbols (object
only)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_DISCARDABLE

.debug$T Debug types (object only) IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_DISCARDABLE

.drective Linker options IMAGE_SCN_LNK_INFO

.edata Export tables IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ

.idata Import tables IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.idlsym Includes registered SEH
(image only) to support IDL
attributes. For information,
see "IDL Attributes" in
"References" at the end of
this specification.

IMAGE_SCN_LNK_INFO

.pdata Exception information IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ

.rdata Read-only initialized data IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ

.reloc Image relocations IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_DISCARDABLE

.rsrc Resource directory IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 49

Section
Name

Content Characteristics

.sbss GP-relative uninitialized
data (free format)

IMAGE_SCN_CNT_UNINITIALIZED_DA
TA | IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE |
IMAGE _SCN_GPREL
The IMAGE_SCN_GPREL flag should
be set for IA64 architectures only; this
flag is not valid for other architectures.
The IMAGE_SCN_GPREL flag is for
object files only; when this section type
appears in an image file, the
IMAGE_SCN_GPREL flag must not be
set.

.sdata GP-relative initialized data
(free format)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE |
IMAGE _SCN_GPREL
The IMAGE_SCN_GPREL flag should
be set for IA64 architectures only; this
flag is not valid for other architectures.
The IMAGE_SCN_GPREL flag is for
object files only; when this section type
appears in an image file, the
IMAGE_SCN_GPREL flag must not be
set.

.srdata GP-relative read-only data
(free format)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE _SCN_GPREL
The IMAGE_SCN_GPREL flag should
be set for IA64 architectures only; this
flag is not valid for other architectures.
The IMAGE_SCN_GPREL flag is for
object files only; when this section type
appears in an image file, the
IMAGE_SCN_GPREL flag must not be
set.

.sxdata Registered exception
handler data (free format
and x86/object only)

IMAGE_SCN_LNK_INFO
Contains the symbol index of each of the
exception handlers being referred to by
the code in that object file. The symbol
can be for an UNDEF symbol or one that
is defined in that module.

.text Executable code (free
format)

IMAGE_SCN_CNT_CODE |
IMAGE_SCN_MEM_EXECUTE |
IIMAGE_SCN_MEM_READ

.tls Thread-local storage
(object only)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.tls$ Thread-local storage
(object only)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 50

Section
Name

Content Characteristics

.vsdata GP-relative initialized data
(free format and for ARM,
SH4, and Thumb
architectures only)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE

.xdata Exception information (free
format)

IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ

Some of the sections listed here are marked “object only” or “image only” to indicate
that their special semantics are relevant only for object files or image files,
respectively. A section that is marked “image only” might still appear in an object file
as a way of getting into the image file, but the section has no special meaning to the
linker, only to the image file loader.

47 The .debug Section
The .debug section is used in object files to contain compiler-generated debug
information and in image files to contain all of the debug information that is
generated. This section describes the packaging of debug information in object and
image files.

The next section describes the format of the debug directory, which can be
anywhere in the image. Subsequent sections describe the “groups” in object files
that contain debug information.

The default for the linker is that debug information is not mapped into the address
space of the image. A .debug section exists only when debug information is
mapped in the address space.

48 Debug Directory (Image Only)
Image files contain an optional debug directory that indicates what form of debug
information is present and where it is. This directory consists of an array of debug
directory entries whose location and size are indicated in the image optional
header.

The debug directory can be in a discardable .debug section (if one exists), or it can
be included in any other section in the image file, or not be in a section at all.

Each debug directory entry identifies the location and size of a block of debug
information. The specified RVA can be zero if the debug information is not covered
by a section header (that is, it resides in the image file and is not mapped into the
run-time address space). If it is mapped, the RVA is its address.

A debug directory entry has the following format:
Offse
t

Size Field Description

 0 4 Characteristics Reserved, must be zero.
 4 4 TimeDateStamp The time and date that the debug data was

created.
 8 2 MajorVersion The major version number of the debug data

format.
10 2 MinorVersion The minor version number of the debug data

format.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 51

Offse
t

Size Field Description

12 4 Type The format of debugging information. This field
enables support of multiple debuggers. For
more information, see section 6.1.2, “Debug
Type.”

16 4 SizeOfData The size of the debug data (not including the
debug directory itself).

20 4 AddressOfRawD
ata

The address of the debug data when loaded,
relative to the image base.

24 4 PointerToRawDat
a

The file pointer to the debug data.

49 Debug Type
The following values are defined for the Type field of the debug directory entry:
Constant Valu

e
Description

IMAGE_DEBUG_TYPE_UNKNOWN 0 An unknown value that is
ignored by all tools.

IMAGE_DEBUG_TYPE_COFF 1 The COFF debug information
(line numbers, symbol table,
and string table). This type of
debug information is also
pointed to by fields in the file
headers.

IMAGE_DEBUG_TYPE_CODEVIEW 2 The Visual C++ debug
information.

IMAGE_DEBUG_TYPE_FPO 3 The frame pointer omission
(FPO) information. This
information tells the debugger
how to interpret nonstandard
stack frames, which use the
EBP register for a purpose other
than as a frame pointer.

IMAGE_DEBUG_TYPE_MISC 4 The location of DBG file.
IMAGE_DEBUG_TYPE_EXCEPTION 5 A copy of .pdata section.
IMAGE_DEBUG_TYPE_FIXUP 6 Reserved.
IMAGE_DEBUG_TYPE_OMAP_TO_SR
C

 7 The mapping from an RVA in
image to an RVA in source
image.

IMAGE_DEBUG_TYPE_OMAP_FROM_
SRC

 8 The mapping from an RVA in
source image to an RVA in
image.

IMAGE_DEBUG_TYPE_BORLAND 9 Reserved for Borland.
IMAGE_DEBUG_TYPE_RESERVED10 10 Reserved.
IMAGE_DEBUG_TYPE_CLSID 11 Reserved.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 52

If the Type field is set to IMAGE_DEBUG_TYPE_FPO, the debug raw data is an
array in which each member describes the stack frame of a function. Not every
function in the image file must have FPO information defined for it, even though
debug type is FPO. Those functions that do not have FPO information are assumed
to have normal stack frames. The format for FPO information is as follows:
#define FRAME_FPO 0
#define FRAME_TRAP 1
#define FRAME_TSS 2

typedef struct _FPO_DATA {
 DWORD ulOffStart; // offset 1st byte of function code
 DWORD cbProcSize; // # bytes in function
 DWORD cdwLocals; // # bytes in locals/4
 WORD cdwParams; // # bytes in params/4

 WORD cbProlog : 8; // # bytes in prolog
 WORD cbRegs : 3; // # regs saved
 WORD fHasSEH : 1; // TRUE if SEH in func
 WORD fUseBP : 1; // TRUE if EBP has been allocated
 WORD reserved : 1; // reserved for future use
 WORD cbFrame : 2; // frame type
} FPO_DATA;

50 .debug$F (Object Only)
The data in this section has been superseded in Visual C++ version 7.0 and later by
a more extensive set of data that is emitted into a .debug$S subsection.

Object files can contain .debug$F sections whose contents are one or more
FPO_DATA records (frame pointer omission information). See
“IMAGE_DEBUG_TYPE_FPO” in section 6.1.2, "Debug Type."

The linker recognizes these .debug$F records. If debug information is being
generated, the linker sorts the FPO_DATA records by procedure RVA and
generates a debug directory entry for them.

The compiler should not generate FPO records for procedures that have a standard
frame format.

51 .debug$S (Object Only)
This section contains Visual C++ debug information (symbolic information).

52 .debug$P (Object Only)
This section contains Visual C++ debug information (precompiled information).
These are shared types among all of the objects that were compiled by using the
precompiled header that was generated with this object.

53 .debug$T (Object Only)
This section contains Visual C++ debug information (type information).

54 Linker Support for Microsoft Debug Information
To support debug information, the linker:

• Gathers all relevant debug data from the .debug$F, debug$S, .debug$P,
and .debug$T sections.
• Processes that data along with the linker-generated debugging information
into the PDB file, and creates a debug directory entry to refer to it.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 53

55The .drectve Section (Object Only)
A section is a directive section if it has the IMAGE_SCN_LNK_INFO flag set in the
section header and has the .drectve section name. The linker removes a .drectve
section after processing the information, so the section does not appear in the
image file that is being linked.

A .drectve section consists of a string of text that can be encoded as ANSI or
UTF-8. If the UTF-8 byte order marker (BOM, a three-byte prefix that consists of
0xEF, 0xBB, and 0xBF) is not present, the directive string is interpreted as ANSI.
The directive string is a series of linker options that are separated by spaces. Each
option contains a hyphen, the option name, and any appropriate attribute. If an
option contains spaces, the option must be enclosed in quotes. The .drectve
section must not have relocations or line numbers.

56 The .edata Section (Image Only)
The export data section, named .edata, contains information about symbols that
other images can access through dynamic linking. Exported symbols are generally
found in DLLs, but DLLs can also import symbols.

An overview of the general structure of the export section is described below. The
tables described are usually contiguous in the file in the order shown (though this is
not required). Only the export directory table and export address table are required
to export symbols as ordinals. (An ordinal is an export that is accessed directly by
its export address table index.) The name pointer table, ordinal table, and export
name table all exist to support use of export names.
Table Name Description
Export directory
table

A table with just one row (unlike the debug directory). This
table indicates the locations and sizes of the other export
tables.

Export address table An array of RVAs of exported symbols. These are the actual
addresses of the exported functions and data within the
executable code and data sections. Other image files can
import a symbol by using an index to this table (an ordinal)
or, optionally, by using the public name that corresponds to
the ordinal if a public name is defined.

Name pointer table An array of pointers to the public export names, sorted in
ascending order.

Ordinal table An array of the ordinals that correspond to members of the
name pointer table. The correspondence is by position;
therefore, the name pointer table and the ordinal table must
have the same number of members. Each ordinal is an
index into the export address table.

Export name table A series of null-terminated ASCII strings. Members of the
name pointer table point into this area. These names are
the public names through which the symbols are imported
and exported; they are not necessarily the same as the
private names that are used within the image file.

When another image file imports a symbol by name, the Win32 loader searches the
name pointer table for a matching string. If a matching string is found, the
associated ordinal is identified by looking up the corresponding member in the
ordinal table (that is, the member of the ordinal table with the same index as the
string pointer found in the name pointer table). The resulting ordinal is an index into
the export address table, which gives the actual location of the desired symbol.
Every export symbol can be accessed by an ordinal.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 54

When another image file imports a symbol by ordinal, it is unnecessary to search
the name pointer table for a matching string. Direct use of an ordinal is therefore
more efficient. However, an export name is easier to remember and does not
require the user to know the table index for the symbol.

57 Export Directory Table
The export symbol information begins with the export directory table, which
describes the remainder of the export symbol information. The export directory table
contains address information that is used to resolve imports to the entry points
within this image.
Offse
t

Size Field Description

 0 4 Export Flags Reserved, must be 0.
 4 4 Time/Date

Stamp
The time and date that the export data was
created.

 8 2 Major Version The major version number. The major and minor
version numbers can be set by the user.

10 2 Minor Version The minor version number.
12 4 Name RVA The address of the ASCII string that contains the

name of the DLL. This address is relative to the
image base.

16 4 Ordinal Base The starting ordinal number for exports in this
image. This field specifies the starting ordinal
number for the export address table. It is usually
set to 1.

20 4 Address Table
Entries

The number of entries in the export address table.

24 4 Number of
Name Pointers

The number of entries in the name pointer table.
This is also the number of entries in the ordinal
table.

28 4 Export Address
Table RVA

The address of the export address table, relative
to the image base.

32 4 Name Pointer
RVA

The address of the export name pointer table,
relative to the image base. The table size is given
by the Number of Name Pointers field.

36 4 Ordinal Table
RVA

The address of the ordinal table, relative to the
image base.

58 Export Address Table
The export address table contains the address of exported entry points and
exported data and absolutes. An ordinal number is used as an index into the export
address table.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 55

Each entry in the export address table is a field that uses one of two formats in the
following table. If the address specified is not within the export section (as defined
by the address and length that are indicated in the optional header), the field is an
export RVA, which is an actual address in code or data. Otherwise, the field is a
forwarder RVA, which names a symbol in another DLL.
Offse
t

Size Field Description

0 4 Export
RVA

The address of the exported symbol when loaded into
memory, relative to the image base. For example, the
address of an exported function.

0 4 Forwarder
RVA

The pointer to a null-terminated ASCII string in the
export section. This string must be within the range
that is given by the export table data directory entry.
See section 3.4.3, "Optional Header Data Directories
(Image Only)." This string gives the DLL name and
the name of the export (for example,
“MYDLL.expfunc”) or the DLL name and the ordinal
number of the export (for example, “MYDLL.#27”).

A forwarder RVA exports a definition from some other image, making it appear as if
it were being exported by the current image. Thus, the symbol is simultaneously
imported and exported.

For example, in Kernel32.dll in Windows XP, the export named “HeapAlloc” is
forwarded to the string “NTDLL.RtlAllocateHeap.” This allows applications to use
the Windows XP–specific module Ntdll.dll without actually containing import
references to it. The application’s import table refers only to Kernel32.dll. Therefore,
the application is not specific to Windows XP and can run on any Win32 system.

59 Export Name Pointer Table
The export name pointer table is an array of addresses (RVAs) into the export
name table. The pointers are 32 bits each and are relative to the image base. The
pointers are ordered lexically to allow binary searches.

An export name is defined only if the export name pointer table contains a pointer to
it.

60 Export Ordinal Table
The export ordinal table is an array of 16-bit indexes into the export address table.
The ordinals are biased by the Ordinal Base field of the export directory table. In
other words, the ordinal base must be subtracted from the ordinals to obtain true
indexes into the export address table.

The export name pointer table and the export ordinal table form two parallel arrays
that are separated to allow natural field alignment. These two tables, in effect,
operate as one table, in which the Export Name Pointer column points to a public
(exported) name and the Export Ordinal column gives the corresponding ordinal for
that public name. A member of the export name pointer table and a member of the
export ordinal table are associated by having the same position (index) in their
respective arrays.

Thus, when the export name pointer table is searched and a matching string is
found at position i, the algorithm for finding the symbol’s address is:
i = Search_ExportNamePointerTable (ExportName);
ordinal = ExportOrdinalTable [i];
SymbolRVA = ExportAddressTable [ordinal - OrdinalBase];

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 56

61 Export Name Table
The export name table contains the actual string data that was pointed to by the
export name pointer table. The strings in this table are public names that other
images can use to import the symbols. These public export names are not
necessarily the same as the private symbol names that the symbols have in their
own image file and source code, although they can be.

Every exported symbol has an ordinal value, which is just the index into the export
address table (plus the Ordinal Base value). Use of export names, however, is
optional. Some, all, or none of the exported symbols can have export names. For
exported symbols that do have export names, corresponding entries in the export
name pointer table and export ordinal table work together to associate each name
with an ordinal.

The structure of the export name table is a series of null-terminated ASCII strings of
variable length.

62 The .idata Section
All image files that import symbols, including virtually all executable (EXE) files,
have an .idata section. A typical file layout for the import information follows:

Directory Table

Null Directory Entry

DLL1 Import Lookup Table

Null

DLL2 Import Lookup Table

Null

DLL3 Import Lookup Table

Null

Hint-Name Table

Figure 3. Typical Import Section Layout

63 Import Directory Table
The import information begins with the import directory table, which describes the
remainder of the import information. The import directory table contains address
information that is used to resolve fixup references to the entry points within a DLL
image. The import directory table consists of an array of import directory entries,
one entry for each DLL to which the image refers. The last directory entry is empty
(filled with null values), which indicates the end of the directory table.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 57

Each import directory entry has the following format:
Offse
t

Size Field Description

 0 4 Import Lookup
Table RVA
(Characteristics
)

The RVA of the import lookup table. This table
contains a name or ordinal for each import. (The
name “Characteristics” is used in Winnt.h, but no
longer describes this field.)

 4 4 Time/Date
Stamp

The stamp that is set to zero until the image is
bound. After the image is bound, this field is set to
the time/data stamp of the DLL.

 8 4 Forwarder
Chain

The index of the first forwarder reference.

12 4 Name RVA The address of an ASCII string that contains the
name of the DLL. This address is relative to the
image base.

16 4 Import Address
Table RVA
(Thunk Table)

The RVA of the import address table. The
contents of this table are identical to the contents
of the import lookup table until the image is
bound.

64 Import Lookup Table
An import lookup table is an array of 32-bit numbers for PE32 or an array of 64-bit
numbers for PE32+. Each entry uses the bit-field format that is described in the
following table. In this format, bit 31 is the most significant bit for PE32 and bit 63 is
the most significant bit for PE32+. The collection of these entries describes all
imports from a given DLL. The last entry is set to zero (NULL) to indicate the end of
the table.
Bit(s) Size Bit field Description
31/63 1 Ordinal/Nam

e Flag
If this bit is set, import by ordinal. Otherwise,
import by name. Bit is masked as
0x80000000 for PE32, 0x8000000000000000
for PE32+.

15-0 16 Ordinal
Number

A 16-bit ordinal number. This field is used
only if the Ordinal/Name Flag bit field is 1
(import by ordinal). Bits 30-15 or 62-15 must
be 0.

30–0 31 Hint/Name
Table RVA

A 31-bit RVA of a hint/name table entry. This
field is used only if the Ordinal/Name Flag bit
field is 0 (import by name). For PE32+ bits 62-
31 must be zero.

65 Hint/Name Table
One hint/name table suffices for the entire import section. Each entry in the
hint/name table has the following format:
Offse
t

Size Field Description

0 2 Hint An index into the export name pointer table. A match is
attempted first with this value. If it fails, a binary search
is performed on the DLL’s export name pointer table.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 58

Offse
t

Size Field Description

2 variabl
e

Name An ASCII string that contains the name to import. This is
the string that must be matched to the public name in
the DLL. This string is case sensitive and terminated by
a null byte.

* 0 or 1 Pad A trailing zero-pad byte that appears after the trailing
null byte, if necessary, to align the next entry on an
even boundary.

66 Import Address Table
The structure and content of the import address table are identical to those of the
import lookup table, until the file is bound. During binding, the entries in the import
address table are overwritten with the 32-bit (for PE32) or 64-bit (for PE32+)
addresses of the symbols that are being imported. These addresses are the actual
memory addresses of the symbols, although technically they are still called “virtual
addresses.” The loader typically processes the binding.

67 The .pdata Section
The .pdata section contains an array of function table entries that are used for
exception handling. It is pointed to by the exception table entry in the image data
directory. The entries must be sorted according to the function addresses (the first
field in each structure) before being emitted into the final image. The target platform
determines which of the three function table entry format variations described below
is used.

For 32-bit MIPS images, function table entries have the following format:
Offse
t

Size Field Description

 0 4 Begin Address The VA of the corresponding function.
 4 4 End Address The VA of the end of the function.
 8 4 Exception

Handler
The pointer to the exception handler to be
executed.

12 4 Handler Data The pointer to additional information to be
passed to the handler.

16 4 Prolog End
Address

The VA of the end of the function’s prolog.

For the ARM, PowerPC, SH3 and SH4 Windows CE platforms, function table
entries have the following format:
Offse
t

Size Field Description

0 4 Begin Address The VA of the corresponding function.
4 8 bits Prolog Length The number of instructions in the function’s

prolog.
4 22 bits Function Length The number of instructions in the function.
4 1 bit 32-bit Flag If set, the function consists of 32-bit

instructions. If clear, the function consists of
16-bit instructions.

4 1 bit Exception Flag If set, an exception handler exists for the
function. Otherwise, no exception handler
exists.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 59

For x64 and Itanium platforms, function table entries have the following format:
Offse
t

Size Field Description

0 4 Begin Address The RVA of the corresponding function.
4 4 End Address The RVA of the end of the function.
8 4 Unwind

Information
The RVA of the unwind information.

68 The .reloc Section (Image Only)
The base relocation table contains entries for all base relocations in the image. The
Base Relocation Table field in the optional header data directories gives the number
of bytes in the base relocation table. For more information, see section 3.4.3,
"Optional Header Data Directories (Image Only)." The base relocation table is
divided into blocks. Each block represents the base relocations for a 4K page. Each
block must start on a 32-bit boundary.

The loader is not required to process base relocations that are resolved by the
linker, unless the load image cannot be loaded at the image base that is specified in
the PE header.

69 Base Relocation Block
Each base relocation block starts with the following structure:
Offse
t

Size Field Description

0 4 Page
RVA

The image base plus the page RVA is added to each
offset to create the VA where the base relocation
must be applied.

4 4 Block
Size

The total number of bytes in the base relocation block,
including the Page RVA and Block Size fields and the
Type/Offset fields that follow.

The Block Size field is then followed by any number of Type or Offset field entries.
Each entry is a WORD (2 bytes) and has the following structure:
Offse
t

Size Field Description

0 4 bits Type Stored in the high 4 bits of the WORD, a value that
indicates the type of base relocation to be applied. For
more information, see section 6.6.2, “Base Relocation
Types.”

0 12 bits Offset Stored in the remaining 12 bits of the WORD, an
offset from the starting address that was specified in
the Page RVA field for the block. This offset specifies
where the base relocation is to be applied.

To apply a base relocation, the difference is calculated between the preferred base
address and the base where the image is actually loaded. If the image is loaded at
its preferred base, the difference is zero and thus the base relocations do not have
to be applied.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 60

70 Base Relocation Types
 Constant Valu

e
Description

IMAGE_REL_BASED_ABSOLUTE 0 The base relocation is skipped.
This type can be used to pad a
block.

IMAGE_REL_BASED_HIGH 1 The base relocation adds the high
16 bits of the difference to the 16-
bit field at offset. The 16-bit field
represents the high value of a 32-
bit word.

IMAGE_REL_BASED_LOW 2 The base relocation adds the low
16 bits of the difference to the 16-
bit field at offset. The 16-bit field
represents the low half of a 32-bit
word.

IMAGE_REL_BASED_HIGHLOW 3 The base relocation applies all 32
bits of the difference to the 32-bit
field at offset.

IMAGE_REL_BASED_HIGHADJ 4 The base relocation adds the high
16 bits of the difference to the 16-
bit field at offset. The 16-bit field
represents the high value of a 32-
bit word. The low 16 bits of the 32-
bit value are stored in the 16-bit
word that follows this base
relocation. This means that this
base relocation occupies two
slots.

IMAGE_REL_BASED_MIPS_JMPAD
DR

 5 The base relocation applies to a
MIPS jump instruction.

 6 Reserved, must be zero.
 7 Reserved, must be zero.

IMAGE_REL_BASED_MIPS_JMPAD
DR16

 9 The base relocation applies to a
MIPS16 jump instruction.

IMAGE_REL_BASED_DIR64 10 The base relocation applies the
difference to the 64-bit field at
offset.

71 The .tls Section
The .tls section provides direct PE and COFF support for static thread local storage
(TLS). TLS is a special storage class that Windows supports in which a data object
is not an automatic (stack) variable, yet is local to each individual thread that runs
the code. Thus, each thread can maintain a different value for a variable declared
by using TLS.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 61

Note that any amount of TLS data can be supported by using the API calls
TlsAlloc, TlsFree, TlsSetValue, and TlsGetValue. The PE or COFF
implementation is an alternative approach to using the API and has the advantage
of being simpler from the high-level-language programmer’s viewpoint. This
implementation enables TLS data to be defined and initialized similarly to ordinary
static variables in a program. For example, in Visual C++, a static TLS variable can
be defined as follows, without using the Windows API:
__declspec (thread) int tlsFlag = 1;

To support this programming construct, the PE and COFF .tls section specifies the
following information: initialization data, callback routines for per-thread initialization
and termination, and the TLS index, which are explained in the following discussion.

Note
Statically declared TLS data objects can be used only in statically loaded image
files. This fact makes it unreliable to use static TLS data in a DLL unless you know
that the DLL, or anything statically linked with it, will never be loaded dynamically
with the LoadLibrary API function.

Executable code accesses a static TLS data object through the following steps:
1. At link time, the linker sets the Address of Index field of the TLS directory. This

field points to a location where the program expects to receive the TLS index.

The Microsoft run-time library facilitates this process by defining a memory
image of the TLS directory and giving it the special name “__tls_used” (Intel x86
platforms) or “_tls_used” (other platforms). The linker looks for this memory
image and uses the data there to create the TLS directory. Other compilers that
support TLS and work with the Microsoft linker must use this same technique.

2. When a thread is created, the loader communicates the address of the thread’s
TLS array by placing the address of the thread environment block (TEB) in the
FS register. A pointer to the TLS array is at the offset of 0x2C from the
beginning of TEB. This behavior is Intel x86-specific.

3. The loader assigns the value of the TLS index to the place that was indicated
by the Address of Index field.

4. The executable code retrieves the TLS index and also the location of the TLS
array.

5. The code uses the TLS index and the TLS array location (multiplying the index
by 4 and using it as an offset to the array) to get the address of the TLS data
area for the given program and module. Each thread has its own TLS data
area, but this is transparent to the program, which does not need to know how
data is allocated for individual threads.

6. An individual TLS data object is accessed as some fixed offset into the TLS
data area.

The TLS array is an array of addresses that the system maintains for each thread.
Each address in this array gives the location of TLS data for a given module (EXE
or DLL) within the program. The TLS index indicates which member of the array to
use. The index is a number (meaningful only to the system) that identifies the
module.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 62

72 The TLS Directory
The TLS directory has the following format:
Offset
(PE32
/
PE32+
)

Size
(PE32/
PE32+)

Field Description

0 4/8 Raw Data
Start VA

The starting address of the TLS template. The
template is a block of data that is used to
initialize TLS data. The system copies all of this
data each time a thread is created, so it must
not be corrupted. Note that this address is not
an RVA; it is an address for which there should
be a base relocation in the .reloc section.

4/8 4/8 Raw Data
End VA

The address of the last byte of the TLS, except
for the zero fill. As with the Raw Data Start VA
field, this is a VA, not an RVA.

8/16 4/8 Address of
Index

The location to receive the TLS index, which the
loader assigns. This location is in an ordinary
data section, so it can be given a symbolic
name that is accessible to the program.

12/24 4/8 Address of
Callbacks

The pointer to an array of TLS callback
functions. The array is null-terminated, so if no
callback function is supported, this field points
to 4 bytes set to zero. For information about the
prototype for these functions, see section 6.7.2,
“TLS Callback Functions.”

16/32 4 Size of Zero
Fill

The size in bytes of the template, beyond the
initialized data delimited by the Raw Data Start
VA and Raw Data End VA fields. The total
template size should be the same as the total
size of TLS data in the image file. The zero fill is
the amount of data that comes after the
initialized nonzero data.

20/36 4 Characteristic
s

Reserved for possible future use by TLS flags.

73 TLS Callback Functions
The program can provide one or more TLS callback functions to support additional
initialization and termination for TLS data objects. A typical use for such a callback
function would be to call constructors and destructors for objects.

Although there is typically no more than one callback function, a callback is
implemented as an array to make it possible to add additional callback functions if
desired. If there is more than one callback function, each function is called in the
order in which its address appears in the array. A null pointer terminates the array.
It is perfectly valid to have an empty list (no callback supported), in which case the
callback array has exactly one member—a null pointer.

The prototype for a callback function (pointed to by a pointer of type
PIMAGE_TLS_CALLBACK) has the same parameters as a DLL entry-point
function:
typedef VOID
(NTAPI *PIMAGE_TLS_CALLBACK) (

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 63

 PVOID DllHandle,
 DWORD Reason,
 PVOID Reserved
);

The Reserved parameter should be set to zero. The Reason parameter can take
the following values:
Setting Valu

e
Description

DLL_PROCESS_ATTAC
H

1 A new process has started, including the first
thread.

DLL_THREAD_ATTACH 2 A new thread has been created. This
notification sent for all but the first thread.

DLL_THREAD_DETAC
H

3 A thread is about to be terminated. This
notification sent for all but the first thread.

DLL_PROCESS_DETA
CH

0 A process is about to terminate, including the
original thread.

74 The Load Configuration Structure (Image Only)
The load configuration structure (IMAGE_LOAD_CONFIG_DIRECTORY) was
formerly used in very limited cases in the Windows NT operating system itself to
describe various features too difficult or too large to describe in the file header or
optional header of the image. Current versions of the Microsoft linker and
Windows XP and later versions of Windows use a new version of this structure for
32-bit x86-based systems that include reserved SEH technology. This provides a
list of safe structured exception handlers that the operating system uses during
exception dispatching. If the handler address resides in an image’s VA range and is
marked as reserved SEH-aware (that is,
IMAGE_DLLCHARACTERISTICS_NO_SEH is clear in the DllCharacteristics field
of the optional header, as described earlier), then the handler must be in the list of
known safe handlers for that image. Otherwise, the operating system terminates the
application. This helps prevent the “x86 exception handler hijacking” exploit that has
been used in the past to take control of the operating system.

The Microsoft linker automatically provides a default load configuration structure to
include the reserved SEH data. If the user code already provides a load
configuration structure, it must include the new reserved SEH fields. Otherwise, the
linker cannot include the reserved SEH data and the image is not marked as
containing reserved SEH.

75 Load Configuration Directory
The data directory entry for a pre-reserved SEH load configuration structure must
specify a particular size of the load configuration structure because the operating
system loader always expects it to be a certain value. In that regard, the size is
really only a version check. For compatibility with Windows XP and earlier versions
of Windows, the size must be 64 for x86 images.

76 Load Configuration Layout
The load configuration structure has the following layout for 32-bit and 64-bit PE
files:
Offset Size Field Description

 0 4 Characteristics Flags that indicate attributes of
the file, currently unused.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 64

Offset Size Field Description

 4 4 TimeDateStamp Date and time stamp value. The
value is represented in the
number of seconds that have
elapsed since midnight
(00:00:00), January 1, 1970,
Universal Coordinated Time,
according to the system clock.
The time stamp can be printed by
using the C runtime (CRT) time
function.

 8 2 MajorVersion Major version number.
10 2 MinorVersion Minor version number.
12 4 GlobalFlagsClear The global loader flags to clear

for this process as the loader
starts the process.

16 4 GlobalFlagsSet The global loader flags to set for
this process as the loader starts
the process.

20 4 CriticalSectionDefaultTimeo
ut

The default timeout value to use
for this process’s critical sections
that are abandoned.

24 8 DeCommitFreeBlockThresh
old

Memory that must be freed
before it is returned to the
system, in bytes.

32 8 DeCommitTotalFreeThresh
old

Total amount of free memory, in
bytes.

40 8 LockPrefixTable [x86 only] The VA of a list of
addresses where the LOCK prefix
is used so that they can be
replaced with NOP on single
processor machines.

48 8 MaximumAllocationSize Maximum allocation size, in
bytes.

56 8 VirtualMemoryThreshold Maximum virtual memory size, in
bytes.

64 8 ProcessAffinityMask Setting this field to a non-zero
value is equivalent to calling
SetProcessAffinityMask with
this value during process startup
(.exe only)

72 4 ProcessHeapFlags Process heap flags that
correspond to the first argument
of the HeapCreate function.
These flags apply to the process
heap that is created during
process startup.

76 2 CSDVersion The service pack version
identifier.

78 2 Reserved Must be zero.
80 8 EditList Reserved for use by the system.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 65

Offset Size Field Description

60/88 4/8 SecurityCookie A pointer to a cookie that is used
by Visual C++ or GS
implementation.

64/96 4/8 SEHandlerTable [x86 only] The VA of the sorted
table of RVAs of each valid,
unique SE handler in the image.

68/10
4

4/8 SEHandlerCount [x86 only] The count of unique
handlers in the table.

77 The .rsrc Section
Resources are indexed by a multiple-level binary-sorted tree structure. The general
design can incorporate 2**31 levels. By convention, however, Windows uses three
levels:

Type
Name
Language

A series of resource directory tables relates all of the levels in the following way:
Each directory table is followed by a series of directory entries that give the name or
identifier (ID) for that level (Type, Name, or Language level) and an address of
either a data description or another directory table. If the address points to a data
description, then the data is a leaf in the tree. If the address points to another
directory table, then that table lists directory entries at the next level down.

A leaf’s Type, Name, and Language IDs are determined by the path that is taken
through directory tables to reach the leaf. The first table determines Type ID, the
second table (pointed to by the directory entry in the first table) determines Name
ID, and the third table determines Language ID.

The general structure of the .rsrc section is:
Data Description
Resource Directory
Tables (and
Resource Directory
Entries)

A series of tables, one for each group of nodes in the tree.
All top-level (Type) nodes are listed in the first table. Entries
in this table point to second-level tables. Each second-level
tree has the same Type ID but different Name IDs. Third-
level trees have the same Type and Name IDs but different
Language IDs.
Each individual table is immediately followed by directory
entries, in which each entry has a name or numeric identifier
and a pointer to a data description or a table at the next
lower level.

Resource Directory
Strings

Two-byte-aligned Unicode strings, which serve as string
data that is pointed to by directory entries.

Resource Data
Description

An array of records, pointed to by tables, that describe the
actual size and location of the resource data. These records
are the leaves in the resource-description tree.

Resource Data Raw data of the resource section. The size and location
information in the Resource Data Descriptions field delimit
the individual regions of resource data.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 66

78 Resource Directory Table
Each resource directory table has the following format. This data structure should
be considered the heading of a table because the table actually consists of directory
entries (described in section 6.9.2, "Resource Directory Entries") and this structure:
Offse
t

Size Field Description

 0 4 Characteristics Resource flags. This field is reserved for future
use. It is currently set to zero.

 4 4 Time/Date Stamp The time that the resource data was created by
the resource compiler.

 8 2 Major Version The major version number, set by the user.
10 2 Minor Version The minor version number, set by the user.
12 2 Number of Name

Entries
The number of directory entries immediately
following the table that use strings to identify
Type, Name, or Language entries (depending
on the level of the table).

14 2 Number of ID
Entries

The number of directory entries immediately
following the Name entries that use numeric IDs
for Type, Name, or Language entries.

79 Resource Directory Entries
The directory entries make up the rows of a table. Each resource directory entry
has the following format. Whether the entry is a Name or ID entry is indicated by the
resource directory table, which indicates how many Name and ID entries follow it
(remember that all the Name entries precede all the ID entries for the table). All
entries for the table are sorted in ascending order: the Name entries by case-
insensitive string and the ID entries by numeric value.
Offse
t

Size Field Description

0 4 Name RVA The address of a string that gives the Type,
Name, or Language ID entry, depending on level
of table.

0 4 Integer ID A 32-bit integer that identifies the Type, Name, or
Language ID entry.

4 4 Data Entry
RVA

High bit 0. Address of a Resource Data entry (a
leaf).

4 4 Subdirectory
RVA

High bit 1. The lower 31 bits are the address of
another resource directory table (the next level
down).

80 Resource Directory String
The resource directory string area consists of Unicode strings, which are word-
aligned. These strings are stored together after the last Resource Directory entry
and before the first Resource Data entry. This minimizes the impact of these
variable-length strings on the alignment of the fixed-size directory entries. Each
resource directory string has the following format:
Offse
t

Size Field Description

0 2 Length The size of the string, not including length field
itself.

2 variabl Unicode The variable-length Unicode string data, word-

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 67

Offse
t

Size Field Description

e String aligned.

81 Resource Data Entry
Each Resource Data entry describes an actual unit of raw data in the Resource
Data area. A Resource Data entry has the following format:
Offse
t

Size Field Description

 0 4 Data RVA The address of a unit of resource data in the
Resource Data area.

 4 4 Size The size, in bytes, of the resource data that is
pointed to by the Data RVA field.

 8 4 Codepage The code page that is used to decode code point
values within the resource data. Typically, the
code page would be the Unicode code page.

12 4 Reserved, must be 0.

82The .cormeta Section (Object Only)
CLR metadata is stored in this section. It is used to indicate that the object file
contains managed code. The format of the metadata is not documented, but can be
handed to the CLR interfaces for handling metadata.

83The .sxdata Section
The valid exception handlers of an object are listed in the .sxdata section of that
object. The section is marked IMAGE_SCN_LNK_INFO. It contains the COFF
symbol index of each valid handler, using 4 bytes per index.

Additionally, the compiler marks a COFF object as registered SEH by emitting the
absolute symbol “@feat.00” with the LSB of the value field set to 1. A COFF object
with no registered SEH handlers would have the “@feat.00” symbol, but no .sxdata
section.

84 Archive (Library) File Format
The COFF archive format provides a standard mechanism for storing collections of
object files. These collections are commonly called libraries in programming
documentation.

The first 8 bytes of an archive consist of the file signature. The rest of the archive
consists of a series of archive members, as follows:

• The first and second members are “linker members.” Each of these
members has its own format as described in section 8.3, "Import Name Type."
Typically, a linker places information into these archive members. The linker
members contain the directory of the archive.
• The third member is the "longnames" member. This member consists of a
series of null-terminated ASCII strings in which each string is the name of
another archive member.
• The rest of the archive consists of standard (object-file) members. Each of
these members contains the contents of one object file in its entirety.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 68

An archive member header precedes each member. The following figure shows the
general structure of an archive:

Signature :”!<arch>\n”

Header
1st Linker Member

Header
2nd Linker Member

Header
Longnames Member

Header
Contents of OBJ File 1

(COFF format)

Header
Contents of OBJ File 2

(COFF format)

.

.

.
Header

Contents of OBJ File N
(COFF format)

Figure 4. Archive File Structure

85 Archive File Signature
The archive file signature identifies the file type. Any utility (for example, a linker)
that takes an archive file as input can check the file type by reading this signature.
The signature consists of the following ASCII characters, in which each character
below is represented literally, except for the newline (\n) character:
!<arch>\n

86 Archive Member Headers
Each member (linker, longnames, or object-file member) is preceded by a header.
An archive member header has the following format, in which each field is an ASCII
text string that is left justified and padded with spaces to the end of the field. There
is no terminating null character in any of these fields.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 69

Each member header starts on the first even address after the end of the previous
archive member.
Offse
t

Size Field Description

 0 16 Name The name of the archive member, with a slash (/)
appended to terminate the name. If the first
character is a slash, the name has a special
interpretation, as described in the following table.

16 12 Date The date and time that the archive member was
created: This is the ASCII decimal representation of
the number of seconds since 1/1/1970 UCT.

28 6 User ID An ASCII decimal representation of the user ID.
This field does not contain a meaningful value on
Windows platforms because Microsoft tools emit all
blanks.

34 6 Group ID An ASCII decimal representation of the group ID.
This field does not contain a meaningful value on
Windows platforms because Microsoft tools emit all
blanks.

40 8 Mode An ASCII octal representation of the member’s file
mode. This is the ST_MODE value from the C run-
time function _wstat.

48 10 Size An ASCII decimal representation of the total size of
the archive member, not including the size of the
header.

58 2 End of
Header

The two bytes in the C string “‘\n” (0x60 0x0A).

The Name field has one of the formats shown in the following table. As mentioned
earlier, each of these strings is left justified and padded with trailing spaces within a
field of 16 bytes:
Contents of
Name field

Description

name/ The name of the archive member.
/ The archive member is one of the two linker members. Both of the

linker members have this name.
// The archive member is the longnames member, which consists of a

series of null-terminated ASCII strings. The longnames member is
the third archive member and must always be present even if the
contents are empty.

/n The name of the archive member is located at offset n within the
longnames member. The number n is the decimal representation of
the offset. For example: “/26” indicates that the name of the archive
member is located 26 bytes beyond the beginning of the longnames
member contents.

87 First Linker Member
The name of the first linker member is “\”. The first linker member is included for
backward compatibility. It is not used by current linkers, but its format must be
correct. This linker member provides a directory of symbol names, as does the
second linker member. For each symbol, the information indicates where to find the
archive member that contains the symbol.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 70

The first linker member has the following format. This information appears after the
header:
Offse
t

Size Field Description

0 4 Number
of
Symbols

Unsigned long that contains the number of indexed
symbols. This number is stored in big-endian format.
Each object-file member typically defines one or more
external symbols.

4 4 * n Offsets An array of file offsets to archive member headers, in
which n is equal to the Number of Symbols field. Each
number in the array is an unsigned long stored in big-
endian format. For each symbol that is named in the
string table, the corresponding element in the offsets
array gives the location of the archive member that
contains the symbol.

* * String
Table

A series of null-terminated strings that name all the
symbols in the directory. Each string begins immediately
after the null character in the previous string. The
number of strings must be equal to the value of the
Number of Symbols field.

The elements in the offsets array must be arranged in ascending order. This fact
implies that the symbols in the string table must be arranged according to the order
of archive members. For example, all the symbols in the first object-file member
would have to be listed before the symbols in the second object file.

88 Second Linker Member
The second linker member has the name “\” as does the first linker member.
Although both linker members provide a directory of symbols and archive members
that contain them, the second linker member is used in preference to the first by all
current linkers. The second linker member includes symbol names in lexical order,
which enables faster searching by name.

The second member has the following format. This information appears after the
header:
Offse
t

Size Field Description

0 4 Number of
Members

An unsigned long that contains the number of
archive members.

4 4 * m Offsets An array of file offsets to archive member
headers, arranged in ascending order. Each
offset is an unsigned long. The number m is
equal to the value of the Number of Members
field.

* 4 Number of
Symbols

An unsigned long that contains the number of
symbols indexed. Each object-file member
typically defines one or more external symbols.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 71

Offse
t

Size Field Description

* 2 * n Indices An array of 1-based indexes (unsigned short)
that map symbol names to archive member
offsets. The number n is equal to the Number of
Symbols field. For each symbol that is named in
the string table, the corresponding element in the
Indices array gives an index into the offsets array.
The offsets array, in turn, gives the location of the
archive member that contains the symbol.

* * String Table A series of null-terminated strings that name all of
the symbols in the directory. Each string begins
immediately after the null byte in the previous
string. The number of strings must be equal to the
value of the Number of Symbols field. This table
lists all the symbol names in ascending lexical
order.

89 Longnames Member
The name of the longnames member is “\\”. The longnames member is a series of
strings of archive member names. A name appears here only when there is
insufficient room in the Name field (16 bytes). The longnames member can be
empty, though its header must appear.

The strings are null-terminated. Each string begins immediately after the null byte in
the previous string.

90 Import Library Format
Traditional import libraries, that is, libraries that describe the exports from one
image for use by another, typically follow the layout described in section 7, "Archive
(Library) File Format." The primary difference is that import library members contain
pseudo-object files instead of real ones, in which each member includes the section
contributions that are required to build the import tables that are described in
section 6.4, "The .idata Section." The linker generates this archive while building
the exporting application.

The section contributions for an import can be inferred from a small set of
information. The linker can either generate the complete, verbose information into
the import library for each member at the time of the library’s creation or write only
the canonical information to the library and let the application that later uses it
generate the necessary data on the fly.

In an import library with the long format, a single member contains the following
information:

Archive member header
File header
Section headers
Data that corresponds to each of the section headers
COFF symbol table
Strings

In contrast, a short import library is written as follows:
Archive member header
Import header

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 72

Null-terminated import name string
Null-terminated DLL name string

This is sufficient information to accurately reconstruct the entire contents of the
member at the time of its use.

91 Import Header
The import header contains the following fields and offsets:
Offse
t

Size Field Description

 0 2 Sig1 Must be
IMAGE_FILE_MACHINE_UNKNOWN. For
more information, see section 3.3.1, “Machine
Types.”

 2 2 Sig2 Must be 0xFFFF.
 4 2 Version The structure version.
 6 2 Machine The number that identifies the type of target

machine. For more information, see section
3.3.1, “Machine Types.”

 8 4 Time-Date Stamp The time and date that the file was created.
12 4 Size Of Data The size of the strings that follow the header.
16 2 Ordinal/Hint Either the ordinal or the hint for the import,

determined by the value in the Name Type
field.

18 2 bits Type The import type. For specific values and
descriptions, see section 8.2, "Import Type."

 3 bits Name Type The import name type. For specific values
and descriptions, see section 93 Import Name
Type."

11 bits Reserved Reserved, must be 0.
This structure is followed by two null-terminated strings that describe the imported
symbol’s name and the DLL from which it came.

92 Import Type
The following values are defined for the Type field in the import header:
Constant Value Description
IMPORT_CODE 0 Executable code.
IMPORT_DATA 1 Data.
IMPORT_CONST 2 Specified as CONST in the .def file.
These values are used to determine which section contributions must be generated
by the tool that uses the library if it must access that data.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 73

93 Import Name Type
The null-terminated import symbol name immediately follows its associated import
header. The following values are defined for the Name Type field in the import
header. They indicate how the name is to be used to generate the correct symbols
the represent the import:
Constant Valu

e
Description

IMPORT_ORDINAL 0 The import is by ordinal. This indicates
that the value in the Ordinal/Hint field of
the import header is the import’s ordinal.
If this constant is not specified, then the
Ordinal/Hint field should always be
interpreted as the import’s hint.

IMPORT_NAME 1 The import name is identical to the public
symbol name.

IMPORT_NAME_NOPREFIX 2 The import name is the public symbol
name, but skipping the leading ?, @, or
optionally _.

IMPORT_NAME_UNDECORA
TE

3 The import name is the public symbol
name, but skipping the leading ?, @, or
optionally _, and truncating at the first @.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 74

Appendix A: Calculating Authenticode PE Image Hash
Several attribute certificates are expected to be used to verify the integrity of the
images. However, the most common is Authenticode signature. An Authenticode
signature can be used to verify that the relevant sections of a PE image file have
not been altered in any way from the file’s original form. To accomplish this task,
Authenticode signatures contain something called a PE image hash.

A.1 What is an Authenticode PE Image Hash?
The Authenticode PE image hash, or file hash for short, is similar to a file checksum
in that it produces a small value that relates to the integrity of a file. A checksum is
produced by a simple algorithm and is used primarily to detect memory failures.
That is, it is used to detect whether a block of memory on disk has gone bad and
the values stored there have become corrupted. A file hash is similar to a checksum
in that it also detects file corruption. However, unlike most checksum algorithms, it
is very difficult to modify a file so that it has the same file hash as its original
(unmodified) form. That is, a checksum is intended to detect simple memory failures
that lead to corruption, but a file hash can be used to detect intentional and even
subtle modifications to a file, such as those introduced by viruses, hackers, or
Trojan horse programs.

In an Authenticode signature, the file hash is digitally signed by using a private key
known only to the signer of the file. A software consumer can verify the integrity of
the file by calculating the hash value of the file and comparing it to the value of
signed hash contained in the Authenticode digital signature. If the file hashes do not
match, part of the file covered by the PE image hash has been modified.

A.2 What is Covered in an Authenticode PE Image Hash?
It is not possible or desirable to include all image file data in the calculation of the
PE image hash. Sometimes it simply presents undesirable characteristics (for
example, debugging information cannot be removed from publicly released files);
sometimes it is simply impossible. For example, it is not possible to include all
information within an image file in an Authenticode signature, then insert the
Authenticode signature that contains that PE image hash into the PE image, and
later be able to generate an identical PE image hash by including all image file data
in the calculation again, because the file now contains the Authenticode signature
that was not originally there.

This appendix illustrates how a PE image hash is calculated and what parts of the
PE image can be modified without invalidating the Authenticode signature.
It is worth noting that the PE image hash for a specific file can be included in a
separate catalog file without including an attribute certificate within the hashed file.
This is relevant, because it becomes possible to invalidate the PE image hash in an
Authenticode-signed catalog file by modifying a PE image that does not actually
contain an Authenticode signature.

Process for Generating the Authenticode PE Image Hash
All data in sections of the PE image that are specified in the section table are
hashed in their entirety except for the following exclusion ranges:

• The file CheckSum field of the Windows-specific fields of the optional
header. This checksum includes the entire file (including any attribute
certificates in the file). In all likelihood, the checksum will be different than the
original value after inserting the Authenticode signature.

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

Visual Studio, Microsoft Portable Executable and Common Object File Format Specification - 75

• Information related to attribute certificates. The areas of the PE image
that are related to the Authenticode signature are not included in the calculation
of the PE image hash because Authenticode signatures can be added to or
removed from an image without affecting the overall integrity of the image. This
is not a problem, because there are user scenarios that depend on re-signing
PE images or adding a time stamp. Authenticode excludes the following
information from the hash calculation:

The Certificate Table field of the optional header data directories.
The Certificate Table and corresponding certificates that are pointed to by
the Certificate Table field listed immediately above.

To calculate the PE image hash, Authenticode orders the sections that are
specified in the section table by address range, then hashes the resulting
sequence of bytes, passing over the exclusion ranges.
• Information past of the end of the last section. The area past the last
section (defined by highest offset) is not hashed. This area commonly contains
debug information. Debug information can generally be considered advisory to
debuggers; it does not affect the actual integrity of the executable program. It is
quite literally possible to remove debug information from an image after a
product has been delivered and not affect the functionality of the program. In
fact, this is sometimes done as a disk-saving measure. It is worth noting that
debug information contained within the specified sections of the PE Image
cannot be removed without invaliding the Authenticode signature.

You can use the makecert and signtool tools provided in the Windows Platform
SDK to experiment with creating and verifying Authenticode signatures. For more
information, see "References" at the end of this specification.

References
IDL Attributes

http://msdn2.microsoft.com/en-US/library/8tesw2eh.aspx

Creating, Viewing, and Managing Certificates
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/seccrypto/security/creating_viewing_and_managing_certificates.asp

Makecert
http://windowssdk.msdn.microsoft.com/library/en-
us/seccrypto/security/makecert.asp

SignTool
http://windowssdk.msdn.microsoft.com/library/en-
us/seccrypto/security/signtool.asp

Windows Server R2 2003 Platform SDK
http://www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-
4969-ACE8-E4C0C0716ADB&displaylang=en

Revision 8.0 - May 16, 2006
© 2005 Microsoft Corporation. All rights reserved.

http://www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=0BAF2B35-C656-4969-ACE8-E4C0C0716ADB&displaylang=en
http://windowssdk.msdn.microsoft.com/library/en-us/seccrypto/security/signtool.asp
http://windowssdk.msdn.microsoft.com/library/en-us/seccrypto/security/signtool.asp
http://windowssdk.msdn.microsoft.com/library/en-us/seccrypto/security/makecert.asp
http://windowssdk.msdn.microsoft.com/library/en-us/seccrypto/security/makecert.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/seccrypto/security/creating_viewing_and_managing_certificates.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/seccrypto/security/creating_viewing_and_managing_certificates.asp
http://msdn2.microsoft.com/en-US/library/8tesw2eh.aspx

	1 General Concepts
	2 Overview
	3 File Headers
	4 MS‑DOS Stub (Image Only)
	5 Signature (Image Only)
	6 COFF File Header (Object and Image)
	7 Machine Types
	8 Characteristics

	9 Optional Header (Image Only)
	10Optional Header Standard Fields (Image Only)
	11 Optional Header Windows-Specific Fields (Image Only)
	Windows Subsystem
	DLL Characteristics

	12 Optional Header Data Directories (Image Only)

	13 Section Table (Section Headers)
	14 Section Flags
	15 Grouped Sections (Object Only)

	16 Other Contents of the File
	17 Section Data
	18 COFF Relocations (Object Only)
	19 Type Indicators
	x64 Processors
	ARM Processors
	Hitachi SuperH Processors
	IBM PowerPC Processors
	Intel 386 Processors
	Intel Itanium Processor Family (IPF)
	MIPS Processors
	Mitsubishi M32R

	20 COFF Line Numbers (Deprecated)
	21 COFF Symbol Table
	22 Symbol Name Representation
	23 Section Number Values
	24 Type Representation
	25 Storage Class

	26 Auxiliary Symbol Records
	27 Auxiliary Format 1: Function Definitions
	28 Auxiliary Format 2: .bf and .ef Symbols
	29 Auxiliary Format 3: Weak Externals
	30 Auxiliary Format 4: Files
	31 Auxiliary Format 5: Section Definitions
	32 COMDAT Sections (Object Only)
	33 CLR Token Definition (Object Only)

	34 COFF String Table
	35 The Attribute Certificate Table (Image Only)
	36 Certificate Data

	37 Delay-Load Import Tables (Image Only)
	38 The Delay-Load Directory Table
	39 Attributes
	40 Name
	41 Module Handle
	42 Delay Import Address Table
	43 Delay Import Name Table
	44 Delay Bound Import Address Table and Time Stamp
	45 Delay Unload Import Address Table

	46 Special Sections
	47 The .debug Section
	48 Debug Directory (Image Only)
	49 Debug Type
	50 .debug$F (Object Only)
	51 .debug$S (Object Only)
	52 .debug$P (Object Only)
	53 .debug$T (Object Only)
	54 Linker Support for Microsoft Debug Information

	55The .drectve Section (Object Only)
	56 The .edata Section (Image Only)
	57 Export Directory Table
	58 Export Address Table
	59 Export Name Pointer Table
	60 Export Ordinal Table
	61 Export Name Table

	62 The .idata Section
	63 Import Directory Table
	64 Import Lookup Table
	65 Hint/Name Table
	66 Import Address Table

	67 The .pdata Section
	68 The .reloc Section (Image Only)
	69 Base Relocation Block
	70 Base Relocation Types

	71 The .tls Section
	72 The TLS Directory
	73 TLS Callback Functions

	74 The Load Configuration Structure (Image Only)
	75 Load Configuration Directory
	76 Load Configuration Layout

	77 The .rsrc Section
	78 Resource Directory Table
	79 Resource Directory Entries
	80 Resource Directory String
	81 Resource Data Entry

	82The .cormeta Section (Object Only)
	83The .sxdata Section

	84 Archive (Library) File Format
	85 Archive File Signature
	86 Archive Member Headers
	87 First Linker Member
	88 Second Linker Member
	89 Longnames Member

	90 Import Library Format
	91 Import Header
	92 Import Type
	93 Import Name Type

	Appendix A: Calculating Authenticode PE Image Hash
	A.1 What is an Authenticode PE Image Hash?
	A.2 What is Covered in an Authenticode PE Image Hash?
	Process for Generating the Authenticode PE Image Hash

	References

