

Command Line Kung Fu
Jason Cannon

Command Line Kung Fu
Your Free Gift
Introduction
Shell History

Run the Last Command as Root
Repeat the Last Command That Started with a given String
Reuse the Second Word (First Argument) from the Previous Command
Reuse the Last Word (Last Argument) from the Previous Command
Reuse the Nth Word from a Previous Command
Repeat the Previous Command While Substituting a String
Reference a Word of the Current Command and Reuse It
Save a Copy of Your Command Line Session
Find out Which Commands You Use Most Often
Clear Your Shell History

Text Processing and Manipulation
Strip out Comments and Blank Lines
Use Vim to Edit Files over the Network
Display Output in a Table
Grab the Last Word on a Line of Output
View Colorized Output with Less
Preserve Color When Piping to Grep
Append Text to a File Using Sudo
Change the Case of a String
Display Your Command Search Path in a Human Readable Format
Create a Text File from the Command Line without Using an Editor
Display a Block of Text between Two Strings
Delete a Block of Text between Two Strings
Fix Common Typos with Aliases
Sort the Body of Output While Leaving the Header on the First Line Intact
Remove a Character or set of Characters from a String or Line of Output
Count the Number of Occurrences of a String

Networking and SSH
Serve Files in the Current Directory via a Web Interface
Mount a Directory from a Remote Server on Your Local Host via SSH
Get Your Public IP from the Command Line Using Curl
SSH into a Remote System without a Password
Show Open Network Connections
Compare the Differences between a Remote and Local File

Send Email from the Command Line
Send an Email Attachment from the Command Line
Create an SSH Tunnel to Access Remote Resources
Find out Which Programs Are Listening on Which Ports
Use a Different SSH Key for a given Remote Host
Avoid Having to Type Your Username When Connecting via SSH
Simplify Multi-Hop SSH Connections and Transparently Proxy SSH
Connections
Disconnect from a Remote Session and Reconnect at a Later Time, Picking up
Where You Left Off
Configure SSH to Append Domain Names to Host Names Based on a Pattern
Run a Command Immune to Hangups, Allowing the Job to Run after You
Disconnect
Encrypt Your Web Browsing Data with an SSH SOCKS Proxy
Download a Webpage, HTTP Data, or Use a Web API from the Command
Line
Use Vim to Edit Files over the Network

Shell Scripting
Use a for Loop at the Command Line
Command Substitution
Store Command Line Output as a Variable to Use Later
Read in Input One Line at a Time
Accept User Input and Store It in a Variable
Sum All the Numbers in a given Column of a Text
Automatically Answer Yes to Any Command

System Administration
Display Mounted File Systems in a Tabular Format
Kill All Processes for a given User or Program
Repeat a Command until It Succeeds
Find Who Is Using the Most Disk Space
Find the Files That Are Using the Most Disk Space
List Processes, Sorted by Memory Usage
List Processes, Sorted by CPU Usage
Quickly Tell If You Are on a 32 Bit or 64 Bit System
Generate a Random Password

Files and Directories
Quickly Make a Backup of a File
Quickly Change a File's Extension
Create Backups of Files by Date with Ease
Overwrite the Contents of a File

Empty a File That Is Being Written To
Append a String to a File
Follow a File as It Grows
Watch Multiple Log Files at the Same Time
Delete Empty Directories
Print a List of Files That Contain a given String
An Easy-to-Read Recursive File Listing
View Files and Directories in a Tree Format
Replace a String in Multiple Files
Extract the Nth Line from a File
Convert Text Files from Windows Format to Linux Format and Vice-Versa

Miscellaneous
Change to the Previous Working Directory
Reset Your Terminal Emulator Display
Search Wikipedia from the Command Line
Make Non-Interactive Shell Sessions Behave the Same as Interactive
Sessions
Make Your Computer to Talk to You
Display the Current Date and Time in a Different Time Zone
Display a Calendar at the Command Line
Extract a Tar Archive to a Different Directory
Transform the Directory Structure of a Tar File When Extracting It
Use a Spreadsheet from the Command Line
Rudimentary Command Line Stopwatch
Repeat a Command at Regular Intervals and Watch Its Changing Output
Execute a Command at a given Time
Share Your Screen Session with Another User
Execute an Unaliased Version of an Aliased Command
Save the Output of a Command as an Image

About the Author
Other Books by the Author

Additional Resources Including Exclusive Discounts for Command Line Kung Fu
Readers

Books
Courses
Cloud Hosting and VPS (Virtual Private Servers)
Web Hosting with SSH and Shell Access

Index
alias
at

atrm
atq
avconv
awk
adduser
bluefish
break
cal
cat
cd
chmod
cp
column
convert
cut
curl
date
df
diff
dig
dmidecode
dos2unix
dpkg
du
echo
espeak
event designator
exit
file
find
for
firefox
fusermount
getconf
grep
head
history
host
hostname
id

kill
killall
less
logger
ls
lsof
mail
mkdir
mount
multitail
mv
mysql
ncdu
netstat
nohup
openssl
passwd
ping
pkill
ps
python
read
reboot
reset
rm
sed
sc
screen
script
sort
ssh
ssh-copy-id
ssh-keygen
sshfs
su
sudo
tail
tar
tee
tree

time
tr
uname
uniq
userdel
vim
w
wc
watch
wget
while
who
whoami
uptime
unzip
unix2dos
yes

Appendix

Your Free Gift
As a thank you for reading Command Line Kung Fu, I would like to give you a copy
of Linux Alternatives to Windows Applications. In it, you will be introduced to over 50
of the most popular applications available for Linux today. These applications will
allow you to browse the web, watch movies, listen to music, connect to your favorite
social networks, create presentations, and more. This gift is a perfect complement to
this book and will help you along your Linux journey. Visit
http://www.linuxtrainingacademy.com/linux-apps or click here to download your free
gift.

http://www.linuxtrainingacademy.com/linux-apps

Introduction
I have been working at the command line on Unix and Linux systems since the 1990's.
 Needless to say, I feel right at home with nothing more than a dollar sign and a flashing
cursor staring at me. Over the years I've picked up several command line "tricks" that
have saved me time and frustration.

Some of these tips were born out of necessity — I simply had too much work to
complete and too little time to do it in. Others were modeled after popular patterns
found in computer programming and application development. The rest were shared
with me, either directly or indirectly, by my command line heroes and mentors. It's
amazing what you can learn by watching, emulating, and taking advice from a seasoned
Unix and Linux professional.

Even though the title is Command Line Kung Fu, you don't have to be a Linux ninja to
use the tactics presented in this book. The tips work as presented. You can start putting
them to use immediately without fully understanding all the details and nuances.
 However, if you want or need more information, explanations and practical real-world
examples follow each one.

Also, if you want an overview of the Linux command line and operating system please
read my other book Linux for Beginners. It will give you a strong foundation upon
which you can build your Linux skills.

Let's get started.

http://www.amazon.com/gp/product/B00HNC1AXY/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HNC1AXY&linkCode=as2&tag=jasoncame-20

Shell History

Run the Last Command as Root

$ sudo !!

$ su -c "!!"

If you ever forget to run a command with root privileges, you can simply repeat it by
using sudo !! or su -c "!!".

$ adduser sam

-bash: /usr/sbin/adduser: Permission denied

$ sudo !!

sudo adduser sam

$ id sam

uid=1007(sam) gid=1007(sam) groups=1007(sam)

$ userdel -r sam

-bash: /usr/sbin/userdel: Permission denied

$ sudo !!

sudo userdel -r sam

$ id sam

id: sam: No such user

$ useradd jim

-bash: /usr/sbin/useradd: Permission denied

$ su -c "!!"

su -c "useradd jim"

Password:

$ id jim

uid=1007(jim) gid=1007(jim) groups=1007(jim)

This exclamation mark syntax is called an event designator. An event designator
references a command in your shell history. Bang-Bang (!!) repeats the most recent
command, but one of my favorite uses of the event designator is to run the most recent
command that starts with a given string. Here’s an example.

$ whoami

jason

$ uptime

12:33:15 up 35 min, 1 user, load average: 0.00, 0.00, 0.00

$ df -hT /boot

Filesystem Type Size Used Avail Use% Mounted on

/dev/vda1 ext4 485M 55M 406M 12% /boot

$!u

uptime

12:33:29 up 35 min, 1 user, load average: 0.00, 0.00, 0.00

$ sudo !w

sudo whoami

root

Repeat the Last Command That Started with a given
String

$!<string>

This is another example of an event designator. To recall the most recent command that
begins with <string>, run "!<string>". You can simply specify the first letter, or as much
of the string to make it unique. This example demonstrates that concept.

$ who

jason pts/1 2014-04-06 21:04 (192.168.1.117)

$ w

jason pts/1 192.168.1.117 21:04 0.00s 0.33s 0.00s w

$!w

w

jason pts/1 192.168.1.117 21:04 0.00s 0.33s 0.00s w

$!wh

who

jason pts/1 2014-04-06 21:04 (192.168.1.117)

Here is a practical example where you check to see if a process is running, kill it, and
confirm that it did indeed stop.

$ ps -fu apache

UID PID PPID C STIME TTY TIME CMD

apache 1877 1879 0 21:32 ? 00:00:00 /usr/sbin/httpd

apache 1879 1 0 21:32 ? 00:00:00 /usr/sbin/httpd

$ sudo service httpd stop

Stopping httpd: [OK]

$!p

ps -fu apache

UID PID PPID C STIME TTY TIME CMD

$

Reuse the Second Word (First Argument) from the
Previous Command

$!^

If you need to grab the second word from the previous command, you can use the "! "̂
word designator. Wherever you use "! "̂ it will be replaced by the second word from
the previous command. You can also think of this as the first argument to the previous
command.

$ host www.google.com 8.8.8.8

Using domain server:

Name: 8.8.8.8

Address: 8.8.8.8#53

Aliases:

www.google.com has address 173.194.46.83

www.google.com has address 173.194.46.81

www.google.com has address 173.194.46.84

www.google.com has address 173.194.46.82

www.google.com has address 173.194.46.80

www.google.com has IPv6 address 2607:f8b0:4009:805::1013

$ ping -c1 !^

ping -c1 www.google.com

PING www.google.com (173.194.46.80) 56(84) bytes of data.

64 bytes from ord08s11-in-f16.1e100.net (173.194.46.80): icmp_seq=1
ttl=51 time=17.0 ms

--- www.google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 49ms

rtt min/avg/max/mdev = 17.071/17.071/17.071/0.000 ms

$

Reuse the Last Word (Last Argument) from the Previous
Command

$!$

Quite often I find myself needing to perform another operation on the last item on the
previous command line. To access that item in your current command, use "!$".

$ unzip tpsreport.zip

Archive: tpsreport.zip

 inflating: cover-sheet.doc

$ rm !$

rm tpsreport.zip

$ mv cover-sheet.doc reports/

$ du -sh !$

du -sh reports/

4.7G reports/

$

Reuse the Nth Word from a Previous Command

$!!:N

$ <event_designator>:<number>

To access a word in the previous command use "!!:N" where N is the number of the
word you wish to retrieve. The first word is 0, the second word is 1, etc. You can
think of 0 as being the command, 1 as being the first argument to the command, 2 as
being the second argument, and so on.

You can use any event designator in conjunction with a word designator. In the
following example, "!!" is the most recent command line: avconv -i screencast.mp4
podcast.mp3. The "!a" event designator expands to that same command since it's the
most recent command that started with the letter "a."

$ avconv -i screencast.mp4 podcast.mp3

$ mv !!:2 converted/

mv screencast.mp4 converted/

$ mv !a:3 podcasts/

mv podcast.mp3 podcasts/

$

Repeat the Previous Command While Substituting a
String

$ ^<string1>^<string2>^

This little trick is great for quickly correcting typing mistakes. If you omit ^<string2> ,̂
then <string1> will be removed from the previous command. By default, only the first
occurrence of <string1> is replaced. To replace every occurrence, append ":&". You
can omit the trailing caret symbol, except when using ":&".

$ grpe jason /etc/passwd

-bash: grpe: command not found

$ ^pe^ep

grep jason /etc/passwd

jason:x:501:501:Jason Cannon:/home/jason:/bin/bash

$ grep rooty /etc/passwd

$ ^y

grep root /etc/passwd

root:x:0:0:root:/root:/bin/bash

operator:x:11:0:operator:/root:/sbin/nologin

$ grep canon /etc/passwd ; ls -ld /home/canon

ls: cannot access /home/canon: No such file or directory

$ ^canon^cannon^:&

grep cannon /etc/passwd ; ls -ld /home/cannon

cannon:x:1001:1001::/home/cannon:/bin/sh

drwxr-xr-x 2 cannon ball 4096 Apr 7 00:22 /home/cannon

Reference a Word of the Current Command and Reuse It

$!#:N

The "!#" event designator represents the current command line, while the :N word
designator represents a word on the command line. Word references are zero based, so
the first word, which is almost always a command, is :0, the second word, or first
argument to the command, is :1, etc.

$ mv Working-with-Files.pdf Chapter-18-!#:1

mv Working-with-Files.pdf Chapter-18-Working-with-Files.pdf

Save a Copy of Your Command Line Session

$ script

If you want to document what you see on your screen, use the script command. The
script command captures everything that is printed on your terminal and saves it to a
file. You can provide script a file name as an argument or let it create the default file
named typescript.

$ script

Script started, file is typescript

$ cd /usr/local/bin

$ sudo ./upgradedb.sh

sudo password for jason:

Starting database upgrade.

...

Database upgrade complete.

$ exit

exit

Script done, file is typescript

$ cat typescript

Script started on Wed 09 Apr 2014 06:30:58 PM EDT

$ cd /usr/local/bin

$ sudo ./upgradedb.sh

sudo password for jason:

Starting database upgrade.

...

Database upgrade complete.

$ exit

exit

Script done on Wed 09 Apr 2014 06:31:44 PM EDT

$

Find out Which Commands You Use Most Often

$ history | awk '{print $2}' | sort | uniq -c | sort -rn | head

To get a list of the top ten most used commands in your shell history, use the following
command.

$ history | awk '{print $2}' | sort | uniq -c | sort -rn | head

 61 ls

 45 cd

 40 cat

 31 vi

 24 ip

 22 sudo

 22 ssh

 22 ll

 19 rm

 17 find

$

Clear Your Shell History

$ history -c

To clear your shell history, use the -c option to the history command.

$ history | tail -5

 966 ls -lR Music/

 967 find Music/ -type f -ls

 968 dstat

 969 sudo vi /etc/motd

 970 cd ..

 971 sudo du -s /home/* | sort -n

$ history -c

$ history

 1 history

$

Text Processing and Manipulation

Strip out Comments and Blank Lines

$ grep -E -v "^#|^$" file

To strip out all the noise from a configuration file get rid of the comments and blank
lines. These two regexes (regular expressions) do the trick. "^#" matches all lines that
begin with a "#". "^$" matches all blank lines. The -E option to grep allows us to use
regexes and the -v option inverts the matches.

[jason@www conf]$ grep -E -v '^#|^$' httpd.conf | head

ServerTokens OS

ServerRoot "/etc/httpd"

PidFile run/httpd.pid

Timeout 60

KeepAlive Off

MaxKeepAliveRequests 100

KeepAliveTimeout 15

<IfModule prefork.c>

StartServers 8

MinSpareServers 5

[jason@www conf]$

Use Vim to Edit Files over the Network

$ vim scp://remote-host//path/to/file

$ vim scp://remote-user@remote-host//path/to/file

If you want to edit a file with vim over SSH, you can let it do the heavy lifting of
copying the file back and forth.

$ vim scp://linuxserver//home/jason/notes.txt

Display Output in a Table

$ alias ct='column -t'

$ command | ct

Use the column command to format text into multiple columns. By using the -t option,
column will count the number of columns the input contains and create a table with that
number of columns. This can really make the output of many command easier to read. I
find myself using this so often that I created an alias for the command.

$ alias ct='column -t'

$ echo -e 'one two\nthree four'

one two

three four

$ echo -e 'one two\nthree four' | ct

one two

three four

$ mount -t ext4

/dev/vda2 on / type ext4 (rw)

/dev/vda1 on /boot type ext4 (rw)

$ mount -t ext4 | ct

/dev/vda2 on / type ext4 (rw)

/dev/vda1 on /boot type ext4 (rw)

$

Grab the Last Word on a Line of Output

$ awk '{print $NF}' file

$ cat file | awk '{print $NF}'

You can have awk print fields by using $FIELD_NUMBER notation. To print the first
field use $1, to print the second use $2, etc. However, if you don't know the number of
fields, or don't care to count them, use $NF which represents the total number of fields.
 Awk separates fields on spaces, but you can use the -F argument to change that
behavior. Here is how to print all the shells that are in use on the system. Use a colon
as the field separator and then print the last field.

$ awk -F: '{print $NF}' /etc/passwd | sort -u

If you want to display the shell for each user on the system you can do this.

$ awk -F: '{print $1,$NF}' /etc/passwd | sort | column -t

adm /sbin/nologin

apache /sbin/nologin

avahi-autoipd /sbin/nologin

bin /sbin/nologin

bobb /bin/bash

...

View Colorized Output with Less

$ ls --color=always | less -R

$ grep --color=always file | less -R

Some linux distributions create aliases for ls and grep with the --color=auto option.
 This causes colors to be used only when the output is going to a terminal. When you
pipe the output from ls or grep the color codes aren't emitted. You can force color to
always be displayed by ls or grep with --color=always. To have the less command
display the raw control characters that create colors, use the -R option.

$ grep --color=always -i bob /etc/passwd | less -R

$ ls --color=always -l /etc | less -R

Preserve Color When Piping to Grep

$ ls -l --color=always | grep --color=never string

If you pipe colorized input into grep and grep is an alias with the --color=auto option,
grep will discard the color from the input and highlight the string that was grepped for.
 In order to preserve the colorized input, force grep to not use colors with the --
color=never option.

$ ls -l --color=always *mp3 | grep --color=never jazz

-rw-r--r--. 1 jason jason 21267371 Feb 16 11:12 jazz-album-1.mp3

Append Text to a File Using Sudo

$ echo text | sudo tee -a file

If you have ever tried to append text to a file using redirection following a "sudo echo"
command, you quickly find this doesn't work. What happens is the echo statement is
executed as root but the redirection occurs as yourself.

$ sudo echo "PRODUCTION Environment" >> /etc/motd

-bash: /etc/motd: Permission denied

Fortunately, use can use sudo in combination the tee command to append text to a file.

$ echo "PRODUCTION Environment" | sudo tee -a /etc/motd

PRODUCTION Environment

Change the Case of a String

$ tr [:upper:] [:lower:]

$ tr [:lower:] [:upper:]

When you need to change the case of a string, use the tr command. You can supply
ranges to tr like "tr a-z A-Z" or use "tr [:lower:][:upper]".

$ ENVIRONMENT=PRODUCTION

$ DIRECTORY=$(echo $ENVIRONMENT | tr [:upper:] [:lower:])

$ echo $ENVIRONMENT | sudo tee -a /etc/motd

$ tail -1 /etc/motd

PRODUCTION

$ sudo mkdir /var/www/$DIRECTORY

$ sudo tar zxf wwwfiles.tgz -C /var/www/$DIRECTORY

Display Your Command Search Path in a Human
Readable Format

$ echo $PATH | tr ':' '\n'

Reading a colon separated list of items isn't as easy for us humans as it is for computers.
 To substitute new lines for colons, use the tr command.

$ echo $PATH

/usr/bin:/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin

$ echo $PATH | tr ':' '\n'

/usr/bin

/bin

/usr/local/bin

/bin

/usr/bin

/usr/local/sbin

/usr/sbin

/sbin

$

Create a Text File from the Command Line without Using
an Editor

$ cat > file

<ctrl-d>

If you need to make a quick note and don't need a full blown text editor, you can simply
use cat and redirect the output to a file. Press <ctrl-d> when you're finished to create
the file.

$ cat > shopping.list

eggs

bacon

coffee

<ctrl-d>

$ cat shopping.list

eggs

bacon

coffee

$

Display a Block of Text between Two Strings

$ awk '/start-pattern/,/stop-pattern/' file.txt

$ command | awk '/start-pattern/,/stop-pattern/'

The grep command is great at extracting a single line of text. But what if you need to
capture an entire block of text? Use awk and provide it a start and stop pattern. The
pattern can simply be a string or even a regular expression.

$ sudo dmidecode | awk /Processor/,/Manuf/

Processor Information

 Socket Designation: SOCKET 0

 Type: Central Processor

 Family: Core i5

 Manufacturer: Intel

$ awk '/worker.c/,/^$/' httpd.conf

<IfModule worker.c>

StartServers 4

MaxClients 300

MinSpareThreads 25

MaxSpareThreads 75

ThreadsPerChild 25

MaxRequestsPerChild 0

</IfModule>

$

Delete a Block of Text between Two Strings

$ sed '/start-pattern/,/stop-pattern/d' file

$ command | sed '/start-pattern/,/stop-pattern/d' file

You can delete a block of text with the sed command by providing it a start and stop
pattern and telling it to delete that entire range. The patterns can be strings or regular
expressions. This example deletes the the first seven lines since "#" matches the first
line and "^$" matches the seventh line.

$ cat ports.conf

If you just change the port or add more ports here, you will likely
also

have to change the VirtualHost statement in

/etc/apache2/sites-enabled/000-default

This is also true if you have upgraded from before 2.2.9-3 (i.e. from

Debian etch). See /usr/share/doc/apache2.2-
common/NEWS.Debian.gz and

README.Debian.gz

NameVirtualHost *:80

Listen 80

<IfModule mod_ssl.c>

 # If you add NameVirtualHost *:443 here, you will also have to
change

 # the VirtualHost statement in /etc/apache2/sites-

available/default-ssl

 # to <VirtualHost *:443>

 # Server Name Indication for SSL named virtual hosts is
currently not

 # supported by MSIE on Windows XP.

 Listen 443

</IfModule>

<IfModule mod_gnutls.c>

 Listen 443

</IfModule>

$ sed '/#/,/^$/d' ports.conf

NameVirtualHost *:80

Listen 80

<IfModule mod_ssl.c>

<IfModule mod_gnutls.c>

 Listen 443

</IfModule>

$

Fix Common Typos with Aliases

$ alias typo='correct spelling'

If you find yourself repeatedly making the same typing mistake over and over, fix it with
an alias.

$ grpe root /etc/passwd

bash: grpe: command not found

$ echo "alias grpe='grep'" >> ~/.bash_profile

$. ~/.bash_profile

$ grpe root /etc/passwd

root:x:0:0:root:/root:/bin/bash

$

Sort the Body of Output While Leaving the Header on the
First Line Intact

Add this function to your personal initialization files such as ~/.bash_profile:

body() {
 IFS= read -r header
 printf '%s\n' "$header"
 "$@"
}

$ command | body sort

$ cat file | body sort

I find myself wanting to sort the output of commands that contain headers. After the sort
is performed the header ends up sorted right along with the rest of the content. This
function will keep the header line intact and allow sorting of the remaining lines of
output. Here are some examples to illustrate the usage of this function.

$ df -h | sort -k 5

/dev/vda2 28G 3.2G 25G 12% /

tmpfs 504M 68K 504M 1% /dev/shm

/dev/vda1 485M 444M 17M 97% /boot

Filesystem Size Used Avail Use% Mounted on

$ df -h | body sort -k 5

Filesystem Size Used Avail Use% Mounted on

/dev/vda2 28G 3.2G 25G 12% /

tmpfs 504M 68K 504M 1% /dev/shm

/dev/vda1 485M 444M 17M 97% /boot

$ ps -eo pid,%cpu,cmd | head -1

 PID %CPU CMD

$ ps -eo pid,%cpu,cmd | sort -nrk2 | head

 675 12.5 mysqld

 PID %CPU CMD

 994 0.0 /usr/sbin/acpid

 963 0.0 /usr/sbin/modem-manager

 958 0.0 NetworkManager

 946 0.0 dbus-daemon

 934 0.0 /usr/sbin/fcoemon --syslog

 931 0.0 [bnx2fc_thread/0]

 930 0.0 [bnx2fc_l2_threa]

 929 0.0 [bnx2fc]

$ ps -eo pid,%cpu,cmd | body sort -nrk2 | head

 PID %CPU CMD

 675 12.5 mysqld

 994 0.0 /usr/sbin/acpid

 963 0.0 /usr/sbin/modem-manager

 958 0.0 NetworkManager

 946 0.0 dbus-daemon

 934 0.0 /usr/sbin/fcoemon --syslog

 931 0.0 [bnx2fc_thread/0]

 930 0.0 [bnx2fc_l2_threa]

 929 0.0 [bnx2fc]

$

Remove a Character or set of Characters from a String or
Line of Output

$ command | tr -d "X"

$ command | tr -d [SET]

$ cat file | tr -d "X"

$ cat file | tr -d [set]

The tr command is typically used to translate characters, but with the -d option it deletes
characters. This example shows how to get rid of quotes.

$ cat cities.csv

1,"Chicago","USA","IL"

2,"Austin","USA","TX"

3,"Santa Cruz","USA","CA"

$ cat cities.csv | cut -d, -f2

"Chicago"

"Austin"

"Santa Cruz"

$ cat cities.csv | cut -d, -f2 | tr -d '"'

Chicago

Austin

Santa Cruz

$

You can also let tr delete a group of characters. This example removes all the vowels
from the output.

$ cat cities.csv | cut -d, -f2 | tr -d [aeiou]

"Chcg"

"Astn"

"Snt Crz"

$

Count the Number of Occurrences of a String

$ uniq -c file

$ command | uniq -c

The uniq command omits adjacent duplicate lines from files. Since uniq doesn't
examine an entire file or stream of input for unique lines, only unique adjacent lines, it
is typically preceded by the sort command via a pipe. You can have the uniq command
count the unique occurrences of a string by using the "-c" option. This comes in useful if
you are trying to look through log files for occurrences of the same message, PID, status
code, username, etc.

Let's find the all of the unique HTTP status codes in an apache web server log file
named access.log. To do this, print out the ninth item in the log file with the awk
command.

$ tail -1 access.log

18.19.20.21 - - [19/Apr/2014:19:51:20 -0400] "GET / HTTP/1.1" 200
7136 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/33.0.1750.154
Safari/537.36"

$ tail -1 access.log | awk '{print $9}'

200

$ awk '{print $9}' access.log | sort | uniq

200

301

302

404

$

Let's take it another step forward and count how many of each status code we have.

$ awk '{print $9}' access.log | sort | uniq -c | sort -nr

 5641 200

 207 301

 86 404

 18 302

 2 304

$

Now let's see extract the status code and hour from the access.log file and count the
unique occurrences of those combinations. Next, lets sort them by number of
occurrences. This will show us the hours during which the website was most active.

$ cat access.log | awk '{print $9, $4}' | cut -c 1-4,18-19 | uniq -c | sort -
n | tail

 72 200 09

 76 200 06

 81 200 06

 82 200 06

 83 200 06

 83 200 06

 84 200 06

 109 200 20

 122 200 20

 383 200 10

$

Networking and SSH

Serve Files in the Current Directory via a Web Interface

$ python -m SimpleHTTPServer

$ python3 -m http.server

By default, this command starts a web server and serves up the content in the current
directory over port 8000. You can change the port by specifying it at the end of the line.
 If no index.html file exists in the current directory, then the directory listing is shown.
 Start the web server and use a web browser to navigate to it. (firefox
http://localhost:8000)

This can come in handy when you are working on HTML content and you want to see
how it looks in a web browser without installing and configuring a full blown web
server.

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 …

localhost.localdomain - - [06/Apr/2014 21:49:20] "GET / HTTP/1.1"
200 -

Here's how to start the web server on the standard HTTP port. Since port 80 is a
privileged port, IE it's 1024 or lower, doing this requires root privileges.

$ sudo python -m SimpleHTTPServer 80

Serving HTTP on 0.0.0.0 port 80 ...

Mount a Directory from a Remote Server on Your Local
Host via SSH

$ sshfs remote-host:/directory mountpoint

$ fusermount -u mountpiont

Sometimes it's easier to work on files and directories if they are, or appear to be, local
to your machine. For example, maybe you have a local application that doesn't exist on
the server that you use to manipulate files. Instead of downloading the file from the
server, modifying it, and and uploading it back to the server, you can mount the remote
directory on your local workstation. Here is an example of updating a website over
SSH.

$ mkdir web-files

$ sshfs www.example.com:/home/jason/public_html

$ bluefish web-files/index.html

$ fusermount -u web-files

Just like ssh command, you can use the user@host format if your remote username is
different from your local username. Also, if no directory is specified after the colon,
then your home directory is assumed.

Get Your Public IP from the Command Line Using Curl

$ curl ifconfig.me

If you ever need to determine your public (Internet) IP address you can use the
ifconfig.me website.

$ curl ifconfig.me

198.145.20.140

$ curl ifconfig.me/ip

198.145.20.140

$ curl ifconfig.me/host

pub2.kernel.org

SSH into a Remote System without a Password

$ ssh-keygen

$ ssh-copy-id remote-host

$ ssh remote-host

In order to SSH into a remote host without a password you'll need an SSH key pair
consisting of a private and public key. On the remote host the contents of the public key
need to be in ~/.ssh/authorized_keys. The ssh-copy-id script performs that work.

If you want to generate a key without a password, simply hit enter when prompted for a
passphrase. You can optionally supply a blank string to the -N option. (ssh-keygen -N
'')

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/jason/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/jason/.ssh/id_rsa.

Your public key has been saved in /home/jason/.ssh/id_rsa.pub.

The key fingerprint is:

0d:2e:e4:32:dd:da:60:a5:2e:0f:c5:89:d5:78:30:ad
jason@laptop.localdomain

The key's randomart image is:

+--[RSA 2048]----+

| o. |

| =. |

| +.= |

| BEB o |

| + @ S . |

| * = |

| o o . |

| + |

| . |

+-----------------+

$ ssh-copy-id linuxserver

jason@192.168.122.60's password:

Now try logging into the machine, with "ssh 'linuxserver'", and check
in:

 .ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

$ ssh linuxserver

$ hostname

linuxserver

$

Show Open Network Connections

$ sudo lsof -Pni

The lsof command can not only be used to display open files, but open network ports,
and network connections. The -P option prevents the conversion of port numbers to port
names. The -n option prevents the conversion of IP addresses to host names. The -i
option tells lsof to display network connections.

$ sudo lsof -Pni

COMMAND PID USER FD TYPE DEVICE SIZE/OFF
NODE NAME

dhclient 989 root 6u IPv4 11522 0t0 UDP *:68

sshd 1202 root 3u IPv4 12418 0t0 TCP *:22
(LISTEN)

sshd 1202 root 4u IPv6 12423 0t0 TCP *:22
(LISTEN)

ntpd 1210 ntp 16u IPv4 12464 0t0 UDP *:123

ntpd 1210 ntp 17u IPv6 12465 0t0 UDP *:123

ntpd 1210 ntp 18u IPv4 12476 0t0 UDP 127.0.0.1:123

ntpd 1210 ntp 19u IPv4 12477 0t0 UDP
192.168.122.60:123

ntpd 1210 ntp 20u IPv6 12478 0t0 UDP [::1]:123

ntpd 1210 ntp 21u IPv6 12479 0t0 UDP
[fe80::5054:ff:fe52:d858]:123

master 1364 root 12u IPv4 12761 0t0 TCP 127.0.0.1:25

(LISTEN)

clock-app 12174 jason 21u IPv4 78889 0t0 TCP
192.168.122.60:39021->184.25.102.40:80 (ESTABLISHED)

sshd 12339 root 3r IPv4 74023 0t0 TCP
192.168.122.60:22->192.168.122.1:34483 (ESTABLISHED)

sshd 12342 jason 3u IPv4 74023 0t0 TCP
192.168.122.60:22->192.168.122.1:34483 (ESTABLISHED)

$

Compare the Differences between a Remote and Local File

$ ssh remote-host cat /path/to/remotefile | diff /path/to/localfile -

To display the differences between a local and remote file, cat a file over ssh and pipe
the output into a diff or sdiff command. The diff and sdiff commands can accept
standard input in lieu of a file by supplying it a dash for one of the file names.

$ ssh linuxsvr cat /etc/passwd | diff /etc/passwd -

32c32

< terry:x:503:1000::/home/terry:/bin/ksh

> terry:x:503:1000::/home/terry:/bin/bash

35a36

> bob:x:1000:1000:Bob Smith:/home/bob:/bin/bash

$

Send Email from the Command Line

$ mail recipient@domain.com

$ echo 'message' | mail -s 'subject' recipient@domain.com

To send an email use the mail command. You can enter in a message interactively or
via a pipe. End your interactive message with ctrl-d.

$ mail jim@mycorp.com

Subject: Message from the command line

Isn't this great?

EOT

$ echo "Here's the lazy way" | mail -s 'Message from the command
line' jim@mycorp.com

Send an Email Attachment from the Command Line

$ mail -a /path/to/attachment

$ echo 'message' | mail -s 'subject' -a /path/to/attachment
recipient@domain.com

If you ever need to send an email attachment from the command line, use the -a option to
the mail command.

$ echo "Here is the file you requested" | mail -s "The file" -a
/tmp/files.tgz jim@mycorp.com

$

Create an SSH Tunnel to Access Remote Resources

$ ssh -N -L local-port:host:remote-port remote-host

To create an SSH tunnel, use the -L option. The first port is the port that will be opened
on your local machine. Connections to this port will be tunneled through remote-host
and sent to the host and remote port specified in the -L option. The -N option tells SSH
to not execute a command -- your shell -- on the remote host.

Let's say you want to access a website that isn't available on the internet, but is
accessible from a server that you have SSH access to. You can create a tunnel that
allows you to browse that website like you were behind the company's firewall. This
command will forward any connections from your local machine on port 8000 through
the jump server to the intranet server on port 80. Point your web browser to
http://localhost:8000 and start surfing.

$ ssh -N -L 8000:intranet.acme.com:80 jump-server &

[1] 23253

$ firefox http://localhost:8000

Another use case is to access a service that is running on a server that you have SSH
access to. If you need access to a mysql server that only allows database connections
from specific hosts, you can create an SSH tunnel for your connection. Since the mysql
service is running on localhost:3306 of the remote machine, the -L option would look
like this: -L 3306:localhost:3306. You can use the mysql command line client on your
local machine to connect to the database, but what's even more interesting is to use
graphical desktop applications that aren't available on the server. For example, you
could use this tunnel and connect to the database with MySQL Workbench, Navicat, or
some other application.

$ ssh -N -L 3306:localhost:3306 db01 &

[1] 13455

$ mysql -h 127.0.0.1

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 9

Server version: 5.1.73 Source distribution

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights
reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

Find out Which Programs Are Listening on Which Ports

$ sudo netstat -nutlp

Here are the descriptions of the netstat options used in order to get a list of programs
and the ports that they are listening on.

-n show numerical addresses instead of determining symbolic names

-u include the UDP protocol

-t include the TCP protocol

-l show only listening sockets

-p show the PID and program name

$ sudo netstat -nutlp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name

tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN 4546/mysqld

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1161/sshd

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 1325/master

tcp 0 0 :::80 :::* LISTEN 4576/httpd

tcp 0 0 :::22 :::* LISTEN 1161/sshd

udp 0 0 0.0.0.0:68 0.0.0.0:* 1008/dhclient

$

Use a Different SSH Key for a given Remote Host

Put the following in the ~/.ssh/config file.

Host remote-host

IdentityFile ~/.ssh/id_rsa-remote-host

If you need or want to use different SSH keys for different hosts, you can explicitly
specify them on the command line with the -i option to ssh.

$ ssh -i ~/.ssh/id_rsa-db1 db1.example.com

If you want to forego specifying the key each time you can create an entry in your
~/.ssh/config file and specify the key there.

$ cat ~/.ssh/config

Host db1.example.com

 IdentityFile ~/.ssh/id_rsa-db1

$ ssh db1.example.com

You can use wildcards in the host specification.

$ cat~/.ssh/config

Host db*

 IdentityFile ~/.ssh/id_rsa-db1

Host *.work.net

 IdentityFile ~/work-files/keys/id_rsa

$ ssh jim@jumpbox.work.net

If you name your SSH keys after the fully qualified domain names of the hosts they relate
to, you can use the %h escape character to simplify your ~/.ssh/config file. Instead of
having a host entry for each and every server, the %h syntax expands to the fully
qualified domain name of the host your are connecting to.

$ cat ~/.ssh/config

Host *.example.com

IdentityFile ~/.ssh/id_rsa-%h

$ ls -1 ~/.ssh/id_rsa-*

id_rsa-lax-db-01.example.com

id_rsa-lax-db-01.example.com.pub

id_rsa-lax-web-01.example.com

id_rsa-lax-web-01.example.com.pub

$ ssh lax-db-01.example.com

Avoid Having to Type Your Username When Connecting
via SSH

Put the following in the ~/.ssh/config file.

Host remote-host

User username

If you have a different username on your local Linux machine than you do on the remote
linux machine, you have to specify it when connecting via SSH. It looks like this.

$ ssh jim@server1.example.com

To avoid having to type "username@" each time, add a host entry to your ~/.ssh/config
file.

Host server1.example.com

 User jim

Once your have configured the host entry, you can simply ssh into the remote host.

$ whoami

james

$ ssh server1.example.com

$ whoami

jim

$

Simplify Multi-Hop SSH Connections and Transparently
Proxy SSH Connections

Put the following in the ~/.ssh/config file.

Host jumphost.example.com

 ProxyCommand none

Host *.example.com

 ProxyCommand ssh -W %h:%p jumphost.example.com

If you need to access a host that sits behind an SSH gateway server or jump server, you
can make your life easier by telling SSH to automatically use the SSH gateway when
you connect to the final remote host. Instead of first connecting to the gateway and then
entering another ssh command to connect to the destination host, you simply type "ssh
destination-host" from your local machine. Using the above configuration, this
command will proxy your ssh connection to server1 through jumphost.

$ ssh server1.example.com
$ uname -n

server1
$

Disconnect from a Remote Session and Reconnect at a
Later Time, Picking up Where You Left Off

$ ssh remote-host

$ screen

ctrl-a, d

$ exit

$ ssh remote-host

$ screen -r

When I have a long running process that I need to complete on a remote host, I always
start a screen session before launching that process. I don't want a blip in my network
connection to interrupt the work being performed on the remote host. Sometimes I
launch a process, detach from the session, and reconnect later to examine all the output
that occurred while I was away.

First, ssh into the remote host. Next, start a screen session. Start performing your work
on the remote host. Detach from the screen session by typing ctrl-a followed by d. The
process you started will still be running in the screen session while you're away. Also,
any output generated will be available for you to view at a later time.

$ ssh remote-host

$ screen

$ /usr/local/bin/migrate-db

Starting DB migration at Sun Apr 13 21:02:50 EDT 2014

<ctrl-a,d>

[detached]

$ exit

To reconnect to your screen session, connect to the remote host and type screen -r. If
there is any output that scrolled past the top of the screen, you can view by typing ctrl-a
followed by the escape key. Now use the vi navigation key bindings to view the output
history. For example, you can type k to move up one line or ctrl-b to page up. Once you
are finished looking at the output history, hit escape to return to the live session. To quit
your screen session, type exit.

$ ssh remote-host

$ screen -r

Starting DB migration at 21:02

table1 migrated at 21:34

table2 migrated at 22:11

table3 migrated at 22:54

DB migration completed at 23:04

$ exit

[screen is terminating]

$ exit

Screen is one of the most widely used and readily available screen multiplexers.
 However, there are alternatives such as tmux, dtach, and byobu.

Configure SSH to Append Domain Names to Host Names
Based on a Pattern

The contents of ~/.ssh/config:

host-prefix* !*.domain.com

 HostName %h.domain.com

If you connect to hosts in multiple domains via ssh it can get tiresome typing out the fully
qualified domain name each time. One way around this problem is to add each domain
to the search list in /etc/resolv.conf. The resolver will the attempt the resolution for the
specified host name in each of the domains in the search list until it finds one that
resolves.

$ cat /etc/resolv.conf

nameserver 8.8.8.8

nameserver 8.8.4.4

search domain1.com domain2.com domain3.com domain4.com
domain5.com domain6.com domain7.com

When typing "ssh remote-host" with the above resolv.conf in place, the resolver will
attempt to translate remote-host.domain1.com into an IP address. If that fails, it will
attempt to resolve remote-host.domain2.com, etc. The problem with the above
reslov.conf is that the search list is limited to just six domains. So, remote-
host.domain7.com is never attempted. Additionally, the search list is limited to 256
characters, regardless the number of domains.

How can you get around the six domain search list limit? If you're lucky enough to have
a pattern of hostnames that correlate with domain names, you can configure ssh to do the
resolution. For example, for FQDNs like "ny-www1.newyork.company.com" and "ny-
mysql-07.newyork.company.com" you can create a rule that appends
".newyork.company.com" to any host that begins with "ny." You'll also want to tell ssh
to ignore any hosts that begin with "ny" that already have ".newyork.company.com"
appended to them. Here's an example ~/.ssh/config file that does that.

$ cat ~/.ssh/config

ny* !*.newyork.company.com

 HostName %h.newyork.company.com

db* !*.databases.company.com

 HostName %h.databases.company.com

jump* !*.company.com

 HostName %h.company.com

Now when you type "ssh ny-test" ssh will attempt to connect to "ny-
test.newyork.company.com." For hosts that begin with "db," ssh will append
".databases.company.com" to the host name. Hosts the begin with "jump" will have the
".company.com" domain name appened to them.

$ ssh ny-www1

$ hostname -f
ny-www1.newyork.company.com

$ exit

$ ssh jump-ny-01

$ hostname -f

jump-ny-01.company.com

$ exit

$

Run a Command Immune to Hangups, Allowing the Job
to Run after You Disconnect

$ nohup command &

Normally when you start a job in the background and log out of your session the job gets
killed. One way to ensure a command keeps running after you disconnect from the host
is to use the nohup command. No hup stands for no hang up. By default the output of the
command is stored in a file named "nohup.out" in the directory the program was
launched in. You can examine the contents of this file later to see the output of the
command. To use a different filename, employ redirection.

$ ssh db-server

$ nohup /usr/local/bin/upgradedb.sh &

[1] 13370

$ exit

$ ssh db-server

$ cat nohup.out

Starting database upgrade.

...

Database upgrade complete.

$ nohup /usr/local/bin/post-upgrade.sh > /tmp/post.log &

[1] 16711

$ exit

$ ssh db-server

$ cat /tmp/post.log

Post processing completed.

$

Encrypt Your Web Browsing Data with an SSH SOCKS
Proxy

$ ssh -D PORT remote-host

If you are using an open wireless hotspot and want to ensure your web browsing data is
encrypted, you can redirect your web browsing traffic through another host via SSH.
 Start ssh with the "-D" option and provide a port to open up on your local computer for
proxy connections. If you only want to perform the port forwarding and not actually log
into the shell of the remote host, use the "-N" option for ssh. Configure your web
browser to use a SOCKS 5 proxy using localhost for the host and the port you supplied
to ssh.

$ ssh -ND 1080 ubuntu@ec2-75-101-157-145.compute-
1.amazonaws.com

$ firefox http://www.mybank.com

Download a Webpage, HTTP Data, or Use a Web API
from the Command Line

$ curl -o file.html http://website/webpage

$ wget http://website/webpage

The curl and wget commands can be used to download a webpage or anything that is
available on a web server. You can use these commands to interact with HTTP APIs,
download software packages, download a status page, or even get the current weather.

Here's an example of checking the status page of your local apache web server.

$ curl -o server-status.html http://localhost/server-status

 % Total % Received % Xferd Average Speed Time Time
 Time Current

 Dload Upload Total Spent Left Speed

100 6148 100 6148 0 0 1070k 0 --:--:-- --:--:-- --:--:--
1200k

$ wget http://localhost/server-status

--2014-04-19 14:37:18-- http://localhost/server-status

Resolving localhost (localhost)... 127.0.0.1

Connecting to localhost (localhost)|127.0.0.1|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 6377 (6.2K) [text/html]

Saving to: `server-status'

100%[=====>] 6,377 --.-K/s in 0s

2014-04-19 14:37:18 (105 MB/s) - `server-status' saved [6377/6377]

$ grep uptime server-status*

server-status:<dt>Server uptime: 50 minutes 13 seconds</dt>

server-status.html:<dt>Server uptime: 50 minutes 5 seconds</dt>

Here's an example of getting the current weather.

$ curl -so lax-weather.html
http://weather.noaa.gov/pub/data/observations/metar/decoded/KLAX.TXT

$ cat lax-weather.html

LOS ANGELES INTERNTL AIRPORT, CA, United States (KLAX)
33-56N 118-23W 46M

Apr 19, 2014 - 02:53 PM EDT / 2014.04.19 1853 UTC

Wind: from the W (260 degrees) at 10 MPH (9 KT):0

Visibility: 10 mile(s):0

Sky conditions: mostly cloudy

Temperature: 64.9 F (18.3 C)

Dew Point: 54.0 F (12.2 C)

Relative Humidity: 67%

Pressure (altimeter): 30.03 in. Hg (1016 hPa)

ob: KLAX 191853Z 26009KT 10SM FEW022 BKN220 18/12 A3003
RMK AO2 SLP167 T01830122

cycle: 19

$ wget -q
http://weather.noaa.gov/pub/data/observations/metar/decoded/KLAX.TXT

$ cat KLAX.TXT

LOS ANGELES INTERNTL AIRPORT, CA, United States (KLAX)
33-56N 118-23W 46M

Apr 19, 2014 - 02:53 PM EDT / 2014.04.19 1853 UTC

Wind: from the W (260 degrees) at 10 MPH (9 KT):0

Visibility: 10 mile(s):0

Sky conditions: mostly cloudy

Temperature: 64.9 F (18.3 C)

Dew Point: 54.0 F (12.2 C)

Relative Humidity: 67%

Pressure (altimeter): 30.03 in. Hg (1016 hPa)

ob: KLAX 191853Z 26009KT 10SM FEW022 BKN220 18/12 A3003
RMK AO2 SLP167 T01830122

cycle: 19

$

Download and install a package.

$ wget -q
https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-

1.1.1.deb

$ sudo dpkg -i elasticsearch-1.1.1.deb

Selecting previously unselected package elasticsearch.

(Reading database ... 162097 files and directories currently installed.)

Unpacking elasticsearch (from elasticsearch-1.1.1.deb) ...

Setting up elasticsearch (1.1.1) ...

Adding system user `elasticsearch' (UID 116) ...

Adding new user `elasticsearch' (UID 116) with group `elasticsearch'
...

Not creating home directory `/usr/share/elasticsearch'.

NOT starting elasticsearch by default on bootup, please execute

 sudo update-rc.d elasticsearch defaults 95 10

In order to start elasticsearch, execute

 sudo /etc/init.d/elasticsearch start

Processing triggers for ureadahead ...

$ sudo /etc/init.d/elasticsearch start

 * Starting Elasticsearch Server
 [OK]

$

Interact with a web API.

$ curl http://localhost:9200

{

 "status" : 200,

 "name" : "NFL Superpro",

 "version" : {

 "number" : "1.1.1",

 "build_hash" :
"f1585f096d3f3985e73456debdc1a0745f512bbc",

 "build_timestamp" : "2014-04-16T14:27:12Z",

 "build_snapshot" : false,

 "lucene_version" : "4.7"

 },

 "tagline" : "You Know, for Search"

}

$ curl http://localhost:9200/_cluster/health?pretty

{

 "cluster_name" : "elasticsearch",

 "status" : "green",

 "timed_out" : false,

 "number_of_nodes" : 1,

 "number_of_data_nodes" : 1,

 "active_primary_shards" : 0,

 "active_shards" : 0,

 "relocating_shards" : 0,

 "initializing_shards" : 0,

 "unassigned_shards" : 0

}

$

Use Vim to Edit Files over the Network

$ vim scp://remote-host//path/to/file

$ vim scp://remote-user@remote-host//path/to/file

If you want to edit a file with vim over SSH, you can let it do the heavy lifting of
copying the file back and forth.

$ vim scp://linuxserver//home/jason/notes.txt

Shell Scripting

Use a for Loop at the Command Line

$ for VAR in LIST

> do

> # use $VAR

> done

When you need to perform the same action for a list of items, you can use a for loop
right from your shell.

$ for USER in bob jill fred

> do

> sudo passwd -l $USER

> logger -t naughty-user $USER

> done

Locking password for user bob.

passwd: Success

Locking password for user jill.

passwd: Success

Locking password for user fred.

passwd: Success

$ sudo tail -3 /var/log/messages

Apr 8 19:29:03 linuxserver naughty-user: bob

Apr 8 19:29:03 linuxserver naughty-user: jill

Apr 8 19:29:03 linuxserver naughty-user: fred

You can also type entire loop on one command line

$ for USER in bob jill fred; do sudo passwd -l $USER; logger -t
naughty-user $USER; done

...

Command Substitution

$ VAR=`command`

$ VAR=$(command)

There are two forms of command substitution. The first form uses backticks (`) to
surround a command while the second form uses a dollar sign followed by parenthesis
that surround a command. They are functionally equivalent with the backtick form being
the older style. The output of the command can be used as an argument to another
command, to set a variable, or for generating the argument list for a for loop.

$ EXT_FILESYSTEMS=$(grep ext fstab | awk '{print $2}')

$ echo $EXT_FILESYSTEMS

/ /boot

$ cp file.txt file.txt.`date +%F`

$ ls file.txt*

file.txt file.txt.2014-04-08

$ ps -fp $(cat /var/run/ntpd.pid)

UID PID PPID C STIME TTY TIME CMD

ntp 1210 1 0 Apr06 ? 00:00:05 ntpd -u ntp:ntp -p
/var/run/ntpd

$ sudo kill -9 $(cat /var/run/ntpd.pid)

$ for x in $(cut -d: -f1 /etc/passwd); do groups $x; done

jason : jason sales

bobdjr : sales

jim : jim

Store Command Line Output as a Variable to Use Later

$ for VAR in LIST

> do

> VAR2=$(command)

> VAR3=$(command)

> echo "$VAR2 VAR3"

> done

Command substitution can be used to assign values to variables. If you need to reuse
the output of a command multiple times, assign it to a variable once and reuse the
variable. This example shows how the output of the id command is used multiple times
in one script.

$ for USER in $(cut -f1 -d: /etc/passwd)

> do

> UID_MIN=$(grep ^UID_MIN /etc/login.defs | awk '{print $NF}')

> USERID=$(id -u $USER)

> [$USERID -lt $UID_MIN] || {

> echo "Forcing password expiration for $USER with UID of
$USERID."

> sudo passwd -e $USER

> }

> done

Forcing password expiration for bob with UID of 1000.

Forcing password expiration for bobdjr with UID of 1001.

Forcing password expiration for bobh with UID of 1002.

Read in Input One Line at a Time

$ while read LINE

> do

> # Do something with $LINE

> done < file.txt

$ command | while read LINE

> do

> # Do something with $LINE

> done

If you want to iterate over a list of words, use a for loop. If you want to iterate over a
line, use a while loop in combination with a read statement and redirection.

Let's look for file systems that are over 90% utilized. If we try to use an if statement it
will break up the output into word chunks like this.

$ df | head -1

Filesystem 1K-blocks Used Available Use% Mounted on

$ for x in $(df)

> do

> echo $x

> done

Filesystem

1K-blocks

Used

Available

Use%

Mounted

on

...

We need to read in entire lines at a time like this.

$ df | while read LINE

> do

> echo $LINE

> done

Filesystem 1K-blocks Used Available Use% Mounted on

...

Here is one way to find file systems that are over 90% utilized.

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda2 28891260 3270340 25327536 12% /

tmpfs 515320 72 515248 1% /dev/shm

/dev/sda1 495844 453683 16561 97% /boot

$ df | grep [0-9]% | while read LINE

> do

> use=$(echo $LINE | awk '{print $5}' | tr -d '%')

> mountpoint=$(echo $LINE | awk '{print $6}')

> [$use -gt 90] && echo "$mountpoint is over 90% utilized."

> done

/boot is over 90% utilized.

$

Instead of assigning variables within the while loop, you can assign them with the read
statement. Here is how this method looks.

$ df | grep [0-9]% | while read fs blocks used available use mountpoint

> do

> use=$(echo $use | tr -d '%')

> [$use -gt 90] && echo "$mountpoint is over 90% utilized."

> done

/boot is over 90% utilized.

Accept User Input and Store It in a Variable

$ read VAR

$ read -n 1 VAR

$ read -p "Prompt text" VAR

To accept user input from a user, use the read command. Read will accept an entire line
of input and store it into a variable. You can force read to only read a limited number
of characters by using the -n option. Instead of using echo statements before a read
command, you can supply a prompt by using the -p option. Here is a sample script that
uses these techniques.

The contents of backup.sh:

#!/bin/bash

while true

do

 read -p "What server would you like to backup? " SERVER

 echo "Backing up $SERVER"

 /usr/local/bin/backup $SERVER

 read -p "Backup another server? (y/n) " -n 1 BACKUP_AGAIN

 echo

 ["$BACKUP_AGAIN" = "y"] || break

done

$./backup.sh

What server would you like to backup? thor

Backing up thor

Backup another server? (y/n) y

What server would you like to backup? loki

Backing up loki

Backup another server? (y/n) n

$

Sum All the Numbers in a given Column of a Text

$ awk '{ sum += $1 } END { print sum }' file

$ cat file | awk '{ sum += $1 } END { print sum }

Awk can be used to tally up a column of values. You can use this trick to add up all the
disk space used across all the file systems on a given system, for example.

$ df -mt ext4

Filesystem 1M-blocks Used Available Use% Mounted
on

/dev/mapper/vg_root-lv_root 28215 3285 24644 12% /

/dev/sda1 485 55 406 12% /boot

$ df -mt ext4 | awk '{ sum += $3 } END {print sum}'

3340

$ sudo dmidecode --type memory

 Size: No Module Installed

 Size: 4096 MB

 Size: No Module Installed

 Size: 4096 MB

$ sudo dmidecode --type memory | grep 'Size:' | awk '{sum+=$2} END
{print sum}'

8192

$

Automatically Answer Yes to Any Command

$ yes | command

$ yes "string" | command

If you are trying to automate a process that requires user input, check out the yes
command. By default yes simply prints out "y" until it is killed. You can make yes
repeat any string. If you wanted to automatically answer "no" you could run "yes no."

$./install-my-app.sh

Are you sure you want to install my-app? (y/n) y

Ok, my-app installed.

$ yes | ./install-my-app.sh

Ok, my-app installed.

$

System Administration

Display Mounted File Systems in a Tabular Format

$ mount | column -t

The output of the mount command is not formatted in an easy-to-read manner. To make
each column line up, pipe the output of the mount command to "column -t". By default
mount displays all mounted filesystems, even the pseudo-filesystems like /proc and /sys.
 To limit output to a filesystem type, use the -t option and provide a type.

$ mount -t ext4

/dev/mapper/sysvg-lv_root on / type ext4 (rw)

/dev/sda1 on /boot type ext4 (rw)

$ mount -t ext4 | column -t

/dev/mapper/sysvg-lv_root on / type ext4 (rw)

/dev/sda1 on /boot type ext4 (rw)

Kill All Processes for a given User or Program

$ pkill -9 command

$ pkill -9 -u user command

If you need to kill several processes with the same command, use the pkill command. If
you only want to kill processes for a given user, use the -u option. Pkill will only kill
the processes when all the criteria match. That means you can kill all of a given
process that is being run by a specific user.

$ ps -ef| grep http | grep -v grep

root 12253 1 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12255 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12256 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12257 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12258 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12259 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12260 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12261 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

apache 12262 12253 0 10:55 ? 00:00:00 /usr/sbin/httpd

$ sudo pkill -9 httpd

$ ps -ef| grep http | grep -v grep

$ ps -ef| grep ssh | grep -v grep

root 1202 1 0 Apr06 ? 00:00:00 /usr/sbin/sshd

root 12339 1202 0 11:22 ? 00:00:00 sshd: jason [priv]

jason 12342 12339 0 11:22 ? 00:00:00 sshd: jason@pts/0

root 12368 1202 1 11:23 ? 00:00:00 sshd: bob [priv]

bob 12372 12368 0 11:23 ? 00:00:00 sshd: bob@pts/1

$ sudo killall -u bob sshd

$ ps -ef| grep ssh | grep -v grep

root 1202 1 0 Apr06 ? 00:00:00 /usr/sbin/sshd

root 12339 1202 0 11:22 ? 00:00:00 sshd: jason [priv]

jason 12342 12339 0 11:22 ? 00:00:00 sshd: jason@pts/0

$

Repeat a Command until It Succeeds

$ while true

> do

> command && break

> done

The while loop will continue until the condition is false or it encounters a break. In his
case we effectively create an infinite loop and break once our chosen command
succeeds. If you want to keep pinging a host until it responds, you could use this while
loop.

$ while true
> do
> ping -c 1 -W 1 remote-host >/dev/null 2>&1 && break

> done ; echo "Remote-host is up at $(date)."

Remote-host is up at Fri Apr 11 21:30:29 EDT 2014.

$

If you're waiting for a file to show up on your server, you could use this while loop.

$ while true

> do

> ls /svr/ftp/incoming/payroll.txt.gpg 2>/dev/null && break

> done; echo "Payroll file arrived at $(date)."

Payroll file arrived at Fri Apr 11 21:33:23 EDT 2014.

Find Who Is Using the Most Disk Space

$ sudo du -s /home | sort -n

This command will display the person who is using the most disk space in their home
directory. The users will little disk space will be displayed at the top of your screen
and the users using the most disk space will be displayed at the bottom.

$ sudo du -s /home/* | sort -n

32 /home/pat

32 /home/terry

40 /home/jim

40 /home/jimbob

44 /home/oracle

19184 /home/adminuser

22208 /home/bob

65132 /home/jason

$

If you are looking for a more graphical way to display disk usage, check out the neat
utility ncdu.

$ ncdu /home

ncdu 1.10 ~ Use the arrow keys to navigate, press ? for help

--- /home -------------------------------

37.9GiB [##########] /ryan

 1.3MiB [] /lucas

Total disk usage: 37.9GiB Apparent size: 37.8GiB Items: 156055

Find the Files That Are Using the Most Disk Space

$ find / -type f -exec wc -c {} \; | sort -n

Use find to execute the "wc -c" command against each file, revealing it's size in bytes,
and then sort that output. The smallest files will be displayed first, and the largest files
will be displayed last. If you are scanning every file on a system, this command could
take awhile to complete.

$ sudo find /var -xdev -type f -exec wc -c {} \; | sort -n

0 /var/cache/apt/archives/lock

...

2572437 /var/lib/dpkg/available-old

2573098 /var/lib/dpkg/available

38433001 /var/cache/apt/pkgcache.bin

39872802 49659904 /var/cache/apt-xapian-index/index.1/termlist.DB

62783488 /var/cache/apt-xapian-index/index.1/postlist.DB

$

List Processes, Sorted by Memory Usage

$ ps aux | sort -nk 4

Use this command to find the processes that are consuming the most memory. The
processes using the least amount of memory will scroll off the top of your screen and the
ones consuming the most amount of memory will be just above your shell prompt.

In this example, mysqld is consuming 1.3% of the memory on this host.

$ ps aux| head -1

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

$ ps aux | sort -nk 4 | tail -5

root 2969 0.0 0.3 11856 3228 ? Ss 17:16 0:00 sshd: jason [priv]

root 4576 0.0 0.3 11364 3380 ? Ss 17:52 0:00 /usr/sbin/httpd

root 958 0.0 0.3 20844 4084 ? Ssl 00:00 0:00 NetworkManager

68 1003 0.0 0.4 17104 4268 ? Ssl 00:00 0:00 hald

mysql 4546 0.0 1.3 136332 13848 pts/0 Sl 17:52 0:01 /usr/libexec/mysqld

$

List Processes, Sorted by CPU Usage

$ ps aux | sort -nk 3

Use this command to find the processes that are consuming the most CPU. The
processes using the least amount of CPU will scroll off the top of your screen and the
ones consuming the most amount of CPU will be just above your shell prompt.

In this example, mysqld is consuming 94% of the CPU on this host.

$ ps aux| head -1

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

$ ps aux | sort -nk 4 | tail -5

root 2469 0.0 0.3 11856 3228 ? Ss 17:16 0:00 /usr/sbin/fcoemon

root 452 0.0 0.3 20844 4084 ? Ssl 00:00 0:00 master

root 5571 2.1 0.3 11364 3380 ? Ss 17:52 0:00 /usr/sbin/httpd

mysql 4447 94 12.8 2134672 1031064 ? Sl 10:52 27:39
/usr/libexec/mysqld

$

Quickly Tell If You Are on a 32 Bit or 64 Bit System

$ getconf LONG_BIT

If you're on a system and need to know if it's 32 or 64 bit, use getconf.

$ getconf LONG_BIT

32

$ ssh remote-host getconf LONG_BIT

64

Generate a Random Password

$ openssl rand -base64 48 | cut -c1-PASSWORD_LENGTH

$ gpw () { openssl rand -base64 48 | cut -c1-${1}; }

You can use the openssl command to generate a random password. If you find yourself
doing this often, you can create a function. Simply pass in how long you want the
password to be.

$ echo 'gpw () { openssl rand -base64 48 | cut -c1-${1}; }' >>
~/.bash_profile

$. ~/.bash_profile

$ gpw

t3eyxkXBHAzb3VdR7G8NV3fMvZpXLOvT+AQwgQnw9pLm/UaRNHcPBjKaQsr26i3k

$ gpw 6

uu1ZMb

$

Files and Directories

Quickly Make a Backup of a File

$ cp file{,.bak}

You can use brace expansion to quickly create a backup copy of a file. Brace expansion
allows you to create multiple command line arguments from a single argument. The
single argument is combined with all the strings that are given within the braces and
creates as many new arguments as brace strings. Values in the braces can either be
comma separated strings or a sequence expression. Examples of sequence expressions
include {1..5} and {a..z}.

$ sudo cp /etc/passwd{,.bak}

$ ls /etc/passwd*

/etc/passwd /etc/passwd.bak

$ mkdir -p ~/my-app/{bin,lib,log}

$ ls ~/my-app/

bin lib log

$ echo 10.0.0.{0..7}

10.0.0.0 10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4 10.0.0.5 10.0.0.6 10.0.0.7

Quickly Change a File's Extension

$ mv file{.old,.new}

To rename a file with a new extension employ brace expansion. This example changes
a ".txt" file to a ".doc" file.

$ ls report*

report.txt

$ mv report.{txt,doc}

$ ls report*

report.doc

$

Here's another example.

$ ls httpd*

httpd.cfg

$ mv httpd.{cfg,conf}

$ ls httpd*

httpd.conf

$

This command will add an extension to a file.

$ ls jazz*

jazz

$ mv jazz{,.mp3}

$ ls jazz*

jazz.mp3

$

Create Backups of Files by Date with Ease

$ alias d='date +%F'

By using the date format of YYYY-MM-DD for file or directory names, you make ls
output more human friendly. You can quickly tell the date order of the files when using
this format.

$ ls -1 file*

file.2013-04-08

file.2013-12-21

file.2014-04-08

$ ls -1 other-file.*

other-file.04-08-2013

other-file.04-08-2014

other-file.12-21-2013

Before making a change to a file I like to make a backup copy of it. I also like to know
when I made the backup. By creating an alias of "d" which is short for the date in
YYYY-MM-DD format, I can quickly create these types of backups.

$ echo "alias d='date +%F'" >> ~/.bash_profile

$ ~/.bash_profile

$ d

2014-04-08

$ sudo cp httpd.conf httpd.conf.`d`

$ sudo cp httpd.conf httpd.conf.$(d)

$ sudo cp httpd.conf !#.$(d)

$ sudo cp httpd.conf{,.$(d)}

$ ls -1 httpd.conf*

httpd.conf

httpd.conf.2014-04-08

Overwrite the Contents of a File

$ command > file

You can redirect output from one command to a file using the greater-than symbol. A
single greater-than symbol (>) redirects standard output to a file, overwriting
(truncating) any existing contents of the file. If no file exists, it creates one.

$ grep bash /etc/passwd > users-that-use-bash

$ cat users-that-use-bash

root:x:0:0:root:/root:/bin/bash

jason:x:501:501:Jason:/home/jason:/bin/bash

oracle:x:1006:1006::/home/oracle:/bin/bash

bob:x:1000:1000:Bob Smith:/home/bob:/bin/bash

$

Empty a File That Is Being Written To

$ > file

$ cat /dev/null > file

To quickly zero out a file you can redirect nothing to it. Why not just delete the file and
recreate it? If a process has a file open when you delete it, the process will keep the
file handle open and continue writing to that file. Only when the process closes the file
handle will the disk space used by that file be freed. If an application fills up /var and
you delete the open log file, /var will still be full. If you redirect nothing to the file, the
file is truncated and the application can continue writing to the file.

$ sudo -s

> /var/log/maillog

ls -l maillog

-rw-------. 1 root root 0 Apr 9 18:55 maillog

Append a String to a File

$ command >> file

The double greater than sign (>>) redirects standard output to a file and appends to any
existing contents. If no file exists, it creates one.

$ echo build new server >> todo.txt

$ cat todo.txt

build new server

$ echo add server to the load balancer >> todo.txt

$ cat todo.txt

build new server

add server to the load balancer

$

Follow a File as It Grows

$ tail -f file

For a file that is constantly being update like a log file, use tail -f to view the updates to
the file in real time.

$ tail -f /var/log/syslog

Apr 10 21:45:01 linwww1 CRON[31769]: (root) CMD (command -v
debian-sa1 > /dev/null && debian-sa1 1 1)

Apr 10 21:46:28 linwww1 whoopsie[1421]: online

Apr 10 21:47:37 whoopsie[1421]: last message repeated 2 times

Apr 10 21:55:01 linwww1 CRON[32548]: (root) CMD (command -v
debian-sa1 > /dev/null && debian-sa1 1 1)

Apr 10 22:05:01 linwww1 CRON[931]: (root) CMD (command -v
debian-sa1 > /dev/null && debian-sa1 1 1)

Apr 10 22:15:01 linwww1 CRON[2459]: (root) CMD (command -v
debian-sa1 > /dev/null && debian-sa1 1 1)

Apr 10 22:17:01 linwww1 CRON[2609]: (root) CMD (cd / && run-
parts --report /etc/cron.hourly)

Apr 10 22:25:01 linwww1 CRON[3197]: (root) CMD (command -v
debian-sa1 > /dev/null && debian-sa1 1 1)

Apr 10 22:35:01 linwww1 CRON[4036]: (root) CMD (command -v
debian-sa1 > /dev/null && debian-sa1 1 1)

Apr 10 22:35:33 linwww1 whoopsie[1421]: online

Watch Multiple Log Files at the Same Time

$ multitail file1 fileN
$ multitail file1 -I fileN

The multitail command allows you to browse through several files at once. Not only
does multitail allow you to watch multiple files, it supports color highlighting, filtering,
merging, and more. Here is a quick rundown of some of the most helpfuls commands
for multitail.

F1 - Help

a - Add another file to follow

d - Delete a file from the view

/ - Start a search (Find)

ctrl-g - Exit a command, menu, or action. Similar to the emacs ctrl-g key binding.

q - Quit

$ sudo multitail /var/log/syslog /var/log/kern.log

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> (eth0): IP6
addrconf timed out or failed.

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> Activation
(eth0) Stage 4 of 5 (IPv6 Configure Timeout) scheduled...

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> Activation
(eth0) Stage 4 of 5 (IPv6 Configure Timeout) started...

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> Activation
(eth0) Stage 4 of 5 (IPv6 Configure Timeout) complete.

00] /var/log/syslog *Press F1/<CTRL>+<h> for help*
 132KB -
2014/04/19 12:46:45

Apr 19 12:43:08 linuxsvr kernel: [10.012891] Console: switching to

colour frame buffer device 240x67

Apr 19 12:43:08 linuxsvr kernel: [10.012926] fb0: VESA VGA
frame buffer device

Apr 19 12:43:11 linuxsvr kernel: [12.288420] hda-intel: Invalid
position buffer, using LPIB read method instead.

Apr 19 12:43:17 linuxsvr kernel: [18.891011] hda-intel: IRQ timing
workaround is activated for card #0. Suggest a bigger bdl_pos_adj.

01] /var/log/kern.log *Press F1/<CTRL>+<h> for help*
 132KB -
2014/04/19 12:46:45

To merge multiple files into one window, use the "-I" option. This intermixes the output
of both of the files. This can aid in troubleshooting a problem.

$ sudo multitail /var/log/syslog -I /var/log/kern.log

Apr 19 12:43:08 linuxsvr kernel: [10.012891] Console: switching to
colour frame buffer device 240x67

Apr 19 12:43:08 linuxsvr kernel: [10.012926] fb0: VESA VGA
frame buffer device

Apr 19 12:43:11 linuxsvr kernel: [12.288420] hda-intel: Invalid
position buffer, using LPIB read method instead.

Apr 19 12:43:17 linuxsvr kernel: [18.891011] hda-intel: IRQ timing
workaround is activated for card #0. Suggest a bigger bdl_pos_adj.

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> Activation
(eth0) Stage 4 of 5 (IPv6 Configure Timeout) complete.

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> Activation
(eth0) Stage 4 of 5 (IPv6 Configure Timeout) scheduled...

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> Activation
(eth0) Stage 4 of 5 (IPv6 Configure Timeout) started...

Apr 19 12:43:29 linuxsvr NetworkManager[758]: <info> (eth0): IP6
addrconf timed out or failed.

00] /var/log/syslog *Press F1/<CTRL>+<h> for help*
 132KB - 2014/04/19 12:48:32

Delete Empty Directories

$ find . -type d -empty -delete

If you ever find yourself needing to clean up empty directories, find can make that task a
snap. Use the -type d option to find all the directories with the -empty option to only
include empty directories and finally the -delete option removes the directories.

$ mkdir -p testing/{1..4}

$ ls testing/

1 2 3 4

$ find . -type d -empty -delete

$ ls testing/

ls: cannot access testing/: No such file or directory

$

Print a List of Files That Contain a given String

$ grep -rl string .

To get a list of files that contain a given string, use grep with the -r (recursive) and -l
(list files that match) options.

$ sudo grep -lr jim /var/log

/var/log/audit/audit.log.1

/var/log/secure-20140406

/var/log/secure

$

An Easy-to-Read Recursive File Listing

$ find . -type f -ls

The ls command has a recursive option, but I find reading the output from the find
command to be easier to digest, especially for a large number of files and directories.
 The advantage to using find is that it displays the full path to each file, unlike ls.

$ ls -lR Music/

Music/:

total 4

drwxr-xr-x. 2 jason jason 4096 Feb 22 12:40 jazz

Music/jazz:

total 20932

-rw-r--r--. 1 jason jason 79496 Feb 22 12:40 giant-steps.mp3

-rw-r--r--. 1 jason jason 21267371 Feb 16 11:12 jazz-album-1.mp3

-rw-r--r--. 1 jason jason 79496 Feb 3 18:13 john-coletrane.mp3

$ find Music/ -type f -ls

397966 20772 -rw-r--r-- 1 jason jason 21267371 Feb 16 11:12
Music/jazz/jazz-album-1.mp3

396787 80 -rw-r--r-- 1 jason jason 79496 Feb 22 12:40
Music/jazz/giant-steps.mp3

132464 80 -rw-r--r-- 1 jason jason 79496 Feb 3 18:13
Music/jazz/john-coletrane.mp3

$

View Files and Directories in a Tree Format

$ tree

$ tree -d

$ tree -L number

The tree command displays files and directories in a tree like format. If you only want
to see the directory structure, use the -d option. To limit the depth of the tree, use the -L
option followed by a number.

$ tree Music/

Music/

└── jazz

 ├── giant-steps.mp3

 ├── jazz-album-1.mp3

 └── john-coletrane.mp3

1 directory, 3 files

$ tree -d Music/

Music/

└── jazz

1 directory

$ tree -d /var | head

/var

├── account

├── cache

│ ├── fontconfig

│ ├── gdm

│ │ ├── adminuser

│ │ └── jason

│ ├── hald

│ ├── ldconfig

│ ├── man

$ tree -dL 1 /var

/var

├── account

├── cache

├── crash

├── db

├── empty

├── ftp

├── games

├── gdm

├── lib

├── local

├── lock

├── log

├── mail -> spool/mail

├── nis

├── opt

├── preserve

├── run

├── spool

├── tmp

├── www

└── yp

$

Replace a String in Multiple Files

$ find /path -type f -exec sed -i.bak 's/string/replacement/g' {} \;

If you have some information that is embedded in multiple files and you need to change
it, use the find command in combination with sed. The -i option for sed tells it to
perform an in-place edit. You can supply an extension to -i to create a backup of the
file before the edits are made. The command passed to sed tells it to substitute
"replacement" for "string" globally. A global substitution will perform the replacement
everywhere. A normal substitution replaces only the first occurrence on a line.

In this example the server that houses software repositories is being replaced. With the
following one-liner, all occurrences of "thor" are replaced by "loki."

$ grep -r thor .

./deploy-il.sh:REPO_SERVER="thor.company.com"

./deploy-ca.sh:REPO_SERVER="thor.company.com"

./deploy-fl.sh:REPO_SERVER="thor.company.com"

./deploy-ny.sh:REPO_SERVER="thor.company.com"

$ find . -type f -exec sed -i.bak 's/thor/loki/g' {} \;

$ grep -r thor .

./deploy-fl.sh.bak:REPO_SERVER="thor.company.com"

./deploy-il.sh.bak:REPO_SERVER="thor.company.com"

./deploy-ny.sh.bak:REPO_SERVER="thor.company.com"

./deploy-ca.sh.bak:REPO_SERVER="thor.company.com"

$ grep -r loki .

./deploy-il.sh:REPO_SERVER="loki.company.com"

./deploy-ca.sh:REPO_SERVER="loki.company.com"

./deploy-fl.sh:REPO_SERVER="loki.company.com"

./deploy-ny.sh:REPO_SERVER="loki.company.com"

$

Extract the Nth Line from a File

$ awk 'NR==N'

To extract a specific line from a file, tell awk to print the line that matches the line
number. One area where this comes in helpful is when you encounter an error in a
script. To see exactly what the script is doing on that line, use awk.

$./deploy.sh

./deploy.sh: line 74: /usr/local/bin/patch: No such file or directory

$ awk 'NR==74' deploy.sh

/usr/local/bin/patch $NEW_HOST

$

Convert Text Files from Windows Format to Linux
Format and Vice-Versa

$ dos2unix

$ unix2dos

Sooner or later you're going to be sent a file or download one that uses a pair of CR
(carriage return) and LF (line feed) characters to terminate lines in the file. Those type
of files are Windows/DOS formatted. Unix-like operating systems simply use the LF
character to terminate a line. Sometimes this can cause issues. To convert the file to a
unix-like format, use dos2unix. To examine the line termination characters use "cat -A"
or the "file" command.

$ cat -A from-my-windows-buddy.pl

#!/usr/bin/perl̂ M$

print "This is a cross-platform perl script!\n"^M$

$./from-my-windows-buddy.pl

-bash: ./from-my-windows-buddy.pl: /usr/bin/perl̂ M: bad
interpreter: No such file or directory

$ dos2unix from-my-windows-buddy.pl

dos2unix: converting file from-my-windows-buddy.pl to UNIX format
...

$ cat -A from-my-windows-buddy.pl

#!/usr/bin/perl$

print "This is a cross-platform perl script!\n"$

$./from-my-windows-buddy.pl

This is a cross-platform perl script!

$ file other-file.txt

other-file.txt: ASCII text, with CRLF line terminators

$ dos2unix other-file.txt

dos2unix: converting file other-file.txt to UNIX format ...

$ file other-file.txt

other-file.txt: ASCII text

$

The opposite side of this coin is that if you send a file created on a Linux host to
someone who opens it in Notepad on Windows, they will see just one long line of text.
 Convert the file to Windows/DOS format with the unix2dos command.

$ file report-for-ceo.txt

report-for-ceo.txt: ASCII text

$ unix2dos report-for-ceo.txt

unix2dos: converting file report-for-ceo.txt to DOS format ...

$ file report-for-ceo.txt

report-for-ceo.txt: ASCII text, with CRLF line terminators

$

Miscellaneous

Change to the Previous Working Directory

$ cd -

If you want to return your previous working directory, use "cd -". The OLDPWD
environment variable holds the path of your most recent directory location. "cd -" is the
same as "cd $OLDPWD".

$ cd /etc/httpd/conf.d

$ grep ^SSLCert ssl.conf

SSLCertificateFile /etc/pki/tls/certs/localhost.crt

SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

$ cd /etc/pki/tls/certs/

$ ls

ca-bundle.crt ca-bundle.trust.crt localhost.crt make-dummy-cert
 Makefile renew-dummy-cert

$ cd -

/etc/httpd/conf.d

$

Reset Your Terminal Emulator Display

$ reset

Displaying binary files to your screen can cause your terminal to become unusable. To
attempt to recover, type "reset" and press enter. Your terminal may be in such a state
that you won't be able to see what you're typing, but you shell will still accept the input.

$ cat blue-train.mp3

F���A������h�reset

$

Search Wikipedia from the Command Line

$ dig +short txt <string>.wp.dg.cx

$ host -t txt <string>.wp.dg.cx

If you need to quickly look up some information on a subject, you can search wikipedia
using DNS. The name server returns wikipedia article summaries as TXT records.

$ dig +short txt linux.wp.dg.cx

"Linux is a Unix-like computer operating system assembled under the
model of free and open source software development and
distribution. The defining component of Linux is the Linux kernel, an
operating system kernel first released 5 October 1991 by Linus
Torvalds. http://en.wikipedia.org/wiki/Linux"

$ host -t txt bash_shell.wp.dg.cx

bash_shell.wp.dg.cx descriptive text "Bash is a Unix shell written by
Brian Fox for the GNU Project as a free software replacement for
the Bourne shell (sh).Bash is a command processor, typically run in a
text window, allowing the user to type commands which cause
actions. Bash can also read commands from a file, called a script. Like
all Unix shells, it supports filename wildcarding, piping, here
documents... http://en.wikipedia.org/wiki/Bash_(Unix_shell)"

You can create a small shell script to save yourself from typing the full DNS query each
time.

$ echo -e '#!/bin/bash\ndig +short txt ${1}.wp.dg.cx' > wikidig

$ chmod 755 !$

chmod 755 wikidig

$./wikidig ubuntu_operating_system

"Ubuntu As of 2012, according to online surveys, Ubuntu is the most
popular Linux distribution on desktop/laptop personal computers,
and most Ubuntu coverage focuses on its use in that market.
However, it is also popular on servers and for cloud computing.
 http://en.wikipedia.org/wiki/Ubuntu_(operating_system)"

Alternatively, you could create a function instead and add it to your dot files.

$ echo 'wikidig() { dig +short txt ${1}.wp.dg.cx; }' >> .bash_profile

$. ~/.bash_profile

$ wikidig jazz

"Jazz is a musical style that originated at the beginning of the 20th
century in black communities in the Southern United States. It was
born out of a mix of African and European music traditions. Its
African pedigree is evident in its use of blue notes, improvisation,
polyrhythms, syncopation and the swung note. From its early
development until the present day jazz has also...
http://en.wikipedia.org/wiki/Jazz"

Make Non-Interactive Shell Sessions Behave the Same as
Interactive Sessions

Make any customizations in ~/.bashrc. The contents of ~/.bash_profile:

if [-f ~/.bashrc]; then

source ~/.bashrc

fi

The shell behaves in slightly different ways when you log on interactively versus when
you just connect to run a single command. The contents of .profile or .bash_profile are
only executed for interactive sessions. If you are not aware of this subtle difference it
may leave you scratching your head as to why something works perfectly when you log
in and execute a command versus when you just ssh in to run that same command. You
can save yourself some hassle by making your interactive and non-interactive sessions
behave the same. To do this, configure .bash_profile to reference .bashrc and put all of
your configuration in .bashrc.

Here is an example to better illustrate the difference between interactive and non-
interactive shells. For example, if you define an alias for ll in ~/.bash_profile it will
work during an interactive session but it will not be available during a non-interactive
session.

Interactive:

mac:~ jason $ ssh linuxserver

jason@linuxserver:~$ uptime

 11:49:16 up 97 days, 2:59, 5 users, load average: 0.15, 0.25, 0.31

jason@linuxserver:~$ ll

-rw-r--r-- 1 jason jason 221 Nov 13 11:30 file.txt

jason@linuxserver:~$ exit

logout

Connection to 10.0.1.9 closed.

mac:~ jason $

Non interactive:

mac:~ jason$ ssh linuxserver uptime

 11:49:16 up 97 days, 2:59, 5 users, load average: 0.15, 0.25, 0.31

mac:~ jason$ ssh linuxserver ll

bash: ll: command not found

mac:~ jason$

$ cat .bash_profile

Put our settings in .bashrc so we have the same environment for
login and non-login shells.

if [-f ~/.bashrc]; then

 source ~/.bashrc

fi

$ cat .bashrc

alias ll='ls -l'

HISTFILESIZE=5000

export HISTFILESIZE

Make Your Computer to Talk to You

$ espeak -f file

$ echo text | espeak

Espeak converts text to speech. You can provide espeak a file or pipe in text for it to
speak. If you have a long running task you can let your computer tell you when it's
finished as in this example.

$ for VIDEO in $(ls *.mp4 | sed 's/.mp4//')

> do

> avconv -v quiet -i $x.mp4 $x.mp3

>done ; echo "File conversions complete." | espeak

Display the Current Date and Time in a Different Time
Zone

$ TZ=<TIMEZONE> date

The TZ environment variable specifies the time zone. If you want to know the time in a
given time zone, prepend the environment variable and time zone to the date command.

$ TZ=America/Los_Angeles date

Sun Apr 6 19:37:46 PDT 2014

$ TZ=MST date

Sun Apr 6 19:37:48 MST 2014

$ TZ=CST date

Mon Apr 7 02:37:50 CST 2014

$ TZ=UTC date

Mon Apr 7 02:37:53 UTC 2014

It's a common practice to use UTC as the time zone on servers. If your workstation or
laptop is set to a different time zone, you can create an alias that quickly gives you the
time in UTC.

$ alias utc='TZ=UTC date'

$ utc

Mon Apr 7 02:35:01 UTC 2014

Display a Calendar at the Command Line

$ cal

$ cal MM YYYY

$ cal YYYY

To display an calendar at the command line use the cal command. Use the -3 option to
display the previous, current, and next month. If you want to see the calendar for an
specific month use MM YYYY or for an entire year use YYYY.

$ cal

 April 2014

Su Mo Tu We Th Fr Sa

 1 2 3 4 5

 6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30

$ 10 2014

 October 2014

Su Mo Tu We Th Fr Sa

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

Extract a Tar Archive to a Different Directory

$ tar tarfile.tar -C /path/to/extraction/directory

Instead of changing directories and untarring a file, you can use the -C option.

$ tar xf projectfiles.tar -C /usr/local/myproject

This is equivalent to these two commands.

$ cd /usr/local/myproject

$ tar xf ~/projectfiles.tar

Transform the Directory Structure of a Tar File When
Extracting It

$ tar xf tarfile.tar --strip-components=NUMBER

If you want to extract a tar file starting at a subdirectory, use the --strip-components
option. For example, if you download a release from github.com the name and version
of the project is the top directory in the tar file. To extract the files below that directory
use --strip-components=1.

$ curl -sLO https://github.com/twbs/bootstrap/archive/v3.1.1.tar.gz

$ tar ztvf v3.1.1.tar.gz | head -1

drwxrwxr-x root/root 0 2014-02-13 12:24 bootstrap-3.1.

$ tar zxvf v3.1.1.tar.gz --strip-components=1 -C ~/bootstrap-latest

$ ls -1 ~/bootstrap-latest

bower.json

CNAME

composer.json

_config.yml

CONTRIBUTING.md

dist

docs

fonts

grunt

Gruntfile.js

js

less

LICENSE

package.json

README.md

test-infra

Use a Spreadsheet from the Command Line

$ sc

If you're the kind of person that tries to do absolutely everything at the command line,
then you'll like the spreadsheet calculator, SC. Also, if you're comfortable with vi, then
sc will come naturally to you. In addition to using the arrow keys for navigation you
can use the familiar h, j, k, and l keys. Like vi, g represents go. To go the cell D4 type
gD4.

To enter a number or a formula navigate to the cell you want to edit and use = followed
by the number or formula. To enter left justified text use the less-than sign (<) and the
greater-than sign (>) for right justified text. To edit a cell type e. To save a file, press
P followed by a filename. For quick help type ? and to quit, type q. For more
information check out the tutorial that ships with SC.

$ sc

A2 (10 2 0) [@sum(A0:A1)]

 A B C

 0 1.00

 1 3.00

 2 4.00

$ sc /usr/share/doc/sc/tutorial.sc

Rudimentary Command Line Stopwatch

$ time read

This command will stop when you press enter and display how much time elapsed. The
real row contains the elapsed time.

$ time read

real 0m8.047s

user 0m0.000s

sys 0m0.000s

$

Repeat a Command at Regular Intervals and Watch Its
Changing Output

$ watch command

If you want to monitor the output of a command, use watch. Watch will execute a
command periodically and display its output. You can control the interval that the
command is repeated by supplying a number of seconds to the -n option. This is great
tool to watch processes, disk usage, number of logged in users, queue depths, etc.

$ sudo /usr/local/bin/compress-log-files &

[1] 15650

$ watch df -h /var

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vg_livecd-lv_root 28G 3.7G 24G 14% /

...

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vg_livecd-lv_root 28G 3.3G 25G 12% /

$ watch -n 1 "ps -ef| grep httpd | grep -v grep | wc -l"

9

…

14

…

29

…

27

$

Execute a Command at a given Time

$ echo "command" | at time

$ at -f file time

If you ever need to reboot a server at midnight, but don't feel like staying up that late,
schedule it with the at command. Actually you can schedule any command or set of
commands that you need to run once at a given time with at. To list your at jobs use atq.
 Here's the reboot example.

$ sudo -s

echo 'reboot' | at midnight

atq

1 2014-04-13 00:00 a root

exit

$ exit

You can provide at with a series of commands in a file by using the -f option. For
example, you could send your boss a report at 5:00 PM on Friday and leave early to
play a round of golf. If your conscience gets the better of you, you can delete your at job
with atrm.

$ at -f email-tps-report-to-boss 5:00pm friday

job 2 at 2014-04-18 17:00

$ atrm 2

$ atq

$

Share Your Screen Session with Another User

$ screen -x user/session

In order to use multi user support for screen, the screen executable needs to be setuid
for root.

$ sudo chmod u+s /usr/bin/screen

One user must start a screen session. It can be helpful to name your screen sessions
with the -S option. To enable multi user session, type ctrl-a followed by ":multiuser
on<enter>". To allow someone to connect to your session type ctrl-a followed by
":acladd username". To disconnect the other user from the screen session type ctrl-a
followed by ":acldel username".

[jason@linuxsvr ~]$ screen -S for-bob

ctrl-a :multiuser on

Multiuser mode enabled

ctrl-a :acladd bob

When the other use is ready to connect to the screen session, they type screen -x
followed by the session identifier. They can connect by PID or by name. IE, screen -x
1234 or screen -x session-name. When they are ready to disconnect, they can leave the
screen session like any other by typing ctrl-a d. While the session is shared both parties
not only can they see the same screen, but they both provide input by typing.

bob@linuxsvr:~$ screen -ls jason/

There is a suitable screen on:

 5428.for-bob (Multi, attached)

1 Socket in /var/run/screen/S-jason.

bob@linuxsvr:~$ screen -x jason/for-bob

[jason@linuxsvr ~]$

ctrl-a d

[detached]

bob@linuxsvr:~$

Execute an Unaliased Version of an Aliased Command

$ \aliased-command

Use the escape character to ignore an alias for a command. For example, if "ls" is
aliased to "ls -F", use "\ls" to execute "ls" without the "-F" option. The "-F" option to ls
appends a file type indicator. In the case of directories that indicator is a forward slash
(/).

$ alias ls

alias ls='ls -F'

$ ls

Desktop/ Documents/ Downloads/ examples.desktop

$ \ls

Desktop Documents Downloads examples.desktop

$

Save the Output of a Command as an Image

$ command | convert label:@- image.png

To capture the output of a command in an image file, use the convert command from the
ImageMagick software suite. If you want to email a password to someone, but don't
want it travel around the Internet in plain text, put it in an image. When supplying the at
sign (@) to label it tells convert to read input from the file following the at sign. The
dash says the "file" is coming from standard input. If you want to create a simple image
with some text you can supply a string to label.

$ echo "bob:changeme" | sudo chpasswd

$ echo "bob:changeme" | convert label:@- password.png

$ convert label:"bob:changeme" same-thing-different-way.png

$ echo "Here's your password. Again." | mail -a passwd.png -s
'Password reset' bob@mycompany.com

$

About the Author
Jason Cannon started his career as a Unix and Linux System Engineer in 1999. Since
that time he has utilized his Linux skills at companies such as Xerox, UPS, Hewlett-
Packard, and Amazon.com. Additionally, he has acted as a technical consultant and
independent contractor for small to medium businesses.

Jason has professional experience with CentOS, RedHat Enterprise Linux, SUSE Linux
Enterprise Server, and Ubuntu. He has used several Linux distributions on personal
projects including Debian, Slackware, CrunchBang, and others. In addition to Linux,
Jason has experience supporting proprietary Unix operating systems including AIX, HP-
UX, and Solaris.

He enjoys teaching others how to use and exploit the power of the Linux operating
system and teaches online video training courses at
http://www.LinuxTrainingAcademy.com. Jason can be reached via email at
jacannon@gmail.com.

http://www.linuxtrainingacademy.com/?utm_source=command-line-kung-fu-ebook&utm_medium=ebook&utm_campaign=command-line-kung-fu-ebook
mailto:jacannon@gmail.com

Other Books by the Author

Linux for Beginners: An Introduction to the Linux Operating System and Command Line

The Linux Screenshot Tour Book: An Illustrated Guide to the Most Popular Linux
Distributions

Python Programming for Beginners: An Introduction to the Python Computer Language
and Computer Programming

http://www.amazon.com/gp/product/B00HNC1AXY/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HNC1AXY&linkCode=as2&tag=jasoncame-20
http://www.amazon.com/gp/product/B00HQY3JG0/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00HQY3JG0&linkCode=as2&tag=jasoncame-20
http://www.amazon.com/gp/product/B00N4IQRD4/ref=as_li_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00N4IQRD4&linkCode=as2&tag=facebook069c-20&linkId=RYWXHWHOZGAMCEUV

Additional Resources Including
Exclusive Discounts for Command Line
Kung Fu Readers

Books

Command Line Kung Fu
http://www.linuxtrainingacademy.com/command-line-kung-fu-book

Do you think you have to lock yourself in a basement reading cryptic man pages for
months on end in order to have ninja like command line skills? In reality, if you had
someone share their most powerful command line tips, tricks, and patterns you’d save
yourself a lot of time and frustration. This book does just that.

Python Programming for Beginners

http://www.linuxtrainingacademy.com/python-programming-for-beginners

If you are interested in learning how to program, or Python specifically, this book is for
you. In it you will learn how to install Python, which version to choose, how to prepare
your computer for a great experience, and all the computer programming basics you’ll
need to know to start writing fully functional programs.

Scrum Essentials

http://www.linuxtrainingacademy.com/scrum-book

This book will provide every team member, manager, and executive with a common
understanding of Scrum, a shared vocabulary they can use in applying it, and practical
knowledge for deriving maximum value from it. After reading Scrum Essentials you
will know about scrum roles, sprints, scrum artifacts, and much more.

http://www.linuxtrainingacademy.com/command-line-kung-fu-book
http://www.linuxtrainingacademy.com/python-programming-for-beginners
http://www.linuxtrainingacademy.com/scrum-book

Courses

Linux for Beginners

http://www.linuxtrainingacademy.com/lfb-udemy

This is the online video training course based on the Linux for Beginners book. This
course includes explanations as well as real-world examples on actual Linux systems.

Learn Linux in 5 Days

http://www.linuxtrainingacademy.com/linux-in-5-days

Take just 45 minutes a day for the next 5 days and I will teach you exactly what you
need to know about the Linux operating system. You’ll learn the most important
concepts and commands, and I’ll even guide you step-by-step through several practical
and real-world examples.

Linux Alternatives to Windows Applications

http://www.linuxtrainingacademy.com/linux-alternatives

If you ever wanted to try Linux, but were afraid you wouldn’t be able to use your
favorite software, programs, or applications, take this course.

LPI Level 1 / Exam 101 Training

http://www.linuxtrainingacademy.com/lpi-course-1

This course provides interactive step-by-step videos that will help you prepare for the
LPIC-1 101 Exam. This exam is important to help you prepare for the Linux+ and LPIC
level 1 certification and this course provides all the materials you need to pass the
exam.

LPI Level 1 / Exam 102 Training

http://www.linuxtrainingacademy.com/lpi-course-2

This course provides interactive, step-by-step videos that will help you prepare for the
LPIC-1 102 Exam. This exam is important to help you prepare for the Linux+ and LPIC
level 1 certification and this course provides all the materials you need to pass the
exam.

Python for Beginners

http://www.linuxtrainingacademy.com/python-video-course

This comprehensive course covers the basics of Python as well as the more advanced
aspects such as debugging and handling files. Enroll in this course to gain access to all

http://www.linuxtrainingacademy.com/lfb-udemy
http://www.linuxtrainingacademy.com/linux-in-5-days
http://www.linuxtrainingacademy.com/linux-alternatives
http://www.linuxtrainingacademy.com/lpi-course-1
http://www.linuxtrainingacademy.com/lpi-course-2
http://www.linuxtrainingacademy.com/python-video-course

13 chapters of this Python for Beginners course as well as labs and code files.

Cloud Hosting and VPS (Virtual Private Servers)

Digital Ocean

http://www.linuxtrainingacademy.com/digitalocean

Simple cloud hosting, built for developers. Deploy an SSD cloud server in just 55
seconds. You can have your own server for as little as $5 a month.

http://www.linuxtrainingacademy.com/digitalocean

Web Hosting with SSH and Shell Access

Bluehost

http://www.linuxtrainingacademy.com/bluehost

99% of my websites are hosted on Bluehost. Why? Because it's incredibly easy to use
with 1-click automatic WordPress installation and excellent customer service â€“ via
phone and via chat. I HIGHLY RECOMMEND using Bluehost for your first site. Also,
you can use the same hosting account for multiple domains if you plan on creating more
websites. Visit http://www.linuxtrainingacademy.com/bluehost to get a special
discount off the regular price!

HostGator

http://www.linuxtrainingacademy.com/hostgator

If you want an alternative to Bluehost, check out HostGator. It comes with a 99.9%
uptime guarantee and includes a free site builder. They provide customer support 24
hours a day, seven days a week and even provide a 45 day money-back guarantee.

http://www.linuxtrainingacademy.com/bluehost
http://www.linuxtrainingacademy.com/hostgator

Index

alias

Create Backups of Files by Date with Ease

Display the Current Date and Time in a Different Time Zone

Display Output in a Table

Execute an Unaliased Version of an Aliased Command

Fix Common Typos with Aliases

at

Execute a Command at a given Time

atrm

Execute a Command at a given Time

atq

Execute a Command at a given Time

avconv

Make Your Computer to Talk to You

Reuse the Nth Word from a Previous Command

awk

Command Substitution

Count the Number of Occurrences of a String

Display a Block of Text between Two Strings

Extract the Nth Line from a File

Find out Which Commands You Use Most Often

Grab the Last Word on a Line of Output

Read in Input One Line at a Time

Store Command Line Output as a Variable to Use Later

Sum All the Numbers in a given Column of a Text

adduser

Run the Last Command as Root

bluefish

Mount a Directory from a Remote Server on Your Local Host via SSH

break

Accept User Input and Store It in a Variable

Repeat a Command until It Succeeds

cal

Display a Calendar at the Command Line

cat

Append a String to a File

Count the Number of Occurrences of a String

Command Substitution

Compare the Differences between a Remote and Local File

Convert Text Files from Windows Format to Linux Format and Vice-Versa

Create a Text File from the Command Line without Using an Editor

Delete a Block of Text between Two Strings

Empty a File That Is Being Written To

Grab the Last Word on a Line of Output

Make Non-Interactive Shell Sessions Behave the Same as Interactive Sessions

Overwrite the Contents of a File

Remove a Character or set of Characters from a String or Line of Output

Run a Command Immune to Hangups, Allowing the Job to Run after You Disconnect

Save a Copy of Your Command Line Session

Sum All the Numbers in a given Column of a Text

Use a Different SSH Key for a given Remote Host

cd

Change to the Previous Working Directory

Extract a Tar Archive to a Different Directory

Save a Copy of Your Command Line Session

chmod

Search Wikipedia from the Command Line

Share Your Screen Session with Another User

cp

Command Substitution

Quickly Make a Backup of a File

column

Grab the Last Word on a Line of Output

Display Mounted File Systems in a Tabular Format

Display Output in a Table

convert

Save the Output of a Command as an Image

cut

Count the Number of Occurrences of a String

Remove a Character or set of Characters from a String or Line of Output

Store Command Line Output as a Variable to Use Later

curl

Download a Webpage, HTTP Data, or Use a Web API from the Command Line

Get Your Public IP from the Command Line Using Curl

Transform the Directory Structure of a Tar File When Extracting It

date

Command Substitution

Display the Current Date and Time in a Different Time Zone

df

Read in Input One Line at a Time

Repeat a Command at Regular Intervals and Watch Its Changing Output

Sort the Body of Output While Leaving the Header on the First Line Intact

Sum All the Numbers in a given Column of a Text

diff

Compare the Differences between a Remote and Local File

dig

Search Wikipedia from the Command Line

dmidecode

Display a Block of Text between Two Strings

Sum All the Numbers in a given Column of a Text

dos2unix

Convert Text Files from Windows Format to Linux Format and Vice-Versa

dpkg

Download a Webpage, HTTP Data, or Use a Web API from the Command Line

du

Find Who Is Using the Most Disk Space

Reuse the Last Word (Last Argument) from the Previous Command

echo

Accept User Input and Store It in a Variable

Append a String to a File

Append Text to a File Using Sudo

Change the Case of a String

Command Substitution

Create Backups of Files by Date with Ease

Display Output in a Table

Display Your Command Search Path in a Human Readable Format

Execute a Command at a given Time

Generate a Random Password

Make Your Computer to Talk to You

Read in Input One Line at a Time

Repeat a Command until It Succeeds

Save the Output of a Command as an Image

Search Wikipedia from the Command Line

Send an Email Attachment from the Command Line

Send Email from the Command Line

Store Command Line Output as a Variable to Use Later

espeak

Make Your Computer to Talk to You

event designator

Reference a Word of the Current Command and Reuse It

Repeat the Last Command That Started with a given String

Repeat the Previous Command While Substituting a String

Reuse the Last Word (Last Argument) from the Previous Command

Reuse the Nth Word from a Previous Command

Reuse the Second Word (First Argument) from the Previous Command

Run the Last Command as Root

exit

Configure SSH to Append Domain Names to Host Names Based on a Pattern

Disconnect from a Remote Session and Reconnect at a Later Time, Picking up Where
You Left Off

Execute a Command at a given Time

Make Non-Interactive Shell Sessions Behave the Same as Interactive Sessions

Run a Command Immune to Hangups, Allowing the Job to Run after You Disconnect

Save a Copy of Your Command Line Session

file

Convert Text Files from Windows Format to Linux Format and Vice-Versa

find

An Easy-to-Read Recursive File Listing

Delete Empty Directories

Find the Files That Are Using the Most Disk Space

Replace a String in Multiple Files

for

Command Substitution

Store Command Line Output as a Variable to Use Later

Use a for Loop at the Command Line

firefox

Create an SSH Tunnel to Access Remote Resources

Encrypt Your Web Browsing Data with an SSH SOCKS Proxy

fusermount

Mount a Directory from a Remote Server on Your Local Host via SSH

getconf

Quickly Tell If You Are on a 32 Bit or 64 Bit System

grep

Change to the Previous Working Directory

Command Substitution

Download a Webpage, HTTP Data, or Use a Web API from the Command Line

Fix Common Typos with Aliases

Kill All Processes for a given User or Program

Overwrite the Contents of a File

Preserve Color When Piping to Grep

Print a List of Files That Contain a given String

Read in Input One Line at a Time

Repeat a Command at Regular Intervals and Watch Its Changing Output

Repeat the Previous Command While Substituting a String

Replace a String in Multiple Files

Store Command Line Output as a Variable to Use Later

Strip out Comments and Blank Lines

View Colorized Output with Less

head

Find out Which Commands You Use Most Often

List Processes, Sorted by CPU Usage

List Processes, Sorted by Memory Usage

Read in Input One Line at a Time

Sort the Body of Output While Leaving the Header on the First Line Intact

Strip out Comments and Blank Lines

Transform the Directory Structure of a Tar File When Extracting It

history

Clear Your Shell History

Find out Which Commands You Use Most Often

host

Reuse the Second Word (First Argument) from the Previous Command

Search Wikipedia from the Command Line

hostname

Configure SSH to Append Domain Names to Host Names Based on a Pattern

SSH into a Remote System without a Password

id

Run the Last Command as Root

Store Command Line Output as a Variable to Use Later

kill

Command Substitution

killall

Kill All Processes for a given User or Program

less

Preserve Color When Piping to Grep

View Colorized Output with Less

logger

Use a for Loop at the Command Line

ls

An Easy-to-Read Recursive File Listing

Change to the Previous Working Directory

Command Substitution

Delete Empty Directories

Empty a File That Is Being Written To

Execute an Unaliased Version of an Aliased Command

Make Non-Interactive Shell Sessions Behave the Same as Interactive Sessions

Quickly Change a File's Extension

Quickly Make a Backup of a File

Repeat a Command until It Succeeds

Transform the Directory Structure of a Tar File When Extracting It

lsof

Show Open Network Connections

mail

Send an Email Attachment from the Command Line

Send Email from the Command Line

mkdir

Delete Empty Directories

Mount a Directory from a Remote Server on Your Local Host via SSH

Quickly Make a Backup of a File

Save the Output of a Command as an Image

mount

Display Mounted File Systems in a Tabular Format

Display Output in a Table

multitail

Watch Multiple Log Files at the Same Time

mv

Quickly Change a File's Extension

Reference a Word of the Current Command and Reuse It

Reuse the Nth Word from a Previous Command

mysql

Create an SSH Tunnel to Access Remote Resources

ncdu

Find Who Is Using the Most Disk Space

netstat

Find out Which Programs Are Listening on Which Ports

nohup

Run a Command Immune to Hangups, Allowing the Job to Run after You Disconnect

openssl

Generate a Random Password

passwd

Store Command Line Output as a Variable to Use Later

Use a for Loop at the Command Line

ping

Repeat a Command until It Succeeds

Reuse the Second Word (First Argument) from the Previous Command

pkill

Kill All Processes for a given User or Program

ps

Command Substitution

Kill All Processes for a given User or Program

List Processes, Sorted by CPU Usage

List Processes, Sorted by Memory Usage

Repeat the Last Command That Started with a given String

Sort the Body of Output While Leaving the Header on the First Line Intact

python

Serve Files in the Current Directory via a Web Interface

read

Accept User Input and Store It in a Variable

Read in Input One Line at a Time

Rudimentary Command Line Stopwatch

reboot

Execute a Command at a given Time

reset

Reset Your Terminal Emulator Display

rm

Reuse the Last Word (Last Argument) from the Previous Command

sed

Delete a Block of Text between Two Strings

Make Your Computer to Talk to You

Replace a String in Multiple Files

sc

Use a Spreadsheet from the Command Line

screen

Disconnect from a Remote Session and Reconnect at a Later Time, Picking up Where
You Left Off

Share Your Screen Session with Another User

script

Save a Copy of Your Command Line Session

sort

Count the Number of Occurrences of a String

Find out Which Commands You Use Most Often

Find the Files That Are Using the Most Disk Space

Find Who Is Using the Most Disk Space

Grab the Last Word on a Line of Output

List Processes, Sorted by CPU Usage

List Processes, Sorted by Memory Usage

Sort the Body of Output While Leaving the Header on the First Line Intact

ssh

Avoid Having to Type Your Username When Connecting via SSH

Configure SSH to Append Domain Names to Host Names Based on a Pattern

Compare the Differences between a Remote and Local File

Create an SSH Tunnel to Access Remote Resources

Disconnect from a Remote Session and Reconnect at a Later Time, Picking up Where
You Left Off

Encrypt Your Web Browsing Data with an SSH SOCKS Proxy

List Processes, Sorted by Memory Usage

Make Non-Interactive Shell Sessions Behave the Same as Interactive Sessions

Run a Command Immune to Hangups, Allowing the Job to Run after You Disconnect

Quickly Tell If You Are on a 32 Bit or 64 Bit System

Simplify Multi-Hop SSH Connections and Transparently Proxy SSH Connections

SSH into a Remote System without a Password

Use a Different SSH Key for a given Remote Host

ssh-copy-id

SSH into a Remote System without a Password

ssh-keygen

SSH into a Remote System without a Password

sshfs

Mount a Directory from a Remote Server on Your Local Host via SSH

su

Run the Last Command as Root

sudo

Append Text to a File Using Sudo

Change the Case of a String

Display a Block of Text between Two Strings

Download a Webpage, HTTP Data, or Use a Web API from the Command Line

Empty a File That Is Being Written To

Execute a Command at a given Time

Find out Which Programs Are Listening on Which Ports

Find the Files That Are Using the Most Disk Space

Find Who Is Using the Most Disk Space

Kill All Processes for a given User or Program

Print a List of Files That Contain a given String

Quickly Make a Backup of a File

Repeat a Command at Regular Intervals and Watch Its Changing Output

Repeat the Last Command That Started with a given String

Run the Last Command as Root

Save a Copy of Your Command Line Session

Save the Output of a Command as an Image

Serve Files in the Current Directory via a Web Interface

Share Your Screen Session with Another User

Store Command Line Output as a Variable to Use Later

Use a for Loop at the Command Line

Watch Multiple Log Files at the Same Time

tail

Change the Case of a String

Count the Number of Occurrences of a String

Follow a File as It Grows

Use a for Loop at the Command Line

tar

Extract a Tar Archive to a Different Directory

Transform the Directory Structure of a Tar File When Extracting It

tee

Append Text to a File Using Sudo

Change the Case of a String

tree

View Files and Directories in a Tree Format

time

Rudimentary Command Line Stopwatch

tr

Change the Case of a String

Display Your Command Search Path in a Human Readable Format

Read in Input One Line at a Time

Remove a Character or set of Characters from a String or Line of Output

uname

Simplify Multi-Hop SSH Connections and Transparently Proxy SSH Connections

uniq

Count the Number of Occurrences of a String

Find out Which Commands You Use Most Often

userdel

Run the Last Command as Root

vim

Use Vim to Edit Files over the Network

w

Repeat the Last Command That Started with a given String

wc

Repeat a Command at Regular Intervals and Watch Its Changing Output

watch

Repeat a Command at Regular Intervals and Watch Its Changing Output

wget

Download a Webpage, HTTP Data, or Use a Web API from the Command Line

while

Accept User Input and Store It in a Variable

Read in Input One Line at a Time

Repeat a Command until It Succeeds

who

Repeat the Last Command That Started with a given String

whoami

Avoid Having to Type Your Username When Connecting via SSH

Run the Last Command as Root

uptime

Make Non-Interactive Shell Sessions Behave the Same as Interactive Sessions

Run the Last Command as Root

unzip

Reuse the Last Word (Last Argument) from the Previous Command

unix2dos

Convert Text Files from Windows Format to Linux Format and Vice-Versa

yes

Automatically Answer Yes to Any Command

Appendix
Trademarks

Firefox is a registered trademark of the Mozilla Foundation.

ImageMagick is a registered trademark of ImageMagick Studio LLC.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Open Source is a registered certification mark of Open Source Initiative.

Sun and Oracle Solaris are trademarks or registered trademarks of Oracle Corporatoin
and/or its affiliates in the United States and other countries.

UNIX is a registered trademark of The Open Group.

Windows is a registered trademark of Microsoft Corporation in the United States and
other countries.

All other product names mentioned herein are the trademarks of their respective
owners.

	Command Line Kung Fu
	Your Free Gift
	Introduction
	Shell History
	Run the Last Command as Root
	Repeat the Last Command That Started with a given String
	Reuse the Second Word �⠀䘀椀爀猀琀 䄀爀最甀洀攀渀琀) from the Previous Command
	Reuse the Last Word �⠀䰀愀猀琀 䄀爀最甀洀攀渀琀) from the Previous Command
	Reuse the Nth Word from a Previous Command
	Repeat the Previous Command While Substituting a String
	Reference a Word of the Current Command and Reuse It
	Save a Copy of Your Command Line Session
	Find out Which Commands You Use Most Often
	Clear Your Shell History

	Text Processing and Manipulation
	Strip out Comments and Blank Lines
	Use Vim to Edit Files over the Network
	Display Output in a Table
	Grab the Last Word on a Line of Output
	View Colorized Output with Less
	Preserve Color When Piping to Grep
	Append Text to a File Using Sudo
	Change the Case of a String
	Display Your Command Search Path in a Human Readable Format
	Create a Text File from the Command Line without Using an Editor
	Display a Block of Text between Two Strings
	Delete a Block of Text between Two Strings
	Fix Common Typos with Aliases
	Sort the Body of Output While Leaving the Header on the First Line Intact
	Remove a Character or set of Characters from a String or Line of Output
	Count the Number of Occurrences of a String

	Networking and SSH
	Serve Files in the Current Directory via a Web Interface
	Mount a Directory from a Remote Server on Your Local Host via SSH
	Get Your Public IP from the Command Line Using Curl
	SSH into a Remote System without a Password
	Show Open Network Connections
	Compare the Differences between a Remote and Local File
	Send Email from the Command Line
	Send an Email Attachment from the Command Line
	Create an SSH Tunnel to Access Remote Resources
	Find out Which Programs Are Listening on Which Ports
	Use a Different SSH Key for a given Remote Host
	Avoid Having to Type Your Username When Connecting via SSH
	Simplify Multi-Hop SSH Connections and Transparently Proxy SSH Connections
	Disconnect from a Remote Session and Reconnect at a Later Time, Picking up Where You Left Off
	Configure SSH to Append Domain Names to Host Names Based on a Pattern
	Run a Command Immune to Hangups, Allowing the Job to Run after You Disconnect
	Encrypt Your Web Browsing Data with an SSH SOCKS Proxy
	Download a Webpage, HTTP Data, or Use a Web API from the Command Line
	Use Vim to Edit Files over the Network

	Shell Scripting
	Use a for Loop at the Command Line
	Command Substitution
	Store Command Line Output as a Variable to Use Later
	Read in Input One Line at a Time
	Accept User Input and Store It in a Variable
	Sum All the Numbers in a given Column of a Text
	Automatically Answer Yes to Any Command

	System Administration
	Display Mounted File Systems in a Tabular Format
	Kill All Processes for a given User or Program
	Repeat a Command until It Succeeds
	Find Who Is Using the Most Disk Space
	Find the Files That Are Using the Most Disk Space
	List Processes, Sorted by Memory Usage
	List Processes, Sorted by CPU Usage
	Quickly Tell If You Are on a 32 Bit or 64 Bit System
	Generate a Random Password

	Files and Directories
	Quickly Make a Backup of a File
	Quickly Change a File's Extension
	Create Backups of Files by Date with Ease
	Overwrite the Contents of a File
	Empty a File That Is Being Written To
	Append a String to a File
	Follow a File as It Grows
	Watch Multiple Log Files at the Same Time
	Delete Empty Directories
	Print a List of Files That Contain a given String
	An Easy-to-Read Recursive File Listing
	View Files and Directories in a Tree Format
	Replace a String in Multiple Files
	Extract the Nth Line from a File
	Convert Text Files from Windows Format to Linux Format and Vice-Versa

	Miscellaneous
	Change to the Previous Working Directory
	Reset Your Terminal Emulator Display
	Search Wikipedia from the Command Line
	Make Non-Interactive Shell Sessions Behave the Same as Interactive Sessions
	Make Your Computer to Talk to You
	Display the Current Date and Time in a Different Time Zone
	Display a Calendar at the Command Line
	Extract a Tar Archive to a Different Directory
	Transform the Directory Structure of a Tar File When Extracting It
	Use a Spreadsheet from the Command Line
	Rudimentary Command Line Stopwatch
	Repeat a Command at Regular Intervals and Watch Its Changing Output
	Execute a Command at a given Time
	Share Your Screen Session with Another User
	Execute an Unaliased Version of an Aliased Command
	Save the Output of a Command as an Image

	About the Author
	Other Books by the Author

	Additional Resources Including Exclusive Discounts for Command Line Kung Fu Readers
	Books
	Courses
	Cloud Hosting and VPS �⠀嘀椀爀琀甀愀氀 倀爀椀瘀愀琀攀 匀攀爀瘀攀爀猀)
	Web Hosting with SSH and Shell Access

	Index
	alias
	at
	atrm
	atq
	avconv
	awk
	adduser
	bluefish
	break
	cal
	cat
	cd
	chmod
	cp
	column
	convert
	cut
	curl
	date
	df
	diff
	dig
	dmidecode
	dos2unix
	dpkg
	du
	echo
	espeak
	event designator
	exit
	file
	find
	for
	firefox
	fusermount
	getconf
	grep
	head
	history
	host
	hostname
	id
	kill
	killall
	less
	logger
	ls
	lsof
	mail
	mkdir
	mount
	multitail
	mv
	mysql
	ncdu
	netstat
	nohup
	openssl
	passwd
	ping
	pkill
	ps
	python
	read
	reboot
	reset
	rm
	sed
	sc
	screen
	script
	sort
	ssh
	ssh-copy-id
	ssh-keygen
	sshfs
	su
	sudo
	tail
	tar
	tee
	tree
	time
	tr
	uname
	uniq
	userdel
	vim
	w
	wc
	watch
	wget
	while
	who
	whoami
	uptime
	unzip
	unix2dos
	yes

	Appendix

