
239

Module 10

Rootkit development and summary

Rootkit development and summary

Welcome to the tenth module of the training. It's the last module where we'll
sum up what we've learnt so far. We'll systematize our knowledge and expand
a bit the dll library we created in one of the previous modules. This time, we'll
hook more functions, which will enable us to hide files from a greater number
of programs. We'll also expand our rcmd application, or the remote console, so
that it injects the hidder_dll library into the running processes (with some
exceptions which we'll define a bit later).

We'll also modify the method of hiding in our new library. We'll hide files and
processes based on their name prefix. We'll assume that if a name begins with
the __hide tag, such a file or process will be hidden. Thanks to that, we'll be
able to hide a greater number of objects and our application will become more
flexible. Additionally, as opposed to the previous modules, we'll work in the
64-bit mode now. The 64-bit version of the system slowly makes its 32-bit
counterpart obsolete, so this module is definitely up-to-date.

240 MODULE 10. ROOTKIT DEVELOPMENT AND SUMMARY

Let's start from getting acquainted with the source code of our new dll library.
In the main function we hide processes, files and registry entries. We pass the
__hide tag to our function and if we detect it in the name, the relevant file,
process or registry entry will be hidden. Let's see the elements which changed
since we discussed the last version. The NewZwQuerySystemInformation
function barely changed. However, we don't hook it by modifying the code,
but (similarly to other functions) in the IAT table. The comparison changed as
well. First we checked whether str = p_name, but in the new version we have
an instruction which searches a character string. If we find the tag we're
looking for, such an object should be hidden. Apart from that, there are no
changes in the logic of our application.

Another function which has been slightly rebuilt is HideProcess. This time, as
we can see, it doesn't modify the code, but uses the IAT function to hook. We
also see that there appeared more pointers to functions. We'll hook all the
functions. In order to hide data from a greater number of applications, we
have to remember to hook not only the A, that is ANSI versions of all
functions, but also their WIDE counterparts, which operate on multi-byte
character encoding, such as UTF. Additionally, in the shell32.dll module we'll
hook the ZwQueryDirectoryFile function. It takes many parameters, but we'll
only be interested in three of them. The first one is FileInformation, which is a
data buffer, FileInformationClass, which is the type number of data we get, as
well as SingleEntry, which is a value of type bool and informs us whether we
obtain a single element, or the entire list. In the case of this function, the file
list is passed similarly as the process list, that is as a one-way list.

241

In the NewFindFirstFileExA function, again, we have a line with the
comparison we've discussed. In the case of the function of type WIDE, the
difference is that the string was previously converted from ANSI to
UNICODE. Again, to search for a string we make use of the find function.
NewFindFirstFileW is actually the same function as NewFindFirstFileExW,
but it takes less parameters. Again, the NewFindNextFileA function is no
different than the original one, apart from the new comparison, while the
NewFindNextFileW function is a copy of NewFindFileA extended with the
name conversion.

We also have to add a new structure FILE_ID_BOTH_INFORMATION,
because that's the structure programs use to get the file list. We'll need three
pointers to this structure. The first one is p_fb, which will be a pointer to the

242 MODULE 10. ROOTKIT DEVELOPMENT AND SUMMARY

previous element. The next one is fb, which is a pointer to the current element,
while the third one is s_fb, which will point to the beginning of the list. First,
we call the original ZwQueryDirectoryFile function. Next, we assign zero to
the zm variable. We'll soon learn what we'll use this variable for. Further, we
check whether the stat variable equals zero, that is whether the call was
successful, as well as whether the FileInformationClass equals 0x25, because
we're only interested in this data class.

If the list includes more than one element, ReturnSingleEntry returns 0. We
can't modify the list which consists of only one element.
First, we assign zero to p_fb, while the pointer to our structure, that is
FileInformation, goes to fb. We assign fb to s_fb, that is we store the beginning
of the list.

Next, we have an endless loop, because we can hide only one file in a single
iteration, but we need to have a possibility of hiding more objects. In my
opinion, we've used the simplest method so as not to go back and search from
the beginning. We've created a zm variable and set it to zero. If we hide a file,
we increase it by 1. The loop is interrupted if no elements are hidden in its
entire cycle. In the inner loop we also use the already-mentioned condition. If
the end of the list is detected and the NextEntryOffset field equals zero, which
means that fb equals p_fb, the loop is ended. In the next loop, first we nullify
the working array w_str, then we copy to it the file name and assign it to the

243

variable of wstring type, that is a wide string. In this case, we don't convert the
string to the ANSI format.

Next, there is a comparison with the __hide tag. We check whether p_fb is
different than zero. Otherwise, we couldn't modify the first element because it
wouldn’t have the previous element. We check it perhaps a bit unnecessarily,
because the first returned element is always the file named „.”. However, to be
sure that the library doesn't throw an exception, it's better to check it, which is
all the more important because we'll inject our library into all processes. If we
find an element which has to be hidden, first we increase the value of the zm
variable by 1 to ensure another loop cycle and check whether there are no
more files to hide. Then, we hide the element in a standard way, by swapping
the pointers. If it's the last element, we set the previous one to zero. If it's not
the middle of the list, we add the NextEntryOffset value of the current element
and swap elements in a standard way, that is the previous one with the current,
and the current one with the next one.

244 MODULE 10. ROOTKIT DEVELOPMENT AND SUMMARY

Further, we have our IAT function, which is responsible for hooking. It's the
same function, but as we’re working in the 64-bit mode, our address space is
also 64-bit. In this mode, pointers don’t have the size of 4 bytes, as in 32-bit
systems, but 8 bytes. That's why in all places where we previously had 4, now
there is 8.

Next, we have the HideFile function. Inside, we get the addresses of all the
functions and pass the name to be hidden to the f_hide function. However,
first we check in the function whether the function addresses can be obtained
from the KernelBase library, which isn't present in all the Windows versions. If
that's not possible, we get them from the kernel32 library, which should be

245

present in all system versions. Here, we notice an interesting issue, because we
hook all the functions we import from kernel32 in the main program module.
However, we hook the ZwQueryDirectoryFile function in the shell32.dll
module, because each dll library has, additionally, its own import table.
Curiously, all standard dialog boxes are present in the shell32 library.
Windows explorer also uses this library to list files. If we substitute the
functions here, the library will return incorrect data to other programs.

We have to hook both NtQueryDirectoryFile and ZwQueryDirectoryFile. Both
of them point to the same thing, but we don't know which of them will be
present in the IAT table. Now let's go to our second program, the remote
console. We've added one function to the application so that it additionally
uses maps, that is hash tables. It's a data structure for which we initially
allocate much space, but we can address it e.g. using a string, or any other
value, because based on the input data it calculates a certain number, the so-
called hash, which becomes the table index. It's a pretty useful structure for our
purposes, because it's easy to check whether the element with a given name or
number is present in the table.

In our table with hash keys there are process numbers, the values being 0 or 1.
If 0 is present under the index, it means that we didn't inject any library into
the given process and we have to do it. If it’s 1, it means that a library has
already been injected and we don't have to do it again. This function gets the
process list in a loop and for each process from the list checks whether the
value under the number of this process equals 0 or 1. If it's 0, it injects the dll
library.

246 MODULE 10. ROOTKIT DEVELOPMENT AND SUMMARY

When injecting we have to skip a couple of elements important for the system,
such as dwm.exe, the Windows window manager. As well, the case of cmd.exe,
because our application uses this program. It also uses __hide.exe, because we
don't want to deprive ourselves of certain options. Taskhost and conhost are
certain critical system applications, so we shouldn't modify them. Otherwise, it
could throw an exception. Injecting the dll library takes place as usual. We
open the process, allocate memory there, save the name of the dll library and
call the LoadLibrary function within the context of the program. We won't
discuss the rest of the code because we already did it in the fourth module of
the training. The only exception is the ProcessList function, which we have to
launch as a thread function. We see that it has the form of a typical thread
function, so it returns the value of type DWORD, it's of type stdcall and takes a
value of PVOID type in the parameter.

247

We launch the thread in the main function. The name of the dll library will be
similar as the name of our program, but instead of the exe ending, it's ended
with dll. Now, we get the name of our program, change the three last
characters from exe to dll and create a thread using the CreateThread function.

It's also good to add that in order to inject a library into a 64-bit process, we
need both a 64-bit injector as well as a 64-bit dll library. That's why we compile
the project in the 64-bit mode.

248 MODULE 10. ROOTKIT DEVELOPMENT AND SUMMARY

Now let's see how all that works in practice. We have to copy the library. In the
folder we have the old library, so we have to remove it first. We name the new
library __hide and start the program. As we can see, the system is working,
which means that our library is being injected. We press F5 to refresh the
window and we see that both files disappeared.

Now we press Ctrl+Alt+Delete to enable the task manager. As we can see, the
__hide.exe process isn't present on the list, which means that it was hidden
correctly. All that thanks to the thread which once per second checks whether
new processes appeared into which we should inject our library.

Now we launch Total Commander and check whether our files are still hidden.
We can see the directory with our programs. Let's enter the rcmd directory and
check whether the files are visible. As we can see, Total Commander can't find
our files. Our hooking works. All this, because we’ve hooked all the running
processes rather than a single, chosen program.

249

Let’s try to find the hidden file using the Visual Studio selection window. We
open the directory and we see our files, because Visual Studio is a 32-bit
application. If we want to hide a file from a 32-bit application, we would have
to use a 32-bit counterpart of our library and injector. We can't inject a 64-bit
dll library into a 32-bit process. It's not difficult to prepare such a library. We
just need to change the compilation options of our project from 64 to 32 bits
and modify the aforementioned eights to fours in the IAT function body.

Wrapping up

At this point, we've reached the end of this module and the entire training. I
hope you've learnt much from it, while having great fun and experimenting
with interesting examples. Thank you for your attention and I recommend
that you check out other trainings you'll find on our website. Hope to see you
there.

