
171

Module 6.3

Anti-emulation techniques

Emulation

We’ve covered the two main detection techniques antiviruses rely on. Now it’s
time for the third approach that underpins the previous two. Emulation is the
way in which an AV simulates the operation of an analyzed program. An
antivirus is able to read our encrypted code by emulating it in its memory. One
way to beat emulation is to use strong cryptographic algorithms that make
emulation complex and time-consuming. Some antiviruses ‘give up’ when
faced with this challenge. Algorithms that do just that are for example AES, RC4
and Twofish. Implementing RC4 is relatively simple and within the grasp of
even inexperienced developers. On the other hand, implementing AES or
Twofish without a background in cryptography is strongly discouraged;
attacks on implementations of algorithms have been recently occurring more
often than actual algorithm attacks.

RC4 overview

RC4 is a stream cipher. First, it generates a 256-element identity permutation.
Every item in these arrays has a value identical to the element number (the
array is marked with S).

Or, S[0]=0; S[1]=1; etc.

In pseudocode:

for i from 0 to 255
S[i] := i

172 MODULE 6.3.ANTI-EMULATION TECHNIQUES

The next step is permutating the array, or ‘swapping’ its elements. The
permutation consists of 256 swaps of S[i] and S[j]. For each iteration, the
variable i is incremented by 1, and j can be computed from the following
equation:

j=j+S[i]+key[i%sizeof(key)]%256

In pseudocode:

j := 0
for i from 0 to 255
 j := (j + S[i] + key [i mod key_length]) mod 256
 swap(S[i],S[j])

As you can see, at this point the initial array is combined with an encryption
key.

Once the S-array, or the IV (Initial Vector) is ready, the encryption can begin.
Encryption is a process of generating values from 0 to 255 (1 byte) and xor-ing
the current state with the next values of data to be encrypted.

The algorithm generating the values:

i := 0
j := 0
while CreatingCipherStream:
 i := (i + 1) mod 256
 j := (j + S[i]) mod 256
 swap(S[i],S[j])
 result S[(S[i] + S[j]) mod 256]

In all iterations the output is xor-ed with the next data byte.

As all algorithms, RC4 has both advantages and problems. On the plus side, it’s
incredibly simple to implement while providing relatively high security
(although decidedly not on the level of the more sophisticated algorithms like
AES and Twofish). For our needs here, using a stream cipher is a plus. We
don’t have to worry about the last block, which doesn’t have the required size

173

for a full data block (needed in block ciphers). Likewise, agonizing over the
encryption mode to use (block ciphers have more than 10 of them) is no longer
a trouble.

Emulation and code execution are not the same. We can build code that will
run and produce an output we anticipate and know in advance. Meanwhile, an
antivirus can emulate the program and produce a radically different output.
The code below is an example:

FARPROC ZwR=
GetProcAddress(GetModuleHandle("ntdll.dll"),"ZwResumeThread");
FARPROC ZwS=
GetProcAddress(GetModuleHandle("ntdll.dll"),"ZwSuspendThread");
DWORD sys_res,sys_sus;
memcpy(&sys_res,(char*)((char*)ZwR+1),4);
//Get the syscall number of ZwResumeThread
memcpy(&sys_sus,(char*)((char*)ZwS+1),4);
//Get the syscall number of ZwSuspendThread
DWORD old;
VirtualProtect(ZwS,5,PAGE_EXECUTE_READWRITE,&old);
//Set the writing permission for ZwSuspendThread
memcpy(((char*)ZwS+1),&sys_res,4);
//change the syscall number of ZwSuspendThread to ZwResumeThread
SuspendThread(GetCurrentThread());
memcpy(((char*)ZwS+1),&sys_sus,4); //Restore the syscall number

First, let’s learn more about syscalls and their ordinals. A syscall is how a
program calls a function from the kernel. The system prohibits programs from
accessing the kernel and its internals directly, and due to this, an alternative
communication pattern needs to exist to tell the kernel for example to create a
process or manage threads. This role is filled by syscalls. Most ntdll.dll
functions have the following layout:

76F564A8 > B8 30010000 MOV EAX, 130
76F564AD BA 0003FE7F MOV EDX, 7FFE0300
76F564B2 FF12 CALL DWORD PTR DS:[EDX]
76F564B4 C2 0800 RET 8

174 MODULE 6.3.ANTI-EMULATION TECHNIQUES

0x130 is the syscall ordinal for ZwResumeThread in Windows 7. All
functions have an assigned number used to call them. 7FFE0300 is the address
of the KiFastSystemCall function. Here’s the code of this function:

76F57090 > 8BD4 MOV EDX, ESP
76F57092 0F34 SYSENTER
76F57094 > C3 RET

System calls and 64-bit architecture

A syscall calling convention in 64-bit systems is different than in 32-bit
architectures. While the general conception is identical, the code that executes
a syscall has a different layout on top of using 64-bit registers. Below is the
general structure of a syscall in 64-bit systems:

mov r10,rcx
mov eax,[syscall_number]
syscall
ret

The convention is still different in the case of running 32-bit applications in a
64-bit system. The WOW64 subsystem introduced in 64-bit systems to allow
them to run 32-bit applications on 64-bit processors is then initialized. Rather
than calling KiFastSystemCall, the invoked function is
X86SwitchTo64BitMode, with a call address of 0xC0 in the TEB structure. To
access it, execute the following:

MOV EAX,DWORD PTR FS:[0xC0]

EAX should now contain the address of the needed function. Its code is very
simple: it consists of a jump instruction (JMP) to an address in segment 0x33.
At this point, the operation mode is changed, and the system call is executed
just like for a 64-bit application run on a 64-bit operating system. After the
function terminates, the execution moves back to the 32-bit mode.

175

Back to our code: the SYSENTER instruction jumps to the kernel and executes
the remainder of the code of a given function there. Again, back to the code:
why is the function number retrieved in this manner?

memcpy(&sys_res,(char*)((char*)ZwR+1),4);

It’s because the first instruction in ZwR is the following:

76F564A8 > B8 30010000 MOV EAX, 130

If you look at the code bytes, the first byte 0xB8 is responsible for MOV
EAS,digit. The remaining 4 bytes specify the number (here, 0x130).

And why do we tweak the ZwSuspendThread function but call
SuspendThread? This is possible as SuspendThread calls ZwSuspendThread
itself. SuspendThread stops a thread from executing code, while
ResumeThread wakes it up. If a thread is not suspended, the function doesn’t
change it.

With function numbers in sys_sus and sys_res established, we need to find a
way to swap these numbers inside the ZwSuspendThread function’s code with
their corresponding ZwResumeThread values. VirtualProtect can be used for
this task. Next, we switch the numbers using memcpy and make the following
call next:

SuspendThread(GetCurrentThread());

We’ll try to suspend the current thread. The antivirus should interpret this as
program termination and won’t associate the earlier change of syscall
ordinals with the current function call – and by failing to do so, it misreads the
events.

By the end of the code, we need to restore everything to the initial state. We’ll
restore the original number by again calling memcpy.

176 MODULE 6.3.ANTI-EMULATION TECHNIQUES

What happened: ZwResumeThread is called through SuspendThread. In
reality, it did not change the thread. The program still executes the function.

What happened according to the AV: SuspendThread suspended the
current thread of the program and the rest of the code was not executed.

The next step could involve for instance decoding the program. If we allowed
the antivirus to do it, this would reveal the code’s true function and make it
easy to detect.

Apparently, there’s no silver bullet to prevent discovery. A better precaution is
using all these solutions in conjunction, just like AVs combine their three basic
virus detection methods.

Practice: video module transcript

Welcome to the final part of the sixth module of our training. In this part we'll
learn how to counter emulation, which is the most advanced technique used by
anti-virus programs.

The principle behind emulation is that it simulates the operation of the
program without actually executing it. We'll base our anti-emulation code on
the assumption that it's not a real program execution, but just a simulation. In
order to counter emulation, we'll write a code with the purpose of fooling the
anti-virus software so that it assumes that the program closes, enters an endless
loop or has an error that forces it to close.

Obviously, we can't really close the program - it just has to seem as if we did so.
Mind you, we mustn't use the if-else construction in our code because during
the emulation the antivirus will check both conditions anyway. We have to use
an operation the result of which is known to us, but which during the
emulation will return a different value than the one we assumed. It will result,
for instance, in a jump to a wrong address or the termination of the program.

The result of the GetLastError function, may serve as a relevant example, if we
call the htons function without the previous initialization of the winsock

177

library using the WSAStartup function. As we know, the htons function will
return an error, and GetLastError - the error code we know from the
documentation. As it seems, some anti-virus programs during the emulation
claim that the GetLastError function returns 0 in such cases, so there is no
error. Based on the error code, we can calculate the address for the jump. If
GetLastError returns a different value than the one we know, the jump address
will be wrong and the emulation will obviously fail. Let's try to use such an
approach in practice.

Here, we have the keylogger code we wrote earlier to counter heuristics. As we
remember, it was detected by two anti-virus programs. Let's send our file to the
VirusTotal to check the current result of the scanning. During the analysis we
can see the code of our program.

As we can see, we've added only this code fragment to the main function. First,
we get the address of the ZwResumeThread, and then we get the address of the
ZwSuspendThread function. These functions are only syscalls. Our code will
change the places of system calls of these functions, namely the function
ZwResumeThread will become ZwSuspendThread.

First of all, we get the call numbers the way we've done it before, that is we add
1 to the address and copy 4 bytes from this address. Next, we have to grant
writing rights here. Then, we add 1 to the ZwSuspendThread address and copy
there the value of the sys_res variable, that is the syscall number of the
ZwResumeThread function.

Next, we call the SuspendThread function. We provide GetCurrentThread as a
parameter, so we want to freeze the thread which is currently operating. The

178 MODULE 6.3.ANTI-EMULATION TECHNIQUES

anti-virus program will consider that the execution didn't complete, but the
currently executing thread was frozen and is no longer operating. However, we
know that in fact it is ResumeThread that executed, instead of SuspendThread.
It means that if we resume the current thread, absolutely nothing will happen.
After executing SuspendThread, the execution will move on to the next line
where we restore the previous bytes in ZwSuspendThread, that is the previous
syscall number we got, after which the execution moves on.

In other words, executing our code has no influence on the further operation
of the program. Anyway, we can check on our own whether everything
executes correctly. If the SuspendThread function actually executed there, the
code execution should halt. Let's have a look at our code in the debugger. As
usual, we use F8 and F7 to go to the main function.

Here we are, in the main function of the program. We can see our anti-
emulation function. If the numbers hadn't been changed, this code line would
interrupt the program execution. Let's check it step by step. Here we get the
ntdll address. It's written in the EAX register. Next, we get the function
address.

As we can now see, the EAX register includes the address of the
ZwResumeThread function. Again, we get the ntdll address and the

179

ZwSuspendThread address. We have this address in the EAX register one
more time.

Once they are obtained, the addresses are placed in the relevant registers. In
the EDX register we have the ZwResumeThread address, while the EAX
includes the address of the ZwSuspendThread function. We get the syscall
number from ZwResumeThread for the EDX register. In the register we can
see the number 130, which is the number of this call. To the EDI register, in
turn, we get the ZwSuspendThread number. Next, we execute the
VirtualProtect function in order to grant appropriate permissions. No error is
returned, so we get the handle of the current thread. As we already know, it's -
2. This function always returns such a value.

Now we execute the SuspendThread function. If we hadn't replaced the syscall
numbers, the call would halt. We press F8 and, as we can see, the thread wasn't
stopped. The execution carries on. In the next line, the syscall number is
restored. Now let's see whether the scanning results are ready.

The previous version of our application is now considered dangerous by only
one anti-virus – Norman. It should also be detected by Kaspersky but it's
currently inactive in the VirusTotal service. This happens sometimes when the
page is under load.

180 MODULE 6.3.ANTI-EMULATION TECHNIQUES

Now let's scan our modified program. Again, we have to wait for the results.
We can see that even though Kaspersy is already active, it doesn't detect any
threats in our program. We can also see the Norman application, which just a
while ago detected our program. Now, it considers it entirely safe. As a result,
the detectability of our code falls to zero.

In less than twenty minutes we managed to decrease the detectability of our
application from the initial 7 anti-viruses in the second part to zero in this part
of the module. Let's summarise what we've learnt so far.

In this part of the module we've dealt with emulation, the most advanced
technique used by anti-virus software. We've seen with our own eyes how
much can be changed by adding just a few code lines. It can effectively fool an
anti-virus program. Similar techniques are commonly used by malware
creators. We have to keep that in mind.

Encoding the code, for instance using the AES algorithm, would be equally
effective. In such a case, however, as we've already mentioned, there would be
an issue with the increase of entropy. The anti-virus software wouldn't be able
to emulate the code encoded this way, not because the emulation as such
would fail, but because such an operation would be too complex to calculate.
However, it doesn't necessarily mean that the encoded code would be
considered safe. The conclusion is as follows - don't encode the code if you
don't have to. We can possibly use encoding together with anti-emulation
methods, which is used in various programs which encode or obfuscate the

181

code. However, we need to find some kind of an equilibrium, the so-called
golden mean.

I strongly encourage you to explore and experiment with your own methods
based on threads which influence each other. Also, seek functions which,
under specific conditions, have well known results but can be skipped by anti-
virus software during the process of emulation. Thank you for your attention
and I hope to see you in the next module, where we'll discuss the issue of
bypassing the firewall.

182 MODULE 6.3.ANTI-EMULATION TECHNIQUES

