
219

Module 9

Defense

Rootkit detectors

Having focused on attacks, let’s now also tackle protection against rootkits.
This module teaches you how to detect suspicious software and its activity.
We’ll write a program that checks the current hooks in the IAT and checks the
libraries pointed to in function addresses.

Detecting an IAT hook is really simple. If you know that GetProcAddress is
contained in the kernel32 library, it becomes obvious that the function’s
address must fall in the range of <ImageBase; ImageBase+ImageSize>. If the
address you check points to a memory area in a different library or a memory
space where no library is linked, this means the function has been hooked.

First, we’ll declare the global parameters that intercept a process handle, the
PID of the checked process and the ImageBase of the main module. In the
main function, we assign to the PID its value returned from the console as the
first argument.

HANDLE hProc;
DWORD pid;
DWORD MainImageBase;
…
int main(int argc,char** argv)
{
pid=atoi(argv[1]);
…

220 MODULE 9. DEFENSE

The next step is finding the address of the program and the size of the
program.

DWORD IB=0;
DWORD ImgSize=0;
FindImageBase(pid,&IB,&ImgSize);
printf("ImageBase: 0x%.8x\nImageSize: 0x%.8x\n\n",IB,ImgSize);

The FindImageBase function:

DWORD FindImageBase(DWORD pid,DWORD* IB,DWORD* ImgSize)
{
PROCESSENTRY32 lppe32;
char buf[260];
memset(buf,0,260);
 HANDLE hSnapshot;
 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
 lppe32.dwSize = sizeof(PROCESSENTRY32);

 Process32First(hSnapshot, &lppe32);
 do
 {
 if(lppe32.th32ProcessID==pid)
 {
 strcpy(buf,lppe32.szExeFile);
 break;
 }

 }
 while(Process32Next(hSnapshot, &lppe32));

 CloseHandle(hSnapshot);
if(buf[0]==0)
{
return 0;
}
MODULEENTRY32 mod32;
std::string x;

 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid);
 mod32.dwSize = sizeof(MODULEENTRY32);

 Module32First(hSnapshot, &mod32);
 do

221

 {
 x=mod32.szExePath;
 if(x.find(buf)!=0xFFFFFFFF)

 {
 *IB=(DWORD)mod32.modBaseAddr;
 *ImgSize=mod32.modBaseSize;
 }
 }
 while(Module32Next(hSnapshot, &mod32));
 CloseHandle(hSnapshot);
return 1;
}

The function looks long and complicated, but in truth it’s relatively basic: it
scans the process list and then the module list of a found process. The next step
involves opening the process and loading the program file to the buffer.

hProc=OpenProcess(PROCESS_VM_READ|PROCESS_QUERY_INFORMATION,FALSE,pid);
if(hProc==0)
{
printf("can`t open process\n");
return 0;
}

char* buf=LoadMod(IB);
MainImageBase=IB;

The LoadMod function:

char* LoadMod(DWORD IB)
{
char ProcName[260];
GetModuleFileNameEx(hProc,(HMODULE)IB,ProcName,260);
std::ifstream f(ProcName,std::ios::binary);
char* buf;
f.seekg(0,std::ios::end);
int size=f.tellg();
f.seekg(0,std::ios::beg);
buf=(char*)malloc(size);
memset(buf,0,size);
int i=0;
char ch;
while(i<size)
{

222 MODULE 9. DEFENSE

f.get(ch);
buf[i]=ch;
i++;
}
f.close();
return buf;
}

Again, we are using the PE_file class in the code, this time however making
use of a constructor that takes the address of the file buffer as an argument.

PE_file PE((HMODULE)buf);
IAT(&PE);
free(buf);

Checking for hooks takes place entirely inside the IAT function.

void IAT(PE_file* PE)
{
HINSTANCE hInstance =(HINSTANCE)PE->buf;
PIMAGE_DOS_HEADER pdosheader = (PIMAGE_DOS_HEADER)hInstance;
PIMAGE_NT_HEADERS pntheaders = (PIMAGE_NT_HEADERS)((DWORD)hInstance +
pdosheader->e_lfanew);
PIMAGE_SECTION_HEADER psectionheader = (PIMAGE_SECTION_HEADER)(pntheaders + 1);
PIMAGE_IMPORT_DESCRIPTOR pimportdescriptor =
(PIMAGE_IMPORT_DESCRIPTOR)((DWORD)hInstance +
PE->RVA_to_RAW(pntheaders->OptionalHeader.DataDirectory[1].VirtualAddress));
PIMAGE_THUNK_DATA pthunkdatain, pthunkdataout;
PIMAGE_IMPORT_BY_NAME pimportbyname;
DWORD dw;
PCHAR ptr;
DWORD IB;
char* buf;
DWORD ImgSize;
PIMAGE_OPTIONAL_HEADER32 opt;
DWORD address;
DWORD IAT_adr;
DWORD read;

int i=0;
while (pimportdescriptor->TimeDateStamp != 0 ||pimportdescriptor->Name != 0)
{
ptr = (PCHAR)((DWORD)hInstance+ PE->RVA_to_RAW((DWORD)pimportdescriptor->Name));
 i=0;
 IB=FindModule(ptr);

223

 buf=LoadMod(IB);
 PE_file PE2((HMODULE)buf);
 opt=PE2.GetOptionalHeader();
 ImgSize=opt->SizeOfImage;
 free(buf);

pthunkdataout = (PIMAGE_THUNK_DATA)((DWORD)hInstance +
 PE->RVA_to_RAW((DWORD)pimportdescriptor->FirstThunk));
 if (pimportdescriptor->Characteristics == 0)
 {
 pthunkdatain = pthunkdataout;
 }
 else
 {
pthunkdatain = (PIMAGE_THUNK_DATA)((DWORD)hInstance +
 PE->RVA_to_RAW((DWORD)pimportdescriptor->Characteristics));
 }

 while (pthunkdatain->u1.AddressOfData != NULL)
 {
 if ((DWORD)pthunkdatain->u1.Ordinal & IMAGE_ORDINAL_FLAG)
 {
 LPSTR x=MAKEINTRESOURCE(LOWORD(pthunkdatain->u1.Ordinal));

 address=MainImageBase+(pimportdescriptor->FirstThunk+(i*4));

 ReadProcessMemory(hProc,(LPCVOID)address,&IAT_adr,4,&read);

 if(IAT_adr<IB || IAT_adr>(IB+ImgSize))
 {
 DWORD HookBase=FindHookModule(IAT_adr);
 char modname[260];
 if(HookBase==0)
 {
 strcpy(modname,"Virtual Memory");
 }
 else
 {

 GetModuleFileNameEx(hProc,(HMODULE)HookBase,modname,260);
 }
printf("Ord: %x(%s) --- Hooked by %s(0x%.8x)\n",x,ptr,modname,IAT_adr);
 }
 } else {

pimportbyname = (PIMAGE_IMPORT_BY_NAME)(PE->RVA_to_RAW((DWORD)

224 MODULE 9. DEFENSE

 pthunkdatain->u1.AddressOfData) + (DWORD)hInstance);
address=MainImageBase+(pimportdescriptor->FirstThunk+(i*4));

 ReadProcessMemory(hProc,(LPCVOID)address,&IAT_adr,4,&read);
 if(IAT_adr<IB || IAT_adr>(IB+ImgSize))

 {
 DWORD HookBase=FindHookModule(IAT_adr);
 char modname[260];
 if(HookBase==0)
 {
 strcpy(modname,"Virtual Memory");
 }
 else
 {
 GetModuleFileNameEx(hProc,(HMODULE)HookBase,modname,260);
 }

 printf("%s(%s) --- Hooked by %s(0x%.8x)\n",
(char*)pimportbyname->Name,ptr,modname,IAT_adr);
 }
 }
 i++;
 pthunkdatain++;
 pthunkdataout++;
 }

pimportdescriptor++;
}
}

The IAT function uses two other functions. One finds a module address, and
the other checks which library the address points to.

void str_tolower(char* str)
{
int i=0;
int size=strlen(str);

while(i<size)
{
str[i]=tolower(str[i]);
i++;
}
}

225

DWORD FindModule(char* mod_name)
{
MODULEENTRY32 mod32;
std::string x;
HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid);
mod32.dwSize = sizeof(MODULEENTRY32);
str_tolower(mod_name);
Module32First(hSnapshot, &mod32);
 do
 {
 str_tolower(mod32.szExePath);
 x=mod32.szExePath;

 if(x.find(mod_name)!=0xFFFFFFFF)
 {
 return (DWORD)mod32.modBaseAddr;
 }
 }
 while(Module32Next(hSnapshot, &mod32));
 CloseHandle(hSnapshot);
 return 0;
}

DWORD FindHookModule(DWORD Address)
{
MODULEENTRY32 mod32;
HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid);
mod32.dwSize = sizeof(MODULEENTRY32);

 Module32First(hSnapshot, &mod32);
 do
 {
 if(Address>=(DWORD)mod32.modBaseAddr &&
 Address<=(DWORD)(mod32.modBaseAddr+mod32.modBaseSize))
 {
 return (DWORD)mod32.modBaseAddr;
 }

 }
 while(Module32Next(hSnapshot, &mod32));
 CloseHandle(hSnapshot);
 return 0;
}

As you can see, checking the set hooks is quite effortless. All it takes is
comparing whether a function address belongs to the right library.

226 MODULE 9. DEFENSE

Rootkit detection features are also provided by ready-made software. One of
the most popular and best detectors is GMER. GMER can reveal both user-mode
and kernel-mode hooks and in addition is able to pick up many other
suspicious behaviors and occurrences, for instance writable data sections or
code modifications.

To detect malicious code, it’s best to start with running an application similar
to the one presented in this chapter, and use a GMER-like program. When you
have identified an attacked application, attach a debugger and see the loaded
libraries. Also, be sure to check the locations of the potentially spoofed
libraries. It can turn out that even if the filename is correct, the original library
has not been loaded. If you aren’t yet able to pinpoint the harmful application,
take a look at autoruns. Make sure you can identify all started applications.
Remember no antivirus is a fully effective tool: it’s just software and has
repeatedly been shown as vulnerable to deception.

Usually malware attempts to set up an Internet connection. Check all
applications that use the Internet through network traffic analyzers. When you
get the list, see if you trust all applications on it. Also the use of a sniffer like
Wireshark can produce some good results. Provided the connection is not
encoded, you might be able to see if your computer receives or sends
suspicious commands. When you notice strange activity, try to associate a
specific transmission with a port, and then with a currently executed program.

227

Practice: video module transcript

Welcome to the ninth module of the training. In this module we'll learn more
about defense methods. So far we've analysed the offense. We've managed to
get to know the enemy, so it's high time that we focused on effective methods
of countering the threats we've learned about. First, we'll deal with the
detection of IAT hooking, the technique we used in the third module to hide
files and registry entries.

Detecting this technique is relatively easy if we know how to start. Let's think
about it for a while. If a hook is used in IAT, the function address points to a
different dll library than the one it originally pointed to. We'll create a
program which will detect this type of hooking and test it. We'll also learn how
to track a suspicious application based on its network activity. As we can
assume, the vast majority of harmful applications connect with the Internet at
some point to send or receive data. We'll see how to track an application which
generates suspicious network activity.

Let's move on to the demonstration. First, we'll deal with hooks in the Import
Address Table, IAT for short. We can see a couple of applications here. The
first one is GMER. It's a program which detects various types of hooks and
modifications in the system. Another application is hidder_dll. It's a library
which we wrote in the third module in order to be able to hook. We used the
injector to inject the dll library to the process as well as the keylogger on which
we'll test detecting suspicious network activity. There is also list file, our
application for listing files which comes from the third module. First, let's start
the list file program in one of the consoles. As for now, it's not relevant what
the application is displaying. Our task is only to check the hooks. We have to
get the process identifier.

228 MODULE 9. DEFENSE

For this purpose, we'll use the auxiliary tasklist program. We see that the id is
4844. Now we'll check the hooks, using our own application created for the
needs of this module.

As we can see, the application has found a couple of hooks. However, not all of
them are real. For instance, we can see that a hook was used by the ntdll
library. We don't have to worry about that, it's a sort of false positive because
not all functions are actually present in their libraries, some are simply
redirected to others, just as the case with kernel32, which is redirected to ntdll.
Now let's hook. We choose the hidder_dll library and inject it into the process.

229

Let's check again. We can see that this time there appeared two new hooks on
the list. The first one concerns the FindFirstFileExA function, while the other,
FindNextFileA. At this point we may have certain suspicions, because these
functions are used to get file lists. We may assume that an application tries to
hide a file on the drive. We can also see that the address points to the
hidder_dll library, which isn't a standard system library. It seems our
suspicions are even more grounded.

Now let's check what GMER has to tell us about that. The screen turned black
for a moment. Let's refresh it. Let's scan the system right away. We see that
GMER has already started scanning. First, it found hooks in SSDT. These
hooks are used by the anti-virus software. The next ones are kernel hooks.
Most probably they are from the anti-virus, so we shouldn't worry about them.
We have to learn how to distinguish potentially dangerous entries from the
normal ones that are created by the anti-virus software. Let's wait until GMER
finishes the scanning. It should also show us the hook which we've used on the
ZwQuerySystemInformation function, because as we remember, the task of
this library is to hide a process and it hooks this particular function.

We can see that the program detected a modification in the list_file process
and informs us that the ZwQuerysSystemInformation has been modified. We
can also see which bytes have been modified and at which address they are. At
the moment, we're searching for hooks in the import table. There appeared

230 MODULE 9. DEFENSE

some new items on the list, but they are entirely normal, used by the operating
system in the GDI+ library.

We see that GMER has already finished the IAT scan and is searching other
areas. Curiously, it didn't find our hooks used on the import table. It's
probably caused by the fact that it considered our hook safe, or it simply uses a
different method. That's one of the reasons why we shouldn't completely trust
the widely available tools. As we can see, even the ones considered the best
ones, such as GMER, aren't able to detect all threats. We should create our own
tools and periodically test the system on our own.

Now we can stop the scanning. Let's discuss the application source code which
we've used to detect hooks in IAT. As it seems, when it comes to this particular
case, our program is better than GMER. Again, we are to use our class to
handle PE files. The code is pretty long, but still, we'll try to discuss it. Let's
start from the main function and then move on to the remaining program
methods.

We can see that the list of all processes is displayed if no calling argument is
provided. We didn't use this option and checked the process identifier using
the tasklist application. The first parameter is the process number and it's
changed to a variable of type int using the atoi function. Further, we have the

231

call of the function which searches for the ImageBase, and the size of the
application the number of which we provide. We'll jump to this function. It
takes the process_id as well as two pointers under which we have the relevant
values. First, it gets the process list. Once it finds a process with the specific
identifier, it copies the file name to the buffer. If the given process isn't found,
the function returns 0 because further execution won't succeed.

However, if the operation is executed correctly, we get the list of modules of
the process pointed to and search for the module with the name we previously
copied to the buffer. Once the module is found, we set the pointed values of
our two pointers to process ImageBase and image size respectively. After
exiting the function, we have the base address of the main module in the IB,
and the size of the main module in ImgSize.

232 MODULE 9. DEFENSE

In the next step, we open the process. For that purpose, we just need the
reading rights and the rights to obtain the process information. If the returned
value is different than 0, it means that the process was opened correctly. Now
we load the module using the LoadMod function. Let's jump to it. This
function takes the imagebase of the module as a parameter, but in the body it
gets its name thanks to the GetModuleFileNameEx function, after which it
reads the file to the buffer using the ifstream class and returns the buffer with
the file contents.

In the main function, we assign IB to the global variable MainImageBase and
then the buffer is loaded to the PE_file class. Further, we call the IAT function,
which checks whether any hooks have been used. As a parameter, we pass an
object of the PE_file class. Now let's jump to the IAT function. It's a function
the base of which we've already seen multiple times. First, we get the library
name. Then, using the FindModule function, we get the module ImageBase.
The function gets the module list, searches for the module with the name
which was passed in the parameter, and subsequently returns the ImageBase of
this module.

233

As we remember, the LoadMod function loads the module from the file to the
buffer. Hooks modify only the memory, and not physical binaries. Hence, we'll
have a reference material which might be used for detection. Next, we create a
PE2 object, we assign a buffer to it, then we get an Optional Header and from
it, in turn SizeOfImage, that is the size of the image in the memory. We can
release the buffer now. Once we already have all the information, we can move
on to look for hooks in the import table. This time we can't skip the imports
via the ordinal. We create a variable x and assign to it the result of the
operation of the MAKEINTRESOURCE macro. The macro will convert the
value present in IAT to the relevant variable.

We calculate the address at which the function address is located. We perform
it by adding the FirstThunk field from the pimportdescriptor structure to the
program ImageBase, and next adding the function number on the list
multiplied by the size of the int type, that is 4 bytes. The next step is reading
the memory from this address so as to get the address of the function located
in the IAT table. We read it to the IAT_adr variable.
The next step is checking whether the address which is present in IAT is within
the range spanning from the ImageBase of the module it should point to, to
the ImageBase + ImageSize. In other words, we check whether the address
points to the right module. If, for instance, the function should be imported
from kernel32, we check whether its address points to the memory occupied by

234 MODULE 9. DEFENSE

the kernel32 module. If the address points outside this range, we may assume
that a hook was used.

If the condition was fulfilled, we have to get to know which module the address
points to. For this purpose, we’ll use the FindHookModule function. Let's get
acquainted with it. We see that it takes a parameter with the address. The
function gets the list of modules and compares the passed address with the
memory occupied by other modules. If the address is within the range from
the module ImageBase to ImageBase+ImageSize, it means that it belongs to
this module and most probably it’s the module that hooked.

235

If the address doesn't match any module, it means that the function code is
present in the memory allocated by VirtualAlloc and we can't determine which
module used the hook. In such a situation, the function returns 0. Let's return
again to our IAT function. If the FindHookModule function returns 0, we
copy the Virtual Memory string to the modname variable. We know that the
function is hooked, but the address doesn't belong to any of the loaded
modules. However, if an address was returned, we get the module name using
the GetModuleFileNameEx function, and print the results on the screen.

Here, we're analysing the case of an ordinal, but in the case of an import via the
name, the procedure looks almost identical. The difference lies in the method
of getting the function name. In such a situation, instead of a number, we
would simply have a character string. We see that both the code and the
method are relatively simple, because they are based on a simple comparison
whether the address in IAT points to the relevant module.

That's basically all about detecting hooks. Now let's move on to check
potentially dangerous network connections. For this purpose, we'll use a free
application named Wireshark, that is a popular network sniffer, which allows
us to see what packets are sent and received from the Internet.

236 MODULE 9. DEFENSE

We choose the web interface which we'll be listening on. Now we can launch
our keylogger and check what our sniffer will show us. We have to wait for the
packets to appear. We see that a broadcast packet appeared. We remember that
the keylogger sends one log per minute. Let's write something using the
keyboard, so that the program has something to send. We see that many
packets appeared, which means that our keylogger has just sent a log.

Let's browse these packets. We see that the address 192.168.0.103 is a typical
address in the local network and it's the address of our computer. The packet
was sent to the address 178.63.220.15, that is some external server. However,
we don't see which application is the packet sender. Of course, we can inspect
such a packet. We can see that there is an error there, but it's not an issue,
because the server deals well with such situations. Now, let's see how to track
the program which sent the packet. For this purpose, we need a console started
with admin rights.

237

Let's use the standard netstat tool. We'll get acquainted with its help. It
includes the description of all its parameters. We'll use the "b" parameter,
thanks to which we'll see the executable file which establishes the connection.
We'll also use "t" with the parameter "1", so that the program refreshes our
results each second. We enter netstat –b –t 1 and again, we have to wait for a
while until the keylogger sends us some data.

We can close the two previous consoles because we won't need them anymore.
A connection should appear in a moment. Then, we'll halt the netstat
execution using the CTRL+C combination.
Our keylogger hasn’t sent us anything for awhile, so let's check whether it's
actually in the process list. Unfortunately, it seems that it closed. Let's start it
and wait for the data. We can see a connection appeared. We've stopped the
action and we see that the opera.exe process is sending a packet. As we
remember, our keylogger launches the browser in order to bypass the firewall.
Obviously, we didn't launch the browser, so some application had to use it to
send a packet. However, we still don't know which application is responsible
for that.

238 MODULE 9. DEFENSE

Now let's launch the ProcessExplorer application to figure that out. We see
that the keylogger already launched the opera.exe process and based on this we
may conclude that keylogger.exe is the application which starts the browser
and communicates with the Internet without our permission. Once we have
this information, we can safely close the process and remove the harmful file.

Let's sum up what we've learned in this module. We've just seen how to detect
IAT hooking. Thanks to that, we've learnt which module in our system is
responsible for hooking. On this basis we can determine which application
uses this module. It can help us link the situation to the actual aggressor. We've
also seen how to identify a suspicious program based on its network activity.
Using the netstat application we've managed to establish that it was a browser
that was used to send the packets. Eventually we've managed to trace the
harmful code using the Process Explorer, which demonstrated that the
keylogger is responsible for unauthorised data transmission. That is everything
when it comes to this module. Thank you for your attention and please go to
the next module, where we'll summarise the knowledge we've learned so far.
See you there.

