
33

Module 2

Basics of shellcode development

Assembly language crash course

It goes without saying that the assembly language can be a powerful weapon
in the hands of a skilled programmer. This publication uses it often, so let’s
quickly brush up on the basics. For all of you who already know the assembly
language, you can safely skip this part.

Let’s start with an explanation of the CPU architecture. A central processing
unit has a microprocessor that carries out instructions and 9 general-purpose
registers. That’s the bare minimum you need to know. A processor register is a
memory area (4 bytes in a 32-bit architecture) that the processor can access
quickly. It uses a stack, which is a LIFO (Last in First Out) structure. In
this type of list processing an item that is added last is taken out first. Think of
a pile of books stacked on top of each other. To take the third topmost book,
you need to lift all the books lying on top of it.

Register types

EAX – Accumulator,
EBX – Base Register,
ECX – Counter Register,
EDX – Data Register,
ESP – Stack Pointer,
EBP – Base Pointer,
ESI – Source Index,
EDI – Destination Index,
EIP – Instruction Pointer.

34 MODULE 2. BASICS OF SHELLCODE

The registers are four-byte, with some splitting into smaller one or two-byte
parts. The image1 below shows the main registers in IA-32.

In addition to processor registers, there are also coprocessor registers. A
coprocessor is a unit that carries out floating point operations. There are also
other register types (debug registers, MMX, SSE) but since we don’t use them in
this tutorial, it’s not essential to describe them here.

Instruction syntax

Here’s the general instruction syntax:

instruction destination, source

1 Source:
http://upload.wikimedia.org/wikipedia/commons/thumb/8/80/Rejestry_IA32.svg/580px-
Rejestry_IA32.svg.png

35

The mov eax, ebx sample instruction copies the values of the ebx register to
the eax register.

Other options for mov:

mov eax,1 – copies the value 1 to eax
mov eax,[ebx] – copies the data from the address indicated by ebx to eax
mov [ebx+4],5 – copies the value 5 to the address indicated by ebx+4

Important: you can’t copy memory values to memory! An instruction like mov
[eax],[ebx] is incorrect. This operation must be executed with two
instructions, for instance:

mov edx,[ebx]
mov [eax],edx

The mov instruction is the most often used assembly programming command.

Other instructions you’ll find useful:

PUSH register/address/value – pushes the data on stack
POP register/address– pops the data from stack
ADD register/address, register/address/value – adds two values and saves
the result in the destination, e.g. ADD eax,5 -> eax = eax+5
SUB register/address, register/address/value – subtracts two values, e.g.
SUB eax,3 -> eax=eax-3

The multiply and divide operations will not be used here.

AND, OR, XOR, NOT: logical operations. Respectively, they stand for
conjunction, disjunction, exclusive disjunction (also known as addition
modulo 2) and negation.

Also, conditional and unconditional jump operations are branch instructions
that move a program’s execution to a specified location. Conditional
instructions depend on a flag register that sets selected operations, for example
CMP, SUB, ADD, XOR.

36 MODULE 2. BASICS OF SHELLCODE

CMP register/address/value,register/address/value compares two
sets of data.

E.g. CMP eax,5.
If eax=5, E flag (Equal) will be set to 1,
If eax=3, L flag (Less) will be set to 1,
If eax=7, G flag (Greater) will be set to 1.

Conditional jump syntax:

JE (Jump if Equal) – jump if flag E=1,
JNE (Jump if not Equal) – jump if flag E=0,
JGE >=,

JLE <=,
JG >,
JL <,
JZ (Jump if zero) – jump if the last operation resulted 0,
JNZ (Jump if not zero) – jump if the result of the last operation was not 0,
JMP – always jump.

A different type of a jump instruction is CALL, an instruction that invokes a
function. Unlike the standard JMP, before it jumps to the stack, the CALL
instruction pushes to the stack the location of the next instruction to perform
after it completes. Owing to this, a program sequence can return to a selected
location from inside the function. To refer to a stored in-memory location, use
RET, a functional opposite of CALL. Before a program can jump to a specified
address, it pops a value off the stack.

Remember that the CALL 12345678 instruction does not jump to the
12345678 address. The address will be EIP+5+12345678 (the value 5 is added
as CALL is five bytes). If you want to jump to 12345678, this is the instruction
to use:

mov register,address
call register

37

For example:

mov eax,12345678
call eax

Writing shellcode

Shellcode is assembly language code in binary format. It’s easy to write, for
example to a char table in C++. Unlike the shellcode used for buffer
overflow attacks, the shellcode we use might contain null characters. Most
of the times, we’ll use pre-prepared shellcode to inject it into another process
for a variety of goals. Sample shellcode:

PUSH 0 ; exit code
PUSH -1 ; current process handle
mov eax,ZwTerminateProcess
call eax ; call ZwTerminateProcess(-1,0);

Shellcode can be put together in two ways. You can write it in an assembly
compiler and extract it using a hex editor. A quicker way, however, is to
write it in a debugger and copy the binary code. This good-to-go code can
then be injected into a process to terminate it. Before you do this, patch the
addresses in your shellcode. Note that due to ASLR, libraries always load at a
different location.

While the shellcode could take care of checking the address, this would make
it much more complex. A better solution is to write a three-line patch in C++.

Shellcode writing: the essentials

First of all, consider the general purpose of your shellcode. Next, specify the
systems you want it to run on. These considerations impact the flexibility of
your code. For example, if you want the shellcode to run on Windows 7,
make allowances for the system’s preloaded and active ASLR mechanism. ASLR
makes library function addresses receive a different value every time they load.
This means you need to patch the address before injection, or make the code

38 MODULE 2. BASICS OF SHELLCODE

automatically fetch the addresses. The code should also contain as few
constant values as possible to increase its flexibility. What runs smoothly on
your OS may crash in another computer running a different system.

Glossary

ü ASLR: a defense mechanism implemented in Windows Vista and
higher. Loads dll libraries and programs at unpredictable base
addresses.

ü Image Base (base address): an address where a module (program or
library) loads in memory.

ü VA: a virtual address.
ü RVA: a relative virtual address. To obtain an absolute VA from a RVA, use

the following equation: VA = ImageBase + RVA.
ü Offset: an integer indicating displacement, for example from the start

of a buffer or file.
ü AV: an antivirus program.
ü FW: a firewall.
ü IAT: an import address table. Contains addresses of functions loaded

from other libraries.

Code injection

This technique consists of injecting code and executing the code through a
different process. The injected code is written in an assembly language, so this
method is typically depended on if the code is not too complex.

How it works:

1. Open a process (the OpenProcess function),
2. Allocate needed memory (VirtualAllocEx),
3. Write the shellcode (WriteProcessMemory),
4. Run a thread, giving the address returned by VirtualAllocEx as the

start address (CreateRemoteThread).

39

Notes about the 64-bit architecture

Writing code for a 64-bit architecture with system calls, make sure to take into
account the differences in the syscall calling convention. Module 6 (page
175) presents more information on the subject while discussing anti-emulation
techniques.

As for implementing the solutions for 64-bit operating systems, keep in mind
there are some limitations due to the compiling environment and used tools
(including the debugger). This is especially important to consider when you’re
adding inline assembly and hooking. For more info, check module 3 (page
102).

Practice: video module transcript

Welcome to the second module of the training. In this module we'll create a
shellcode and inject it into another process. We'll use the following tools. The
first one will be Olly Debugger, which we'll use to create our shellcode and
check the course of the program execution. The next tool is Visual Studio,
using which we'll compile our program.

But first of all, let's answer the question: why do we actually have to write
shellcode? We'll create it in order to inject it into the process. We'll benefit
from that a bit. In this case, we'll just want to close the process – but this time
from the inside. The moment we inject the shellcode, the program will close
itself. This way, we'll avoid a situation when another program, for instance an
antivirus, makes it impossible to close the application from the outside. As a
result, the program we'll inject the shellcode into will close itself.

Now let's spare a moment to think about what our shellcode will look like. The
task of our shellcode will be to execute the ZwTerminateProcess function,
which closes the process. It takes 2 parameters. The first one is the process
handle, the second one being the process exit code. We give 0 as an exit code,
that's the neutral exit code without an error. We just put 0 on the stack. The
next parameter is -1. It's a pseudo-handle for the current process returned by
the GetCurrentProcess function.

40 MODULE 2. BASICS OF SHELLCODE

Next, we call the ZwTerminateProcess function. The next instruction is RET,
it won't be executed anyway because the process will already have been closed
by then. The TERM function has the following form. It consists of a shift of
101 hexadecimal value to the EAX register. It's a number of our syscall and it's
different for each system version. 101 corresponds to the ZwTerminateProcess
number for Windows XP. We work on the Windows 7 system and this value
will be set dynamically for our version of the operating system.

Further, we can see the call of the KiFastSystemCall function. However, we
don't call this function from the library; we created our own code which looks
identical to the code present in the ntdll library. Let's start from creating our
shellcode. We'll open a notepad in Olly Debugger. It's just our draft code. Let's
write our instructions here.

PUSH 0
PUSH -1

Next, we call the TERM function, so it will be CALL +5 bytes from this place,
that is 00193692.

We've forgotten about the RET instruction. Let's change our value to 93
because the RET instruction takes up 1 byte. Another issue is entering the
syscall number, that is MOV EAX,101. What follows is the call of the SYS
function, so we have to update our address one more time. It will be
0019369D. Another instruction is MOV EDX,ESP, followed by SYSENTER
and RET.

41

Looks like our shellcode is ready. We just have to copy it. We can do so by
pressing the right mouse button, choosing Binary and then Binary copy. Now
we can save it somewhere else. Here, we have a ready program where we placed
our shellcode earlier. But let’s see how to do it right from the start.

We paste our code and replace spaces with \x in the selected part. We can see
that the code looks virtually the same. When writing we omitted one RET call
after CALL SYS, but it makes no difference, because it won't be executed
anyway. Our shellcode is now ready to work.

In the shellcode_size variable we can find the shellcode size. The variable
syscall_number_offset includes an address, that is the place in our shellcode
which has to be modified in order to update the syscall number. In the
comment, we get the same, but saved as an assembler code. The KillApp
function kills an application using our shellcode. It assumes the process
number as a parameter. Let's check which process number to get. As we can
see, the function creates a buffer and copies the shellcode to it. Let's keep in
mind that we also have to get the syscall number.

As we've already seen, the ZwTerminateProcess function is composed of MOV
EAX,101 and a call. MOV EAX,101 is 5 bytes long, where the first byte tells us
which instruction it is and the four remaining ones include the 101 number.
Thus, in order to get the syscall number for our system, we get the second byte
from the beginning from the address of the ZwTerminateProcess function and
copy it to our code, increasing the value by 0B, which makes it exactly the 11th
byte. Once our shellcode is ready to be injected, we use OpenProcess with
permissions to operate on virtual memory, with rights to write and create new
threads. It will enable us to close the process from the inside.

42 MODULE 2. BASICS OF SHELLCODE

Next, we use the VirtualAllocEx function, which allocates 32 bytes of memory,
or if you prefer, 20 in hexadecimal notation. We save our 32 bytes using the
function WriteProcessMemory, under the address returned by VirtualAllocEx.
We provide the buffer with the shellcode and enter the code size as the next
parameter. Using the CreateRemoteThread function, we start a new thread
which will be executed in the context of the process we want to close. We can
see that as the code beginning we provided an address where we saved it to the
memory. Now we just need to close the handle.

The main function looks as follows. It checks whether a parameter was
provided. If that's the case, it changes this parameter to a number using the
atoi function and passes this number to the program.

43

Now let's compile our program and see what it looks like in the debugger. We
close this debugger instance and start a new notepad instance. Now we run our
program. We see that the notepad is already running. Now we need its process
number. We enter the tasklist command, which gets the process list, but we
want to get only the processes which have a string notepad.exe in their name.

We can see that the process number is 644. We have to remember this value.
Now we open the program we've just created. However, this time let's open it
in Olly. We have to provide its call parameter. As we remember, the number of
our process is 644. As we've already learnt, what we see now is the compiler
prologue.

Let's go through it. First we press F8. Then F7. We go a bit lower and see the
main function. We press F4 and F7 to step inside. That's our code. The
standard creation of a frame takes place by using the PUSH EBP instruction,
and next MOV EBP,ESP. Then, in EBP+8, there is a number of parameters
passed to the program. We can see that we compare it with the value of 2,
which is precisely the value we have in the program. We can see here how this
instruction is written in our program.

44 MODULE 2. BASICS OF SHELLCODE

We press F8 and see that the jump is performed, which means that the
parameter was passed. We press F7 to jump. Next, from the address specified
by EBP+C, the value is copied to the EDX register. It's a data buffer. Next, the
value from address indicated by EDX+4 is copied to the EAX register. That's
the 644 string, exactly what we've passed to the program. We use the atoi
function to change it to an integer. It's exactly 284 in hexadecimal notation; we
can check it for ourselves. Next, our function is called. We jump inside by
pressing F7. Actually, it's all we've seen in Visual Studio. Let's go through a
couple of these instructions.

GetModuleHandle gets a handle of the ntdll module. That's the base module
address. Next, we get an address of ZwTerminateProcess. It's present in EAX.
Now let's see what this function looks like inside. We press Control+G and
simply step inside EAX. We see MOV EAX and the number of our syscall. In
our system, it's 172.

45

Next, there is a call of the function, the address of which, can be found under
7FFE0300. It's the address of the KiFastSystemCall function. Let’s check what
this function looks like. We see that it's exactly what we've implemented in the
shellcode.

Let's return to our code. The syscall number was copied from the address of
function+1, that is from EAX+1. We can see that in the EAX register we have
the value 172, which equals the syscall number in our system. Now let's open
the process we want to close. We see that everything executed correctly and we
have a process handle in EAX. If the execution failed, we would see here only
the letters F, which means that there is a failure. Now, we have the code
responsible for allocating memory. We press F8, so as not to step inside the
function. We can see that the function returns the address of the allocated
memory. It's 001D0000.

In the next step, we have to save the code to this address. We see that we enter
the 001D0000 address, our buffer with the code and the size of the buffer,
that's 32. We press F8, so as not to enter inside. Now we place a breakpoint in
the place we saved the code. Let's check whether the memory is allocated. We
see that's the case. Let's return to our code. We press Control+G and enter the
value 001D0000. It's exactly the same code we've already seen. We press F2 to
place a breakpoint and return to our application code. A new thread will be
created now. We press F8 and our thread starts. We can see that the debugger
stopped at the defined breakpoint, which means that the execution of the code

46 MODULE 2. BASICS OF SHELLCODE

we injected took place. Let's see this code. We press F8. There appeared the
value 0 on the stack, that is the exit code.

Then we see -1, that's the value returned by GetCurrentProcess. In order to
prove that this value is returned, let's check the function code. We see that the
FFFFFFFF value is added to the EAX register. As a result of this operation we
always get -1, regardless of what was earlier in the EAX register.

We put it on the stack and call the code from the address 001D000A. We press
F7. The 172 value will be placed in the EAX register and next the code from
this address is called. We press F7 one more time. The program will be closed
now. We press F7 in order to execute the SYSENTER instruction. We can see
that the program closed and exited with code 0. Everything went as expected.
That's all when it comes to this module. We've managed to create our own
shellcode, inject it into the process and call its closing process. This skill will be
useful further in the training. See you in the next module.

