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Preface

The challenges in today’s software development are diverse and go
far beyond implementation tasks. They range from requirement spec-
ification over system design and implementation to maintenance and
further adaptation of the software—to name just a few phases in the
software life cycle. In all of these phases of the software develop-
ment process, many people with different backgrounds and experiences
are usually involved. These people need a common language for ef-
ficient communication. Obviously, such a language should be as pre-
cise as possible without the ambiguities of a natural language. For this
purpose, modeling languages have emerged. They are used to create
sketches and blueprints for software systems, which in turn serve as
a basis for the implementation or even automatic generation of exe-
cutable code. In the area of object-oriented software development, the
Unified Modeling Language (UML) was able to prevail. Of course, to
use the language correctly and efficiently, it is necessary to understand
the concepts offered by UML. Since 2006, we have offered the course
“Object-Oriented Modeling” at the Vienna University of Technology.
This course is mandatory for computer science and business informat-
ics students in their first year. Overall, we have up to 1,000 students per
year who attend our course. To deal with such a huge number of stu-
dents while keeping high quality standards, much effort has been spent
on the preparation of such a course. This includes the overall organi-
zation, course material, and e-learning support. Parts of the course de-
sign have been presented at the Educators’ Symposium of the MODELS
conference [8, 9, 10, 11, 7, 46]. We teach the basics of object-oriented
modeling by means of UML.

v



vi

In particular, we teach

• class and object diagrams,
• sequence diagrams,
• state machine diagrams,
• activity diagrams, and
• use case diagrams

as well as their interrelations. For this purpose, we introduce the syntax
(the notation of the language elements), the semantics (the meaning of
the language elements), and the pragmatics (how to use the language
elements) of these UML diagrams. They cover the most essential con-
cepts of object-oriented modeling and are used in many different stages
of the software development process. The course is designed for stu-
dents who already know the basic concepts of object-oriented program-
ming languages such as Java or C#, but still have no practical experi-
ence in software engineering. Based on our comprehensive experience
in teaching UML, we wrote the book UML@Classroom. In this book,
we address both readers who wish to learn UML in a compact but nev-
ertheless precise manner and teachers whom we want to provide with
inspiration for their own course exercises with our extensive example
repertoire. We teach UML as close to the standard as possible and illus-
trate all concepts using intuitive examples. The book is complemented
by a website, which contains a complete set of slides to teach the con-
tents of the book as well as teaching videos and e-learning material
(http://www.uml.ac.at/).

Software modeling is a very young field of computer science. It ex-
perienced an incredible growth within the last two decades. Today, the
usage of models goes far beyond pure documentation. Techniques from
the area of modeling continually replace conventional programming.
Models are far more than just pictures, and modeling is far more than
just drawing. With our book UML@Classroom, we want to provide a
solid foundation and deep understanding of the most important object-
oriented modeling concepts. We aim for rising interest and enthusiasm
for this exciting and extremely important field of computer science.
UML@Classroom is a textbook, which explicitly addresses beginners
and people with little or no modeling experience. It introduces basic
concepts in a very precise manner, while abstaining from the interpre-
tation of rare special cases. UML@Classroom is kept very compact in
order to allow the reader to focus on the most commonly used concepts
of UML. Much emphasis is spent on illustrative examples breathing life
into the theory we present.

Preface
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Chapter 1

Introduction

The Unified Modeling Language (UML) is a consolidation of the best Unified Modeling

Language (UML)practices that have been established over the years in the use of model-
ing languages. UML enables us to present the widely varying aspects
of a software system (e.g., requirements, data structures, data flows,
and information flows) within a single framework using object-oriented
concepts. Before we venture too deeply into UML, however, in this
chapter we first explain why modeling is an indispensable part of soft-
ware development. To do this, we look at what models are and what
we need them for. We briefly recapitulate the basic concepts of object
orientation before continuing with an overview of the structure of the
book.

1.1 Motivation

Imagine that you want to develop a software system that a customer
has ordered from you. One of the first challenges you are confronted
with is clarifying what the customer actually wants and whether you
have understood the customer’s exact requirements for the prospective
system. This first step is already critical for the success or failure of your
project. The question is, how do you communicate with your customer?
Natural language is not necessarily a good choice as it is imprecise and
ambiguous. Misunderstandings can easily arise and there is a very great
risk that people with different backgrounds (e.g., a computer scientist
and a business manager) will talk at cross-purposes, which can have
serious consequences.

What you need is to be able to create a model for your software. This
model highlights the important aspects of the software in a clear form

1© Springer International Publishing Switzerland 2015 
M. Seidl et al., UML @ Classroom, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-3-319-12742-2_1 



2 1 Introduction

of notation that is as simple as possible but abstracts from irrelevant
details, just like models in architecture, e.g., construction plans. A con-
struction plan for a building contains information such as the floor plan.
Construction materials to be used are not specified at this point in time;
they are irrelevant and would make the plan more complicated than nec-
essary. The plan also does not contain any information about how the
electrical cables are to be laid. A separate plan is created for this aspect
to avoid presenting too much information at once. Just like in architec-
ture, it is important in information technology that people with different
backgrounds (e.g., architect and builder) can read, interpret, and imple-
ment the model.

Modeling languages were developed precisely for such scenarios andModeling language

demonstrate clearly defined rules for a structured description of a sys-
tem. These languages can be textual (e.g., a programming language such
as Java) or visual (e.g., a language that provides symbols for transis-
tors, diodes, etc. that can be combined with one another). Modeling
languages can be designed for a specific domain, for example, for de-
scribing web applications. On the one hand, these domain-specific mod-
eling languages provide tools and guidelines for solving problems in a
specific field efficiently; on the other hand, they can also be restrictive.
Alternatively, modeling languages can be designed for general purpose
use. The language UML, which is the subject of this book, is a general
purpose modeling language. We will use UML to get to know the most
important concepts of object-oriented modeling.

Object-oriented modeling is a form of modeling that obeys theObject-oriented

modeling object-oriented paradigm. In the following two subsections, we will
look briefly at the notion of a model and the main concepts of object
orientation. This will provide us with a good basis for our subsequent
examination of object-oriented modeling with UML.

1.2 Models

Models allow us to describe systems efficiently and elegantly. A systemSystem

is an integrated whole made up of components that are related to one
another and influence each other in such a way that they can be per-
ceived as a single, task-based or purpose-based unit. In this regard, they
separate themselves from the surrounding environment [52]. Examples
of systems are material things, such as cars or airplanes, ecological en-
vironments, such as lakes and forests, but also organizational units such
as a university or a company. In information technology, we are inter-
ested in particular in software systems and thus in models that describeSoftware system

software systems.



1.2 Models 3

Software systems themselves are based on abstractions that repre- Abstraction

sent machine-processible facts of reality. In this context, abstraction
means generalization—setting aside specific and individual features.
Abstract is the opposite of concrete. Abstracting therefore means mov-
ing away from specifics, distinguishing the substance from the inciden-
tal, recognizing common characteristics [29].

When creating software systems, it is extremely important to select Selecting means of

abstractionsuitable means of abstraction: on the one hand for the implementation,
but on the other hand also for the subsequent use of the software sys-
tems. Choosing the correct means of abstraction makes programming
easier. The individual parts then have simple and small interfaces. New
functionality can be introduced without the need for extensive reorga-
nization. Choosing the wrong means of abstraction might result in a
number of nasty surprises during implementation: the interfaces will
be complicated and it will be difficult to implement changes. You can
only manage the ever-increasing complexity of modern software sys-
tems with suitable means of abstraction [26]. This is where modeling
can provide valuable services.

To develop a better understanding of modeling concepts, below we
present widespread and generally recognized definitions of the notion
of a model as well as the properties that a good model should possess.

The notion of a model is important not only in information tech- Model

nology but also in many other scientific disciplines (mathematics, phi-
losophy, psychology, economics, etc.). Derived from the Latin “modu-
lus”, which designates a scale in architecture, during the Renaissance
the word “modello” was used in Italy for an illustrative object intended
to present the form and design of a planned building to a client and
to clarify design and architectural questions. Over the subsequent cen-
turies, the notion of a “model” has been used in various branches of
science for a simplified description of complex facts from reality.

In 1973, Herbert Stachowiak proposed a model theory that is distin- Definition by Herbert

Stachowiakguished by three characteristics [48]:

1. Mapping: a model is always an image (mapping) of something, a
representation of natural or artificial originals that can be models
themselves.

2. Reduction: a model does not capture all attributes of the original,
rather only those that seem relevant to the modeler or user of the
model.

3. Pragmatism: pragmatism means orientation toward usefulness. A
model is assigned to an original based on the following questions:
For whom? Why? What for? A model is used by the modeler or user
instead of the original within a specific time frame and for a specific
purpose.
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Models support a representation of a system that is reduced to the
essentials in order to minimize the complexity of the system to man-
ageable aspects. A system is usually described not by one single view
but by a number of views that together produce a unified overall picture.
Thus, one view might describe the objects involved and their relation-
ship to one another; another view might describe the behavior of a group
of objects or present the interactions between different objects.

Models must be created with great care and due consideration. Ac-Properties of models

cording to Bran Selic [47], five characteristics determine the quality of
a model:

• Abstraction: a model is always a reduced representation of the sys-
tem that it represents. Because the details that are irrelevant in a
specific context are hidden or removed, it is easier for the user to
understand the essence of the whole.

• Understandability: simply omitting irrelevant details is not enough
to make a model understandable. It is important to present the re-
maining elements as intuitively as possible—for example, in a graph-
ical notation. The understandability results directly from the expres-
siveness of the modeling language. Expressiveness can be defined as
the ability to present complex content with as few concepts as possi-
ble. In this way, a good model reduces the intellectual effort required
to understand the content depicted. For example, typical program-
ming languages are not particularly expressive for a human reader as
a lot of effort is required to understand the content of the program.

• Accuracy: a model must highlight the relevant properties of the real
system, reflecting reality as closely as possible.

• Predictiveness: a model must enable prediction of interesting but not
obvious properties of the system being modeled. This can be done
via simulation or analysis of formal properties.

• Cost-effectiveness: in the long-run, it must be cheaper to create the
model than to create the system being modeled.

Models can be used for various purposes. Thus we distinguish be-
tween descriptive and prescriptive models [17]. Descriptive modelsDescriptive model

show a part of the reality to make a specific aspect easier to under-
stand. For example, a city map describes a city in such a way as to help
a non-local person to find routes within the city. In contrast, prescrip-Prescriptive model

tive models are used to offer a construction manual for the system to be
developed.

In this book, we look at how the different aspects of a software sys-
tem can be modeled using a modeling language—the Unified Modeling
Language—such that executable code can be derived either manuallyExecutable code as

model or (semi)automatically, or easily understandable documentation can be
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created. Incidentally, the executable code, developed in any program-
ming language, such as Java, is also a model. This model represents the
problem to be solved and is optimized for execution on computers.

To summarize, there are three applications for models [19]:

• Models as a sketch
• Models as a blueprint
• Models as executable programs

Models are used as a sketch to communicate certain aspects of a Models as a sketch

system in a simple way. Here, the model is not a complete mapping of
the system. Sketches are actually distinguished by their selectivity, as
they are reduced to the essential aspects for solving a problem. Sketches
often make alternative solutions visible. These are then discussed in the
development team. Thus, models are also used as a basis for discussion.

In contrast to the use of models as sketches, completeness is very im-
portant when models are used as a blueprint. These models must con- Models as a blueprint

tain sufficient detail to enable developers to create ready-to-run systems
without having to make design decisions. Models used as blueprints of-
ten do not specify the whole system, only certain parts. For example,
the interface definitions between subsystems are defined in the model,
whereby the developers are free to decide on the internal implementa-
tion details. If the models are behavioral descriptions, the behavior can
also be simulated and tested to identify faults in advance.

Models as sketches and blueprints can be used for both forward engi-
neering and backward engineering. In forward engineering, the model Forward and backward

engineeringis the basis for creating code, while in backward engineering, the model
is generated from the code to document the code in a clear and easily
understandable way.

Finally, models can be used as executable programs. This means that Models as executable

programsmodels can be specified so precisely that code can be generated from
them automatically. In the context of UML, model-based software de-
velopment has become extremely popular in recent years; it offers a
process for using UML as a programming language. We will address
this briefly in Chapter 9 of this book, after we have discussed the ba-
sics of UML. In some application areas, such as the development of
embedded systems, models are already being used instead of traditional
programming languages. In other areas, active research is taking place
to raise the development of software systems to a new and more easily
maintainable and less error-prone abstraction level.
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1.3 Object Orientation

If we want to model in an object-oriented style, we must first clarify
what object orientation means. The introduction of object orientationObject orientation

dates back to the 1960s when the simulation language SIMULA [24]
was presented, building on a paradigm that was as natural to humans
as possible to describe the world. The object-oriented approach corre-
sponds to the way we look at the real world; we see it as a society of
autonomous individuals, referred to as objects, which take a fixed place
in this society and must thereby fulfill predefined obligations.

There is not only one single definition for object orientation. How-
ever, there is a general consensus about the properties that character-
ize object orientation. Naturally, objects play a central role in object-
oriented approaches. Viewed simply, objects are elements in a system
whose data and operations are described. Objects interact and commu-
nicate with one another. In general, we expect the concepts described
below from an object-oriented approach.

1.3.1 Classes

In many object-oriented approaches, it is possible to define classes thatClass

describe the attributes and the behavior of a set of objects (the instances
of a class) abstractly and thus group common features of objects. For
example, people have a name, an address, and a social security number.
Courses have a unique identifier, a title, and a description. Lecture halls
have a name as well as a location, etc. A class also defines a set of
permitted operations that can be applied to the instances of the class.
For example, you can reserve a lecture hall for a certain date, a student
can register for an exam, etc. In this way, classes describe the behavior
of objects.

1.3.2 Objects

The instances of a class are referred to as its objects. For example, lh1,Object

the Lecture Hall 1 of the Vienna University of Technology, is a concrete
instance of the class LectureHall. In particular, an object is distin-
guished by the fact that it has its own identity, that is, different instances
of a class can be uniquely identified. For example, the beamer in Lec-
ture Hall 1 is a different object to the beamer in Lecture Hall 2, even
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if the devices are of the same type. Here we refer to identical devices
but not the same device. The situation for concrete values of data types
is different: the number 1, which is a concrete value of the data type
Integer, does not have a distinguishable identity.

An object always has a certain state. A state is expressed by the
values of its attributes. For example, a lecture hall can have the state
occupied or free. An object also displays behavior. The behavior
of an object is described by the set of its operations. Operations are
triggered by sending a message.

1.3.3 Encapsulation

Encapsulation is the protection against unauthorized access to the inter- Encapsulation

nal state of an object via a uniquely defined interface. Different levels
of visibility of the interfaces help to define different access authoriza-
tions. Java, for example, has the explicit visibility markers public,
private, and protected, which respectively permit access for all,
only within the object, and only for members of the same class, its sub-
classes, and of the same package.

1.3.4 Messages

Objects communicate with one another through messages. A message Message

to an object represents a request to execute an operation. The object it-
self decides whether and how to execute this operation. The operation is
only executed if the sender is authorized to call the operation—this can
be regulated in the form of visibilities (see the previous paragraph)—
and a suitable implementation is available. In many object-oriented pro-
gramming and modeling languages the concept of overloading is sup- Overloading

ported. This enables an operation to be defined differently for different
types of parameters. For example, the operator + realizes different be-
havior depending on whether it is used to add up integers (e.g., 1 + 1
= 2) or to concatenate character strings (e.g., “a” + “b” = “ab”).

1.3.5 Inheritance

The concept of inheritance is a mechanism for deriving new classes Inheritance

from existing classes. A subclass derived from an existing class (= su-
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perclass) inherits all visible attributes and operations (specification and
implementation) of the superclass. A subclass can:

• Define new attributes and/or operations
• Overwrite the implementation of inherited operations
• Add its own code to inherited operations

Inheritance enables extensible classes and as a consequence, the cre-
ation of class hierarchies as the basis for object-oriented system devel-Class hierarchy

opment. A class hierarchy consists of classes with similar properties,
for example, Person ← Employee ← Professor ← ... where
A← B means that B is a subclass of A.

When used correctly, inheritance offers many advantages: reuse of
program or model parts (thus avoiding redundancy and errors), consis-
tent definition of interfaces, use as a modeling aid through a natural
categorization of the occurring elements, and support for incremental
development, i.e., a step-by-step refinement of general concepts to spe-
cific concepts.

1.3.6 Polymorphism

In general terms, polymorphism is the ability to adopt different forms.Polymorphism

During the execution of a program, a polymorphic attribute can have
references to objects from different classes. When this attribute is de-
clared, a type (e.g., class Person) is assigned statically at compile
time. At runtime, this attribute can also be bound dynamically to a sub-
type (e.g., subclass Employee or subclass Student).

A polymorphic operation can be executed on objects from different
classes and have different semantics in each case. This scenario can be
implemented in many ways: (i) via parametric polymorphism, better
known as genericity—here, type parameters are used. In Java for exam-
ple, the concrete classes are transferred to the operations as arguments;
(ii) via inclusion polymorphism—operations can be applied to classes
and to their direct and indirect subclasses; (iii) via overloading of oper-
ations; and (iv) via coercion, that is, the conversion of types. The first
two methods above are known as universal polymorphism; the other two
methods are referred to as ad hoc polymorphism [13].
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1.4 The Structure of the Book

In Chapter 2 we give a short overview of UML by recapitulating the
history of its creation and taking a brief look at its 14 different diagrams.
Then, in Chapter 3, we introduce the concepts of the use case diagram.
This diagram enables us to describe the requirements that a system to
be developed should satisfy. In Chapter 4 we present the class diagram.
This diagram allows us to describe the structure of a system. To enable
us to model the behavior of a system, in Chapter 5 we introduce the state
machine diagram, in Chapter 6 the sequence diagram, and in Chapter 7
the activity diagram. We explain the interaction of the different types
of diagrams in Chapter 8 with three examples. In Chapter 9, we briefly
examine advanced concepts that are of significant importance for the
practical use of UML.

The concepts are all explained using examples, all of which are based
on the typical Austrian university environment. In most cases they rep-
resent heavily simplified scenarios. It is not our intention in this book
to model one single, continuous system, as there is a high risk that in
doing so we would become lost in a multitude of technical details. We
have therefore selected examples according to their didactic benefit and
their illustrative strength of expression. In many cases, we have there-
fore made assumptions that, for didactic reasons, are based on simpli-
fied presentations of reality.

UML is based entirely on object-oriented concepts. This is particu-
larly noticeable in the class diagram, which can easily be translated into
an object-oriented programming language. We will get to know the class
diagram and possible translations to program code in Chapter 4. How-
ever, UML has not been designed for one specific object-oriented lan-
guage. For the sake for readability, we use a notion of object-orientation
as found in modern programming languages like Java or C#.



Chapter 2

A Short Tour of UML

Before introducing the most important concepts of UML in the follow-
ing chapters, we first explain the background of this modeling language.
We look at how UML came into being and what the “U” for “Unified”
actually means. We then answer the question of how UML itself is de-
fined, that is, where do the rules come from that dictate what a valid
model should look like in UML? Furthermore, we outline what UML
is used for. Finally, we give a short overview of all 14 UML diagrams
in the current version 2.4.1 of the UML standard specification. These
diagrams can be used for modeling both structure and behavior.

2.1 The History of UML

The introduction of object-oriented concepts in information technology Origins of object

orientationoriginates from the work of the early 1960s [12]. The first ideas were
implemented in systems such as Sketchpad, which offered a new, graph-
ical communication approach between man and computer [28, 51].

Today, the programming language SIMULA [24] is regarded as the SIMULA

first object-oriented programming language. SIMULA was primarily
used to develop simulation software and was not particularly widely
used. It already included concepts such as classes, objects, inheritance,
and dynamic binding [2].

The introduction of these concepts was the start of a revolution
in software development. In the subsequent decades, there followed Object-oriented

programming languagesa multitude of programming languages based on the object-oriented
paradigm [21]. These included languages such as C++ [50], Eiffel [31],
and Smalltalk [28]. They already contained many of the important con-
cepts of modern programming languages and are still used today.

11© Springer International Publishing Switzerland 2015 
M. Seidl et al., UML @ Classroom, Undergraduate Topics  
in Computer Science, DOI 10.1007/978-3-319-12742-2_  2
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The emergence and introduction of object orientation as a method in
software engineering is closely connected to the appearance of object-
oriented programming languages. Today, object orientation is a proven
and well-established approach for dealing with the complexity of soft-
ware systems. It is applied not only in programming languages but also
in other areas, such as in databases or the description of user interfaces.

As we have already discussed in Section 1.2, where we introduced
the notion of a model, software systems are abstractions aimed at solv-
ing problems of the real world with the support of machines. Procedural
programming languages are not necessarily the most appropriate tools
for describing the real world: the differences in concept between a nat-
ural description of a problem and the practical implementation as a pro-
gram are huge. Object-oriented programming was an attempt to develop
better programs that, above all, are easier to maintain [12].

Over the years, object orientation has become the most important
software development paradigm. This is reflected in object-oriented
programming languages such as Java [4] or C# [32] and object-oriented
modeling languages such as UML. However, the road to the current
state-of-the-art of software development was long and winding.

In the 1980s, the programming language Ada, funded by the UnitedAda

States Department of Defense, was extremely popular due to its pow-
erful concepts and efficient compilers [25]. Even back then, Ada sup-
ported abstract data types in the form of packages and concurrency in
the form of tasks. Packages allowed the separation of specification and
implementation and the usage of objects and classes of objects. Ada
thus distinguished itself fundamentally from other popular languages of
that time, such as Fortran and Cobol. As a consequence, there followed
a great demand for object-oriented analysis and design methods to make
the development of Ada programs easier. Due to the wide distribution
of Ada and the pressure from the United States Department of Defense,
these modeling methods were based specifically on the characteristics
of Ada. Grady Booch was one of the first researchers to publish workBooch method

on the object-oriented design of Ada programs [5].
Over time, a number of further object-oriented modeling methods

arose (see [12] for an overview). In general, the modeling methods
had either a strong reference to programming languages, such as the
Booch method, or a strong reference to data modeling, such as the Ob-OMT approach by

Rumbaugh et al. ject Modeling Technique (OMT) approach developed by James Rum-
baugh et al. [42]. OMT supported the development of complex objects
in the sense of an object-oriented extension of the entity-relationship
model [14] which had been introduced for describing databases.

Independently of this, Ivar Jacobson et al. introduced the Object-OOSE approach by

Jacobson et al. Oriented Software Engineering (OOSE) approach [27]. This approach
was originally developed to describe telecommunication systems.
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In the 1980s and early 1990s, the modeling world was flooded with Method war

a multitude of different modeling languages. Considerable effort was
required to deal with the resulting compatibility problems. The models
of different project partners were often not compatible and it was not
always possible to reuse models in different projects. The result was
exhausting discussions about different notations, which detracted from
the actual modeling problems. As new modeling languages were ap-
pearing all the time, there was no clarity about which were worthy of
investment and which were just a short-lived trend. If a language did
not become accepted, all investments that had been made to establish it
within a project or a company were generally lost. Looking back, this
time of numerous approaches, often with the difference being only in
the detail, is referred to as the method war.

To put an end to this unsatisfactory situation, in 1996 the Object Object Management

Group (OMG)Management Group (OMG) [33], the most important standardization
body for object-oriented software development, called for the specifica-
tion of a uniform modeling standard.

In the previous year, 1995, Grady Booch, Ivar Jacobson, and James
Rumbaugh had combined their ideas and approaches at the OOPSLA
conference (OOPSLA stands for Object-Oriented Programming, Sys-
tems, Languages, and Applications). Since then, Booch, Jacobson, and
Rumbaugh have often been called the “three amigos”. They set them- Three amigos

selves the following objectives [1]:

• Use of object-oriented concepts to represent complete systems rather
than just one part of the software

• Establishment of an explicit relationship between modeling concepts
and executable program code

• Consideration of scaling factors that are inherent in complex and crit-
ical systems

• Creation of a modeling language that can be processed by machines
but can also be read by human beings

The result of their efforts was the Unified Modeling Language (UML) Unified Modeling

Language (UML)which was submitted in version 1.0 in 1997 in response to the OMG
call. A number of former competitors were involved in the creation of
version 1.1 that subsequently appeared in 1998. One of the main objec-
tives was a consistent specification of the language core of UML which
is documented in the metamodel (see Chapter 9). The metamodel de- Metamodel

fines which model elements the language UML provides and how to use
them correctly. For formulating constraints which the model elements
have to fullfill, the Object Constraint Language (OCL) [36], based on Object Constraint

Language (OCL)predicate logic, was introduced. In subsequent versions, along with the
revision of certain language concepts, mechanisms for the interchange-
ability of models in the form of the XML Metadata Interchange format
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(XMI) [38] were added. In addition to these rather small changes, inXML Metadata

Interchange format

(XMI)

2000 the OMG initiated a modernization process for UML. This finally
led to the adoption of the language standard UML 2.0 in 2005. With the
exception of small changes which, through interim versions, resulted in
the current version 2.4.1, this is the language description of UML that
we will get to know and use in this book.

Today, UML is one of the most widespread graphical object-oriented
modeling languages. Despite the numerous revisions, its roots (Booch
method, OMT, OOSE) are still clearly recognizable. UML is suitable
for modeling both complex object relationships and processes with con-
currency. UML is a general purpose modeling language, meaning that
its use is not restricted to a specific application area. It provides lan-
guage and modeling concepts and an intuitive graphical notation for
modeling various application areas, enabling a software system to be
specified, designed, visualized, and documented [43]. The result of
modeling with UML is a graphical model that offers different views
of a system in the form of various diagrams.

2.2 Usage

UML is not tied to a specific development tool, specific programming
language, or specific target platform on which the system to be devel-
oped must be used. Neither does UML offer a software development
process. UML in fact separates the modeling language and modeling
method. The latter can be defined on a project-specific or company-
specific basis. However, the language concepts of UML do favor an
iterative and incremental process [43].

UML can be used consistently across the entire software develop-Use in the software

development process ment process. At all stages of development, the same language concepts
can be used in the same notation. Thus, a model can be refined in stages.
There is no need for a model to be translated into another modeling lan-
guage. This enables an iterative and incremental software development
process. UML is well-suited for various application areas with different
requirements regarding complexity, data volume, real time, etc.

The UML model elements and their correct use are specified in the
UML metamodel [35]. The language concepts are defined so gener-Generic language

concepts ically that a wide and flexible applicability is achieved. To avoid re-
stricting the use of UML, the standard is (intentionally) vague at vari-
ous points, permitting different interpretations in the form of semanticSemantic variation point

variation points. However, this is a two-edged sword; it also leads to
different implementations of the language standard by modeling tools,
which in turn, unfortunately makes it difficult to exchange models.
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2.3 Diagrams

In UML, a model is represented graphically in the form of diagrams. A Diagram

diagram provides a view of that part of reality described by the model.
There are diagrams that express which users use which functionality
and diagrams that show the structure of the system but without specify-
ing a concrete implementation. There are also diagrams that represent
supported and forbidden processes. In the current version 2.4.1, UML
offers 14 diagrams that describe either the structure or the behavior of a
system.

Diagram

Structure Diagram

Component

Diagram

Deployment

Diagram

Composition Structure

Diagram

Class

Diagram

Object

Diagram

Package

Diagram

Profile

Diagram

Behavior Diagram

State Machine

Diagram

Timing

Diagram

Sequence

Diagram

Activity

Diagram

Use Case

Diagram

Interaction

Diagram

Interaction Overview

Diagram

Communication

Diagram

Figure 2.1

UML diagrams

Figure 2.1 shows a taxonomy of the 14 UML diagrams [35], giv-
ing a very rough categorization. As the figure shows, we differentiate
between structure diagrams and behavior diagrams. The behavior di-
agrams include the interaction diagrams, which in turn consist of four
diagrams (see Chapter 6).

A diagram is usually enclosed by a rectangle with a pentagon in the Notation for diagram

frametop left-hand corner. This pentagon contains the diagram type and the
name of the diagram. Optionally, parameters may be specified following
the name which then can be used within the diagram. Figure 2.2 con-
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Figure 2.2

Examples of UML diagram
frames

cd University

Building

*teaches at
te

nd
s

*

Professor Student

Course

*

*

Person

in
LectureHall

* 1

*

sd Registration(course, date)

register(course, date)

register: ″ok″

:Student :Database
:Registration

System

enter(course, date)

enter: ″ok″

tains two examples of diagram frames. In particular, it shows a class di-
agram (cd) with the name University and a sequence diagram (sd) called
Registration with the parameters course and date.

A concept that may occur in all diagrams is the note. A note can con-Note

tain any form of expression that specifies the diagram and its elements
more precisely—for example, in natural language or in the Object Con-
straint Language (OCL). Notes may be attached to all other model ele-
ments. Figure 2.3 shows an example of the use of a note which specifies
in natural language that persons are not permitted to grade themselves.
The class Person and the association grades represent concepts of the
class diagram that will be introduced in Chapter 4.
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Persons are not permitted

to grade themselves

Person

grades

*

*

Figure 2.3

Example of a note

2.3.1 Structure Diagrams

UML offers seven types of diagrams for modeling the structure of a sys-
tem from different perspectives. The dynamic behavior of the elements
in question (i.e., their changes over time) is not considered in these dia-
grams.

The Class Diagram

Just like the concepts of the object diagram (see next paragraph), the Class diagram
(see Chapter 4)

Course

*teaches at
te

nd
s

* *

*

Person

Prof. Student

concepts of the class diagram originate from conceptual data model-
ing and object-oriented software development. These concepts are used
to specify the data structures and object structures of a system. The
class diagram is based primarily on the concepts of class, generaliza-
tion, and association. For example, in a class diagram, you can model
that the classes Course, Student, and Professor occur in a system. Profes-
sors teach courses and students attend courses. Students and professors
have common properties as they are both members of the class Person.
This is expressed by a generalization relationship.

The Object Diagram

Based on the definitions of the related class diagram, an object dia- Object diagram
(see Chapter 4)

henryFoster

:Professor

oom:Course

oop:Course

gram shows a concrete snapshot of the system state at a specific execu-
tion time. For example, an object diagram could show that a professor
Henry Foster (henryFoster) teaches the courses Object-Oriented Model-
ing (oom) and Object-Oriented Programming (oop).
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The Package Diagram

The package diagram groups diagrams or model elements according toPackage diagram

Exam

Administration

Student

common properties, such as functional cohesion. For example, in a uni-
versity administration system, you could introduce packages that con-
tain information about the teaching, the research, and the administrative
aspects. Packages are often integrated in other diagrams rather than be-
ing shown in separate diagrams.

The Component Diagram

UML pays homage to component-oriented software development byComponent diagram

CentralData

Administration

Library

Administration

offering component diagrams. A component is an independent, exe-
cutable unit that provides other components with services or uses the
services of other components. UML does not prescribe any strict separa-
tion between object-oriented and component-oriented concepts. Indeed,
these concepts may be combined in any way required. When specify-
ing a component, you can model two views explicitly: the external view
(black box view), which represents the specification of the component,
and the internal view (white box view), which defines the implementa-
tion of the component.

The Composition Structure Diagram

The composition structure diagram allows a hierarchical decompositionComposition structure
diagram

Server Client

Network

of the parts of the system. You can therefore use a composition struc-
ture diagram to describe the internal structure of classes or components
in detail. This enables you to achieve a higher level of detail than, for
example, in a class diagram because the modeling is context-specific.
You can specify details of the internal structure that are valid precisely
for the context under consideration.

The Deployment Diagram

The hardware topology used and the runtime system assigned can beDeployment diagram

«device»

Server

«device»

Client

represented by the deployment diagram. The hardware encompasses
processing units in the form of nodes as well as communication rela-
tionships between the nodes. A runtime system contains artifacts that
are deployed to the nodes.
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The Profile Diagram

Using profiles, you can extend UML to introduce domain-specific con- Profile diagram

«metaclass»

Component 

«stereotype»

Bean

cepts. The actual core of the language definition of UML, the meta-
model, remains unchanged. You can thus reuse modeling tools without
having to make adjustments. For example, you can use profiles to intro-
duce the concept of Java Enterprise Beans.

2.3.2 Behavior Diagrams

With the behavior diagrams, UML offers the infrastructure that enables
you to define behavior in detail.

Behavior refers to the direct consequences of an action of at least one
object. It affects how the states of objects change over time. Behavior
can either be specified through the actions of a single object or result
from interactions between multiple objects.

The Use Case Diagram

UML offers the use case diagram to enable you to define the require- Use case diagram
(see Chapter 3)

Registration

Student

Administration

ments that a system must fulfill. This diagram describes which users use
which functionalities of the system but does not address specific details
of the implementation. The units of functionality that the system pro-
vides for its users are called use cases. In a university administration
system, for example, the functionality Registration would be a use case
used by students.

The State Machine Diagram

Within their life cycle, objects go through different states. For example, State machine diagram
(see Chapter 5)

logout
logged

inlogin

logged

out

a person is in the state logged out when first visiting a website. The state
changes to logged in after the person successfully entered username and
password (event login). As soon as the person logs out (event logout), the
person returns to the state logged out. This behavior can be represented
in UML using the state machine diagram. This diagram describes the
permissible behavior of an object in the form of possible states and state
transitions triggered by various events.
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The Activity Diagram

You can model processes of any kind using activity diagrams: both busi-Activity diagram
(see Chapter 7)

Reg.

Lec.

Ass.

ness processes and software processes. For example, an activity diagram
can show which actions are necessary for a student to participate in a
lecture and an assignment. Activity diagrams offer control flow mecha-
nisms as well as data flow mechanisms that coordinate the actions that
make up an activity, that is, a process.

The Sequence Diagram

The sequence diagram describes the interactions between objects to ful-Sequence diagram
(see Chapter 6)

register
(course, date)

register: 
″ok″

:System:Student

fill a specific task, for example, registration for an exam in a univer-
sity administration system. The focus is on the chronological order of
the messages exchanged between the interaction partners. Various con-
structs for controlling the chronological order of the messages as well as
concepts for modularization allow you to model complex interactions.

The Communication Diagram

Similarly to the sequence diagram, the communication diagram de-Communication diagram
(see Chapter 6)

1: login(user, pw)
2: getCourses

:System
1.1: check
       (user, pw)

:Student

:DB

scribes the communication between different objects. Here, the focus
is on the communication relationships between the interaction partners
rather than on the chronological order of the message exchange. Com-
plex control structures are not available. This diagram clearly shows
who interacts with whom.

The Timing Diagram

The timing diagram explicitly shows the state changes of the interactionTiming diagram
(see Chapter 6)

:S
y
s
te

m
:S

tu
d
e
n
t

:D
B

active

log.in
log.out

busy

idle

login

check

login: ″ok″

check: 
″ok″

partners that can occur due to time events or as a result of the exchange
of messages. For example, a person is in the state logged in as soon as
the message is received from the university administration system that
the password sent is valid.
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The Interaction Overview Diagram

The interaction overview diagram models the connection between dif- Interaction overview
diagram
(see Chapter 6)

reg.()

reg.:″ok″

:Sys.:Stud.

sd Registration

sd Forum

[authorized]

[else]

ferent interaction processes by setting individual interaction diagrams
(i.e., sequence diagram, communication diagram, timing diagram, and
other interaction overview diagrams) in a time-based and causal se-
quence. It also specifies conditions under which interaction processes
are permitted to take place. To model the control flow, concepts from
the activity diagram are used. For example, a user of the university ad-
ministration system must first log in (which already represents a sep-
arate interaction with the system) before being allowed to use further
functionalities.

2.4 Diagrams Presented in this Book

As already explained in Chapter 1, this book restricts itself to the five
most important and most widespread types of UML diagrams, namely
the use case diagram, class diagram (including the object diagram), state
machine diagram, sequence diagram, and activity diagram. In this book,
we present these diagrams in the order in which they would generally be
used in software development projects. We begin with the use case dia-
gram, which specifies the basic functionality of a software system. The
class diagram then defines which objects or which classes are involved
in the realization of this functionality. The state machine diagram then
defines the intra-object behavior, while the sequence diagram specifies
the inter-object behavior. Finally, the activity diagram allows us to de-
fine those processes that “implement” the use cases from the use case
diagram.



Chapter 3

The Use Case Diagram

The use case diagram allows us to describe the possible usage scenar- Use case diagram

ios (use cases) that a system is developed for. It expresses what a system
should do but does not address any realization details such as data struc-
tures, algorithms, etc. These details are covered by other diagrams such
as the class diagram (see Chapter 4) or the interaction diagrams (see
Chapter 6). The use case diagram also models which user of the system
uses which functionality, i.e., it expresses who will actually work with
the system to be built.

The use case is a fundamental concept of many object-oriented de-
velopment methods. It is applied during the entire analysis and design
process. Use cases represent what the customer wants the system to do,
that is, the customer’s requirements of the system. At a very high ab-
straction level, the use cases show what the future system is for. A use
case diagram can also be used to document the functionality of an ex-
isting system and to record retrospectively which users are permitted to
use which functionality.

Specifically, we can employ a use case diagram to answer the fol-
lowing questions:

1. What is being described? (The system.)
2. Who interacts with the system? (The actors.)
3. What can the actors do? (The use cases.)

The use case diagram provides only a few language elements. At first
glance, this diagram seems to be extremely simple to learn and use. In
practice, however, the use case diagram is an extremely underestimated
diagram. The content of a use case diagram express the expectations that
the customer has of the system to be developed. The diagram documents
the requirements the system should fulfill. This is essential for a detailed
technical design. If use cases are forgotten or specified imprecisely or
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incorrectly, in some circumstances the consequences can be extremely
serious: the development and maintenance costs increase, the users are
dissatisfied, etc. As a consequence, the system is used less successfully
and the investments made in the development of the system do not bring
the expected returns. Even though software engineering and methods of
requirements analysis are not the subject of this book, we briefly explain
why it is essential to create use cases very carefully. Furthermore, we
discuss where errors are often made and how these can be avoided with
a systematic approach. For a detailed introduction to these topics, see
for example [3, 45].

3.1 Use Cases

A use case describes functionality expected from the system to be de-Use case

A
veloped. It encompasses a number of functions that are executed when
using this system. A use case provides a tangible benefit for one or more
actors that communicate with this use case. The use case diagram does
not cover the internal structure and the actual implementation of a use
case. In general, a use case is triggered either by invocation of an actor
or by a trigger event, in short, a trigger. An example of a trigger is thatTrigger

the semester has ended and hence the use case Issue certificate must be
executed.

Use cases are determined by collecting customer wishes and ana-
lyzing problems specified in natural language when these are the basis
for the requirements analysis. However, use cases can also be used to
document the functionality that a system offers. A use case is usually
represented as an ellipse. The name of the use case is specified directly
in or directly beneath the ellipse. Alternatively, a use case can be rep-
resented by a rectangle that contains the name of the use case in the
center and a small ellipse in the top right-hand corner. The different no-
tation alternatives for the use case Query student data are illustrated in
Figure 3.1. The alternatives are all equally valid, but the first alterna-
tive, the ellipse that contains the name of the use case, is the one most
commonly used.

Figure 3.1

Notation alternatives for
use cases

Query

student data

Query

student data

Query

student data
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The set of all use cases together describes the functionality that a
software system provides. The use cases are generally grouped within a
rectangle. This rectangle symbolizes the boundaries of the system to be System

described. The example in Figure 3.2 shows the Student Administration

system, which offers three use cases: (1) Query student data, (2) Issue

certificate, and (3) Announce exam. These use cases may be triggered by
the actor Professor.

Student Administration

Query

student data

Issue

certificate

Announce

exam

Professor

Figure 3.2

Representation of system
boundaries

3.2 Actors

To describe a system completely, it is essential to document not only
what the system can do but also who actually works and interacts with
the system. In the use case diagram, actors always interact with the sys- Actor

X

tem in the context of their use cases, that is, the use cases with which
they are associated. The example in Figure 3.2 contains only the actor
Professor, who can query student data, announce exams, and issue cer-
tificates. Actors are represented by stick figures, rectangles (containing
the additional information «actor»), or by a freely definable symbol. The
notation alternatives are shown in Figure 3.3. These three notation al-
ternatives are all equally valid. As we can see from this example, actors
can be human (e.g., student or professor) or non-human (e.g., e-mail
server). The symbols used to represent the actors in a specific use case
diagram depend on the person creating the model or the tool used. Note
in particular that non-human actors can also be portrayed as stick fig-
ures, even if this seems counterintuitive.



26 3 The Use Case Diagram

Figure 3.3

Notation alternatives for
actors «actor»

Professor
Student

E-Mail Server

An actor interacts with the system by using the system as an ac-
tive actor, meaning that the actor initiates the execution of use cases;Types of actors:

• Human/non-human
• Active/passive
• Primary/

secondary

alternatively, the interaction involves the actor being used by the sys-
tem, meaning that the actor is a passive actor providing functionality
for the execution of use cases. In example (a) in Figure 3.4, the actor
Professor is an active actor, whereas the actor E-Mail Server is passive.
However, both are required for the execution of the use case Inform stu-

dent. Furthermore, use case diagrams can also contain both primary and
secondary actors, also shown in this example. A primary actor takes an
actual benefit from the execution of the use case (in our example this
is the Professor), whereas the the secondary actor E-Mail Server receives
no direct benefit from the execution of the use case. As we can see in
example (b) in Figure 3.4, the secondary actor does not necessarily have
to be passive. Both the Professor and the Student are actively involved in
the execution of the use case Exam, whereby the main beneficiary is the
Student. In contrast, the Professor has a lower benefit from the exam but
is necessary for the execution of the use case. Graphically, there is no
differentiation between primary and secondary actors, between active
and passive actors, and between human and non-human actors.

Figure 3.4

Examples of actors

(a) (b)

University

Exam
Student

Professor

Student Administration

Inform

student

E-Mail Server

Professor

An actor is always clearly outside the system, i.e., a user is never part
of the system and is therefore never implemented. Data about the user,
however, can be available within the system and can be represented, for
example, by a class in a class diagram (see Chapter 4). Sometimes it is
difficult to decide whether an element is part of the system to be imple-
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mented or serves as an actor. In example (a) in Figure 3.4, the E-Mail

Server is an actor—it is not part of the system but it is necessary for the
execution of the use case Inform student. However, if no external server
is required to execute this use case because the student administration
system implements the e-mail functionality itself or has its own server,
the E-Mail Server is no longer an actor. In that case, only the Professor is
required to inform students about various news items.

3.3 Associations

In the examples in Figure 3.4, we connected the actors with use cases via
solid lines without explaining this in more detail. An actor is connected
with the use cases via associations which express that the actor com- Association

A

X

municates with the system and uses a certain functionality. Every actor
must communicate with at least one use case. Otherwise, we would have
an actor that does not interact with the system. In the same way, every
use case must be in a relationship with at least one actor. If this were
not the case, we would have modeled a functionality that is not used by
anyone and is therefore irrelevant.

An association is always binary, meaning that it is always specified
between one use case and one actor. Multiplicities may be specified
for the association ends. If a multiplicity greater than 1 is specified for
the actor’s association end, this means that more than one instance of
an actor is involved in the execution of the use case. If we look at the
example in Figure 3.5, one to three students and precisely one assistant
is involved in the execution of the use case Conduct oral exam. If no
multiplicity is specified for the actor’s association end, 1 is assumed as
the default value. The multiplicity at the use case’s association end is
mostly unrestricted and is therefore only rarely specified explicitly.

1..3

Laboratory Assignment

Conduct

oral exam

Assistant

Student

Figure 3.5

Multiplicities in
associations
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Actors do not represent a specific user—they represent roles thatRole

users adopt. If a user has adopted the respective role, this user is autho-
rized to execute the use cases associated with this role. Specific users
can adopt and set aside multiple roles simultaneously. For example, a
person can be involved in the submission of a certain assignment as an
assistant and in another assignment as a student. The role concept is
also used in other types of UML diagrams, such as the class diagram
(see Chapter 4), the sequence diagram (see Chapter 6), and the activity
diagram (see Chapter 7).

3.4 Relationships between Actors

Actors often have common properties and some use cases can be usedSynonyms:

• Generalization
• Inheritance

Generalization for actors

X

Y

by various actors. For example, it is possible that not only professors
but also assistants (i.e., the entire research personnel) are permitted to
view student data. To express this, actors may be depicted in an inher-
itance relationship (generalization) with one another. When an actor Y

(sub-actor) inherits from an actor X (super-actor), Y is involved with all
use cases with which X is involved. In simple terms, generalization ex-
presses an “is a” relationship. It is represented with a line from the sub-

Figure 3.6

Example of generalization
for actors

Student Administration

Query

student data

Issue

certificate

Create

course

0..1

Professor

Research

Associate

Assistant

Publish

task
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actor to the super-actor with a large triangular arrowhead at the super-
actor end. In the example in Figure 3.6, the actors Professor and Assis-

tant inherit from the actor Research Associate, which means that every
professor and every assistant is a research associate. Every research as-
sociate can execute the use case Query student data. Only professors can
create a new course (use case Create course); in contrast, tasks can only
be published by assistants (use case Publish task). To execute the use
case Issue certificate in Figure 3.6, an actor Professor is required; in ad-
dition, an actor Assistant can be involved optionally, which is expressed
by the multiplicity 0..1.

There is a great difference between two actors participating in a use
case themselves and two actors having a common super-actor that par-
ticipates in the use case. In the first case, both actors must participate in
the use case (see Fig. 3.7(a)); in the second case, each of them inherits
the association. Then each actor participates in the use case individually
(see Fig. 3.7(b)).

Student Administration

Query

student data
Professor

Assistant

(a) (b)

Student Administration

Query

student data

{abstract}

Research

Associate

Professor Assistant

Figure 3.7

Example with and without
generalization

If there is no instance of an actor, this actor can be labeled with the
keyword {abstract}. Alternatively, the names of abstract actors can be Abstract actor

represented in italic font. The actor Research Associate in Figure 3.7(b)
is an example of an abstract actor. It is required to express that either a
Professor or an Assistant is involved in the use case Query student data.
The use of abstract actors only makes sense in the context of an inheri-
tance relationship: the common properties of the sub-actors are grouped
and described at one point, namely with the common, abstract super-
actor.

Generalization is a fundamental concept of object orientation and
can be applied to many different language elements of UML. For a more
detailed introduction to generalization, see Chapter 4.
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3.5 Relationships between Use Cases

Up to this point, we have learned only about relationships between use
cases and actors (associations) and between actors themselves (general-
ization of actors). Use cases can also be in a relationship with other use
cases. Here we differentiate between «include» relationships, «extend»

relationships, and generalizations of use cases.

Figure 3.8

Example of «include» and
«extend»

Student Administration

Reserve

lecture hall

Announce

lecture

Assign

lecturer

«include»

«extend»

Professor

If a use case A includes a use case B, represented as a dashed arrow«include»

B

A

«include»

from A to B labeled with the keyword «include», the behavior of B is
integrated into the behavior of A. Here, A is referred to as the base use
case and B as the included use case. The base use case always requires
the behavior of the included use case to be able to offer its functional-
ity. In contrast, the included use case can be executed on its own. The
use of «include» is analogous to calling a subroutine in a procedural
programming language. In the use case diagram in Figure 3.8, the use
cases Announce lecture and Assign lecturer are in an «include» relation-
ship, whereby Announce lecture is the base use case. Therefore, when-
ever a new lecture is announced, the use case Assign lecturer must also
be executed. The actor Professor is involved in the execution of both use
cases. Further lecturers can also be assigned to an existing lecture as the
included use case can be executed independently of the base use case.
One use case may include multiple other use cases. One use case may
also be included by multiple different use cases. In such situations, it is
important to ensure that no cycle arises.

If a use case B is in an «extend» relationship with a use case A, then
A can use the behavior of B but does not have to. Use case B can there-
fore be activated by A in order to insert the behavior of B in A. Here,
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A is again referred to as the base use case and B as the extending use
case. An «extend» relationship is shown with a dashed arrow from the «extend»

B

A
«extend»

extending use case B to the base use case A. Both use cases can also be
executed independently of one another. If we look at the example in Fig-
ure 3.8, the two use cases Announce lecture and Reserve lecture hall are
in an «extend» relationship. When a new lecture is announced, it is pos-
sible (but not mandatory) to reserve a lecture hall. A use case can act as
an extending use case several times or can itself be extended by several
use cases. Again, no cycles may arise. Note that the arrow indicating
an «extend» relationship points towards the base use case, whereas the
arrow indicating an «include» relationship originates from the base use
case and points towards the included use case.

A condition that must be fulfilled for the base use case to insert the Condition

behavior of the extending use case can be specified for every «extend»

relationship. The condition is specified, within curly brackets, in a note
that is connected with the corresponding «extend» relationship. A con-
dition is indicated by the preceding keyword Condition followed by a
colon. Two examples are shown in Figure 3.9. Within the context of the
use case Announce lecture, a lecture hall can only be reserved if it is free.
Furthermore, an exam can only be created if the required data has been
entered.

By using extension points, you can define the point at which the be- Extension point

havior of the extending use cases must be inserted in the base use case.
The extension points are written directly within the use case, as illus-
trated in the use case Announce lecture in the example in Figure 3.9.
Within the use case symbol, the extension points have a separate sec-

Student Administration

Reserve

lecture hall

Announce lecture

Announce

exam

Condition:

  {Lecture hall free}

Extension point:

  Select lecture hall

Condition:

  {Data entered}

Extension point:

  Enter exam

extension points:

Enter exam

Select lecture hall
Professor

«extend»

«extend»

Figure 3.9

Example of extension
points and conditions
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tion that is identified by the keyword extension points. If a use case has
multiple extension points, these can be assigned to the corresponding
«extend» relationship via specification in a note similarly to a condition.

In the same way as for actors, generalization is also possible betweenGeneralization for use
cases

B

A

use cases. Thus, common properties and common behavior of different
use cases can be grouped in a parent use case. If a use case A generalizes
a use case B, B inherits the behavior of A, which B can either extend or
overwrite. Then, B also inherits all relationships from A. Therefore, B

adopts the basic functionality of A but decides itself what part of A is
executed or changed. If a use case is labeled {abstract}, it cannot be ex-
ecuted directly; only the specific use cases that inherit from the abstract
use case are executable.

The use case diagram in Figure 3.10 shows an example of the gen-
eralization of use cases. The abstract use case Announce event passes
on its properties and behavior to the use cases Announce lecture and An-

nounce talk. As a result of an «include» relationship, both use cases must
execute the behavior of the use case Assign lecturer. When a lecture is
announced, an exam can also be announced at the same time. Both use
cases inherit the relationship from the use case Announce event to the
actor Professor. Thus, all use cases are connected to at least one actor,
the prerequisite previously stipulated for correct use case diagrams.

Figure 3.10

Example of generalization
of use cases
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Generalization allows us to group the common features of the two
use cases Announce lecture and Announce talk. This means that we do
not have to model both the «include» relationship and the association
with the professor twice.

3.6 Examples of Relationships

To explain again explicitly how the different relationship types in a use
case diagram interact with one another, let us take a look at the use case
diagram from Figure 3.11 and discuss some interesting cases that occur
here.

J

O

L

N

M

B C

F

H

E

A

G

ID

S

«extend»

«extend»
«include»

«include»

Figure 3.11

Examples of relationships
in a use case diagram

• The use case A includes the use cases E and D. An actor O is involved
in all three use cases. There is no specification of whether this is the
same user or different users, that is, different instances of O.

• The use case H inherits from the use case C. As use case C is executed
by the actor L, an actor L must also be involved in the execution of H.
The actors N and M inherit from L. Therefore, both use cases C and
H can also be executed by an actor M or N.
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• The use case J inherits from the use case B. As a result of the inheri-
tance relationship, an actor O is involved in the execution of use case
J. However, an association with O is also modeled for J directly. The
consequence of this is that two actors in the role O are involved in
the execution of J. Note that these two actors can coincide.

• The use case F inherits from the use case G. As a result of the in-
heritance relationship, an actor N is involved in the execution of use
case F. For F, an association with the actor L is also modeled directly.
Therefore, an actor N and, due to the inheritance relationship of the
actors L, N, and M, either an actor L or an actor M or an additional ac-
tor N is involved in the execution of F. If two actors N are involved,
they may coincide.

• The use case I extends the use case F. As use case F inherits from use
case G and as I extends use case G, this relationship is passed on to F.
If G and I were in an «include» relationship, this relationship would
also be passed on to F in the same way.

• The use case J extends the use case H. This is as a result of the inher-
itance relationships from B to J and from C to H.

3.7 Creating a Use Case Diagram

So, how do you create a use case diagram? First you must identify ac-
tors and use cases and then place them in relationships with one another.
You then describe the use cases in detail. At first glance, this diagram
seems to be simple due to the low number of concepts involved. But in
fact, use case diagrams are often created incorrectly with a lot of errors.
Therefore, here we take a brief look at the principles of creating use
cases. For details, see the extensive literature on requirements engineer-
ing, for example [16, 30, 40]. We then explain some typical pitfalls to
be avoided when modeling use case diagrams.

3.7.1 Identifying Actors and Use Cases

According to [30], there are two ways to identify use cases for prospec-
tive system design:

1. Analysis of requirements documents
2. Analysis of the expectations of future users

Requirements documents are generally natural language specifications
that explain what the customer expects from a system. They should doc-
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ument relatively precisely who will use the system and how they will
use it. If you follow the second approach for finding use cases, you
must first identify the future users—that is, the actors. To identify the
actors that appear in a use case diagram, you must answer the following
questions:

• Who uses the main use cases? Questions for identifying

actors• Who needs support for their daily work?
• Who is responsible for system administration?
• What are the external devices/(software) systems with which the sys-

tem must communicate?
• Who has an interest in the results of the system?

Once you know the actors, you can derive the use cases by asking
the following questions about the actors [27]:

• What are the main tasks that an actor must perform? Questions for identifying

use cases• Does an actor want to query or even modify information contained
in the system?

• Does an actor want to inform the system about changes in other sys-
tems?

• Should an actor be informed about unexpected events within the sys-
tem?

In many cases, you model use cases iteratively and incrementally. In Iterative and incremental

determination of use

cases

doing so, you often start with the “top level” requirements that reflect
the business objectives to be pursued with the software. You then con-
tinue to refine them until, at a technical level, you have specified what
the system should be able to do. For example, a “top level” requirement
for a university administration system could be that the system can be
used for student administration. If we refine this requirement, we de-
fine that new students should be able to register at the university and
enroll for studies, that the students’ grades for different courses should
be stored, etc.

3.7.2 Describing Use Cases

To ensure that even large use case diagrams remain clear, it is extremely
important to select short, concise names for the use cases. When situ-
ations arise in which the intention behind the use case and its inter-
pretation are not clear, you must also describe the use cases. Again, it
is important to ensure that you describe the use cases clearly and con-
cisely, as otherwise there is a risk that readers will only skim over the
document.
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A generally recognized guideline for the length of use case descrip-Structured approach to

describing use cases tions is approx. 1–2 pages per use case. In [15], Alistair Cockburn
presents a structured approach for the description of use cases that con-
tains the following information:

• Name
• Short description
• Precondition: prerequisite for successful execution
• Postcondition: system state after successful execution
• Error situations: errors relevant to the problem domain
• System state on the occurrence of an error
• Actors that communicate with the use case
• Trigger: events which initiate/start the use case
• Standard process: individual steps to be taken
• Alternative processes: deviations from the standard process

Table 3.1

Use case description for
Reserve lecture hall

Name: Reserve lecture hall
Short description: An employee reserves a lecture hall at the university for

an event.
Precondition: The employee is authorized to reserve lecture halls.

Employee is logged in to the system.
Postcondition: A lecture hall is reserved.
Error situations: There is no free lecture hall.
System state in the event
of an error:

The employee has not reserved a lecture hall.

Actors: Employee
Trigger: Employee requires a lecture hall.
Standard process: (1) Employee selects the lecture hall.

(2) Employee selects the date.
(3) System confirms that the lecture hall is free.
(4) Employee confirms the reservation.

Alternative processes: (3’) Lecture hall is not free.
(4’) System proposes an alternative lecture hall.
(5’) Employee selects the alternative lecture hall and
confirms the reservation.

Table 3.1 contains the description of the use case Reserve lecture hall

in a student administration system. The description is extremely sim-
plified but fully sufficient for our purposes. The standard process and
the alternative process could be refined further or other error situations
and alternative processes could be considered. For example, it could
be possible to reserve a lecture hall where an event is already taking
place—this makes sense if the event is an exam that could be held in
the lecture hall along with another exam, meaning that fewer exam su-
pervisors are required. In a real project, the details would come from
the requirements and wishes of the customers.
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3.7.3 Pitfalls

Unfortunately, errors are often made when creating use case diagrams.
Six examples of typical types of errors are discussed below. For a more
detailed treatment of this topic, see [39].

Error 1: Modeling processes

Even if it is often very tempting to model entire (business) processes or
workflows in a use case diagram, this is an incorrect use of the diagram.
Let us assume we are modeling the system Student Office (see the final
example of this chapter on page 42). If a student uses the function Collect

certificate, the student must first be notified that the certificate is ready
for collection in the student office. Naturally, the lecturer must have sent
the certificate to the student office, i.e., the certificate has been issued.
The use cases Collect certificate, Send notification, and Issue certificate

may be connected chronologically but this should not be represented
in a use case diagram. It is therefore incorrect to relate these use cases
to one another using «include» or «extend» relationships as shown in
Figure 3.12. The functionality that one of these use cases offers is not
part of the functionality that another use case offers, hence the use cases
must be used independently of one another.

Collect

certificate

«include» «include»Send

notification

Issue

certificate

Figure 3.12

Incorrect excerpt of a use
case diagram: modeling
processes

Error 2: Setting system boundaries incorrectly

When modeling a use case diagram, you must consider very carefully
where to draw the boundaries of the diagram. As already mentioned,
this is often not clear. Actors are always outside the system boundaries:
if they are to be located within the system, they are part of the system
and therefore they must not be modeled as actors. In Figure 3.13, the
Employee is depicted within the boundaries of the system Student Admin-

istration. Of course the student administration system includes employ-
ees. However, as we want to create a use case diagram of this system,
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we must consider whether we want to view these employees as actors
or as part of the student administration system. If they are a part of the
system, they must not be modeled as actors. In that case, some other
entity outside the system should be an actor. If they are not part of the
system but are necessary for the execution of the use cases, they must
be represented as actors—outside the system boundaries.

Figure 3.13

Incorrect excerpt of a use
case diagram: incorrect
system boundaries Student Administration

Issue

information

Employee Student

Error 3: Mixing abstraction levels

When identifying use cases, you must always ensure that they are lo-
cated on the same abstraction level. Avoid representing “top level” use
cases with technically oriented use cases in the same diagram, as is the
case in Figure 3.14. In this example, the management of student data
and the selection of a printer, which is a technical feature of the system,
are shown together. To avoid this type of error, you should therefore
proceed iteratively. First create a use case diagram with use cases that
are based on the business objectives (in our example, management of
student data). Then refine these use cases down to the technical require-
ments (selecting a printer).
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Student Administration

Manage

student data

Select printer

Employee

Figure 3.14

Incorrect excerpt of a use
case diagram: mixing ab-
straction levels

Error 4: Functional decomposition

Use cases—even included or extending use cases—can always be exe-
cuted independently. If they can only be executed within the scope of
another use case and not independently, they are not use cases and must
not be depicted as such. Their functionality must then be covered in the
description of the use case that uses them. In Figure 3.15(a), the use
case Issue certificate is broken down into the individual subfunctions
necessary to execute the use case. These subfunctions are modeled as
use cases even though sometimes they are not meaningful independent
use cases, such as Enter data.

The use case Log in is also not a functionality that is part of Issue

certificate. In fact, it is a precondition that the user must be logged in
with sufficient authorizations for being able to execute this use case.
Therefore, a reduced use case diagram, as shown in Figure 3.15(b), is
sufficient. The other information specified in Figure 3.15(a) must be
specified in the use case description.

Error 5: Incorrect associations

If a use case is associated with two actors, this does not mean that either
one or the other actor is involved in the execution of the use case: it
means that both are necessary for its execution. In the use case diagram
in Figure 3.16(a), the actors Assistant and Professor are involved in the
execution of the use case Issue information, which is not the intention. To
resolve this problem, we can introduce a new, abstract actor Research

Associate from which the two actors Assistant and Professor inherit. The
actor Employee is now connected with the use case Issue information (see
Fig. 3.16(b)).
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Figure 3.15

Incorrect excerpt of a use
case diagram: functional
decomposition

(b)

(a)

«include»

Log out

«include»

«include»

Send data

Enter data

Log in

Student Administration

Lecturer

Issue

certificate

«
in

cl
u
d
e
»

Lecturer

Student Administration

Issue

certificate

Error 6: Modeling redundant use cases

When modeling use cases, it is very tempting to create a separate use
case for each possible situation. For example, in the use case diagram in
Figure 3.17(a), we have modeled separate use cases for creating, updat-
ing, and deleting courses. This shows the different options available for
editing a course in the system. In such a small use case diagram as that
shown in Figure 3.17(a), it is not a problem to show the differentiations
at such a detailed level.
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Manage

student data

Issue

information

Assistant

Create course

Professor

Student Administration

(a) (b)

{abstract}

Research Associate

Manage

student data

Issue

information

Create course

Assistant

Professor

Student Administration
Figure 3.16

Incorrect excerpt of a use
case diagram: incorrect
associations

However, when modeling a real application, the diagram would very
quickly become unmanageable. To counteract this, it might make sense
to group use cases that have the same objective, namely the management
of a course. This is reflected in Figure 3.17(b). The individual steps are
then specified in the description of the standard process.

(a)

Delete

course

Student Administration

Update

course

Create

course

Research

Associate

(b)

Manage

course

Student Administration

Research

Associate

Figure 3.17

Modeling redundant use
cases
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3.7.4 A Final Example

To conclude this chapter, we create a use case diagram that describes the
functionality of the information system of a student office in accordanceInformation system of

the student office of a

university

with the following specification:

• Many important administrative activities of a university are pro-
cessed by the student office. Students can register for studies (ma-
triculation), enroll, and withdraw from studies here. Matriculation
involves enrolling, that is, registering for studies.

• Students receive their certificates from the student office. The certifi-
cates are printed out by an employee. Lecturers send grading infor-
mation to the student office. The notification system then informs the
students automatically that a certificate has been issued.

• There is a differentiation between two types of employees in the
student office: a) those that are exclusively occupied with the ad-
ministration of student data (service employee, or ServEmp), and b)
those that fulfill the remaining tasks (administration employee, or Ad-

minEmp), whereas all employees (ServEmp and AdminEmp) can issue
information.

• Administration employees issue certificates when the students come
to collect them. Administration employees also create courses. When
creating courses, they can reserve lecture halls.

To create a use case diagram from this simplified specification, we
first identify the actors and their relationships to one another. We then
determine the use cases and their relationships to one another. Finally,
we associate the actors with their use cases.

1. Identifying actors

If we look at the textual specification, we can identify five potential
actors: Lecturer, Student, employees of the types ServEmp and Ad-

minEmp, as well as the Notification System. As both types of employ-
ees demonstrate common behavior, namely issuing information, it
makes sense to introduce a common super-actor StudOfficeEmp from
which ServEmp and AdminEmp inherit. We assume that the Notifica-

tion System is not part of the student office, hence we include it in the
list of actors. Figure 3.18 summarizes the actors in our example.
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StudOfficeEmp

ServEmp AdminEmp

StudentLecturer

«actor»

Notification System

Figure 3.18

Identified actors

2. Identifying use cases

In the next step, we identify the use cases (see Fig. 3.19). In doing
so, we determine which functionalities the student office must fulfill.

«extend»

«in
clu

de»

Student Office

Issue

information

{abstract}

Manage student

data

Register

EnrollWithdraw

Send

certificate

Print

certificate

Create

course

Reserve

lecture hall

Figure 3.19

Identified use cases
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The specification is very short. However, we know that the objec-
tive is to model the information system supporting the employees
of a student office rather than modeling the functionalities the stu-
dent office provides for the students. If we were to model the latter,
we would need a use case Collect certificate, for example, in which a
student would be involved. This use case is not included in the infor-
mation system as it is not related to the collection of the certificates.
The use case Print certificate is, however. To print, naturally we need
a printer. Should we add this to our list of actors? We do not do this
as we consider the printer to be an integral part of the system to be
modeled.
We also have the functions Register, Enroll, and Withdraw. We could
group these in one use case Manage student data as they are all per-
formed by an actor ServEmp. In doing so, however, we would lose
the information that matriculation includes enrollment for studies.
Therefore, we do not reduce the three use cases to one use case. We
express the relationship between Register and Enroll with an «include»

relationship. As the three use cases have the association to ServEmp

in common, we still introduce the use case Manage student data and
model that the use cases Register, Enroll, and Withdraw inherit from
this use case. To express that this use case cannot be instantiated, we
define it as an abstract use case.
Lecturers can execute the use case Send certificate. If a certificate is
sent to the student office, the student affected is notified. However,
we do not model a separate use case Notify student as, according to
the specification above, students are only notified in the context of
the use case Send certificate. If Notify student cannot be executed in-
dependently, this activity is not a use case of the information system.
Furthermore, we have the use cases Issue information, Reserve lecture

hall, and Create course, where Reserve lecture hall extends the use
case Create course. Figure 3.19 shows the resulting use cases.

3. Identifying associations

Now we have to associate our actors and the use cases (see Fig. 3.20).
Note that we now have two fewer actors than potential candidates
identified (see Fig. 3.18). There are no longer any students—students
may not use the information system in the form that we have modeled
it. And there is no longer a notification system as this is considered
to be part of the student office.
Finally, we need a meaningful description of the use cases.
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Student Office

Issue

information

StudOfficeEmp

AdminEmp

ServEmp

Register

EnrollWithdraw

Send

certificate

Lecturer

Print

certificate

Create

course

Reserve

lecture hall

{abstract}

Manage student

data

«extend»

«in
clu

de»

Figure 3.20

Use case diagram of the
information system of
the student office of a
university

4. Describing the use cases

Table 3.2 shows the description of the use case Print certificate as an
example.
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Table 3.2

Use case description for
Print certificate

Name: Print certificate
Short description: On request from a student, an employee prints the student’s

certificate for a course on paper.
Precondition: All data relevant for the certificate has been sent and the stu-

dent has been graded.
Postcondition: Certificate is available to the student in printed form.
Error situations: Printer is not working.
System state in the
event of an error:

Certificate is not printed.

Actors: AdminEmp

Trigger: Student requests printed certificate.
Standard process: (1) Student enters the student office and requests a certificate.

(2) AdminEmp enters the student’s matriculation number.
(3) AdminEmp selects the certificate.
(4) AdminEmp enters the print command.
(5) System confirms that the certificate was printed.
(6) Certificate is handed over to the student.

Alternative
processes:

(1’) Student requests certificate via e-mail.
(2-5) As above
(6’) Certificate is sent by post.

3.8 Summary

The use case diagram describes the behavior of a system from the view
of the user. This means that this diagram presents the functionalities
that the system offers but does not address the internal implementa-
tion details. The boundaries of the system—what can the system do and
what can it not do?—are clearly defined. The users (actors) are always
outside the system and use the functionalities of the system, which are
depicted in the form of use cases. The relationship between a use case
and an actor is referred to as an association. To keep use case diagrams
as compact as possible, generalization is supported for both actors and
use cases, which allows the extraction of common properties. Use cases
can also access the functionality provided by other use cases by means
of «include» and «extend» relationships. The most important notation
elements are summarized in Table 3.3.
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Name Notation Description

System

System

A

X

Boundaries between the system and
the users of the system

Use case A Unit of functionality of the system

Actor or
«actor»

X
X

Role of the users of the system

Association
A

X
X participates in the execution of A

Generalization
(use case)

B

A

B inherits all properties and the entire
behavior of A

Generalization
(actor)

X

Y

Y inherits from X; Y participates in all
use cases in which X participates

Extend relationship

B

A

«extend»

B extends A: optional incorporation
of use case B into use case A

Include relationship

B

A

«include»

A includes B: required incorporation
of use case B into use case A

Table 3.3

Notation elements for the
use case diagram



Chapter 4

The Class Diagram

We use the class diagram to model the static structure of a system, thus Class diagram

describing the elements of the system and the relationships between
them. These elements and the relationships between them do not change
over time. For example, students have a name and a matriculation num-
ber and attend various courses. This sentence covers a small part of the
university structure and does not lose any validity even over years. It is
only the specific students and courses that change.

The class diagram is without doubt the most widely used UML dia-
gram. It is applied in various phases of the software development pro-
cess. The level of detail or abstraction of the class diagram is different
in each phase. In the early project phases, a class diagram allows you to
create a conceptual view of the system and to define the vocabulary to be
used. You can then refine this vocabulary into a programming language
up to the point of implementation. In the context of object-oriented pro-
gramming, the class diagram visualizes the classes a software system
consists of and the relationships between these classes. Due to its sim-
plicity and its popularity, the class diagram is ideally suited for quick
sketches. However, you can also use it to generate program code auto-
matically. In practice, the class diagram is also often used for documen-
tation purposes.

Before we introduce the concepts of the class diagram, let us first
take a look at objects, which are modeled in object diagrams. Object Object diagram

diagrams allow you to depict concrete objects that appear in a system at
a specific point in time. Classes provide schemas for characterizing ob-
jects and objects are instances of classes. The object diagram visualizes
instances of classes that are modeled in a class diagram.

49© Springer International Publishing Switzerland 2015 
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4.1 Objects

A system contains numerous different individuals. Individuals might be
not only persons but also animals, plants, inanimate objects, artifacts,
etc. that can be identified uniquely. For example, as part of her IT Stud-
ies program, Helen Lewis attends the lecture Object-Oriented Modeling
(OOM) at the university. Helen Lewis, IT Studies, and Object-Oriented
Modeling are individuals (concrete objects) in a university administra-
tion system and are in a relationship with one another.

Figure 4.1

Example of an object
diagram

helenLewis:Student

firstName = "Helen"

lastName = "Lewis"

dob = 04-02-1980

matNo = "9824321"

oom:Course

name = "OOM"

semester = "Summer"

hours = 2.0

lh1:LectureHall

name = "LH1"

seats = 400

mikeFox:Student

firstName = "Mike"

lastName = "Fox"

dob = 02-01-1988

matNo = "0824211"

iprog:Course

name = "IPROG"

semester = "Winter"

hours = 4.0

lh2:LectureHall

name = "LH2"

seats = 100

paulSchubert:Student

firstName = "Paul"

lastName = "Schubert"

dob = 11-04-1984

matNo  = "0323123"

db:Course

name = "Databases"

semester = "Summer"

hours = 2.0

In UML, we depict concrete objects of a system and their rela-
tionships (links) using object diagrams. Figure 4.1 shows a small ob-Object diagram

ject diagram. It contains three student objects: helenLewis, mikeFox, and
paulSchubert. The first name and the last name of the object helenLewis

are Helen and Lewis respectively. We also know the date of birth and
matriculation number for each of these objects. The system contains the
three courses oom (Object-Oriented Modeling), iprog (Introduction to
Programming), and db (Databases). The course iprog takes place in lec-
ture hall lh1 and the course db takes place in lecture hall lh2. There is
no corresponding information for oom. Student helenLewis attends the
two courses oom and iprog. Student mikeFox also attends iprog; course
db is attended only by student paulSchubert (at least, among these three
students).
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An object has a unique identity and a number of characteristics that Object

o:C
describe it in more detail. It rarely appears in isolation in a system;
instead, it usually interacts and communicates with other objects. The
relationships between the objects are referred to as links. The character- Link

o1 o2
istics of an object include its structural characteristics (attributes) and
its behavior (in the form of operations). Whilst concrete values are as-
signed to the attributes in the object diagram, operations are generally
not depicted. Operations are identical for all objects of a class and are
therefore usually described exclusively for the class.

In the object diagram, an object is shown as a rectangle which can be
subdivided into multiple compartments. The first compartment always
contains information in the form objectName:Class. This information is
centered and underlined. In Figure 4.1 for example, helenLewis and oom

are object names and Student and Course are classes. The object name
or the specification of the class may be omitted. If only a class name
is given, it must be preceded by a colon. If the class name is omitted,
the colon is also omitted. If the object name is omitted, this object is
referred to as an anonymous object. Examples of different notation al- Anonymous object

ternatives are shown in Figure 4.2.

maxMiller:Person

firstName = "Max"

lastName = "Miller"

dob = 03-05-1973

maxMiller:Person

maxMiller

maxMiller

firstName = "Max"

lastName = "Miller"

dob = 03-05-1973

:Person

:Person

firstName = "Max"

lastName = "Miller"

dob = 03-05-1973

Figure 4.2

Notation alternatives for
objects

If the rectangle has a second compartment, this compartment con-
tains the attributes of the object and the current values of these attributes
(see Fig. 4.1 and Fig. 4.2). A link is represented as a continuous line
connecting the objects that are in a relationship with one another. Al-
though the name of an object must be unique, different objects can have
attributes with identical values. If, in our system, there were two people
with the first name Max and the last name Miller, and both were born on
the same day, we would have to represent them using different objects
with different object names (e.g., maxMiller1 and maxMiller2). However,
their attribute values would be identical.

The values of the attributes generally change over time. For exam-
ple, if the person Max Miller changes his last name, the individual as a
whole does not change, only the value of the attribute lastName. The ob-
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ject diagram therefore always represents only a snapshot of objects at a
specific moment in time and the objects can develop further and change
as time passes. If specific objects are not represented in the object dia-
gram, this does not mean that they do not exist; it merely expresses that
the unrecorded objects are not important for the moment.

Many individuals that appear in a system have identical character-From object to class

istics and behavior. For example, persons always have a first name, a
last name, and a date of birth. Students also have a matriculation num-
ber. Courses always have a name and a number of hours, as well as a
semester in which they take place. Information about the lecture halls
includes the number of seats available. If every person, every course,
and every lecture hall of the system were to be modeled individually, the
model would soon become over-complicated and impossible to main-
tain. Using classes enables you to describe similar objects without hav-
ing to detail each and every object individually.

4.2 Classes

A class is the construction plan for a set of similar objects that appearClass

A in the system to be specified. Classes can characterize, for example,
persons (e.g., students), things (e.g., buildings), events (e.g., courses or
exams), or even abstract concepts such as groups. In object-oriented
programming languages like Java [4], programs are created based on
classes. Figure 4.3 compares a class definition from a UML class dia-
gram with a class definition in Java.

Figure 4.3

Definition of a class in
UML and Java

class Course {

  String name;

  SemesterType semester;

  float hours;

  int getCredits();

  Lecturer getLecturer();

  float getGPA();

}

Course

name: String

semester: SemesterType

hours: float

getCredits(): int

getLecturer(): Lecturer

getGPA(): float

Objects represent the concrete forms of classes and are referred to asInstance

their instances. The relevant characteristics of the instances of a classCharacteristics of

classes ... are described through the definition of structural characteristics (at-
tributes) and behavior (operations). Operations enable objects to com-
municate with one another and to act and react.
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An attribute allows you to store information that is known for all in- ... are attributes and

operationsstances but that generally has different specific values for each instance.
Operations specify how specific behavior can be triggered on individual
objects. For example, the class Course from Figure 4.3 has the attributes
name and hours. Figure 4.1 shows concrete forms of these attributes.
Possible operations of this class are getGPA() and getLecturer(), which
return the grade point average or lecturer for a course respectively.

To ensure that a model remains clear and understandable, we gen- Level of detail

erally do not model all of the details of the content: we only include
the information that is relevant for the moment and for the system to
be implemented. This means that we abstract from reality to make the Abstraction

model less complex and to avoid an unnecessary flood of information.
In the model, we restrict ourselves to the essentials. For example, in a
university administration system, it is important to be able to manage
the names and matriculation numbers of the students; in contrast, their
shoe size is irrelevant and is therefore not included.

4.2.1 Notation

In a class diagram, a class is represented by a rectangle that can be sub-
divided into multiple compartments. The first compartment must con-
tain the name of the class, which generally begins with a capital letter
and is positioned centered in bold font (e.g., Course in Figure 4.4).

According to common naming conventions, class names are singular
nouns. The class name should describe the class using vocabulary typi-
cal for the application domain. The second compartment of the rectan-
gle contains the attributes of the class, and the third compartment the

Course

Course

name

semester

hours

getCredits()

getLecturer()

getGPA()

(a)

(b)

Course

+ name: String

+ semester: SemesterType

- hours: float

- /credits: int

+ getCredits(): int

+ getLecturer(): Lecturer

+ getGPA(): float

+ getHours(): float

+ setHours(hours: float): void

(c)

Figure 4.4

Representation of a class
and its characteristics
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operations of the class. The contents of these compartments are posi-
tioned left-justified and are optional. In general, the level of detail in
these compartments reflects the respective phase of the software devel-
opment process in which the class is being examined. While the class
diagram excerpt in Figure 4.4(a) does not contain any details of the
class Course, the diagram in Figure 4.4(b) is the result of a more de-
tailed analysis of the characteristic features of courses, showing specif-
ically that the class Course contains three attributes and three opera-
tions. The diagram in Figure 4.4(c) presents even more detail (such as
the type information and visibilities), including information that is rel-
evant for implementation or for automatic code generation. If specific
information is not included in the diagram, this does not mean that it
does not exist; it simply means that this information is not relevant at
this moment in time or is not included for practical reasons, for exam-
ple, to prevent the diagram from becoming over-complicated. Attributes
and operations are usually accessed via their names, which, according
to naming conventions, begin with a lower case letter.

4.2.2 Attributes

Figure 4.5 shows the syntax of attributes. An attribute has at least aAttribute

name. The type of the attribute may be specified after the name us-
ing : Type. Possible attribute types include primitive data types, such
as integer and string, composite data types, for example a date, an enu-Type

meration, or user-defined classes (see Section 4.8). By specifying name:

String, for example, we define the attribute name with type String. Fig-
ure 4.6 shows further examples of attribute types. We will look at the
subsequent, optional multiplicity specification in more detail in the next
section.

Figure 4.5

Syntax of the attribute
specification

= Default { }

,

Property

Visibility Name Type/ : Multiplicity
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To define a default value for an attribute, you specify = Default , where Default value

Default is a user-defined value or expression (see Fig. 4.6). The system
uses the default value if the value of the attribute is not set explicitly by
the user. Thus it is impossible that at some point in time, an attribute has
no value. For example, if in our system, a person must always have a
password, a default password pw123 is set when a new person is entered
in the system. This password is valid until it is reseted.

firstName: String

lastName: String

dob: Date

address: String [1..*] {unique, ordered}

ssNo: String {readOnly}

/age: int

password: String = "pw123"

personsCounter: int

Person

getName(out fn: String, out ln: String): void

updateLastName(newName: String): boolean

getPersonsCounter(): int

age = now.getYear() -

dob.getYear()

Figure 4.6

Properties of attributes

You can specify additional properties of the attribute within curly Properties of attributes

brackets. For example, the property {readOnly} means that the attribute
value cannot be changed once it has been initialized. In the example in
Figure 4.6, the social security number ssNo is an attribute that must not
be changed. Further properties will be introduced in the next section
within the description of multiplicity specifications.

The specification of a forward slash before an attribute name indi-
cates that the value of this attribute is derived from other attributes. An
example of a derived attribute is a person’s age, which can be calcu-
lated from the date of birth. In Figure 4.6, a note contains a calculation
rule for determining a person’s age. Depending on the development tool
used, such notes are formulated in natural language, in a programming
language, or in pseudocode. The optional visibility marker (+, –, #, or
∼) in front of an attribute name or operation name as shown in Fig-
ure 4.4(c) is discussed in detail on page 58.

4.2.3 Multiplicities

The multiplicity of an attribute indicates how many values an attribute Multiplicity

can contain. This enables you to define arrays, just like in programming
languages. The multiplicity is shown as an interval enclosed by square
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brackets in the form [minimum .. maximum], whereby minimum and max-

imum are natural numbers indicating the lower and upper limits of the
interval. The value of minimum must be smaller than or equal to the
value of maximum. If there is no upper limit for the interval, this is ex-
pressed with an asterisk ∗. The class Person in Figure 4.6 contains an
attribute address: String [1..∗]. This denotes that a person has at least one
and possibly multiple addresses. If minimum and maximum are iden-
tical, you do not have to specify the minimum and the two dots. For
example, [5] means that an attribute adopts exactly five values. The ex-
pression [∗] is equivalent to [0..∗]. If you do not specify a multiplicity for
an attribute, the value 1 is assumed as default, which specifies a single-
valued attribute. The valid notation for multiplicities is summarized in
Figure 4.7.

Figure 4.7

Syntax of the multiplicity
specification Min Max[ .. ]

*

If an attribute can adopt multiple values, it makes sense to specify
whether the attribute is:

• A set (no fixed order of elements, no duplicates)
• A multi-set (no fixed order of elements, duplicates possible)
• An ordered set (fixed order, no duplicates)
• A list (fixed order, duplicates possible)

You can make this specification by combining the properties {non-Unique, non-unique,

ordered, unordered unique} and {unique}, which define whether duplicates are permitted or
not permitted, and {ordered} and {unordered}, which force or cancel a
fixed order of the attribute values. For example, the attribute address:

String [1..∗] {unique, ordered} contains all the addresses for a person (see
Fig. 4.6). As each address should only be contained once, the attribute
is labeled {unique}. By specifying {ordered}, we express that the order
of the addresses is important. For example, the first address could be
interpreted as the main residence.

4.2.4 Operations

Operations are characterized by their name, their parameters, and theOperation

type of their return value (see Fig. 4.8). When an operation is called in
a program, the behavior assigned to this operation is executed. In pro-
gramming languages, an operation corresponds to a method declaration
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Visibility Name Parameter( )

,

Type: Property{ }

,

Figure 4.8

Syntax of the operation
specification

or function declaration which is defined but not implemented. The class
diagram is not suitable for describing the behavior of objects in detail
as it only models signatures of the operations that the objects provide;
it does not model how these operations are actually implemented. UML
offers special behavior diagrams for depicting the implementation of
operations, for example the activity diagram (see Chapter 7).

In a class diagram, the operation name is followed by a list of pa- Parameters

rameters in parentheses. The list itself may be empty. A parameter is
depicted similarly to an attribute. The only obligatory information is the
name of the parameter. The addition of a type, a multiplicity, a default
value, and further properties, such as ordered, unique, or their negated
counterparts is optional (see Fig. 4.9).

The optional return value of an operation is specified with the type Return value

of the return value. In Figure 4.6, the class Person has an operation
updateLastName(newName: String): boolean. The only parameter, new-

Name, has the type String and specifies the new name for a person. The
return value has the type boolean. If true is returned, the renaming was
successful, otherwise false is returned.

If required, you can also prepend a direction to the parameter name. Input and output

parametersThis direction can have one of the following values: in, out, or inout (see
Fig. 4.9). The value indicates whether the parameter is an input param-
eter, an output parameter, or both. If a parameter has the direction in,
this indicates that when the operation is used, a value is expected from
this parameter. The specification of the direction out expresses that after
the execution of the operation, the parameter has adopted a new value.
If an operation should have multiple return values rather than just one,
you can express this using multiple parameters with the direction out.
The specification of inout indicates a combined input/output parameter.
If no direction is specified, in is the default value. In Figure 4.6, the op-
eration getName(out fn: String, out ln: String) has two parameters with the
direction value out. For example, if we use the operation getName in a
program by calling getName(firstName, lastName), whereby
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firstName and lastName are variables in the sense of an impera-
tive programming language, successful execution of the operation pro-
duces the following results: the variable firstName contains the first
name and the variable lastName contains the last name of the object
of type Person on which the operation getName was called.

Figure 4.9

Syntax of the parameter
specification

= Default { }

,

Property

Name Type: Multiplicity

out

inout

in

4.2.5 Visibility Markers

The visibility of attributes and operations specifies who is and who is notVisibility

permitted to access them. If an attribute or operation does not have a vis-
ibility specified, no default visibility is assumed. Table 4.1 lists the types
of visibilities and their meaning in UML. Only an object itself knows
the values of attributes that are marked as private. In contrast, anyone
can view attributes marked as public. Access to protected attributes is
reserved for the class itself and its subclasses. If a class has a package

attribute, only classes that are in the same package as this class may ac-
cess this attribute. Accordingly, the visibility of an operation specifies
who is permitted to use the functionality of the operation. Examples are
given in Figure 4.4(c) on page 53. Note that the meaning of visibilities
can vary in different programming and modeling languages even if they
have the same name in the different languages.

Visibilities are used to realize information hiding, an important con-Information hiding

cept in computing. Marking the attributes that represent the state of an
object as private protects this state against unauthorized access. Access
is therefore only possible via a clearly defined interface, such as via
operations that are declared public.

In some cases, class diagrams contain only those attributes and op-
erations that are visible externally. Attributes and operations of classes
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that are marked as private are often omitted, as they are important for
the realization, that is, the implementation of a class, but not for its use.
Therefore, whether or not attributes and operations marked as private

are specified depends on the intention behind and the time of creation
of the class diagram.

Name Symbol Description

public + Access by objects of any classes permitted
private - Access only within the object itself permitted
protected # Access by objects of the same class and its subclasses

permitted
package ∼ Access by objects whose classes are in the same pack-

age permitted

Table 4.1

Visibilities

4.2.6 Class Variables and Class Operations

Attributes are usually defined at instance level. If, for example, a class
is realized in a programming language, memory is reserved for every at-
tribute of an object when it is created. Such attributes are also referred to
as instance variables or instance attributes. In Figure 4.10 for example, Synonyms:

• Instance variable
• Instance attribute

lastName and dob are instance variables. If, in an object-oriented pro-
gram generated from this class of diagram, person1 is an instance of
the class Person, for example, person1.lastName can be used to
refer to the last name of the person. Access to this person’s date of birth
is not possible as the visibility of the attribute dob is private. To find
out the date of birth of person1, the function person1.getDob()
must be called. An operation such as getDob() can only be executed if
a corresponding instance that offers this operation was created before-
hand. In our case, this is the instance person1. An operation may use
all visible instance variables.

In contrast to instance variables, class variables are created only Synonyms:

• Class variable
• Class attribute
• Static

attribute

once for a class rather than separately for every instance of this class.
These variables are also referred to as static attributes or class at-
tributes. Counters for the number of instances of a class (see Fig. 4.10)
or constants such as π are often realized as static attributes. In the
class diagram, static attributes are underlined, just like static operations.
Static operations, also called class operations, can be used if no instance
of the corresponding class was created. Examples of static operations Synonyms:

• Class operation
• Static operation

are mathematical functions such as sin(x) or constructors. Construc-
tors are special functions called to create a new instance of a class. The
method invocation Person.getPCounter() uses the static opera-
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tion getPCounter() defined in Figure 4.10; the operation is called
directly via the class and not via an instance. Unless stated otherwise,
attributes and operations denote instance attributes and instance opera-
tions in most object-oriented languages. We also follow this convention
in this book.

Figure 4.10

Translation of a class from
UML to Java

class Person {

  public String firstName;

  public String lastName;

  private Date dob;

  protected String[] address;

  private static int pCounter;

  public static int getPCounter() {…}

  public Date getDob() {…}

}

+ firstName: String

+ lastName: String

- dob: Date

# address: String[*]

- pCounter: int

Person

+ getPCounter(): int

+ getDob(): Date

4.3 Associations

Associations between classes model possible relationships, known asAssociation

links, between instances of the classes. They describe which classes are
potential communication partners. If their attributes and operations have
the corresponding visibilities, the communication partners can access
each other’s attributes and operations. A class diagram can be viewed
as a graph in which the classes represent the nodes and the associations
represent the edges. Figure 4.11 depicts a class diagram and a valid
object diagram. The class diagram shows that the classes Professor and
Student are related via the association givesLectureFor. In the role as a
lecturer, a professor has zero or more students and one student has zero
or more professors in the role of lecturer. The object diagram models a
concrete scenario.

4.3.1 Binary Associations

A binary association allows us to associate the instances of two classesBinary association

with one another. The relationships are shown as edges (solid line) be-
tween the partner classes involved. The edge can be labeled with theReading direction

A B
c

name of the association optionally followed by the reading direction, a
small, black triangle. The reading direction is directed towards one end
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annaMiller:Professor

frankStone:Professor

helenLewis:Student

paulSchubert:Student

mikeFox:Student

* *
+lecturer

givesLectureFor
StudentProfessor

Figure 4.11

Example of a binary asso-
ciation in a class diagram
and a valid object diagram

of the association and merely indicates in which direction the reader of
the diagram should “read” the association name. We have already seen
a binary association with reading direction in Figure 4.11. In this di-
agram, the reading direction indicates that professors give lectures for
students and not the other way around.

If the edge is directed, that is, at least one of the two ends has an open Navigability

A B
arrowhead, navigation from an object to its partner object is possible. In
simple terms, navigability indicates that an object knows its partner ob-
jects and can therefore access their visible attributes and operations. The
navigation direction has nothing to do with the reading direction, as the
example in Figure 4.11 shows. The reading direction indicates that pro-
fessors give lectures for students. However, the navigability specified
indicates that students can access the visible characteristics of profes-
sors whose lectures they attend. In contrast, a professor cannot access
the visible characteristics of the students who attend the professor’s lec-
ture because the professor does not know them.

A non-navigable association end is indicated by the explicit specifi- Non-navigability

A B
cation of an X at the association end concerned. For example, if such
an X appears at the association end of A for an association between the
classes A and B, this means that B cannot access the attributes and op-
erations of A—not even the public ones. Bidirectional edges without
arrowheads or X at their ends do not provide any information about the
navigation direction but in practice, bidirectional navigability is usually
assumed. The navigation direction represents a hint for the subsequent
implementation because in object-oriented programming languages, as-
sociations are realized as references to the associated objects. An associ-
ation can also be represented in this way in the class diagram, that is, as
an attribute with the appropriate multiplicity, whereby the type of the at-
tribute is the class of the corresponding partner objects. This representa-
tion has the same semantics as a navigable association end. Figure 4.12
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Figure 4.12

Associations in UML and
Java

class Professor {…}

class Student {

  public Professor[] lecturer;

  …

}

(c)

Professor

Student

+ lecturer: Professor[*]

(b)(a)

Professor 

*

+lecturer

Student

*

shows (a) a class diagram in which the student-professor relationship is
modeled explicitly as an association, (b) a class diagram in which the
relationship is represented by an attribute in the class Student, and (c)
the translation into Java. The class diagram in Figure 4.12(a) is prefer-
able, as here the relationship between the classes is visualized explicitly
and it is visible immediately, while in the alternative in Figure 4.12(b),
the association between Student and Professor can only be recognized
by reading the type information of the attribute lecturer.

Figure 4.13

Examples of multiplicity
specifications in binary
associations

(c)

Person *

*+examinee

+examiner

examines

(a)

Lecturer Assignment
1 *issues

(b)

Lecturer Lecture
gives1..* 1..*
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In the same way that multiplicities of attributes and parameters are
specified, multiplicities of associations are given as an interval in the Multiplicity

form minimum..maximum. They specify the number of objects that may
be associated with exactly one object of the opposite side. The values
that the minimum and maximum may adopt are natural numbers and an
asterisk ∗, which expresses that there is no restriction. If minimum and
maximum are identical, one value and the dots can be omitted. Again,
0..∗ means the same as ∗. Figure 4.13 shows examples of multiplicity
specifications for binary associations. Figure 4.13(a) shows that a lec-
turer may issue no, one, or multiple assignments and that an assignment
is issued by exactly one lecturer. No assignment may exist without an
association to a lecturer. Figure 4.13(b) shows that a lecturer gives at
least one lecture and a lecture is given by at least one lecturer. Finally,
Figure 4.13(c) shows that a person in the role of examiner can exam-
ine any number (≥ 0) of persons and a person in the role of examinee
can be examined by any number of examiners. In the example in Fig-
ure 4.13(c), the model does not exclude the case that persons may ex-
amine themselves. If this should be prohibited, additional constraints
must be specified.

You may also label the association ends with role names. A role de- Role

scribes the way in which an object is involved in an association rela-
tionship, that is, what role it plays in the relationship. In the association
in Figure 4.13(c), the Person adopts the role of examiner or examinee.

To express that an object of class A is to be associated with an object xor constraint

A

{xor}B C
of class B or an object of class C but not with both, you can specify an
xor constraint (exclusive or). To indicate that two associations from the
same class are mutually exclusive, they can be connected by a dashed
line labeled {xor}. For example, an exam can take place either in an office
or in a lecture hall but not in both (see Fig. 4.14).

1

*

{xor}

Office LectureHall

Exam

*

1

Figure 4.14

Examples of associations
with xor constraints
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4.3.2 N-Ary Associations

If more than two partner objects are involved in a relationship, you canN-ary association

C

A B
model this using an n-ary association. An n-ary association is repre-
sented with a hollow diamond in the center. The diamond is connected
with all partners of the relationship by means of an undirected edge.
The name of the association is specified next to the diamond. There are
no navigation directions for n-ary associations; however, multiplicitiesMultiplicities for n-ary

associations and role names are possible. Multiplicities define how many objects of
a role/class may be assigned to a fixed (n− 1)-tuple of objects of the
other roles/classes.

Figure 4.15 models the relationship grades between the instances of
the classes Lecturer, Student, and Exam. The multiplicities are defined as
follows: one specific student takes one specific exam with no lecturer
(i.e., does not take this exam at all) or with precisely one lecturer. This
explains the multiplicity 0..1 for the class Lecturer. One specific exam
with one specific lecturer can of course be taken by any number of stu-
dents and one specific student can be graded by one specific lecturer for
any number of exams. In both cases, this is expressed by the multiplic-
ity ∗. In this model, it is not possible that two or more lecturers grade
one student for the same exam.

Figure 4.15

Example of n-ary (here
ternary) association ...

* grades

0..1

*

Lecturer

+examiner

Student

Exam

If you tried to express this ternary association with two binary asso-
ciations, you would have a model with a different meaning. In the rep-
resentation shown in Figure 4.16, an exam can be graded by multiple
lecturers. The ternary association in Figure 4.15 clearly shows which
lecturer a student passed a specific exam with—this is not the case with
the diagram shown in Figure 4.16.

For example, with the model shown in Figure 4.15, it is possible to
express that student s1 took the exam e1 with lecturer l1 and that student
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Exam

Student

Lecturer
*

*

*

*

+examiner

Figure 4.16

... versus example with two
binary associations ...

s2 took the same exam e1 with lecturer l2. With the model shown in
Figure 4.16, it is only possible to express that the students s1 and s2

took the exam e1 and that exam e1 has two examiners l1 and l2. With
this model, you cannot express which lecturer grades which student.

As an alternative to the ternary association in Figure 4.15, an addi-
tional class can be introduced which is connected to the original classes
via binary associations (see Fig. 4.17). However, in this model it is pos-
sible that one student is graded multiple times for one and the same
exam what is not possible with the model of Figure 4.15.

Grading **Exam Student

Lecturer

1

1

1

*

Figure 4.17

... versus example with
additional class

4.4 Association Classes

If you want to assign attributes or operations to the relationship between
one or more classes rather than to a class itself, you can do this using
an association class. An association class is represented by a class and Association class

C

A B
an association that are connected by a dashed line. The association can
be binary or n-ary. Although the representation includes multiple com-
ponents, an association class is one language construct that has both the
properties of a class and the properties of an association. Therefore, in
a diagram, the class and association of an association class must have
the same name, although you do not have to name both (see the asso-
ciation classes Enrollment and Grade in Fig. 4.18). An association class
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Figure 4.18

Examples of association
classes

Student

*
grade

0..1

*

Exam

Lecturer

+examiner

Certificate

+ dateIssued: Date

Enrollment

+ startDate: Date

StudyProgram

binary association

class

ternary association

class

*

1..*

+ grade: int

Grade

can also have associations with other classes. In Figure 4.18, the asso-
ciation class Grade, which contains information about a student’s grade
for a specific exam, is associated with the class Certificate.

In general, you cannot replace an association class with a “normal”
class which is itself associated with the original two associated classes,
as shown by the following example. Let us assume that we want to
model that a student enrolls for at least one study program and has pre-
cisely one enrollment for each chosen study program. In turn, any num-
ber (≥ 0) of students can enroll for one specific study program. This
situation is shown in Figure 4.19(a).

Figure 4.19(b) shows the attempt to model this situation with only
“normal” classes. An enrollment is assigned to precisely one student

Figure 4.19

Attempt to model an as-
sociation class with a
“normal” class and cor-
responding relationships

(b)

*

1..*

1

1

Enrollment

StudentStudent

Study
Program

*

1..*
Enrollment

(a)

Study
Program
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and precisely one study program, while one study program is related to
any number of enrollment objects. A student has at least one enrollment.
So far the requirements are met. However, if we examine the diagram
more closely, we see that in Figure 4.19(b), a student can have multiple
enrollments for one and the same study program, which is not the in-
tention. In contrast, in Figure 4.19(a), a student can enroll for a specific
study program only once.

If duplicates are explicitly required for an association class, at least
one association end must be identified as {non-unique}. If this property
is not specified explicitly, the default value {unique} is assumed. In Fig-
ure 4.20(a), a student can only be granted an exam meeting to discuss
the result of the student’s written exam once. Figure 4.20(b) shows a
more student-friendly model. There, the use of {non-unique} allows a
student to have more than one exam meeting.

(a)

*
Exam

Student

Exam
Meeting

*
{non-unique}

(b)

*
Exam

Student

Exam
Meeting

*

Figure 4.20

Example of {unique} and
{non-unique} association
ends

4.5 Aggregations

An aggregation is a special form of association that is used to express Aggregation

that instances of one class are parts of an instance of another class. UML
differentiates between two types: shared aggregation and composition.
Both are represented by a diamond at the association end of the class
that stands for the “whole”. The differentiation between composition Parts-whole relationship

and shared aggregation is indicated by a solid diamond for a composi-
tion and a hollow diamond for a shared aggregation. Both are transitive
and asymmetric associations. In this case, transitivity means that if B is
part of A and C is part of B, C is also part of A. Asymmetry expresses
that it is not possible for A to be part of B and B to be part of A simulta-
neously.
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Figure 4.21

Examples of shared
aggregations

StudentLabClass
0..1 *

StudyProgram Course
1..* *

(a)

(b)

4.5.1 Shared Aggregations

In the UML standard, a shared aggregation has intentionally informalShared aggregation

A B
semantics. In principle, a shared aggregation expresses a weak belong-
ing of the parts to a whole, meaning that parts also exist indepen-
dently of the whole. The multiplicity at the aggregating end may be
greater than 1, meaning that an element can be part of multiple other
elements simultaneously. Shared aggregations can therefore span a di-
rected acyclic graph. Figure 4.21 shows two examples of the use of a
shared aggregation. In Figure 4.21(a), a lab class consists of any num-
ber of students. However, a student can participate in a maximum of one
lab class. In Figure 4.21(b), a study program is made up of any (≥ 0)
number of courses. A course is assigned to at least one (≥ 1) study pro-
gram.

4.5.2 Compositions

The use of a composition expresses that a specific part can only be con-Composition

A B
tained in at most one composite object at one specific point in time.
This results in a maximum multiplicity of 1 at the aggregating end.
The composite objects therefore form a forest of trees, indicating an
existence dependency between the composite object and its parts; if the
composite object is deleted, its parts are also deleted. Figure 4.22 shows
examples of compositions. A lecture hall is part of a building. Due to
the multiplicity 1, there is an existence dependency between elements
of these two classes. The lecture hall cannot exist without the building.
If the building no longer exists, the lecture hall also does not exist any-
more. The situation is different for a beamer which is also associated
with a lecture hall by a composition. However, the multiplicity 0..1 is
specified at the aggregating end. This means that the beamer can exist
without the lecture hall, that is, it can be removed from the lecture hall.
If the beamer is located in the lecture hall and the lecture hall ceases
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1 *Building LectureHall Beamer
0..1 1 Figure 4.22

Examples of compositions

to exist—for example, because the building is torn down—the beamer
also ceases to exist. However, if it was removed from the lecture hall
beforehand, it continues to exist.

A shared aggregation is differentiated from an association only by
the fact that it explicitly visualizes a “part of” relationship. In a compo-
sition, the existence dependency signifies a far stronger bond between Existence dependency

of a composite object’s

parts

the composite object and its parts, which means that a composition and
an association are not interchangeable. A composition is usually used if
the parts are physically embedded in the composite object or are only
visible for the composite object. If the parts are referenced externally,
this can indicate that a shared aggregation is sufficient. Furthermore, if
the composite object is deleted or copied, its parts are also deleted or
copied when a composition is used.

4.6 Generalizations

Different classes often have common characteristics. For example, in
Figure 4.23, the classes Student, ResearchAssociate, and Administra-

tiveEmployee all have the attributes name, address, dob, and ssNo. Stu-
dents and employees of both types are distinguished by further char-
acteristics specific to the respective class: a student has a matriculation

1..* *

*

1

is
A
ss

ig
ne

d

Study

Program

Student

name

address

dob

ssNo

matNo

1..*

*

enrolls

Research

Associate

1..*

*

teaches

Course

name

address

dob

ssNo

acctNo

Administrative

Employee

*

1

isAssigned

Faculty

name

address

dob

ssNo

acctNo

Figure 4.23

Class diagram without
generalization
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number and has enrolled for at least one study program; employees have
a checking account and are assigned to a faculty. Instances of the class
ResearchAssociate are in a teaches relationship with any number of in-
stances of the class Course.

We can use a generalization relationship to highlight commonalities
between classes, meaning that we no longer have to define these com-
mon characteristics multiple times. Conversely, we can use the general-
ization to derive more specific classes from existing classes. If we want
to add a class Professor, which is a subclass of ResearchAssociate, in
Figure 4.23, we use the generalization to avoid having to copy the char-
acteristics of the class ResearchAssociate to the class Professor.

4.6.1 Inheritance

The generalization relationship expresses that the characteristics (at-Inheritance from
superclass to subclass tributes and operations) and associations that are specified for a general

class (superclass) are passed on to its subclasses. Therefore, the gen-
eralization relationship is also referred to as inheritance. This meansSynonyms:

• Inheritance
• Generalization
• “Is a” relationship

that every instance of a subclass is simultaneously an indirect instance
of the superclass. The subclass “possesses” all instance attributes and
class attributes and all instance operations and class operations of the
superclass provided these have not been marked with the visibility pri-

vate. The subclass may also have further attributes and operations or
enter into other relationships independently of its superclass. Accord-
ingly, operations that originate from the subclass or the superclass can
be executed directly on the instance of a subclass.

A generalization relationship is represented by an arrow with a hol-Generalization notation

A B
low, triangular arrowhead from the subclass to the superclass, for exam-
ple from Student to Person in Fig. 4.24. The name of a superclass must
be selected such that it represents an umbrella term for the names of
its subclasses. To ensure that there are no direct instances of the class
Person, we label this class with the keyword {abstract}. The class Per-

son therefore becomes an abstract class and only its non-abstract sub-
classes can be instantiated. We will look at details of abstract classes in
Section 4.7 on page 72.
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Faculty

ResearchAssociate

1

isAssigned

Employee

acctNo

*

{abstract}

Person

name

address

dob

ssNo

Student

matNo

StudyProgram

Course

enrolls

1..*

*

1..*

*

1..*

*
teaches

AdministrativeEmployee

Figure 4.24

Class diagram with
generalization

The generalization relationship is also referred to as an “is a” rela- Transitivity of the

generalization

relationship

tionship. For example, every student is a person (see Fig. 4.24). Every
research associate and every administrative employee is an employee
and, due to the transitivity of the generalization relationship, every ad-
ministrative employee is also a person. If, as in object-oriented pro- Subtype and supertype

equivalent to

subclass and superclass
gramming languages, we consider a class to be a type, subclasses and
superclasses are equivalent to subtypes and supertypes.

UML allows multiple inheritance, meaning that a class may have Multiple inheritance

multiple superclasses. For example, a tutor is both an employee of the
university and a student (see Fig. 4.25). Due to the transitivity of in-
heritance, single inheritance creates an inheritance hierarchy, whereas
multiple inheritance creates a (directed acyclic) inheritance graph.

Tutor

Student Employee
Figure 4.25

Example of multiple
inheritance
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4.6.2 Classification

Classification refers to the “instanceOf” relationship between an ob-
ject and its class. In many object-oriented programming languages, an
object can usually only be the direct instance of precisely one class.
In contrast, UML allows multiple classification. With multiple classifi-Multiple classification

cation, an object can be an instance of multiple classes without these
classes having to be associated with one another in an inheritance rela-
tionship. In contrast to multiple inheritance, no new class inheriting the
characteristics of the superclasses involved is introduced.

For example, instances of Employee can be differentiated according
to their job, that is, whether they are researchers or administrators, and
whether they are financed directly via the university or via a project.
Multiple classification means that an object can be an instance of mul-
tiple classes whose characteristics the object then has. In Figure 4.26,
we have divided the generalization relationships into two groups. The
sets Job and Financing form generalization sets which group subclassesGeneralization set

according to multiple independent criteria. Generalization sets can be
described more precisely by the following constraints:

• Overlapping or disjoint: in an overlapping generalization set, an ob-
ject may be an instance of multiple subclasses simultaneously. In a
disjoint generalization set, an object may be an instance of a maxi-
mum of one subclass.

• Complete or incomplete: in a complete generalization set, each in-
stance of the superclass must be an instance of at least one of the
subclasses. In incomplete generalization sets, this is not necessary.

This results in four combinations: {complete, overlapping}, {incom-

plete, overlapping}, {complete, disjoint}, and {incomplete, disjoint}. If none
of these constraints are specified explicitly, {incomplete, disjoint} is the
default value. Examples are shown in Figure 4.26: an employee must
belong to either the research or administrative personnel but not both.
The employee can be financed directly via the university, via a project,
via both, or in another, unspecified way, for example via a scholarship.

4.7 Abstract Classes vs. Interfaces

Classes that cannot be instantiated themselves are modeled as abstractAbstract class

{abstract}

A

classes. These are classes for which there are no objects—only their
subclasses can be instantiated. Abstract classes are used exclusively to
highlight common characteristics of their subclasses and are therefore
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ProjectEmployee

Employee

UniversityEmployee

Job

{complete, disjoint}

{incomplete, overlapping}

Financing

ResearchAssociate AdministrativeEmployee

Figure 4.26

Example of multiple
classification

only useful in the context of generalization relationships. Operations of
abstract classes can also be labeled as abstract. An abstract operation Abstract operation

does not offer any implementation itself. However, it requires an imple-
mentation in the concrete subclasses. Operations that are not abstract
pass on their behavior to all subclasses.

Abstract classes and abstract operations are either written in italic
font or indicated by the specification of the keyword {abstract} before
their name (see Fig. 4.27). In manually produced class diagrams in par-
ticular, the use of the second notation alternative is recommended, as
italic handwriting is difficult to recognize.

Person
{abstract}

Person

Figure 4.27

Notation for abstract
classes

In the example in Figure 4.28, the class Person is abstract. Hence,
there cannot be any instances of Person itself but there can be instances
of the specific subclasses Employee and Student.

Similarly to the abstract class, an interface also does not have an im- Interface

plementation or any direct instances. An interface represents a contract.
The classes that enter into this contract, that is, the classes that imple-
ment the interface, obligate themselves to provide the behavior specified
by the interface. In contrast to the relationship between an abstract class
and its subclasses, an “is a” relationship between an interface and the
classes that implement it is not necessary. Operations of interfaces never
have an implementation.
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An interface is denoted like a class but with the additional keyword
«interface» before the name. A dashed inheritance arrow with a hollow,
triangular arrowhead from a class to an interface signifies that this class
implements the interface. A dashed arrow with an open head with the
keyword «use» expresses that a class uses an interface. Let us look at
the example from Figure 4.28. The classes Person and Course imple-
ment the interface Printable. The classes that implement Printable must
provide an operation print(). This operation is different for every class.
For a course, the name and the number of hours are printed; for a Per-

son, the name and address are printed. In the class Student, the operation
print() is specified again. This expresses that the Student extends the be-
havior of the operation print() inherited from Person. The method print()

is overwritten, meaning that the matriculation number is also printed.
For Employee this is not necessary, assuming that the behavior specified
for print() in Person is sufficient. The class Printer can now process each
class that implements the interface Printable. Thus, a specific print() can
be realized for each class and the class Printer remains unchanged.

Figure 4.28

Example of an interface «use»
«interface»

Printable

+ print(): void

Student

+ matNo: int

+ print(): void

Employee

+ acctNo: int

+ name: String

+ hours: int

Course

+ print(): void

+ getCredits(): float

+ name: String

+ address: String

+ dob: Date

+ ssNo: int

{abstract}

Person

+ print(): void

Printer
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4.8 Data Types

Attributes, parameters, and return values of operations have a type that Class vs. data type

specifies which concrete forms they may take. For example, the name of
a person has the type String. A type can be either a class or a data type.
Instances of data types are also referred to as their values. In contrast
to instances of classes (objects), values do not have their own identity.
If two values are identical, they cannot be differentiated. For example,
let us look at the class Book, whose instances are different copies of the
book UML@Classroom. These copies can be uniquely identified and
differentiated even though their attributes have the same content. How-
ever, different occurrences of a value, for example the number 2, cannot
be differentiated. This differentiation becomes evident in the applica-
tion of the comparison operation ==, as provided by Java for example.
If we compare two variables of the type int (integer data type) and
both variables have the same value, the result of the comparison oper-
ation is true. If we compare two different objects with ==, the result is
false in general even if all attributes have the same values.

In UML, a data type is visualized in the same way as a class, with the Data type

difference that the name of the data type is annotated with the additional
keyword «datatype» (see Fig. 4.29(b)). As the example in Figure 4.29(b)
shows, data types can have an internal structure in the form of attributes.
In UML, there are also two special forms of data types, namely primitive
data types and enumerations.

Primitive data types do not have any internal structure. In UML there Primitive data type

are four pre-defined primitive data types: Boolean, Integer, UnlimitedNat-

ural, and String. User-defined primitive data types are identified by the
specification of the keyword «primitive». Primitive data types may have
operations (see Fig. 4.29(a)) that are executed on their values.

Enumerations are data types whose values are defined in a list. Enumeration

The notation is the same as for a class with the specific identification
«enumeration». In Figure 4.29(c), the enumeration AcademicDegree is
defined. This enumeration lists all academic degrees that are known in
our system. Therefore, attributes of the type AcademicDegree may take Literal

the values bachelor, master, and phd. These values are called literals.

day

month

year

«datatype»

Date

(b)

bachelor

master

phd

«enumeration»

AcademicDegree

(c)

«primitive»

Float

round(): void

(a)

Figure 4.29

Examples of data types
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User-defined types are used as specified in the syntax description
of attributes and operations in Figure 4.5 (page 54) and in Figure 4.8
(page 57). Let us look at the type definitions from Figure 4.29 again.
These could be used in the following attribute definitions: weight: Float,
dob: Date, and title: AcademicDegree [∗].

4.9 Creating a Class Diagram

UML describes the syntax and semantics of classes and their relation-
ships but not how the classes and relationships are constructed. Unfor-
tunately, it is not possible in principle to completely extract classes and
their characteristics from a natural language text automatically. How-
ever, there are guidelines for creating a class diagram. Nouns such as
person, employee, course, etc. often indicate classes. In contrast, names
of values such as Paul or object-oriented modeling and expressions that
indicate the relationships between potential classes are rarely classes.
Values of attributes are often expressed by adjectives or also by nouns
and operations often result from verbs. The following three aspects are
important: which operations can an object of a class execute? Which
events, to which the object must be able to react, can theoretically oc-
cur? And finally, which other events occur as a result? If the values of
an attribute can be derived from another attribute, for example, if the
age of a person can be calculated from their date of birth, it should be
identified as a derived attribute. Further, it is essential to consider not
only the current requirements but also the extensibility of the system.

As we now know how to derive a class diagram from a textual spec-
ification, we will do so for the following requirement specification:

• A university consists of multiple faculties which are composed ofInformation system of a

university various institutes. Each faculty and each institute has a name. An
address is known for each institute.

• Each faculty is led by a dean, who is an employee of the university.
• The total number of employees is known. Employees have a social

security number, a name, and an e-mail address. There is a distinction
between research and administrative personnel.

• Research associates are assigned to at least one institute. The field
of study of each research associate is known. Furthermore, research
associates can be involved in projects for a certain number of hours,
and the name, starting date, and end date of the projects are known.
Some research associates teach courses. They are called lecturers.

• Courses have a unique number (ID), a name, and a weekly duration
in hours.
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1. Identifying the classes

First, we must identify the elements that occur in the system Univer-

sity that identify the classes. These are shown in Figure 4.30.

Course
Lecturer

Project

Research

Associate

Administrative

Employee
Institute

Faculty

Employee
Figure 4.30

Identified classes

As we can see, University is not a separate class. We have not for-
gotten it—we have intentionally not included it. We are using the
class diagram to describe the system University, hence the instance
of our model contains those objects that occur within a university,
for example, the Vienna University of Technology. If we included
a class University which itself consists of other classes from Fig-
ure 4.30, we could model multiple university information systems
simultaneously. Our model would then also describe, for example,
the Johannes Kepler University Linz.

2. Identifying the attributes

We can now describe our classes in more detail using attributes. The
classes and their attributes are shown in Figure 4.31.
We have defined meaningful data types for our attributes even though
these are not included in the specification. We also set the visibility
of all attributes to public so that in this phase, we do not have to think
about which attributes are visible from the outside and which are
not. The attribute counter of the class Employee is defined as a class
attribute as its values do not belong to an instance. This attribute is
increased when an instance of the class Employee is created.
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Figure 4.31

Classes and their attributes

Course

+ name: String

+ id: int

+ hours: float

Lecturer
Project

+ name: String

+ start: Date

+ end: Date

Research

Associate

+ fieldOfStudy: String

Administrative

Employee
Institute

+ name: String

+ address: String

Faculty

+ name: String

Employee

+ ssNo: int

+ name: String

+ email: String

+ counter: int

3. Identifying the relationships between classes

Classes can be linked with one another in three ways. They can be in
a sub-/superclass relationship (generalization), be related by means
of an aggregation, or linked via associations.

4.9.1 Generalizations

The following sentences strongly indicate a generalization relationship:
“There is a distinction between research and administrative personnel.”
and “Some research associates teach courses. Then they are called lec-
turers.” We model these generalization relationships as shown in Fig-
ure 4.32. As every employee of a university belongs to either the re-
search or administrative personnel, we can set the class Employee to
abstract.

4.9.2 Associations and Aggregations

To complete the class diagram, we need to add the associations and ag-
gregations and their corresponding multiplicities. The classes Lecturer

and Course are linked by means of the association teaches. An employee
leads the faculty. Here the employee takes the role of a dean. A faculty
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{abstract}

Employee

Research

Associate

+ fieldOfStudy: String

Administrative

Employee

Lecturer

+ ssNo: int

+ name: String

+ email: String

+ counter: int

Figure 4.32

Identified generalization
relationships

consists of multiple institutes. We assume that there is an existence de-
pendency which we model with a composition. Research associates are
assigned to an institute, meaning they are part of an institute. Using
a composition here would be incorrect as there is no existence depen-
dency between instances of Employee and Institute. However, a shared
aggregation is possible in order to represent the parts-whole relation-
ship explicitly. Finally, we have the involvement of research associates
in projects, whereby we know the number of hours of participation. For
this we need the association class Participation. This association class
further details the relationship between the project and the research as-
sociate with the number of hours. Figure 4.33 shows the complete class
diagram for the given task.

Note that the resulting model is not unique even for such small ex-
amples; it depends on the one hand on the intended application, and on
the other hand on the style of the modeler. For example, if we had cre-
ated the model with the intention of generating code from it, we would
perhaps have designed the interfaces more carefully and specified more
differentiated visibilities. It is a matter of taste that Lecturer is a separate
class but dean is a role. We could also have specified Lecturer as a role
at the end of the association teaches which would have been defined
between the classes ResearchAssociate and Course.
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Figure 4.33

Class diagram of the in-
formation system of a
university

Research

Associate

+ fieldOfStudy: String

Administrative

Employee
Institute

+ name: String

+ address: String

Course

+ name: String

+ id: int

+ hours: float

Lecturer

Faculty

+ name: String
+dean

1 0..1

1

Participation

+ hours: int

1..*

1..*
1..*

0..*

1..*

1..*

{abstract}

Employee

+ ssNo: int

+ name: String

+ email: String

+ counter: int

Project

+ name: String

+ start: Date

+ end: Date

leads

teaches

1..*

4.10 Code Generation

Class diagrams are often created with the intention of implementingForward engineering

the modeled elements in an object-oriented programming language. As
many of the concepts of the class diagram are available in identical or
similar form in object-oriented programming languages such as Java,
C#, or C++, in many cases a translation can take place automatically
and requires only minimal manual intervention. The class diagram is
also suitable for documenting existing program code, with the advan-Reverse engineering

tage that the relationships between classes are represented graphically.
There are a number of tools for reverse engineering program code into
class diagrams automatically.

Data modeling also involves similar concepts to those of the class
diagram. For example, here the entity-relationship diagram (ER dia-
gram) [14] is used—with the exception of different notation, it is very
similar to the class diagram. Both diagrams show the elements (classes
or entities) of a system and the relationships (associations or relations)
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between them. In both cases, these elements are characterized by their
attributes. Considerable differences are visible if we compare the focus
of the two types of diagrams. While the ER diagram describes the el-
ements of a database, the class diagram shows how to implement the
modeled system in an object-oriented programming language. Thus, in
the ER diagram, we can define key attributes that are required to iden-
tify entries in a table. This is not possible directly in a class diagram but
it is also not necessary, as each object is identified by a unique object
ID. In contrast, the specification of behavior, which is possible in the
class diagram through operations, is not supported in the ER diagram.
Therefore, the recommendation is to use the diagram type that is best
for the problem in question. The following example again illustrates the
connection between a class diagram (see Fig. 4.34) and the Java code
generated from it (see Fig. 4.35).

«enumeration»

ESemester

winter

summer

«enumeration»

ERole

lecturer

tutor

examiner

Course

+ courseNo: int

+ firstName: String

+ lastName: String

+ ssNo: int

{abstract}

UniversityMember

Student

+ matNo: int

+ year: int

+ semester: ESemester

CourseExecution

* 1

- acctNo: int

Employee

+ getAcctNo(): int

*

*

co
m

p
le

te
s

+student

+cC

Support

+ role: ERole

+ hours: float

*

*+

+cE

+course

Figure 4.34

Class diagram from which
code is to be generated

Many elements can be translated 1:1. Both abstract and concrete
classes are adopted directly in the code with their attributes and opera-
tions. In the code, associations are represented as attributes. Note that
the multiplicity of an association end is reflected in the type of the at-
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tribute. If the multiplicity is greater than one, we can use, for example,
an array, as we did for the courses. Instead of arrays we could also use
generic data types, for example the Java data type Collection; in
contrast to arrays, with generic data types we do not have to know the
size at initialization [4].

We have to make sure that we implement the navigation directions
correctly. The navigation information provided in terms of arrowheads
at the association ends tells us which class has to know about which
other class—and this is realized via the attributes that model the associ-
ation ends.

Some concepts, such as association classes or n-ary associations, do
not exist directly in common programming languages such as Java. We
thus have to consider how to simulate these concepts. Our example con-
tains the association class Support. In the code this is implemented as a
hash table. A hash table is a data structure that contains elements in the
form (key, data). If the key (which must be unique) is known, the related
data can be found efficiently.

Up to this point we have been able to describe the structure of ele-
ments and their relationships. We were not able to express behavior. In
the above example we had only one operation, getAcctNo(), which re-
turns the account number of the employee. The content of the method
body was generated automatically as it is a getter method that encap-
sulates the access to a variable of the same name. For other operations,
for example, operations that were intended to calculate something, the
implementation cannot be derived automatically. UML offers other dia-
grams for modeling behavior and we will introduce these in the follow-
ing chapters. To complete this chapter, Table 4.2 summarizes the most
important concepts of the class and object diagrams.
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abstract class UniversityMember {
public String firstName;
public String lastName;
public int ssNo;

}

class Student extends UniversityMember {
public int matNo;
public CourseExecution [] cC; // completed c.

}

class Employee extends UniversityMember {
private int acctNo;
public CourseExecution [] cE; // supported c.
public int getAcctNo { return acctNo; }

}
class CourseExecution {

public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;

// Key: employee
// Value: (role, hours)

}

class Course {
public int courseNo;

}

Enumeration ESemester {
winter;
summer;

}

Enumeration ERole {
lecturer;
tutor;
examiner;

}

Figure 4.35

Java code that can be gen-
erated automatically from
Fig. 4.34
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Table 4.2

Notation elements of the
class and object diagrams

Name Notation Description

Class

A

- a1: T1

- a2: T2

+ o1(): void

+ o2(): void

Description of the structure and be-
havior of a set of objects

Abstract class
A

{abstract}

A
Class that cannot be instantiated

Association

A B

(a)

A B

(b)

A B

(c)

Relationship between classes: navi-
gability unspecified (a), navigable in
both directions (b), not navigable in
one direction (c)

N-ary association
C

A B
Relationship between N (in this case
3) classes

Association class
C

A B
More detailed description of an asso-
ciation

xor relationship
A

{xor}B C An object of A is in a relationship
with an object of B or with an object
of C but not with both

Strong aggregation =
composition

A B

Existence-dependent parts-whole re-
lationship (A is part of B; if B is
deleted, related instances of A are also
deleted)

Shared aggregation A B

Parts-whole relationship (A is part of
B; if B is deleted, related instances of
A need not be deleted)

Generalization A B
Inheritance relationship (A inherits
from B)

Object o:C Instance of a class

Link o1 o2 Relationship between objects



Chapter 5

The State Machine Diagram

Over the course of its life, every system, or to be more precise every
object, goes through a finite number of different states. Using a state State machine diagram

machine diagram, you can model the possible states for the system or
object in question, how state transitions occur as a consequence of oc-
curring events, and what behavior the system or object exhibits in each
state.

As a simple example consider a lecture hall that can be in one of
two states: free or occupied. When a lecture starts in the lecture hall,
the state of the lecture hall changes from free to occupied. Once the
respective event in the lecture hall has finished and the hall has been
released again, its state reverts to free (see Fig. 5.1).

occupiedfree
lecture start

release

Figure 5.1

State machine diagram of
a lecture hall (simplified
presentation)

The state machine diagram is based on the work of David Harel [22]
and uses concepts of finite automata. UML differentiates between two
types of state machines, namely behavior state machines and protocol
state machines. In this book, we present only behavior state machines,
which are widespread in practice and are also referred to as state ma-
chine diagrams or state charts.

In the same way as every other diagram, a state machine diagram
only models the part of a system that is necessary or relevant for the
respective purpose. For example, if you want to model only the states
that a lecture hall can take, either for collecting requirements or for doc-
umentation purposes, a model as shown in Figure 5.1 can be sufficient.
However, if you are already in a late phase of the development process,
a representation that is close to code, as shown in Figure 5.2, is ben-
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eficial. This figure shows a class LectureHall with an attribute free that
can take the values true and false. Calling the operation occupy sets free

to false and the lecture hall object changes to the state free=false, which
corresponds to the state occupied in Figure 5.1. The events in the state
machine diagram are the equivalent of calling the respective operations
of the class LectureHall.

Figure 5.2

State machine diagram,
class diagram, and pseu-
docode of a lecture hall

- free: boolean

LectureHall

+ occupy()

+ release()

class LectureHall {

  private boolean free;

  public void occupy() {

    free=false;

  }

  public void release() {

    free=true;

  }

}

free=

true

occupy()

release()

free=

false

5.1 States and State Transitions

A state machine diagram is a graph with states as nodes and state tran-State

S
sitions as edges. In the diagram, a state is shown as a rectangle with
round corners and is labeled with the name of the state. When an object
is in a specific state, all internal activities specified in this state can be
executed by this object. If internal activities are specified for a state, it
is divided into two compartments: the upper compartment of the rect-
angle contains the name of the state; the lower compartment includes
internal activities, whereby an activity can consist of multiple actions.Internal activities

S

entry/Activity(...)

do/Activity(...)

exit/Activity(...)

We will present the relationship between activities and actions in detail
in Chapter 7, which looks at activity diagrams.

Within a state you can model three activities that are executed at
a predefined moment. When an activity is specified after the keyword
entry, this activity must then be executed when the object enters the
state; conversely, the exit activity is executed when the object exits the
state. An activity preceded by the keyword do is executed while the
object remains in this state, that is, as long as this state is active. The
respective activity is always specified with a prepended forward slash
that clearly identifies it as an activity.

Figure 5.3 shows an extension of the example from Figure 5.1. As
long as a lecture hall remains in the state free, that is, as long as the state
free is active, the activity Display as available is executed and the lecture
hall is displayed in the reservation system. If the lecture hall is occupied,
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it changes from the state free to the state occupied. At the moment the
lecture hall enters this state, the activity Save user reservation is executed
and the name of the person occupying the lecture hall is saved. While the
lecture hall remains in the state occupied, the activity Display as occupied

is executed. Once the lecture hall is no longer required, it is released and
changes to the state free. When the lecture hall exits the state occupied,
the activity Delete user reservation is executed.

occupied

entry/Save user reservation

do/Display as occupied

exit/Delete user reservation

free

do/Display as available
occupy

release

Figure 5.3

State machine diagram of
a lecture hall with internal
activities

The change from one state to another is referred to as a state tran-
sition or simply transition. A transition is represented with a directed Transition

e[g]/A
S T

edge, that is, an arrow. The arrowhead reflects the direction of the tran-
sition. The origin of the transition is referred to as the source state and
the end of the transition is referred to as the target state. You can specify
various properties for a transition: Synonyms:

• Transition
• State transition

• The event (also called “trigger”) that triggers the state transition
• The guard (also called “guard condition” or simply “condition”) that

enables the execution of the transition
• Activities (also called “effects”) executed during the change to the

target state

Events are exogenous stimuli (that is, stimuli that come from out- Event (Trigger)

side the system/object) that can trigger a state transition. If the event
specified for the transition occurs, the guard is checked. The guard is Guard (Condition)

a boolean expression. At a specific point in time, it evaluates to ei-
ther true or false. If the guard is true, all activities in the current state
are terminated, any relevant exit activity is executed, and the transi-
tion takes place. During the state transition, any activities defined for Activity (Effect)

that transition are executed. A transition—at least from a conceptual
perspective—requires no time. Therefore, the system is always in a state
and never in a transition. The activities specified for a transition must
therefore also not require any significant time.

If the guard evaluates to false, there is no state transition and the
event is lost and not consumed. Even if the guard becomes true at a later
point in time, the event must occur again for the transition to take place.
If no guard is modeled at a transition, the default value [true] applies. If
no event is specified at a transition, the transition is triggered when the
entry activity and do activities of the current state are completed.
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Finishing these activities creates a completion event that triggers theCompletion event and

completion transition transition. This type of transition is also referred to as a completion
transition. If an event occurs for which no behavior is specified in the
current state, the event is not consumed and is lost.

Guards are always set within square brackets to differentiate them
from events and activities. Activities are always prepended with a for-
ward slash (including activities in the states). Figure 5.4 illustrates the
syntax of a transition specification.

Figure 5.4

Syntax of a transition
specification

[ Guard / Activity]

Event Parameter

,

,

( )

You can model internal transitions within states. These internal tran-Internal transition ...

S

event/Activity(...)

sitions handle the occurrence of events within a state. You use them to
model the reaction to an event when the system does not exit the state
that is currently active, meaning that entry and exit activities are not ex-
ecuted.

Figure 5.5 shows the two states that a student can take with refer-
ence to an exam, namely not registered and registered. As long as the
student remains in the state not registered, every time a new exam date
is published the student checks whether there is enough time to take the
exam on this date—meaning that every time the event new date occurs
the activity Check date is executed. If the event register occurs, provided... in contrast to

“external” transition

event

/Activity(...)
S1 S2

the guard registration possible is true, the student switches to the state
registered and the date of the exam is entered in the calendar. As long as
the state registered is active, the student is studying. Any time the stu-
dent encounters a problem, it is discussed with the student’s colleagues.
If the event withdraw occurs in the state registered, two different cases
are possible. If the guard withdrawal possible is true, the activity Study for

exam is interrupted and the student switches to the state not registered.
When the student exits the state registered, the date is deleted from the
calendar. However, if the guard withdrawal possible is false, the student
remains in the state registered and must continue to study for the exam.
(Believe it or not, in the home country of the authors it is possible to
withdraw from an exam without consequences.)
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register

[registration possible]

withdraw

[withdrawal possible]

registered

entry/Enter date in calendar

do/Study for exam

problem/Discuss with colleagues

exit/Delete date

not registered

new date/Check date

Figure 5.5

State machine diagram of
the registration status for
an exam

To further illustrate the concept of events, guards, and activities,
Figure 5.6 shows abstract examples of transitions. The transition in
Figure 5.6(a) has no event and no guard. Therefore the transition can
take place as soon as A1 is completed. Figure 5.6(b) is similar to Fig-
ure 5.6(a) but activity A2 is executed during the transition. In Fig-
ure 5.6(c), the transition takes place as soon as event e1 occurs. If e1

occurs, the execution of the do activity A1 is immediately interrupted
and the system switches to state S2. When the system exits state S1, the
exit activity A2 is executed.

In Figure 5.6(d), guard g1 is checked as soon as e1 occurs. If the
guard is true, A1 is terminated and there is a change of state to S2. If the
guard is false, event e1 is lost and A1 is not interrupted. Figure 5.6(e) is
similar to 5.6(d) but in 5.6(e), activity A2 is executed in addition during
the transition.

Figure 5.6(f) shows an “unclean” use of a guard. The system stays
in state S1 until A1 is completed. Guard g1 is not checked until this
point and the transition takes place if g1 is true. If g1 is false, the system
remains in state S1 and it will never be possible to exit S1 via this tran-
sition as the completion event of the do activity was lost when it was
not consumed. This type of transition specification only makes sense if,
for example, there is a further transition with a complementary guard,
meaning that there is no dead end (not depicted here).

5.2 Types of States

In addition to the states discussed in Section 5.1, there are further types
of state that enable you to model more complex content with state ma-
chine diagrams. There is a distinction between “real” states and pseu- Pseudostates are

transientdostates. Pseudostates are transient, which means that the system cannot
remain in a pseudostate. They are not states in the actual sense but rather
control structures that enable more complex states and state transitions.
You cannot annotate activities to pseudostates. These pseudostates in-
clude the initial state, the decision node, the parallelization and syn-
chronization nodes, the history state, the entry and exit points, and the
terminate node. These are described in more detail below.
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Figure 5.6

Examples of transitions

(a)

e1[g1]

(d)(c)

S2
e1

S1

do/A1

exit/A2

(b)

S2

S1

do/A1
/A2

S2

S1

do/A1

S2

S1

do/A1

S2
e1[g1]/A2

(e) (f)

[g1]
S1

do/A1 S2

S1

do/A1

The initial state is represented in the diagram as a small black circleInitial state

and marks the “start” of a state machine diagram or a composite state
(introduced in Section 5.5). The initial state has no incoming edges and
usually one outgoing edge which leads to the first “real” state. If multi-
ple outgoing edges are used, their guard conditions must be mutually ex-
clusive and cover all possible cases to ensure that exactly one target state
is reached. As soon as the system is in the initial state, it immediately—
that is, without consuming any time—switches to the next state. There-
fore, you cannot specify any events to the outgoing edge from the ini-
tial state. The only exception to this rule is the event that creates the
modeled object itself—new() or create() for example. However, you can
specify activities.

The decision node is represented in the diagram with a diamond. YouDecision node

...

can use it to model alternative transitions. It has exactly one incoming
edge and at least two outgoing edges. At the incoming edge, you model
the event that triggers the transition; at the outgoing edges, you spec-
ify the guards for the alternative paths for the state transition. You can
also specify activities at the incoming edge and all outgoing edges. If
the event modeled at the incoming edge occurs, the system enters the
transition. However, it pauses briefly at the decision node—but from
a conceptual perspective without consuming any time—to evaluate the
guards and thus select the outgoing edge to be used. To prevent the
system getting “stuck” in the decision node, you must ensure that the
guards cover all possible situations. Using [else] at one of the edges will
allow you to do this. If the guards are not mutually exclusive, and if two
or more edges are evaluated as true, one of these valid edges is selected
nondeterministically. Figure 5.7(a) shows an example of the use of the
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decision node. If event e1 occurs, the transition takes place. Once the
system has arrived at the decision node, the guards [b≤0] and [b>0] are
evaluated and the system switches to state S2 or state S3. You can also
model the same behavior without using a decision node, as shown in
Figure 5.7(b). In contrast, Figure 5.7(c) and Figure 5.7(d) show differ-
ent behavior. Figure 5.7(c) shows that if event e1 occurs, the transition
starts and b is increased by the value 1. The guards are then evaluated.
In Figure 5.7(d), b is only increased by the value 1 after the evaluation
of the guards. Therefore, depending on the value of b, transitions to dif-
ferent states can occur in the two models. Figures 5.7(c) and 5.7(d) are
therefore not semantically equivalent.

(a)

e1
S1

S2
[b<=0]

[b>0] S3

=

(c)

(b)

e1[b<=0] S2

S3

S1

e1[b>0]

(d)

e1[b<=0]/b:=b+1 S2

S3

S1

e1[b>0]/b:=b+1

≠e1/b:=b+1
S1

S2

S3

[b<=0]

[b>0]

Figure 5.7

Modeling with and without
decision nodes

Figure 5.8 shows the states that a student has when participating in
a specific course. If the student is in the state not graded and the event
grade occurs, depending on the grade the student receives, the student
switches to the state positive or the state negative. The X in the model is
called terminate node, which we will introduce later on in this chapter.

The parallelization node is represented with a black bar. It has ex- Parallelization node

...

actly one incoming edge and at least two outgoing edges and is used to
split the flow into multiple concurrent transitions. No events or guards
may be specified at the outgoing edges of a parallelization node in a
state machine diagram.

The synchronization node is also represented with a black bar. It has Synchronization node

...

at least two incoming edges and exactly one outgoing edge and is used
to merge multiple concurrent flows. No events or guards may be spec-
ified at the incoming edges of a synchronization node. For more infor-
mation on these two pseudostates and a description of the history state,
see Section 5.5. Note that parallelization nodes must not be confused
with decision nodes.
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Figure 5.8

States of a student’s course
participation

not

graded

graded

registered
withdraw

performance

correction

[new

grade=5]

negative

positive

correction

[new

grade<5]

grade

[grade=5]

[grade<5]

The terminate node is represented in the diagram with a large X.Terminate node

If a terminate node is reached in a flow, the state machine terminates
and the modeled object ceases to exist. In Figure 5.8, a specific course
participation object for a certain student is deleted if it is in the state
registered and the event withdraw occurs.

The only other “real” state—that is, a non-pseudostate—in addition
to the states discussed in Section 5.1 is the final state. The final stateFinal state ...

... is a “real” state

has at least one incoming edge and no outgoing edges. In a diagram,
it is represented by a small circle containing a solid circle. It marks
the end of the sequence of states (see also Section 5.5). The object can
remain in a final state permanently. Note that the final state must not be
confused with the terminate node, where the modeled object is deleted!
For a detailed explanation of entry and exit points, see Section 5.5.3.

5.3 Types of State Transitions

As already mentioned, there are two types of state transitions, namely
internal transitions and external transitions. Internal transitions repre-Internal transition

sent the reaction to an event that triggers an activity but not a state tran-
sition. As there is no change in state, no entry or exit activities are exe-Entry activity

and

exit activity
cuted either. Entry and exit activities are modeled with the same notation
as any other internal transition. However, they require the keywords en-

try and exit instead of the name of the triggering event in order to specify
that the respective activity is executed when the system or object enters
or exits the state. Internal transitions are modeled within states.
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When the system or object exits one state and enters another as a
reaction to an event, the transition is called an external transition. First, External transition

the exit activities of the source state, then the activities of the transition,
and finally the entry activities of the target state are executed as part of
the state transition. A self-transition is a special type of external transi- Self-transition

tion in which the source state and target state are identical.
Figure 5.9 shows examples of internal and external transitions.

≈

≠

(b)

S

e/A1

(d)

S

entry/A2

e/A1

exit/A3

(f)

S

entry/A1

exit/A2

(a)

e/A1
S

(c)

e/A1

S

entry/A2

exit/A3

(e)

S
/A2

/A2
/A1

/A1

/A1
≈

Figure 5.9

Examples of internal and
external transitions

For example, Figure 5.9(b) shows an internal transition, Figure 5.9(e)
an external transition, and Figure 5.9(a) a self-transition. The models in
Figure 5.9(a) and Figure 5.9(b) show the same behavior: in both mod-
els, when event e occurs, activity A1 is executed; in both models, before
event e occurs, the system was in state S just as it was after the process-
ing of event e. Figures 5.9(c) and 5.9(d) are in no way equivalent, as in
5.9(c), whenever event e occurs, the system exits state S and thus exit

activity A3 is executed, followed by A1, and finally, when the system
again enters state S, entry activity A2 is executed. In contrast, in 5.9(d),
event e does not trigger the exit and entry of state S, which is why no en-

try and exit activities are executed. If the same activity is modeled for all
incoming transitions of a state, the execution of this activity can be mod-
eled as an entry activity of the state instead. In the same way, activities
for outgoing transitions can be modeled as an exit activity. Therefore,
Figures 5.9(e) and 5.9(f) are semantically equivalent.
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5.4 Types of Events

UML defines various types of events, with the most important being the
signal event, call event, time event, change event, any receive event, and
completion event. The signal event is used for asynchronous communi-Signal event:

event name(arg1,arg2) cation. In this case, a sender sends a signal to a receiver and does not
wait for an answer. The receiver is the modeled object and the sender
can be another object or the same object as the receiver. The receipt of
the signal is processed as an event. The name of the event corresponds
to that of the signal and arguments can be specified. For example, right-

mouse-down or send sms(message) are signal events.
Call events are operation calls. The name of the event correspondsCall event:

opName(par1,par2) to the name of an operation including parameters, for example, oc-

cupy(user,lectureHall) or register(exam).
Time events enable time-based state transitions. The specified timeTime event:

after(period)

when(time)
can be relative—based on the time of the occurrence of the event in
the state currently active—or absolute. Relative time events consist of
the keyword after and a time span in parentheses, for example, after(5

seconds). Absolute time events are modeled with the keyword when and
a time in parentheses, for example, expressions like when(time==16:00)

or when(date==20150101) indicate absolute time events.
You can use a change event to permanently monitor whether a con-Change event:

when(boolExpr) dition becomes true. A change event consists of a boolean expression
in parentheses and the preceding keyword when. Examples of change
events are when(registrations==number of seats) or when(x > y). The event
occurs as soon as the value of the logical expression changes from false
to true. It is lost—just like every other event—if, for example, a guard
prevents the event from being processed. However, it can only occur
again when the value of the boolean expression changes from false to
true again, meaning that the expression must have been false in the
meantime. In Figure 5.10, the system is in the state course execution.
As soon as semester end changes from false to true, the system checks
whether grades are available. If this is the case, there is a state change
to certificates issued. If no grades are available, the system remains in
the state course execution and the change event is lost. Even if the guard
[grades available] becomes true at a later point in time, there can be no
transition. The system does not check the guard again until semester end

has changed to false and then true again. This expresses that certificates
can only be issued at the end of a semester, and then only if grades are
available.

It is important to stress here that events of the type change event must
not be confused with the guards for transitions. The system checks the
boolean expression of a change event constantly and the event can trig-
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certificates

issued

course

execution

when(semester end)

[grades available]

Figure 5.10

Example of a change event

ger a state transition in the instant it becomes true. In contrast, a guard
is only evaluated when the related event occurs. Therefore, a guard can
never trigger an event itself. In Figure 5.11 a small example illustrates
this difference. A student can be in one of two states, namely attending

lecture or leisure time. In (a), the student listens to the lecture for 90 min-
utes. After 90 minutes, there is a state transition to the state leisure time.
In contrast, in (b), the student listens until the end of the lecture, as it is
only when the event lecture ended occurs that the system checks whether
the lecture has already lasted for 90 minutes. If we model the content as
shown in (a), this means that leisure time begins for the student after ex-
actly 90 minutes. According to model (b), leisure time begins whenever
the lecturer finishes the lecture—but at the earliest after 90 minutes, as
the guard is only true then. Note that this model assumes that the lecture
is never shorter than 90 minutes.

attending lecture

do/Listen to lecture

after(90min)
leisure time

(a) Modeling with ChangeEvent

(b) Modeling with guard

leisure time
attending lecture

do/Listen to lecture

lecture ended[time≥90min]

Figure 5.11

Lecture and leisure time

You can use an any receive event to specify a type of “else” transi- Any receive event:

alltion. For this type of event, the keyword all is attached to a transition as
an event which occurs when any event occurs that does not trigger an-
other transition for the active state. In Figure 5.12, the system changes
from state S1 to state S2 if event e1 occurs. If e2 occurs, there is a tran-
sition to state S3. If any other event occurs, the system changes to S4.

A completion event takes place when everything to be done in the Completion event

current state is completed. This includes entry and do activities as well
as the completion of nested states, if there are any (see next Section).
If a state has an outgoing transition without any event specified, the
completion event triggers this transition.
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Figure 5.12

Transition with any receive
event

e2
S3

e1
S2

all
S4

S1

do/A1

5.5 Composite States

A simple state consists only of internal and external transitions and en-

try, do and exit activities, if there are any. It has no further substructure.Composite state ...

S

S1 S2

A composite state, also referred to as a complex state or a nested state,
is a state that contains multiple other states as well as pseudostates. The
states contained within a composite state are referred to as its substates.
A composite state can have an initial state. A transition to the bound-
ary of this composite state can be understood as an implicit transition
to the initial state of the composite state. If multiple states are nested... consists of substates

within one another, that is, if a composite state contains further com-
posite states, which in turn also contain further composite states, and soArbitrary nesting depth

of substates on, the life cycle of a new object always begins at the outermost initial
state. The same applies for the final state. If a composite state has a final
state, a transition that leads to this final state creates a completion event
of the composite state in which the final state is located. Alternatively,
transitions can lead to or away from a substate of a composite state.

Figure 5.13 shows examples of how a composite state can be entered
or exited. If an object is in state S3 and event e2 occurs, composite stateSynonyms:

• Composite state
• Complex state
• Nested state

S1 becomes active and the initial state of S1 is entered. This triggers
the immediate transition to state S1.1. However, if e1 occurs while the
object is in S3, state S1.2 becomes active. If the object is in state S1.2

and e4 occurs, the object exits the higher level state S1, the assigned
completion transition is executed, and the corresponding target state S2

is activated. However, if e3 occurs while the object is in state S1.1, the
object immediately changes to state S2 and does not reach S1.2.

If e3 occurs while the object is in state S1.2, the system remains in
S1.2 and the event is lost because it is neither consumed within S1.2,
nor is the event specified on a transition originating from S1.2 or the
states it is contained in.
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S1

S1.1 S1.2 S2

S3

e4

e1

e2

e3

e4 e3

Figure 5.13

Example of the entry into
and exit from a composite
state

5.5.1 The Orthogonal State

If a composite state is active, only one of its substates is active at any
point in time. If you want to achieve concurrent states, a composite state
can be divided into two or more regions, whereby one state of each re-
gion is always active at any point in time. This type of composite state
is called an orthogonal state. Each region of an orthogonal state can Orthogonal state

S1

region A

S2

region B

S3 S4

have an initial state. A transition to the boundary of the orthogonal state
then activates the initial states of all regions. Each region can also have
a final state. In this case, the completion event of the higher level state
is not created until the final state is reached in all regions. If an orthog-
onal state is not to be entered or exited via its initial states and final
states, the parallelization and synchronization nodes presented briefly
in Section 5.2 are required. The incoming edge of the parallelization
node may show events, guards, and activities, but at the outgoing edges,
only activities are permitted. Every outgoing edge must target a sub-
state of a different region of the same orthogonal state. Conversely, all
edges that end in a synchronization node must originate from substates
of different regions of the same orthogonal state. The outgoing edge of
a synchronization node may show events, guards, and activities, but at
the incoming edges, only activities are permitted.

Figure 5.14 shows an example of how an orthogonal state can be
entered or exited. If S1 is entered via state S2, the initial states of the
two orthogonal regions region A and region B are activated. However, if
S1 is entered via the transition that proceeds from S3, SA2 and SB2 are
activated. There are four different ways of exiting state S1. If the final
state has been reached in both regions, a completion event is created
and there is a completion transition to S4 via the “bare” edge. If event
e3 occurs while the object is in any substate of S1, any ongoing activi-
ties in S1 are terminated, the object exits all substates of S1, and there
is an immediate transition to S5. If all activities in SA3 and SB3 were
completed before events e1 and e2 occurred, there is a transition to S5.
Event e4 offers the final opportunity to exit S1. If the system is in state
SA2 and event e4 occurs, any ongoing activities in S1 are terminated,
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the object exits all substates of S1, and there is a transition to state S4.
This takes place regardless of which state of region B the object was in
at the time the event e4 occurred.

Figure 5.14

Example of the entry into
and exit from an orthogo-
nal state

S1

region A

region B

SA2 SA3
e1

SA1

e4

e3

S2 S4

S5S3

SB2 SB3
e2

SB1

5.5.2 Submachines

If multiple state machine diagrams share parts with the same behavior, it
is not practical to model the same behavior multiple times, because this
would make the models difficult to maintain and reuse. In this situation,
the recommendation is to reuse parts of state machine diagrams in other
state machine diagrams. To do this, you model the behavior that is to beSubmachine

reused in a submachine accessed from another state machine diagram by
a submachine state. A submachine is a special type of composite state.Submachine state

S:SMS

Refinement symbol

The name of the submachine state takes the form state:submachine state.
In addition, you can optionally annotate the submachine state with a
refinement symbol. If a submachine state is modeled in a state machine
diagram, as soon as the submachine state is activated, the behavior of
the submachine is executed. This is equivalent to calling a subroutine
in programming languages. If there is a transition to the boundary ofSubmachine ∼=

subroutine the submachine state, the initial state of the referenced submachine is
activated. If a final state is reached in the submachine, the state of the
calling state machine diagram that the transition from the submachine
state leads to is activated. Figure 5.15 shows the states that a student can
take when participating in a specific course, whereby the modeling of
the states positive and negative has been transferred to the submachine
grade, which is referenced in the state graded.
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grade

positive negative
correction[new grade=5]

correction[new grade<5]

not graded graded:grade
grade

Figure 5.15

The states of a student in a
course

5.5.3 Entry and Exit Points

If a composite state shall be entered or exited via a state other than the
initial and final states, you can model this using entry and exit points. An
entry point is modeled by a small circle at the boundary of the compos- Entry point

ite state and has a name that describes the entry point. The entry point
has a transition to the state where the execution should begin. If an ex-
ternal transition leads to this entry point, the execution can be started
with the desired state without the external transition having to know the
structure of the composite state. If the composite state is not to be ended
as usual when the final state is reached but instead through the ending of
another state, you can model exit points in the same way. An exit point Exit point

is denoted at the boundary of the composite state by a small circle con-
taining an X and has a name that describes the exit point. If an external
transition has the exit point as source state, this relates to the alterna-
tively determined final state but without the external transition having
to know the structure of the composite state. Entry and exit points are Composite state with

entry and exit point

S1

S2

S3

S

therefore a type of encapsulation mechanism. In practice, they are used
in particular when modeling and using submachines.

Figure 5.16(a) shows a modification of the example from Figure 5.13.
Instead of the transition leading directly to S1.2, an entry point is used.
In the same way, S1.1 is exited via an exit point. Figure 5.16(b) shows
the external view of S1. The entry and exit points are visible as inter-
faces to S1 but the detailed structure of S1 remains invisible for external
transitions.
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Figure 5.16

Example of entering and
exiting a composite state
with entry and exit points
(see Fig. 5.13)
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(b)
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S3
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e3

S1.2

S1.1

Figure 5.17 shows a modification of the example from Figure 5.8, in
which the substates of the state graded are entered via entry points. Thus
outside the state graded, no internal details of graded have to be known.

Figure 5.17

Modeling of the example
from Figure 5.8 with entry
points
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5.5.4 The History State

History states are used when, after an external transition that leads away
from a composite state, the system is to return to the same substate that
was active before the transition occurred. The history state remembers History state

which substate of a composite state was last active. If a transition from
outside leads to the history state, the history state activates the “old”
substate and all entry activities are conducted sequentially from the out-
side to the inside of the complex state. A history state can have any
number of incoming edges but only one outgoing edge. The outgoing
edge must not have any events or guards. Its target is the substate that is
to be active if the composite state was never active before and there is
therefore no “last active substate”, or if the composite state was recently
exited in the “standard way” via the final state being reached.

There are two types of history states: the shallow history state and Shallow history state

H
the deep history state. Every composite state may have a maximum of
one shallow history state and one deep history state. The shallow history
state restores the state that is on the same level of the composite state as
the shallow history state itself. In contrast, the deep history state notes Deep history state

H*
the last active substate over the entire nesting depth.

Figure 5.18 illustrates the difference between the shallow and the
deep history states with an example.

S4

S1

S1.2 S1.3
e5

S3.1 S3.2
e6

S3

e3e2

e4
e7

H

H*

S1.1

e8

e9

e10

S5

Figure 5.18

Shallow history state and
deep history state

Let us assume that the object is in state S1 and there in substate S1.2

when e10 occurs and forces a transition to S5. The shallow history state
remembers that the object was previously in state S1 because S1 is on
the same level as the shallow history state itself. In contrast, the deep
history state remembers that the last active state was actually S1.2, as it
knows the position over the entire nesting depth. If event e8 occurs, the
deep history state activates state S1.2. However, if e9 occurs instead, the
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shallow history state activates state S1 and, therefore, the initial state of
S1 is active, which immediately activates the first real state, S1.1. Let us
now assume that state S4 in the life cycle of our object has never been
active and the object is currently in state S5. If e8 now occurs, the deep
history state activates state S3 and thus implicitly S3.1, as the outgoing
edge of the deep history state points to S3. If e9 occurs instead, the edge
of the shallow history state points to the boundary of S4 and therefore
the initial state of S4 is activated. In turn, this activates S1, which, via
its initial state, activates the first real state, S1.1.

Figure 5.19 shows the states that a student takes during a study pro-
gram. Initially, a study program is inactive. If the tuition fees have been
paid (and thus the student has registered for the study program), the
study program becomes active. Tuition fees must be paid at the begin-
ning of every semester. If this does not happen, the study program be-
comes inactive again. During the course of an active study program, the
student progresses through the levels bachelor, master, and doctorate. If
the student does not pay the tuition fees for a particular semester—for
example, because the student wants to take a break for one semester—
after this semester, it should be possible for the student to return to the
stage of the study program that was reached before the break. The deep
history state ensures that this is possible.

5.6 Sequence of Events

In a final example, we will illustrate the relation of events, guards, and
activities in states and in state transitions. Special attention is given to
the order in which activities are executed.

Figure 5.20 shows an abstract example of a state machine diagram.
Depending on which events occur, there are different state transitions.
The variables x, y, and z are set to different values during the execution
of certain activities. We will use the example to solve the following
question: What state is the state machine in after the occurrences of the
events e2, e1, e3, e4, e1, and e5 (in that given order) and what values are
the variables x, y, and z set to?

At the beginning, the state machine is in state A, whereby before the
entry into state A, the variable x was assigned the value 2. When the
state machine enters state A, variable z is set to the value 0. The system
now remains in state A until event e2—the first event in this specific
example—occurs. As soon as e2 occurs, the state machine exits state
A. When the state machine exits A, the value of z is increased by the
value 1; z is therefore 1. There is a transition to state C. As part of
this transition, the value of z is multiplied by 2; z is therefore 2. When
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Figure 5.19

States of an academic
education

the state machine enters composite state C, z is increased by 1 again and
now has the value 3. Furthermore, y is set to the value 2. The initial state
of composite state C leads directly to state C1; when the state machine
enters C1, z is again multiplied by 2 and now has the value 6.

If e1 now occurs, the state machine remains in state C1, as this event
occurrence “only” triggers an internal transition and is processed within
C1. The variable x is set to the value 4. Then e3 occurs, and the system
checks which value z has at this point in time. As z currently has the
value 6, the guard [z==6] is true. When the state machine exits C1, z is
set to the value 3 and there is a state transition to state C2. When the
state machine enters C2, y is set to 0. The next event in the sequence
is e4, and therefore the state machine exits C2 and the exit activity of
C2 is executed; x therefore becomes -1. The state machine then exits
composite state C and this state’s exit activity is executed. The variable y

is set to the value 1. When the state machine then enters E, y is increased
by the value 1. The variable y therefore becomes 2. The occurrence of
event e1 makes the state machine exit state E. The history state returns
to the last active substate of C, that is, to C2. As a result of the execution



104 5 The State Machine Diagram

Figure 5.20

State machine diagram to
demonstrate a sequence of
events
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of the entry activities of C, the value of z increases from 3 to 4 and y is
set to the value 2. The execution of the entry activity of C2 means that
y is overwritten with the value 0. The last event in this example is e5.
This event leads the state machine to the final state of composite state
C. When the state machine exits C2, x is set to the value -1, which is
irrelevant as x already has this value. There is an edge that leads away
from state C where no event is specified at this edge. The completion
event created by the ending of C thus leads to a completion transition
to state A via this “empty” edge. When the state machine exits C, y is
set to the value 1. When the state machine then enters A, z is set to 0.
Therefore, after the events e2, e1, e3, e4, e1, and e5, our state machine
is in state A, x has the value −1, y is 1, and z has the value 0. Table 5.1
summarizes the individual steps.
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Event State entered x y z

Start A 2 0

e2 C1 2 6

e1 C1 4

e3 C2 0 3

e4 E -1 2

e1 C2 0 4

e5 A -1 1 0

Table 5.1

State changes and variable
assignments for x, y, and z
after the occurrence of the
individual events

5.7 Summary

A state machine diagram can be used to show the states in which a sys-
tem or an object can find itself during its “life cycle”, that is, from its
creation to its destruction. The diagram also shows the conditions under
which the transitions between these states occur. Events and activities
triggered by these events can be modeled in the diagram. You can also
specify guards that must apply for an event to trigger related activi-
ties or a state transition. Additional concepts allow you to model more
complex state machine diagrams. Parallelization and synchronization
nodes, as well as orthogonal states, enable you to model simultaneously
active states and chains of states. The shallow and deep history states, as
well as entry and exit points, allow a defined entry into transitive nested
substates of composite states. The most important elements of the state
machine diagram are summarized in Table 5.2.
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Table 5.2

Notation elements for the
state machine diagram

Name Notation Description

State

S

entry/Activity(...)

do/Activity(...)

exit/Activity(...)

Description of a specific “time span”
in which an object finds itself during
its “life cycle”. Within a state, activi-
ties can be executed on the object.

Transition S T
e State transition e from a source state

S to a target state T

Initial state Start of a state machine diagram

Final state End of a state machine diagram

Terminate node Termination of an object’s state ma-
chine diagram

Decision node

... Node from which multiple alternative
transitions can proceed

Parallelization node

... Splitting of a transition into multiple
parallel transitions

Synchronization node

... Merging of multiple parallel transi-
tions into one transition

Shallow and deep his-
tory state H*H /

“Return address” to a substate or a
nested substate of a composite state



Chapter 6

The Sequence Diagram

While the purpose of the state machine diagram presented in the last
chapter is to model the intra-object behavior—that is, the life cycle of Intra-object behavior

versus

inter-object behavior
an object—in this chapter we look at the modeling of the inter-object
behavior—that is, the interactions between the objects in a system.

An interaction specifies how messages and data are exchanged be- Interaction

tween interaction partners. The interaction partners are either human, Interaction partner

such as lecturers or students, or non-human, such as a server, a printer,
or executable software. An interaction can be a conversation between
multiple persons—for example, an oral exam. Alternatively, an interac-
tion can model communication protocols such as HTTP or represent the
message exchange between humans and a software system—for exam-
ple, between a lecturer and the student administration system when the
lecturer publishes exam results. An interaction can also be a sequence
of method calls in a program or signals such as a fire alarm and the
resulting communication processes.

An interaction describes the interplay between multiple interaction
partners and comprises a sequence of messages. The sending or receipt Message

of a message can be triggered by the occurrence of certain events, for
example, the receipt of another message, and can take place at spec-
ified times, for example, at 05:00. Predefined constraints specify any
necessary preconditions that must be met for successful interactions.
For example, continuing the communication process outlined above, the
lecturer must be logged into the system before entering the students’
grades.

In UML, you use interaction diagrams to specify interactions. In an Interaction diagram

interaction diagram, you always model a concrete scenario, meaning
that the message exchange takes place within a specific context to fulfill
a specific task. Interactions usually only describe a specific part of a
situation. There are often other valid execution paths that the interaction

107© Springer International Publishing Switzerland 2015 
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diagram does not cover. Although data exchanged through the messages
and processed or stored by the interaction partners can be represented
in interaction diagrams, the purpose of modeling interactions is not to
specify exactly how this data is to be manipulated. If required, you can
add this type of information to interaction diagrams, but other diagrams
such as the activity diagram (see Chapter 7) would take preference to
model this information.

Interactions offer a mechanism for describing communication se-
quences at different levels of detail, both for computer experts as well
as for end users and decision-makers. Interaction diagrams are therefore
used in various situations. For example, they are used to represent theUse of interaction

diagrams interaction of a complete system with its environment. In this case, the
system can be interpreted as a black box of which only the interfaces
visible to the outside are known. You can also use interaction diagrams
to model the interaction between system parts in order to show how a
specific use case (see Chapter 3) can be implemented. In late design
phases, you can use interaction diagrams to precisely model interpro-
cess communication in which the partners involved must observe cer-
tain protocols. Interaction diagrams can also zoom in much further into
the system to be realized and can model communication at class level,
meaning that you can use them to model operation calls and inter-object
behavior.

Of the four interaction diagrams offered by UML, the sequence di-
agram is the one most frequently used—often in an informal way to
quickly present interaction sequences. However, in this chapter, we de-
scribe the elements of the sequence diagram in detail and examine how
to apply them according to the UML standard. In Section 6.7 we briefly
introduce the other three interaction diagrams and compare them to the
sequence diagram.

6.1 Interaction Partners

In a sequence diagram, the interaction partners are depicted as lifelines.Lifeline

r:C
A lifeline is shown as a vertical, usually dashed line that represents the
lifetime of the object associated with it (see Fig. 6.1). At the top end of
the line is the head of the lifeline, a rectangle which contains an expres-
sion in the form roleName:Class (Fig. 6.1(c)). This expression indicates
the name of the role and the class of the object associated with the life-
line. In the same way as for the object diagram (see Chapter 4.1 on page
50), one of the two names may be omitted. If you omit the class, you can
omit the colon (Fig. 6.1(a)); however, if you specify only the class, the
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colon must precede the class name (Fig. 6.1(b)). Thus you can define a
sequence diagram at both instance level and class level.

You can also use other symbols for interaction partners instead of
the rectangle, for example the stick figure that we saw in the use case
diagram for actors (see Chapter 3).

In a sequence diagram, the use of the role concept allows more mod-
eling flexibility than simple instances or classes. An object—that is, an
instance of a class—can take on different roles over its lifetime. In our Role

university system, it is quite conceivable that the person helenLewis is
initially only a student, who then becomes a tutor, and finally a profes-
sor. With each new role, there are certain activities that Helen Lewis is
no longer permitted to perform or no longer has to perform. However,
there are other activities that she is now allowed to perform instead.
If we considered only the class of the object helenLewis to reflect the
different roles that the object can take, every time the role of the ob-
ject changed we would have to delete the object and create a new one.
Alternatively, the class would have to be changed dynamically.

lecturer :Professor lecturer
:Professor

(a) Role (b) Class (c) Role/Class

lecturer[i]
:Professor

:Thread self

(d) Multivalued

role

(e) Active object (f) self

Figure 6.1

Types of lifelines

Roles can also be connected to more than one object. This type of
role is referred to as a multivalued role. However, a lifeline may only Multivalued role

represent one specific object. This object is selected by a selector. The Selector

selector is specified in square brackets between the role name and the
colon. It can be formulated in any language, for example in natural lan-
guage, pseudocode, or Java. In the example in Figure 6.1(d), the selector
is simply a variable that acts as an index. To specify multiple objects of
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a role as independent interaction partners simultaneously, you must as-
sign each object to a separate lifeline.

A lifeline can represent an active object. Active objects are used toActive object

:C
model processes and threads. An active object has its own control flow,
meaning that it can operate independently of other objects. The head of
a lifeline that represents an active object has a double boundary on the
left and right. A continuous bar is often used instead of the dashed line
(see Fig. 6.1(e)).

In Figure 6.1(f), the head of the lifeline contains the name self. This
is needed when a class spans a certain interaction context and is itself
involved in the interaction.

6.2 Exchanging Messages

The sequence diagram is a two-dimensional diagram (see Fig. 6.2). The
interaction partners involved in the interaction are presented on the hor-
izontal axis and should be arranged in a clear order. The vertical axis
models the chronological order of the interaction. If the chronological
order has not been explicitly set aside, an event further up on the verti-
cal axis takes place before an event that is lower down on the vertical
axis—provided both events refer to the same lifeline.

In a sequence diagram, interactions are considered as a sequence of
event specifications. Event specifications cover the sending and receiptEvent specification

of messages or the occurrence of time-based events such as a point in

Figure 6.2

Structure of a sequence
diagram

sd Database Access

Interaction partners

T
im

e
 a

x
is

Send

event

Receive

event

:Application :Database

getData()

x = getData

Execution

specification}
�
�

processData(x)
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time, for example. The vertical time axis determines the sequence of
event occurrences on a lifeline, although this does not define the or-
der of event occurrences on different lifelines. An order across multiple
lifelines is only forced if messages are exchanged between the different
lifelines. Unless specified otherwise, below we assume that the message Send event and receive

eventtransmission does not require any time, meaning that the send event at
the sender and the receive event at the receiver take place at the same
time. This allows us to present the traces more compactly because we Trace

do not have to consider sequences of send and receive events and can
concentrate on sequences of messages. The chronological connection
between a message a and a message b is expressed by the symbol →.
For example, a → b means that message a is sent before message b. Fig-
ure 6.3 summarizes possible message sequences. If the send and receive
events of two messages take place along the same lifeline, the chrono-
logical order of these events determines the order of the messages. In
Figure 6.3(a), message a must always take place before message c, as
the send event of a takes place before the send event of c. If two mes-
sages do not have any common interaction partners, the order of these
messages is not specified. In Figure 6.3(b), this is the case for messages
a and c. There are therefore two possible traces: a → c and c → a. If a
message b is inserted between a and c and this message forces a and
c into a chronological order, the only possible trace is a → b → c (see
Fig. 6.3(c)).

a

c

T01: a � c

a

c
b

T01: a � b � c

(a)

a

c

T01: a � c

T02: c � a

(b) (c)

Figure 6.3

Sequences of messages and
possible traces

The execution of behavior is indicated by two events that start and
finish this execution on the same lifeline (see Fig. 6.2). This behavior is
visualized with a bar and is referred to as an execution specification. The Execution specification

authors of the book UML@Work [23] differentiate between direct and
indirect execution behavior. In the case of direct execution, the interac- Direct versus indirect

executiontion partner affected executes the specified behavior itself; with indirect
execution, the interaction partner delegates the execution to other in-
teraction partners. Overlapping execution specifications are shown with
overlapping bars. If an interaction partner sends a message to itself and Message to self
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the associated execution specification is to be modeled explicitly, two
bars of execution specifications are shown overlapping, whereby the
message arrow points to the second bar, and in the case of a synchronous
message, a dashed response arrow at the end of the execution leads back
to the original bar (see processData(x) in Fig. 6.2).

You do not have to model execution specifications—they are optional
and are mainly used to visualize when an interaction partner executes
some behavior. Many UML tools draw the corresponding bars automat-
ically as continuous bars from the first to the last message that affects
an interaction partner. For reasons of clarity, in this book we generally
do not show execution specifications in our sequence diagrams.

6.3 Messages

In a sequence diagram, a message is depicted as an arrow from theMessage

sender to the receiver. The type of the arrow expresses the type of com-
munication involved. A synchronous message is represented by an ar-Synchronous message

Asynchronous message

Response message

row with a continuous line and a filled triangular arrowhead. An asyn-
chronous message is depicted by an arrow with a continuous line and an
open arrowhead. In the case of synchronous messages, the sender waits
until it has received a response message before continuing. The response
message is represented by a dashed line with an open arrowhead. If the
content of the response message and the point at which the response
message is sent and received are clear from the context, then the re-
sponse message may be omitted in the diagram. In asynchronous com-
munication, the sender continues after having sent the message. Two
examples are shown in Figure 6.4.

Figure 6.4

Examples of (a) asyn-
chronous and (b) syn-
chronous communication

(a)

register(course)

confirm(course, "ok")

lecturer

:Professor
:Student

(b)

register(course)

register: ″ok″

lecturer

:Professor
:Student
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In both cases, a student is communicating with a professor in order
to register for a course. In case (a), the registration is via e-mail, that
is, asynchronous. The student does not explicitly wait for the receipt
of the confirmation message. In case (b), the student registers with the
professor personally and the communication is therefore synchronous.
The student waits until receiving a response message.

Messages are identified by a name, with the optional specification of
parameters and a return value (see Fig. 6.5). The parameters are sepa-
rated by commas and are enclosed within parentheses. The return value
can optionally be assigned to a variable as well. Thus, a message can
be labeled with var=m1:value, whereby var is the variable to which the
return value is to be assigned, m1 specifies the name of the message,
and value represents the actual return value.

Variable =

Name )Parameter :(
Return

value

,

Figure 6.5

Syntax of the message
specification

The receipt of a message by an object generally calls the correspond-
ing operation specified in the class diagram (see Chapter 4). In principle,
the passed arguments should be compatible with the parameters of the
operation specification in the class diagram (see Fig. 4.8 on page 57).
However, if you use parameter names to assign the values to the corre-
sponding parameters, neither the number nor the order of the arguments
has to match the parameters in the operation specification.

A message for creating objects is a special type of message. It is de- Create message

new

picted by a dashed arrow with an open arrowhead that ends at the head
of the lifeline associated with the object to be created. The arrow is la-
beled with the keyword new and corresponds to calling a constructor in
an object-oriented programming language. For example, in Figure 6.6,
a Professor creates a new ExamDate.

If an object is deleted during the course of an interaction, that is, a
destruction event occurs, the end of the lifeline is marked with a large Destruction event

X (see Fig. 6.6). Otherwise a lifeline stretches to the lower end of the
sequence diagram.
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Figure 6.6

Creation of an object :Professor

:ExamDate
new

setDate(date)

getStudents()after(2 weeks)

If the sender of a message is unknown or not relevant, you can ex-Found message

found

press this with found messages. In this case, you use a black circle as
source instead of specifying an interaction partner that sends the mes-
sage. In Figure 6.7, the sender of the message spamEmail is unknown.

Figure 6.7

Example of lost and found
messages

lecturer
:Professor

spamEmail

announcement(lecture)

The counterpart to the found message is the lost message. With thisLost message

lost

type of message, it is the receiver that is unknown or not relevant. The
receiver is also noted as a black circle. The lecture announcement in
Figure 6.7 is sent to an arbitrary (and therefore unknown or irrelevant)
receiver.

Up to this point, we have implicitly assumed that the messages are
transmitted without any loss of time. Of course, this is not always theTime-consuming

message case. If you want to express that time elapses between the sending and
the receipt of a message, you model the message as a diagonal line in the
sequence diagram rather than a horizontal line. As the time dimension
is represented vertically, this visualizes the duration required for the
transmission of a message. This type of message is referred to as a time-
consuming message or message with duration.

Figure 6.8 shows an example scenario. A student enrolls for a studySynonyms:

• Time-consuming
message

• Message with
duration

program in the student administration system. Within the next two to
three days, the student receives a confirmation message affirming that
the enrollment was successful. This confirmation is sent as a traditional
letter and is therefore in transit for a few days before the student receives
it.
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:Student :StudentAdmin
System

enroll()

{2..3 days}

Figure 6.8

Example of a time-
consuming message

6.4 Combined Fragments

In a sequence diagram, you can use combined fragments (operators) to Combined fragment

model various control structures explicitly. This enables you to describe
a number of possible execution paths compactly and precisely. Within Operator

a diagram, a combined fragment is represented by a rectangle, with the
operator type specified by the respective keyword in a small pentagon
in the upper left corner of this rectangle. UML offers 12 different types
of operators. Depending on the type of the operator, it contains one
or multiple operands which can in turn contain interactions, combined Operands

fragments, or references to other sequence diagrams. Different operands
of an operator are separated from one another by horizontal, dashed
lines. Gates describe the interfaces between a combined fragment and
its environment (see Section 6.5.2).

In [23], the 12 different types of operators are split into three groups:

• Branches and loops
• Concurrency and order
• Filters and assertions

Table 6.1 provides an overview of the available operators with the
corresponding keywords and their semantics. In the following, we refer
to the different fragments according to their operator—for example, a
combined fragment with an alt operator is referred to simply as an alt

fragment.

Combined fragments can be nested arbitrarily, whereby a frame is
specified for each fragment. Alternatively, nested fragments may share
a frame. If this is the case, in the pentagon in the upper left corner of the
frame, the corresponding keywords are specified separated by a space.
The operator to the furthest left is assigned to the outermost fragment,
and the operator to the furthest right is assigned to the innermost frag-
ment (see Fig. 6.9).
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Table 6.1

Operators for combined
fragments

Operator Purpose

Branches and loops

alt Alternative interaction

opt Optional interaction

loop Iterative interaction

break Exception interaction

Concurrency and order

seq Weak order

strict Strict order

par Concurrent interaction

critical Atomic interaction

Filters and assertions

ignore Irrelevant interaction parts

consider Relevant interaction parts

assert Asserted interaction

neg Invalid interaction

6.4.1 Branches and Loops

You can use an alt fragment to represent alternative sequences. An altalt fragment

alt [...]

[...]

Alternative interaction

operator has at least two operands. Each operand represents an alterna-
tive path in the execution, which corresponds approximately to multiple
cases in programming languages, for example, the switch statement
in Java. Guards are used to select the path to be executed.

Each operand has a guard. A guard is a boolean expression enclosed
within square brackets. If there is no guard, then [true] is assumed as the
default value. If multiple guards are true simultaneously, this results inGuard

an indeterminism. In this case, there is no prediction regarding which
operand is selected. This contrasts with the semantics of switch state-
ments in common programming languages, in which the alternatives are
usually processed from top to bottom. A special guard is [else], which isPredefined guard else

evaluated as true if no other condition is fulfilled. If none of the guards
evaluates to true, no operand is executed and the execution of the sur-
rounding fragment continues. Figure 6.10 shows an example of the alt

Figure 6.9

Notation alternatives for
nested combined fragments

neg strict critical neg

strict

critical
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register: ″error″

:Student
:StudentAdmin

System
:Database

alt [status == ok]

status = enter: status

enter(matNo, exam)

register(matNo, exam)

register: ″ok″

[status == waiting list free]

register: ″wl″

opt [register on WL == true]

register(matNo, exam)

enterWL(matNo, exam)

[else]

register: ″ok″

enterWL: ″ok″

Figure 6.10

Example of an alt and an
opt fragment

fragment. When a student wants to register for an exam, the follow-
ing cases can occur: (1) There are still places available and the student
can register. (2) There is a place available on the waiting list. Then the
student has to decide whether to go on the waiting list. (3) If there is
no place available for the exam or on the waiting list for the exam, the
student receives an error message and is not registered for the course.

The opt fragment corresponds to an alt fragment with two operands, opt fragment

opt [...]

Optional interaction

one of which is empty. The opt operator thus represents an interaction
sequence whose actual execution at runtime is dependent on the guard.
In a programming language, this operator would be specified as an if
statement without an else branch. Figure 6.10 illustrates the use of
the opt fragment. If there is a place available on the waiting list, when
registering for an assignment the student can decide whether to take the



118 6 The Sequence Diagram

place on the waiting list. If the student wants to be on the waiting list,
the student has to register for it.

You can use the loop fragment to express that a sequence is to beloop fragment
Repeated interaction

loop(...) [...]

executed repeatedly. This combined fragment has exactly one operand.
The keyword loop is followed by an optional specification of the number
of iterations of the loop. This specification takes the form (min..max) or
(min,max), where min specifies the minimum number of iterations that
the loop must go through and max denotes the maximum number of
iterations. If min and max are identical, you can omit one of the two
numbers and the dots. If there is no upper limit to the number of loop
iterations, you only need to specify an asterisk ∗. In this case, the min-
imum number of iterations is assumed to be zero. If the keyword loop

is not followed by any further specification of the number of iterations,
∗ is assumed as the default value. If required, you can specify a guard,
which is then checked for each iteration within the (min,max) limits. This
means that the guard is evaluated as soon as the minimum number of
iterations has taken place. If the underlying condition is not fulfilled,
the execution of the loop is terminated even if the maximum number of
executions has not yet been reached. Figure 6.11 expands the example
from Figure 6.10 to include the system login that is necessary before a
student can register for an assignment. The password must be entered
at least once and at most three times, as reflected by the arguments of
loop. After the first attempt, the system checks whether the password
can be validated. If it can, that is, the condition Password incorrect is no
longer true, execution of the interactions within the loop ceases. The
system also exits the loop if the student enters the password incorrectly
three times. This case is then handled further in the subsequent break

fragment.
The break fragment has the same structure as an opt operator, thatbreak fragment

Exception handling

break [...]

is, it consists of a single operand plus a guard. If the guard is true, the
interactions within this operand are executed, the remaining operations
of the surrounding fragment are omitted, and the interaction continues
in the next higher level fragment. The break operator thus offers a sim-
ple form of exception handling. For our example in Figure 6.11, this
means that if the password is entered incorrectly three times, the condi-
tion incorrect password is true. Thus the content of the break fragment is
executed, meaning that an error message is sent to the student and the
student is not allowed to register for the assignment. The remainder of
the interaction after the end of the break fragment is skipped. After exit-
ing the break operator, we are in the outermost fragment of the sequence
diagram and therefore the execution of this sequence diagram is ended.
If we were not in the outermost fragment, the sequence diagram would
continue in the fragment at the next higher level.
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:Student
:StudentAdmin

System
:Database

enter(matNo, exam)

register(matNo, exam)

check(name, pw)

login(name, pw)

error message

break [incorrect password]

loop(1,3) [incorrect password]

Figure 6.11

Example of a break and
loop fragment

6.4.2 Concurrency and Order

As already discussed, the arrangement of events on the vertical axis rep-
resents the chronological order of these events, provided there is a mes-
sage exchange between the interaction partners involved. The combined
fragments described below allow you to explicitly control the order of
event occurrences.

The seq fragment represents the default order. It has at least one seq fragment

seq

Sequential interaction

with weak order

operand and expresses weak sequencing which is specified by the UML
standard [35] as follows:

1. The ordering of events within each of the operands is maintained in
the result.

2. Events on different lifelines from different operands may come in
any order.

3. Events on the same lifeline from different operands are ordered such
that an event of the first operand comes before that of the second
operand.

We can use the seq fragment to group messages together with a break Application of the seq

fragments in conjunction

with a break fragment

fragment. If the condition of the break fragment becomes true, the mes-
sages from the seq fragment that have not yet been executed are skipped
and the execution of the sequence diagram continues in the surround-
ing fragment. Figure 6.12 shows an example of this. A student wants
to register for an exam. If there are no longer any places available for
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the desired date, the student makes a reservation for the next date (break

fragment). In this case, the student is not examined by the lecturer and
the execution of the sequence diagram continues outside the seq frag-
ment. Irrespective of whether the registration was successful or not, the
lecturer sends the message info() to the student.

Note that seq is the default order and usually does not have to be
modeled explicitly. But in this case, without the explicit modeling of the
seq fragment, the execution would have ended after the break fragment
if incorrect password was true. This is due to the fact that after executing
the content of a break fragment, the operations of the surrounding frag-
ment are omitted. Without using seq, the surrounding fragment would
have been the outermost structure of the diagram and thus the whole
execution would have ended.

Figure 6.12

Example of a seq
fragment

:Student
:StudentAdmin

System

lecturer

:Professor

 register(exam)

examine()

seq

reserve(exam)

break [no free place]

info()

Figure 6.13 shows another sequence diagram together with all pos-
sible traces. As this diagram shows a weak order, the message c is not
connected chronologically to messages a and b and can be interleaved
with these messages. As b is sent by interaction partner B and d is also
received by B, there is a chronological order between these two mes-
sages. In any case, e is the last message.

The strict fragment describes a sequential interaction with a strictstrict fragment

strict
order. The order of event occurrences on different lifelines between dif-
ferent operands is significant, meaning that even if there is no message
exchange between the interaction partners, messages in an operand that
is higher up on the vertical axis are always exchanged before the mes-
sages in an operand that is lower down on the vertical axis.Sequential interaction

with a strict order
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Traces:

T01: a � b � c � d � e

T02: a � c � b � d � e

T03: c � a � b � d � e

:A :B :C :D

a

seq

b

c

d

e

Figure 6.13

Traces in a seq fragment

In the example in Figure 6.14, a lecturer only prints an exam when a
student has registered for it. If the strict fragment were not specified, it
would also be possible for the lecturer to print the exam before a student
registers.

:Student
lecturer

:Professor

strict

register(exam)

:Printer

print(exam)

:StudentAdmin

System

Figure 6.14

Example of a strict
fragment

Figure 6.15 contains the same message sequence as Figure 6.13 but
this time based on a strict order. This means that the messages are in a
fixed order and there is only one trace.

The par fragment enables you to set aside any chronological order par fragment

par
between messages in different operands. From a time perspective, the
execution paths of the different operands can be interleaved as long as
the restrictions of each individual operand are respected. Hence, the or-
der of the different operands is irrelevant. However, this construct does
not induce true parallelism, that is, it does not require simultaneous pro-
cessing of the operands. This is contrary to what we would expect from
the keyword “par” in par operators. Indeed, the par operator actually ex-
presses concurrency, that is, the order of the events that are located in Concurrent interaction

different operands is irrelevant. The par operator therefore has at least
two operands. However, the order within an operand must be respected,
meaning that there are local time axes for each operand and these must
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Figure 6.15

Traces in a strict fragment

Traces:

T01: a � b � c � d � e

:A :B :C :D

a

strict

b

c

d

e

be adhered to. Figure 6.16 illustrates the use of par. At the beginning
of a course, the lecturer has to complete certain activities. The lecturer
must answer queries from students, announce exam dates, and reserve
lecture halls. To do all of this, the lecturer has to communicate with dif-
ferent persons and systems. A par fragment is used to express that the
order in which these activities are completed is irrelevant. What is im-
portant is that the default order between messages within an operand is
adhered to, meaning that according to this sequence diagram, a student
will never register for a course first and then send a query to the lecturer.

Figure 6.16

Example of a par fragment :Student
:StudentAdmin

System

query(course)

lecturer

:Professor

register(course)

announceExam(course)

reserve

LectureHall(course)

par

Figure 6.17 shows the possible traces for a concurrent interaction,
whereby again the same message sequence as shown in Figure 6.13 and
Figure 6.15 is used but this time with a par fragment. There is no longer
any chronological connection between the messages from the different
operands, which explains the multitude of possible traces. What is im-
portant is that the order of the messages within an operand is respected.
For example, message a must always come before message b.
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Traces:

T01: a � b � c � d � e

T02: a � c � b � d � e

T03: a � c � d � b � e

T04: a � c � d � e � b

T05: c � a � b � d � e

T06: c � a � d � b � e

T07: c � a � d � e � b

T08: c � d � a � b � e

T09: c � d � a � e � b

T10: c � d � e � a � b

:A :B :C :D

a

par

b

c

d

e

Figure 6.17

Traces in a par fragment

Alternatively, you can set aside the chronological order of events on
a single lifeline using a coregion. This enables you to model concur- Coregion

rent events for a single lifeline. The order of event occurrences within
a coregion is in no way restricted, even though they are arranged along
the lifeline. The area of the lifeline to be covered by the coregion is
marked by square brackets rotated by 90 degrees.

A coregion can of course contain further combined fragments exe-
cuted as a whole in any order. At the corresponding points, the revoca-
tion of the chronological order spreads out to the corresponding interac-
tion partners of the lifeline with the coregion. The example modeled in
Figure 6.16 with a par fragment is modeled in Figure 6.18 with a core-
gion. Semantically there is no difference between these two diagrams,
meaning that no chronological order is defined for the messages that the
lecturer sends and receives.

:Student
:Student

Administration

query(course)

lecturer

:Professor

register(course)

announceExam(course)

reserve

LectureHall(course)

Figure 6.18

Example of the use of a
coregion
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To make sure that certain parts of an interaction are not interrupted
by unexpected events, you can use the critical fragment. This marks ancritical fragment

critical

Atomic interaction

atomic area in the interaction. Note that the standard order seq applies
within a critical fragment. We can see an example of this in Figure 6.19.
The messages getExamDate and register are located in a critical fragment.
This ensures that in the time between the request for an exam date and
the actual registration, no message can occur that reserves the place
shown as free for someone else. If the critical fragment was not present,
the lecturer could execute another registration in the time between the
request for free places and the registration by a student, thus taking the
place away from the student.

Figure 6.19

Example of a critical
fragment

:Student
:StudentAdmin

System

lecturer

:Professor

getExamDate

register(exam, matNo)

par

register(exam, matNo)

critical

Figure 6.20 is different to Figure 6.17 only in the fact that messages
c and d are enclosed by a critical fragment. This means that only those
traces are valid in which message d immediately follows message c.

Figure 6.20

Traces in a critical
fragment

Traces:

T01: a � b � c � d � e

T02: a � c � d � b � e

T03: a � c � d � e � b

T04: c � d � a � b � e

T05: c � d � a � e � b

T06: c � d � e � a � b

:A :B :C :D

a
par

b

c

d

e

critical
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6.4.3 Filters and Assertions

Typically, a sequence diagram does not describe all aspects of an inter-
action. Some sequences are highlighted and explicitly declared as per-
mitted traces. In most cases, however, there are further, permitted but
not described traces that may occur. In some cases, you have to doc-
ument all possible traces that may occur or document those that must
not occur. In short, a sequence diagram contains valid, invalid, and un-
specified traces. The combined fragments from the group “filters and
assertions” define (i) which messages may occur but are not relevant for
the description of the system, (ii) which messages must occur, and (iii)
which messages must not occur. Unfortunately, the description of the
fragments in this group is very compact in the UML standard, which is
why in many situations, numerous questions about their exact meaning
remain unanswered. Below we give a short breakdown of these frag-
ments, basing our explanation as closely as possible on the standard.

Irrelevant messages are indicated by the ignore fragment, which ex- ignore fragment

Irrelevant interactionpresses that these messages can occur at runtime but have no further
significance for the functions depicted in the model. The irrelevant
messages are noted in curly brackets after the keyword ignore. In Fig-
ure 6.21(a), the message status is contained in the set of irrelevant mes-
sages. It is used only to implement the server-client communication and
is irrelevant for the presentation of the actual functionality.

(a) (b)

:StudentAdmin

System
:Student

ignore {status}

login(user, pw)

status(″online″)

register(exam)

:Student
:StudentAdmin

System

consider {login, register}

login(user, pw)

status(″online″)

register(exam)

Figure 6.21

Examples of an ignore
fragment and a consider
fragment

In contrast, the consider fragment specifies those messages that are consider fragment

Relevant interactionof particular importance for the interaction under consideration. These
messages are also shown in set notation after the keyword. All messages
that occur in the consider fragment but that are not specified in the set of
relevant messages are automatically classified as irrelevant. They must
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be treated as if they were listed as arguments of an ignore fragment (see
Fig. 6.21(b), which is equivalent to Fig. 6.21(a)).

The assert fragment identifies certain modeled traces as mandatory.assert fragment

Asserted interaction Deviations that occur in reality but that are not included in the dia-
gram are not permitted. In effect, this means that the implementation re-
quires precise modeling and the model is a complete specification. Fig-
ure 6.22(a) contains a corresponding example. When a student registers
for an exam in the student administration system, the student receives
an e-mail after the registration. If this sequence is not implemented pre-
cisely as specified, an error occurs.

With the neg fragment you model an invalid interaction, that is, youneg fragment

Invalid interaction describe situations that must not occur. The neg fragment consists of
exactly one operand. You can use this fragment to explicitly highlight
frequently occurring errors and to depict critical, incorrect sequences.
However, there is no limit to the number of possible interaction se-
quences that should/must not occur, and so you must not assume that us-
ing the neg fragment will cover all undesirable situations. Figure 6.22(b)
expresses that a student may never register for an exam directly with the
lecturer.

Figure 6.22

Examples of an assert
fragment and a neg
fragment

(a)

:StudentAdmin

System
:Student

register(exam)

confirmationMail

assert

(b)

lecturer

:Professor
:Student

register(exam)

neg

6.5 Further Language Elements

To enable us to specify interactions more precisely and to depict them
more clearly, the sequence diagram offers the following additional lan-
guage elements described in detail below. Interaction references and
continuation markers enable you to break down sequence diagrams into
modules to structure them more clearly. Gates allow you to model the
flow of messages that takes place between different sequence diagrams
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or combined fragments. Parameters and local attributes specify those
values required for the execution of an interaction. Time constraints de-
fine when certain events must occur and state invariants specify condi-
tions that are necessary for the execution of the interaction.

6.5.1 Interaction References

An interaction reference allows you to integrate one sequence diagram Interaction reference

in another sequence diagram. On the one hand, this allows you to reuse
interactions that you have already modeled, and on the other hand, it
enables you to break down complex interaction sequences into modules
and to depict them in simple form. Just like a combined fragment, an
interaction reference is depicted in a rectangle with a pentagon in the
upper left corner. The pentagon contains the keyword ref. The rectan-

sd Log In

:Student
:StudentAdmin

System

register(exam)

ref

sd Exam Registration

Log In

:Student
:StudentAdmin

System
:Database

check(name, pw)

login(name, pw)

error message

break [incorrect password]

loop(1,3) [incorrect password]

Figure 6.23

Example of an interaction
reference
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gle itself contains the name of the sequence diagram to be referenced,
followed by optional arguments enclosed within parentheses, and an op-
tional return value preceded by a colon. Figure 6.23 illustrates the use
of an interaction reference. The sequence for logging in to the student
administration system is modeled in the sequence diagram Log In, which
is referenced in the sequence diagram Exam Registration.

6.5.2 Gates

In principle, messages must not extend beyond the boundaries of an in-
teraction, a referenced interaction, or a combined fragment, meaning
that they must not exceed the frame arbitrarily. To enable you to ex-
tend the exchange of messages beyond such boundaries, UML offers
gates. Using such gates thus allows you to send and receive messagesGate

beyond the boundaries of the interaction fragment. A gate is visualized
by the tip or the end of a message arrow—depending on whether the

Figure 6.24

Example of a gate

invitation: ″ok″

info(hotel, costs)

p1:Professor p2:Professor s:Secretary

roomReservation(date)

invitation(date)

sd Invite Guest Lecturer

booking(date)

info(hotel)

sd Reserve Room

:Hotel

AdminSystem
:Database

reserve(hotel, date)

booking(date)

info(hotel, costs*1.2)

costs = reserve: price
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message is an incoming or outgoing message—touching the boundary
of the frame that represents the sequence diagram, the interaction refer-
ence, or the combined fragment. Gates are identified either by a name
or by the name of a message that uses the gate, optionally together with
the direction of the message (e.g., booking in Fig. 6.24). They allow you
to define a specific sender and specific receiver for each message, even
if the sender or receiver is outside the respective interaction or outside
the fragment. You do not have to include gates explicitly for combined
fragments, meaning that a message may point directly to the receiver.

6.5.3 Continuation Markers

Continuation markers allow you to modularize the operands of an alt Continuation marker

fragment. This enables you to break down complex interactions into
parts and connect them to one another with markers. Here, a start Start marker and target

markermarker at the end of an interaction part points to a target marker with
the same name at the beginning of another external interaction part.
Continuation markers are denoted within rectangles with rounded cor-
ners that can extend across multiple interaction partners. Continuation
markers with the same name must refer to the same interaction part-
ners. Figure 6.25 and Figure 6.26 model the example from Figure 6.10
on page 117 with three different start markers (Fig. 6.25) and the re-
spective corresponding target markers (Fig. 6.26). If, for example, the
start marker OK in Figure 6.25 is reached, the sequence diagram contin-
ues with the interactions detailed under the target marker with the same
name in Figure 6.26. There is no return to the start marker—in con-
trast to an interaction reference, which can be compared to a macro. A
continuation marker can also be the only element of an operand, thus in-
creasing the clarity of the diagram. You can assign multiple start mark-
ers to one target marker. The target and start markers do not have to be
located in the same sequence diagram.

6.5.4 Parameters and Local Attributes

Just like all of the other types of diagrams in UML 2.4.1, the sequence
diagram is enclosed by a rectangular frame with a small pentagon in the
upper left corner. This pentagon contains the keyword sd to clearly in-
dicate that the content of the rectangle is a sequence diagram. The key-
word sd is followed by the name of the sequence diagram and optional
parameters separated by commas and enclosed within parentheses. You
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Figure 6.25

Example of a continuation
marker (start markers)

register: ″error″

:Student
:StudentAdmin

System
:Database

alt

status = enter: status

enter(matNo, exam)

register(matNo, exam)

register: ″ok″

register: ″wl″

OK

 Place free on waiting list

No place free

[status == ok]

[status == waiting list free]

[else]

can declare local attributes at any point in the diagram, whereby the
syntax of the attributes corresponds to the attribute specifications in the
class diagram (see Fig. 4.5 on page 54). Alternatively, you can declare
local attributes in a note.

6.5.5 Time Constraints

Time constraints specify either the time at which events occur or a timeTime constraint

period between two events. Time constraints are noted in curly brackets.
The timing expression represents either a concrete time specification,Timing expression

for example, {12:00}, or a calculation rule, such as {12:00+d}. You can
specify absolute times with the keyword at, for example, {at(12:00)}.
Relative times are specified with reference to a starting event using the
keyword after, for example, {after(5sec)}. In both cases, the timing ex-
pression is denoted within curly brackets.
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:Student
:StudentAdmin

System
:Database

getAlternative

Courses(course)

getInfos()

alt

OK

Place free on waiting list

opt [register on WL == true]

register(matNo, exam)

enter(matNo, exam)

No place free

Figure 6.26

Example of a continuation
marker (target markers)

You can also specify time intervals. Again, an interval is enclosed by Interval

curly brackets and contains an expression in the form lower limit..upper

limit. To express that an event takes place between 12:00 and 13:00, for
example, you would use the form {12:00..13:00}.

The keyword now specifies the current time. It can be assigned to any
attribute, for example, t=now. Naturally, you can use this attribute in any
time constraints, for example, {t..t+5}.

The calculation of the duration of a message transmission is indi-
cated by the keyword duration.

You assign a time constraint to an event using a timing mark rep- Timing mark

resented by a short horizontal line in the diagram. If a time constraint
refers to two events, meaning that the duration between two events is to
be defined, you specify this using two timing marks. Figure 6.27 shows
some examples of time constraints. The diagram involves communi-
cation between students and lecturers via a forum. The forum sends a
newsletter to the students at 12:00. At time t, a student posts a message
m1. Five time units later, the student receives notification that the mes-
sage is being posted. A maximum of two hours later, the response from
the lecturer arrives.
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Figure 6.27

Examples of time
constraints

:Student :Forum

sendNewsletter

:Lecturer

post(m1)

post(reply)

inform(m1)

post: confirm

inform(reply)

{max. 2 hours}

{t+5}

{at(12:00)}

{t=now}

6.5.6 State Invariants

You can specify state invariants for an interaction. A state invariantState invariant

asserts a certain condition must be fulfilled at a certain time. It is always
assigned to a specific lifeline. The evaluation of whether the invariant is
true takes place before the subsequent event occurs. If the state invariant
is not true, either the model or the implementation is incorrect. State
invariants can reference states from the related state machine diagram
or they can be logical conditions that refer to local attributes.

UML offers three notation alternatives for state invariants: you can
specify a state invariant within curly brackets directly on a lifeline; you
can attach it as a note; or you can also place it in a rectangle with
rounded edges at the corresponding point of the lifeline. The three no-
tation alternatives are shown in Figure 6.28. A student can only register
for an exam (i) if the student is enrolled, (ii) if the exam has not yet
taken place, and (iii) if registration for the exam is possible.

Figure 6.28

Notation alternatives for
state invariants

:Student
:StudentAdmin

System

register(exam)

registration

possible
enrolled

{examDate>now}
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6.6 Creating a Sequence Diagram

Instead of a final example, in this section we will look at two scenarios
that you can use a sequence diagram for. In particular, we will illustrate
the connection between the class diagram and the sequence diagram.
Then we will conclude the section with a typical application for se-
quence diagrams, namely the description of design patterns [20].

6.6.1 The Connection between a Class Diagram and a
Sequence Diagram

We have repeatedly stated that the different UML diagrams should not
be considered independently of one another; they merely offer different
views of a certain content. For example, the class diagram shown in
Figure 6.29 models a part of a university system that also includes the
student administration system.

+ setDate(date: Date): void

+ init(student: Student, course: Course): void

Registration

* *

*

+ newRegistration(date: Date, matNo: int, courseNo: int): void

+ getCourse(courseNo: int): Course

+ getStudent(matNo: int): Student

StudentAdminSystem

*

1
1

11

Course

+ setRegistration(registration: Registration): void

Student

Figure 6.29

Class diagram
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The student administration system has direct access to all students
and courses. The system knows the registration data for students and
courses that is stored in the class Registration.

We want to depict the communication that is required to create a
new registration of a certain student for a certain course. To do this, the
method newRegistration of the class StudentAdminSystem must be called.
To create a new registration, we have to know the student object that be-
longs to the respective matriculation number and the course object that
belongs to the given course number. We can obtain these by calling the
operations getCourse and getStudent. As soon as we have this informa-
tion, we can create a new object of the type Registration and call the init

operation that sets the student and the course for the registration object.
Now we just have to establish the connection between the registration
and the course, as navigability in both directions is assumed. We do
this by calling the method setRegistration. We do not have to do this
for the registration and student objects, as navigation from Student to
Registration is not possible. The resulting sequence diagram is shown in
Figure 6.30.

Figure 6.30

Sequence diagram based
on class diagram

:StudentAdmin

System
course:Course student:Student

setRegistration

(registration)

new()

init(student, course)

course = get

Course(courseNo)

getStudent(matNo)

setDate(date)

registration

:Registration

newRegistration

(date, matNo, courseNo)
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6.6.2 Describing Design Patterns

Sequence diagrams are often used to describe design patterns. Design
patterns offer solutions for describing recurring problems. In the follow-
ing we will look at the Transfer Object Assembler pattern [18], which Modeling the

communication of the

Transfer Object

Assembler pattern

describes what happens when a client in a distributed environment re-
quires information from three business objects.

In the solution shown in Figure 6.31, the client requires knowledge
about the three business objects in order to access the required data. The
client is therefore strongly linked to the business objects—which is gen-
erally not desirable. We can use the Transfer Object Assembler pattern
to break down these dependencies. In this pattern, an assembler merges
the data from multiple business objects into one transfer object that is
then transferred to the client. The client thus receives the required data
in an encapsulated form. In concrete terms, the pattern is implemented
as described below (see Fig. 6.32).

getData()

getData: d1

getData()

getData: d2

getData()

getData: d3

:Client :BO1 :BO2 :BO3
Figure 6.31

Application scenario for
Transfer Object Assembler
pattern

Using getData() the client requests the required information from an
object of type TransferObjectAssembler (TOA). The TOA object creates
the object d of type DataTransferObject (DTO) and fills it with the data
from the three different business objects (BO1, BO2, BO3). The data of
a business object can be queried using getData(). The object d offers
setData methods that allow the entry of data. Finally, the object of type
TransferObjectAssembler returns d to the client.
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Figure 6.32

Description of the Transfer
Object Assembler pattern
using a sequence diagram

new()

:Client :TOA

d:DTO

:BO1 :BO2 :BO3

getData()

getData()

d1 = getData

setData(d1)

getData: d

getData()

d2 = getData

setData(d2)

getData()

d3 = getData

setData(d3)

6.7 The Communication, Timing, and Interaction

Overview Diagrams

In addition to the sequence diagram, UML supports three further types
of interaction diagrams:

• Communication diagram
• Timing diagram
• Interaction overview diagram

The four types of interaction diagrams of UML are generally equiv-
alent for simple interactions as they are based on the same basic ele-
ments. With the specification of the communication partners involved
and the messages exchanged, they all describe certain communication
situations. However, the focus is different for each type of diagram.

In this section, we briefly compare the four interaction diagrams in
examples. The examples are illustrated in Figures 6.33 to 6.36, show-
ing various aspects of the communication between a student and the
e-learning system of a university.

Figure 6.33 shows the log-in process as a sequence diagram. There
are three interaction partners: student, e-learning system, and database.
The student wants to log in to the system and therefore sends a cor-
responding message to the e-learning system. A query to the database
verifies the access rights and the student receives a positive response
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:Student
:E-Learning

System
:Database

login(user, pw)

check(user, pw)

check: ″ok″

login: ″ok″

getCourses()

Figure 6.33

Example of sequence
diagram

message. Any possible error cases are not considered. The student then
requests the list of subscribed courses.

The communication diagram is a structured diagram that models the Communication diagram

relationships between communication partners. It therefore shows di-
rectly who communicates with whom. The relationships are the result
of the exchange of messages. Here, time is not a separate dimension.
The order in which the messages are exchanged is expressed using dec-
imal classification (sequential numbering) for the messages. Figure 6.34
shows the log-in process as a communication diagram. Again, the inter-
action partners are student, e-learning system, and database. The dia-
gram shows that the student communicates with the e-learning system
twice: once using login(user, pw) and once using getCourses(). It also
shows that the e-learning system communicates with the database using
check(user, pw). The numbering results in the order login, check, and get-

Courses. All three messages are synchronous messages, as shown by the
arrowheads; asynchronous messages would be shown with open arrow-
heads as in a sequence diagram. Response messages are not depicted in
the communication diagram.

1: login(user, pw)
2: getCourses()

:E-Learning
System

:Student

:Database
1.1: check(user, pw)

Figure 6.34

Example of communica-
tion diagram
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The timing diagram shows state changes of the interaction partnersTiming diagram

that result from the occurrence of events. In contrast to the sequence
diagram, in which the arrangement of the interaction partners and the
time axis is exactly the opposite, in the timing diagram the interaction
partners are listed on the vertical axis and the horizontal axis represents
the chronological order. In the timing diagram, lifelines are depicted by
a whole area in which states and state transitions can be represented.
The name of the lifeline (role name and/or class) is noted vertically at
the left boundary of the area. Figure 6.35 thus shows the interaction
partners student, e-learning system, and database. A student can be in
the state logged in or logged out and the e-learning system can take the
states idle or busy. For the database there is only the state active. If the
student now sends the message login(user, pw) to the e-learning system,
the system changes from the state idle to the state busy and sends the
message check(user,pw) to the database. The database verifies the data
and thus the student is allowed access to the system. The student is
informed of this with a corresponding response message. The student is
now in the state logged in. The e-learning system can briefly return to
the state idle until the student sends the getCourses request.

Figure 6.35

Example of timing diagram

:E
-L

e
a

rn
in

g
S

y
s
te

m
:S

tu
d

e
n

t
:D

a
ta

b
a

s
e

active

busy

idle

logged in

logged out

login(user, pw)

check(user, pw)

getCourses

login: ″ok″

check: ″ok″

The interaction overview diagram shows the different interactionsInteraction overview

diagram and visualizes the order in and conditions under which they take place.
This allows you to place various interaction diagrams in a logical or-
der. To do this, you use primarily the concepts of the activity diagram
(see Chapter 7). Instead of specifying nodes for actions and objects, you
specify entire interaction diagrams and interaction references as nodes
which you can then place in order using the control structures of the
activity diagram. A solid circle represents the initial node and a solid
circle with a surrounding circle represents a final node. You can im-
plement different paths using decision nodes represented by a hollow
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diamond. Figure 6.36 shows an interaction overview diagram that, in
addition to an initial and final node, also contains this type of branch
node. If the student has the necessary authorization, the student can ex-
ecute the interaction Forum, represented as a sequence diagram.

sd Log In

sd Forum

[authorized]

[else]

:Student
:E-Learning

System
:Database

login(user, pw)
check(user, pw)

check: ″ok″
login: ″ok″

getCourses()

Figure 6.36

Example of interaction
overview diagram

6.8 Summary

The sequence diagram is one of four interaction diagrams in UML. In-
teraction diagrams model the communication between different interac-
tion partners, whereby each of the four diagrams focuses on a different
aspect. In practice, the sequence diagram is the most frequently used of
the interaction diagrams. The presentation of communication protocols
and design patterns are particularly prominent applications of sequence
diagrams as they enable a compact and clear specification. In addition to
the interaction partners, which are depicted in the form of lifelines, the
sequence diagram contains different types of messages (synchronous,
asynchronous, response message, create message). The chronological
order of the messages is generally assumed to be from top to bottom
along the vertical line. Twelve types of combined fragments provide
you with different control structures that enable you to control the in-
teraction. The most important elements of the sequence diagram are
summarized in Table 6.2.
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Table 6.2

Notation elements for the
sequence diagram

Name Notation Description

Lifeline A

r:C

Interaction partners involved in the
communication

Destruction event Time at which an interaction partner
ceases to exist

Combined fragment
... [...]

Control constructs

Synchronous message Sender waits for a response message

Response message Response to a synchronous message

Asynchronous mes-
sage

Sender continues its own work after
sending the asynchronous message

Lost message lost Message to an unknown receiver

Found message found Message from an unknown sender



Chapter 7

The Activity Diagram

The activity diagram focuses on modeling procedural processing as- Control flow and data

flowpects of a system. It specifies the control flow and data flow between
various steps—the actions—required to implement an activity.

In UML 2, activity diagrams use flow-oriented language concepts
that find their origins in languages for defining business processes.
Activity diagrams are also based on established concepts for describ-
ing concurrent communicating processes, such as the token concept of
Petri nets [41]. One particular feature of activity diagrams is their sup-
port for modeling both object-oriented systems and non-object-oriented
systems. They allow you to define activities independently of objects, Modeling of

object-oriented and

non-object-oriented

systems

which means, for example, that you can model function libraries as well
as business processes and real-world organizations.

The UML standard does not stipulate any specific form of notation
for activities. In addition to the flow-based notation elements of the ac-
tivity diagrams, the standard also allows other forms of notation, such as
structural diagrams or even pseudocode. A number of recurring control
flow and data flow patterns have emerged in addition to custom notation
elements. They are used in particular for modeling business processes
and have proven to be very useful for complex processes. These con-
structs are referred to as “workflow patterns”. For an overview of these “Workflow patterns”

types of patterns as well as guidance on how to model the patterns based
on the concepts of UML 2 activity diagrams, see Wohed et al. [44].

In this chapter, observant readers will note that not all examples
model complete processes—some of the models are restricted to ex-
tracts of processes. Thus, for example, some of the diagrams do not
contain initial and final nodes. In practice, however, a complete activity
diagram must have clearly defined start and end points.

141© Springer International Publishing Switzerland 2015 
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in Computer Science, DOI 10.1007/978-3-319-12742-2_  7
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7.1 Activities

An activity diagram allows you to specify user-defined behavior in the
form of activities. An activity itself can describe the implementation ofActivity

a use case. At a very detailed level, it can also define the behavior of
an operation in the form of individual instructions, or at a less detailed
level, model the functions of a business process. A business process de-
fines how business partners have to interact with one another to achieve
their goals. It can also describe the internal processes within a com-
pany. Behavior can thus be defined at different levels of granularity. An
activity can be assigned to an operation of a class but it can also be
autonomous.

The content of an activity is—as with Petri nets—a directed graphActivity

Activity name

«precondition»

«postcondition»
......

whose nodes represent the components of the activity like actions, data
stores, and control elements and whose edges represent the control flow
or object flow, that is, the possible execution paths for the activity.

An activity is depicted as a rectangle with rounded corners and can,
just like an operation, have parameters. These are shown as rectangles
arranged overlapping at the boundary of the activity. To make the dia-
gram easier to read, you should position input parameters at the left or
upper boundary and output parameters at the right or lower boundary of
the activity. This allows an activity to be read from left to right and/or
from top to bottom. The values that are transferred to the activity via
the input parameters are available to those actions that are connected
to the input parameters by a directed edge (see the next section). In
the same way, output parameters receive their values via directed edges
from actions within the activity. The example in Figure 7.1 shows the
steps necessary to execute the activity Take exam. The input parameters
are the matriculation number and the study program ID of a student.
The actions Register, Write exam, and Correct are executed in this ac-
tivity. The result of the activity is a grade. This example diagram does
not show, however, who performs which action. To enable actions to
be assigned to specific actors, the activity diagram offers the concept of
partitions, which we will introduce in Section 7.5.

You can specify preconditions and postconditions for an activity.Precondition and

postcondition These indicate which conditions have to be fulfilled before or after the
activity is executed. The keywords «precondition» and «postcondition»

are used to identify the respective conditions. In Figure 7.1, a student
who wants to take an exam must be enrolled. After the activity Take

exam has been executed, the student must be graded.
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grade:

Integer

Take exam

matNo:

Integer

Register Write exam Correct

ID:

String

«precondition» student is enrolled

«postcondition» student is graded

Figure 7.1

Example of an activity

7.2 Actions

The basic elements of activities are actions. Just like an activity, an ac- Action

Action
tion is depicted as a rectangle with rounded corners, whereby the name
of the action is positioned centrally within the rounded rectangle. You
can use actions to specify any user-defined behavior. There are no spe-
cific language requirements for the description of an action. Therefore,
you can define the actions in natural language or in any programming
language. For example, if, as a result of the execution of an action, the
value of the variable i is to be increased by one, you can express this by
using i++ or simply by writing Increase i by one.

Actions process input values to produce output values, which means
that they are able to perform calculations. They can also load data from
a memory and they can change the current state of a system. In the
example in Figure 7.1, Register, Write exam, and Correct are actions.

Within the context of an activity, actions are always atomic—that is, Atomicity of actions

they cannot be broken down further within the modeled context. How-
ever, an action can refer to another activity that itself consists of actions
(see call behavior action on page 145). Actions are considered atomic,
even though they might consist of multiple individual steps. For exam-
ple, registering for an exam usually requires multiple steps such as log-
ging on to the system and selecting the appropriate course and the exam
date. Despite this, in Figure 7.1, we have intentionally modeled Register

as an action rather than an activity. This is because in the present model,
the execution of a registration is considered as a single step; the internal
details of this step are of no interest to us, however, and therefore we do
not break it down further.

As we can see in Figure 7.1, actions and parameters are connected Edge between actions

A B
to one another via directed edges. These edges express the order in
which the actions are executed and thus define the execution steps of
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an activity. Here we differentiate between control flow edges and object
flow edges: control flow edges only define the order between actions,
whereas object flow edges can also be used to exchange data or objects.
This enables you to express a data dependency between a preceding ac-
tion and a subsequent action. The completion of an action can initiateControl flow edge versus

object flow edge the execution of another action if these two actions are connected with
one another via control flow edges or object flow edges. However, an ac-
tion may only be executed if all previous actions have been completed
successfully, all relevant guards evaluate to true and all input parameters
have values. Guards are conditions that must be fulfilled to enable the
transition from one activity or action to another activity or action. They
usually occur in connection with alternative branches. We will look at
the control flow, including the guards, and the object flow more closely
in the following two sections after we have introduced two special types
of actions.

In UML, there are a number of predefined, non-language-specificPredefined actions

actions that you can model easily in any target language due to their
level of detail.

The predefined actions in UML can be classified into different cate-
gories based on their function and complexity. We will discuss the most
important two of these categories in the following sections.

7.2.1 Event-Based Actions

Event-based actions enable objects and signals to be transmitted to re-
ceiver objects. They allow you to distinguish between different types
of events. You can use an accept event action to model an action thatAccept (time) event

action

E

T

or

waits for the occurrence of a specific event. The notation element for an
accept event action is a “concave pentagon”—a rectangle with a tip that
points inwards from the left. If the event is a time-based event, you can
use an accept time event action, whereby in this case, the notation is an
hourglass.

Accept (time) event actions do not necessarily have incoming edges.
If they do not have incoming edges, they start when the corresponding
event occurs. They remain active, that is, they can receive signals until
the activity that contains them is ended. Figure 7.2 shows three exam-
ples of accept (time) event actions: whenever a fire alarm is triggered,
the lecture hall must be evacuated (Fig. 7.2(a)); at the end of a semester,
certificates are issued (Fig. 7.2(b)); when a student has taken an exam,
the student waits for the grade and inspects the exam paper when re-
ceiving the grade (Fig. 7.2(c)).
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(a)

Semester ends

Issue

certificates

(b)

Write

exam

Inspect

exam paper

Learn

grade

(c)

Fire alarm

sounds

Evacuate

lecture hall

Figure 7.2

Examples of accept event
actions (a+c) and accept
time event actions (b)

To send signals, you can use send signal actions. Send signal actions Send signal action

S
are denoted with a “convex pentagon”—a rectangle with a tip that pro-
trudes to the right. The action Send grade in Figure 7.3(b) is an example
of a send signal action.

7.2.2 Call Behavior Actions

Actions can call activities themselves. These actions are referred to as Call behavior action

A
call behavior actions and are marked with an inverted fork symbol. This
fork symbol indicates a hierarchy. It symbolizes that the execution of
this action starts another activity, thus dividing the system into various
parts. Figure 7.3(a) shows an example of a call behavior action. In this
diagram, the action Issue certificate in the activity Organize exam refers
to an activity that specifies Issue certificate in more detail. Within the
context of the activity Organize exam, the internal steps that lead to the
issue of a certificate are not relevant. Therefore, Issue certificate is seen
as an atomic unit here, even though it involves a process with multiple
actions.

The content of the called activity can be depicted elsewhere in this or
even another activity diagram in the form of an activity with the usual
notation for activities that we have already seen. Figure 7.3(b) shows
the details of the called activity Issue certificate with the input parameter
grade.
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Figure 7.3

Example of a call behavior
action and a send signal
action

Organize exam

Take

exam

Issue

certificate

(a)

(b)

Issue certificate

Send

grade

Select

course

Select

student

Enter

grade

An action can also trigger the call of an operation. This type of actionCall operation action

A

(Class::operation)

is referred to as a call operation action. It is represented in a rectangle
with rounded edges. If the name of the operation does not match the
name of the action, the name of the operation can be specified beneath
the name of the action in the form (ClassName::operationName).

7.3 Control Flows

Activities consist of other activities and actions that are connected toToken for describing

flows one another by edges. If we look at the graph of an activity, the static
structure does not show clearly how the execution works. To integrate
the dynamic behavior aspects into the diagram, we need execution se-
mantics, meaning that we have to specify exactly how an activity dia-
gram is executed.

The token concept, as introduced in Petri nets [41], is the basis for theToken flow

Action1

Action2

execution semantics of the activity diagram. A token is a virtual coordi-
nation mechanism that describes the execution exactly. In this context,
virtual means that the tokens are not physical components of the dia-
gram. They are mechanisms that grant actions an execution permission.

If an action receives a token, the action is active and can be executed.
Once the action has ended, it passes the token to a subsequent node via
an edge and thus triggers the execution of this action. Once this action
has ended, it passes the token to the outgoing edges or retains it until a
certain condition is fulfilled.

The passing of a token can be prevented by a guard evaluating toGuard

A B
[g] false. A guard is specified in square brackets. In the example in Fig-

ure 7.4, an exam is only held if students have registered for it.
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[students registered]
Hold exam

Announce

exam

Figure 7.4

Example of a guard

An action can only be executed if tokens are present at all of its
incoming edges. If an action has multiple outgoing edges, a token is
offered to all target nodes of these edges, thereby causing a split into
multiple independent execution paths. Special nodes are also available
as an alternative for modeling this concurrency. We will look at these in
more detail later on.

When an action is executed, usually one token of each of its incom-
ing edges is consumed. Alternatively, a weight may be placed on an Weight of an edge

A B
{weight=X}edge to allow a certain number of tokens to be consumed at that edge

by a single execution. The weight of an edge is specified in curly brack-
ets with the keyword weight. It is always a whole number greater than
or equal to zero. If the weight is zero, this means that all tokens present
are consumed. Alternatively, all or ∗ can also be written instead of zero.
If no weight is specified, 1 is assumed as the default value. Figure 7.5
gives an example of the use of weights. If the signal Register is received
30 times, meaning that at least 30 students have registered and thus 30
tokens are offered to the subsequent action, then this subsequent action
is executed, consumes 30 tokens, and a new group is created.

Register
Create

new group

{weight=30}
Figure 7.5

Example of the weight of
an edge

If two actions that are to be connected to one another via an edge
are far apart in a diagram, you can use connectors to make the diagram Connector

A Byy
clearer. In this case, you do not have to draw the edge as a continuous
line from one action to the other; instead, the connector acts as a con-
tinuation marker comparable to the continuation markers in sequence
diagrams (see page 129). A connector is depicted as a small circle con-
taining the name of the connector. Each connector must appear twice
in an activity: once with an incoming edge and once with an outgoing
edge. Figure 7.6 models a relationship between two actions, once with-
out a connector (Fig. 7.6(a)) and once with a connector (Fig. 7.6(b)).

The activity diagram offers special nodes for controlling the control
flow. These nodes are called control nodes.

The initial node indicates where the execution of an activity begins. Initial node

It does not have any incoming edges but has at least one outgoing edge
and is noted as a solid black circle. As soon as an activity becomes
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Figure 7.6

Example of a connector Write

exam
Register

(a)

(b)

Register A
Write

exam
A

active, tokens are provided at all outgoing edges of an initial node and
thus the activity is started. Figure 7.7 shows an example of an initial
node. The diagram also contains an activity final node that represents
the end of an activity. We will look at the activity final node, noted by
a solid black circle within another circle, in more detail later in this
chapter.

Figure 7.7

Example of an initial node Register
Attend

lecture
Write exam

Multiple initial nodes are also permitted for each activity. This al-
lows you to express concurrency, meaning that multiple execution paths
can be active simultaneously. If an activity with multiple initial nodes
is called, the outgoing edges of all initial nodes are supplied with to-
kens simultaneously. The example in Figure 7.8 shows two concurrent
subpaths of the activity Conduct lecture. If the activity Conduct lecture is
activated, a token is placed at each of the two initial nodes and thus both
subpaths are activated. One subpath relates to the actions of students and
the other subpath refers to the actions performed by a lecturer. In the ac-
tion Write exam, both paths are merged. A token must be present at both
incoming edges for the action Write exam to be executed.

Figure 7.8

Example with multiple
initial nodes

Attend

lecture
Register

Conduct lecture

Give

lecture

Prepare

lecture

Write

exam
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In an activity diagram, you can model alternative branches using de- Decision node

...
cision nodes. These act as a switch point for tokens and correspond to
the if statement in a conventional programming language. A decision
node is depicted as a diamond with one incoming edge and multiple
outgoing edges. The outgoing edges have guards (also referred to as
conditions). Just like in the other UML diagrams, guards are boolean
expressions enclosed within square brackets. These conditions must not
overlap, meaning that the system must be able to clearly decide which
outgoing edge a token should take in a specific situation. For example,
having one outgoing edge with the condition [x > 1] and another outgo-
ing edge with the condition [x < 3] is not allowed, as there would be no
unique choice of the edge a token should take if x = 2 applies. If there
is a token at a decision node, the system must be able to clearly decide,
based on the current context (for example, dependent on the value of
a variable), which path the token takes to exit the decision node. Fig-
ure 7.9 shows an example of a decision node. If the action Register is
executed, it is followed by the action Select group if there are still places
available. If this is not the case, the action Enter on waiting list is exe-
cuted.

Register

Select

group

Enter on

waiting list

[place available]

[no place available]

Figure 7.9

Example of a decision
node

You can specify decision behavior for a decision node. This means Decision behavior

«decisionInput»

decision behavior

that you can specify behavior that is necessary for the evaluation of the
guards. It allows you to avoid situations in which the same calculations
have to be performed multiple times for different guards as the result of
the calculation can be accessed in every guard. However, this behavior
must not result in any side effects, meaning that the execution of the
behavior defined in a decision node must never change the values of
objects and variables. The decision behavior is attached to the decision
node as a comment with the label «decisionInput». Figure 7.10 shows
an example of this. As soon as the exam results are known, a decision
is taken in a central department regarding whether to offer students the
opportunity to inspect their corrected exam papers. If the decision is
positive, the students are allowed to inspect their exam papers. Their
certificates are issued afterwards. If the decision is negative, the certifi-
cates are issued immediately.
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Figure 7.10

Example of decision
behavior

Inspect

exam paper

[no]

Exam

result

[yes] Issue

certificate

«decisionInput»

Allow inspection

of exam paper?

If you want to bring alternative subpaths back together again, youMerge node

...

can do this using the merge node. This node is also depicted as a dia-
mond but with multiple incoming edges and only one outgoing edge. In
particular, a token may only be present at one incoming edge at most.
Using decision and merge nodes, we can now model execution steps
that are repeated, that is, loops (see Fig. 7.11).

Figure 7.11

Example of a loop Write

exam

Attend

lecture

[grade!=5]

[grade==5]

You can also combine decision and merge nodes. This combinedCombined decision and
merge node

...

...

node then has multiple incoming edges and multiple outgoing edges.
For decision and merge nodes, only one of the possible paths is ac-

tive. As already mentioned, you can use multiple initial nodes to model
concurrency at the beginning of an activity. If an execution path splits
into multiple simultaneously active execution paths later on, you can re-
alize this using a parallelization node. A parallelization node is depictedParallelization node

...

as a black bar with one incoming edge and multiple outgoing edges.
Figure 7.12 shows an example of this type of node. Once a student has
registered for a course, the student attends the lecture and participates
in the assignment simultaneously. The student can only write the exam
when both the lecture and the assignment have been completed (see next
paragraph).

You can merge concurrent subpaths using a synchronization node.Synchronization node

...

This node is the counterpart to the parallelization node. It is depicted as
a black bar with multiple incoming edges but only one outgoing edge.
As soon as tokens are present at all incoming edges, that is, as soon
as all preceding actions have been executed, all incoming tokens are
merged into one token that is passed on at the outgoing edge.
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Register

Participate in

assignment

Attend

lecture

Write exam

Figure 7.12

Example of the use of
parallelization and syn-
chronization nodes

In the same way that you can combine decision and merge nodes, Combined parallelization
and synchronization
node

...

...

you can also combine synchronization and parallelization nodes using
a bar with multiple incoming edges and multiple outgoing edges.

To express the end of an activity, the activity diagram offers a special
node for this purpose: the activity final node. This node is depicted as a
small circle containing a solid circle and is often referred to as a “bull’s
eye”. If a token is present at an incoming edge of an activity final node,
the entire activity is terminated—that is, all active actions of this activity
are terminated. This also includes active concurrent subpaths and thus Activity final node

all tokens in the activity are deleted. An exception to this rule is data
tokens that are already present at the output parameters of the activity
(see the next section). If a diagram contains multiple activity final nodes,
the first one reached during the execution ends the entire activity. For
example, participation in a course is ended if either the assignment has
not been passed or the exam has been taken (see Fig. 7.13).

You can merge multiple activity final nodes into one activity final
node with multiple incoming edges. As soon as one token reaches the
activity final node via an incoming edge, the entire activity is ended.

Register Write exam

Participate in

assignment

Attend

lecture

[no]

[yes]

«decisionInput»

Assignment passed?

Figure 7.13

Example of multiple ac-
tivity final nodes in one
activity diagram

If you only want to end one execution path, leaving the other concur-
rently active execution paths unaffected, you have to use the flow final Flow final node

node. This node only deletes the tokens that flow into it directly, thus
ending just the respective path. All other tokens of the activity remain
unaffected and may continue to exist. The flow final node is represented
by a small circle containing an X and has only incoming edges.
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Figure 7.14

Example of a flow final
node and an activity final
node

Participate in

assignment

[no]

[yes]

«decisionInput»

Assignment passed?

Register

Write exam
Attend

lecture

In Figure 7.14, the example from Figure 7.13 has been modified.
The successful participation in an assignment and the simultaneous at-
tendance of the related lecture combined with taking the exam are two
independent execution paths that each end with a flow final node. How-
ever, failing the assignment ends the entire activity, meaning that if a
student has a negative assignment grade, the student can no longer take
the final exam if the student has not done so already.

Using Figure 7.15, we will now demonstrate the execution semantics
of the individual control nodes applying the token concept.

If activity A is activated, all outgoing edges of all initial nodes are
assigned a token. Thus, in our example, action A1 receives a token and
starts the execution. Once A1 has been successfully completed, it passes
the token on to the decision node. Depending on the value of the variable
x, the decision node passes the token to A2 if [x ≤ 0] is true or to A3 if [x >

0] is true. The subsequent merge node passes on every token it receives
to the subsequent node. Thus, after the execution of A2 or A3, the action
A4 is activated. The subsequent parallelization node duplicates the token
for all outgoing edges, thus creating three tokens and activating A5, A6,
and A7. The following three execution paths are taken concurrently:

• One token activates A5. As soon as the execution of A5 has ended,
the token passes to the flow final node which then ends this execution
path. No other execution path is affected.

• A further token activates A6. After the execution of A6, all outgoing
edges from A6 are assigned tokens and thus A8 and A9 are executed
concurrently. A10 can only be executed when tokens are present at
all incoming edges, that is, when A8 and A9 have been completed. If
we look at the token flow, we can see that multiple outgoing edges of
an action are equivalent to a parallelization node. If multiple edges
lead into an action node, all incoming execution paths have to be
completed before the execution of this action. This behavior could
also be modeled using synchronization nodes as an alternative.

• The third token activates A7.
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When A7 and A10 have both been successfully executed and there is
thus a token at both incoming edges of the synchronization node, these
tokens are merged into one token and A11 is activated. Depending on
the value of the variable y, the decision node passes the token to A12 if
[y ≤ 0] is true or to A13 if [y > 0] is true. In both cases, after execution
of the respective activity, the token enters the activity final node. When
the token reaches the activity final node, the entire activity is ended.
Any remaining tokens are withdrawn from all actions. Therefore, for
example, the execution of A5 is terminated if this action has not yet
ended at this point in time.

A

A6

A7

A5

A8

A9

A10

F1 F2

A1

A2

A3

A4 F1

[x≤0]

[x>0]

A11

A12

A13

[y≤0]

[y>0]

F2

Figure 7.15

Example of the token
concept
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7.4 Object Flows

Up to this point, we have looked mainly at the control flow, concen-Control tokens vs data

tokens trating on the logical sequence of actions. The described token concept
used exclusively control tokens. For the purposes of simplification, we
have referred to these simply as tokens so far. However, it may be the
case, or is even very probable, that actions exchange data using data to-
kens. Just like control tokens, these are never drawn in the diagram and
are also used only to describe the execution semantics of activity dia-
grams. Data tokens are implicitly also control tokens, as the exchange
of these tokens influences the flow of the activity. Data can be the re-
sult of an action and can also serve as input for a subsequent action.
However, data can also be received via the input parameters of the ac-
tivity and passed on to output parameters, as already described above
(see Fig. 7.1 on page 143).

Input parameters are usually only read once at the beginning of the
activity and output parameters are written once at the end of the activity.
If you want to allow the parameters to be read and written continually
during the execution of the activity, you can label the input or output
parameter with the keyword {stream}. Figure 7.16 shows examples of
streams for input and output parameters of activities or actions (param-
eters for actions are described below). Streaming parameters for actions
can be noted by a filled rectangle.

Figure 7.16

Example of streams {stream}

video : String

Transmit lecture
{stream}

data : String

Play

When the activity is ended, any output parameters that have no token
are assigned a null token. Within an activity, you can use object nodes toObject nodes

Object
explicitly represent the exchange of data. Object nodes can be depicted
in various ways. They are shown either as a separate node as in the
object diagram (see page 49) or they are attached to an action directly
as input or output pins. Figure 7.17 gives an example of an object node
as an independent node. It is added as a rectangle between the action that
delivers the data and the action that consumes the data. The rectangle
contains the name of the object that it represents. You can optionally
specify an object type as well. Within square brackets, you can also
stipulate the state that the object must be in.
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grade:

Integer

Process

task

:Task

[solved]

Assignment flowt:

Task

Correct

Grade
:Task

[corrected]

Figure 7.17

Example of an object node

The pin notation for actions corresponds to the notation of parame- Pins

Action
ters of an activity. It is used in the same way to represent objects that
serve as input and output for actions. A small rectangle is specified at
the beginning or end of the edge at the boundary of the correspond-
ing action. The pin can be annotated with the same information that we
use when explicitly representing object nodes as rectangles. Figure 7.18
shows an example.

grade:

Integer

t:

Task

Assignment flow

Grade
:TaskProcess

task

:Task

Correct
:Task :Task

Figure 7.18

Example of an object node
in pin notation

The activity diagram offers special object nodes for saving and pass-
ing on data tokens: the central buffer and the data store. The central Central buffer

«centralBuffer»

CB

buffer is a special object node that manages the data flow between mul-
tiple sources and multiple receivers. It accepts incoming data tokens
from object nodes and passes these on to other object nodes. In con-
trast to pins and activity parameters, a central buffer is not bound to
actions or activities. When a data token is read from the central buffer,
it is deleted there and cannot be consumed again. Figure 7.19 shows an
example of the use of a central buffer. To execute the action Grant ac-

cess authorization, a key must be withdrawn from the KeyCabinet. The
key is then no longer in the KeyCabinet until it is returned in the action
Withdraw access authorization.

In a data store, all data tokens that flow into the data store are saved Data store

«datastore»

DS

permanently, meaning that they are copied before they leave the data
store again. You can define queries regarding the content of the data
store at the outgoing edges leading from the data store. These queries
are attached to the outgoing edge using the note symbol. A data store
can therefore model the functionality of a database. Figure 7.20 shows
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Figure 7.19

Example of a central buffer Key management for the seminar room

Grant access

authorization

«centralBuffer»

KeyCabinet

Withdraw access

authorization

Conduct

tasks

an example of the use of a data store. The performance of the partic-
ipants of a course is managed in the data store ExamData. This data
includes the assessment of assignment tasks and exam results necessary
for calculating the overall grade.

Figure 7.20

Example of a data store

points

Issue

certificate
points

student

data

points

«datastore»

ExamData

Register

Write

exam

Complete

assignment

Calculate

grade

A central buffer represents transient memory, whereas a data store
represents permanent memory. With the former, the information can
only be used once, meaning that once it has been read from the cen-
tral buffer and forwarded it is lost. With a data store, the information
can be used as often as required, provided it has been saved once in the
data store.

7.5 Partitions

A partition allows you to group nodes and edges of an activity based onPartition

A B common properties. If we consider a business process, for example, we
could use a partition to group all actions that a specific entity is respon-
sible for executing. UML has no strict rules regarding the grouping cri-
teria that can be used. Generally, partitions reflect organizational units
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or roles that are responsible for the execution of the actions within the
partitions. You can specify partitions at different levels of detail down to
the level of individual classes. Partitions may overlap and be nested in
any way required. They do not change the meaning of the execution se-
mantics of an activity diagram, which is defined by tokens. This means
that partitions do not influence the token flow but merely represent a
logical view of its components. Partitions make the diagram clearer, en-
abling you to see the areas of responsibility quickly, thus introducing
more detailed information into the model.

Partitions can be depicted either graphically or in textual form. When
depicted in graphic form, they are placed on top of the activity diagram
as “open” rectangles. All elements that lie within an “open” rectangle
belong to a common group. The name of the partition is specified at
one end of the rectangle. Due to their appearance, partitions are also
referred to as swimlanes. Figure 7.21 shows an example of the use of Synonyms:

• Partition
• Swimlane

partitions in an activity diagram that models the execution of an exam.
The parties involved are a student, an assistant, and a professor. The use
of partitions allows each of these actors to be assigned the actions that
they have to perform.

Print

instructions

Take

exam

AssistantProfessor Student

Correct

exam

Publish

results

«datastore»

Registrations

Create

exam

Figure 7.21

Example of one-
dimensional partitions

A partition can itself be subdivided into multiple subpartitions. Fig- Subpartition

ure 7.22 shows an example of this. In this example, the institute employ-
ees Professor and Secretary are involved in the execution of an exam.
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Figure 7.22

Example of subpartitions Student

Professor Secretary

Correct

exam

Issue

certificate

Write

exam

Institute Employee

As we can see in the example in Figure 7.23, partitions can also be
multi-dimensional. In this example, we model correspondence between
a professor of the Johannes Kepler University Linz (JKU Linz) and the
Vienna University of Technology (TU Vienna). The Professor at TU Vi-

enna writes a letter to the Professor at JKU Linz. The professor gives the
letter to the Secretary, who takes the letter to the post office. The Secre-

tary at JKU Linz fetches the letter from the mailbox as soon as the letter
arrives and has it delivered to the Professor at JKU Linz, who then reads
it. This shows how we need multi-dimensional partitions when various
groups of actors can appear in various forms.

Figure 7.23

Example of multi-
dimensional partitions

Professor Secretary

Read letter

Write letter

J
K

U
 L

in
z

T
U

 V
ie

n
n

a

Take letter
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You can also assign an action to a partition or—in the case of multi-
dimensional partitions—to a set of partitions in text form. In this situa-
tion, you specify the partitions in parentheses above the action name. If
the action belongs to multiple partitions, these partitions are listed sepa-
rated by a comma, for example (Partition 1, Partition 2). When specifying
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(TU Vienna,Professor)

Write letter

(TU Vienna,Secretary)

Take letter to post office

(JKU Linz,Secretary)

Letter

(JKU Linz,Professor)

Read letter

(JKU Linz,Secretary)

Empty mailbox

Figure 7.24

Example of multi-
dimensional partitions
with textual notation

subpartitions, you use a double colon—(Partition::Subpartition)—to ex-
press a hierarchical partitioning. The activity diagram from Figure 7.24
shows the example from Figure 7.23 in this notation.

7.6 Exception Handling

If an error occurs during the execution of an action, the execution is ter-
minated. In this situation, there is no guarantee that the action will de-
liver the expected output. If an action has an exception handler for a spe- Exception handler

Exception-

Handler

Action

ecific error situation, this exception handler is activated when an excep-
tion occurs. Using an exception handler, you can define how the system
is to react in a specific error situation e. This allows you to minimize the
effects of this error. You specify an exception handler for a specific type
of error—that is, you can use different exception handlers for different
errors. If an error situation occurs, all tokens in the action concerned
are deleted immediately. If there is a matching exception handler, this
replaces the content of the action concerned and instead, the content of
the exception handler is executed. The sequence then continues as the
regular path of the activity as if the defective action had ended normally.
As an exception handler is an activity node, it is depicted as a rectangle
with rounded corners. The action safeguarded by the exception handler
points to the exception handler with a lightning bolt arrow. The tip of
the arrow is labeled with the type of the error. Figure 7.25 shows two
examples for handling exceptions. If a paper jam occurs during printing,
printing can continue once the paper jam has been removed. If there is
no paper in the printer, paper must be inserted for printing to continue
until sufficient copies of the exam instructions have been printed.
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Figure 7.25

Examples of exception
handling
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If there are multiple matching exception handlers, the handler to be
executed is not specified. If there is no matching exception handler, the
exception is forwarded to the surrounding structure. If the exception is
passed to the outermost activity without a matching exception handler
being found, the behavior of the system is undefined.

An exception handler has no explicit incoming or outgoing edges.
It has the same access rights to variables and values as the nodes that
it safeguards. The tokens that result from the execution of the content
of the exception handler become result tokens of the safeguarded node.
Therefore, the exception handler and the safeguarded node must have
the same number of return values. This ensures that in the event of an
error, every outgoing edge of the safeguarded node receives the required
token.

The interruptible activity region offers a further way to handle excep-Interruptible activity
region

E

A

B

tions. Using this concept, you can define a group of actions whose exe-
cution is to be terminated immediately if a specific event occurs. The in-
terruptible activity region is depicted as a dashed rectangle with rounded
corners that encloses the relevant actions. The execution of these events
is monitored for the occurrence of a specific event, for example an error.
If the event does occur during this execution, then as a consequence cer-
tain behavior is executed. Within the interruptible activity region, you
model an accept event action that represents the special event and leads
out from the edge in lightning bolt form to an activity outside the inter-
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ruptible activity region. If the modeled event occurs, all control tokens
in the interruptible activity region are deleted and the action that the ac-
cept event action points to is activated. Figure 7.26 shows an example of
an interruptible activity region. If a student withdraws from the univer-
sity while attending a course, the action Withdraw student is executed.
However, a withdrawal is only possible if the student has previously
registered and if the action Take exam has not yet ended. In all other
cases a certificate is issued.

Register

Complete

assignment

Attend

lecture

Take

exam

Issue

certificate

Withdraw

student

Withdraw

Figure 7.26

Example of an interruptible
activity region

7.7 Concluding Example

To sum up, we look at the process that has to be executed for a future
student of a university to receive a student identification card (student
ID). We use an activity diagram to model this process. In textual form,
the process of issuing a student ID can be described as follows: To ob-
tain a student ID, the student must request this ID from an employee of
the student office. The employee hands the student the forms that the
student has to fill out to register at the university. These forms include
the student ID itself, which is a small, old-style cardboard card. The
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student has to enter personal data on this card and the employee con-
firms it with a stamp after checking it against certain documents. The
student ID is only valid if it has a current semester label. Once the stu-
dent has filled out the forms, the student returns them to the employee
in the student office and hands over documents such as photo identi-
fication, school-leaving certificate, and birth certificate. The employee
checks the documents. If the documents are incomplete or the student is
not authorized to receive a student ID for the university, the process is
terminated immediately. If the documents are all in order, the employee
checks whether the student has filled out the student ID correctly. If
there are any errors, this ID is destroyed and the student has to fill out
another one. Otherwise the ID is stamped. However, the student ID is
not valid until it bears the semester label sent to the student by post.

Two actors are involved in the process to be modeled: the Student and
the Employee. To assign the individual actions precisely, we use parti-
tions. We can derive the actions and the control flow directly from the
text above and these are shown in Figure 7.27. To model the termination
of the process in the event of invalid or incomplete documents, we use
a decision node where one path leads to an activity final node. The re-
quirement that part of the entire process has to be repeated if the forms
are filled out incorrectly results in the use of a loop. We implement this
with a decision node after the action Check ID and a merge node before
the action Create ID. If we were to allow the edge to lead directly to the
node of the action Create ID, we would need two tokens for the execu-
tion of this action. As this will never happen, it is important to use a
merge node. If the student has handed over the documents completely
and filled out the forms correctly, the student ID is stamped and the stu-
dent receives the current semester label by post. We model this action
as an accept event action. To validate the ID, the student must then affix
the label. This action ends the process that has to be executed to obtain
a new student ID.

In the activity diagram in Figure 7.27, we have modeled only the
control flow. However, in this example, an object is changed: the stu-
dent ID. Initially it is blank, then filled out, then stamped. A student ID
is not valid until the semester label has been affixed. The changes to
the student ID are shown in Figure 7.28, which expands Figure 7.27 to
include the object flow of the object Student ID. This highlights which
actions need and process the object Student ID.

The most important elements of the activity diagram are summarized
in Tables 7.1 and 7.2.
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Figure 7.27

Activity diagram “Issue
student ID”
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Figure 7.28

Activity diagram “Issue
student ID” with control
and object flow
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Name Notation Description

Action node Action Actions are atomic, i.e., they cannot
be broken down further

Activity node Activity Activities can be broken down further

Initial node Start of the execution of an activity

Activity final node End of ALL execution paths of an ac-
tivity

Flow final node End of ONE execution path of an ac-
tivity

Decision node

...

Splitting of one execution path into
two or more alternative execution
paths

Merge node

...

Merging of two or more alternative
execution paths into one execution
path

Parallelization node
...

Splitting of one execution path into
two or more concurrent execution
paths

Synchronization node
...

Merging of two or more concurrent
execution paths into one execution
path

Edge A B Connection between the nodes of an
activity

Call behavior action A Action A refers to an activity of the
same name

Object node Object Contains data and objects that are cre-
ated, changed, and read

Parameters for activi-
ties

Activity Contain data and objects as input and
output parameters

Parameters for actions
(pins)

Action Contain data and objects as input and
output parameters

Table 7.1

Notation elements for the
activity diagram
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Table 7.2

Notation elements for the
activity diagram, part 2

Name Notation Description

Partition
A B

B
A Grouping of nodes and edges within

an activity

Send signal action S Transmission of a signal to a receiver

Asynchronous accept
(time) event action

E

T

or
Wait for an event E or a time event T

Exception handler

Exception-

Handler

Action

e

Exception handler is executed instead
of the action in the event of an error e

Interruptible activity
region E

A

B

Flow continues on a different path if
event E is detected



Chapter 8

All Together Now

In the preceding chapters, we have looked in detail at five UML dia-
grams that enable us to describe different aspects of a system. In the
examples given, we have seen that the diagrams each realize different
views of a system. Therefore, the diagrams must be interpreted together
as a whole, taking into account how they interact with one another,
rather than each one being considered in isolation. They supplement
each other by illustrating the system to be developed from different per-
spectives. In this chapter, we model three concrete examples from dif-
ferent application areas that show the interaction between the different
diagrams.

8.1 Example 1: Coffee Machine

An important device encountered time and again in a university is the
coffee machine. Let us look at a filter coffee machine as shown in Fig-
ure 8.1. The coffee machine consists of a water tank, a heating plate,
a coffee pot, and a water pipe that leads from the water container to
the filter. When there is water in the tank and the coffee machine is
switched on, the water is heated. The pressure pushes the water up-
wards through the pipe into the filter which contains the ground coffee.
Finally, the brewed coffee flows out of the filter into the coffee pot.
The coffee machine is available in two different versions, one with a
“keep warm” function (model A) and one without (model B). If the wa-
ter tank is empty and the coffee machine is switched on, in model A
the “keep warm” function is activated. In the same situation, model B
simply switches off.

The use case diagrams in Figure 8.2 describe the functionality of- Use case diagram
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Figure 8.1

Coffee machine

Heating plate

Filter

Coffee

pot

Water

tank

fered by model A and model B. While model A offers the two functions
Heat Coffee and Make Coffee, model B can only be used to make coffee.
In both cases, we assume very simple coffee machines that are limited
to the “core competencies” of coffee machines.

Figure 8.2

Use case diagrams for a
coffee machine

Coffee machine

model A

Make

coffee

Heat

coffee

User

Coffee machine

model B

Make

coffee

User

Naturally, users can switch the coffee machine on and off. Mainte-
nance activities such as filling the machine up with coffee or cleaning
the filter must also be possible. We have intentionally not modeled these
as separate use cases as they are preparatory tasks required to achieve
the actual objective—the brewed or warmed up coffee.

Figure 8.3

State machine diagram for
coffee machine model B

on

do/Make coffee
off

switch on
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From the description, we can see that both coffee machine models State machine diagram

can take the states on and off. Model B exits the state on when the coffee
has been made (see Fig. 8.3); in model A, the event switch off must occur
for this state change. In model A, the state on can be refined into the
states ready (where the heating function is available) and in use (the
coffee is being made). The machine can only switch to the state in use

when the water tank of the coffee machine is filled (see Fig. 8.4).

off when(filled)

on

in use

do/Make coffee

ready

utilized

switch on[empty]

switch on[filled]

switch off

ready

do/Heat coffee

Figure 8.4

State machine diagram for
coffee machine model A

The activity diagram in Figure 8.5 describes how to use coffee ma- Activity diagram

chine model B. First, the coffee machine is prepared for making the
coffee. This involves cleaning the filter, filling the machine with ground
coffee, filling the machine with water, and switching the machine on.
Note that the filter is always cleaned before the ground coffee is added
and that the water is added before the coffee machine is switched on,
otherwise the machine switches itself off immediately.

Apart from these restrictions, the actions can be performed in any
order. This is represented in the activity diagram by two concurrent sub-
paths, each with a separate initial node. The coffee is not made—that is,
the water is not poured through the filter—until the two incoming edges
of the synchronization node both obtain a token. Our diagram does not
cover a situation in which the coffee machine is used without cleaning
the filter and without adding ground coffee.

The activity diagram in Figure 8.6 describes the use of model A. As
soon as the coffee machine is switched on, it executes the action Heat

coffee. When the coffee machine has been fully prepared for making
coffee, that is, when ground coffee and water have been added, the keep
warm function is switched off and coffee is made. We model this with
a synchronization node. The signal Switch off ends the entire process.
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Figure 8.5

Activity diagram for coffee
machine model B
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Activity diagram for coffee
machine model A
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8.2 Example 2: Submission System

UML diagrams are generally used to describe software systems, such
as the student administration system of a university, at which we have
looked in this book from various aspects. Creating a continuous, de-
tailed model of the entire system which could actually be implemented
in executable code would go beyond the scope of this book. However,
we will again extract a part of the system to illustrate the interaction of
the different diagrams. To this end, we will look at a submission system
that is to be used to manage submissions, that is, the students’ papers
for assignment tasks. The requirements for this system are as follows:

• Every course in the system has lecturers assigned to it. This is done
by one of the course administrators, who is also a lecturer. As part of
a course, lecturers may create tasks and assess papers submitted by
students. Therefore, the lecturers award points and give feedback.

• The course administrator defines which lecturer assesses which pa-
pers. At the end of the course, the course administrator also arranges
for certificates to be issued. A student’s grade is calculated based on
the total number of points achieved for the submissions handed in.

• Students can take courses and upload papers.
• All users—students and lecturers—can manage their user data, view

the courses and the tasks set for the courses (provided the respective
user is involved in the course), and view submitted papers as well as
grade points. However, students can only view their own papers and
the related grades. Lecturers can only view the papers assigned to
them and the grades they have given. The course administrator has
access rights for all data.

• A course is created and deleted by an administrator.
• When a course is created, at least one administrator must be assigned

to it. Further course administrators can be assigned at a later point in
time or assignments to courses can be deleted. The administrator can
also delete whole courses.

• Information about users and administrators is automatically trans-
ferred from another system. Therefore, functions that allow the cre-
ation of user data are not necessary.

• All of the system functions can only be used by persons who are
logged in.

The actors and use cases for the specification above are summarized
in the use case diagram in Figure 8.7. With regard to the actors, we
differentiate between the administrators and all other users, who are in
turn subdivided into lecturers and students. With regard to the lecturers,
we further differentiate course administrators.
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Figure 8.7

Use case diagram for a
submission system
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We can derive the use cases directly from the specification above.
The use cases are generally not detailed enough for the actual imple-
mentation of the system. We now have to highlight exactly which re-
quirements the system must satisfy. However, we do not include this
information in the use case diagram as it would make the diagram over-
loaded and difficult to read. Instead, we document it in the descriptions
of the use cases which we learned about in Chapter 3.

The log-in and log-out processes are not represented in the use case
diagram as they are not functions desired by the actors but instead con-
tribute to the secure use of the system. Logging in can be considered as
a precondition for using the system.

Now that the requirements for the system have been specified, we
can zoom into the system and model its structure and behavior. We rep-
resent the internal structure of the submission system with the class di-
agram shown in Figure 8.8. You will notice that all of the actors that
appear in the use case diagram are also modeled in the class diagram,
even though we stated that they are not part of the system. It is impor-
tant to understand that in the class diagram, it is the data of the actors
that is represented and not the actors themselves. This data is necessary
to implement authorizations, the assignment of submissions to students,
etc. Information about the users is stored in the class User. We use the
attribute authorization to differentiate between administrators (value ad-

min) and all other users (value standard). Administrators can be direct
instances of the class User and lecturers and students are modeled by
further classes that have an inheritance relationship to User. In princi-
ple, this means that it is possible for a lecturer or even a student to be
an administrator as well. At first glance, this contradicts our use case
diagram, in which the actor Admin is in an inheritance relationship to
User. However, if we consider that the actors in the use case diagram
represent roles, our class diagram is correct. One person can of course
take multiple roles. In the use case diagram, we have only excluded,
for example, that an administrator can automatically view information
from the courses. If we really wanted to model a strict differentiation
here, we would have to introduce a separate class Admin or formulate
a constraint that forbids the attribute authorization from taking the value
admin for lecturers or students.

In our class diagram, a lecturer becomes a course administrator by
being in a gives relationship to a course. Tasks are always assigned to
a course, in the same way that submissions are assigned to a task. We
model a student’s participation in a course using an association class
that contains information about the student’s total number of points and
the grade. Both values are calculated automatically and the attributes
are therefore labeled as derived attributes.
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Figure 8.8

Class diagram for a sub-
mission system
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The class diagram in Figure 8.8 does not ensure that a lecturer can
only assess tasks of a course in which this lecturer is involved. We have
to specify these and other restrictions that are important for the con-
sistency of the overall system. Therefore, additional constraints are re-
quired. These can be specified in languages such as the Object Con-
straint Language (OCL) [36] which is beyond the scope of this book.
Then the check that determines whether the instances of a model com-
ply with the specified restrictions can often be perfomed automatically.

In its current form, the class diagram does not contain any platform-
specific information, which means that we have not defined what the
implementation should look like. For the general specification of the
system to be developed, we want to remain at this abstract level in the
subsequent steps.

In the next step, we want to model a typical usage scenario of the
submission system, that is, how the actors, the system, and the func-
tions that we have specified in the use case diagram interact in a specific
situation. We could create an activity diagram to do this. However, as
we want to focus on the communication aspect, we use a sequence dia-
gram instead. Figure 8.9 shows the following usage scenario: A student
uploads the solved assignment paper to the submission system. The sys-
tem informs the course administrator that a new assignment paper has
been submitted and confirms to the student that the paper has been suc-
cessfully received. In the sequence diagram, we do not show the action
necessary for saving the paper submitted as it is not relevant for the rep-
resentation of this specific communication process. Via the submission
system, the course administrator assigns a lecturer to the paper. Once
the system has informed the lecturer that a paper has been assigned, the
lecturer assesses the paper. To do this, the lecturer downloads the paper
from the submission system and enters the grade in the system. Then
the student is informed that the uploaded paper has been graded. The
described communication flow takes place not just once but for every
task that has to be completed for a course. Therefore, in the sequence
diagram in Figure 8.9, the messages described above are enclosed by a
loop fragment.

Once all of the tasks have been processed, the course administrator
can arrange for the certificates to be issued. The submission system also
informs the student of the final grade.

The sequence diagram described in Figure 8.9 reflects the use of the
submission system at a very high abstraction level. Although this high-
lights the general function of the system, many details are still not spec-
ified. Therefore, we have to zoom into the system further. To illustrate
this, let us look at the activity Issue certificate shown in Figure 8.10. Here
we have decided to use an activity diagram to illustrate the detailed pro-
cess.
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Figure 8.9
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We assume that on the user interface, the course administrator sees
an overview of the assigned courses. Firstly, the course administrator se-
lects the course to issue certificates for. The students who have taken the
course are displayed. The course administrator can then select whether
to issue certificates for all or only for certain students. In the latter case,
the administrator must also specify the students who shall obtain cer-
tificates. The grades are calculated, sent to the student office, and each
student is informed of the grade. Note that for the practical implemen-
tation, it is extremely important to model all possible flows in as much
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Figure 8.10

Activity diagram for “Issue
certificate”

detail as possible and as close to reality as possible. In our activity dia-
gram we have not considered the error situations. It is also not possible
in our diagram to manually correct a certificate that has already been
issued. All of these cases would also have to be considered. Modeling
the processes incorrectly can lead to the system not being accepted by
its users. As a result, the increased efficiency expected with the intro-
duction of the system will not be achieved.
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To describe the system precisely, it is important also to show the
states that the individual components of the system and the system itself
can take. As an example, let us look at the state machine diagrams for
the submission of a paper (see Fig. 8.11) and for the participation in a
course (see Fig. 8.12).

Figure 8.11

State machine diagram for
class Submission

when(submission deadline<now)

/points=0

upload paper
created uploaded assigned

assessed

assign lecturer

grade

In our system, an instance of class Submission refers to the upload
of a paper by a student that then can be assessed by the lecturer. The
submission therefore concerns the administration of the file that the stu-
dent hands over to the lecturer for the assessment, rather than the file
itself. When a task is created and released for the students, every stu-
dent can submit a paper in the system. The submission initially has the
state created. It exits this state when the student uploads a paper or when
the submission deadline expires—in the latter case the task is assessed
with zero points for the student. The submission then changes to the
state assessed. If the student submits the solved paper in the system,
the submission changes to the state uploaded. It exits this state when
the submission is assigned to a lecturer for assessment. Once the as-
sessment has taken place, the submission takes the final state assessed.
As the information about a submission is stored for documentation pur-
poses, the submission remains in the state assessed “forever” and no
final state is modeled.

The states that a specific participant of a specific course can take are
described in a similar way (see Fig. 8.12). In our example, the partici-
pation refers to the course participation of a certain student in a certain
course. It is documented whether a student has completed a course and,
if this is the case, the grade that the student received for this course is
saved. When a student has registered for a course, the state of the stu-
dent’s participation in this specific course is initially not assessed. This
clearly shows why we describe the states of course participation and not
the states of a student. If a student had the state not assessed, it would
not be possible to differentiate between different courses that the student
has taken. However, what we want to show is the state of a student with
reference to a specific course. In the class diagram, this information is
taken into account with the association class Participation (see Fig. 8.8).
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For a specific course, a student is initially in the state not assessed, then
in the state partially assessed, and finally in the state certificate issued,
unless the student is not assessed at all. This can happen, for example,
if the student was registered but has never actually attended the course
and never completed any activities. The state certificate issued has two
substates—positive and negative. Guards specify which of these states
occurs. These substates can change if a certificate is corrected.

The diagrams in Figures 8.7 to 8.12 illustrate how the different as-
pects of a submission system and the interaction between these aspects
can be modeled. However, they do not specify any technical details for
the implementation, representing instead a sketch that describes how
the system should look. Once all of the requirements have been doc-
umented in the model, the actual implementation can begin. Different
approaches are feasible. One option would be to start the implemen-
tation in executable code immediately. However, as no interfaces are
specified, sooner or later the different components will not fit together
anymore, which makes the maintenance of the system more compli-
cated than with carefully designed interfaces.

Therefore, we recommend refining the model further until you have
an exact specification of the system to be developed.
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negativepositive

correction[grade=5]

partially

assessed

when(end of semester)

updateAssessment

updateAssessment

issueCertificate

[≥50% of points]

issueCertificate

[<50% of points]

Figure 8.12

State machine diagram for
participation of a student in
a course
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8.3 Example 3: Data Type Stack

The final example in this chapter is the modeling of the data structure
Stack. Elements can be placed on the stack using the push function and
removed from the stack using the pop function. The order in which el-
ements are removed follows the LIFO principle (Last In, First Out),
which means that pop always delivers the element that was last placed
on the stack with push and removes it from the stack. Further functions
that the class Stack should support are the determination of the actual
size of the stack, that is, the number of elements on the stack, and the
query about whether an element is on the stack at all. As we want to
realize a stack with no size restriction, we realize it using a recursive
data structure as shown in the class diagram in Figure 8.13. The class
Stack only knows the uppermost element on the stack. Each element in
the stack refers to its direct predecessor. The actual content of a stack
element is saved via the private variable content.

Figure 8.13

Class diagram for a stack
Stack

- /size: int

+ getSize(): int

+ push(Object): void

+ pop(): Object

+ empty(): boolean

- setTop(StackEl): void

StackEl

- content: Object

+ setPrecedingEl(StackEl): void

+ getContent(): Object

+ getPrecedingEl(): StackEl

top 0,10,1
0,1

preceding element 0,1

The states that a stack can take are shown in Figure 8.14. Initially
the stack is in the state empty. If an element is placed on the stack, the
stack changes to the state not empty. Every time push is called, the size
of the stack increases by one. Every time pop is called, the size reduces
by one. If there is only one element on the stack and pop is called, then
the stack changes to the state empty.

Figure 8.14

State machine diagram for
a stack

empty

entry/size=0

push/size=1

not empty

pop[size==1]

pop[size>1]

/size--

push

/size++
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:Stack

st:StackEl
new(object)

setPrecedingEl(top)

setTop(st)

push(object)

User

Figure 8.15

Sequence diagram for the
addition of an element to
the stack

The realization of push and pop is shown in the sequence diagrams
8.15 and 8.16. These diagrams are very close to implementations and
reflect how the variables are set.

:Stack top:StackEl

getContent()

setTop(prev)

pop()

pop(): null

getPrecedingEl()

object = getContent(): object

prev = getPrecedingEl(): prev

pop(): object

break [empty()==true]

User

Figure 8.16

Sequence diagram for the
removal of an element
from the stack
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To place an object object on the stack, a new instance of StackEl must
be created where the attribute content is set to object. The current top

element of the stack becomes the predecessor of the new stack, which
now becomes the top element on the stack.

The pop operation reverses the effect of a push operation. The content
of the current top element is returned and its predecessor becomes the
new uppermost element. If there is no element on the stack, the value
null is returned.

8.4 Summary

In the three examples discussed in this chapter, we have not only re-
peated the most important concepts of UML but have also shown how
the different diagrams interact. This interaction allows us to describe a
system completely without a developer being supplied with all infor-
mation at once and being overwhelmed by this flood of information. It
enables us to focus on specific questions. The information that is shown
in the different diagrams redundantly contributes to making the model
more consistent overall, as it allows errors to be found at an earlier de-
velopment stage and more easily.



Chapter 9

Further Topics

In the preceding chapters, we have learned about the basic concepts of
object-oriented modeling using numerous language elements of UML.
We have learned how to apply these concepts to create UML diagrams.
The diagrams offer different views of a complex system, providing ab-
straction mechanisms to make the complexity of the system manage-
able. With these mechanisms, UML offers a strong basis for many ap-
plications and we could fill many pages by looking at further topics. To
give one example, the Systems Modeling Language (SysML) [37] was
developed based on UML and extends a subset of UML with special
concepts required for modeling complex physical systems.

However, introducing all further topics considering UML would go
beyond the objectives of this book. As an outlook, we will briefly con-
sider four further areas here: (i) structuring models, (ii) defining the
language of UML, (iii) extension mechanisms in UML, and (iv) model-
based software development. Without going into details, these convey a
taster of just what is possible with modeling.

9.1 Structuring Models

If a diagram exceeds a certain size, there is a danger that it will be-
come over-complicated. The multitude of model elements, regardless of
whether they are classes, actions, states, and so on, very quickly over-
whelms a human reader of a diagram. If the overall system consists of
multiple subsystems whose elements are only minimally related to one
another, then it is desirable to have a mechanism that groups the ele-
ments appropriately. For example, in most cases, it is confusing if the
user interface elements are mixed with the elements for the database

183© Springer International Publishing Switzerland 2015 
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access. In literature, different criteria for grouping elements have been
identified [23]:

• Functional cohesion: elements with similar purpose are grouped.
• Informational cohesion: elements that are strongly related to one an-

other but only weakly related to other elements are grouped.
• Distribution structure: when developing a distributed system, the el-

ements are grouped according to their physical distribution—for ex-
ample, elements on the client and elements on the server.

• Structuring of the development: the structuring reflects the division
of the development tasks. This is particularly important if there is a
team of developers involved in developing the system. Clearly de-
fined responsibilities and interfaces avoid situations in which team
members get in each other’s way.

In programming languages, the concept of the “namespace” was in-
troduced to enable structuring. In Java for example, this is realized in the
form of packages. UML offers the package diagram for this purpose.Package diagram

9.1.1 Packages

A package allows you to group model elements, such as classes, dataPackage

types, activities, and states, etc., but can also contain packages itself.
The notation for a package is a rectangle with a smaller rectangle on
top in the left corner—similar to an index card. The large rectangle con-
tains the elements that the package groups (see Fig. 9.1(a)). The small
rectangle contains the package name. If the package content is not rele-
vant, the package name can also be positioned in the large rectangle (see
Fig. 9.1(b)). Alternatively, the package content can be represented out-
side the large rectangle and connected to the package by lines that end
in a circle containing a cross on the side of the package (see Fig. 9.1(c)).

A model element may be included in a maximum of one package
directly. This inclusion in a package defines the namespace in whichNamespace

an element is visible. The name of an element must be unique within
a namespace. However, different elements may have the same name
within different namespaces. Thus, if package P1 contains a class C, it
cannot be confused with class C in package P2. The package member-
ship is thus a qualifying factor, allowing a clear differentiation between
different elements with the same name. The unique name of an element
is specified by prepending the package name followed by two colons.
This gives us, for example, the two unique names P1::C and P2::C.
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PackageName

(a) (b)

(c)

C1

C2

PackageName

PackageName

C1

C2

Figure 9.1

Notation alternatives for
package diagrams

9.1.2 Importing Elements/Packages

Elements of a specific package can reference one another and commu-
nicate with one another without any further details provided this is not
restricted by visibilities and navigation directions. For example, an ele-
ment E that is located in a package P1 can also be used in a package P2

provided P2 does not contain an element with the same name E and P2 is
included directly or indirectly in P1. Elements from other packages can
either be imported or referenced using qualified names. All elements
of the imported package with the corresponding visibility become vis-
ible in the importing package. These elements can thus be referenced
directly. The name of an imported element is added to the namespace of
the package and can then be used without qualification (that is, without
namespace::).

Think back to the class diagram (Chapter 4)—there we defined vis-
ibilities of attributes, operations, and roles. In doing so, we also be-
came familiar with the visibility package, notated by ˜ (see Tab. 4.1 on
page 59). This visibility means that the attributes, operations, and roles
are only visible for elements within the same package.

Import relationships are denoted by a dashed arrow that points away
from the importer and is labeled with «import». Of course, only elements
that are visible externally can be imported, such as class C1 in package
P3, which is imported by package P1 (Fig. 9.2).
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A package can import entire packages in this way. For example, inImporting packages

Figure 9.2, package P1 imports package P2. This makes all visible ele-
ments of the imported package visible in the namespace of the import-
ing package. This is handled and noted like every other import relation-
ship.

For a more detailed examination of this topic, see [23].

Figure 9.2

Import relationship

P1

P3

P2

«import»

«import»

C3

C1

C2

9.2 The UML Metamodel

Critical readers will ask themselves how we know how to apply the con-
cepts of the different diagrams. This is described in the metamodel. AMetamodel

metamodel is a model that describes a modeling language. It thus states
something about other models, a fact which is expressed by the Greek
prefix “meta”, which means “about”. In the same way that elements of
a model are referred to as model elements, the elements of a metamodel
are referred to as metamodel elements.

The UML metamodel, the superstructure [35], specifies UML in theSuperstructure

form of class diagrams. We use class diagrams to describe which ele-
ments a UML diagram may contain and how these elements are applied.
However, this also means that a class diagram, which is part of UML,
is itself specified by a class diagram. This is comparable with program-
ming languages. Here it is possible and common to write a compiler for
C in C, for example. With the concepts that we know from the class di-
agram, we can now specify modeling languages ourselves. The classes
no longer represent persons, courses, and so on but rather language con-
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cepts, such as classes, associations, and generalizations, etc. Figure 9.3
shows an example of a simple modeling language that is very similar to
the UML class diagram and is itself represented in the form of a class
diagram. This metamodel is similar to the metamodel of the real UML
class diagram but it is heavily simplified. Almost all classes inherit from
the class NamedElement. All direct and indirect instances of this class
have a name that identifies them uniquely. Associations are described
by a separate class. In contrast, a generalization is represented only as a
relationship between classes. Of course, we could also model the gener-
alization as a separate class. This would allow us to specify further prop-
erties for the generalization, as in “real” UML. For example, in UML,
a generalization can be described as disjoint or overlapping (see 4.6.2),
which is something we cannot do in our simplified metamodel.

The syntax of UML introduced here is also referred to as abstract Abstract syntax

syntax. If we were to draw an instance of the metamodel from Fig-
ure 9.3—that is, an object model—an association would be depicted as
a separate element that connects other elements. An abstract class is
then identified by the isAbstract flag. This notation is not particularly
user-friendly. We have expressed associations simply with a direct con-
nection between the classes that are in a relationship with one another
and we have specifically identified abstract classes. This type of no-
tation is more intuitive for human users. Therefore, in addition to the
abstract syntax, UML defines the concrete syntax, which is a notation Concrete syntax

optimized for humans.
Of course, there are many other important details about metamod-

els and metamodeling that we could discuss. For example, the obvious
question is how the language used to create the metamodel is defined.
For this purpose UML has the infrastructure [34] which introduces the Infrastructure

required concepts. This is the metametamodel of UML. We could con-
tinue these definitions to infinity but the specification does not go be-
yond the metametalevel.

9.3 UML Extension Mechanisms

As a general purpose modeling language, UML provides a stable basis
for a wide variety of requirements. It is not defined for specific appli-
cation domains or for any specific technology. However, in some cir-
cumstances, UML is too general and using it involves a considerable
amount of effort. In such cases, the use of a language optimized for the
given domain and therefore offering special concepts is advantageous.
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Figure 9.3

Heavily simplified meta-
model of a class diagram
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boolean

float
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Visibility

public
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PrimitiveType

type: PType
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0..1 superclass
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Parameter

Method

visibility: Visibility

isAbstract: Boolean

*

* methods 

target 1

This type of language can be defined in one of the following three ways:

• Creation of a new metamodel
• Extension and modification of the UML metamodel
• Extension of the UML metamodel with language-inherent mecha-

nisms

If the description of the systems to be modeled requires languageCreation of a new

metamodel concepts that are very different to the language concepts of UML, it is
probably more practical not to use the language definition of UML and
to define your own modeling language by creating a new metamodel.



9.3 UML Extension Mechanisms 189

As an alternative to creating a new metamodel, you can also extend Extension and

modification of the UML

metamodel

and modify the UML metamodel in accordance with your requirements.
In this case, you introduce new metaclasses and new associations be-
tween the metaclasses or overwrite existing properties. This type of ex-
tension is also referred to as a heavyweight extension. In many cases, it
makes the interoperability of modeling tools more difficult, as of course
not all of the tools support the extended metamodel.

UML itself offers language-inherent extension mechanisms, that is, Extension of the UML

metamodel with

language-inherent

mechanisms

extension options that are provided in the language itself. These are
already defined at the metametamodel level, that is, in the UML infras-
tructure. The extensions are thus implemented in a controlled way; ex-
isting language concepts can only be extended and made more specific
and they must not be changed or generalized. This lightweight extension
mechanism retains the interoperability between the different modeling
tools. These lightweight extensions are based on stereotypes and pro-
files, which we will look at more closely below.

9.3.1 Stereotypes and Profiles

In Section 9.2, we saw that the UML metamodel itself is also a model.
It describes the language elements of UML. The metamodel defines, for
example, that a class diagram contains classes, associations, and gener-
alizations, etc. The classes of the metamodel are referred to as meta-
classes. A stereotype is a special metaclass in the UML metamodel. It Stereotype

allows you to extend any metaclass with additional meta-attributes (tag
definitions) and to make it more specific using additional constraints. A
metaclass for which a stereotype has been defined remains unchanged.
In the simplest case, stereotypes are used to classify metaclasses with-
out introducing additional meta-attributes and constraints.

A stereotype is denoted like a class, with the keyword «stereotype»

above the name in the first compartment. The second compartment usu-
ally contains the meta-attributes. The constraints can be specified either
after the meta-attributes or as a note. You can also specify a pictogram
for a stereotype. This symbol is used later with the corresponding el-
ements. Figure 9.4 shows an example of a stereotype. The stereotype
Entity contains two meta-attributes, author and year, as well as two con-
straints. One constraint states that the values of the meta-attribute author

can have a maximum of ten characters, with the other constraint stating
that the value of the meta-attribute year must be smaller than 2006.

A stereotype extends one or more metaclasses. This extension rela- Extension relationship

tionship is depicted as an arrow with a continuous line and filled arrow-
head. The arrow points away from the stereotype to the metaclass. The
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Figure 9.4

Specification of the stereo-
type “Entity”

«metaclass»

Component

«metaclass»

Class

«stereotype»

Entity

author: String[0..1] {author: length≤10}

year: Integer {year<now}

{required}

extended metaclass is identified with the keyword «metaclass». Stereo-
types defined in this way are optional, meaning that you do not have
to use them in the modeling. You can also use model elements that are
based on the original definition of the metaclass. To force the use of a
stereotype, the extension relationship must be identified as mandatory
through the use of the keyword {required}. In Figure 9.4, the stereotype
Entity is thus optional for the metaclass Class but mandatory for the
metaclass Component.

Stereotypes can be connected to one another via an inheritance re-
lationship. In this context, they can be defined as abstract. A derived
stereotype inherits all meta-attributes, constraints, and extension rela-
tionships of its higher level stereotypes. Figure 9.5 shows an example
of inheritance for stereotypes. The stereotypes Entity and Session are
derived from the abstract stereotype Bean. The keyword {abstract} in
the name field identifies Bean as abstract. The stereotype Session in-
troduces a new meta-attribute state. The extension relationship between
Component and Bean is mandatory, meaning that when a component is
modeled, the stereotype Bean must always be used with a specific value.

Profiles group stereotypes defined for a specific purpose. A profileProfile

is a special form of the package that we learned about at the beginning
of this chapter. Therefore, a profile has the same notation as a package,

Figure 9.5

Example of inheritance
with stereotypes [35]

{required}«metaclass»

Component

«stereotype»

Entity

state: StateKind

«stereotype»

Session

{abstract}

«stereotype»

Bean
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«profile»
EJB

{A component can-

not be generalized

or specialized}

«enumeration»

StateKind

stateless

stateful

{required}«metaclass»

Component

«metaclass»

Artifact

«stereotype»

JAR

«stereotype»

Remote

«stereotype»

Home

«metaclass»

Interface

«stereotype»

Entity

state: StateKind

«stereotype»

Session

{abstract}

«stereotype»

Bean

Figure 9.6

Example of a profile [35]

with the keyword «profile» prepended to the profile name. Figure 9.6
shows an example of a profile [35] for Enterprise JavaBeans (EJB).

9.3.2 Applying Stereotypes of a Profile

To use stereotypes in a specific application, you must first integrate the
profile that contains the stereotypes. You do this with a dashed arrow
with an open arrowhead pointing away from the package of the applica-
tion towards the profile. This arrow is labeled with the keyword «apply».
This imports the stereotypes defined in the profile into the namespace of
the package. Figure 9.7 shows an example of the application of a stereo-
type. The package with the name UserModel contains a component Cus-

tomer with the stereotype Session. The value for the meta-attribute state

is specified in a note. The symbol that appears in the upper right corner
of Customer designates components in UML notation.
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Figure 9.7

Example of the application
of a stereotype
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«stereotype»
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state: StateKind

«stereotype»
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{abstract}

«stereotype»
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«session»
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state=stateless

9.4 Model-Based Software Development

Models often serve as construction plans for software. For the develop-
ers, they stipulate which properties the end product should have. They
specify the requirements that a software system must fulfill and describe
which components occur in the system and how these components inter-
act. Models are thus the basis for the development of executable code,
which is traditionally created by human programmers. If the model and
the code are to be kept up-to-date, any changes made must be imple-
mented in both the model and the code. This involves additional effort.

The next step in simplifying the software development process is
obvious—namely the automatic generation of the code from the models.
This brings us to model-based software development. Models are sig-
nificantly more than pretty pictures for documenting a software system
and for use as sketches or blueprints. In model-based software develop-
ment, the executable system is created from the models. Here, therefore,
models have the same value as code.

In model-based software development (MBSD), source code is cre-Model-based software

development ated partially or completely from models. Programming is thus replaced
by modeling. The models must describe the function of the system to
be developed as precisely as possible. The semantics of the modeling
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languages used must be defined unambiguously so that the language
elements can be transformed into code uniquely. General purpose mod- General purpose

modeling languageeling languages such as UML may be very flexible but they are often
too general for specific applications, meaning that specific concepts are
missing. For example, in the description of a web application, the “hy-
perlink” is a central concept that is not available in UML. Therefore, in
model-based software development, smaller languages tailored to the
respective domain are often used. These languages are also referred to
as domain-specific languages (DSL). Of course, they can be defined Domain-specific

language (DSL)based on UML, as we saw in the previous section on stereotypes and
profiles.

In MBSD, models are transformed into other models that, for exam-
ple, contain specific details about the target platform of the system. Al-
ternatively, executable code is generated in common programming lan-
guages. The expert knowledge that is required to create an executable
program is therefore invested in these model transformations. It is thus
retained in an infrastructure that can be reused again. In recent years,
numerous special languages and frameworks have been introduced for
creating these transformations.

The aim of MBSD is to significantly simplify the development of
applications by replacing programming with modeling, without the de-
velopers or modelers having to have specific knowledge about the plat-
forms used.

To summarize, model-based software development aims to provide
the following advantages [49]:

• Increase the speed of development: code, which is often repeated, is
created automatically and adapted to the current situation. There is a
significant decrease in “copy and paste” activities.

• Increase the quality of the software: the automatic transformations
reduce the risk of errors in the implementation. The code is also cre-
ated independently of the abilities and experience of a developer.
Thanks to the tool support, the implementation of the software ar-
chitecture is better.

• Central troubleshooting: errors only have to be corrected in the
model and they are then eliminated in the corresponding code parts
when the transformation is executed again. The transformation rules
may have to be adapted if they no longer match the requirements.
However, this only has to be done once.

• Increase the reuse: modeling languages, in particular DSLs, only
have to be created once. They aggregate expert knowledge that can
then be used in different projects.
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• Handling complexity through abstraction: the complexity of the im-
plementation language remains hidden in the modeling languages;
technical implementation details do not have to be considered.

• Portability: the code can be generated for different platforms from
one model.

Models are used not only to generate the implementation of the sys-
tem to be developed; they are also used for simulations, for analyzing
system properties, for generating test cases, and for verifying and vali-
dating the system to be developed. Model-based software development
can be implemented in different ways. For a detailed introduction to this
topic, see [6, 49].
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