
147

Module 5

Windows security features

What defense mechanisms are included in Windows?

This module deals briefly with defense mechanisms found in the most popular
Microsoft Windows systems.

 Windows XP Windows 7 and 8.x
ASLR No Yes
DEP From SP2 Yes
PatchGuard In x64 In x64
Signed drivers No In x64
UAC No Yes
System firewall Yes Yes

ASLR: provides randomization for the base address space where programs and
dlls are loaded. The randomization process makes use of relocations found
in a program. Relocations allow programs to load at many different image
bases. You can then modify the specific addresses to make them point to
selected memory spaces. Even though Windows XP programs did have
relocations, the system would always load a program at the address placed in
the PE header of an executable (typically, 0x00400000). The libraries that load
with all programs, kernel32 and ntdll, would always load at the same space.
All in all, this enabled programmers to write shellcode with ‘fixed’ function
addresses. The introduction of ASLR made exploiting vulnerabilities (for
example using buffer overflow) harder. Still, there are some techniques that
bypass this security means.

Starting with Windows Vista, libraries like kernel32 or ntdll load in a
different order every time the system boots up. Windows 8 also sees the
implementation of many ASLR enhancements, such as increasing randomized

148 MODULE 5. WINDOWS SECURITY FEATURES

spaces and increasing entropy, which hampers or virtually thwarts brute-
forcing.

DEP: this solution prevents the execution of code in a non-executable memory
page. The non-executable areas typically include the stack and heap. Data
Execution Prevention is also designed to obstruct exploitation.

PatchGuard: the main reason we’re not discussing kernel-mode rootkits.
This mechanism prevents modifications to the Windows kernel. If an alteration
takes place (for example by modifying an address in the SSDT table), the Blue
Screen of Death shows up and the system restarts. As it turns out however,
the mechanism can be bypassed. Anyone interested in this topic can learn all
about it on the Internet.

Signed drivers: this mechanism prevents unsigned drivers from being
loaded. Windows XP lacks this security feature, and users must agree to
installing a specific driver. In Windows 7 and 8.x users cannot load unsigned
drivers even if they want to. This defense mechanism is enabled by default,
which means that loading drivers to the kernel is much more difficult. It would
require signing the driver, while every code modification entails getting
another digital signature.

UAC: user account control. This feature was introduced in Windows Vista.
User account control is designed to restraint and adjust programs’ privileges to
run a variety of actions (for example, allowing Windows files to be edited). If a
program lacks adequate privileges, the system will prompt you with an
elevation request. An administrator password is needed to elevate a program.
Windows Vista users memorably detested UAC, making it one of the major
reasons Vista was a flop. The mechanism displayed many slow-loading
prompts, temporarily freezing the system before the elevation request
appeared. Windows 7 improved on the system, making elevation prompts
much rarer and quicker to load. UAC itself is not a new idea (many antiviruses
offered the feature long time before Vista did) and has been very well-
developed in theory. However, practice shows it’s often faulty and may be
successfully bypassed (simply type UAC bypass into a search engine to find out
more). Most malware today has the UAC bypass field in configuration options.

149

The crux of the problem is that a user needs to agree to elevating the privilege
level of a swarm of harmless applications that need administrative access to
run. Malware can bypass UAC in the background without needing a user to
click anything.

System firewall: from Windows XP onwards the systems are equipped with
the Security Center, a feature that includes an inbuilt system firewall.
Unfortunately, the firewall is not a hundred percent attack-proof solution.
The next chapters present ways to bypass Windows Firewall and many other
similar products. Firewalls on the whole are based on trusted application rules.
The snag is that it’s easy for an attacker to discover which applications are
trusted, and most malware can do it to inject malicious code and connect to
the Internet.

Another downside is that the system firewall rules don’t include a specific
rule for the port number with which applications connect. For browsers, ports
80 and 443 should be open. If they were, the firewall could alert you if code
was injected to the browser, detecting traffic on a non-standard port. In
addition, the firewall fails to recognize if a trusted file has been modified. An
attacker could easily replace a browser file with malicious code. Again, the
problem is similar to the one UAC had. The user puts in a lot of work to click
harmless application in. Unfortunately, at the same time the real threats can
bypass defenses easily.

Practice: video module transcript

Welcome to the fifth module of the training. In this module we'll discuss the
Windows security features. One of the flag Windows security features is ASLR,
which stands for Address Space Layout Randomization. This technology
wasn't implemented in the standard version of Windows XP, but it's present in
Windows Vista and, of course Windows 7 and Windows 8.

Another security feature which we'll discuss is DEP, the Data Execution
Prevention technology, which is present in Windows XP from Service Pack 2
on, and exists in Windows 7 and Windows 8 from the far the beginning. When
talking about security features, we can't omit the Patchguard technology,

150 MODULE 5. WINDOWS SECURITY FEATURES

which is responsible for kernel protection and is available in all 64-bit versions
of Windows. The requirement of digitally signed drivers is no longer valid
when it comes to Windows XP. In Windows 7 and Windows 8 it's present only
in the 64-bit version.

Another Microsoft technology, User Account Control, or UAC for short, is
responsible for restricting user permissions until explicitly confirmed and was
introduced with the Windows Vista system. Apart from the aforementioned
mechanisms, there is also a standard, built-in system firewall, which is present
in all versions of Windows starting from XP. Now let's briefly discuss the listed
mechanisms. What is ASLR?

It's a mechanism which loads programs and dll libraries to a somewhat new
random memory address. Due to this, we can't use "fixed" function addresses
in systems with ASLR implementation, but have to get them dynamically. Let's
check what the ASLR mechanism looks like in practice.

Here we have the rcmd program, which we remember from the previous
module. Let's open it in Olly debugger. We can see that the code starts in
011A2CCB. Let's have a look at the loaded modules. Rcmd was loaded to the
address 011A0000. Let's close the program and check where it will load at the
next launch. As we can see, the address is different. The module list address is

151

also different. Previously it was 011A0000, now it's 013B0000. As we can see,
the ASLR mechanism is active. Now let's move on to discuss the remaining
security features.

Another mechanism is DEP, a mechanism which forbids the execution of code
which has no right to be executed. Windows XP didn't worry whether the
given memory page has execution rights – it simply executed the code. The
task of this mechanism is, first of all, to protect against exploits, which take
advantage of the buffer overrun, because in this case the code is usually present
on the stack and, as we know, stacks have no execution rights. We have to
allocate memory using the PAGE_EXECUTE_READWRITE flag, so that the
injected code can be executed. More about this mechanism and using various
attack techniques in Windows systems can be found in the training on the
Security of Windows Applications. Surely, it's good to get to know this item if
we're interested, for instance, in the subject of bypassing DEP or ASLR. But as
for now, let's move on to discuss the next technology.

Patchguard is one of the mechanisms present only in 64-bit systems. It
guarantees that neither the kernel code nor any of the kernel structures are
modified. If such a situation happens, we immediately see the blue screen
known from the previous versions of Windows and the system is halted. In
Windows XP the user could agree or disagree to load a driver which has no
digital signature. In Windows 7 and 8 the user has no such possibility. If there
are drivers without a valid digital signature, the system prevents them from
being loaded.

A digital signature is a certain value which is a hash function, such as for
instance, md5, which joins the publisher identity with the document contents,
in this case with the driver code. Any code change results in the fact that the
digital signature is no longer correct. User Account Control is a mechanism
which, in a way, limits the user freedom, but provides greater security by
limiting access to certain system areas. We can't modify these areas without
admin rights.

Crucially, if you want to create a program which has to work without admin
rights, don't place registry keys in the LOCAL_MACHINE tree because adding

152 MODULE 5. WINDOWS SECURITY FEATURES

a key there requires the elevation of privileges. We can place an entry in the
registry without the admin's approval, for instance in the CURRENT_USER
tree. Similarly, never copy files to the C:\Windows directory. In order to place
anything there, we need the admin's approval.
Instead, we can freely copy and modify files within the user profile. Thanks to
that, our applications will be more reliable and won't raise any suspicions.

A built-in firewall is a mechanism present in the system since Windows XP
Service Pack 2. It's a typical network firewall the operation of which is based on
a set of rules. Based on these rules, the firewall decides whether a given
application can communicate with the network. However, as we'll
demonstrate, we can cheat it in a very simple way.

Recall our rcmd program from one of the previous modules. The firewall will
probably block it. We enter the dir command. After 10 seconds at most, we
should receive an answer. If the firewall blocks the communication, the
program can neither get a command, nor send an answer. As we can see, we
constantly refresh the page, but nothing happens. Now we'll close our program
and use a simple trick. We place the code of our program in a dll library which
we inject, for instance, to the browser process, which, understandably, has
permission for network communication.

153

Here we have exactly the same code we saw in the earlier module, the
difference being that the entire code which was previously present in the main
function is now present in the thread function. However, in the main function
we create only the thread we've mentioned. The moment we add the dll library
to the process, the thread is started. We already have a compiled version of this
library. We can see it here.

Now we inject it to the Chrome process, that being the Internet browser which
is most likely to have access to the Internet. We refresh the page and as we can
see, the program included in the dll library managed to download and execute
the command. We can also see that the default program directory is the
Chrome browser directory.

154 MODULE 5. WINDOWS SECURITY FEATURES

Now we can try to execute a command, for instance to ping Google.com. We
have to wait a while for the response. Unfortunately, we've received the
message General failure, the ping process was most probably blocked by the
firewall because it’s not present on the white list. Again, we perform the ping
command and wait a while. We've received an answer, accompanied by the
remaining part of the previous result. However, the dir command executed
successfully. We can see all files and directories from the Chrome directory.

The built-in system firewall works because it blocked the rcmd application.
But, as we've just seen, we can very easily bypass this mechanism - putting the
code in a dll library takes up no more than 10 minutes. Then, we can inject it
to any browser which probably has rights to access the Internet. In the next
modules we'll learn how to get a path to the default browser, how to create its
new process and how to inject a code into it.

Let’s summarise what we've learnt so far. From versions XP to 8, Windows has
more and more security features. Some of them are only a nuisance for a
potential aggressor, such as ASLR or DEP and it's possible to bypass them (we

155

can learn more about it from the training on Windows Applications Security).
In practice, performing an attack is still possible.

However, let's not forget that thanks to the PatchGuard technology it's
impossible to create a kernel-mode rootkit. The progress in the branch of
security is definitely noticeable. Another thing which improved a lot is the
system stability, because only trusted (that is digitally signed) drivers are
loaded to the system. It's not possible to load drivers of unknown origin which
could damage the system.

The UAC technology also contributed to our safety. Similarly to the unix
systems, the user doesn't work with admin rights as a default. In order to
perform an action which is potentially harmful to the system, we require the
admin's approval. Thanks for your attention and please go to the next module.
See you there.

