17

Module 1

Foreword

New self-replicating malicious programs are built daily, and antiviruses daily
release updates to protect systems against these attacks. So how can it be that
when a virus infects your computer, the antivirus could fail to detect it even for
months and months? This training aims to debunk the mistaken belief that
good and up-to-date antivirus software can successfully shield you from all
threats.

Virus and malware creators are every bit as hardworking as antivirus
developers. The former want to discover the inner mechanisms of antiviruses,
while the latter are on a constant lookout for how new viruses work. This
training shows techniques you can use to write code that is undetectable even
for the best antiviruses out there. Additionally, we will also show you how to
cloak a program to make it stealthy. When you know the threat, you’ll also be
able to train yourself how to detect items that are seemingly impossible to spot.

What is a rootkit?

A rootkit is not a threat itself since none of its functions are harmful for the
user. A rootkit is a program or auxiliary module of another program that is
intended to hide files, processes, Windows Registry entries, network
connections and other items from users. To do this, a rootkit changes program
or system library code to make them return false data (e.g., a process list that
lacks a particular element). This guide covers rootkits written for the user
mode (Ring3). We'll leave out the kernel mode (Ring0) since newer Windows
systems make it virtually impossible to modify the kernel and its structures.

18 MODULE 1. INTRO AND ENVIRONMENT SETUP

Rootkit structure

Contrary to what you may think, the structure of a typical rootkit is very basic.
A rootkit consists of an application that modifies the code of other processes
and tracks whether new processes appear. It includes a set of system functions
to change and a set of codes to replace the original function code excerpts.

Examples of rootkits

v Bluepill: implemented by Joanna Rutkowska. This highly advanced
rootkit makes use of virtualization. Very difficult to detect as it runs the
operating system as a virtual machine controlled by the rootkit (using the
AMD Pacifica virtualization technology).

v FU Rootkit: a kernel mode rootkit based on the DKOM (Direct Kernel
Object Manipulation) technique. Can cloak a variety of elements without
hooking.

v’ Vanquish Rootkit: a user mode rootkit using DLL injection and API
hooking.

What you need to know to start

All codes presented in the book are written mostly in C++, a language that is
flexible and easy-to-use for low-level functions, and therefore a good match for
the task. The compiler we’ll use is Microsoft Visual C++ 2010 Express.

At least a passing knowledge of the assembly language will come in handy at
the start as well. But if you don’t know this language, don’t worry: the next
module features a short overview of what’s needed to know to write and
understand basic programs.

Also highly useful is a knowledge of Windows internals, especially with regard
to API routines and system libraries. If you don’t have it either, there’s no need
to panic - the book includes critical information where needed.

19

Compatibility and current code version

The training videos for modules 1 to 9 have been made in the Microsoft
Windows 7 32-bit version. Module 10, a summary of the training, contains
implementations of all the methods and has been developed for the 64-bit
operating system versions.

The methods in this training are universal. The guide’s sample programs
have also been tested on the newest (at the time of writing) version of
Windows, Microsoft Windows 8.x (32-bit for modules 1 to 9 and 64-bit for
module 10). Note that almost all applications compiled for the 32-bit OS
version should run in the 64-bit system without any need for adjustments. A
few exceptions will require you to make changes to their codes: the how-to can
be found in module 10.

A current archive containing sample codes and applications can be
downloaded at: http://hackingschool.com/download/rtk_modules.zip.
The archive will be brought up to date for all new OS versions released in the
future.

Further reading

“Rootkits: Subverting the Windows Kernel”: Greg Hoglund, James Butler. This
resourceful book is exhaustive for kernel mode rootkits, but focused mostly on
Windows XP.

“Windows NT/2000 Native API Reference” Gary Nebbett. Descriptions of
many undocumented Windows API services that haven’t changed a lot since
the days of Windows NT.

20 MODULE 1. INTRO AND ENVIRONMENT SETUP

I Practice: video module transcript

Welcome to the first module of the training. We'll learn how to use the
applications used throughout this training. For instance, we'll be using
Microsoft Visual Studio 2010 in its Express version. We'll also use the Olly
Debugger in DeFixed version, which is a slightly modified version of the
original Olly Debugger. Another tool which can come in handy is PEview.
PEview is a program which shows us the headers of executable files and where
we can see all the sections and imports specified in a binary file. We'll also use
Hexplorer, a hexadecimal editor.

Now let's go on to discuss particular programs. The first application we'll get
acquainted with is Microsoft Visual Studio 2010. The environment can be
downloaded from the Microsoft website. It's one of the best C++ compilers
available for the Microsoft Windows platform. The next application is Olly
Debugger. Using it, we'll be able to see the results of the operation of our
program as well as check whether everything is performed as planned. The
next application, as I've already mentioned, is PEview. It will be used to learn
about the structure of a PE executable file. Using it, we'll learn which imports
and exports are used by a given application. Of course, it's only a small part of
the features of this program, but it’s precisely the one essential for us.

Another application is Hexplorer. It's the editor we'll use to edit binary files.
We can use it to, for example, edit the character strings present in a binary file.
We've briefly discussed the tools. Now let's create a sample project in
Microsoft Visual Studio. We run the compiler. In order to create a new project,
we click File, New, and next Project. We'll create a console application and
place it in the Modules directory in subdirectory 1, because it's the first module
of our training. The project will be named TEST. We click Next... and Finish.
The project creation is in progress. In the screen we can see all the files which
compose our project. We also have a template. We start from changing the
mode of compilation of our project to Release. Now let's configure our project.
We click Properties.

21

©a test - Microsoft Visual Studio
File Edit View Project Build Debug Team Data Tools VMware Architecture
PigdT el (5| Y3 Add Class... ~| | Win
] B ax | @ Classwizard.. Ctrl+Shift+X
R “% Add Resource...
ipBas "
25 Add New Item... Ctrl+Shift+A
2] Add Existing Item... Shift+Alt+A
(Global Scope) New Filt
=I// test.q L e ication.
/Y 1 Show All Files
#include Unload Project
Rescan Solution
Sint _tmai References...
{ Set as StartUp Project
retur Build Customizations...
}
= Proper‘tieh Alt+F7
,j Open Folder in Windows Explorer

Next, we go to Configuration Properties, General and we choose Use Multi-
Byte Character Set so that the strings we use are ANSI by default. Next, we
click C/C++, choose Code Generation and click the Multi Threaded /MT
option.

test Property Pages |I”E|
Configuration: | Active(Release) * | Platform: |Active(Win32) '] l Configuration Manager...]
4 Commaon Properties Enable String Pooling
Framework and References Enable Minimal Rebuild Mo (/Gm-)
4 Configuration Properties Enable C++ Exceptions Yes (/EHsc)
General Smaller Type Check Mo
Debugging Basic Runtime Checks Default
Ve Directorie T R t+rcsded DLL UMD) B
4 GC++ Struct Member Alignment Multi-threaded (/MT)
General Buffer Security Check Multi-threaki Debug (/MTd)
Optimization Enable Function-Level Linking Multi-threaded DLL (/MD)
Preprocessor - Enable Enhanced Instruction Set Multi-threaded Debug DLL (/MDd)
Code Generation : -
Language Floating P0||:1t Mod.el . Frecise (/Tpiprecise]
Precompiled Headers Enable Floating Point Exceptions
Output Files Create Hotpatchable Image
Browse Information
Advanced
Command Line

Then we hover over the Precompiled header and choose the option “Not using
precompiled headers”. Finally, we click OK. After these changes, the project
compiles without any problems, we just need to include the windows.h file
which has all the WinApi functions declarations. In our program we'll use one
of them. We'll need stdio headers in order to print the message in the console.
We also have to remove _t prefixes. Let’s call a simple MessageBox which will
display the message Hello World. The Hello World message should appear in

22 MODULE 1. INTRO AND ENVIRONMENT SETUP

an upcoming window. Let’s also print Hello World in the window title and the

console.

(Global Scope)

-1// test.cpp : Defines the entry point for the conscle application.
i

#include <Windows.h>
#include <stdio.h>

-lint main({int argc, CHAR* argv[])

{
MessageBox (@, "hello world","hello”,@);
printf("%s\n","hello world");
return @;

h

Let's now compile the project using the F7 key. At the bottom of the window
we can see that the compilation is already in progress. As we can see,
everything went OK. Now we can start our program. We can see the console
and the MessageBox window. The Hello World text, which we defined in the
program, appeared as well.

-

[hello ==
3

hello world

oK

For a moment, we might have caught a glimpse of the Hello World text in the
console, after which the application closes due to the fact that the return
instruction was executed. Now let's have a look at our program in the
debugger. It's located in the directory Modules\1\Test\Release. We simply drag
our program to the debugger. In the screen we can see all the instructions used

23

by the application. We can see, for instance, the loaded modules. There are

quite a lot of them, but we'll be mainly interested in libraries, such as kernel32,

ntdll or kernelbase.

HEZEEEEE]| BEDEIE0E Fiiw| Bl Ell

HEBDEEEN]| BADE]B0E| test FE header Imag| R RWE
HEBH]1HEH| BAHE /E0E| test teut code Imag| R RWE
HEBOEEAH| BA0E3A0E| test .rdata imports Imag| R RWE
HEEHEEAD| BANE3A0E| test .data data Imag| R RUWE
HEBHEREE| AAEE 1 AAR| tecst JCErC CESOUCES Imag| R RUE
BEEOFEE0]| BE0E1E06E| test sreloc relocations| Imag| R RWE
BEE1BEE0] B8 1478068 Map |R R

SEASEEEN]| BE0ELA0E| WIMNSPOOL FE header Imag| R RWE
SEAS1860]| BAR3EA0E| WINSPOOL| . teut code, import] Imag| R EWE
SEASEEAN]| BADE]AEE| WINSPOOL| . dat a Imaa| R RWE
SEBASVEED]| BAH] FAEE| WINSPOOL| . rerc CESOUrCES Imag| R RWE
SEASEBAH| BA0E3A0E| WINSPOOL| . reloc relocations| Imag| R RWE
F17CEEA0H| BA0E]1A0E| AcLayers PE header Imag| R RWE
Y17C1888]| AARE9EAE| AcLavers| . tert code, import] Imag| R RUE
F1l3ZABE0]| BE0BRE0E| AcLayers| .data data Imag| R RWE
F1334880]| BA01 18068 AcLayers| . rsrc CESOUTGES Imag| R RUWE
F1345880]| BE0EZE0E| AcLayers| .reloc relocations| Imag| R RWE
710EEEEN]| BEHE]LBHE| MPR FE header Imag| R EWE
710E1880]| BAHEEARE| MPR teut code, import] Imag| R RWE
710EFEEE| BAEE]1AEE| MPR .data data Imag| R RWE
F1OCHEEN]| BEHE]1B0E| MPR STErG CESOUrCES Imag| R RWE
FlOC1860| BA0E1A0E| MPR .reloc relocations| Imag| R RWE
FEASHEAE| BA0E1A0E| USEREML FPE header Imag| R RUWE
FEES1860]| BE01 18068| USEREMY | . teut code, import] Imag| R RWE
FEATYZEE0]| BA0E1A0E| USERENY | . orpc Imag| R RUWE
FEATIEE0| BE0E]1B0E| USEREMNY | .data data Imag| R RWE
FEAT4EE0]| BE0E2E06E| USEREMY | . rsrc CESOUTCES Imag| R RWE
FEATEEE0]| BADELA0E| USERENY | . reloc relocat ions| Imag| R EWE
FEI10880]| BADE1A0E| SspiCli FE header Imaa| R RWE
¥E911880| BA01 PE0E| Sspill ip - teut code, import| Imag| R RWE
FEI28860]| BA0E]A0E Sspltllt}.data data Imag| R RWE
YE929088| AABE1AAE| SspiCli TJ.rsrc CESOUCES Imag| R RUE
FEIZHEE0]| BE0E1E06E| SspiCli | reloc relocations| Imag| R RWE
FEI3EEE0]| BE0E1B0E| apphe lp FPE header Imag| R RUWE
¥5231880| BA03CA0E| apphe lp | . teut code, import] Imag| R RUWE
FE5I50880| BE0E3E0E| apphe lp | .data data Imag| R RWE
FEITEEED| BADE9E0E| apphe lp | . rsrC CESOUTCES Imag| R EWE
FEI7IEE0| BADE3EA0E| apphe lp | reloc relocations| Imag| R RWE
FEADEEED| BAHE]1B0E| profap i FE header Imag| R RWE
FEAD1BA0H| BA0EFA0E| profapi | . teut code, import]| Imag| R RWE
YERAESEEE| AABE1AAE| profapi | .data data Imag| R RUE
YERAE9EEE| AABE1AAE| profapi | .rsrc CESOUCES Imag| R RUE
FEADABE0]| BE0E1E8068| profapi | .reloc relocations| Imag| R RWE
FEAAEEER]| BERE] B0E| KERHELBHR PE header Imag| R RUWE

Let's return to

the code. What we see at the beginning of the code is the

program prologue added by the compiler. In case of the Visual Studio

compiler, the prologue always looks the same. We can go to the next

instruction without entering the call using the F8 key. The next instruction is a

jump. We press F7. We're now in the place we've jumped to. What we can see

here is a jump to the main function.

ERX, OWORD PTR
| DWORD PTR DS:[__
E

FTR O

0 FTR L

24 MODULE 1. INTRO AND ENVIRONMENT SETUP

We can go to it by pressing the F4 key. It works as follows: the debugger places
a breakpoint, a kind of trap for this instruction, and subsequently starts the
program. We press F4 again and we are at the place the instruction is called.
We press F7 to step inside this call. Here we get the code we've just created. We
can find here the call of functions MessageBox and printf. We can also see the
parameters entered in the code, but they are in the reverse order to the one
declared in C++.

Addiess |Her durmp Dizsassenbly Comment

£ &R @@ FUSH @ Stule = ME_OK! HB AFFLMODAL
BEEA1EEZ| | . &8 EBE99EGAEE [FUSH OFF| =T 77 _CE _WSCIBACGMEEh: L LoYSAAE(] Title = "hel lo™
BEEE1EEF(] . &8 E299E@AAE |FUSH OFFSET PP_CE_AMELACCCHMMERS L loYSwo]]| Tert = "hello world™
BEEALGAC|] . &R @A FUSH @& howner = HULL
BAEALARE(| . FF15 B&S1EAA
BEE@i@i4(] . &8 BES99BGGE |FUSH OFFSET 77 _CE AMELACCCHMMELE | loYSwolr<Hs® = "hello world™
BEE@iaial] «. &8 C499B00E [FUSH OFFSET 77 _CE_ASOFAFEEGHMETSCFs?EY5A [Format = "Hsan"t
BEEE1G1E(] - ES 15ABEEGE
BEEE1823(] - 93C4 B2 AOD ESP, &
BEEA1G2E(] - 323CA HOR ERX, ERX
BEEAlE22|L. C3

We press F8 to go to the next instruction. We can see that a new value
appeared on the stack. It's 0. The next instruction is PUSH, that is putting a
number on the stack. This number is an address of the Hello string. We press
F8 and see that the value 00B099B0 appeared on the stack. The Hello string is
under this address and we see it in the preview. The next instruction is push
Hello World. As we can see, it should be the address B899B000. If we look
here, we'll see that the Hello World string begins exactly at that location.

Address |Hex dump ASCII

GEEASSEA[&S 65 AC &C &F BB GE 88 &2 65 &C &C &F 28 v7 &F[hello...hello wo
BEEASACA(T2 &C &4 B8 25 Y3 OR 98 42 00 08 88 B8 0GE OO rld.¥s. . Hao o onns
BEEAS90E(B8 00 08 B8 BB 0O OB B8 B 0O OB B8 B8 86 B8 Wl e e e eeas
BEEQS9ES(B8 B0 DB B8 B8 00 D8 B8 98 00 00 B8 98 00 00 BE| ... i e s nnnnnnns
BEEQS9FE(88 0 D8 B8 B8 00 DB B8 98 00 D0 B8 98 00 00 BE| ... e sinnnnnns
HEEASAEA(86 B0 08 08 04 BA BA B0 o0 90 BO OB B3 08 88 B8| , ... 4= == _#,..
BEEASALE|52 53 44 53 OO 20 64 L0 r2 DH 04 42 AF 55 41 83| RS05e d#tr —I=LA.
BEEASAZE(A4 ED 9E 9B @1 6O AE @8 42 30 SC 55 72 65 72 FI(f¥Red. . .CixUsers
BEEASASA|(SC 47 72 FA 6F EE 7S5 BC 44 €5 v3 6B 74 &F 7@ SC(~Grzonu-Desktop™
BEEASA4E[40 6F &4 75 EC €5 73 BC 21 BEC v4 65 72 74 EC 52(Modu less1-test™R
BHEESACHE| S EC 65 &1 72 65 EC 74 &5 72 74 2E 78 &4 &2 B@ eleaae\test pdb.
GEEASAEE(56 25 08 88 26 4E 08 88 AB 6E 08 88 B8 06 08 88(PH.. M..an......
GEEASATE(BE GO 08 B8 B8 00 08 B8 B8 00 08 B3 B8 00 B8 BE| i eanannns
BEEASASA(FE FF FF FF B8 B8 68 88 D4 FF FF FF 98 08 08 98 w - -
BEEQSAZE(FE FF FF FF 8@ 00 QB 88 CC 10 BE B8 88 00 08 98w N LR
BEEEORRElFE FF FF FF @@ B GE @& CC FF FF FF @@ G D6 @6l e waaalr i

We press F8 and we see 00B099B8 on the stack. The values in the code and on
the stack are different because encoding the message takes place in a Little
endian bit order. It's an encoding method where the most significant bit is
stored at the end, with less significant bits at the beginning. Here we can see
that B8 is at the beginning, even though it's last on the stack.

25

BE1SFE4d(BEE@I9EE| AS "hello
BE1SFE4S| BAE0EREEE
BE1SFE4C(@BEAL1Z229 RETURH to test.BBBA1ZZY from test.main
BE1SFESE| BAREEEEE]L
BA1SFEE4 | @ASELARSE
BH1SFEES| EBSELAES
BE1SFEEC| 2324A54A
BE1SFESE| @EDEE0EE
BE1SFBE4 | BAEEEEEEE
BE1SFBES| FFFOFGQEE
BE1SFBEC| @B1SFEVC
BE1SFEVE| AREEEEEE
BE1SFEVY | B00EEEEE
BE1SFEVS| @81SFBESC
BE1SFEFC| EBFZL1Z1S
HE1ZFESA] BE18FBCC| Pointer to nedt SEH record

EEEEEEIEE] nsw "hel I[D_:wnr ar

When returning to our string, we can see that the 00B099B8 address indicates
the Hello World string. We press F8 and we can see that the parameters on the
stack, when looking from the top, are saved in the same order as in our C++
code. We press F8, so as not to step inside the function responsible for
displaying the MessageBox. The MessageBox appeared. We press OK.

The next function we called was the printf function. As we can see, the Hello
World message is placed on the stack, and right after it goes the format string.
That means a string, and then Enter. We press F8. The difference between
calling printf and MessageBox is that the MessageBox is a function of type
STDcall and what we've put on the stack as parameters was removed from the
stack automatically by the MessageBox function. Printf is a function of Pascal
type; it's characterised by the fact that if we put something on a stack, we have
to remove it on our own. That's what the ADD ESP,8 instruction is for.

ESP is a register which indicates the top of the stack, that is the value which
will be removed from it first. If we add 8 to it, ESP will indicate 0018FB4C,
that's the address which was a stack top before we called the printf function.
Now the return address is present on the stack. We could, for instance, change
the return address, but we won't do that because that would cause an incorrect
closing of the program. We will see how to do so, just in case.

We click Modify and enter any value, for instance 28, and at this moment the
program would jump to the address present on the stack when a RET
instruction is executed. We'll change it back to the previous value, so that the
program doesn't crash. Another instruction which will be performed by the

26 MODULE 1. INTRO AND ENVIRONMENT SETUP

program is XOR EAX, EAX. We want the EAX to be set to 0 because XOR-ing
two identical values always gives 0 as a result. We can see that in accordance
with our assumptions, a 0 appeared in the EAX register.

Registers_(EFLD

ERX DEEE0EEE

ECH HDHEAIHCE test.BBEH1ACE

EQ0X 778BYE94 ntdll.KiFastSustemCal LRet
EE: TFFOF

ESF DBE13F

EEBF BBE13F

ESI DBEEE0EEE

EOI HEEEHEEE

However, before the RET instruction, we can change the value, for instance to
1. We press F7 to return and we can see that this value is removed from the
stack. The value disappeared from the stack and we're in the place indicated by
the last address. Next, the values passed earlier to the main function are
removed from the stack, that is the earlier EAX, argv and argc, together 12
bytes. 12 in hexadecimal notation is 0C. Next we see EBP - 20. EBP indicates
the 0018FB90 address. Olly marks these fragments with frames. They are stack
frames which appear the moment a function is called.

BE1SFBEC| @B12FEVC
BE1SFEVE| BAEEEEEEE
BE1SFEFY | BREEEEEE
BALSFEFS| @B81SFEEC
BE1SFEYC| EEF31218
HE13FESA| B818FBCC|Pointer to nedt SEH record
BE1SFESY | B8EE2S558| SE handlexr

BE1SFESE| 222CC47A
BE1SFEBEC| ABREEEEE
BE1SFE9E | @8 1SFESC
BE1SFE94 EHSEDEC
BE1SFE9S FFOFEEE
BE1SFESC| =E6 1SFEOC
BEA1SFERE || FFE037VE
BE12FER4 (| FFFOFQEE
BE1SFBRS|| FFS2E3ED
BE1SFEAC] AAAREARE

The EAX we've modified will be loaded to this address. 90 - 20, equals 70.
Under this address we get 1. It's an exit code from the main function, because
the value the function returns is present in the EAX register. Later we can see a
comparison and a jump.

27

BA1SFBEC| BA1SFEVC
HE1SFETR| DOEEEE[E1
B813FET4| GOE8E8
BA13FETS| B81SFE
BE12FEFC| BEF31218
BE1SFESH| BO18FBCC|FPointer to nexdt SEH record
HE18FES4| BOEOZESE|SE handler

AE13FB23| S52CC47R
BE1SFESC| BOEEEAEE
HE13FE98 | FEE1SFB9C
BE13FE24 || YERASEDEC
8813FE23|| YFFOFa@a
B813FEIC| eAA1SFEOC
BE13FEBAE|| YrE0377E

We can see that the EAX register is put on the stack. It will be a parameter of
the exit function, which will exit the program with code 1 because that's the
value we set before exiting the main function.

Hddress |Hex dump Disassembly
oEE@iz2e0| > Al 14CiBe8d | HMOU EAX, DOWORD PTRE DS:[_enwironl

BEEA1Z12] . A2 12C1BO6E | MOV DWORD FTR DS:[__initenwd, EMX
aeEa1z1y| . 5@ FUSH ERX

BEEA1213| . FF35 BCCIBAON FIUSH DWORD FTR DS:[__acgu]
BEEE1Z1E| . FF25 B2CIBROW FUSH DWORD FTR DS:[__arac]
BeEa1224| . EZ2 DFFOFFFF

BEBE1229) . 23C4 GC ADD ESP, GC

BEBRE122C) . 8945 EB MOU DWORD PTR S5: [EBP-281, ERX
BEBE122F| . 32975 E4 CHMP DWORD PTR S5: [EBP-1C1, ESI
BEEELZ232] .- 75 85 JME SHORT B8EE123A

BEER] =3 . SH@ FLIZH _EH:

HEEA1Z23H| > ES 2F17BEEA h‘

BEEH1Z23F| .~ EEB ZE JMFP SHORT BEEELZEF

BEEE1241) . E2B45 EC MOL ERX, OWORD PTR S5:[CEEFP-141
BEBE1244| . SEG2 MOL EC, OWORD PTR DS:LCERX]
BEBE1245) . SEG2 MOL ECH, OWORD PTR DS:[ECK]
BEEE1243) . 82940 DC MOU DWORD PTR S5: [EBP-241, ECH
BEBE124B| . E@ FUSH ERX

geEala4c) . Sl FUSH ECH

BEEA1240) . ES D619AAAR

Now the exit from the program takes place. Let’s click the Play button. The
program finished its execution and we get the message "Process terminated,
exit code 1". As we can see, the program exit code equalled 1. If we hadn't
modified anything in our code, the output code would equal 0. Now we'll look
at our code in PEview. As we've said before, this program can be used to
preview application headers. The program consists of a standard DOS header,
which tells us virtually nothing, but offers backward compatibility. From it, we
only need an offset, which is a pointer to the next header. We can see that this
offset value is EQ and the address indicates Image NT header.

28 MODULE 1. INTRO AND ENVIRONMENT SETUP

--test.exe pFile

- IMAGE_DOS _HEADER O000ODED 50 45 00
- M5-005 Stub Program []:‘\?FLDEIEIEIFEI Qo0 oo oo
of IMAGE MNT HEADERS Qooooq00 00 40 00
- IMAGE_SECTION _HEAD|| 00300110 00 80 00
- IMAGE_SECTION_HEAD|| 00000120 05 00 01
- IMAGE_SECTION_HEAD|| 00000130 00 00 01
- IMAGE_SECTION HEAD|| 00000140 00 40 10
- IMAGE_SECTION _HEAD|| 00000120 0O 00 0O

- ZECTION .text aoo0001s0 34 8D aa
+- SECTION .rdata aooooq70 00 00 oo
- SECTION data aooooisd 00 FO oo
+- SECTION rsrc aooooqs0 00 0o oo
+- SECTION .reloc ooooo01Ad 00 00 0o

Before it, there is also a DOS stub, a code fragment which would run if we ran
our program under DOS. Similarly to DOS header, it has to ensure a backward
compatibility with 16-bit systems. We can see that NT header is located here.
We'll extend its structure. We see that it consists of a signature, based on which
we can determine whether it's a correct PE file. This signature is simply a PE
text.

=I-test.exe pFile Data Description “alue
i IMAGE_DOS_HEADER Q00000ED 00004550 Signature IMAGE_NT_SIGHMATURE PE
- MS-DOS Stub Program
- IMAGE_NT_HEADERS

: IM%E_FILE_HEADEI

- IMAGE_OPTIONAL H

The next structure in the NT header is Image File header. Its fields include inter
alia Machine, which determines the type of processor the application is for.
Another value we're interested in is Number of sections. It specifies the number
of sections in the file. Here we've got 5 of them. In a moment we'll discuss what
a section is. The next field is Size of optional header. It's the size of a
subsequent structure in NT header. Then we have a Characteristic field which
informs us about the file type. In this case it's an executable file intended for
32-bit systems. It could just as well be an application for a 64-bit architecture.
In such a situation, however, this field would have a slightly different value.

29

Another structure is Image optional header. From the fields we're particularly
interested in, we should mention Address of entry point, that is the address at
which our program starts its execution. It's a default base address which will be
modified if a file is relocated. If a file has no relocation, the program will be
automatically loaded to this address. Another important field is Size of image.
Obviously, the field informs us about the file size. In this structure we'll also be
interested in the Data Directories array, which includes information about, for
instance, import array, export array, as well as their sizes.

After the Image NT header there are headers of subsequent sections, one after
another. Section is a file part which has its access rights. E.g. the first section is
usually the code section. It has executing and reading rights and is also marked
as the one containing the code. As we can see, the data section has reading and
writing rights. Thanks to that we are able to write or read something from our
variables, but not overwrite a code section too easily. Obviously, it can be
bypassed and we will do so many times throughout this training, but we'll talk
about it later.

g----IMAGE_SECTION_HEAD 000001 Fo 00000000 Pointer to Relocations
b IMAGE_SECTION_HEAD|| 000001F4 00000000 Painter to Line Mumbers

IMAGE_SECTION_HEAD|| 000001F3 0ooo Mumber of Relocations

IMAGE_SECTION_HEAD|| 000001FA 0ooo Mumber of Line Nurnbers

IMAGE_SECTION_HEAD|| 000001FC 60000020 Characteristics

SECTION text 00000020 IMAGE_SCN_CNT_CODE

+ SECTION .rdata 20000000 IMAGE_SCN_ME * EXECUTE
- SECTION data (B e IMAGE_SCN_MERt_READ

4 SECTION .rsrc
+ SECTION .reloc

In each section we're interested in the Virtual Size value, that is the size in the
memory, RVA address, that is the location in the memory in relation to the
base address, the size of the data in the file and the location within the file. The
first section is the code section, the second section includes imports, the third
one is the data section, the fourth one, in our case, is a section for storing
resources, the fifth section includes relocations. As we can see, in this case the
division is pretty logical and depends on the data we store in particular
sections. In the first section we can just see the code. We can view it in a
hexadecimal or a text form (also called ASCII).

30 MODULE 1. INTRO AND ENVIRONMENT SETUP

pFile Raw Data “alue
00001640 00 74 Bs B4 FO FF FF ES 21 17 00 00O 83 A5 .
0oo01es0 B4 FDOFF FF OD 59 8B BD C4 FDFF FF 8A 07 88 85 Yo
00o01es0 EF FDFF FF 84 CO 74 15 BB ED XM FDFF FF BB SD t.ooo
0oO0ME70 DB FD FF FF 33 FE8A DD E9 CEFA FFFFB8OBDEBO ... 3...
00001680 FD FF FF OO 74 0ABB 85 ACFDFFFF 83 BO7OFD ... t........ n.
00001690 8B 85 DCFD FF FF BB 40 FCAF SE 33 CDBBES 86 b, A3
Ooo016A0 EDFF FFC9 C3 8B FF S92 1A 4000 2118 4000 C1 i@ ..
O0OC1eB0 18 40 00 1F 192 40 00 GE 19 40 00 76 19 40 00 BC .@. . .@. k.
Ooo01sCO 19 40 OO0 ED 1A 40 00 BB FF 55 BB EC BB 45 08 A3 .@. . .@. .. U..
00001600 00 C1 40 00 5D C3BBFF S5 BBECBIEC 2B 0300 . .@]...U ...
OOOOTEED 00 A1 04 BO 40 O0 33 ©5 B9 44 FCAIBBEO OB 57 ... @ 3. E. 5.

Let’s look into the rdata section, which is an import section. It includes an
import array, which in turn has addresses of all the functions used in the
program. We can see that the functions are pretty numerous, even though in
our code we've only used functions MessageBox and printf. All the remaining
functions are used by the program prologue and are automatically added
during the compilation. We'll talk more about the import section in one of the
next modules, where we'll insert the so-called hooks directly into the import
section.

In the data section we can see that there are many zeroes, because many
variables in our program are set to 0 as a default. Currently, there is only one
resource in the resource section - manifest — automatically added by the
compiler. There is also the relocation section. It's used if the program has to be
loaded under the base address other than the default, which is present in the
Image Optional Header. Relocations are simply addresses of all the places in
the code which must be appropriately modified.

That's basically everything the PEview program offers. Now, we'll view our
application using the Hexplorer program. We see the preview of our program.
The editor enables us to edit each byte. If we changed a single letter in the PE
string, to T for instance, the program wouldn't start due to an incorrect header
of executable file. It would halt before executing the first code line. We can see
it for ourselves. We click File, Save as and save the new program as test2. We
have a modified application. We start it and we can see that the program
simply closed because the header was incorrect. If we change the header back

31

to PE and save it, the program will start correctly. Even though it's just a short
string which doesn't bring anything new to the program, we can't modify it.

Using Hexplorer we can also browse all strings or search the contents for
specific character strings. We click Find. In the program we've used for
instance a Hello string. Let's step into it. As we can see, the program localized
it. We can modify it, for instance change it to Bye. For this purpose, we have to
add 2 zeroes at the end. They have to be binary zeroes.

oo oo oo

25 73 0A 00
00 00 00 00

oo 00 00 OO
oo 00 00 OO
04 B0 40 00

We save the modified version in the test2 file and launch it. As we can see, the
window title was changed successfully. We press OK. Another feature offered
by Hexplorer is casting other binary data to headers. Let's choose Structures
and PE header, because we know it's a PE header. Now we see all the fields in
this structure.

This way, we've reached the end of the software presentation. We've managed
to discuss the basics which will come in handy when working with our
training. Of course, during the subsequent modules we'll get to know a range
of other applications. I strongly invite you to the next module, where we will
learn how to create our own shellcode. See you there.

32 MODULE 1. INTRO AND ENVIRONMENT SETUP

