elhacker.INFO Downloads

[ index of contents ]

Copyright issues contact webmaster@elhacker.info
Icon  Name                                                                                                             Size  
[Volver] Parent Directory - [TXT] 23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79 [TXT] 25.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html 79 [TXT] 25.5 PyTorch Hub (PyTorch version of TensorFlow Hub).html 85 [TXT] 25.4 Papers with Code (a great resource for some of the best machine learning papers with code examples).html 88 [TXT] 4.1 Google Colab (our workspace for the upcoming project).html 95 [TXT] 5.2 Google Colab (our workspace for the upcoming project).html 95 [TXT] 25.3 Andrei Karpathy's talk on AI at Tesla.html 95 [TXT] 18.2 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html 98 [TXT] 27.2 The Softmax Function (activation function we use in our model).html 107 [TXT] 17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html 108 [TXT] 26.1 Keras in TensorFlow Overview Documentation.html 108 [TXT] 5.1 Google Colab FAQ (things you should know about Google Colab).html 110 [TXT] 4.2 Google Colab IO example (how to get data in and out of your Colab notebook).html 113 [TXT] 6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html 113 [TXT] 11.1 Google Colab example GPU usage.html 114 [TXT] 12.2 Google Colab Example of GPU speed up versus CPU.html 114 [TXT] 18.1 Documentation for loading images in TensorFlow.html 114 [TXT] 6.1 Kaggle Dog Breed Identification Competition Data.html 115 [TXT] 4.5 Introduction to Google Colab example notebook.html 116 [TXT] 12.1 Introduction to Google Colab example notebook.html 116 [TXT] 21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html 118 [TXT] 4.3 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html 119 [TXT] 35.1 TensorFlow documentation for the unbatch() function.html 127 [TXT] 10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html 129 [TXT] 14.1 Documentation on how many images Google recommends for image problems.html 129 [TXT] 25.2 MobileNetV2 (the model we're using) on TensorFlow Hub.html 132 [TXT] 30.1 TensorBoard Callback Documentation.html 134 [TXT] 31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html 136 [TXT] 27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html 163 [TXT] 28.1 [Article] How to choose loss & activation functions when building a deep learning model.html 169 [TXT] 41.1 Dog Vision Prediction Probabilities Array.html 170 [TXT] 27.1 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html 172 [TXT] 42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html 180 [TXT] 4.4 End-to-end Dog Vision Notebook (the project we'll be working through).html 182 [TXT] 43.1 End-to-end Dog Vision Notebook (with annotations).html 185 [TXT] 43.2 End-to-end Dog Vision Notebook (from the videos).html 191 [TXT] 3. Setting Up With Google.html 568 [TXT] 8. Setting Up Our Data 2.srt 2.2K [TXT] 24. Optional How machines learn and what's going on behind the scenes.html 2.7K [TXT] 1. Section Overview.srt 2.8K [TXT] 44. Finishing Dog Vision Where to next.html 3.9K [TXT] 31. Preventing Overfitting.srt 5.5K [TXT] 29. Summarizing Our Model.srt 6.0K [TXT] 12. Optional GPU and Google Colab.srt 6.0K [TXT] 5. Google Colab Workspace.srt 6.3K [TXT] 7. Setting Up Our Data.srt 6.4K [TXT] 13. Optional Reloading Colab Notebook.srt 7.8K [TXT] 23. Preparing Our Inputs and Outputs.srt 7.8K [TXT] 6. Uploading Project Data.srt 8.6K [TXT] 33. Evaluating Performance With TensorBoard.srt 9.6K [TXT] 30. Evaluating Our Model.srt 10K [TXT] 27. Building A Deep Learning Model 3.srt 11K [TXT] 17. Creating Our Own Validation Set.srt 11K [TXT] 20. Turning Data Into Batches.srt 12K [TXT] 28. Building A Deep Learning Model 4.srt 12K [TXT] 11. Using A GPU.srt 12K [TXT] 26. Building A Deep Learning Model 2.srt 13K [TXT] 19. Preprocess Images 2.srt 13K [TXT] 18. Preprocess Images.srt 13K [TXT] 16. Turning Data Labels Into Numbers.srt 14K [TXT] 38. Visualizing And Evaluate Model Predictions 3.srt 14K [TXT] 15. Preparing The Images.srt 15K [   ] 22. Visualizing Our Data.srt 16K [TXT] 25. Building A Deep Learning Model.srt 16K [TXT] 14. Loading Our Data Labels.srt 16K [TXT] 42. Submitting Model to Kaggle.srt 17K [   ] 9. Importing TensorFlow 2.srt 17K [TXT] 39. Saving And Loading A Trained Model.srt 17K [TXT] 36. Visualizing Model Predictions.srt 17K [TXT] 35. Transform Predictions To Text.srt 18K [TXT] 37. Visualizing And Evaluate Model Predictions 2.srt 18K [TXT] 43. Making Predictions On Our Images.srt 19K [TXT] 40. Training Model On Full Dataset.srt 19K [TXT] 34. Make And Transform Predictions.srt 19K [TXT] 21. Turning Data Into Batches 2.srt 20K [   ] 2. Deep Learning and Unstructured Data.srt 20K [TXT] 41. Making Predictions On Test Images.srt 20K [TXT] 32. Training Your Deep Neural Network.srt 23K [VID] 1. Section Overview.mp4 12M [VID] 8. Setting Up Our Data 2.mp4 21M [VID] 10. Optional TensorFlow 2.0 Default Issue.mp4 28M [   ] 10. Optional TensorFlow 2.0 Default Issue.srt 28M [VID] 31. Preventing Overfitting.mp4 37M [VID] 5. Google Colab Workspace.mp4 40M [VID] 7. Setting Up Our Data.mp4 42M [VID] 29. Summarizing Our Model.mp4 45M [VID] 12. Optional GPU and Google Colab.mp4 46M [VID] 23. Preparing Our Inputs and Outputs.mp4 50M [VID] 6. Uploading Project Data.mp4 52M [VID] 17. Creating Our Own Validation Set.mp4 66M [VID] 33. Evaluating Performance With TensorBoard.mp4 74M [VID] 4. Setting Up Google Colab.mp4 74M [   ] 4. Setting Up Google Colab.srt 74M [VID] 30. Evaluating Our Model.mp4 79M [VID] 11. Using A GPU.mp4 81M [VID] 28. Building A Deep Learning Model 4.mp4 86M [VID] 20. Turning Data Into Batches.mp4 88M [VID] 13. Optional Reloading Colab Notebook.mp4 89M [VID] 18. Preprocess Images.mp4 90M [VID] 2. Deep Learning and Unstructured Data.mp4 102M [VID] 19. Preprocess Images 2.mp4 105M [VID] 26. Building A Deep Learning Model 2.mp4 106M [VID] 27. Building A Deep Learning Model 3.mp4 106M [VID] 16. Turning Data Labels Into Numbers.mp4 107M [VID] 38. Visualizing And Evaluate Model Predictions 3.mp4 113M [VID] 14. Loading Our Data Labels.mp4 115M [VID] 9. Importing TensorFlow 2.mp4 117M [VID] 43. Making Predictions On Our Images.mp4 119M [VID] 36. Visualizing Model Predictions.mp4 119M [VID] 42. Submitting Model to Kaggle.mp4 121M [VID] 25. Building A Deep Learning Model.mp4 122M [VID] 22. Visualizing Our Data.mp4 122M [VID] 39. Saving And Loading A Trained Model.mp4 127M [VID] 35. Transform Predictions To Text.mp4 130M [VID] 15. Preparing The Images.mp4 134M [VID] 40. Training Model On Full Dataset.mp4 140M [VID] 41. Making Predictions On Test Images.mp4 141M [VID] 37. Visualizing And Evaluate Model Predictions 2.mp4 144M [VID] 21. Turning Data Into Batches 2.mp4 149M [VID] 34. Make And Transform Predictions.mp4 155M [VID] 32. Training Your Deep Neural Network.mp4 167M